WO2021008249A1 - 一种差动式的漏磁与涡流复合的高速轨道探伤方法 - Google Patents

一种差动式的漏磁与涡流复合的高速轨道探伤方法 Download PDF

Info

Publication number
WO2021008249A1
WO2021008249A1 PCT/CN2020/093256 CN2020093256W WO2021008249A1 WO 2021008249 A1 WO2021008249 A1 WO 2021008249A1 CN 2020093256 W CN2020093256 W CN 2020093256W WO 2021008249 A1 WO2021008249 A1 WO 2021008249A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
signal
eddy current
magnetic flux
flux leakage
Prior art date
Application number
PCT/CN2020/093256
Other languages
English (en)
French (fr)
Inventor
许�鹏
朱晨露
王平
曾泓茗
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2021008249A1 publication Critical patent/WO2021008249A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Definitions

  • the invention relates to a differential type magnetic leakage and eddy current composite high-speed rail flaw detection method, which belongs to the technical field of nondestructive testing.
  • Non-destructive testing is a testing technology that detects whether there are defects or uneven materials in the structure of the tested object without harming the use of the tested object.
  • non-destructive testing technology is widely used in product quality control, in-service inspection of fatigue cracks of equipment, and structural integrity assessment.
  • magnetic flux leakage testing and eddy current testing are two commonly used electromagnetic nondestructive testing methods, which have the advantages of high reliability and pollution-free, and play an important role in the detection of defects in key parts of the equipment.
  • the current detection technology has effectively achieved the detection of defects, but in some industrial production and transportation fields that require higher equipment safety, higher requirements are put forward for parameter information such as the location of defects.
  • crack detection on rails requires classification of surface defects and buried defects to facilitate subsequent rail maintenance.
  • ultrasonic detection has been widely used. Its penetrating ability is large. It has high detection sensitivity for flat defects such as cracks and interlayers, and can determine the depth and relative size of defects.
  • ultrasonic waves need to be emitted through the couplant, so it is difficult to apply to high-speed real-time detection systems. And for surface and near-surface defect detection, it is easy to produce messy reflected waves and difficult to apply.
  • Magnetic flux leakage detection and eddy current detection methods are both suitable for surface and near-surface defect detection of ferromagnetic materials, and no couplant is required, and high-speed detection can be achieved.
  • Magnetic flux leakage detection can detect both surface opening defects and near-surface buried defects, but it cannot distinguish between the two.
  • the eddy current detection is limited by the skin effect, and it is difficult to detect buried defects near the surface after the frequency increases.
  • the technical problem to be solved by the present invention is to provide a differential detection method for high-speed rails with a combination of magnetic flux leakage and eddy current.
  • the leakage magnetic field and eddy current distribution changes caused by defects are simultaneously detected by the differential detection coil, and the difference is obtained through signal processing.
  • the real-time comparison of the magnetic flux leakage signal and the amplitude signal of the eddy current change can distinguish surface and buried defects.
  • a differential type magnetic flux leakage and eddy current composite high-speed rail flaw detection method includes the following steps:
  • Step 1 Arrange the yoke wound with the yoke coil in the tested area of the test piece, and apply DC excitation to the yoke coil until the tested area of the test piece reaches the magnetization saturation state;
  • Step 2 Arrange the differential detection coil in the tested area of the test piece, and connect the differential detection coil to the bridge circuit, apply AC excitation to the differential detection coil, and select the AC excitation frequency according to the parameters and detection speed of the differential detection coil f e , the AC excitation frequency f e satisfies:
  • v represents the detection speed
  • d s represents the diameter of the differential detection coil
  • Step 3 Perform low-pass filtering on the output signal of the bridge circuit to obtain a differential magnetic leakage signal, and select a low-pass cutoff frequency f L according to the differential magnetic leakage signal and the AC excitation frequency;
  • Step 4 Perform high-pass filtering on the output signal of the bridge circuit to obtain a differential eddy current signal, and simultaneously perform high-pass filtering on the AC excitation, and select the high-pass cutoff frequency f H according to the differential eddy current signal and the AC excitation frequency;
  • Step 5 Use the signal obtained by high-pass filtering of the AC excitation as the carrier, and perform quadrature demodulation with the differential eddy current signal to obtain the in-phase signal and the quadrature signal, and calculate the differential eddy current amplitude signal according to the in-phase signal and the quadrature signal;
  • Step 6 Compare the differential magnetic flux leakage signal and the amplitude signal of the eddy current change. If the differential magnetic flux leakage signal and the differential eddy current amplitude signal appear at a certain position at the same time, it is a surface defect. At a certain position, there is only a differential magnetic flux leakage signal but no difference. The eddy current amplitude signal is a buried defect.
  • the low-pass cutoff frequency f L in step 3 satisfies:
  • v represents the detection speed
  • d s represents the diameter of the differential detection coil
  • f e represents the AC excitation frequency
  • the high-pass cutoff frequency f H in step 4 satisfies:
  • v represents the detection speed
  • d s represents the diameter of the differential detection coil
  • f e represents the AC excitation frequency
  • the calculation formula of the differential eddy current amplitude signal in step 5 is:
  • A(t) represents the differential eddy current amplitude signal
  • I(t) represents the in-phase signal
  • Q(t) represents the quadrature signal
