JP2002281774A - Opposing magnet type thermomagnetic engine - Google Patents

Opposing magnet type thermomagnetic engine

Info

Publication number
JP2002281774A
JP2002281774A JP2001081606A JP2001081606A JP2002281774A JP 2002281774 A JP2002281774 A JP 2002281774A JP 2001081606 A JP2001081606 A JP 2001081606A JP 2001081606 A JP2001081606 A JP 2001081606A JP 2002281774 A JP2002281774 A JP 2002281774A
Authority
JP
Japan
Prior art keywords
heating
drum
magnetic
cooling
opposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001081606A
Other languages
Japanese (ja)
Inventor
Masahiro Nishikawa
雅弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001081606A priority Critical patent/JP2002281774A/en
Publication of JP2002281774A publication Critical patent/JP2002281774A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To arrange a magnetic pole so that a line of magnetic force does not leak and distribution in the line of magnetic force becomes uniform as much as possible, and to increase the output of a thermomagnetic engine. SOLUTION: The opposing magnet type thermomagnetic engine comprises a freely rotatable rotational drum 1 that is made of a thermally sensitive material and is formed in a cylindrical shape, an opposing magnet 2 that is arranged inside and outside the rotational drum 1 while the magnetic poles 2a and 2b are opposite each other on the inner- and outer-periphery surfaces of the rotational drum 1, a heating region 5 that is formed by heating one portion of the rotational drum 1, and a cooling region 6 that is formed by cooling the other of the rotation drum 1. In this case, the rotational drum 1 should be rotated by Maxwell stress F generated by difference in the temperature between the heating and cooling regions 5 and 6. The magnetic poles 2a and 2b are oppositely arranged while the wall body of the rotational drum 1 is pinched, thus allowing the line 3 of magnetic force to pass orthogonally to the rotation drum 1. In addition, density in the line 3 of magnetic force is uniform, thus causing the Maxwell stress to be generated by utilizing the entire line of magnetic force, and hence increasing the output of the thermomagnetic engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感温磁性材料(又
は感熱磁性材料とも言う)からなる円筒状の回転ドラム
に作用するマックスウェル応力を回転駆動力とする熱磁
気エンジンに関し、更に詳細には、回転ドラムに作用す
る磁力線を効率化してマックスウェル応力の発生効率を
増大させた熱磁気エンジンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermomagnetic engine in which Maxwell stress acting on a cylindrical rotary drum made of a temperature-sensitive magnetic material (or also referred to as a thermosensitive magnetic material) is used as a rotational driving force. The present invention relates to a thermomagnetic engine in which the lines of magnetic force acting on a rotating drum are made more efficient to increase the generation efficiency of Maxwell stress.

【0002】[0002]

【従来の技術】図9に示すように、飽和磁束密度B1、
B2の異なった二種類の強磁性材料A1、A2からなる
板体Aを永久磁石Mの磁界Hによって磁気飽和させる
と、強磁性材料A1、A2の境界面A3にマックスウェ
ル応力が作用し、板体Aに大きな飽和磁束密度B2から
小さな飽和磁束密度B1へ向う力F=1/2▽(B・
H)が生ずることは、広く知られた事象である。
2. Description of the Related Art As shown in FIG.
When the plate A made of two kinds of ferromagnetic materials A1 and A2 having different B2 is magnetically saturated by the magnetic field H of the permanent magnet M, Maxwell stress acts on the boundary surface A3 between the ferromagnetic materials A1 and A2, A force F from the large saturation magnetic flux density B2 to the small saturation magnetic flux density B1 is applied to the body A, F = 1/2 ▽ (B ·
The occurrence of H) is a widely known event.

【0003】近年、キュリー温度近傍で飽和磁束密度が
急激に減少する温度・磁気特性を備えた感温磁性材料の
開発が進み、例えばフェライトや整磁合金材(サーマロ
イ等)の如く、その成分調整によってキュリー温度を広
範囲に亘って任意に調整できるようにした感温磁性材料
が出現して来た。
[0003] In recent years, the development of temperature-sensitive magnetic materials having temperature and magnetic characteristics in which the saturation magnetic flux density sharply decreases near the Curie temperature has been advanced, and for example, the composition adjustment of such materials as ferrite and magnetic shunt alloy materials (thermalloy, etc.). Accordingly, a temperature-sensitive magnetic material has been developed in which the Curie temperature can be arbitrarily adjusted over a wide range.

【0004】そのため、図9の板体Aを感温磁性材料に
より形成し、図10に示す如く感温磁性材料から成る板
体Cの片側の端部C1を加熱してその飽和磁束密度B1
を小さくすると共に、他側の端部C2を冷却してその飽
和磁束密度B2を高め、これに永久磁石Mの磁界を与え
ることにより、板体Cにマックスウェル応力Fを発生さ
せる駆動機構が着想された。
For this purpose, the plate A shown in FIG. 9 is formed of a temperature-sensitive magnetic material, and as shown in FIG. 10, one end C1 of the plate C made of the temperature-sensitive magnetic material is heated so that its saturation magnetic flux density B1 is increased.
A drive mechanism that generates a Maxwell stress F in the plate C by reducing the diameter of the plate C, increasing the saturation magnetic flux density B2 by cooling the end C2 on the other side, and applying a magnetic field of the permanent magnet M thereto. Was done.

