WO2021009859A1 - Motor device and egr valve device - Google Patents

Motor device and egr valve device Download PDF

Info

Publication number
WO2021009859A1
WO2021009859A1 PCT/JP2019/027993 JP2019027993W WO2021009859A1 WO 2021009859 A1 WO2021009859 A1 WO 2021009859A1 JP 2019027993 W JP2019027993 W JP 2019027993W WO 2021009859 A1 WO2021009859 A1 WO 2021009859A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
motor
motor device
cooling jacket
stator
Prior art date
Application number
PCT/JP2019/027993
Other languages
French (fr)
Japanese (ja)
Inventor
将貴 清水
祥子 川崎
綿貫 晴夫
裕也 西守
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/027993 priority Critical patent/WO2021009859A1/en
Priority to JP2021532611A priority patent/JP7098063B2/en
Publication of WO2021009859A1 publication Critical patent/WO2021009859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a motor device and an exhaust gas recirculation (hereinafter referred to as "EGR") valve device.
  • EGR exhaust gas recirculation
  • Patent Document 1 discloses a structure in which a motor is cooled by so-called "water cooling”.
  • substantially the entire motor (40) is housed in the housing (100).
  • the housing (100) includes a substantially cylindrical tubular flow path portion (20), a first lid portion (10) provided at one end of the tubular flow path portion (20), and a tubular flow path portion (20). It is composed of a second lid portion (30) provided at the other end of 20).
  • a plurality of partition walls are provided inside the tubular flow path portion (20), a plurality of outward flow paths and a plurality of return flows are provided inside the tubular flow path portion (20).
  • the road is formed.
  • the individual return flow paths and the corresponding forward flow paths are connected by a plurality of folded flow paths provided inside the first lid portion (10).
  • the individual forward flow paths and the corresponding return flow paths are connected by a plurality of folded flow paths provided inside the second lid portion (20).
  • substantially the entire motor (40) is cooled substantially uniformly by a complicated structure using a plurality of parts (10, 20, 30).
  • the amount of cooling required for the cooling structure for the motor may differ for each part of the motor depending on the internal structure of the motor.
  • the amount of cooling required for each part depends on the difference value ⁇ T between the heat resistant temperature T1 of the materials and electronic parts contained in each part and the operating environment temperature T2 of the device including the motor (for example, the EGR valve device). Can be different. Further, the amount of cooling required for each part may differ depending on the amount of heat generated at each part.
  • the difference value ⁇ T is less than 100 degrees (more specifically, 30 degrees), which is an abbreviation for the motor. It may not be necessary to have a substantially uniform cooling of the whole.
  • the conventional cooling structure since the conventional cooling structure is used, there is a problem that a complicated structure is used for unnecessary cooling. Due to such a complicated structure, there is a problem that the weight of the unit including the motor and the cooling structure is increased.
  • the present invention has been made to solve the above problems, and an object of the present invention is to realize cooling according to a required cooling amount by a structure simpler than that of a conventional cooling structure. ..
  • the motor device of the present invention includes a metal cooling jacket and a motor housed in the cooling jacket.
  • the cooling jacket has a flow path for a coolant, and the motor is molded by a resin. It has a stator and a substrate for control, and the flow path is provided at a portion corresponding to the arrangement position of the first flow path and the stator provided at the portion corresponding to the arrangement position of the substrate. It selectively includes at least one of the second flow paths provided.
  • FIG. It is a front view which shows the main part of another motor apparatus which concerns on Embodiment 1.
  • FIG. It is a rear view which shows the main part of another motor apparatus which concerns on Embodiment 1.
  • FIG. It is a left side view which shows the main part of another motor apparatus which concerns on Embodiment 1.
  • FIG. It is a right side view which shows the main part of another motor apparatus which concerns on Embodiment 1.
  • FIG. It is a bottom view which shows the main part of another motor device which concerns on Embodiment 1.
  • FIG. 4 is a cross-sectional view taken along the line AA'shown in FIGS. 4E and 4F. It is explanatory drawing which shows the cooling jacket and the motor in the other motor apparatus which concerns on Embodiment 1.
  • FIG. It is a front view which shows the main part of the motor device which concerns on Embodiment 2.
  • FIG. It is sectional drawing which follows the line BB'shown in FIG. It is a top view which shows the main part of the motor device which concerns on Embodiment 2.
  • It is a front view which shows the main part of the motor device which concerns on Embodiment 3.
  • FIG. 1 is a six-view view showing a main part of the motor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA'shown in FIG.
  • FIG. 3 is an explanatory view showing a cooling jacket and a motor in the motor device according to the first embodiment.
  • the motor device according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • FIG. 4 is a six-view view showing a main part of another motor device according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA'shown in FIG.
  • FIG. 6 is an explanatory view showing a cooling jacket and a motor in another motor device according to the first embodiment.
  • the other motor device according to the first embodiment will be described with reference to FIGS. 4 to 6.
  • 1 is a coil.
  • the coil 1 is molded with the resin 2.
  • the main part of the stator 3 is composed of the coil 1 and the resin 2.
  • the stator 3 has a substantially square columnar outer shape, and has a substantially columnar hollow portion 4.
  • a rotor 5 is provided in the hollow portion 4.
  • the rotor 5 is composed of a permanent magnet.
  • the rotor 5 is rotatably provided with respect to the stator 3.
  • Torque is generated by supplying an electric current to the coil 1.
  • the direction of the generated torque is a direction corresponding to the direction of the supplied current. Further, the magnitude of the generated torque becomes a magnitude corresponding to the magnitude of the supplied current.
  • the rotor 5 is rotatably provided integrally with the shaft 6.
  • the tip of the shaft 6 projects from the bottom surface of the stator 3 to the outside of the stator 3.
  • the rotor 5 is rotatably provided integrally with the magnet 7.
  • the magnetism generated by the magnet 7 is detected by a plurality of magnetic sensors 9 provided on the control substrate 8. By detecting the generated magnetism, the rotational position of the rotor 5 is detected.
  • the detected rotation position is used for controlling the motor 100 by a circuit (not shown) provided on the substrate 8.
  • the substrate 8 is arranged so as to face the top surface portion of the stator 3.
  • the substrate 8 has a substantially rectangular shape. Therefore, the motor 100 has a substantially square columnar outer shape.
  • the motor 100 is housed in a metal cooling jacket (hereinafter referred to as "cooling jacket") 200.
  • the cooling jacket 200 is, for example, an integrally molded product made of aluminum. That is, the cooling jacket 200 is composed of one component.
  • the cooling jacket 200 has a substantially box shape. That is, the cooling jacket 200 has a substantially square columnar outer shape, and has a substantially square columnar recess 11. The shape of the recess 11 corresponds to the outer shape of the motor 100. The motor 100 is housed in the recess 11.
  • the entire top surface portion of the motor 100 that is, the portion including the substrate 8
  • most of the front portion of the motor 100 that is, the portion including the front portion of the stator 3
  • the back portion of the motor 100 that is, the stator 3
  • Most of the left side surface of the motor 100 that is, the part including the back surface of the stator 3
  • the right side surface of the motor 100 that is, the part including the right side surface of the stator 3.
  • Most of the above is arranged in the recess 11.
  • a residual portion on the front surface of the motor 100 a residual portion on the back surface of the motor 100, a residual portion on the left side surface of the motor 100, a residual portion on the right side surface of the motor 100, and a bottom surface portion of the motor 100 (that is, the bottom surface portion).
  • the entire bottom surface of the stator 3 and the tip of the shaft 6) project out of the recess 11 through the opening 12 of the recess 11.
  • the cooling jacket 200 has a shape along the top surface portion, the front surface portion, the back surface portion, the left side surface portion, and the right side surface portion of the motor 100.
  • the cooling jacket 200 has a flow path 13 for the coolant.
  • the flow path 13 is a flow path provided at a portion corresponding to the arrangement position of the substrate 8 (hereinafter referred to as “first flow path”) 13_1 and a flow path provided at a portion corresponding to the arrangement position of the stator 3. It selectively includes at least one of the roads (hereinafter referred to as "second flow paths”) 13_2.
  • FIGS. 1 to 3 show an example in which only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_2 is provided in the cooling jacket 200.
  • the first flow path 13_1 is composed of one substantially U-shaped hollow portion.
  • the first flow path 13_1 is provided along the side surface portion of the substrate 8.
  • the substrate 8 is arranged in the U-shape.
  • One end of the first flow path 13_1 (hereinafter referred to as "first end") 14_1 constitutes a coolant supply port. That is, the first end portion 14_1 can be freely connected to a hose (not shown) for supplying a coolant.
  • second end 15_1 constitutes a cooling liquid discharge port. That is, the second end portion 15_1 can be freely connected to a hose (not shown) for discharging the coolant. As a result, the coolant flows in the first flow path 13_1.
  • FIGS. 4 to 6 show an example in which only the second flow path 13_2 of the first flow path 13_1 and the second flow path 13_2 is provided in the cooling jacket 200.
  • the second flow path 13_2 is composed of one substantially U-shaped hollow portion.
  • the second flow path 13_2 is provided along the outer peripheral portion of the stator 3.
  • the stator 3 is arranged in the U-shape.
  • One end of the second flow path 13_2 (hereinafter referred to as “first end”) 14_2 constitutes a coolant supply port. That is, the first end portion 14_2 can be freely connected to a hose (not shown) for supplying a coolant.
  • second end portion 15_2 of the second flow path 13_2 constitutes a cooling liquid discharge port. That is, the second end portion 15_2 can be freely connected to a hose (not shown) for discharging the coolant. As a result, the coolant flows in the second flow path 13_2.
  • the main part of the motor device 300 is configured.
  • at least one of the first flow path 13_1 and the second flow path 13_2 may be selectively provided on the cooling jacket 200. Therefore, both the first flow path 13_1 and the second flow path 13_2 may be provided in the cooling jacket 200 (not shown).
  • the substrate 8 is larger than the cooling amount for other parts of the motor 100. Cooling with a cooling amount may be required. At this time, due to the structure in which only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_1 is provided in the cooling jacket 200 (see FIGS. 1 to 3), the inside of the first flow path 13_1 The substrate 8 can be cooled intensively by the cooling liquid flowing through the substrate 8. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount with respect to the substrate 8 due to the heat transfer property of the metal cooling jacket 200.
  • the calorific value in the coil 1 is larger than the calorific value in other parts of the motor 100. Therefore, it may be required to cool the stator 3 with a cooling amount larger than the cooling amount for other parts of the motor 100.
  • the inside of the second flow path 13_2 The stator 3 can be cooled intensively by the cooling liquid flowing through the stator 3. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount with respect to the stator 3 due to the heat transfer property of the metal cooling jacket 200.
  • the substrate 8 and the stator 3 are cooled to be larger than the amount of cooling to other parts of the motor 100. Cooling by volume may be required.
  • the substrate 8 and the stator 3 are separated by the coolant flowing in the flow path 13. It can be cooled intensively. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount for the substrate 8 and the stator 3 due to the heat transfer property of the metal cooling jacket 200.
  • the coil 1 is molded with the resin 2, the amount of heat conduction from the coil 1 to the cooling jacket 200 can be increased. As a result, the cooling capacity of the cooling jacket 200 for the coil 1 can be improved.
  • the cooling jacket 200 is composed of one component, and each of the first flow path 13_1 and the second flow path 23_2 is composed of one substantially U-shaped hollow portion. Therefore, the structure of the cooling jacket 200 is simpler than the structure of the housing in the conventional cooling structure. With such a simple structure, the weight of the motor device 300 can be reduced. As a result, when the motor device 300 is used for a device that generates intermittent vibration (for example, an EGR valve device), the force generated by such vibration can be reduced. Therefore, additional members and additional structures for improving seismic resistance, additional members and additional structures for improving strength, and the like can be eliminated.
  • intermittent vibration for example, an EGR valve device