  • the present invention adopts the above technical solutions and has the following technical effects:
  • the present invention combines the magnetic flux leakage detection technology and the eddy current detection technology, and makes reasonable use of the eddy current that is difficult to detect buried defects due to the skin effect, and effectively compensates for the disadvantage of magnetic flux leakage detection that it is difficult to distinguish surface defects and buried defects.
  • the differential detection coil of the present invention is used not only as a self-excited eddy current detection probe, but also as a sensor for magnetic flux leakage detection, which simplifies the probe structure and is easy to implement.
  • the differential magnetic flux leakage signal and the differential eddy current signal of the present invention are derived from the same sensor, there is no position difference, and no time delay, so the signals can be compared in real time.
  • Figure 1 is a schematic diagram of a probe used in the differential magnetic flux leakage and eddy current combined high-speed rail flaw detection method of the present invention.
  • Fig. 2 is a block diagram of the detection signal processing flow of the differential magnetic flux leakage and eddy current combined high-speed rail flaw detection method of the present invention.
  • Figure 3 is a schematic diagram of surface defects and buried defects on the tested piece.
  • FIG. 4 is a schematic diagram of the differential magnetic flux leakage signal obtained by the differential magnetic flux leakage and eddy current composite high-speed rail flaw detection method of the present invention applied to the detection of a single surface defect or a buried defect.
  • Fig. 5 is a schematic diagram of differential eddy current signals obtained by applying the differential magnetic flux leakage and eddy current composite high-speed rail flaw detection method of the present invention to single surface defect detection.
  • Fig. 6 is a schematic diagram of the comparison of the magnetic leakage signal and the eddy current signal of the differential magnetic leakage and eddy current composite high-speed rail flaw detection method of the present invention applied to distinguish surface and buried defects.
  • Magnetic yoke 1. Magnetic yoke; 2. Magnetic yoke coil; 3. Differential detection coil; 4. Test piece; a1, surface defect 1; a2, surface defect 2; b1, buried defect 1; b2, buried defect 2.
  • FIG. 1 it is a schematic diagram of the structure of the detection probe used in the method of the present invention.
  • the probe includes a yoke 1, a yoke coil 2, and a differential detection coil 3.
  • DC excitation is applied to the yoke coil 2 so that the test piece 4
  • the measured area is magnetized to a saturated state
  • AC excitation is applied to the differential detection coil 3
  • the differential detection coil 3 simultaneously detects the magnetic flux leakage signal and the eddy current signal at the defect.
  • the differential detection coil 3 is connected to the bridge circuit, and excitation is applied to the yoke coil 2 and the differential detection coil 3 respectively; then the bridge circuit outputs signals Do low-pass filtering to obtain the differential magnetic leakage signal, and at the same time do high-pass filtering of the AC excitation and the output signal of the bridge circuit, use the signal obtained by filtering the excitation signal as the carrier, and the signal obtained by filtering the output signal of the bridge circuit for quadrature demodulation to obtain The amplitude signal and phase signal of the eddy current change; finally, the differential magnetic flux leakage signal and the amplitude signal of the eddy current change are compared to distinguish surface defects and buried defects.
  • Figure 3 is a test piece with surface defects a1, a2 and buried defects b1, b2.
  • the surface defects have openings on the surface of the test piece, and the buried defects are located inside the test piece without openings on the surface.
  • a single surface defect or buried defect can obtain an M-type differential magnetic flux leakage signal, the waveform of which has two positive peaks and one negative peak.
  • the magnetic leakage signal appears as the same M-wave.
  • an M-type differential eddy current amplitude signal can be obtained through a single surface defect a1, a2, and its waveform has two positive peaks and a zero-crossing point in the center.
  • the probe passes through the buried defects b1 and b2, there is no M-wave in the eddy current amplitude signal.
  • the fundamental frequency of the magnetic flux leakage signal in Figure 4 is the same as that of the eddy current amplitude signal in Figure 5, and the fundamental frequency f is related to the differential detection coil parameters and the detection speed of the probe. Its expression is:
  • v is the detection speed of the probe
  • d s is the diameter of the differential detection coil.
  • the differential magnetic flux leakage signal is the low frequency part of the bridge output, and its fundamental frequency is f in formula (1).
  • the frequency band is 0 ⁇ 4f; while the eddy current signal has a high frequency
  • the frequency of the carrier is the AC excitation frequency f e
  • the fundamental frequency of the eddy current signal superimposed on the carrier is Taking into account the frequency doubling signal on the waveform, the frequency range of the high frequency part of the bridge output is f e -2f ⁇ f e +2f.
  • the high-pass cutoff frequency f H should satisfy the following formula:
  • the fundamental frequency of the obtained eddy current amplitude signal is twice the fundamental frequency of the in-phase signal I(t) and the quadrature signal Q(t), which is the same as the frequency of the magnetic flux leakage signal, and both are f.
  • Figure 3 shows the tested part model of this embodiment. Place the probe on the surface of the tested part and move the probe at a speed of 20km/h for defects. Detection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种差动式的漏磁与涡流复合的高速轨道探伤方法,该方法所使用的检测探头包括磁轭(1)、磁轭线圈(2)和差分检测线圈(3),首先在磁轭线圈(2)中通入直流电,形成静磁场使被检测对象(4)磁饱和,然后在被检测对象(4)处于磁饱和状态下对差分检测线圈(3)施加单频交流激励,由电桥电路检出漏磁信号和涡流信号。该方法基于漏磁检测和涡流检测方法的融合,通过信号处理得到差分漏磁信号和差分涡流信号,对比分析两个信号的差异,实现表面缺陷和埋藏缺陷的区分,具有非接触、易实现、易操作、检测效率高等优点,可适用于高速轨道在线实时检测的缺陷分类。

