WO2021009844A1 - Electrochemical measurement device and electrochemical measurement method - Google Patents

Electrochemical measurement device and electrochemical measurement method Download PDF

Info

Publication number
WO2021009844A1
WO2021009844A1 PCT/JP2019/027918 JP2019027918W WO2021009844A1 WO 2021009844 A1 WO2021009844 A1 WO 2021009844A1 JP 2019027918 W JP2019027918 W JP 2019027918W WO 2021009844 A1 WO2021009844 A1 WO 2021009844A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
measurement
electrochemical
electrodes
electrochemical measuring
Prior art date
Application number
PCT/JP2019/027918
Other languages
French (fr)
Japanese (ja)
Inventor
暁鳴 竇
佳則 山口
子誠 朱
賓 範
Original Assignee
暁鳴 竇
株式会社オプトラン
佳則 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暁鳴 竇, 株式会社オプトラン, 佳則 山口 filed Critical 暁鳴 竇
Priority to PCT/JP2019/027918 priority Critical patent/WO2021009844A1/en
Publication of WO2021009844A1 publication Critical patent/WO2021009844A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the present invention relates to an electrochemical measuring device and an electrochemical measuring method.
  • the electrochemical measuring device and the electrochemical measuring method include, for example, an environmental test represented by heavy metal measurement applying the principle of electrochemical measurement, a glucose electrode, and an electrochemical measurement such as a food test represented by electrochemical detection of residual pesticides. Used for.
  • Measurements using the principle of electrochemical measurement are used in many situations such as high-sensitivity measurement of heavy metals in solution, glucose measurement using enzyme electrodes, and pH (pH) measurement using ion electrodes ().
  • high-sensitivity measurement of heavy metals in solution glucose measurement using enzyme electrodes
  • pH (pH) measurement using ion electrodes ion electrodes
  • Patent Document 1 the measurement of heavy metals such as cadmium, mercury, arsenic, cobalt, copper, zinc and lead is performed before the amount of those heavy metals contained in water, soil, food, vegetables, rice and drinking water is taken into the body. It is very important to know.
  • the present invention has been made to improve such a situation, and an object of the present invention is to improve reproducibility and detection sensitivity in electrochemical measurement for measuring trace components in a liquid sample.
  • the electrochemical measuring device of the present invention is an electrochemical measuring device that measures trace components in a liquid sample, and includes a plurality of electrode sets having a working electrode, a counter electrode, and a reference electrode that come into contact with the liquid sample, and the plurality of electrodes are provided.
  • the working electrodes of the electrode assembly, the counter electrodes, and the reference electrodes are short-circuited to each other.
  • the electrochemical measuring apparatus of the present invention a plurality of three electrodes of the working electrode, the counter electrode and the reference electrode themselves are arranged, and the working electrodes, the counter electrodes and the reference electrodes are short-circuited (electrically connected) to each electrode assembly.
  • the working electrodes, the counter electrodes and the reference electrodes are short-circuited (electrically connected) to each electrode assembly.
  • the electrode assembly may be provided on a disposable electrode tip.
  • the measurement can be performed without worrying about the accumulation and contamination on the electrode surface by the previous measurement substance.
  • the plurality of electrode sets (working electrode, counter electrode and reference electrode) may be provided on separate electrode tips, or may be provided in separate regions on the same electrode tip.
  • a plurality of the electrode chips having the same configuration may be mounted.
  • the working electrodes, counter electrodes, and reference electrodes of each electrode chip are short-circuited, so that manufacturing variations between the electrode chips can be absorbed. , Reproducibility and detection sensitivity can be improved.
  • the same liquid sample is electrically separated and brought into contact with each electrode set using the electrochemical measurement device of the present invention for measurement.
  • noise can be reduced by electrically separating and contacting the same liquid sample for each electrode set with respect to a plurality of electrode sets connected in parallel. , The detection sensitivity can be improved.
  • the electrochemical measuring device and the electrochemical measuring method of the present invention can improve reproducibility and detection sensitivity.
  • FIG. 1 It is a schematic block diagram which shows one Embodiment of an electrochemical measuring apparatus. It is a top view which shows an example of the electrode chip used in this embodiment. It is a graph which shows the current potential curve obtained in the measurement example 1. FIG. It is a graph which shows the current potential curve obtained in the measurement example 2.
  • FIG. 1 is a schematic configuration diagram showing the embodiment.
  • FIG. 2 is a plan view showing an example of the electrode chip.
  • the electrochemical measuring device 1 includes two electrode tips 2 and 2, a potentiometer 3 connected to the electrode tips 2 and 2, an operation unit 4 connected to the potentiometer 3, and a display unit. 5.
  • the power supply unit 6 and the external output unit 7 are provided.
  • each electrode chip 2 includes a flat plate-shaped substrate 21, and a working electrode 22, a counter electrode 23, and a reference electrode 24 are provided on the substrate 21 so as to be insulated from each other.
  • the substrate 21 has a substantially rectangular shape in a plan view.
  • the electrode assembly 25 of the working electrode 22, the counter electrode 23, and the reference electrode 24 is provided from the vicinity of one end in the longitudinal direction to the vicinity of the other end of the substrate 21.
  • the materials and structures of the working electrode 22, the counter electrode 23 and the reference electrode 24 are the same.
  • each electrode chip 2 a liquid sample 10 containing a substance to be measured is brought into contact with one end side of the working electrode 22, the counter electrode 23, and the reference electrode 24.
  • the working electrode 22, the counter electrode 23, and the other end of the reference electrode 24 of each electrode tip 2 are electrically connected to the potentiostat 3 via a connector 8 and a cable 9 (not shown in FIG. 1).
  • the electrode tip 2 is detachably attached to the connector 8.
  • the working electrode 22, the counter electrode 23, and the reference electrode 24 are made of a carbon thin film formed by, for example, sputtering or print printing.
  • the surface of the carbon thin film may be plated depending on the measurement target.
  • the measurement target is a heavy metal such as arsenic or mercury
  • the surface of the carbon thin film can be plated with gold or the like, whereby the detection sensitivity can be improved.
  • the potentiostat 3 controls the potential of the working electrode 22 to be constant with respect to the reference electrode 24, and can measure the current flowing between the working electrode 22 and the counter electrode 23. Has been done.
  • the potentiostat 3 includes an arithmetic control unit 31, a voltage application unit 32, and a current detection unit 33.
  • the calculation control unit 31 performs a predetermined calculation process using the measured value obtained by the electrochemical measurement, and is required for the voltage application unit 32 based on a command from the user input via the operation unit 4. It is a function of transmitting a signal and displaying information such as a measurement result on the display unit 5.
  • the arithmetic control unit 31 is realized by, for example, a microcomputer executing a predetermined program.
  • the voltage application unit 32 When the voltage application unit 32 receives the measurement start signal from the arithmetic control unit 31, the voltage application unit 32 applies a voltage having a desired waveform between the working electrode 22 and the counter electrode 23 of the electrode chip 2 to and the working electrode 22. It is configured to control the potential between the reference electrode 24 and the reference electrode 24 to be a desired potential.