【0005】[0005]

【発明が解決しようとする課題】連続運転が可能な駆動
機構を実現するため、本発明者は図11に示す回転駆動
機構を特開平9−268968号として公開している。
この回転駆動機構は、回転軸1aで回転自在に軸支され
た感温磁性材料から形成される回転ドラム1と、この回
転ドラム1の外周面に沿って磁極2a、2bを配置した
磁石2と、熱媒タンク4bの中に貯留された熱媒4a
と、この熱媒4aにより高温に設定された加熱領域5
と、空冷により低温に設定される冷却領域6から構成さ
れている。
To realize a drive mechanism capable of continuous operation, the present inventor has disclosed a rotary drive mechanism shown in FIG. 11 as Japanese Patent Application Laid-Open No. Hei 9-268968.
The rotary drive mechanism includes a rotary drum 1 formed of a temperature-sensitive magnetic material rotatably supported by a rotary shaft 1a, and a magnet 2 having magnetic poles 2a and 2b arranged along the outer peripheral surface of the rotary drum 1. Heat medium 4a stored in heat medium tank 4b
And a heating region 5 set at a high temperature by the heating medium 4a.
And a cooling area 6 set to a low temperature by air cooling.

【0006】回転ドラム1は、冷却領域6では高い飽和
磁束密度B2を有し、加熱領域5では低い飽和磁束密度
B1を有するから、冷却領域6から加熱領域5の方向に
マックスウェル応力Fが作用し、回転ドラム1は矢印a
方向に回転を始める。本発明者はこの装置を用いて回転
トルクを増大すべく工夫を重ねたが、意図したように出
力が増大しない原因が磁力線の漏洩にあることを解明す
るに到った。
The rotating drum 1 has a high saturation magnetic flux density B2 in the cooling area 6 and a low saturation magnetic flux density B1 in the heating area 5, so that the Maxwell stress F acts in the direction from the cooling area 6 to the heating area 5. And the rotating drum 1 has an arrow a
Start rotating in the direction. The present inventor has repeatedly devised to increase the rotational torque by using this device, but has come to clarify that the reason why the output does not increase as intended is leakage of the magnetic field lines.

【0007】図12は従来の熱磁気エンジンにおける磁
力線の漏洩を示した概略説明図である。磁石2を構成す
る磁極2a、2bは回転ドラム1の外周面に対向してい
る。N極2aから湧き出た磁力線3は回転ドラム1の壁
内を貫通してS極2bに吸い込まれて行く。
FIG. 12 is a schematic explanatory view showing leakage of lines of magnetic force in a conventional thermomagnetic engine. The magnetic poles 2 a and 2 b constituting the magnet 2 face the outer peripheral surface of the rotating drum 1. The lines of magnetic force 3 that have flowed out of the N pole 2a penetrate the wall of the rotating drum 1 and are sucked into the S pole 2b.

【0008】磁極2a、2bが回転ドラム1の外周面側
に配置されていると、磁力線3の一部3aは回転ドラム
1の外側や内側に漏洩し、これらの漏洩磁力線3aはマ
ックスウェル応力Fの形成には寄与しない。つまり、回
転ドラム1の外周面側に両磁極2a、2bを配置する
と、漏洩磁力線3aが必然的に生じ、マックスウェル応
力Fの増大を阻んでいた。
When the magnetic poles 2a and 2b are arranged on the outer peripheral surface side of the rotary drum 1, a part 3a of the magnetic field lines 3 leaks to the outside or the inside of the rotary drum 1, and these leaked magnetic lines 3a generate the Maxwell stress F. Does not contribute to the formation of That is, when the two magnetic poles 2a, 2b are arranged on the outer peripheral surface side of the rotating drum 1, the leakage magnetic force lines 3a are inevitably generated, thereby preventing the increase of the Maxwell stress F.

【0009】また、回転ドラム1の壁内に貫通する磁力
線3でも、外周面に近い側は密度が高いが、内側になる
ほど減衰が大きくなって低密度磁力線3bになる。この
ように、回転ドラム1の半径方向に磁力線が分布する
と、減衰側の低密度磁力線3bによるマックスウェル応
力Fの発生は小さくなる。このような減衰領域にいくら
温度差を与えても、出力の発生は少ない。従って、従来
構造では、磁力線の漏洩と磁力線分布の減衰がマックス
ウェル応力Fの増大化を阻止していたのである。
Also, the magnetic lines of force 3 penetrating into the wall of the rotary drum 1 have a high density on the side near the outer peripheral surface, but the attenuation increases toward the inner side and becomes low density magnetic lines of force 3b. As described above, when the magnetic lines of force are distributed in the radial direction of the rotating drum 1, the generation of the Maxwell stress F due to the low-density magnetic lines of force 3b on the attenuation side is reduced. No matter how much the temperature difference is applied to such an attenuation region, the generation of output is small. Therefore, in the conventional structure, the leakage of the magnetic field lines and the attenuation of the magnetic field line distribution prevent the increase of the Maxwell stress F.