Description

一种差动式的漏磁与涡流复合的高速轨道探伤方法 技术领域
本发明涉及一种差动式的漏磁与涡流复合的高速轨道探伤方法,属于无损检测技术领域。
背景技术
无损检测是一种在不伤害被测对象使用机能的前提下,检测出被测物体的结构中有无缺陷或材料不均匀情况的检测技术。随着科技的发展,无损检测技术被广泛应用于产品的质量控制、装备的疲劳裂纹等在役检测和结构的完整性评估。其中,漏磁检测和电涡流检测是两种常用的电磁无损检测方法,具有高可靠性和无污染的优点,在设备关键部位缺陷的检测上起着重要作用。
当前的检测技术已经有效实现缺陷的检出,但在一些对设备安全要求性较高的工业生产和运输领域,对缺陷的位置等参数信息提出了更高的要求。例如铁轨上的裂纹检测,需要对表面缺陷和埋藏缺陷进行分类,以便于后续的铁轨维护工作。在铁轨裂纹检测上,超声波检测已得到了广泛应用,其穿透能力较大,对平面型缺陷如裂纹、夹层等,探伤灵敏度较高,并可测定缺陷的深度和相对大小。然而需要通过耦合剂发射超声波,因此难以应用于高速实时检测系统。且对于表面及近表面缺陷检测,容易产生杂乱反射波而较难应用。漏磁检测和电涡流检测方法都适用于铁磁性材料的表面及近表面缺陷检测,且不需要耦合剂,可以实现高速检测。其中漏磁检测可以同时检测到表面开口缺陷和近表面埋藏缺陷,但无法区分两者。而电涡流检测受限于趋肤效应,频率升高后难以检测到近表面的埋藏缺陷。
发明内容
本发明所要解决的技术问题是:提供一种差动式的漏磁与涡流复合的高速轨道探伤方法,通过差分检测线圈同时检测到缺陷引起的漏磁场和涡流分布变化,经信号处理分别得到差分漏磁信号和涡流变化的幅值信号,两个信号的实时对比可以区分出表面与埋藏缺陷。
本发明为解决上述技术问题采用以下技术方案:
一种差动式的漏磁与涡流复合的高速轨道探伤方法,包括如下步骤:
步骤1,将绕制有磁轭线圈的磁轭布置在被测试件的被测区域,对磁轭线圈施加直流激励,直至被测试件的被测区域达到磁化饱和状态;
步骤2,将差分检测线圈布置在被测试件的被测区域,并且将差分检测线圈接入电桥电路,在差分检测线圈上施加交流激励,根据差分检测线圈的参数和检测速度选择交流激励频率f e,交流激励频率f e满足:
Figure PCTCN2020093256-appb-000001
其中,v表示检测速度,d s表示差分检测线圈的直径;
步骤3,对电桥电路输出信号做低通滤波得到差分漏磁信号,根据差分漏磁信号和 交流激励频率选择低通截止频率f L
步骤4,对电桥电路输出信号做高通滤波得到差分涡流信号,同时对交流激励做高通滤波,根据差分涡流信号和交流激励频率选择高通截止频率f H
步骤5,将交流激励做高通滤波得到的信号作为载波,与差分涡流信号做正交解调,得到同相信号和正交信号,根据同相信号和正交信号计算得到差分涡流幅值信号;
步骤6,对比差分漏磁信号与涡流变化的幅值信号,在某位置处同时出现差分漏磁信号和差分涡流幅值信号,则为表面缺陷,在某位置出只有差分漏磁信号而没有差分涡流幅值信号,则为埋藏缺陷。
作为本发明的一种优选方案,步骤3所述低通截止频率f L满足:
Figure PCTCN2020093256-appb-000002
其中,v表示检测速度,d s表示差分检测线圈的直径,f e表示交流激励频率。
作为本发明的一种优选方案,步骤4所述高通截止频率f H满足:
Figure PCTCN2020093256-appb-000003
其中,v表示检测速度,d s表示差分检测线圈的直径,f e表示交流激励频率。
作为本发明的一种优选方案,步骤5所述差分涡流幅值信号,计算公式为:
Figure PCTCN2020093256-appb-000004
其中,A(t)表示差分涡流幅值信号,I(t)表示同相信号,Q(t)表示正交信号。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明将漏磁检测技术和涡流检测技术结合在一起,合理利用了涡流受趋肤效应限制难以检测埋藏缺陷的不足,有效弥补了漏磁检测难以分辨表面缺陷和埋藏缺陷的劣势。
2、本发明差分检测线圈既作为自激励式的涡流检测探头,同时又作为漏磁检测的传感器使用,使探头结构达到最简化,易于实现。
3、本发明差分漏磁信号和差分涡流信号来源于同一个传感器,不存在位置差异,没有时间延迟,因此信号可实现实时对比。
附图说明
图1是本发明差动式的漏磁与涡流复合的高速轨道探伤方法所用探头的示意图。
图2是本发明差动式的漏磁与涡流复合的高速轨道探伤方法的检测信号处理流程框图。
图3是被测试件上的表面缺陷和埋藏缺陷示意图。
图4是本发明差动式的漏磁与涡流复合的高速轨道探伤方法应用于单个表面缺陷或埋藏缺陷检测得到的差分漏磁信号示意图。
图5是本发明差动式的漏磁与涡流复合的高速轨道探伤方法应用于单个表面缺陷检测得到的差分涡流信号示意图。
图6是本发明差动式的漏磁与涡流复合的高速轨道探伤方法应用于区分表面和埋 藏缺陷的漏磁信号和涡流信号对比示意图。