  • the shape of the cooling jacket 200 is not limited to the shapes shown in FIGS. 1 to 3 or the shapes shown in FIGS. 4 to 6. That is, the shape of the cooling jacket 200 is not limited to the shape along the top surface portion, the front surface portion, the back surface portion, the left side surface portion, and the right side surface portion of the motor 100.
  • the shape of the cooling jacket 200 may be any shape that follows one or more selected surface portions of these surface portions.
  • the shape of the first flow path 13_1 may be substantially U-shaped and may not be completely U-shaped.
  • the shape of the second flow path 13_2 may be substantially U-shaped and may not be completely U-shaped.
  • the meaning of the term "U-shaped” described in the claims of the present application is not limited to a complete U-shaped shape, but includes a substantially U-shaped shape.
  • the shape of the first flow path 13_1 is not limited to a substantially U shape. As described above, the first flow path 13_1 may be provided at a portion of the cooling jacket 200 corresponding to the arrangement position of the substrate 8. Therefore, the shape of the first flow path 13_1 may be different depending on the shape of the cooling jacket 200.
  • the shape of the second flow path 13_2 is not limited to a substantially U shape. As described above, the second flow path 13_2 may be provided at a portion of the cooling jacket 200 corresponding to the arrangement position of the stator 3. Therefore, the shape of the second flow path 13_2 may be different depending on the shape of the cooling jacket 200.
  • the motor device 300 includes a metal cooling jacket 200 and a motor 100 housed in the cooling jacket 200, and the cooling jacket 200 is for a coolant.
  • the motor 100 has a stator 3 molded by the resin 2 and a control substrate 8, and the flow path 13 is located at a portion corresponding to the arrangement position of the substrate 8. It selectively includes at least one of the first flow path 13_1 provided and the second flow path 13_2 provided at the portion corresponding to the arrangement position of the stator 3.
  • it is possible to realize cooling according to the required cooling amount for each part of the motor 100. Further, such cooling can be realized by a structure simpler than the conventional cooling structure. As a result, the weight of the motor device 300 can be reduced.
  • the flow path 13 includes only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_2, and the first flow path 13_1 is composed of one U-shaped hollow portion.
  • the substrate 8 is arranged in the U-shape. Thereby, for example, the structures shown in FIGS. 1 to 3 can be realized. With such a structure, the substrate 8 can be cooled intensively.
  • the flow path 13 includes only the second flow path 13_2 of the first flow path 13_1 and the second flow path 13_2, and the second flow path 13_2 is composed of one U-shaped hollow portion.
  • the stator 3 is arranged in the U-shape. Thereby, for example, the structures shown in FIGS. 4 to 6 can be realized. With such a structure, the stator 3 can be cooled intensively.
  • the flow path 13 includes both the first flow path 13_1 and the second flow path 13_1, the first flow path 13_1 is composed of one U-shaped hollow portion, and the inside of the U-shape.
  • the substrate 8 is arranged in the U-shape
  • the second flow path 13_2 is formed by another U-shaped hollow portion
  • the stator 3 is arranged in the U-shape.
  • FIG. 7 is a front view showing a main part of the motor device according to the second embodiment.
  • FIG. 8 is a cross-sectional view taken along the line BB'shown in FIG.
  • FIG. 9 is a plan view showing a main part of the motor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view taken along the line AA'shown in FIG.
  • the motor device according to the second embodiment will be described with reference to FIGS. 7 to 10.
  • FIGS. 7 to 10 the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • a heat transfer material 21 is provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200. As shown in FIG. 8, the heat transfer material 21 is provided over the entire circumference of the outer peripheral portion of the stator 3.
  • the heat transfer material 21 is made of a material having high thermal conductivity. Specifically, for example, the heat transfer material 21 is composed of a metal spacer, a semi-solid resin sheet, or a liquid grease having a high viscosity.
  • the main part of the motor device 300a is configured.
  • the adhesion between the stator 3 and the cooling jacket 200 can be improved. Further, the amount of heat conduction from the stator 3 to the cooling jacket 200 can be increased. As a result, the cooling capacity of the cooling jacket 200 for the stator 3 can be improved.
  • the motor device 300a can employ various modifications similar to those described in the first embodiment.
  • the second flow path 13_2 may be provided in the cooling jacket 200.
  • the heat transfer material 21 is provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200. As a result, the amount of heat conduction from the stator 3 to the cooling jacket 200 can be increased.
  • FIG. 11 is a front view showing a main part of the motor device according to the third embodiment.
  • FIG. 12 is a cross-sectional view taken along the line BB'shown in FIG.
  • the motor device according to the third embodiment will be described with reference to FIGS. 11 and 12.
  • FIGS. 11 and 12 the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the outer peripheral portion of the stator 3a is substantially wavy, and the inner peripheral portion of the cooling jacket 200a is substantially wavy.
  • the shape of the inner peripheral portion of the cooling jacket 200a corresponds to the shape of the outer peripheral portion of the stator 3a.
  • the contact surface portion between the stator 3a and the cooling jacket 200a is substantially wavy.
  • the main part of the motor device 300b is configured.
  • the contact surface portion between the stator 3a and the cooling jacket 200a is substantially wavy, the contact area between the stator 3a and the cooling jacket 200a can be increased. As a result, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased. As a result, the cooling capacity of the cooling jacket 200a for the stator 3a can be improved.
  • a heat transfer material may be provided between the outer peripheral portion of the stator 3a and the inner peripheral portion of the cooling jacket 200a. That is, the facing surface portion between the stator 3a and the cooling jacket 200a may be substantially wavy. As a result, the facing area between the stator 3a and the cooling jacket 200a can be increased. Further, the heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10. By providing such a heat transfer material, the adhesion between the stator 3a and the cooling jacket 200a can be improved. Further, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased. As a result, the cooling capacity of the cooling jacket 200a for the stator 3a can be improved.
  • the motor device 300b various modifications similar to those described in the first embodiment can be adopted.
  • the second flow path 13_2 may be provided in the cooling jacket 200a.
  • the shape of the outer peripheral portion of the stator 3a may be substantially wavy and may not be completely wavy.
  • the shape of the inner peripheral portion of the cooling jacket 200a may be substantially wavy and may not be completely wavy.
  • the meaning of the term "wavy" described in the claims of the present application is not limited to perfect wavy, but includes substantially wavy.
  • the outer peripheral portion of the stator 3a is wavy and the inner peripheral portion of the cooling jacket 200a is wavy. As a result, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased.
  • FIG. 13 is a six-view view showing a main part of the motor device according to the fourth embodiment. A main part of the motor device according to the fourth embodiment will be described with reference to FIG. In FIG. 13, the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • a plurality of substantially plate-shaped convex portions (hereinafter referred to as “ribs”) 31 are provided on the surface portion of the cooling jacket 200b. More specifically, a plurality of (for example, 6) ribs 31_1 are provided on the front surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_2 are provided on the back surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_3 are provided on the left side surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_4 are provided on the right side surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_5 are provided on the top surface of the cooling jacket 200b.
  • ribs 31_1 are provided on the front surface of the cooling jacket 200b.
  • a plurality of (for example, 6) ribs 31_2 are provided on the back surface of the cooling jacket 200b
  • the surface area of the cooling jacket 200b can be increased by providing the plurality of ribs 31. As a result, the heat dissipation capacity of the cooling jacket 200b with respect to the external space can be improved. As a result, the cooling capacity of the cooling jacket 200b for the motor 100 can be improved.
  • the surface portion on which the rib 31 is provided is not limited to the front portion, the back portion, the left side surface portion, the right side surface portion, and the top surface portion of the cooling jacket 200b. Further, the number of ribs 31 provided on each surface portion is not limited to six. That is, one or more ribs 31 may be provided on each of one or more selected face portions of the front portion, the back portion, the left side surface portion, the right side surface portion, and the top surface portion of the cooling jacket 200b. Just do it. However, from the viewpoint of improving the heat dissipation capacity of the cooling jacket 200b, it is preferable that a plurality of ribs 31 are provided on each of the plurality of surface portions.
  • a heat transfer material (not shown) may be provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200b.
  • a heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10.
  • stator 3a may be provided instead of the stator 3, and the inner peripheral portion of the cooling jacket 200b may be substantially wavy.
  • a heat transfer material (not shown) may be provided between the outer peripheral portion of the stator 3a and the inner peripheral portion of the cooling jacket 200b.
  • Such a heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10.
  • the motor device 300c various modifications similar to those described in the first embodiment can be adopted.
  • the second flow path 13_2 may be provided in the cooling jacket 200b.
  • a plurality of ribs 31 are provided on the surface portion of the cooling jacket 200b. As a result, the heat dissipation capacity of the cooling jacket 200b with respect to the external space can be improved.
  • FIG. 14 is a front view showing a main part of the EGR valve device according to the fifth embodiment.
  • the EGR valve device according to the fifth embodiment will be described with reference to FIG.
  • the main part of the EGR valve device 600 is composed of the butterfly type EGR valve 400 and the rotary actuator 500.
  • the opening degree of the EGR valve 400 is controlled by the actuator 500.
  • Various known techniques can be used to control the opening degree of the EGR valve 400 by the actuator 500. Detailed description of these techniques will be omitted.
  • the actuator 500 uses the motor device 300 shown in FIGS. 1 to 3.
  • the motor device 300 by using the motor device 300, it is possible to realize cooling according to the required cooling amount for each part of the motor 100. Thereby, cooling according to the operating environment temperature T2 of the application of the motor device 300 (that is, the EGR valve device 600) can be realized. More specifically, it is possible to realize cooling according to the difference value ⁇ T between the heat resistant temperature T1 and the operating environment temperature T2 of the materials and electronic parts contained in the motor device 300.
  • the structure of the cooling jacket 200 is simpler than the structure of the housing in the conventional cooling structure. With such a simple structure, the weight of the motor device 300 can be reduced. As a result, when the motor device 300 is used for the device that generates intermittent vibration (that is, the EGR valve device 600), the force generated by such vibration can be reduced. Therefore, additional members and additional structures for improving seismic resistance, additional members and additional structures for improving strength, and the like can be eliminated.
  • the actuator 500 may use the motor device 300 shown in FIGS. 4 to 6 instead of the motor device 300 shown in FIGS. 1 to 3. Further, the actuator 500 may use a motor device 300a, a motor device 300b, or a motor device 300c instead of the motor device 300.
  • a poppet type EGR valve (not shown) is provided in place of the butterfly type EGR valve 400, and a linear actuator (not shown) is provided in place of the rotary actuator 500. It may be a thing. That is, in the EGR valve device 600, the opening degree of the poppet type EGR valve may be controlled by a linear actuator.
  • the direct acting actuator in this case uses a motor device 300, a motor device 300a, a motor device 300b, or a motor device 300c.
  • the EGR valve device 600 includes a motor device 300, a motor device 300a, an actuator 500 using the motor device 300b or the motor device 300c, and an EGR valve 400, and is provided by the actuator 500.
  • the opening degree of the EGR valve 400 is controlled.
  • the motor device 300, the motor device 300a, the motor device 300b, or the motor device 300c it is possible to realize the actuator 500 corresponding to the operating environment temperature T2 of the EGR valve device 600.
  • a lightweight actuator 500 can be realized.
  • the motor device of the present invention can be used, for example, in an EGR valve device.
  • the EGR valve device of the present invention can be used, for example, in an engine system for a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)
  • Inverter Devices (AREA)