【0010】従って、本発明に係る対向磁石型熱磁気エ
ンジンは、磁力線が漏洩しないように、また磁力線分布
をできるだけ一様化するように、回転ドラムに対し磁極
を配置して、回転ドラムに作用するマックスウェル応力
を増大させて、低温の温廃水や廃蒸気などを利用して回
転動力を発生させることを目的とする。
Therefore, the opposed-magnet type thermomagnetic engine according to the present invention acts on the rotating drum by arranging the magnetic poles on the rotating drum so as to prevent leakage of the magnetic flux and to make the distribution of the magnetic flux uniform as much as possible. It is an object of the present invention to increase the Maxwell stress to generate rotating power using low-temperature warm wastewater or waste steam.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、感温
磁性材料から円筒状に形成された回転自在な回転ドラム
と、この回転ドラムの内側及び外側に配置されしかも該
回転ドラムの内周面と外周面に磁極を対向して設けられ
た対向磁石と、回転ドラムの一部分を加熱して形成され
た加熱領域と、回転ドラムの他の部分を冷却して形成さ
れた冷却領域から構成され、加熱領域と冷却領域の温度
差により発生するマックスウェル応力により回転ドラム
を回転させることを特徴とする対向磁石型熱磁気エンジ
ンである。
According to a first aspect of the present invention, there is provided a rotatable rotary drum formed of a temperature-sensitive magnetic material in a cylindrical shape, and disposed inside and outside the rotary drum. Consisting of opposed magnets provided with magnetic poles facing the outer and outer peripheral surfaces, a heating area formed by heating a part of the rotating drum, and a cooling area formed by cooling the other part of the rotating drum The opposed magnet type thermomagnetic engine is characterized in that the rotating drum is rotated by Maxwell stress generated by a temperature difference between the heating area and the cooling area.

【0012】請求項2の発明によれば、前記回転ドラム
に複数個の前記対向磁石を配設し、回転ドラムの所要部
に複数の加熱領域と冷却領域を設けた請求項1に記載の
対向磁石型熱磁気エンジンである。
According to the second aspect of the present invention, a plurality of the opposed magnets are disposed on the rotating drum, and a plurality of heating areas and cooling areas are provided in required portions of the rotating drum. It is a magnet type thermomagnetic engine.

【0013】請求項3の発明は、加熱領域の加熱源を温
排水又は廃蒸気とした請求項1又は請求項2に記載の対
向磁石型熱磁気エンジンである。
According to a third aspect of the present invention, there is provided the opposed magnet type thermomagnetic engine according to the first or second aspect, wherein the heating source in the heating area is hot waste water or waste steam.

【0014】請求項4の発明は、感温磁性材料からリン
グ板を形成し、このリング板を複数積層して前記回転ド
ラムを形成した請求項1に記載の対向磁石型熱磁気エン
ジンである。
According to a fourth aspect of the present invention, there is provided an opposed magnet type thermomagnetic engine according to the first aspect, wherein a ring plate is formed from a temperature-sensitive magnetic material, and the ring drum is formed by laminating a plurality of the ring plates.

【0015】[0015]

【発明の実施の態様】図1は本発明に係る対向磁石型熱
磁気エンジンの第1実施形態の概略斜視図である。感温
磁性材料から形成された回転ドラム1の外側及び内側に
磁極2a、2bを配置し、回転ドラム1の壁体を磁極2
a、2bの間に挟むように対向磁石2を配置する。この
例では、加熱用ノズル5aから熱媒を吹き付けて加熱領
域5を形成し、冷却用ノズル6aから冷媒を吹き付けて
冷却領域6を形成する。回転ドラム1に形成された温度
差によって、回転ドラム1は矢印a方向に回転する。
FIG. 1 is a schematic perspective view of a first embodiment of an opposed magnet type thermomagnetic engine according to the present invention. Magnetic poles 2a and 2b are arranged outside and inside a rotating drum 1 formed of a temperature-sensitive magnetic material, and the wall of the rotating drum 1 is
The opposed magnet 2 is arranged so as to be sandwiched between a and 2b. In this example, a heating medium is sprayed from a heating nozzle 5a to form a heating area 5, and a cooling medium 6 is sprayed from a cooling nozzle 6a to form a cooling area 6. Due to the temperature difference formed on the rotating drum 1, the rotating drum 1 rotates in the direction of arrow a.

【0016】ここで用いる磁石2は永久磁石でも電磁石
でも構わない。永久磁石を使用する場合には、磁気特性
が良好であり、温度依存性が小さく、機械的強度や耐食
性がよいことが望まれ、例えばコバルト・サマリウム磁
石が好適である。磁極2a、2bはN極、S極をこの順
に対向配置してもよいし、S極、N極の順に対向配置し
てもよく、このように磁極配置された磁石を本発明では
対向磁石と言い、この対向磁石を用いているために、本
発明は対向磁石型熱磁気エンジンと称される。
The magnet 2 used here may be a permanent magnet or an electromagnet. When a permanent magnet is used, it is desired that the magnetic properties are good, the temperature dependency is small, the mechanical strength and the corrosion resistance are good, and for example, a cobalt samarium magnet is suitable. The magnetic poles 2a and 2b may be arranged such that the N pole and the S pole are opposed in this order, or may be arranged in the order of the S pole and the N pole. In other words, since the counter magnet is used, the present invention is referred to as a counter magnet type thermomagnetic engine.