其中,1、磁轭;2、磁轭线圈;3、差分检测线圈;4、被测试件;a1、表面缺陷1;a2、表面缺陷2;b1、埋藏缺陷1;b2、埋藏缺陷2。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图1所示,是本发明方法所用检测探头的结构示意图,该探头包括磁轭1、磁轭线圈2、差分检测线圈3,直流激励施加在磁轭线圈2上,使得被测试件4的被测区域磁化至饱和状态,交流激励施加在差分检测线圈3上,差分检测线圈3同时检测缺陷处的漏磁信号和涡流信号。
如图2所示,是本发明方法的检测信号处理流程框图,首先将差分检测线圈3接入电桥电路,对磁轭线圈2和差分检测线圈3分别施加激励;然后对电桥电路输出信号做低通滤波得到差分漏磁信号,同时对交流激励和电桥电路输出信号做高通滤波,将激励信号滤波得到的信号作为载波,与电桥电路输出信号滤波得到信号做正交解调,得到涡流变化的幅值信号和相位信号;最后对比差分漏磁信号与涡流变化的幅值信号,区分表面缺陷和埋藏缺陷。
图3是带表面缺陷a1、a2和埋藏缺陷b1、b2的被测试件,表面缺陷在试件表面处有开口,埋藏缺陷位于试件内部,在表面处没有开口。
如图4所示,使用本发明方法进行检测时,经过单个表面缺陷或者埋藏缺陷可以得到一个类似M型的差分漏磁信号,其波形有两个正峰值和一个负峰值。对于表面缺陷a1、a2和埋藏缺陷b1、b2,漏磁信号表现为相同的M型波。
如图5所示,使用本发明方法进行检测时,经过单个表面缺陷a1、a2可以得到一个M型的差分涡流幅值信号,其波形有两个正峰值,中心过零点。而探头经过埋藏缺陷b1、b2时,涡流幅值信号中没有M型波。
图4中漏磁信号和图5中涡流幅值信号的基波频率相同,该基波频率f与差分检测线圈参数及探头检测速度有关。其表达式为:
Figure PCTCN2020093256-appb-000005
式中,v为探头检测速度,d s为差分检测线圈的直径。
由于漏磁信号和涡流信号共用差分检测线圈进行检测,两个信号会叠加在一起经电桥电路输出。其中,差分漏磁信号为电桥输出的低频部分,其基波频率为式(1)中的f,考虑到波形上倍频信号,取其频段为0~4f;而涡流信号存在一个高频的载波,该载波的频率为交流激励频率f e,载波上叠加的涡流信号基波频率为
Figure PCTCN2020093256-appb-000006
考虑到波形上倍频信号,电桥输出的高频部分频率范围取f e-2f~f e+2f。
因此,要保证漏磁信号频段和涡流信号频段没有混叠,即f e-2f≥4f。则交流激励频率f e应满足下式:
Figure PCTCN2020093256-appb-000007
用低通滤波直接获取电桥电路输出中的低频漏磁信号,需要保证滤波器的低通截止频率f L位于两个频段之间,即4f≤f L≤f e-2f。则低通截止频率f L应满足下式:
Figure PCTCN2020093256-appb-000008
同样的,用高通滤波获取电桥电路输出中的高频部分,从而处理得到想要的涡流信号,则高通截止频率f H应满足下式:
Figure PCTCN2020093256-appb-000009
而涡流信号中存在高频载波,必须经过正交解调得到同相信号I(t)和正交信号Q(t),这两个信号的基波频率为
Figure PCTCN2020093256-appb-000010
经过计算得到涡流变化的幅值信号A(t)和相位信号
Figure PCTCN2020093256-appb-000011
计算公式如下所示:
Figure PCTCN2020093256-appb-000012
Figure PCTCN2020093256-appb-000013
得到的涡流幅值信号基波频率为同相信号I(t)和正交信号Q(t)基波频率的两倍,与漏磁信号的频率相同,都为f。
下面以实际检测情况为例,具体步骤如下:
(1)对磁轭线圈施加直流激励,使得被测试件的被测区域磁化至饱和状态;
(2)将差分检测线圈接入电桥电路并施加交流激励,根据计算公式
Figure PCTCN2020093256-appb-000014
在探头直径40mm,检测速度20km/h的情况下,选取交流激励频率为10kHz;
(3)选取既有表面缺陷又有埋藏缺陷的被测试件,图3给出了本实施例的被测试件模型,将探头放置在被测试件表面,以20km/h的速度移动探头进行缺陷检测;
(4)对电桥电路输出信号做低通滤波得到差分漏磁信号,根据计算公式
Figure PCTCN2020093256-appb-000015
选取低通截止频率f L为5kHz;
(5)同时对交流激励和电桥电路输出信号做高通滤波,根据计算公式
Figure PCTCN2020093256-appb-000016
选取高通截止频率f H为5kHz;
(6)将交流激励滤波得到的信号作为载波,与电桥电路输出信号高通滤波得到的差分涡流信号做正交解调,得到涡流变化的幅值信号和相位信号;
(7)对比差分漏磁信号与涡流变化的幅值信号,如图6所示,给出了被测试件检测结果中的差分漏磁信号和差分涡流幅值信号,其中,表面缺陷a1、a2在差分漏磁信号和差分 涡流幅值信号中都很明显,而埋藏缺陷b1、b2只出现在差分漏磁信号中。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (4)