Abstract

This motor device (300) is provided with a metal cooling jacket (200) and a motor (100) housed in the cooling jacket (200). The cooling jacket (200) has a flow path (13) for a coolant. The motor (100) has a stator (3) and a control board (8), said stator (3) being molded with a resin (2). The flow path (13) selectively includes at least one of a first flow path (13_1) provided in a region corresponding to a position where the board (8) is disposed and a second flow path (13_2) provided in a region corresponding to a position where the stator (3) is disposed.

Description

モータ装置及びEGRバルブ装置Motor device and EGR valve device
 本発明は、モータ装置及び排気再循環(以下「EGR」と記載する。)バルブ装置に関する。 The present invention relates to a motor device and an exhaust gas recirculation (hereinafter referred to as "EGR") valve device.
 従来、バタフライ式のEGRバルブの開度が回転式のアクチュエータにより制御される装置が開発されている。また、ポペット式のEGRバルブの開度が直動式のアクチュエータにより制御される装置が開発されている。以下、これらの装置を総称して「EGRバルブ装置」という。EGRバルブ装置におけるアクチュエータは、モータを用いたものである。特許文献1には、いわゆる「水冷」によりモータを冷却する構造が開示されている。 Conventionally, a device has been developed in which the opening degree of a butterfly type EGR valve is controlled by a rotary actuator. Further, a device has been developed in which the opening degree of a poppet type EGR valve is controlled by a direct acting actuator. Hereinafter, these devices are collectively referred to as "EGR valve device". The actuator in the EGR valve device uses a motor. Patent Document 1 discloses a structure in which a motor is cooled by so-called "water cooling".
特開2014-75870号公報JP-A-2014-75870
 特許文献1記載の冷却構造(以下「従来の冷却構造」という。)においては、モータ(40)の略全体がハウジング(100)に収容されている。ハウジング(100)は、略円筒状の筒状流路部(20)、筒状流路部(20)の一端部に設けられた第1の蓋部(10)、及び筒状流路部(20)の他端部に設けられた第2の蓋部(30)により構成されている。 In the cooling structure described in Patent Document 1 (hereinafter referred to as "conventional cooling structure"), substantially the entire motor (40) is housed in the housing (100). The housing (100) includes a substantially cylindrical tubular flow path portion (20), a first lid portion (10) provided at one end of the tubular flow path portion (20), and a tubular flow path portion (20). It is composed of a second lid portion (30) provided at the other end of 20).
 ここで、筒状流路部(20)の内部に複数枚の仕切り壁が設けられていることにより、筒状流路部(20)の内部に複数本の往流路及び複数本の復流路が形成されている。また、第1の蓋部(10)の内部に設けられた複数本の折り返し流路により、個々の復流路と対応する往流路とが接続されている。また、第2の蓋部(20)の内部に設けられた複数本の折り返し流路により、個々の往流路と対応する復流路とが接続されている。 Here, since a plurality of partition walls are provided inside the tubular flow path portion (20), a plurality of outward flow paths and a plurality of return flows are provided inside the tubular flow path portion (20). The road is formed. Further, the individual return flow paths and the corresponding forward flow paths are connected by a plurality of folded flow paths provided inside the first lid portion (10). Further, the individual forward flow paths and the corresponding return flow paths are connected by a plurality of folded flow paths provided inside the second lid portion (20).
 すなわち、従来の冷却構造においては、モータ(40)の外周部の略全体に亘り冷却水用の流路が張り巡らされている。これにより、モータ(40)の略全体を略均一に冷却することが期待される。このように、従来の冷却構造は、複数個の部品(10,20,30)を用いた複雑な構造により、モータ(40)の略全体を略均一に冷却するものである。 That is, in the conventional cooling structure, a flow path for cooling water is stretched over substantially the entire outer peripheral portion of the motor (40). As a result, it is expected that substantially the entire motor (40) will be cooled substantially uniformly. As described above, in the conventional cooling structure, substantially the entire motor (40) is cooled substantially uniformly by a complicated structure using a plurality of parts (10, 20, 30).
 しかしながら、モータ用の冷却構造に要求される冷却量は、モータの内部構造に応じて、モータの部位毎に異なり得るものである。また、各部位に要求される冷却量は、各部位に含まれる材料及び電子部品などの耐熱温度T1と、モータを含む装置(例えばEGRバルブ装置)の使用環境温度T2との差分値ΔTに応じて異なり得るものである。また、各部位に要求される冷却量は、各部位における発熱量に応じて異なり得るものである。 However, the amount of cooling required for the cooling structure for the motor may differ for each part of the motor depending on the internal structure of the motor. The amount of cooling required for each part depends on the difference value ΔT between the heat resistant temperature T1 of the materials and electronic parts contained in each part and the operating environment temperature T2 of the device including the motor (for example, the EGR valve device). Can be different. Further, the amount of cooling required for each part may differ depending on the amount of heat generated at each part.
 すなわち、必ずしも、モータの略全体に対する略均一な冷却が要求されるものではない。例えば、耐熱温度T1が130度であるのに対して、使用環境温度T2が160度であるとき、差分値ΔTが100度未満(より具体的には30度)であることにより、モータの略全体に対する略均一な冷却が不要となることがある。このとき、従来の冷却構造が用いられることにより、不要な冷却のために複雑な構造が用いられる問題があった。かかる複雑な構造により、モータ及び冷却構造を含むユニットの重量が増加する問題があった。 That is, it is not always required to cool the entire motor substantially uniformly. For example, when the heat-resistant temperature T1 is 130 degrees and the operating environment temperature T2 is 160 degrees, the difference value ΔT is less than 100 degrees (more specifically, 30 degrees), which is an abbreviation for the motor. It may not be necessary to have a substantially uniform cooling of the whole. At this time, since the conventional cooling structure is used, there is a problem that a complicated structure is used for unnecessary cooling. Due to such a complicated structure, there is a problem that the weight of the unit including the motor and the cooling structure is increased.
 本発明は、上記のような課題を解決するためになされたものであり、従来の冷却構造に比して簡単な構造により、要求される冷却量に応じた冷却を実現することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to realize cooling according to a required cooling amount by a structure simpler than that of a conventional cooling structure. ..
 本発明のモータ装置は、金属製の冷却用ジャケットと、冷却用ジャケットに収容されているモータと、を備え、冷却用ジャケットは、冷却液用の流路を有し、モータは、樹脂によりモールドされている固定子と、制御用の基板と、を有し、流路は、基板の配置位置に対応する部位に設けられている第1流路及び固定子の配置位置に対応する部位に設けられている第2流路のうちの少なくとも一方を選択的に含むものである。 The motor device of the present invention includes a metal cooling jacket and a motor housed in the cooling jacket. The cooling jacket has a flow path for a coolant, and the motor is molded by a resin. It has a stator and a substrate for control, and the flow path is provided at a portion corresponding to the arrangement position of the first flow path and the stator provided at the portion corresponding to the arrangement position of the substrate. It selectively includes at least one of the second flow paths provided.
 本発明によれば、上記のように構成したので、従来の冷却構造に比して簡単な構造により、要求される冷却量に応じた冷却を実現することができる。 According to the present invention, since it is configured as described above, it is possible to realize cooling according to the required cooling amount by a structure simpler than the conventional cooling structure.
実施の形態1に係るモータ装置の要部を示す正面図である。It is a front view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ装置の要部を示す背面図である。It is a rear view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ装置の要部を示す左側面図である。It is a left side view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ装置の要部を示す右側面図である。It is a right side view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ装置の要部を示す平面図である。It is a top view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 実施の形態1に係るモータ装置の要部を示す底面図である。It is a bottom view which shows the main part of the motor device which concerns on Embodiment 1. FIG. 図1E及び図1Fに示すA-A’線に沿う断面図である。It is sectional drawing which follows the AA' line shown in FIG. 1E and FIG. 1F. 実施の形態1に係るモータ装置における冷却用ジャケット及びモータを示す説明図である。It is explanatory drawing which shows the cooling jacket and the motor in the motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す正面図である。It is a front view which shows the main part of another motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す背面図である。It is a rear view which shows the main part of another motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す左側面図である。It is a left side view which shows the main part of another motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す右側面図である。It is a right side view which shows the main part of another motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す平面図である。It is a top view which shows the main part of another motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他のモータ装置の要部を示す底面図である。It is a bottom view which shows the main part of another motor device which concerns on Embodiment 1. FIG. 図4E及び図4Fに示すA-A’線に沿う断面図である。4 is a cross-sectional view taken along the line AA'shown in FIGS. 4E and 4F. 実施の形態1に係る他のモータ装置における冷却用ジャケット及びモータを示す説明図である。It is explanatory drawing which shows the cooling jacket and the motor in the other motor apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係るモータ装置の要部を示す正面図である。It is a front view which shows the main part of the motor device which concerns on Embodiment 2. FIG. 図7に示すB-B’線に沿う断面図である。It is sectional drawing which follows the line BB'shown in FIG. 実施の形態2に係るモータ装置の要部を示す平面図である。It is a top view which shows the main part of the motor device which concerns on Embodiment 2. FIG. 図9に示すA-A’線に沿う断面図である。It is sectional drawing which follows the AA' line shown in FIG. 実施の形態3に係るモータ装置の要部を示す正面図である。It is a front view which shows the main part of the motor device which concerns on Embodiment 3. 図11に示すB-B’線に沿う断面図である。It is sectional drawing which follows the line BB'shown in FIG. 実施の形態4に係るモータ装置の要部を示す正面図である。It is a front view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態4に係るモータ装置の要部を示す背面図である。It is a rear view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態4に係るモータ装置の要部を示す左側面図である。It is a left side view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態4に係るモータ装置の要部を示す右側面図である。It is a right side view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態4に係るモータ装置の要部を示す平面図である。It is a top view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態4に係るモータ装置の要部を示す底面図である。It is a bottom view which shows the main part of the motor device which concerns on Embodiment 4. FIG. 実施の形態5に係るEGRバルブ装置の要部を示す正面図である。It is a front view which shows the main part of the EGR valve device which concerns on Embodiment 5.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係るモータ装置の要部を示す六面図である。図2は、図1に示すA-A’線に沿う断面図である。図3は、実施の形態1に係るモータ装置における冷却用ジャケット及びモータを示す説明図である。図1~図3を参照して、実施の形態1に係るモータ装置について説明する。また、図4は、実施の形態1に係る他のモータ装置の要部を示す六面図である。図5は、図4に示すA-A’線に沿う断面図である。図6は、実施の形態1に係る他のモータ装置における冷却用ジャケット及びモータを示す説明図である。図4~図6を参照して、実施の形態1に係る他のモータ装置について説明する。
Embodiment 1.
FIG. 1 is a six-view view showing a main part of the motor device according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line AA'shown in FIG. FIG. 3 is an explanatory view showing a cooling jacket and a motor in the motor device according to the first embodiment. The motor device according to the first embodiment will be described with reference to FIGS. 1 to 3. Further, FIG. 4 is a six-view view showing a main part of another motor device according to the first embodiment. FIG. 5 is a cross-sectional view taken along the line AA'shown in FIG. FIG. 6 is an explanatory view showing a cooling jacket and a motor in another motor device according to the first embodiment. The other motor device according to the first embodiment will be described with reference to FIGS. 4 to 6.
 図中、1はコイルである。コイル1は、樹脂2によりモールドされている。コイル1及び樹脂2により、固定子3の要部が構成されている。固定子3は、略四角柱状の外形を有しており、かつ、略円柱状の中空部4を有している。中空部4内に回転子5が設けられている。回転子5は、永久磁石により構成されている。回転子5は、固定子3に対して回転自在に設けられている。コイル1に電流が供給されることにより、トルクが発生する。当該発生するトルクの方向は、当該供給される電流の方向に応じた方向となる。また、当該発生するトルクの大きさは、当該供給される電流の大きさに応じた大きさとなる。 In the figure, 1 is a coil. The coil 1 is molded with the resin 2. The main part of the stator 3 is composed of the coil 1 and the resin 2. The stator 3 has a substantially square columnar outer shape, and has a substantially columnar hollow portion 4. A rotor 5 is provided in the hollow portion 4. The rotor 5 is composed of a permanent magnet. The rotor 5 is rotatably provided with respect to the stator 3. Torque is generated by supplying an electric current to the coil 1. The direction of the generated torque is a direction corresponding to the direction of the supplied current. Further, the magnitude of the generated torque becomes a magnitude corresponding to the magnitude of the supplied current.