【0017】感温磁性材料としては公知の材料が用いら
れ、例えば、フェライトや整磁材料(サーマロイなど)
などがあり、キューリー温度Tcが比較的低い材料が望
ましい。その理由は、温廃水や廃蒸気を利用して高温領
域を作る必要があるからで、Tc1000を50℃〜2
50℃に調整できる材料が望まれる。Tc1000と
は、磁界Hが25Oeにおける感温磁性材料の飽和磁束
密度が1000Gになるときの温度であり、キューリー
温度とは少し異なる。
Known materials are used as the temperature-sensitive magnetic material, and examples thereof include ferrite and magnetic shunt materials (such as thermoalloy).
For example, a material having a relatively low Curie temperature Tc is desirable. The reason is that it is necessary to create a high-temperature region using warm wastewater or waste steam.
A material that can be adjusted to 50 ° C. is desired. Tc1000 is a temperature at which the saturation magnetic flux density of the temperature-sensitive magnetic material at a magnetic field H of 25 Oe becomes 1000 G, and is slightly different from the Curie temperature.

【0018】図2は本発明に係る対向磁石型熱磁気エン
ジンの作動原理の説明図である。磁極2aをN極、磁極
2bをS極とすると、磁極2aから磁力線3が回転ドラ
ム1を貫通して磁極2bに到達する。磁力線3は漏洩す
ることなく回転ドラム1を貫通し、しかもその密度は回
転ドラム1の中でほぼ一様になっている。
FIG. 2 is an explanatory view of the operation principle of the opposed magnet type thermomagnetic engine according to the present invention. Assuming that the magnetic pole 2a is an N-pole and the magnetic pole 2b is an S-pole, the lines of magnetic force 3 penetrate the rotary drum 1 from the magnetic pole 2a and reach the magnetic pole 2b. The lines of magnetic force 3 penetrate the rotating drum 1 without leaking, and the density thereof is almost uniform in the rotating drum 1.

【0019】回転ドラム1に矢印a方向に発生するマッ
クスウェル応力Fは、 F=1/2▽(B・H) =1/2d(B・H)/dX =1/2(dB/dX・H+dH/dX・B) =1/2(dB/dT・dT/dX・H+dH/dX・
B) 但し、上式に於いてBは磁束密度(T)、Hは外部磁界
の強さ(A/m)、Xは回転体の周方向の座標(m)、
Fは応力(N)であり、また、式中のdB/dTは回転
ドラム1を形成する感温磁性材料の温度変化による磁気
特性の変化(磁束密度Bの温度変化)を、dT/dXは
感温磁性体の温度分布を、dH/dXは磁気回路の形状
による外部磁界Hの分布を夫々示すものである。
The Maxwell stress F generated on the rotating drum 1 in the direction of the arrow a is as follows: F = 1/2 ▽ (B · H) = 1 / 2d (B · H) / dX = 1/2 (dB / dX · H + dH / dX · B) = 1 / (dB / dT · dT / dX · H + dH / dX ·
B) In the above equation, B is the magnetic flux density (T), H is the strength of the external magnetic field (A / m), X is the coordinate (m) in the circumferential direction of the rotating body,
F is the stress (N), and dB / dT in the equation is a change in magnetic properties (temperature change of magnetic flux density B) due to a temperature change of the temperature-sensitive magnetic material forming the rotating drum 1, and dT / dX is The temperature distribution of the temperature-sensitive magnetic material is represented by dH / dX, and the distribution of the external magnetic field H is represented by the shape of the magnetic circuit.

【0020】dB/dTは感温磁性材料の特性であり、
dT/dXは加熱領域と冷却領域6の温度差であり、d
H/dXは磁石の配置構造に依存する。前記応力Fを回
転ドラム1の全周に亘って積分し、これにドラムの断面
積を乗じたものが得られる力を表わすことになり、前記
dB/dT、dT/dX、dH/dX等の値の大きいほ
うが、より大きな力Fを得ることが出来る。
DB / dT is a characteristic of the temperature-sensitive magnetic material,
dT / dX is the temperature difference between the heating area and the cooling area 6, and
H / dX depends on the arrangement of magnets. The stress F is integrated over the entire circumference of the rotary drum 1 and the resultant force is multiplied by the cross-sectional area of the drum to represent a force that can be obtained. Such a force is expressed as dB / dT, dT / dX, dH / dX, The larger the value, the greater the force F can be obtained.

【0021】本発明はdH/dX及びHを大きくする技
術に関し、またB=μHを通してBを大きくする技術で
ある。本発明では、磁力線が回転ドラム1を半径方向に
貫通するから、磁力線の漏洩が無く、しかも磁力線の減
衰もない。従って、Hが大きくなると同時にdH/dX
を従来エンジンよりも格段に大きくできる。また、H大
きくすることによってBが大きくなり、上式に従って、
発生するマックスウェル応力Fをその分だけ増大化する
ことが可能になる。
The present invention relates to a technique for increasing dH / dX and H, and a technique for increasing B through B = μH. In the present invention, since the magnetic field lines penetrate the rotary drum 1 in the radial direction, there is no leakage of the magnetic field lines and no attenuation of the magnetic field lines. Therefore, at the same time as H increases, dH / dX
Can be significantly larger than conventional engines. Also, by increasing H, B increases, and according to the above equation,
The generated Maxwell stress F can be increased by that amount.