  1. 一种差动式的漏磁与涡流复合的高速轨道探伤方法,其特征在于,包括如下步骤:
    步骤1,将绕制有磁轭线圈的磁轭布置在被测试件的被测区域,对磁轭线圈施加直流激励,直至被测试件的被测区域达到磁化饱和状态;
    步骤2,将差分检测线圈布置在被测试件的被测区域,并且将差分检测线圈接入电桥电路,在差分检测线圈上施加交流激励,根据差分检测线圈的参数和检测速度选择交流激励频率f e,交流激励频率f e满足:
    Figure PCTCN2020093256-appb-100001
    其中,v表示检测速度,d s表示差分检测线圈的直径;
    步骤3,对电桥电路输出信号做低通滤波得到差分漏磁信号,根据差分漏磁信号和交流激励频率选择低通截止频率f L
    步骤4,对电桥电路输出信号做高通滤波得到差分涡流信号,同时对交流激励做高通滤波,根据差分涡流信号和交流激励频率选择高通截止频率f H
    步骤5,将交流激励做高通滤波得到的信号作为载波,与差分涡流信号做正交解调,得到同相信号和正交信号,根据同相信号和正交信号计算得到差分涡流幅值信号;
    步骤6,对比差分漏磁信号与涡流变化的幅值信号,在某位置处同时出现差分漏磁信号和差分涡流幅值信号,则为表面缺陷,在某位置出只有差分漏磁信号而没有差分涡流幅值信号,则为埋藏缺陷。
  2. 根据权利要求1所述差动式的漏磁与涡流复合的高速轨道探伤方法,其特征在于,步骤3所述低通截止频率f L满足:
    Figure PCTCN2020093256-appb-100002
    其中,v表示检测速度,d s表示差分检测线圈的直径,f e表示交流激励频率。
  3. 根据权利要求1所述差动式的漏磁与涡流复合的高速轨道探伤方法,其特征在于,步骤4所述高通截止频率f H满足:
    Figure PCTCN2020093256-appb-100003
    其中,v表示检测速度,d s表示差分检测线圈的直径,f e表示交流激励频率。
  4. 根据权利要求1所述差动式的漏磁与涡流复合的高速轨道探伤方法,其特征在于,步骤5所述差分涡流幅值信号,计算公式为:
    Figure PCTCN2020093256-appb-100004
    其中,A(t)表示差分涡流幅值信号,I(t)表示同相信号,Q(t)表示正交信号。
PCT/CN2020/093256 2019-07-16 2020-05-29 一种差动式的漏磁与涡流复合的高速轨道探伤方法 WO2021008249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641093.9 2019-07-16
CN201910641093.9A CN110308200B (zh) 2019-07-16 2019-07-16 一种差动式的漏磁与涡流复合的高速轨道探伤方法