 回転子5は、シャフト6と一体に回転自在に設けられている。シャフト6の先端部は、固定子3の底面部から固定子3外に突出している。また、回転子5は、磁石7と一体に回転自在に設けられている。磁石7により発生した磁気は、制御用の基板8に設けられた複数個の磁気センサ9により検出される。当該発生した磁気が検出されることにより、回転子5の回転位置が検出される。当該検出された回転位置は、基板8に設けられた回路(不図示)によるモータ100の制御に用いられる。基板8は、固定子3の天面部に対して対向配置されている。 The rotor 5 is rotatably provided integrally with the shaft 6. The tip of the shaft 6 projects from the bottom surface of the stator 3 to the outside of the stator 3. Further, the rotor 5 is rotatably provided integrally with the magnet 7. The magnetism generated by the magnet 7 is detected by a plurality of magnetic sensors 9 provided on the control substrate 8. By detecting the generated magnetism, the rotational position of the rotor 5 is detected. The detected rotation position is used for controlling the motor 100 by a circuit (not shown) provided on the substrate 8. The substrate 8 is arranged so as to face the top surface portion of the stator 3.
 このようにして、モータ100の要部が構成されている。ここで、基板8は、略矩形状である。したがって、モータ100は、略四角柱状の外形を有している。 In this way, the main part of the motor 100 is configured. Here, the substrate 8 has a substantially rectangular shape. Therefore, the motor 100 has a substantially square columnar outer shape.
 モータ100は、金属製の冷却用のジャケット(以下「冷却用ジャケット」という。)200に収容されている。冷却用ジャケット200は、例えば、アルミニウムによる一体成形品である。すなわち、冷却用ジャケット200は、一部品により構成されている。 The motor 100 is housed in a metal cooling jacket (hereinafter referred to as "cooling jacket") 200. The cooling jacket 200 is, for example, an integrally molded product made of aluminum. That is, the cooling jacket 200 is composed of one component.
 より具体的には、冷却用ジャケット200は、略箱状である。すなわち、冷却用ジャケット200は、略四角柱状の外形を有しており、かつ、略四角柱状の凹部11を有している。凹部11の形状は、モータ100の外形に対応している。モータ100は、凹部11に収容されている。 More specifically, the cooling jacket 200 has a substantially box shape. That is, the cooling jacket 200 has a substantially square columnar outer shape, and has a substantially square columnar recess 11. The shape of the recess 11 corresponds to the outer shape of the motor 100. The motor 100 is housed in the recess 11.
 これにより、モータ100の天面部(すなわち基板8を含む部位)の全部、モータ100の正面部(すなわち固定子3の正面部を含む部位)の大部、モータ100の背面部(すなわち固定子3の背面部を含む部位)の大部、モータ100の左側面部(すなわち固定子3の背面部を含む部位)の大部、及びモータ100の右側面部(すなわち固定子3の右側面部を含む部位)の大部が凹部11内に配置されている。また、モータ100の正面部の残余の部位、モータ100の背面部の残余の部位、モータ100の左側面部の残余の部位、モータ100の右側面部の残余の部位、及びモータ100の底面部(すなわち固定子3の底面部及びシャフト6の先端部を含む部位)の全部が凹部11の開口部12により凹部11外に突出している。 As a result, the entire top surface portion of the motor 100 (that is, the portion including the substrate 8), most of the front portion of the motor 100 (that is, the portion including the front portion of the stator 3), and the back portion of the motor 100 (that is, the stator 3). Most of the left side surface of the motor 100 (that is, the part including the back surface of the stator 3), and the right side surface of the motor 100 (that is, the part including the right side surface of the stator 3). Most of the above is arranged in the recess 11. Further, a residual portion on the front surface of the motor 100, a residual portion on the back surface of the motor 100, a residual portion on the left side surface of the motor 100, a residual portion on the right side surface of the motor 100, and a bottom surface portion of the motor 100 (that is, the bottom surface portion). The entire bottom surface of the stator 3 and the tip of the shaft 6) project out of the recess 11 through the opening 12 of the recess 11.
 すなわち、冷却用ジャケット200は、モータ100の天面部、正面部、背面部、左側面部及び右側面部に沿う形状を有している。 That is, the cooling jacket 200 has a shape along the top surface portion, the front surface portion, the back surface portion, the left side surface portion, and the right side surface portion of the motor 100.
 ここで、冷却用ジャケット200は、冷却液用の流路13を有している。流路13は、基板8の配置位置に対応する部位に設けられている流路(以下「第1流路」という。)13_1及び固定子3の配置位置に対応する部位に設けられている流路(以下「第2流路」という。)13_2のうちの少なくとも一方を選択的に含むものである。 Here, the cooling jacket 200 has a flow path 13 for the coolant. The flow path 13 is a flow path provided at a portion corresponding to the arrangement position of the substrate 8 (hereinafter referred to as “first flow path”) 13_1 and a flow path provided at a portion corresponding to the arrangement position of the stator 3. It selectively includes at least one of the roads (hereinafter referred to as "second flow paths") 13_2.
 図1~図3は、第1流路13_1及び第2流路13_2のうちの第1流路13_1のみが冷却用ジャケット200に設けられている例を示している。図1~図3に示す如く、第1流路13_1は、1本の略U字状の中空部により構成されている。第1流路13_1は、基板8の側面部に沿うように設けられている。これにより、基板8が当該U字内に配置されている。第1流路13_1の一端部(以下「第1端部」という。)14_1により、冷却液の供給口が構成されている。すなわち、第1端部14_1は、冷却液供給用のホース(不図示)と接続自在である。また、第1流路13_1の他端部(以下「第2端部」という。)15_1により、冷却液の排出口が構成されている。すなわち、第2端部15_1は、冷却液排出用のホース(不図示)と接続自在である。これにより、第1流路13_1内を冷却液が流れるようになっている。 FIGS. 1 to 3 show an example in which only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_2 is provided in the cooling jacket 200. As shown in FIGS. 1 to 3, the first flow path 13_1 is composed of one substantially U-shaped hollow portion. The first flow path 13_1 is provided along the side surface portion of the substrate 8. As a result, the substrate 8 is arranged in the U-shape. One end of the first flow path 13_1 (hereinafter referred to as "first end") 14_1 constitutes a coolant supply port. That is, the first end portion 14_1 can be freely connected to a hose (not shown) for supplying a coolant. Further, the other end of the first flow path 13_1 (hereinafter referred to as “second end”) 15_1 constitutes a cooling liquid discharge port. That is, the second end portion 15_1 can be freely connected to a hose (not shown) for discharging the coolant. As a result, the coolant flows in the first flow path 13_1.
 図4~図6は、第1流路13_1及び第2流路13_2のうちの第2流路13_2のみが冷却用ジャケット200に設けられている例を示している。図4~図6に示す如く、第2流路13_2は、1本の略U字状の中空部により構成されている。第2流路13_2は、固定子3の外周部に沿うように設けられている。これにより、固定子3が当該U字内に配置されている。第2流路13_2の一端部(以下「第1端部」という。)14_2により、冷却液の供給口が構成されている。すなわち、第1端部14_2は、冷却液供給用のホース(不図示)と接続自在である。また、第2流路13_2の他端部(以下「第2端部」という。)15_2により、冷却液の排出口が構成されている。すなわち、第2端部15_2は、冷却液排出用のホース(不図示)と接続自在である。これにより、第2流路13_2内を冷却液が流れるようになっている。 4 to 6 show an example in which only the second flow path 13_2 of the first flow path 13_1 and the second flow path 13_2 is provided in the cooling jacket 200. As shown in FIGS. 4 to 6, the second flow path 13_2 is composed of one substantially U-shaped hollow portion. The second flow path 13_2 is provided along the outer peripheral portion of the stator 3. As a result, the stator 3 is arranged in the U-shape. One end of the second flow path 13_2 (hereinafter referred to as “first end”) 14_2 constitutes a coolant supply port. That is, the first end portion 14_2 can be freely connected to a hose (not shown) for supplying a coolant. Further, the other end portion (hereinafter referred to as “second end portion”) 15_2 of the second flow path 13_2 constitutes a cooling liquid discharge port. That is, the second end portion 15_2 can be freely connected to a hose (not shown) for discharging the coolant. As a result, the coolant flows in the second flow path 13_2.
 このようにして、モータ装置300の要部が構成されている。なお、上記のとおり、第1流路13_1及び第2流路13_2のうちの少なくとも一方が選択的に冷却用ジャケット200に設けられているものであれば良い。したがって、第1流路13_1及び第2流路13_2の両方が冷却用ジャケット200に設けられているものであっても良い(不図示)。 In this way, the main part of the motor device 300 is configured. As described above, at least one of the first flow path 13_1 and the second flow path 13_2 may be selectively provided on the cooling jacket 200. Therefore, both the first flow path 13_1 and the second flow path 13_2 may be provided in the cooling jacket 200 (not shown).
 次に、モータ装置300の構造による効果について説明する。 Next, the effect of the structure of the motor device 300 will be described.
 第一に、モータ100の部位毎に、要求される冷却量に応じた冷却を実現することができる。 First, it is possible to realize cooling according to the required cooling amount for each part of the motor 100.
 すなわち、例えば、基板8に設けられた回路(以下「制御回路」という。)に含まれる電子部品の故障の発生を回避する観点から、基板8をモータ100の他の部位に対する冷却量よりも大きい冷却量にて冷却することが要求されることがある。このとき、第1流路13_1及び第2流路13_2のうちの第1流路13_1のみが冷却用ジャケット200に設けられている構造により(図1~図3参照)、第1流路13_1内を流れる冷却液により、基板8を重点的に冷却することができる。また、モータ100の他の部位については、金属製の冷却用ジャケット200が有する伝熱性により、基板8に対する冷却量に比して小さい冷却量にて冷却することができる。 That is, for example, from the viewpoint of avoiding the occurrence of failure of electronic components included in the circuit provided on the substrate 8 (hereinafter referred to as "control circuit"), the substrate 8 is larger than the cooling amount for other parts of the motor 100. Cooling with a cooling amount may be required. At this time, due to the structure in which only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_1 is provided in the cooling jacket 200 (see FIGS. 1 to 3), the inside of the first flow path 13_1 The substrate 8 can be cooled intensively by the cooling liquid flowing through the substrate 8. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount with respect to the substrate 8 due to the heat transfer property of the metal cooling jacket 200.
 または、通常、コイル1における発熱量は、モータ100の他の部位における発熱量よりも大きい。このため、固定子3をモータ100の他の部位に対する冷却量よりも大きい冷却量にて冷却することが要求されることがある。このとき、第1流路13_1及び第2流路13_2のうちの第2流路13_2のみが冷却用ジャケット200に設けられている構造により(図4~図6参照)、第2流路13_2内を流れる冷却液により、固定子3を重点的に冷却することができる。また、モータ100の他の部位については、金属製の冷却用ジャケット200が有する伝熱性により、固定子3に対する冷却量に比して小さい冷却量にて冷却することができる。 Or, usually, the calorific value in the coil 1 is larger than the calorific value in other parts of the motor 100. Therefore, it may be required to cool the stator 3 with a cooling amount larger than the cooling amount for other parts of the motor 100. At this time, due to the structure in which only the second flow path 13_2 of the first flow path 13_1 and the second flow path 13_2 is provided in the cooling jacket 200 (see FIGS. 4 to 6), the inside of the second flow path 13_2 The stator 3 can be cooled intensively by the cooling liquid flowing through the stator 3. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount with respect to the stator 3 due to the heat transfer property of the metal cooling jacket 200.
 または、制御回路に含まれる電子部品の故障の発生を回避する観点から、及び、コイル1における発熱量に応じて、基板8及び固定子3をモータ100の他の部位に対する冷却量よりも大きい冷却量にて冷却することが要求されることがある。このとき、第1流路13_1及び第2流路13_2の両方が冷却用ジャケット200に設けられている構造により(不図示)、流路13内を流れる冷却液により、基板8及び固定子3を重点的に冷却することができる。また、モータ100の他の部位については、金属製の冷却用ジャケット200が有する伝熱性により、基板8及び固定子3に対する冷却量に比して小さい冷却量にて冷却することができる。 Alternatively, from the viewpoint of avoiding the occurrence of failure of the electronic components included in the control circuit, and depending on the amount of heat generated in the coil 1, the substrate 8 and the stator 3 are cooled to be larger than the amount of cooling to other parts of the motor 100. Cooling by volume may be required. At this time, due to the structure in which both the first flow path 13_1 and the second flow path 13_2 are provided in the cooling jacket 200 (not shown), the substrate 8 and the stator 3 are separated by the coolant flowing in the flow path 13. It can be cooled intensively. Further, the other parts of the motor 100 can be cooled with a cooling amount smaller than the cooling amount for the substrate 8 and the stator 3 due to the heat transfer property of the metal cooling jacket 200.
 このように、モータ100の部位毎に、要求される冷却量に応じた冷却を実現することができる。これにより、モータ装置300のアプリケーション(例えばEGRバルブ装置)の使用環境温度T2に応じた冷却を実現することができる。より具体的には、モータ装置300に含まれる材料及び電子部品などの耐熱温度T1と使用環境温度T2との差分値ΔTに応じた冷却を実現することができる。 In this way, it is possible to realize cooling according to the required cooling amount for each part of the motor 100. Thereby, cooling according to the operating environment temperature T2 of the application of the motor device 300 (for example, the EGR valve device) can be realized. More specifically, it is possible to realize cooling according to the difference value ΔT between the heat resistant temperature T1 and the operating environment temperature T2 of the materials and electronic parts contained in the motor device 300.
 第二に、コイル1が樹脂2によりモールドされていることにより、コイル1から冷却用ジャケット200への熱伝導量を増加させることができる。これにより、冷却用ジャケット200によるコイル1に対する冷却能力を向上することができる。 Secondly, since the coil 1 is molded with the resin 2, the amount of heat conduction from the coil 1 to the cooling jacket 200 can be increased. As a result, the cooling capacity of the cooling jacket 200 for the coil 1 can be improved.