【0022】図3は対向磁石として1個のコ字型磁石を
用いた対向磁石型熱磁気エンジンの第2実施形態の概略
斜視図である。対向磁石2を磁極2a、2bが一体化し
たコ字型磁石から構成するため、対向磁石2の回転ドラ
ム1に対する取付方法が簡単になる。他の点は第1実施
形態と同様であるから、作用効果も同様であり、その説
明を省略する。
FIG. 3 is a schematic perspective view of a second embodiment of an opposed magnet type thermomagnetic engine using one U-shaped magnet as the opposed magnet. Since the opposing magnet 2 is composed of a U-shaped magnet in which the magnetic poles 2a and 2b are integrated, the method of attaching the opposing magnet 2 to the rotating drum 1 is simplified. Other points are the same as those of the first embodiment, so that the operation and effect are also the same, and the description thereof will be omitted.

【0023】図4は対向磁石として3個のコ字型磁石を
用いた対向磁石型熱磁気エンジンの第3実施形態の概略
斜視図である。対向磁石2を磁極2a、2bが一体化し
たコ字型磁石から構成し、3個のコ字型磁石を円周方向
に等間隔に配置して構成している。3組の加熱用ノズル
5aと冷却用ノズル6aを回転ドラム1の円周方向に配
置する。この3組構成によりマックスウェル応力も3倍
に増大化できる。他の点は第1実施形態と同様であるか
ら、作用効果も同様であり、その説明を省略する。
FIG. 4 is a schematic perspective view of a third embodiment of an opposed magnet type thermomagnetic engine using three U-shaped magnets as opposed magnets. The opposing magnet 2 is composed of a U-shaped magnet in which the magnetic poles 2a and 2b are integrated, and three U-shaped magnets are arranged at equal intervals in the circumferential direction. The three sets of heating nozzles 5a and cooling nozzles 6a are arranged in the circumferential direction of the rotating drum 1. With this three set configuration, the Maxwell stress can also be increased three times. Other points are the same as those of the first embodiment, so that the operation and effect are also the same, and the description thereof is omitted.

【0024】図5は対向磁石の一例であるコ字型磁石の
正面図である。コ字型部材2cの両端からレバー部2
d、2dを突設し、このレバー部2d、2dの内側に磁
極2a、2bがN極・S極が対向するように固定されて
いる。図6はこのコ字型磁石の平面図である。
FIG. 5 is a front view of a U-shaped magnet which is an example of the opposed magnet. Lever part 2 from both ends of U-shaped member 2c
The magnetic poles 2a and 2b are fixed inside the lever portions 2d and 2d such that the N pole and the S pole face each other. FIG. 6 is a plan view of the U-shaped magnet.

【0025】図7は本発明に係る対向磁石型熱磁気エン
ジンの第4実施形態の概略斜視図である。回転ドラム1
は感温磁性材料から形成されたリング板1aを複数枚積
層して構成されている。この回転ドラム1の円周方向に
3個の対向磁石が配設され、各磁石は図5に示されるコ
字型磁石である。
FIG. 7 is a schematic perspective view of a fourth embodiment of the opposed magnet type thermomagnetic engine according to the present invention. Rotating drum 1
Is formed by laminating a plurality of ring plates 1a formed of a temperature-sensitive magnetic material. Three opposing magnets are arranged in the circumferential direction of the rotating drum 1, and each magnet is a U-shaped magnet shown in FIG.

【0026】加熱用ノズル5aは対向磁石2の両側に2
個と中間領域に1個からなる合計3個から構成され、冷
却用ノズル6aは中間領域に2個配置されている。3個
の加熱用ノズル5aが3組及び2個の冷却用ノズル6a
が3組が回転ドラム1の円周方向に配設されている。
The heating nozzle 5a is provided on both sides of the opposed magnet 2
The cooling nozzle 6a is arranged in the intermediate region, and the cooling nozzle 6a is arranged in the intermediate region. Three sets of three heating nozzles 5a and two sets of two cooling nozzles 6a
Are arranged in the circumferential direction of the rotary drum 1.

【0027】図8は図7の平面図である。加熱用ノズル
5aと冷却用ノズル6aは円周方向に交互に3組等間隔
に配置されているから、その結果、加熱領域5と冷却領
域6も円周方向に交互に3組形成される。
FIG. 8 is a plan view of FIG. Since the heating nozzles 5a and the cooling nozzles 6a are alternately arranged at equal intervals in the circumferential direction, three sets of the heating areas 5 and the cooling areas 6 are alternately formed in the circumferential direction.

【0028】第1実施形態から第3実施形態までは、対
向磁石2を挟むように加熱用ノズル5aと冷却用ノズル
6aを配置し、従って加熱領域5と冷却領域6を対向磁
石2の両側に形成していた。しかし、加熱領域5と冷却
領域6とは回転ドラム1の円周方向のいずれかの位置に
交互に存在すればよく、対向磁石2を挟んで配置しなく
てもよい。
In the first to third embodiments, the heating nozzle 5a and the cooling nozzle 6a are arranged so as to sandwich the opposed magnet 2, so that the heating area 5 and the cooling area 6 are arranged on both sides of the opposed magnet 2. Had formed. However, the heating area 5 and the cooling area 6 need only be alternately present at any position in the circumferential direction of the rotary drum 1, and need not be arranged with the opposing magnet 2 interposed therebetween.

【0029】第4実施形態では、加熱用ノズル5aと冷
却用ノズル6aは回転ドラム1の円周方向に交互に存在
するだけで、図面上は対向磁石2の両サイドに加熱用ノ
ズル5a、5aが配置されている。回転を始めると加熱
領域5と冷却領域6の境界領域にマックスウェル応力が
作用する。
In the fourth embodiment, the heating nozzles 5a and the cooling nozzles 6a are arranged alternately in the circumferential direction of the rotary drum 1, and the heating nozzles 5a and 5a Is arranged. When the rotation starts, Maxwell stress acts on a boundary region between the heating region 5 and the cooling region 6.