Publications (1)

Publication Number Publication Date
WO2021008249A1 true WO2021008249A1 (zh) 2021-01-21

Family

ID=68080250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093256 WO2021008249A1 (zh) 2019-07-16 2020-05-29 一种差动式的漏磁与涡流复合的高速轨道探伤方法

Country Status (2)

Country Link
CN (1) CN110308200B (zh)
WO (1) WO2021008249A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946064A (zh) * 2021-02-03 2021-06-11 西安交通大学 针对高速列车轨道的被动激励电磁无损检测系统及检测方法
CN112946063A (zh) * 2021-02-03 2021-06-11 西安交通大学 基于差分线圈的高速轮毂在线电磁检测系统及检测方法
CN113052022A (zh) * 2021-03-11 2021-06-29 南京航空航天大学 一种基于复合电磁检测的轨道缺陷识别与分类方法
CN113532255A (zh) * 2021-07-27 2021-10-22 爱德森(厦门)电子有限公司 一种漏磁和涡流检测厚度的方法和装置
CN114295258A (zh) * 2021-12-30 2022-04-08 四川沐迪圣科技有限公司 一种电磁复合无损检测传感器、系统及方法
CN116990382A (zh) * 2023-05-10 2023-11-03 南昌航空大学 一种检测小间距铆钉孔缺陷的可调节探头及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308200B (zh) * 2019-07-16 2022-11-04 南京航空航天大学 一种差动式的漏磁与涡流复合的高速轨道探伤方法
CN111337567B (zh) * 2020-03-27 2023-10-03 南京航空航天大学 基于涡流和漏磁检测信号融合的缺陷类型评估方法
CN111581814B (zh) * 2020-05-07 2021-11-02 南京航空航天大学 基于差分涡流的高速轨道缺陷检测系统的参数设计方法
CN111983014A (zh) * 2020-08-21 2020-11-24 南京中车浦镇城轨车辆有限责任公司 一种焊缝缺陷检测装置及其检测方法
CN113433212B (zh) * 2021-06-24 2023-08-01 西安交通大学 抗干扰强的均匀场激励方向性涡流探头及检测方法
CN113970554B (zh) * 2021-11-03 2024-06-07 重庆交通大学 拉索缺陷检测装置及拉索缺陷检测方法
CN114330429A (zh) * 2021-12-21 2022-04-12 中国国家铁路集团有限公司 一种钢轨擦伤识别方法、装置、系统、设备及存储介质
CN117110417A (zh) * 2022-11-22 2023-11-24 北华航天工业学院 一种漏磁-涡流复合检测时涡流探头电路系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798660A (zh) * 2012-08-30 2012-11-28 东北大学 基于三轴漏磁与电涡流的管道内外壁缺陷检测装置及方法
CN103175891A (zh) * 2013-02-28 2013-06-26 厦门大学 一种永磁与脉冲涡流复合的漏磁检测方法
JP2013205024A (ja) * 2012-03-27 2013-10-07 Dainichi Kikai Kogyo Kk 交番磁場を使用した非破壊検査用検出器
CN104820015A (zh) * 2015-05-08 2015-08-05 北京华航无线电测量研究所 一种金属表面缺陷检测系统及其检测方法
CN105866240A (zh) * 2016-06-01 2016-08-17 爱德森(厦门)电子有限公司 一种区分在用钢管内外壁漏磁检测信号的装置及方法
CN110308200A (zh) * 2019-07-16 2019-10-08 南京航空航天大学 一种差动式的漏磁与涡流复合的高速轨道探伤方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307220B2 (ja) * 1996-04-05 2002-07-24 日本鋼管株式会社 磁性金属体の探傷方法および装置
JP2000227422A (ja) * 1999-02-08 2000-08-15 Nkk Corp 渦流探傷法