 第三に、冷却用ジャケット200が一部品により構成されており、かつ、第1流路13_1及び第2流路23_2の各々が1本の略U字状の中空部により構成されている。したがって、冷却用ジャケット200の構造は、従来の冷却構造におけるハウジングの構造に比して簡単である。かかる簡単な構造により、モータ装置300の重量の低減を図ることができる。この結果、断続的な振動が発生する装置(例えばEGRバルブ装置)にモータ装置300が用いられるものであるとき、かかる振動により発生する力を低減することができる。したがって、耐震性を向上するための追加部材及び追加構造、並びに強度を向上するための追加部材及び追加構造などを不要とすることができる。 Third, the cooling jacket 200 is composed of one component, and each of the first flow path 13_1 and the second flow path 23_2 is composed of one substantially U-shaped hollow portion. Therefore, the structure of the cooling jacket 200 is simpler than the structure of the housing in the conventional cooling structure. With such a simple structure, the weight of the motor device 300 can be reduced. As a result, when the motor device 300 is used for a device that generates intermittent vibration (for example, an EGR valve device), the force generated by such vibration can be reduced. Therefore, additional members and additional structures for improving seismic resistance, additional members and additional structures for improving strength, and the like can be eliminated.
 次に、モータ装置300の変形例について説明する。 Next, a modified example of the motor device 300 will be described.
 冷却用ジャケット200の形状は、図1~図3に示す形状又は図4~図6に示す形状に限定されるものではない。すなわち、冷却用ジャケット200の形状は、モータ100の天面部、正面部、背面部、左側面部及び右側面部に沿う形状に限定されるものではない。冷却用ジャケット200の形状は、これらの面部のうちの選択された1個以上の面部に沿う形状であれば良い。 The shape of the cooling jacket 200 is not limited to the shapes shown in FIGS. 1 to 3 or the shapes shown in FIGS. 4 to 6. That is, the shape of the cooling jacket 200 is not limited to the shape along the top surface portion, the front surface portion, the back surface portion, the left side surface portion, and the right side surface portion of the motor 100. The shape of the cooling jacket 200 may be any shape that follows one or more selected surface portions of these surface portions.
 また、図1~図3に示す如く、第1流路13_1の形状は、略U字状であれば良く、完全なU字状でなくとも良い。また、図4~図6に示す如く、第2流路13_2の形状は、略U字状であれば良く、完全なU字状でなくとも良い。本願の請求の範囲に記載された「U字状」の用語の意義は、完全なU字状に限定されるものではなく、略U字状を包含するものである。 Further, as shown in FIGS. 1 to 3, the shape of the first flow path 13_1 may be substantially U-shaped and may not be completely U-shaped. Further, as shown in FIGS. 4 to 6, the shape of the second flow path 13_2 may be substantially U-shaped and may not be completely U-shaped. The meaning of the term "U-shaped" described in the claims of the present application is not limited to a complete U-shaped shape, but includes a substantially U-shaped shape.
 また、第1流路13_1の形状は、略U字状に限定されるものではない。上記のとおり、第1流路13_1は、冷却用ジャケット200のうちの基板8の配置位置に対応する部位に設けられているものであれば良い。したがって、第1流路13_1の形状は、冷却用ジャケット200の形状に応じて異なるものであっても良い。 Further, the shape of the first flow path 13_1 is not limited to a substantially U shape. As described above, the first flow path 13_1 may be provided at a portion of the cooling jacket 200 corresponding to the arrangement position of the substrate 8. Therefore, the shape of the first flow path 13_1 may be different depending on the shape of the cooling jacket 200.
 また、第2流路13_2の形状は、略U字状に限定されるものではない。上記のとおり、第2流路13_2は、冷却用ジャケット200のうちの固定子3の配置位置に対応する部位に設けられているものであれば良い。したがって、第2流路13_2の形状は、冷却用ジャケット200の形状に応じて異なるものであっても良い。 Further, the shape of the second flow path 13_2 is not limited to a substantially U shape. As described above, the second flow path 13_2 may be provided at a portion of the cooling jacket 200 corresponding to the arrangement position of the stator 3. Therefore, the shape of the second flow path 13_2 may be different depending on the shape of the cooling jacket 200.
 以上のように、実施の形態1に係るモータ装置300は、金属製の冷却用ジャケット200と、冷却用ジャケット200に収容されているモータ100と、を備え、冷却用ジャケット200は、冷却液用の流路13を有し、モータ100は、樹脂2によりモールドされている固定子3と、制御用の基板8と、を有し、流路13は、基板8の配置位置に対応する部位に設けられている第1流路13_1及び固定子3の配置位置に対応する部位に設けられている第2流路13_2のうちの少なくとも一方を選択的に含むものである。これにより、モータ100の部位毎に、要求される冷却量に応じた冷却を実現することができる。また、従来の冷却構造に比して簡単な構造により、かかる冷却を実現することができる。この結果、モータ装置300の重量の低減を図ることができる。 As described above, the motor device 300 according to the first embodiment includes a metal cooling jacket 200 and a motor 100 housed in the cooling jacket 200, and the cooling jacket 200 is for a coolant. The motor 100 has a stator 3 molded by the resin 2 and a control substrate 8, and the flow path 13 is located at a portion corresponding to the arrangement position of the substrate 8. It selectively includes at least one of the first flow path 13_1 provided and the second flow path 13_2 provided at the portion corresponding to the arrangement position of the stator 3. As a result, it is possible to realize cooling according to the required cooling amount for each part of the motor 100. Further, such cooling can be realized by a structure simpler than the conventional cooling structure. As a result, the weight of the motor device 300 can be reduced.
 また、流路13は、第1流路13_1及び第2流路13_2のうちの第1流路13_1のみを含み、第1流路13_1が1本のU字状の中空部により構成されており、かつ、当該U字内に基板8が配置されている。これにより、例えば、図1~図3に示す構造を実現することができる。かかる構造により、基板8を重点的に冷却することができる。 Further, the flow path 13 includes only the first flow path 13_1 of the first flow path 13_1 and the second flow path 13_2, and the first flow path 13_1 is composed of one U-shaped hollow portion. Moreover, the substrate 8 is arranged in the U-shape. Thereby, for example, the structures shown in FIGS. 1 to 3 can be realized. With such a structure, the substrate 8 can be cooled intensively.
 または、流路13は、第1流路13_1及び第2流路13_2のうちの第2流路13_2のみを含み、第2流路13_2が1本のU字状の中空部により構成されており、かつ、当該U字内に固定子3が配置されている。これにより、例えば、図4~図6に示す構造を実現することができる。かかる構造により、固定子3を重点的に冷却することができる。 Alternatively, the flow path 13 includes only the second flow path 13_2 of the first flow path 13_1 and the second flow path 13_2, and the second flow path 13_2 is composed of one U-shaped hollow portion. Moreover, the stator 3 is arranged in the U-shape. Thereby, for example, the structures shown in FIGS. 4 to 6 can be realized. With such a structure, the stator 3 can be cooled intensively.
 または、流路13は、第1流路13_1及び第2流路13_2の両方を含み、第1流路13_1が1本のU字状の中空部により構成されており、かつ、当該U字内に基板8が配置されており、第2流路13_2が他の1本のU字状の中空部により構成されており、かつ、当該U字内に固定子3が配置されている。これにより、基板8及び固定子3を重点的に冷却することができる。 Alternatively, the flow path 13 includes both the first flow path 13_1 and the second flow path 13_1, the first flow path 13_1 is composed of one U-shaped hollow portion, and the inside of the U-shape. The substrate 8 is arranged in the U-shape, the second flow path 13_2 is formed by another U-shaped hollow portion, and the stator 3 is arranged in the U-shape. As a result, the substrate 8 and the stator 3 can be cooled intensively.
実施の形態2.
 図7は、実施の形態2に係るモータ装置の要部を示す正面図である。図8は、図7に示すB-B’線に沿う断面図である。図9は、実施の形態2に係るモータ装置の要部を示す平面図である。図10は、図9に示すA-A’線に沿う断面図である。図7~図10を参照して、実施の形態2に係るモータ装置について説明する。なお、図7~図10において、図1~図3に示す構成部材と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 2.
FIG. 7 is a front view showing a main part of the motor device according to the second embodiment. FIG. 8 is a cross-sectional view taken along the line BB'shown in FIG. FIG. 9 is a plan view showing a main part of the motor device according to the second embodiment. FIG. 10 is a cross-sectional view taken along the line AA'shown in FIG. The motor device according to the second embodiment will be described with reference to FIGS. 7 to 10. In FIGS. 7 to 10, the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
 図8及び図10に示す如く、固定子3の外周部と冷却用ジャケット200の内周部との間に伝熱材21が設けられている。図8に示す如く、伝熱材21は、固定子3の外周部の全周に亘り設けられている。伝熱材21は、高熱伝導性を有する材料により構成されている。具体的には、例えば、伝熱材21は、金属製のスペーサ、半固体状の樹脂製のシート、又は高粘度を有する液状のグリスにより構成されている。 As shown in FIGS. 8 and 10, a heat transfer material 21 is provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200. As shown in FIG. 8, the heat transfer material 21 is provided over the entire circumference of the outer peripheral portion of the stator 3. The heat transfer material 21 is made of a material having high thermal conductivity. Specifically, for example, the heat transfer material 21 is composed of a metal spacer, a semi-solid resin sheet, or a liquid grease having a high viscosity.
 このようにして、モータ装置300aの要部が構成されている。 In this way, the main part of the motor device 300a is configured.
 伝熱材21が設けられていることにより、固定子3と冷却用ジャケット200間の密着性を向上することができる。また、固定子3から冷却用ジャケット200への熱伝導量を増加させることができる。この結果、冷却用ジャケット200による固定子3に対する冷却能力を向上することができる。 By providing the heat transfer material 21, the adhesion between the stator 3 and the cooling jacket 200 can be improved. Further, the amount of heat conduction from the stator 3 to the cooling jacket 200 can be increased. As a result, the cooling capacity of the cooling jacket 200 for the stator 3 can be improved.
 なお、モータ装置300aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、第1流路13_1に代えて又は加えて、第2流路13_2が冷却用ジャケット200に設けられているものであっても良い。 Note that the motor device 300a can employ various modifications similar to those described in the first embodiment. For example, instead of or in addition to the first flow path 13_1, the second flow path 13_2 may be provided in the cooling jacket 200.
 以上のように、実施の形態2に係るモータ装置300aにおいては、固定子3の外周部と冷却用ジャケット200の内周部との間に伝熱材21が設けられている。これにより、固定子3から冷却用ジャケット200への熱伝導量を増加させることができる。 As described above, in the motor device 300a according to the second embodiment, the heat transfer material 21 is provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200. As a result, the amount of heat conduction from the stator 3 to the cooling jacket 200 can be increased.
実施の形態3.
 図11は、実施の形態3に係るモータ装置の要部を示す正面図である。図12は、図11に示すB-B’線に沿う断面図である。図11及び図12を参照して、実施の形態3に係るモータ装置について説明する。なお、図11及び図12において、図1~図3に示す構成部材と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 3.
FIG. 11 is a front view showing a main part of the motor device according to the third embodiment. FIG. 12 is a cross-sectional view taken along the line BB'shown in FIG. The motor device according to the third embodiment will be described with reference to FIGS. 11 and 12. In addition, in FIGS. 11 and 12, the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
 図12に示す如く、固定子3aの外周部が略波状であり、かつ、冷却用ジャケット200aの内周部が略波状である。冷却用ジャケット200aの内周部の形状は、固定子3aの外周部の形状に対応している。これにより、固定子3aと冷却用ジャケット200a間の接触面部が略波状である。 As shown in FIG. 12, the outer peripheral portion of the stator 3a is substantially wavy, and the inner peripheral portion of the cooling jacket 200a is substantially wavy. The shape of the inner peripheral portion of the cooling jacket 200a corresponds to the shape of the outer peripheral portion of the stator 3a. As a result, the contact surface portion between the stator 3a and the cooling jacket 200a is substantially wavy.
 このようにして、モータ装置300bの要部が構成されている。 In this way, the main part of the motor device 300b is configured.
 固定子3aと冷却用ジャケット200a間の接触面部が略波状であることにより、固定子3aと冷却用ジャケット200a間の接触面積を大きくすることができる。これにより、固定子3aから冷却用ジャケット200aへの熱伝導量を増加させることができる。この結果、冷却用ジャケット200aによる固定子3aに対する冷却能力を向上することができる。 Since the contact surface portion between the stator 3a and the cooling jacket 200a is substantially wavy, the contact area between the stator 3a and the cooling jacket 200a can be increased. As a result, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased. As a result, the cooling capacity of the cooling jacket 200a for the stator 3a can be improved.
 なお、固定子3aの外周部と冷却用ジャケット200aの内周部との間に伝熱材(不図示)が設けられているものであっても良い。すなわち、固定子3aと冷却用ジャケット200a間の対向面部が略波状であっても良い。これにより、固定子3aと冷却用ジャケット200a間の対向面積を大きくすることができる。また、かかる伝熱材は、図8及び図10に示す伝熱材21と同様のものである。かかる伝熱材が設けられていることにより、固定子3aと冷却用ジャケット200a間の密着性を向上することができる。また、固定子3aから冷却用ジャケット200aへの熱伝導量を増加させることができる。この結果、冷却用ジャケット200aによる固定子3aに対する冷却能力を向上することができる。 A heat transfer material (not shown) may be provided between the outer peripheral portion of the stator 3a and the inner peripheral portion of the cooling jacket 200a. That is, the facing surface portion between the stator 3a and the cooling jacket 200a may be substantially wavy. As a result, the facing area between the stator 3a and the cooling jacket 200a can be increased. Further, the heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10. By providing such a heat transfer material, the adhesion between the stator 3a and the cooling jacket 200a can be improved. Further, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased. As a result, the cooling capacity of the cooling jacket 200a for the stator 3a can be improved.