  • the current detection unit 33 is configured to detect the magnitude of the current flowing between the working electrode 22 of the electrode chip 2 and the counter electrode 23. A signal relating to the magnitude of the current detected by the current detection unit 33 is taken into the arithmetic control unit 31.
  • the arithmetic control unit 31 calculates the concentration of a specific component in the sample solution based on the signal captured from the current detection unit 33, for example, using a calibration curve prepared in advance, and displays the measurement result on the display unit 5. It is configured as follows.
  • two electrode chips 2 and 2 having the same structure are connected to the potentiostat 3.
  • the working electrodes 22, 22 of the two electrode tips 2, 2, the counter electrodes 23, 23, and the reference electrodes 24, 24 are configured to be electrically connected (short-circuited) to each other in the potentiostat 3.
  • the same voltage is simultaneously applied to the two electrode chips 2 and 2 from the voltage application unit 32, and the current flowing between the working electrode 22 and the counter electrode 23 in each of the two electrode chips 2 and 2 is applied. It is detected by the current detection unit 33.
  • the operation unit 4 is an input device for the user to perform operations such as turning on / off the power supply, starting measurement, and changing the information displayed on the display unit 5.
  • the display unit 5 is realized by, for example, a liquid crystal display.
  • the display unit 5 may be composed of a touch panel, and the display unit 5 may have the functions of the operation unit 4.
  • the power supply unit 6 can be realized by, for example, a dry battery or a storage battery. The power supply unit 6 supplies necessary electric power to the potentiometer 3 and the display unit 5.
  • an external output unit 7 is connected to the potentiostat 3 so that information can be output to an external device such as a personal computer by a wired communication means such as a USB (universal serial bus) terminal or a wireless communication means. You may.
  • the arithmetic control unit 31 is configured to output measurement data or the like to an external device via the external output unit 7.
  • the operation unit 4, the display unit 5, the power supply unit 6, and the external output unit 7 may be realized by a mobile computer such as a notebook computer or a tablet, for example.
  • a small potentiometer 3 for example, a small potentiometer "miniSTAT100" (manufactured by Biodevice Technology)
  • the electrochemical measuring device 1 can be configured to be portable. This makes it possible to measure a liquid sample on-site (on-site) using the electrochemical measuring device 1.
  • the electrochemical measurement using the electrochemical measuring device 1 of the present embodiment is performed in a state where the same liquid sample 10 is dropped on each of the two electrode chips 2 and 2.
  • the liquid sample 10 is dropped onto the substrate 21 so as to be in contact with the working electrode 22, the counter electrode 23, and the reference electrode 24.
  • liquid sample 10 on one electrode chip 2 and the liquid sample 10 on the other electrode chip 2 are electrically insulated (separated).
  • Electrochemical measurements were performed by differential pulse voltammetry (DPV). The measurement by DPV was carried out by changing the potential of the working electrode from -1500 mV to 200 mV, increasing the potential at 0.04 V, pulse amplitude of 0.05 V, pulse period of 0.2 seconds, and sweeping speed of 0.01 V / s. About 20 ⁇ L of the above sample was dropped onto the electrode chip 2 for measurement. The obtained current potential curve is shown in FIG. In FIG. 3, the vertical axis represents current and the horizontal axis represents potential.
  • the peak current value can be made larger and the difference in the detected peak current value from the baseline can be made larger than the measurement by the conventional method, and the detection sensitivity can be improved. ..
  • Measurement example 2 A 100 ppm lead standard solution (Cat. No. 24240-1B, manufactured by Kanto Chemical Co., Inc.) diluted to 100 ppb with distilled water was prepared as a sample. The measurement conditions are the same as those in Measurement Example 1. The obtained current potential curve is shown in FIG. In FIG. 4, the vertical axis represents current and the horizontal axis represents potential.
  • the peak current value is larger than that by the conventional method, and the difference between the detected peak current value and the baseline can be increased, so that the detection sensitivity is improved. It was confirmed that it could be done.
  • the electrochemical measuring device 1 of the embodiment includes a plurality of electrode sets 25 having a working electrode 22, a counter electrode 23, and a reference electrode 24 that are in contact with the liquid sample, and the working electrodes 22 and the counter electrodes 23 are located on each other.
  • the reference electrodes 24 are configured to be short-circuited with each other. Then, by measuring in a state where the same liquid sample is in contact with each electrode assembly 25, uneven manufacturing of each electrode 22, 23, 24 (manufacturing variation) and interaction with the sample at the time of detection (contact state). And can be averaged. As a result, the electrochemical measuring device 1 can improve the reproducibility and the detection sensitivity.
  • the electrochemical measuring device 1 since the electrode assembly of the working electrode 22, the counter electrode 23, and the reference electrode 24 is provided on the disposable electrode tip 2, there is concern about accumulation and contamination on the electrode surface due to the previous measurement substance. You can measure without doing anything.
  • the electrochemical measuring device 1 is configured so that a plurality of electrode chips 2 having the same configuration can be mounted, the working electrodes 22 of the respective electrode chips 2 are connected to each other even though the plurality of electrode chips 2 are used. Since the counter electrodes 23 and the reference electrodes 24 are short-circuited, it is possible to absorb manufacturing variations between the electrode chips 2 and improve reproducibility and detection sensitivity.
  • the same liquid sample is electrically separated and brought into contact with each electrode assembly 25 by using the electrochemical measuring device 1, so that noise is measured from two independent detection systems. It can be reduced by adding the above, and the detection sensitivity can be improved.
  • the present invention is not limited to the above-described embodiment, but can be embodied in various aspects.
  • the electrochemical measuring device of the present invention is not limited to a portable configuration, and can be applied to a stationary device.
  • the working electrodes 22 of the two electrode tips 2 and 2, the counter electrodes 23, and the reference electrodes 24 may be electrically connected (short-circuited) to each other outside the potentiostat 3.
  • the two electrode chips 2 and 2 may be short-circuited inside a connector to which they can be attached, or the cables extending from each connector 8 may be short-circuited inside a merged cable.
  • the number of electrode sets 25 provided in the electrochemical measuring device 1 may be three or more. Further, the electrode assembly 25 may further include an electrode in addition to the working electrode 22, the counter electrode 23, and the reference electrode 24.
  • the measuring method using the electrochemical measuring device of the present invention is not limited to differential pulse voltammetry (DPV), but linear sweep voltammetry (LSV), chronoamperemetry (CA), cyclic voltammetry (CV), and short waveform voltammetry. It can also be applied to a method such as (SWV).
  • DDV differential pulse voltammetry
  • LSV linear sweep voltammetry
  • CA chronoamperemetry
  • CV cyclic voltammetry
  • SWV short waveform voltammetry
  • Electrochemical measuring device 2 Electrode chip 3 Potential stat 4 Operation unit 5 Display unit 6 Power supply unit 7 External output unit 8 Connector 9 Cable 10 Liquid sample 21 Substrate 22 Working electrode 23 Counter electrode 24 Reference electrode 25 Electrode assembly 31 Calculation control unit 32 Voltage Applying unit 33 Current detecting unit