CN102182933B (zh) * 2011-03-22 2012-10-31 江南大学 脉冲漏磁缺陷与应力的无损检测系统及无损检测方法
CN102759567B (zh) * 2012-07-18 2015-10-28 南昌航空大学 直流磁化下钢管内外壁缺陷的涡流检测识别及评价方法
CN103645243B (zh) * 2013-11-28 2017-01-04 南京航空航天大学 一种输电线电磁无损检测系统
CN106596712B (zh) * 2016-11-22 2017-11-28 西安交通大学 一种基于缺陷深度的选频带脉冲涡流无损检测方法
CN107153094A (zh) * 2017-05-24 2017-09-12 昆明理工大学 U形两级差分涡流探头、检测系统及检测方法
CN207196096U (zh) * 2017-08-25 2018-04-06 上海市特种设备监督检验技术研究院 管道漏磁内检测内外壁缺陷区分传感器
CN108692193A (zh) * 2018-05-31 2018-10-23 中国石油化工股份有限公司 一种小管径管道缺陷的脉冲涡流检测系统与方法
CN108982658B (zh) * 2018-07-12 2023-07-25 沈阳仪表科学研究院有限公司 一种用于管道内检测的探头及其系统
CN108926580A (zh) * 2018-08-22 2018-12-04 江苏国桢生物科技有限公司 一种蛹虫草提取液及其制备方法
CN109085234A (zh) * 2018-10-22 2018-12-25 太原理工大学 一种钢丝绳表面缺陷远场涡流检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205024A (ja) * 2012-03-27 2013-10-07 Dainichi Kikai Kogyo Kk 交番磁場を使用した非破壊検査用検出器
CN102798660A (zh) * 2012-08-30 2012-11-28 东北大学 基于三轴漏磁与电涡流的管道内外壁缺陷检测装置及方法
CN103175891A (zh) * 2013-02-28 2013-06-26 厦门大学 一种永磁与脉冲涡流复合的漏磁检测方法
CN104820015A (zh) * 2015-05-08 2015-08-05 北京华航无线电测量研究所 一种金属表面缺陷检测系统及其检测方法
CN105866240A (zh) * 2016-06-01 2016-08-17 爱德森(厦门)电子有限公司 一种区分在用钢管内外壁漏磁检测信号的装置及方法
CN110308200A (zh) * 2019-07-16 2019-10-08 南京航空航天大学 一种差动式的漏磁与涡流复合的高速轨道探伤方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946064A (zh) * 2021-02-03 2021-06-11 西安交通大学 针对高速列车轨道的被动激励电磁无损检测系统及检测方法
CN112946063A (zh) * 2021-02-03 2021-06-11 西安交通大学 基于差分线圈的高速轮毂在线电磁检测系统及检测方法
CN112946063B (zh) * 2021-02-03 2023-08-15 西安交通大学 基于差分线圈的高速轮毂在线电磁检测系统及检测方法
CN112946064B (zh) * 2021-02-03 2024-04-02 西安交通大学 针对高速列车轨道的被动激励电磁无损检测系统及检测方法
CN113052022A (zh) * 2021-03-11 2021-06-29 南京航空航天大学 一种基于复合电磁检测的轨道缺陷识别与分类方法
CN113052022B (zh) * 2021-03-11 2024-03-22 南京航空航天大学 一种基于复合电磁检测的轨道缺陷识别与分类方法
CN113532255A (zh) * 2021-07-27 2021-10-22 爱德森(厦门)电子有限公司 一种漏磁和涡流检测厚度的方法和装置
CN113532255B (zh) * 2021-07-27 2024-01-12 爱德森(厦门)电子有限公司 一种漏磁和涡流检测厚度的方法和装置
CN114295258A (zh) * 2021-12-30 2022-04-08 四川沐迪圣科技有限公司 一种电磁复合无损检测传感器、系统及方法
CN116990382A (zh) * 2023-05-10 2023-11-03 南昌航空大学 一种检测小间距铆钉孔缺陷的可调节探头及方法
CN116990382B (zh) * 2023-05-10 2024-04-09 南昌航空大学 一种检测小间距铆钉孔缺陷的可调节探头及方法