 また、モータ装置300bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、第1流路13_1に代えて又は加えて、第2流路13_2が冷却用ジャケット200aに設けられているものであっても良い。 Further, as the motor device 300b, various modifications similar to those described in the first embodiment can be adopted. For example, in place of or in addition to the first flow path 13_1, the second flow path 13_2 may be provided in the cooling jacket 200a.
 また、図12に示す如く、固定子3aの外周部の形状は、略波状であれば良く、完全な波状でなくとも良い。また、冷却用ジャケット200aの内周部の形状は、略波状であれば良く、完全な波状でなくとも良い。本願の請求の範囲に記載された「波状」の用語の意義は、完全な波状に限定されるものではなく、略波状を包含するものである。 Further, as shown in FIG. 12, the shape of the outer peripheral portion of the stator 3a may be substantially wavy and may not be completely wavy. Further, the shape of the inner peripheral portion of the cooling jacket 200a may be substantially wavy and may not be completely wavy. The meaning of the term "wavy" described in the claims of the present application is not limited to perfect wavy, but includes substantially wavy.
 以上のように、実施の形態3に係るモータ装置300bにおいては、固定子3aの外周部が波状であり、かつ、冷却用ジャケット200aの内周部が波状である。これにより、固定子3aから冷却用ジャケット200aへの熱伝導量を増加させることができる。 As described above, in the motor device 300b according to the third embodiment, the outer peripheral portion of the stator 3a is wavy and the inner peripheral portion of the cooling jacket 200a is wavy. As a result, the amount of heat conduction from the stator 3a to the cooling jacket 200a can be increased.
実施の形態4.
 図13は、実施の形態4に係るモータ装置の要部を示す六面図である。図13を参照して、実施の形態4に係るモータ装置の要部について説明する。なお、図13において、図1~図3に示す構成部材と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 4.
FIG. 13 is a six-view view showing a main part of the motor device according to the fourth embodiment. A main part of the motor device according to the fourth embodiment will be described with reference to FIG. In FIG. 13, the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
 図13に示す如く、冷却用ジャケット200bの表面部に複数個の略板状の凸部(以下「リブ」という。)31が設けられている。より具体的には、冷却用ジャケット200bの正面部に複数個(例えば6個)のリブ31_1が設けられている。また、冷却用ジャケット200bの背面部に複数個(例えば6個)のリブ31_2が設けられている。また、冷却用ジャケット200bの左側面部に複数個(例えば6個)のリブ31_3が設けられている。また、冷却用ジャケット200bの右側面部に複数個(例えば6個)のリブ31_4が設けられている。また、冷却用ジャケット200bの天面部に複数個(例えば6個)のリブ31_5が設けられている。 As shown in FIG. 13, a plurality of substantially plate-shaped convex portions (hereinafter referred to as “ribs”) 31 are provided on the surface portion of the cooling jacket 200b. More specifically, a plurality of (for example, 6) ribs 31_1 are provided on the front surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_2 are provided on the back surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_3 are provided on the left side surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_4 are provided on the right side surface of the cooling jacket 200b. Further, a plurality of (for example, 6) ribs 31_5 are provided on the top surface of the cooling jacket 200b.
 このようにして、モータ装置300cの要部が構成されている。 In this way, the main part of the motor device 300c is configured.
 複数個のリブ31が設けられていることにより、冷却用ジャケット200bの表面積を大きくすることができる。これにより、冷却用ジャケット200bによる外部空間に対する放熱能力を向上することができる。この結果、冷却用ジャケット200bによるモータ100に対する冷却能力を向上することができる。 The surface area of the cooling jacket 200b can be increased by providing the plurality of ribs 31. As a result, the heat dissipation capacity of the cooling jacket 200b with respect to the external space can be improved. As a result, the cooling capacity of the cooling jacket 200b for the motor 100 can be improved.
 なお、リブ31が設けられている面部は、冷却用ジャケット200bの正面部、背面部、左側面部、右側面部及び天面部に限定されるものではない。また、各面部に設けられているリブ31の個数は、6個に限定されるものではない。すなわち、冷却用ジャケット200bの正面部、背面部、左側面部、右側面部及び天面部のうちの選択された1個以上の面部の各々に、1個以上のリブ31が設けられているものであれば良い。ただし、冷却用ジャケット200bによる放熱能力を向上する観点から、複数個の面部の各々に複数個のリブ31が設けられているのが好適である。 The surface portion on which the rib 31 is provided is not limited to the front portion, the back portion, the left side surface portion, the right side surface portion, and the top surface portion of the cooling jacket 200b. Further, the number of ribs 31 provided on each surface portion is not limited to six. That is, one or more ribs 31 may be provided on each of one or more selected face portions of the front portion, the back portion, the left side surface portion, the right side surface portion, and the top surface portion of the cooling jacket 200b. Just do it. However, from the viewpoint of improving the heat dissipation capacity of the cooling jacket 200b, it is preferable that a plurality of ribs 31 are provided on each of the plurality of surface portions.
 また、固定子3の外周部と冷却用ジャケット200bの内周部との間に伝熱材(不図示)が設けられているものであっても良い。かかる伝熱材は、図8及び図10に示す伝熱材21と同様のものである。 Further, a heat transfer material (not shown) may be provided between the outer peripheral portion of the stator 3 and the inner peripheral portion of the cooling jacket 200b. Such a heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10.
 また、固定子3に代えて固定子3aが設けられており、かつ、冷却用ジャケット200bの内周部が略波状であっても良い。また、この場合において、固定子3aの外周部と冷却用ジャケット200bの内周部との間に伝熱材(不図示)が設けられているものであっても良い。かかる伝熱材は、図8及び図10に示す伝熱材21と同様のものである。 Further, the stator 3a may be provided instead of the stator 3, and the inner peripheral portion of the cooling jacket 200b may be substantially wavy. Further, in this case, a heat transfer material (not shown) may be provided between the outer peripheral portion of the stator 3a and the inner peripheral portion of the cooling jacket 200b. Such a heat transfer material is the same as the heat transfer material 21 shown in FIGS. 8 and 10.
 また、モータ装置300cは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、第1流路13_1に代えて又は加えて、第2流路13_2が冷却用ジャケット200bに設けられているものであっても良い。 Further, as the motor device 300c, various modifications similar to those described in the first embodiment can be adopted. For example, in place of or in addition to the first flow path 13_1, the second flow path 13_2 may be provided in the cooling jacket 200b.
 以上のように、実施の形態4に係るモータ装置300cにおいては、冷却用ジャケット200bの表面部に複数個のリブ31が設けられている。これにより、冷却用ジャケット200bによる外部空間に対する放熱能力を向上することができる。 As described above, in the motor device 300c according to the fourth embodiment, a plurality of ribs 31 are provided on the surface portion of the cooling jacket 200b. As a result, the heat dissipation capacity of the cooling jacket 200b with respect to the external space can be improved.
実施の形態5.
 図14は、実施の形態5に係るEGRバルブ装置の要部を示す正面図である。図14を参照して、実施の形態5に係るEGRバルブ装置について説明する。
Embodiment 5.
FIG. 14 is a front view showing a main part of the EGR valve device according to the fifth embodiment. The EGR valve device according to the fifth embodiment will be described with reference to FIG.
 図14に示す如く、バタフライ式のEGRバルブ400及び回転式のアクチュエータ500により、EGRバルブ装置600の要部が構成されている。EGRバルブ400の開度は、アクチュエータ500により制御されるものである。アクチュエータ500によるEGRバルブ400の開度の制御には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 As shown in FIG. 14, the main part of the EGR valve device 600 is composed of the butterfly type EGR valve 400 and the rotary actuator 500. The opening degree of the EGR valve 400 is controlled by the actuator 500. Various known techniques can be used to control the opening degree of the EGR valve 400 by the actuator 500. Detailed description of these techniques will be omitted.
 ここで、アクチュエータ500は、図1~図3に示すモータ装置300を用いたものである。 Here, the actuator 500 uses the motor device 300 shown in FIGS. 1 to 3.
 実施の形態1にて説明したとおり、モータ装置300を用いることにより、モータ100の部位毎に、要求される冷却量に応じた冷却を実現することができる。これにより、モータ装置300のアプリケーション(すなわちEGRバルブ装置600)の使用環境温度T2に応じた冷却を実現することができる。より具体的には、モータ装置300に含まれる材料及び電子部品などの耐熱温度T1と使用環境温度T2との差分値ΔTに応じた冷却を実現することができる。 As described in the first embodiment, by using the motor device 300, it is possible to realize cooling according to the required cooling amount for each part of the motor 100. Thereby, cooling according to the operating environment temperature T2 of the application of the motor device 300 (that is, the EGR valve device 600) can be realized. More specifically, it is possible to realize cooling according to the difference value ΔT between the heat resistant temperature T1 and the operating environment temperature T2 of the materials and electronic parts contained in the motor device 300.
 また、実施の形態1にて説明したとおり、冷却用ジャケット200の構造は、従来の冷却構造におけるハウジングの構造に比して簡単である。かかる簡単な構造により、モータ装置300の重量の低減を図ることができる。この結果、断続的な振動が発生する装置(すなわちEGRバルブ装置600)にモータ装置300が用いられるものであるとき、かかる振動により発生する力を低減することができる。したがって、耐震性を向上するための追加部材及び追加構造、並びに強度を向上するための追加部材及び追加構造などを不要とすることができる。 Further, as described in the first embodiment, the structure of the cooling jacket 200 is simpler than the structure of the housing in the conventional cooling structure. With such a simple structure, the weight of the motor device 300 can be reduced. As a result, when the motor device 300 is used for the device that generates intermittent vibration (that is, the EGR valve device 600), the force generated by such vibration can be reduced. Therefore, additional members and additional structures for improving seismic resistance, additional members and additional structures for improving strength, and the like can be eliminated.
 なお、アクチュエータ500は、図1~図3に示すモータ装置300に代えて、図4~図6に示すモータ装置300を用いたものであっても良い。また、アクチュエータ500は、モータ装置300に代えて、モータ装置300a、モータ装置300b又はモータ装置300cを用いたものであっても良い。 Note that the actuator 500 may use the motor device 300 shown in FIGS. 4 to 6 instead of the motor device 300 shown in FIGS. 1 to 3. Further, the actuator 500 may use a motor device 300a, a motor device 300b, or a motor device 300c instead of the motor device 300.
 また、バタフライ式のEGRバルブ400に代えてポペット式のEGRバルブ(不図示)が設けられており、かつ、回転式のアクチュエータ500に代えて直動式のアクチュエータ(不図示)が設けられているものであっても良い。すなわち、EGRバルブ装置600においては、ポペット式のEGRバルブの開度が直動式のアクチュエータにより制御されるものであっても良い。この場合における直動式のアクチュエータは、モータ装置300、モータ装置300a、モータ装置300b又はモータ装置300cを用いたものである。 Further, a poppet type EGR valve (not shown) is provided in place of the butterfly type EGR valve 400, and a linear actuator (not shown) is provided in place of the rotary actuator 500. It may be a thing. That is, in the EGR valve device 600, the opening degree of the poppet type EGR valve may be controlled by a linear actuator. The direct acting actuator in this case uses a motor device 300, a motor device 300a, a motor device 300b, or a motor device 300c.
 以上のように、実施の形態5に係るEGRバルブ装置600は、モータ装置300、モータ装置300a、モータ装置300b又はモータ装置300cを用いたアクチュエータ500と、EGRバルブ400と、を備え、アクチュエータ500によりEGRバルブ400の開度が制御されるものである。モータ装置300、モータ装置300a、モータ装置300b又はモータ装置300cを用いることにより、EGRバルブ装置600の使用環境温度T2に対応したアクチュエータ500を実現することができる。また、軽量なアクチュエータ500を実現することができる。 As described above, the EGR valve device 600 according to the fifth embodiment includes a motor device 300, a motor device 300a, an actuator 500 using the motor device 300b or the motor device 300c, and an EGR valve 400, and is provided by the actuator 500. The opening degree of the EGR valve 400 is controlled. By using the motor device 300, the motor device 300a, the motor device 300b, or the motor device 300c, it is possible to realize the actuator 500 corresponding to the operating environment temperature T2 of the EGR valve device 600. In addition, a lightweight actuator 500 can be realized.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本発明のモータ装置は、例えば、EGRバルブ装置に用いることができる。本発明のEGRバルブ装置は、例えば、車両用のエンジンシステムに用いることができる。 The motor device of the present invention can be used, for example, in an EGR valve device. The EGR valve device of the present invention can be used, for example, in an engine system for a vehicle.
 1 コイル、2 樹脂、3,3a 固定子、4 中空部、5 回転子、6 シャフト、7 磁石、8 基板、9 磁気センサ、11 凹部、12 開口部、13_1 第1流路、13_2 第2流路、14_1 第1端部、14_2 第1端部、15_1 第2端部、15_2 第2端部、21 伝熱材、31_1 リブ、31_2 リブ、31_3 リブ、31_4 リブ、31_5 リブ、100 モータ、200,200a,200b 冷却用ジャケット、300,300a,300b,300c モータ装置、400 EGRバルブ、500 アクチュエータ、600 EGRバルブ装置。 1 coil, 2 resin, 3,3a stator, 4 hollow part, 5 rotor, 6 shaft, 7 magnet, 8 substrate, 9 magnetic sensor, 11 recess, 12 opening, 13_1 1st flow path, 13_2 2nd flow Road, 14_1 1st end, 14_2 1st end, 15_1 2nd end, 15_2 2nd end, 21 heat transfer material, 31_1 rib, 31_2 rib, 31_3 rib, 31_4 rib, 31_5 rib, 100 motor, 200 , 200a, 200b cooling jacket, 300, 300a, 300b, 300c motor device, 400 EGR valve, 500 actuator, 600 EGR valve device.