Abstract

The present invention improves the reproducibility and the detection sensitivity of an electrochemical measurement device. This electrochemical measurement device 1 measures fine quantities of components in a liquid sample. The electrochemical measurement device 1 comprises a plurality of electrode sets 25, each of which has a usage electrode 22 that is in contact with the liquid sample, a counter electrode 23, and a reference electrode 24. The usage electrodes 22, the counter electrodes 23, and the reference electrodes 24 in the plurality of electrode sets 25 are reciprocally short-circuited.

Description

電気化学測定装置及び電気化学測定方法Electrochemical measuring device and electrochemical measuring method
 本発明は、電気化学測定装置及び電気化学測定方法に関する。電気化学測定装置及び電気化学測定方法は、例えば、電気化学測定の原理を応用した重金属測定に代表される環境検査、グルコース電極、残留農薬の電気化学検出に代表される食物検査などの電気化学測定に使用される。 The present invention relates to an electrochemical measuring device and an electrochemical measuring method. The electrochemical measuring device and the electrochemical measuring method include, for example, an environmental test represented by heavy metal measurement applying the principle of electrochemical measurement, a glucose electrode, and an electrochemical measurement such as a food test represented by electrochemical detection of residual pesticides. Used for.
 電気化学測定の原理を利用した測定は、溶液中の重金属の高感度測定や、酵素電極を利用したグルコース測定、イオン電極を利用したpH(ペーハー)の測定など多くの場面で使用されている(例えば特許文献1参照)。特に、その中でも、カドミウム、水銀、砒素、コバルト、銅、亜鉛、鉛といった重金属の測定は、水や土壌、食物、野菜、米、飲料水に含まれるそれらの重金属量を体内に摂取する前に把握することは非常に重要である。 Measurements using the principle of electrochemical measurement are used in many situations such as high-sensitivity measurement of heavy metals in solution, glucose measurement using enzyme electrodes, and pH (pH) measurement using ion electrodes (). For example, see Patent Document 1). In particular, among them, the measurement of heavy metals such as cadmium, mercury, arsenic, cobalt, copper, zinc and lead is performed before the amount of those heavy metals contained in water, soil, food, vegetables, rice and drinking water is taken into the body. It is very important to know.
 また、穀物、野菜、果実など食物へ農薬を散布することによる残留農薬の問題は深刻であり、2013年にはインドでモノクロトホスと呼ばれる農薬が野菜に残留していたことによって、23人の児童が死亡するといった重大な事件が起こっている。 In addition, the problem of residual pesticides caused by spraying pesticides on foods such as grains, vegetables and fruits is serious. In 2013, a pesticide called monocrotophos remained in vegetables in India, resulting in 23 children. There are serious incidents such as the death of.
 また、電気化学測定において、銀やカーボンを基板上に印刷した使い捨て電極を利用できることが知られている(例えば特許文献2参照)。 It is also known that disposable electrodes obtained by printing silver or carbon on a substrate can be used in electrochemical measurement (see, for example, Patent Document 2).
特開平11-248668号公報JP-A-11-248668 特表2006-514300号公報Special Table 2006-514300
 従来の電気化学測定法、特に微分ボルタンメトリーなどに代表される電気化学の高感度測定方法によって測定する場合には、その再現性に問題があった。その原因として、量産の際に電極表面状態のナノレベルでの制御が困難であること、さらに、検体サンプルが電極表面に滴下もしくはサンプリングされて接触される際にその時々に応じて、電極接点との接触状態が安定していないことなどが考えられる。 There was a problem in its reproducibility when measuring by a conventional electrochemical measurement method, especially a high-sensitivity measurement method of electrochemical represented by differential voltammetry. The reason for this is that it is difficult to control the electrode surface state at the nano level during mass production, and when a sample sample is dropped or sampled on the electrode surface and brought into contact with the electrode contact surface, depending on the occasion. It is possible that the contact state of the is not stable.
 これまでの技術では、電極の応答を高めるためにその電流の増幅率を上げることで、電極表面での重金属などの被測定物質からの電流を高めようとする試みはあった。しかし、その方法では、同時にノイズも大きくなってしまい、絶対的な値は大きくなるものの、相対的にはシグナルが大きくなることはなく、結果的に検出限界が改善されることが少なかった。 In the conventional technology, there has been an attempt to increase the current from the substance under test such as heavy metal on the electrode surface by increasing the amplification factor of the current in order to enhance the response of the electrode. However, with that method, the noise also increases at the same time, and although the absolute value increases, the signal does not increase relatively, and as a result, the detection limit is rarely improved.
 本発明は、このような現状を改善すべく成されたものであり、液体試料中の微量成分を測定する電気化学測定において再現性及び検出感度を向上することを目的とする。 The present invention has been made to improve such a situation, and an object of the present invention is to improve reproducibility and detection sensitivity in electrochemical measurement for measuring trace components in a liquid sample.
 本発明の電気化学測定装置は、液体試料中の微量成分を測定する電気化学測定装置であって、液体試料に接触される作用電極、対極、参照電極を有する電極組みを複数備え、複数の前記電極組みの作用電極同士、対極同士、参照電極同士が互いに短絡されるものである。 The electrochemical measuring device of the present invention is an electrochemical measuring device that measures trace components in a liquid sample, and includes a plurality of electrode sets having a working electrode, a counter electrode, and a reference electrode that come into contact with the liquid sample, and the plurality of electrodes are provided. The working electrodes of the electrode assembly, the counter electrodes, and the reference electrodes are short-circuited to each other.
 本発明の電気化学測定装置によれば、作用電極、対極及び参照電極の三電極そのものを複数配置し、作用電極同士、対極同士、参照電極同士をそれぞれ短絡(電気接続)し、各電極組みに同じ液体試料を接触させた状態で測定することにより、各電極の製造のムラ(製造バラつき)と、検出時のサンプルとの相互作用(接触状態)とを平均化できる。これにより、再現性及び検出感度を向上できる。 According to the electrochemical measuring apparatus of the present invention, a plurality of three electrodes of the working electrode, the counter electrode and the reference electrode themselves are arranged, and the working electrodes, the counter electrodes and the reference electrodes are short-circuited (electrically connected) to each electrode assembly. By measuring with the same liquid sample in contact, it is possible to average the manufacturing unevenness (manufacturing variation) of each electrode and the interaction (contact state) with the sample at the time of detection. Thereby, reproducibility and detection sensitivity can be improved.
 本発明の電気化学測定装置において、前記電極組みは、使い捨ての電極チップに設けられているようにしてもよい。 In the electrochemical measuring apparatus of the present invention, the electrode assembly may be provided on a disposable electrode tip.
 このような態様によれば、前回の測定物質による電極表面への蓄積や汚染を心配することなく、測定を行える。なお、複数の電極組み(作用電極、対極及び参照電極)は、別々の電極チップに設けられていてもよいし、同じ電極チップ上に領域を分けて設けられていてもよい。 According to such an aspect, the measurement can be performed without worrying about the accumulation and contamination on the electrode surface by the previous measurement substance. The plurality of electrode sets (working electrode, counter electrode and reference electrode) may be provided on separate electrode tips, or may be provided in separate regions on the same electrode tip.