【0030】本発明に係る対向磁石型熱磁気エンジンは
上記実施形態に限定されるものではなく、本発明の技術
的思想を逸脱しない範囲における種々の変形例、設計変
更などもその技術的範囲内に包含するものであることは
言うまでもない。
The opposed-magnet type thermomagnetic engine according to the present invention is not limited to the above-described embodiment, and various modifications and design changes without departing from the technical idea of the present invention are included in the technical scope. Needless to say, it is included.

【0031】[0031]

【発明の効果】請求項1の発明によれば、回転ドラムの
内側及び外側に配置されしかも該回転ドラムの内周面と
外周面に磁極を対向するように対向磁石を設けたから、
磁力線が回転ドラムを半径方向に貫通し、磁石から湧き
出た磁力線の全てが漏洩することなく、回転ドラムをほ
ぼ一様に貫通するから、磁石の磁界を有効に利用してマ
ックスウェル応力の増大化を図ることができ、実用的な
熱磁気エンジンを提供することができる。
According to the first aspect of the present invention, the opposing magnets are provided inside and outside the rotating drum and the inner and outer peripheral surfaces of the rotating drum are provided with the magnetic poles facing each other.
Magnetic field lines penetrate the rotating drum in the radial direction, and all of the magnetic field lines flowing out of the magnet penetrate the rotating drum almost uniformly without leaking, so the Maxwell stress is increased by effectively utilizing the magnetic field of the magnet. And a practical thermomagnetic engine can be provided.

【0032】請求項2の発明によれば、回転ドラムに複
数個の対向磁石を配設し、同時に回転ドラムの所要部に
複数の加熱領域と冷却領域を設けたから、対向磁石の個
数分だけマックスウェル応力を増倍化でき、回転トルク
を大きくしてより実用的な熱磁気エンジンを実現でき
る。
According to the second aspect of the present invention, since a plurality of opposed magnets are provided on the rotating drum and a plurality of heating areas and cooling areas are provided at required portions of the rotating drum at the same time, the maximum number of magnets is equal to the number of opposed magnets. The well stress can be multiplied and the rotational torque can be increased to realize a more practical thermomagnetic engine.

【0033】請求項3の発明によれば、加熱領域の加熱
源を温排水又は廃蒸気とするから、それらの温度領域に
キューリー温度を有する感温磁性材料を用いることによ
り、比較的低温の温廃水や廃蒸気を活用して直接機械的
駆動力を作り出すことができる実用上有用な技術分野を
提供できる。
According to the third aspect of the present invention, since the heating source of the heating area is hot waste water or waste steam, the temperature-sensitive magnetic material having a Curie temperature is used in those temperature areas, so that a relatively low temperature can be obtained. It is possible to provide a practically useful technical field in which a mechanical driving force can be directly generated by utilizing wastewater or waste steam.

【0034】請求項4の発明によれば、感温磁性材料か
らリング板を形成し、このリング板を複数積層して回転
ドラムを形成するから、リング板の積層数によって任意
の直径及び軸長を有した回転ドラムを形成でき、種々の
サイズの対向磁石型熱磁気エンジンを提供できる。
According to the fourth aspect of the present invention, a ring plate is formed from a temperature-sensitive magnetic material, and a plurality of the ring plates are laminated to form a rotary drum. And a counter drum type thermomagnetic engine of various sizes can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る対向磁石型熱磁気エンジンの第1
実施形態の概略斜視図である。
FIG. 1 shows a first embodiment of a counter magnet type thermomagnetic engine according to the present invention.
It is an outline perspective view of an embodiment.

【図2】本発明に係る対向磁石型熱磁気エンジンの作動
原理の説明図である。
FIG. 2 is an explanatory view of the operation principle of the opposed magnet type thermomagnetic engine according to the present invention.

【図3】対向磁石として1個のコ字型磁石を用いた対向
磁石型熱磁気エンジンの第2実施形態の概略斜視図であ
る。
FIG. 3 is a schematic perspective view of a second embodiment of an opposed magnet type thermomagnetic engine using one U-shaped magnet as the opposed magnet.

【図4】対向磁石として3個のコ字型磁石を用いた対向
磁石型熱磁気エンジンの第3実施形態の概略斜視図であ
る。
FIG. 4 is a schematic perspective view of a third embodiment of an opposed magnet type thermomagnetic engine using three U-shaped magnets as opposed magnets.

【図5】対向磁石の一例であるコ字型磁石の正面図であ
る。
FIG. 5 is a front view of a U-shaped magnet which is an example of the opposed magnet.

【図6】コ字型磁石の平面図である。FIG. 6 is a plan view of a U-shaped magnet.

【図7】本発明に係る対向磁石型熱磁気エンジンの第4
実施形態の概略斜視図である。
FIG. 7 shows a fourth example of the opposed magnet type thermomagnetic engine according to the present invention.
It is an outline perspective view of an embodiment.

【図8】図7の平面図である。FIG. 8 is a plan view of FIG. 7;

【図9】異なる飽和磁束密度と磁石によるマックスウェ
ル応力の発生の原理図である。
FIG. 9 is a principle diagram of generation of Maxwell stress by different saturation magnetic flux densities and magnets.