Claims (12)

  1.  金属製の冷却用ジャケットと、
     前記冷却用ジャケットに収容されているモータと、を備え、
     前記冷却用ジャケットは、冷却液用の流路を有し、
     前記モータは、樹脂によりモールドされている固定子と、制御用の基板と、を有し、
     前記流路は、前記基板の配置位置に対応する部位に設けられている第1流路及び前記固定子の配置位置に対応する部位に設けられている第2流路のうちの少なくとも一方を選択的に含むものである
     ことを特徴とするモータ装置。
    With a metal cooling jacket,
    A motor housed in the cooling jacket and
    The cooling jacket has a flow path for a coolant and has a flow path.
    The motor has a stator molded from resin and a control substrate.
    For the flow path, at least one of the first flow path provided in the portion corresponding to the arrangement position of the substrate and the second flow path provided in the portion corresponding to the arrangement position of the stator is selected. A motor device characterized by including the above.
  2.  前記流路は、前記第1流路及び前記第2流路のうちの前記第1流路のみを含み、
     前記第1流路が1本のU字状の中空部により構成されており、かつ、当該U字内に前記基板が配置されている
     ことを特徴とする請求項1記載のモータ装置。
    The flow path includes only the first flow path of the first flow path and the second flow path.
    The motor device according to claim 1, wherein the first flow path is composed of one U-shaped hollow portion, and the substrate is arranged in the U-shape.
  3.  前記流路は、前記第1流路及び前記第2流路のうちの前記第2流路のみを含み、
     前記第2流路が1本のU字状の中空部により構成されており、かつ、当該U字内に前記固定子が配置されている
     ことを特徴とする請求項1記載のモータ装置。
    The flow path includes only the second flow path of the first flow path and the second flow path.
    The motor device according to claim 1, wherein the second flow path is composed of one U-shaped hollow portion, and the stator is arranged in the U-shape.
  4.  前記流路は、前記第1流路及び前記第2流路の両方を含み、
     前記第1流路が1本のU字状の中空部により構成されており、かつ、当該U字内に前記基板が配置されており、
     前記第2流路が他の1本のU字状の中空部により構成されており、かつ、当該U字内に前記固定子が配置されている
     ことを特徴とする請求項1記載のモータ装置。
    The flow path includes both the first flow path and the second flow path.
    The first flow path is composed of one U-shaped hollow portion, and the substrate is arranged in the U-shape.
    The motor device according to claim 1, wherein the second flow path is composed of another U-shaped hollow portion, and the stator is arranged in the U-shape. ..
  5.  前記固定子の外周部と前記冷却用ジャケットの内周部との間に伝熱材が設けられていることを特徴とする請求項1から請求項4のうちのいずれか1項記載のモータ装置。 The motor device according to any one of claims 1 to 4, wherein a heat transfer material is provided between the outer peripheral portion of the stator and the inner peripheral portion of the cooling jacket. ..
  6.  前記伝熱材は、金属製のスペーサにより構成されていることを特徴とする請求項5記載のモータ装置。 The motor device according to claim 5, wherein the heat transfer material is made of a metal spacer.
  7.  前記伝熱材は、半固体状の樹脂製のシートにより構成されていることを特徴とする請求項5記載のモータ装置。 The motor device according to claim 5, wherein the heat transfer material is made of a semi-solid resin sheet.
  8.  前記伝熱材は、グリスにより構成されていることを特徴とする請求項5記載のモータ装置。 The motor device according to claim 5, wherein the heat transfer material is made of grease.
  9.  前記固定子の外周部が波状であり、かつ、前記冷却用ジャケットの内周部が波状であることを特徴とする請求項1から請求項4のうちのいずれか1項記載のモータ装置。 The motor device according to any one of claims 1 to 4, wherein the outer peripheral portion of the stator is wavy and the inner peripheral portion of the cooling jacket is wavy.
  10.  前記外周部と前記内周部間に伝熱材が設けられていることを特徴とする請求項9記載のモータ装置。 The motor device according to claim 9, wherein a heat transfer material is provided between the outer peripheral portion and the inner peripheral portion.
  11.  前記冷却用ジャケットの表面部に複数個のリブが設けられていることを特徴とする請求項1から請求項4のうちのいずれか1項記載のモータ装置。 The motor device according to any one of claims 1 to 4, wherein a plurality of ribs are provided on the surface of the cooling jacket.
  12.  請求項1から請求項4のうちのいずれか1項記載のモータ装置を用いたアクチュエータと、EGRバルブと、を備え、
     前記アクチュエータにより前記EGRバルブの開度が制御されるものである
     ことを特徴とするEGRバルブ装置。
    An actuator using the motor device according to any one of claims 1 to 4 and an EGR valve are provided.
    An EGR valve device characterized in that the opening degree of the EGR valve is controlled by the actuator.
PCT/JP2019/027993 2019-07-17 2019-07-17 Motor device and egr valve device WO2021009859A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/027993 WO2021009859A1 (en) 2019-07-17 2019-07-17 Motor device and egr valve device
JP2021532611A JP7098063B2 (en) 2019-07-17 2019-07-17 Motor device and EGR valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027993 WO2021009859A1 (en) 2019-07-17 2019-07-17 Motor device and egr valve device