Also Published As

Publication number Publication date
CN110308200B (zh) 2022-11-04
CN110308200A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021008249A1 (zh) 一种差动式的漏磁与涡流复合的高速轨道探伤方法
US11099156B2 (en) Method and device for detecting and evaluating defect
CN102759567B (zh) 直流磁化下钢管内外壁缺陷的涡流检测识别及评价方法
CN110057904B (zh) 一种运动金属构件的缺陷定量检测方法及装置
Xu et al. Rail crack detection and evaluation at high speed based on differential ECT system
WO2021223423A1 (zh) 基于差分涡流的高速轨道缺陷检测系统的参数设计方法
Li et al. Differential ECT probe design and investigation for detection of rolling contact fatigue cracks with different orientations
Chen et al. Differential coupling double-layer coil for eddy current testing with high lift-off
CN111257410A (zh) 一种多层pcb差分涡流检测传感器
CN109738509A (zh) 一种基于偏置直流磁化磁巴克豪森噪声的缺陷检测方法及装置
Xu et al. Study on high-speed rail defect detection methods based on ECT, MFL testing and ACFM
JP2013160739A (ja) 磁性体の探傷方法及び探傷装置
CN103728368A (zh) 用于铁轨部件的裂纹检测器
Song et al. A composite approach of electromagnetic acoustic transducer and eddy current for inner and outer corrosion defects detection
JPS63221239A (ja) 漏洩磁束探傷方法
JP3266899B2 (ja) 磁性金属体の探傷方法および装置
CN206772898U (zh) 一种磁光成像无损检测装置
Ma et al. Optimization of Magneto-Optical Imaging Visualization of Micro-Defects Under Combined Magnetic Field Based on Dynamic Permeability
Ge et al. Development of a velocity-adaptable alternating current field measurement device for crack inspection in rails
JP3307220B2 (ja) 磁性金属体の探傷方法および装置
JP3309702B2 (ja) 金属体の探傷方法および装置
JP2001272379A (ja) 管の非破壊検査方法及び装置
Li et al. A Novel Magnetoelectric Composite Probe for Dynamic and Rapid Inspection of Minor Metal Loss Defects in Pipelines
CN101126739B (zh) 一种焊管焊缝质量检测及缺陷焊管自动剔除控制系统
Wang et al. Simultaneous imaging defect and measuring lift-off using a double layer parallel-cable-based probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840622

Country of ref document: EP

Kind code of ref document: A1