【図10】異なる温度に設定された感温磁性材料と磁石
によるマックスウェル応力の発生の原理図である。
FIG. 10 is a principle diagram of generation of Maxwell stress by a temperature-sensitive magnetic material and a magnet set at different temperatures.

【図11】マックスウェル応力を利用した従来の熱磁気
エンジンの概念図である。
FIG. 11 is a conceptual diagram of a conventional thermomagnetic engine utilizing Maxwell stress.

【図12】従来の熱磁気エンジンにおける磁力線の漏洩
を示す概略説明図である。
FIG. 12 is a schematic explanatory view showing leakage of lines of magnetic force in a conventional thermomagnetic engine.

【符号の説明】[Explanation of symbols]

1は回転ドラム、1aは回転軸、2は磁石、2a・2b
は磁極、2cはコ字型部材、2dはレバー部、3は磁力
線、3aは漏洩磁力線、3bは低密度磁力線、4aは熱
媒、4bは熱媒タンク、5は加熱冷域、5aは加熱用ノ
ズル、6は冷却領域、6aは冷却用ノズルである。
1 is a rotating drum, 1a is a rotating shaft, 2 is a magnet, 2a and 2b
Is a magnetic pole, 2c is a U-shaped member, 2d is a lever portion, 3 is a magnetic line of force, 3a is a line of magnetic leakage, 3b is a line of low density magnetic force, 4a is a heating medium, 4b is a heating medium tank, 5 is a heating and cooling area, and 5a is heating. Nozzle, 6 is a cooling area, and 6a is a cooling nozzle.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 感温磁性材料から円筒状に形成された回
転自在な回転ドラムと、この回転ドラムの内側及び外側
に配置されしかも該回転ドラムの内周面と外周面に磁極
を対向して設けられた対向磁石と、回転ドラムの一部分
を加熱して形成された加熱領域と、回転ドラムの他の部
分を冷却して形成された冷却領域から構成され、加熱領
域と冷却領域の温度差により発生するマックスウェル応
力により回転ドラムを回転させることを特徴とする対向
磁石型熱磁気エンジン。
1. A rotatable rotary drum formed of a temperature-sensitive magnetic material in a cylindrical shape, and disposed inside and outside the rotary drum, with magnetic poles facing the inner and outer peripheral surfaces of the rotary drum. It is composed of a provided opposed magnet, a heating area formed by heating a part of the rotating drum, and a cooling area formed by cooling the other part of the rotating drum, and a temperature difference between the heating area and the cooling area. An opposed-magnet type thermomagnetic engine characterized in that a rotating drum is rotated by generated Maxwell stress.
【請求項2】 前記回転ドラムに複数個の前記対向磁石
を配設し、回転ドラムの所要部に複数の加熱領域と冷却
領域を設けた請求項1に記載の対向磁石型熱磁気エンジ
ン。
2. The opposed magnet type thermomagnetic engine according to claim 1, wherein a plurality of said opposed magnets are provided on said rotating drum, and a plurality of heating regions and cooling regions are provided in required portions of said rotating drum.
【請求項3】 加熱領域の加熱源を温排水又は廃蒸気と
した請求項1又は請求項2に記載の対向磁石型熱磁気エ
ンジン。
3. The opposed-magnet type thermomagnetic engine according to claim 1, wherein the heating source in the heating area is hot waste water or waste steam.
【請求項4】 感温磁性材料からリング板を形成し、こ
のリング板を複数積層して前記回転ドラムを形成した請
求項1に記載の対向磁石型熱磁気エンジン。
4. The opposed magnet type thermomagnetic engine according to claim 1, wherein a ring plate is formed from a temperature-sensitive magnetic material, and the ring drum is formed by laminating a plurality of the ring plates.
JP2001081606A 2001-03-21 2001-03-21 Opposing magnet type thermomagnetic engine Pending JP2002281774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081606A JP2002281774A (en) 2001-03-21 2001-03-21 Opposing magnet type thermomagnetic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081606A JP2002281774A (en) 2001-03-21 2001-03-21 Opposing magnet type thermomagnetic engine

Publications (1)

Publication Number Publication Date
JP2002281774A true JP2002281774A (en) 2002-09-27

Family

ID=18937680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081606A Pending JP2002281774A (en) 2001-03-21 2001-03-21 Opposing magnet type thermomagnetic engine

Country Status (1)