 さらに、同じ構成を有する複数の前記電極チップを装着可能に構成されているようにしてもよい。 Further, a plurality of the electrode chips having the same configuration may be mounted.
 このような態様によれば、複数の電極チップを使用するにもかかわらず、各電極チップの作用電極同士、対極同士、参照電極同士はそれぞれ短絡されるので、電極チップ間の製造バラつきを吸収でき、再現性及び検出感度を向上できる。 According to such an embodiment, despite the use of a plurality of electrode chips, the working electrodes, counter electrodes, and reference electrodes of each electrode chip are short-circuited, so that manufacturing variations between the electrode chips can be absorbed. , Reproducibility and detection sensitivity can be improved.
 本発明の電気化学測定方法は、本発明の電気化学測定装置を用い、各電極組みに同じ液体試料を電気的に分離して接触させて測定を行う。 In the electrochemical measurement method of the present invention, the same liquid sample is electrically separated and brought into contact with each electrode set using the electrochemical measurement device of the present invention for measurement.
 本発明の電気化学測定方法によれば、並列接続された複数の電極組みに対して、同じ液体試料を電極組みごとに電気的に分離して接触させて測定を行うことで、ノイズを低減でき、検出感度を向上できる。 According to the electrochemical measurement method of the present invention, noise can be reduced by electrically separating and contacting the same liquid sample for each electrode set with respect to a plurality of electrode sets connected in parallel. , The detection sensitivity can be improved.
 本発明の電気化学測定装置及び電機化学測定方法は、再現性及び検出感度を向上できる。 The electrochemical measuring device and the electrochemical measuring method of the present invention can improve reproducibility and detection sensitivity.
電気化学測定装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of an electrochemical measuring apparatus. 同実施形態で使用される電極チップの一例を示す平面図である。It is a top view which shows an example of the electrode chip used in this embodiment. 測定例1において得られた電流電位曲線を示すグラフである。It is a graph which shows the current potential curve obtained in the measurement example 1. FIG. 測定例2において得られた電流電位曲線を示すグラフである。It is a graph which shows the current potential curve obtained in the measurement example 2.
 本願発明の電気化学測定装置の実施形態について図面に基づいて説明する。図1は、同実施形態を示す概略構成図である。図2は、電極チップの一例を示す平面図である。 An embodiment of the electrochemical measuring apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing the embodiment. FIG. 2 is a plan view showing an example of the electrode chip.
 図1に示すように、電気化学測定装置1は、2つの電極チップ2,2と、電極チップ2,2に接続されるポテンショスタット3と、ポテンショスタット3に接続される操作部4、表示部5、電源部6及び外部出力部7を備えている。 As shown in FIG. 1, the electrochemical measuring device 1 includes two electrode tips 2 and 2, a potentiometer 3 connected to the electrode tips 2 and 2, an operation unit 4 connected to the potentiometer 3, and a display unit. 5. The power supply unit 6 and the external output unit 7 are provided.
 図2に示すように、2つの電極チップ2,2は同じ構成を有し、これらの電極チップ2は使い捨て型のものである。各電極チップ2は平板状の基板21を備え、基板21上に作用電極22、対極23及び参照電極24が互いに絶縁されて設けられている。基板21は平面視で略長方形の形態を有している。作用電極22、対極23及び参照電極24の電極組み25は、基板21の長手方向一端近傍から他端近傍にわたって設けられている。電極チップ2,2において、作用電極22、対極23及び参照電極24の材料及び構造は同じである。 As shown in FIG. 2, the two electrode tips 2 and 2 have the same configuration, and these electrode tips 2 are disposable. Each electrode chip 2 includes a flat plate-shaped substrate 21, and a working electrode 22, a counter electrode 23, and a reference electrode 24 are provided on the substrate 21 so as to be insulated from each other. The substrate 21 has a substantially rectangular shape in a plan view. The electrode assembly 25 of the working electrode 22, the counter electrode 23, and the reference electrode 24 is provided from the vicinity of one end in the longitudinal direction to the vicinity of the other end of the substrate 21. In the electrode tips 2 and 2, the materials and structures of the working electrode 22, the counter electrode 23 and the reference electrode 24 are the same.
 各電極チップ2において、作用電極22、対極23及び参照電極24の一端側には被測定物質を含む液体試料10が接触される。各電極チップ2の作用電極22、対極23及び参照電極24の他端側は、コネクタ8及びケーブル9(図1での図示省略)を介してポテンショスタット3に電気的に接続される。電極チップ2は、コネクタ8に着脱可能に取り付けられる。 In each electrode chip 2, a liquid sample 10 containing a substance to be measured is brought into contact with one end side of the working electrode 22, the counter electrode 23, and the reference electrode 24. The working electrode 22, the counter electrode 23, and the other end of the reference electrode 24 of each electrode tip 2 are electrically connected to the potentiostat 3 via a connector 8 and a cable 9 (not shown in FIG. 1). The electrode tip 2 is detachably attached to the connector 8.
 作用電極22、対極23及び参照電極24は、例えばスパッタリング又はプリント印刷により形成されたカーボン薄膜により構成されている。測定対象に応じて、そのカーボン薄膜の表面に鍍金が施されていてもよい。例えば、測定対象が砒素や水銀などの重金属である場合には、カーボン薄膜の表面に金メッキ等を施すことができ、それによって検出感度を向上できる。 The working electrode 22, the counter electrode 23, and the reference electrode 24 are made of a carbon thin film formed by, for example, sputtering or print printing. The surface of the carbon thin film may be plated depending on the measurement target. For example, when the measurement target is a heavy metal such as arsenic or mercury, the surface of the carbon thin film can be plated with gold or the like, whereby the detection sensitivity can be improved.
 図1に示すように、ポテンショスタット3は、作用電極22の電位が参照電極24に対して一定になるように制御するとともに、作用電極22と対極23との間に流れる電流を測定可能に構成されている。ポテンショスタット3は、概略構成として、演算制御部31、電圧印加部32及び電流検出部33を備えている。 As shown in FIG. 1, the potentiostat 3 controls the potential of the working electrode 22 to be constant with respect to the reference electrode 24, and can measure the current flowing between the working electrode 22 and the counter electrode 23. Has been done. As a schematic configuration, the potentiostat 3 includes an arithmetic control unit 31, a voltage application unit 32, and a current detection unit 33.
 演算制御部31は、電気化学測定で得られた測定値を用いて所定の演算処理を行なうとともに、操作部4を介して入力されたユーザからの指令に基づいて、電圧印加部32に必要な信号を送信したり、表示部5に測定結果等の情報を表示させたりする機能である。演算制御部31は、例えばマイクロコンピュータが所定のプログラムを実行することによって実現される。 The calculation control unit 31 performs a predetermined calculation process using the measured value obtained by the electrochemical measurement, and is required for the voltage application unit 32 based on a command from the user input via the operation unit 4. It is a function of transmitting a signal and displaying information such as a measurement result on the display unit 5. The arithmetic control unit 31 is realized by, for example, a microcomputer executing a predetermined program.
 電圧印加部32は、演算制御部31からの測定開始の信号を受信したときに、電極チップ2の作用電極22と対極23との間に所望の波形の電圧を印加して、作用電極22と参照電極24との間の電位が所望の電位になるように制御するように構成されている。 When the voltage application unit 32 receives the measurement start signal from the arithmetic control unit 31, the voltage application unit 32 applies a voltage having a desired waveform between the working electrode 22 and the counter electrode 23 of the electrode chip 2 to and the working electrode 22. It is configured to control the potential between the reference electrode 24 and the reference electrode 24 to be a desired potential.