Publications (1)

Publication Number Publication Date
WO2021009859A1 true WO2021009859A1 (en) 2021-01-21

Family

ID=74209746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027993 WO2021009859A1 (en) 2019-07-17 2019-07-17 Motor device and egr valve device

Country Status (2)

Country Link
JP (1) JP7098063B2 (en)
WO (1) WO2021009859A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199139A (en) * 1992-10-01 1994-07-19 Hitachi Ltd Cooling system for electric vehicle and electric motor used for it
JPH08205477A (en) * 1995-01-31 1996-08-09 Hitachi Ltd Motor
JPH10341550A (en) * 1997-06-09 1998-12-22 Toshiba Corp Stator flame of rotating electric machine
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2006074853A (en) * 2004-08-31 2006-03-16 Mitsubishi Electric Corp Vehicle-mounted power converter
JP2008092797A (en) * 2006-10-04 2008-04-17 Robert Bosch Gmbh Converter motor and converter unit
JP2010273423A (en) * 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric motor
WO2012105353A1 (en) * 2011-01-31 2012-08-09 トヨタ自動車株式会社 Mounting structure for power control unit
JP2014075870A (en) * 2012-10-03 2014-04-24 Schaft Inc Water-cooling motor structure and water-cooling housing
WO2014155435A1 (en) * 2013-03-28 2014-10-02 三菱電機株式会社 Egr device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085692A (en) 2015-10-23 2017-05-18 三菱電機株式会社 Inverter integrated rotating electric machine
JP7192770B2 (en) 2017-07-28 2022-12-20 日本電産株式会社 motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199139A (en) * 1992-10-01 1994-07-19 Hitachi Ltd Cooling system for electric vehicle and electric motor used for it
JPH08205477A (en) * 1995-01-31 1996-08-09 Hitachi Ltd Motor
JPH10341550A (en) * 1997-06-09 1998-12-22 Toshiba Corp Stator flame of rotating electric machine
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2006074853A (en) * 2004-08-31 2006-03-16 Mitsubishi Electric Corp Vehicle-mounted power converter
JP2008092797A (en) * 2006-10-04 2008-04-17 Robert Bosch Gmbh Converter motor and converter unit
JP2010273423A (en) * 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric motor
WO2012105353A1 (en) * 2011-01-31 2012-08-09 トヨタ自動車株式会社 Mounting structure for power control unit
JP2014075870A (en) * 2012-10-03 2014-04-24 Schaft Inc Water-cooling motor structure and water-cooling housing
WO2014155435A1 (en) * 2013-03-28 2014-10-02 三菱電機株式会社 Egr device

Also Published As

Publication number Publication date
JPWO2021009859A1 (en) 2021-11-18
JP7098063B2 (en) 2022-07-08

Similar Documents

Publication Publication Date Title
JP3882637B2 (en) Motor cooling device
US9369023B2 (en) Motor unit having cooling channel
US20180119838A1 (en) Modular electro-mechanical rotary valve
JP3644262B2 (en) Cooling device for liquid-cooled internal combustion engine
JPH10327558A (en) Cooling device for motor
JP2001123855A (en) Throttle valve device
WO2019022108A1 (en) Motor
JP7098063B2 (en) Motor device and EGR valve device
BR102015010900A2 (en) thermoelectric generator
KR20190081330A (en) Radiant heat cover for inverter of motor
US20200381329A1 (en) Heat dissipation structure
WO2019176261A1 (en) Flow path switching valve and heat medium system for automobiles
JPH08322170A (en) Electric rotating machine
JP6148207B2 (en) Rotor for rotating electrical machines
CN104769820B (en) The actuator of the limb of heat engine air flue
JP2019170068A (en) motor
WO2020110880A1 (en) Electric drive module
JP2002281774A (en) Opposing magnet type thermomagnetic engine
US20210111609A1 (en) Motor device
JP4174919B2 (en) Electric equipment with fan device
JP6148208B2 (en) Rotor for rotating electrical machines
WO2023074571A1 (en) Stator and structure
KR101720204B1 (en) Cooling module for electric vehicle motor
JP4000832B2 (en) Rotary valve type fluid valve
JP2019170064A (en) Inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937789

Country of ref document: EP

Kind code of ref document: A1