Country Link
JP (1) JP2002281774A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137597A1 (en) * 2009-05-28 2010-12-02 国立大学法人東京工業大学 Composite magnetic ring and energy converter
CN102758750A (en) * 2011-04-25 2012-10-31 株式会社电装 Thermo-magnetic engine apparatus and reversible thermo-magnetic cycle apparatus
CN103326542A (en) * 2012-03-23 2013-09-25 台达电子工业股份有限公司 Magnetic thermal device
US20130263599A1 (en) * 2012-04-09 2013-10-10 Delta Electronics, Inc. Thermal magnetic engine and thermal magnetic engine system
CN103362765A (en) * 2012-04-09 2013-10-23 台达电子工业股份有限公司 Thermomagnetic engine and thermomagnetic engine system
US20140159838A1 (en) * 2012-12-06 2014-06-12 Delta Electronics, Inc. Thermomagnetic power generator
CN104884795A (en) * 2012-10-24 2015-09-02 尼古劳斯·维达 Device for generating a movement, motor comprising said device and use of the latter
US20150295469A1 (en) * 2014-04-15 2015-10-15 Meir ALFASI Magnetic gadolinium propulsion generator
US9534814B2 (en) 2011-04-25 2017-01-03 Denso Corporation Magneto-caloric effect type heat pump apparatus
US9534816B2 (en) 2011-05-13 2017-01-03 Denso Corporation Thermo-magnetic cycle apparatus with bypass valve
CN113054871A (en) * 2021-03-25 2021-06-29 北京科技大学 Device for thermomagnetic power generation and working method
RU2788497C1 (en) * 2021-12-02 2023-01-20 Николай Ананьевич Главатских Air-independent thermomagnetic engine for submarines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141572A (en) * 1991-03-19 1994-05-20 Tsuyoshi Tanaka Magnetic body engine
JP2000104655A (en) * 1998-09-25 2000-04-11 Masahiro Nishikawa Thermal magnetic engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141572A (en) * 1991-03-19 1994-05-20 Tsuyoshi Tanaka Magnetic body engine
JP2000104655A (en) * 1998-09-25 2000-04-11 Masahiro Nishikawa Thermal magnetic engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137597A1 (en) * 2009-05-28 2010-12-02 国立大学法人東京工業大学 Composite magnetic ring and energy converter
US9027339B2 (en) 2011-04-25 2015-05-12 Denso Corporation Thermo-magnetic engine apparatus and reversible thermo-magnetic cycle apparatus
CN102758750A (en) * 2011-04-25 2012-10-31 株式会社电装 Thermo-magnetic engine apparatus and reversible thermo-magnetic cycle apparatus
JP2012229634A (en) * 2011-04-25 2012-11-22 Denso Corp Thermo-magnetic engine device, and reversible thermo-magnetic cycle apparatus
US9534814B2 (en) 2011-04-25 2017-01-03 Denso Corporation Magneto-caloric effect type heat pump apparatus
US9534816B2 (en) 2011-05-13 2017-01-03 Denso Corporation Thermo-magnetic cycle apparatus with bypass valve
US20130247572A1 (en) * 2012-03-23 2013-09-26 Delta Electronics, Inc. Magnetic thermal device
CN103326542A (en) * 2012-03-23 2013-09-25 台达电子工业股份有限公司 Magnetic thermal device
US8984885B2 (en) * 2012-04-09 2015-03-24 Delta Electronics, Inc. Thermal magnetic engine and thermal magnetic engine system
CN103362765A (en) * 2012-04-09 2013-10-23 台达电子工业股份有限公司 Thermomagnetic engine and thermomagnetic engine system
US20130263599A1 (en) * 2012-04-09 2013-10-10 Delta Electronics, Inc. Thermal magnetic engine and thermal magnetic engine system
CN104884795A (en) * 2012-10-24 2015-09-02 尼古劳斯·维达 Device for generating a movement, motor comprising said device and use of the latter
US9998036B2 (en) 2012-10-24 2018-06-12 Nikolaus Vida Device for generating a movement, motor comprising said device and use of the latter
US20140159838A1 (en) * 2012-12-06 2014-06-12 Delta Electronics, Inc. Thermomagnetic power generator
US20150295469A1 (en) * 2014-04-15 2015-10-15 Meir ALFASI Magnetic gadolinium propulsion generator
CN113054871A (en) * 2021-03-25 2021-06-29 北京科技大学 Device for thermomagnetic power generation and working method
CN113054871B (en) * 2021-03-25 2022-07-29 北京科技大学 Device for thermomagnetic power generation and working method
RU2788497C1 (en) * 2021-12-02 2023-01-20 Николай Ананьевич Главатских Air-independent thermomagnetic engine for submarines

Similar Documents

Publication Publication Date Title
JP2002281774A (en) Opposing magnet type thermomagnetic engine
JP4809349B2 (en) Power generator with heat pipe embedded in stator core
US5717262A (en) Cooling apparatus for an AC generator
JP3388841B2 (en) Thermoelectric generator
US20190257555A1 (en) Magnetocaloric heat pump, cooling device and method of operating thereof
KR20170088863A (en) Magnetocaloric thermal apparatus
JP5532494B2 (en) Heat generator with magnetocaloric effect
JP2007104888A (en) Rotary electric machine
JP6183662B2 (en) Magnetic field generator for heat appliances by magnetocaloric quantity
US20120067050A1 (en) Composite magnetic ring and energy converter
US2745974A (en) Eddy current torque producing device
US20110061399A1 (en) Heat-power conversion magnetism devices
KR101688244B1 (en) Magnetocaloric heat generator
JP2000104655A (en) Thermal magnetic engine
JPH06141572A (en) Magnetic body engine
WO2019150817A1 (en) Magnetic heat pump device
JP2000245123A (en) Permanent magnet reluctance rotating machine
JP4486212B2 (en) Cooling system for engine coolant using thermomagnetic rotating device
JPH07231611A (en) Cooling structure of rotating machine
JPH09268968A (en) Thermomagnetic engine
JPH02299481A (en) Conversion of thermal energy into mechanical energy and heat engine
JPH02106183A (en) Magnetic fluid heat engine
JP2011069508A (en) Magnetic temperature adjustment device
JPH01232174A (en) Power plant utilizing temperature sensing magnetic substance
JPS59149751A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330