 電流検出部33は、電極チップ2の作用電極22と対極23との間を流れる電流の大きさを検出するように構成されている。電流検出部33が検出した電流の大きさに関する信号は演算制御部31に取り込まれる。 The current detection unit 33 is configured to detect the magnitude of the current flowing between the working electrode 22 of the electrode chip 2 and the counter electrode 23. A signal relating to the magnitude of the current detected by the current detection unit 33 is taken into the arithmetic control unit 31.
 演算制御部31は、電流検出部33から取り込んだ信号の基づき、例えば予め用意された検量線を用いて、試料溶液中の特定成分濃度等の計算を行ない、測定結果を表示部5に表示するように構成されている。 The arithmetic control unit 31 calculates the concentration of a specific component in the sample solution based on the signal captured from the current detection unit 33, for example, using a calibration curve prepared in advance, and displays the measurement result on the display unit 5. It is configured as follows.
 本実施形態では、同一構造を有する2つの電極チップ2,2がポテンショスタット3に接続される。2つの電極チップ2,2の作用電極22,22同士、対極23,23同士、参照電極24,24同士は、ポテンショスタット3内で互いに電気接続(短絡)されるように構成されている。そして、測定時には、2つの電極チップ2,2に電圧印加部32から同じ電圧が同時に印加されるとともに、2つの電極チップ2,2のそれぞれにおいて作用電極22と対極23との間に流れる電流が電流検出部33で検出される。 In this embodiment, two electrode chips 2 and 2 having the same structure are connected to the potentiostat 3. The working electrodes 22, 22 of the two electrode tips 2, 2, the counter electrodes 23, 23, and the reference electrodes 24, 24 are configured to be electrically connected (short-circuited) to each other in the potentiostat 3. At the time of measurement, the same voltage is simultaneously applied to the two electrode chips 2 and 2 from the voltage application unit 32, and the current flowing between the working electrode 22 and the counter electrode 23 in each of the two electrode chips 2 and 2 is applied. It is detected by the current detection unit 33.
 電気化学測定装置1において、操作部4は、電源のオン・オフや測定の開始、表示部5に表示される情報の変更といった操作をユーザが行なうための入力装置である。表示部5は、例えば液晶ディスプレイによって実現されるものである。なお、表示部5をタッチパネルで構成し、表示部5に操作部4の機能を兼ね備えさせてもよい。電源部6は、例えば乾電池や蓄電池などによって実現することができる。電源部6により、ポテンショスタット3や表示部5へ必要な電力が供給される。 In the electrochemical measurement device 1, the operation unit 4 is an input device for the user to perform operations such as turning on / off the power supply, starting measurement, and changing the information displayed on the display unit 5. The display unit 5 is realized by, for example, a liquid crystal display. The display unit 5 may be composed of a touch panel, and the display unit 5 may have the functions of the operation unit 4. The power supply unit 6 can be realized by, for example, a dry battery or a storage battery. The power supply unit 6 supplies necessary electric power to the potentiometer 3 and the display unit 5.
 また、ポテンショスタット3には、USB(ユニバーサル・シリアル・バス)端子といった有線通信手段や無線通信手段によってパーソナルコンピュータ等の外部機器へ情報を出力することができるように、外部出力部7が接続されてもよい。その場合、演算制御部31は、外部出力部7を介して測定データ等を外部機器へ出力するように構成されている。 Further, an external output unit 7 is connected to the potentiostat 3 so that information can be output to an external device such as a personal computer by a wired communication means such as a USB (universal serial bus) terminal or a wireless communication means. You may. In that case, the arithmetic control unit 31 is configured to output measurement data or the like to an external device via the external output unit 7.
 なお、操作部4、表示部5、電源部6及び外部出力部7は、例えば、ノートパソコンやタブレットなどのモバイルコンピュータで実現されるようにしてもよい。さらに、ポテンショスタット3として小型のもの(例えば小型ポテンショスタット「miniSTAT100」(バイオデバイステクノロジー製))を用いるようにすれば、電気化学測定装置1を持ち運び可能に構成できる。これにより、電気化学測定装置1を使用したオンサイト(現場)での液体試料の測定が可能になる。 Note that the operation unit 4, the display unit 5, the power supply unit 6, and the external output unit 7 may be realized by a mobile computer such as a notebook computer or a tablet, for example. Further, if a small potentiometer 3 (for example, a small potentiometer "miniSTAT100" (manufactured by Biodevice Technology)) is used as the potentiometer 3, the electrochemical measuring device 1 can be configured to be portable. This makes it possible to measure a liquid sample on-site (on-site) using the electrochemical measuring device 1.
 本実施形態の電気化学測定装置1を使用した電気化学測定は、図2に示すように、2つの電極チップ2,2のそれぞれに、同じ液体試料10が滴下された状態で行われる。各電極チップ2に対して、液体試料10は作用電極22、対極23及び参照電極24に接触するようにして基板21上に滴下される。 As shown in FIG. 2, the electrochemical measurement using the electrochemical measuring device 1 of the present embodiment is performed in a state where the same liquid sample 10 is dropped on each of the two electrode chips 2 and 2. For each electrode chip 2, the liquid sample 10 is dropped onto the substrate 21 so as to be in contact with the working electrode 22, the counter electrode 23, and the reference electrode 24.
 ここで、一方の電極チップ2上の液体試料10と他方の電極チップ2上の液体試料10は、電気的に絶縁(分離)されていることが好ましい。これにより、ノイズについて、2つの独立した検出系からの足し算により、理論的には約1/1.414(=約0.70、約70%)に低減される。 Here, it is preferable that the liquid sample 10 on one electrode chip 2 and the liquid sample 10 on the other electrode chip 2 are electrically insulated (separated). As a result, noise is theoretically reduced to about 1 / 1.414 (= about 0.70, about 70%) by addition from two independent detection systems.
 次に、電気化学測定装置1を使用した測定例について説明する。 Next, a measurement example using the electrochemical measuring device 1 will be described.
 [測定例1]
 100ppmの鉛標準溶液(関東化学株式会社製、Cat.No.24240-1B)を蒸留水で1000ppb(=1ppm)に希釈したものをサンプルとして用意した。2つの電極チップ2,2を有する電気化学測定装置1(図1参照)を使用した測定(実施形態)と、単一の電極チップ2を有する電気化学測定装置を使用した使用した測定(従来法)とを行った。なお、実施形態法と従来法とで、電極チップ2の構造は同じである。
[Measurement Example 1]
A 100 ppm lead standard solution (Cat. No. 24240-1B manufactured by Kanto Chemical Co., Inc.) diluted with distilled water to 1000 ppb (= 1 ppm) was prepared as a sample. Measurement using an electrochemical measuring device 1 having two electrode tips 2 and 2 (see FIG. 1) (embodiment) and measurement using an electrochemical measuring device having a single electrode tip 2 (conventional method). ) And. The structure of the electrode chip 2 is the same between the embodiment method and the conventional method.
 電極チップ2としては印刷電極(「Dep-Chip」作用電極:カーボン、参照電極:銀塩化銀、対極:カーボン、バイオデバイステクノロジー製)を用いた。ポテンショスタット3として小型ポテンショスタット「miniSTAT100」(バイオデバイステクノロジー製)を、2つの電極チップ2を並列接続可能に改造したもの用いた。微分パルスボルタンメトリー(DPV)により電気化学測定を行った。DPVによる測定は、作用電極の電位を-1500mVから200mVに変化させていき、電位増加0.04V、パルス振幅0.05V、パルス期間0.2秒、掃引速度0.01V/sで行った。電極チップ2上に上記サンプルを20μL程度滴下して測定を行った。得られた電流電位曲線を図3に示す。図3において、縦軸は電流、横軸は電位を示す。 As the electrode chip 2, a printed electrode (“Dep-Chip” working electrode: carbon, reference electrode: silver chloride, counter electrode: carbon, manufactured by Biodevice Technology) was used. As the potentiometer 3, a small potentiometer "miniSTAT100" (manufactured by Biodevice Technology), which was modified so that two electrode chips 2 could be connected in parallel, was used. Electrochemical measurements were performed by differential pulse voltammetry (DPV). The measurement by DPV was carried out by changing the potential of the working electrode from -1500 mV to 200 mV, increasing the potential at 0.04 V, pulse amplitude of 0.05 V, pulse period of 0.2 seconds, and sweeping speed of 0.01 V / s. About 20 μL of the above sample was dropped onto the electrode chip 2 for measurement. The obtained current potential curve is shown in FIG. In FIG. 3, the vertical axis represents current and the horizontal axis represents potential.
 図3からわかるように、実施形態による測定では、従来法による測定よりも、ピーク電流値が大きくなるとともに、ベースラインに対する検出ピーク電流値の差を大きくでき、検出感度を向上できることが確認された。 As can be seen from FIG. 3, it was confirmed that in the measurement according to the embodiment, the peak current value can be made larger and the difference in the detected peak current value from the baseline can be made larger than the measurement by the conventional method, and the detection sensitivity can be improved. ..
 [測定例2]
 100ppmの鉛標準溶液(関東化学株式会社製、Cat.No.24240-1B)を蒸留水で100ppbに希釈したものをサンプルとして用意した。測定条件は、上記測定例1と同様である。得られた電流電位曲線を図4に示す。図4において、縦軸は電流、横軸は電位を示す。
[Measurement example 2]
A 100 ppm lead standard solution (Cat. No. 24240-1B, manufactured by Kanto Chemical Co., Inc.) diluted to 100 ppb with distilled water was prepared as a sample. The measurement conditions are the same as those in Measurement Example 1. The obtained current potential curve is shown in FIG. In FIG. 4, the vertical axis represents current and the horizontal axis represents potential.
 図4からわかるように、測定例2でも、実施形態による測定では、従来法による測定よりも、ピーク電流値が大きくなるとともに、ベースラインに対する検出ピーク電流値の差を大きくでき、検出感度を向上できることが確認された。 As can be seen from FIG. 4, even in the measurement example 2, in the measurement by the embodiment, the peak current value is larger than that by the conventional method, and the difference between the detected peak current value and the baseline can be increased, so that the detection sensitivity is improved. It was confirmed that it could be done.
 以上のように、実施形態の電気化学測定装置1は、液体試料に接触される作用電極22、対極23、参照電極24を有する電極組み25を複数備え、それらの作用電極22同士、対極23同士、参照電極24同士が互いに短絡されるように構成した。そして、各電極組み25に同じ液体試料を接触させた状態で測定することにより、各電極22,23,24の製造のムラ(製造バラつき)と、検出時のサンプルとの相互作用(接触状態)とを平均化できる。これにより、電気化学測定装置1は、再現性及び検出感度を向上できる。 As described above, the electrochemical measuring device 1 of the embodiment includes a plurality of electrode sets 25 having a working electrode 22, a counter electrode 23, and a reference electrode 24 that are in contact with the liquid sample, and the working electrodes 22 and the counter electrodes 23 are located on each other. , The reference electrodes 24 are configured to be short-circuited with each other. Then, by measuring in a state where the same liquid sample is in contact with each electrode assembly 25, uneven manufacturing of each electrode 22, 23, 24 (manufacturing variation) and interaction with the sample at the time of detection (contact state). And can be averaged. As a result, the electrochemical measuring device 1 can improve the reproducibility and the detection sensitivity.
 また、電気化学測定装置1において、作用電極22、対極23及び参照電極24の電極組みは、使い捨ての電極チップ2に設けられているので、前回の測定物質による電極表面への蓄積や汚染を心配することなく、測定を行える。 Further, in the electrochemical measuring device 1, since the electrode assembly of the working electrode 22, the counter electrode 23, and the reference electrode 24 is provided on the disposable electrode tip 2, there is concern about accumulation and contamination on the electrode surface due to the previous measurement substance. You can measure without doing anything.
 さらに、電気化学測定装置1は、同じ構成を有する複数の電極チップ2を装着可能に構成されているので、複数の電極チップ2を使用するにもかかわらず、各電極チップ2の作用電極22同士、対極23同士、参照電極24同士はそれぞれ短絡されるので、電極チップ2間の製造バラつきを吸収でき、再現性及び検出感度を向上できる。 Further, since the electrochemical measuring device 1 is configured so that a plurality of electrode chips 2 having the same configuration can be mounted, the working electrodes 22 of the respective electrode chips 2 are connected to each other even though the plurality of electrode chips 2 are used. Since the counter electrodes 23 and the reference electrodes 24 are short-circuited, it is possible to absorb manufacturing variations between the electrode chips 2 and improve reproducibility and detection sensitivity.
 上記実施形態の電気化学測定方法は、電気化学測定装置1を用い、同じ液体試料を電気的に分離して各電極組み25に接触させて測定を行うので、ノイズを2つの独立した検出系からの足し算により低減でき、検出感度を向上できる。 In the electrochemical measurement method of the above embodiment, the same liquid sample is electrically separated and brought into contact with each electrode assembly 25 by using the electrochemical measuring device 1, so that noise is measured from two independent detection systems. It can be reduced by adding the above, and the detection sensitivity can be improved.
 本発明は、前述の実施形態に限らず、様々な態様に具体化できる。例えば、本発明の電気化学測定装置は、持ち運び可能な構成に限定されず、据え置き型の装置にも適用可能である。 The present invention is not limited to the above-described embodiment, but can be embodied in various aspects. For example, the electrochemical measuring device of the present invention is not limited to a portable configuration, and can be applied to a stationary device.
 また、2つの電極チップ2,2の作用電極22同士、対極23同士、参照電極24同士は、ポテンショスタット3の外部で互いに電気接続(短絡)されるようにしてもよい。例えば2つの電極チップ2,2を取り付け可能なコネクタの内部で短絡されてもよいし、各コネクタ8から延びるケーブルが合流された合流ケーブル内で短絡されてもよい。 Further, the working electrodes 22 of the two electrode tips 2 and 2, the counter electrodes 23, and the reference electrodes 24 may be electrically connected (short-circuited) to each other outside the potentiostat 3. For example, the two electrode chips 2 and 2 may be short-circuited inside a connector to which they can be attached, or the cables extending from each connector 8 may be short-circuited inside a merged cable.
 また、電気化学測定装置1に設けられる電極組み25は、3つ以上であってもよい。また、電極組み25は、作用電極22、対極23、参照電極24の他にさらに電極を含んでもよい。 Further, the number of electrode sets 25 provided in the electrochemical measuring device 1 may be three or more. Further, the electrode assembly 25 may further include an electrode in addition to the working electrode 22, the counter electrode 23, and the reference electrode 24.
 なお、本発明の電気化学測定装置を用いた測定方法は、微分パルスボルタンメトリー(DPV)に限らず、リニアスイープボルタンメトリー(LSV)、クロノアンペアメトリー(CA)、サイクリックボルタンメトリー(CV)、短波形ボルタンメトリー(SWV)などの方法にも適用可能である。 The measuring method using the electrochemical measuring device of the present invention is not limited to differential pulse voltammetry (DPV), but linear sweep voltammetry (LSV), chronoamperemetry (CA), cyclic voltammetry (CV), and short waveform voltammetry. It can also be applied to a method such as (SWV).
1 電気化学測定装置
2 電極チップ
3 ポテンショスタット
4 操作部
5 表示部
6 電源部
7 外部出力部
8 コネクタ
9 ケーブル
10 液体試料
21 基板
22 作用電極
23 対極
24 参照電極
25 電極組み
31 演算制御部
32 電圧印加部
33 電流検出部
1 Electrochemical measuring device 2 Electrode chip 3 Potential stat 4 Operation unit 5 Display unit 6 Power supply unit 7 External output unit 8 Connector 9 Cable 10 Liquid sample 21 Substrate 22 Working electrode 23 Counter electrode 24 Reference electrode 25 Electrode assembly 31 Calculation control unit 32 Voltage Applying unit 33 Current detecting unit

Claims (4)

  1.  液体試料中の微量成分を測定する電気化学測定装置であって、
     液体試料に接触される作用電極、対極、参照電極を有する電極組みを複数備え、
     複数の前記電極組みの作用電極同士、対極同士、参照電極同士が互いに短絡される、電気化学測定装置。
    An electrochemical measuring device that measures trace components in a liquid sample.
    A plurality of electrode sets having a working electrode, a counter electrode, and a reference electrode that come into contact with a liquid sample are provided.
    An electrochemical measuring device in which working electrodes, counter electrodes, and reference electrodes of a plurality of the electrode sets are short-circuited with each other.
  2.  前記電極組みは、使い捨ての電極チップに設けられている、請求項1に記載の電気化学測定装置。 The electrochemical measuring device according to claim 1, wherein the electrode assembly is provided on a disposable electrode tip.
  3.  同じ構成を有する複数の前記電極チップを装着可能に構成されている、請求項2に記載の電気化学測定装置。 The electrochemical measuring apparatus according to claim 2, wherein a plurality of the electrode chips having the same configuration can be mounted.
  4.  請求項1から3のいずれか一項に記載の電気化学測定装置を用い、
     各電極組みに同じ液体試料を電気的に分離して接触させて測定を行う、電気化学測定方法。
    Using the electrochemical measuring apparatus according to any one of claims 1 to 3,
    An electrochemical measurement method in which the same liquid sample is electrically separated and brought into contact with each electrode assembly for measurement.
PCT/JP2019/027918 2019-07-16 2019-07-16 Electrochemical measurement device and electrochemical measurement method WO2021009844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027918 WO2021009844A1 (en) 2019-07-16 2019-07-16 Electrochemical measurement device and electrochemical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027918 WO2021009844A1 (en) 2019-07-16 2019-07-16 Electrochemical measurement device and electrochemical measurement method

Publications (1)

Publication Number Publication Date
WO2021009844A1 true WO2021009844A1 (en) 2021-01-21

Family

ID=74209756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027918 WO2021009844A1 (en) 2019-07-16 2019-07-16 Electrochemical measurement device and electrochemical measurement method

Country Status (1)

Country Link
WO (1) WO2021009844A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267887A (en) * 1997-01-23 1998-10-09 Daikin Ind Ltd Sensor device
JPH10325821A (en) * 1997-05-26 1998-12-08 Nec Corp Electrochemical measuring apparatus
JP2004117342A (en) * 2002-09-03 2004-04-15 Matsushita Electric Ind Co Ltd Biosensor and measuring method using the same
JP2004329919A (en) * 2003-05-07 2004-11-25 I-Sens Inc Bi-directional blood sugar measuring instrument
JP2013238399A (en) * 2012-05-11 2013-11-28 Funai Electric Advanced Applied Technology Research Institute Inc Sensor system and measuring method of detection object using the sensor system
KR20150085147A (en) * 2014-01-13 2015-07-23 재단법인 다차원 스마트 아이티 융합시스템 연구단 Bio sensor device for including switching circuit of selectively switching at least one from a pulurality of bio sensor strips
JP2017167104A (en) * 2016-03-18 2017-09-21 国立大学法人東北大学 Electrode chip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267887A (en) * 1997-01-23 1998-10-09 Daikin Ind Ltd Sensor device
JPH10325821A (en) * 1997-05-26 1998-12-08 Nec Corp Electrochemical measuring apparatus
JP2004117342A (en) * 2002-09-03 2004-04-15 Matsushita Electric Ind Co Ltd Biosensor and measuring method using the same
JP2004329919A (en) * 2003-05-07 2004-11-25 I-Sens Inc Bi-directional blood sugar measuring instrument
JP2013238399A (en) * 2012-05-11 2013-11-28 Funai Electric Advanced Applied Technology Research Institute Inc Sensor system and measuring method of detection object using the sensor system
KR20150085147A (en) * 2014-01-13 2015-07-23 재단법인 다차원 스마트 아이티 융합시스템 연구단 Bio sensor device for including switching circuit of selectively switching at least one from a pulurality of bio sensor strips
JP2017167104A (en) * 2016-03-18 2017-09-21 国立大学法人東北大学 Electrode chip

Similar Documents

Publication Publication Date Title
US10684249B2 (en) Contaminant detection device and method
De Jong et al. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders
US9164054B2 (en) Method and apparatus for assay of electrochemical properties
Zhang et al. Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid
US9568450B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
JP2007537456A5 (en)
CA2594417A1 (en) Novel electrode design for biosensor
WO2012017306A4 (en) Electrochemical sensor
WO2021009845A1 (en) Electrode and electrode chip
KR20110109827A (en) Reference potential controlling equipment and measuring device including the same
Yarnitzky et al. Hand-held lead analyzer
Ivanov et al. Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid
WO2021192248A1 (en) Electrode and electrode chip
WO2021009844A1 (en) Electrochemical measurement device and electrochemical measurement method
US20130304397A1 (en) Method of measuring a capacitance
EP0969281A2 (en) The use of screen-printed electrodes in the electrochemical analysis of electroactive species
Thomaz et al. Development of an affordable, portable and reliable voltametric platform for general purpose electroanalysis
Martínez‐Paredes et al. Lead Sensor Using Gold Nanostructured Screen‐Printed Carbon Electrodes as Transducers
CN104634822A (en) Measuring apparatus and measuring method
CN103018295A (en) Constant-potential solid pH detector
CN113092697A (en) Multifunctional water quality sensing device
KR200308415Y1 (en) Portable salinometer
CN212341090U (en) Heavy metal ion detection system based on microelectrode
CN114166904B (en) Method for detecting nitrate ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP