WO2021008218A1 - 探头和组织弹性检测系统 - Google Patents

探头和组织弹性检测系统 Download PDF

Info

Publication number
WO2021008218A1
WO2021008218A1 PCT/CN2020/090552 CN2020090552W WO2021008218A1 WO 2021008218 A1 WO2021008218 A1 WO 2021008218A1 CN 2020090552 W CN2020090552 W CN 2020090552W WO 2021008218 A1 WO2021008218 A1 WO 2021008218A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
array element
array
detection
module
Prior art date
Application number
PCT/CN2020/090552
Other languages
English (en)
French (fr)
Inventor
焦建华
邵金华
孙锦
段后利
Original Assignee
无锡海斯凯尔医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2021008218A1 publication Critical patent/WO2021008218A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal

Definitions

  • the invention relates to elasticity detection technology, in particular to a probe and a tissue elasticity detection system.
  • Transient Elastography is a technique for quantitatively detecting the elastic modulus of tissue. This technology emits low-frequency shear waves to the detected part through the body surface. The propagation speed of shear waves in tissues of different hardness is significantly different. By detecting the propagation speed of shear waves, the tissue hardness can be accurately and quantitatively calculated.
  • the transient elastography technology cannot know the tissue structure information of the detection area, especially the two-dimensional structure information of the tissue, and the technician can usually only set up and arrange a set of ultrasound probes for transient elastography based on experience. Therefore, when performing elasticity testing, if there are factors such as large blood vessels, cysts, or ascites inside that will affect the accuracy of the elasticity testing results, detection errors will be unavoidable.
  • a probe capable of performing imaging detection and parameter detection including: a shear wave generator, driven by a low-frequency excitation signal to generate a low-frequency shear wave; a transducer array, used for acoustic-electric conversion, which includes an array element assembly, the The array element assembly is used to realize the ultrasonic imaging mode or the parameter detection mode detection.
  • the array element assembly includes a first working array element and a second working array element. The first working array element is used to realize the imaging function of the ultrasonic imaging mode, The second working array element is used to implement the parameter detection function of the parameter detection mode.
  • the second working array element is one or more array elements; the first working array element is more than two array elements.
  • the shear wave generator drives the probe to vibrate, and the vibration frequency range of the probe is: 1-1000 Hz.
  • the frequency bandwidth of the probe is determined by the response frequency of the object to be measured.
  • the frequency bandwidth range of the probe is 0.5-50 MHz.
  • the distance between the array elements in the array element assembly is determined by the detection depth and the detection angle of the probe.
  • the distance between the array elements in the array element assembly ranges from 0.01 to 20 mm.
  • the probe includes one of a linear array probe, a phased array probe, an area array probe, or a convex array probe.
  • the radius of the probe is determined by the detection depth and the detection angle of the probe.
  • the radius of the probe is 0.5-100 mm.
  • the thickness of the tip of the probe is less than or equal to 20 mm.
  • a tissue elasticity detection system includes a tissue parameter detection module, an imaging module, a control module, and any one of the above-mentioned probes: the tissue parameter detection module is used to generate and process tissue parameter detection signals according to control instructions; The imaging module is used to generate and process imaging signals according to control instructions; the control module is connected to the tissue parameter detection module, the imaging module and the probe, and is used to control the probe to enter the parameter detection mode or the imaging mode , And sending a control instruction to the tissue parameter detection module or the imaging module.
  • control module includes a switching control sub-module configured to control the probe to switch between the tissue parameter detection mode and the imaging super mode.
  • the above probe and tissue elasticity detection system include a shear wave generator and a transducer array.
  • the shear wave generator is driven by a low-frequency excitation signal to generate a low-frequency shear wave.
  • the transducer array is used for acoustic-electric conversion. It includes an array element component, which is used to realize ultrasonic imaging mode or parameter detection mode detection,
  • the array element assembly includes a first working array element and a second working array element, the first working array element is used to realize the imaging function of the ultrasound imaging mode, and the second working array element is used to realize the parameters of the parameter detection mode Detection function. For the probe, by switching the first working array element and the second working array element, the ultrasonic imaging mode or the parameter detection mode is switched, and the ultrasonic mode and the elastic mode can be switched without changing the probe.
  • Fig. 1 is a block diagram of a tissue elasticity detection system according to an embodiment of the present invention.
  • a tissue elasticity detection system 10 includes a tissue parameter detection module 110, an imaging module 120, a control module 130, and a probe 20: the tissue parameter detection module 110 is used to generate and process tissue according to control instructions Parameter detection signal; the imaging module 120 is used to generate and process imaging signals according to control instructions; the control module 130 is connected to the tissue parameter detection module 110, the imaging module 120, and the probe 20 for The probe is controlled to enter a parameter detection mode or an imaging mode, and a control instruction is sent to the tissue parameter detection module 110 or the imaging module 120.
  • the tissue parameter detection module 110 is used to generate and process tissue parameter detection signals according to control instructions, and the probe 20 drives the probe 20 to generate signals according to the first excitation signal transmitted by the tissue parameter detection module 110.
  • Low-frequency shear wave and then quantitatively detect the elastic modulus of tissue.
  • the tissue parameter detection module 110 includes a first control processor 111 and a shear wave driver 112, a first signal amplifier 113, a first analog-to-digital converter 114, a first signal transmitter 115, and a pressure detection processor 116.
  • the frequency range of the low-frequency shear wave is: 1-1000 Hz; the amplitude range of the low-frequency shear wave is: 0.1-50 mm.
  • the first control processor 111 is connected to the shear wave driver 112, and the first control processor 111 is configured to generate a first excitation signal according to a control instruction, and transmit the first excitation signal to the shear wave
  • the driver 112 the shear wave driver 112 is configured to receive the first excitation signal, perform amplifying processing on the excitation signal, and transmit the amplified first excitation signal to the probe 20.
  • the first excitation signal excites the probe 20 to generate a low-frequency shear wave.
  • the first control processor 111 is connected to the first signal transmitter 115.
  • the first control processor 111 emits a second excitation signal and transmits it to the first signal transmitter 115.
  • the first signal The transmitter 115 transmits the high-voltage excitation signal to the probe 20 and drives the probe 20 to generate ultrasonic signals.
  • the first control processor 111 is sequentially connected to the first analog-to-digital converter 114 and the first signal amplifier 113. After the echo signal detected by the probe 20 is amplified by the first signal amplifier 113, The first analog-to-digital converter 114 converts the analog signal into a digital signal, the digital signal is transmitted to the first control processor 111, and the first control processor 111 performs data conversion on the received data, Processing, filtering and other operations.
  • the pressure detection processor 116 is connected to the first control processor 111, and the pressure detection processor 116 transmits the pressure value detected when the probe 20 is in contact with the contact part to the first control processor 111
  • the first control processor 111 transmits the pressure value to the display device for display, which is convenient for the user to monitor in real time.
  • the first control processor 111 is a Field-Programmable Gate Array (FPGA) board.
  • the FPGA generates a second excitation signal, and the second excitation signal drives the probe 20 to generate an ultrasonic signal.
  • the FPGA sends a second excitation signal, the first excitation signal is amplified by the shear wave driver 112, and then the first excitation signal excites the probe 20 to generate a low-frequency shear wave.
  • the low-frequency shear wave has different propagation speeds in different hardness tissues, and the ultrasonic signal carries the propagation speed information of the first shear wave and is transmitted to the tissue parameter detection module 110, thereby accurately and quantitatively calculating the tissue hardness.
  • the imaging module 120 generates and processes imaging signals according to control instructions.
  • the imaging signals are sent by the probe 20 for precise positioning, and then select the appropriate diagnostic position and angle for the tissue parameter detection module 110 to detect .
  • the imaging module 120 includes a second control processor 121, a second signal amplifier 122, a second analog-to-digital converter 123, and a second signal transmitter 124.
  • the second control processor 121 and the second signal transmitter 124 connection, the second control processor 121 sends a driving pulse to the second signal transmitter 124, and the second signal transmitter 124 transmits the driving pulse to the probe 20 to drive the probe 20 to generate an ultrasonic signal .
  • the second control processor 121 is connected to the second analog-to-digital converter 123 and the second signal amplifier 122 in sequence, and is used for processing ultrasonic echo signals, that is, receiving ultrasonic echo signals detected by the probe 20 through the After the second signal amplifier 122 performs signal amplification, the second analog-to-digital converter 123 converts the analog signal into a digital signal, and the digital signal is transmitted to the second control processor 121.
  • the second control processor 121 is a Field-Programmable Gate Array (FPGA) board.
  • FPGA Field-Programmable Gate Array
  • the first control processor 111 and the second control processor 121 can be any of STM32 single-chip microcomputers and ARM chips, as long as they can realize data processing, control their connected devices, and send first The excitation signal and the second excitation signal are sufficient.
  • the control module 130 is configured to process the tissue parameter detection signal and the imaging signal, and control the probe 20 to perform tissue parameter detection mode or imaging mode detection according to the tissue parameter detection signal and the imaging signal.
  • the control module 130 includes a switching control sub-module 131, a probe switching unit 132, and an array element switching unit 133.
  • the probe switching unit 132 is connected to the probe 20 and is capable of outputting signal pulses to the probe 20, and simultaneously realizes different probes ( When detecting the liver, chest and other body parts), the switch control sub-module 131 is used to control the probe 20 to switch between the tissue parameter detection mode and the imaging mode.
  • the switching control sub-module 131 includes a switch, and the switch is used to connect the parameter detection module 110 or the imaging module 120 with the probe 20.
  • the array element switching unit 133 performs switching between the first working array element corresponding to the imaging mode and the second working array element corresponding to the parameter detection mode according to the control signal sent by the control module 130.
  • the probe 20, which integrates the imaging detection mode and the parameter detection mode, includes a shear wave generator 210, a pressure detector 220 and a transducer array 230.
  • the shear wave generator 210 is driven by a low frequency excitation signal to generate a low frequency shear wave
  • the pressure detector 220 is used to detect the pressure of the probe 20 on the contact portion
  • the transducer array 230 is used for acoustic (ultrasonic signal) electrical signal conversion.
  • the pressure detector 220 transmits the detected pressure value information to the pressure detection processor 116 in the tissue parameter detection module 110, and the pressure detection processor 116 transmits the pressure value information to the first control process.
  • the sensor 111 further realizes real-time monitoring of the pressure information between the probe 20 and the contact part.
  • the transducer array 230 includes an array element assembly 231, which is a piezoelectric ceramic assembly used for acoustic (ultrasonic signal) electrical (electrical signal) conversion.
  • the array element assembly 231 includes a first working array element 2311 and a second working array element 2312.
  • the first working array element 2311 is used for realizing the imaging function of the ultrasound imaging mode
  • the second working array element 2312 is used for Realize the parameter detection function of the parameter detection mode.
  • the second working array element is one or more array elements; the first working array element is more than two array elements.
  • the number of array elements of the first working array element 2311 is N array elements, the second working array element 2312 is a subset of the first working array element 2311, and the number of array elements of the second working array element 2312 Is n.
  • the number of array elements of the first working array element 2311 is 64 elements.
  • the number of elements of the second working array element 2312 is selected from the array of the first working array element 2311.
  • the middle position of the element number, and the number of elements of the second working element 2312 is 16 elements.
  • the number of array elements of the first working array element 2311 can be any combination of array elements from 64 to 128 array elements.
  • the second working array element 2312 is adjusted accordingly according to the number of the first working array element 2311, that is, the number of the second working array element 2312 can be 6 to 16 elements.
  • the shear wave generator drives the probe to vibrate, and the vibration frequency range of the probe is: 1-1000 Hz.
  • Array element design principle the smaller the distance between the array elements, the thinner the ceramic sheet, the higher the frequency, and the greater the loss.
  • the spacing between the elements in the array element assembly is 0.01-20 mm
  • the frequency bandwidth of the probe is determined to be according to the response frequency of the part to be detected.
  • the center frequency is 2.5M
  • the radius of the probe is determined to be 0.5-100mm according to the detection depth and the detection angle of the probe.
  • the thickness of the front end of the probe is less than or equal to 20 mm.
  • the probe includes one of linear array probe, phased array probe, area array probe or convex array probe.
  • the tissue elasticity detection system integrates an ultrasonic detection mode and an elasticity detection mode, and further integrates an image guidance function and an elasticity detection function. After locating the best position using the image guidance function, switch to the flexible detection mode to activate the flexible detection function to realize flexible detection.
  • the application of the probe 20 can realize the detection of tissue elasticity without replacing the probe and causing no position shift, and can accurately, simply and efficiently detect tissue elasticity.
  • the control module 130 sends a control signal to control the transducer array to turn on the N array element components and enter the imaging mode. At the same time, the control module sends a control signal to the array element.
  • the switching unit 133, the array element switching unit 133 controls the first working array element 2311 of the probe 20 to work, the second control processor 121 sends a driving pulse to the second signal transmitter 124, the second signal transmitter 124 The driving pulse is transmitted to the probe 20 to drive the transducer array 230 in the probe 20.
  • the first working array element 2311 in the transducer array 230 is excited to generate and emit ultrasonic waves, which are then tested. The position of the object is detected.
  • the echo signal of the ultrasonic wave is received by the probe 20, and the echo signal is converted into an electrical signal by the first working element 2311 in the transducer array 230, and then transmitted to the imaging module 120.
  • the second signal amplifier 122 in the imaging module 120 amplifies the electrical signal and transmits it to the second analog-to-digital converter 123 for analog-to-digital conversion, and transfers the digital signal to the second control processor 121.
  • the control processor 121 After the control processor 121 performs operations such as data conversion, processing, and filtering on the digital signal, it transmits the processed digital signal to a display device for display to obtain an ultrasonic detection image.
  • the control module 130 sends a control signal to control the transducer array to turn on the n element components and enter the elasticity detection mode.
  • the control module sends a control signal to the array element switching unit 133.
  • the array element switching unit 133 controls the second working array element 2312 of the probe 20 to work.
  • the second working array element 2312 has more Two array elements are connected in parallel, which is equivalent to synthesizing one array element.
  • the first control processor 111 of the elasticity detection module 110 sends a low-frequency excitation signal to the probe 20, and the second working array element 2312 in the probe 20 is excited and then driven
  • the shear wave generator 210 in the probe 20 generates low-frequency shear waves.
  • the high-voltage excitation signal drives the The second working array element 2312 in the transducer array 230 generates and emits ultrasonic waves to track the movement of the low-frequency shear wave in the tissue to be measured.
  • the transducer array 230 receives the echo of the ultrasonic wave, and the second working array element 2312 converts the echo into an electric signal.
  • the electric signal is amplified by the first signal amplifier 113 of the elasticity detection module 110 and transmitted to
  • the first analog-to-digital converter 114 performs analog-to-digital conversion and transfers the digital signal to the first control processor 111 of the elasticity detection module 110, and the first control processor 111 performs digital processing and conversion on the digital signal After filtering, it is transmitted to the display device for display, and the tissue elasticity detection result is obtained.

Abstract

一种探头(20)和组织弹性检测系统(10),探头(20)包括剪切波发生器(210),经低频激励信号驱动产生低频剪切波;换能器阵列(230),用于声电转换,其包括阵元组件(231),阵元组件(231)用于实现超声成像模式或参数检测模式检测,阵元组件(231)包括第一工作阵元(2311)以及第二工作阵元(2312),第一工作阵元(2311)用于实现超声成像模式的成像功能,第二工作阵元(2312)用于实现参数检测模式的参数检测功能。探头(20),通过切换第一工作阵元(2311)以及第二工作阵元(2312),从而到达切换超声成像模式或参数检测模式进而实现不更换探头(20),即可实现超声模式和弹性模式切换。

Description

探头和组织弹性检测系统 技术领域
本发明涉及弹性检测技术,特别是涉及探头和组织弹性检测系统。
背景技术
瞬时弹性成像技术(Transient Elastography)是一种定量检测组织弹性模量的技术。该技术通过体表向被检测部位发射低频剪切波,剪切波在不同硬度的组织中传播速度有明显不同,通过检测剪切波传播速度可以准确定量的计算组织硬度。瞬时弹性成像技术无法知道检测区域的组织结构信息,尤其是组织的二维结构信息,技师通常只能根据经验来设置和布置用于瞬时弹性成像的一组超声探头。因此,在进行弹性检测时,如果内部含有大血管、囊肿或腹水等会影响弹性检测结果准确性的因素时,将因无法避开而产生检测误差。
现有技术中存在用B超探头选择合适的诊断位置和角度,然后换上E超探头进行测量诊断的做法,但是更换探头进行诊断位置的选择和测量诊断,并不会在人体内做标记,不能保证声头对应位置的完全一致,位置的偏移会造成诊断数据的偏差。
发明内容
基于此,有必要针对进行诊断位置的选择和测量诊断的过程中,会存在诊断数据偏差的问题,提供一种探头和组织弹性检测系统。
一种探头,能够执行成像检测和参数检测,包括:剪切波发生器,经低频激励信号驱动产生低频剪切波;换能器阵列,用于声电转换,其包括阵元组件,所述阵元组件用于实现超声成像模式或参数检测模式检测,所述阵元组件包括第一工作阵元以及第二工作阵元,所述第一工作阵元用于实现超声成像模式的成像功能,所述第二工作阵元用于实现参数检测模式的参数检测功能。
在其中一个实施例中,所述第二工作阵元为一个或多个阵元;所述第一工作阵元为两个以上阵元。
在其中一个实施例中,所述剪切波发生器带动探头振动,所述探头的 振动频率范围为:1-1000Hz。
在其中一个实施例中,所述探头的频率带宽由待测对象的响应频率确定。
在其中一个实施例中,所述探头的频率带宽范围为0.5-50MHz。
在其中一个实施例中,所述阵元组件中各阵元间间距由所述探头的探测深度和探测角度确定。
在其中一个实施例中,所述阵元组件中各阵元间间距范围为0.01-20mm。
在其中一个实施例中,所述探头包括线阵探头、相控阵探头、面阵探头或者凸阵探头中的一种。
在其中一个实施例中,所述探头半径由所述探头的探测深度及探测角度确定。
在其中一个实施例中,所述探头半径范围为0.5-100mm。
在其中一个实施例中,所述探头前端厚度小于等于20mm。
一种组织弹性检测系统,包括组织参数检测模块、成像模块、控制模块以及上述任一种所述的探头:所述组织参数检测模块,用于根据控制指令产生和处理组织参数检测信号;所述成像模块,用于根据控制指令产生和处理成像信号;所述控制模块,与所述组织参数检测模块、所述成像模块以及所述探头相连,用于控制所述探头进入参数检测模式或者成像模式,以及向所述组织参数检测模块或成像模块发送控制指令。
在其中一个实施例中,所述控制模块包括切换控制子模块,所述切换控制子模块用于控制所述探头在所述组织参数检测模式和所述成像超模式之间切换。
上述探头和组织弹性检测系统,包括剪切波发生器以及换能器阵列。剪切波发生器经低频激励信号驱动产生低频剪切波,换能器阵列,用于声电转换,其包括阵元组件,所述阵元组件用于实现超声成像模式或参数检测模式检测,所述阵元组件包括第一工作阵元以及第二工作阵元,所述第一工作阵元用于实现超声成像模式的成像功能,所述第二工作阵元用于实现参数检测模式的参数检测功能。所述探头,通过切换第一工作阵元以及第二工作阵元,从而到达切换超声成像模式或参数检测模式进而实现不更 换探头,即可实现超声模式和弹性模式切换。
附图说明
图1为本发明实施例的组织弹性检测系统框图。
具体实施方式
如图1所示,一种组织弹性检测系统10,包括组织参数检测模块110、成像模块120、控制模块130,以及探头20:所述组织参数检测模110,用于根据控制指令产生和处理组织参数检测信号;所述成像模块120,用于根据控制指令产生和处理成像信号;所述控制模块130,与所述组织参数检测模块110、所述成像模块120以及所述探头20相连,用于控制所述探头进入参数检测模式或者成像模式,以及向所述组织参数检测模块110或成像模块120发送控制指令。
如图1所示,所述组织参数检测模块110用于根据控制指令产生和处理组织参数检测信号,所述探头20根据所述组织参数检测模块110发射的第一激励信号驱动所述探头20产生低频剪切波,进而定量检测组织弹性模量。所述组织参数检测模块110包括第一控制处理器111和剪切波驱动器112、第一信号放大器113、第一模数转换器114、第一信号发射器115以及压力检测处理器116。其中所述低频剪切波的频率范围为:1-1000Hz;所述低频剪切波的幅度范围为:0.1-50mm。
所述第一控制处理器111与所述剪切波驱动器112连接,所述第一控制处理器111用于根据控制指令生成第一激励信号,并将所述第一激励信号传输至剪切波驱动器112,所述剪切波驱动器112用于接收所述第一激励信号,对所述激励信号进行放大处理,将放大处理后的所述第一激励信号传输至探头20。所述第一激励信号激励所述探头20产生低频剪切波。所述第一控制处理器111与所述第一信号发射器115连接,所述第一控制处理器111发射第二激励信号,并传输至所述第一信号发射器115,所述第一信号发射器115将所述高压激励信号传输至所述探头20进而驱动探头20产生超声信号。所述第一控制处理器111与所述第一模数转换器114、第一信号放大器113依次连接,所述探头20探测的回波信号经所述第一信号放大器113进行信号放大后,所述第一模数转换器114将所述模拟信 号转换为数字信号,所述数字信号传输至所述第一控制处理器111,所述第一控制处理器111对接收到的数据进行数据转换、处理、滤波等操作。所述压力检测处理器116与所述第一控制处理器111连接,所述压力检测处理器116将检测到所述探头20与接触部位接触的压力值,传输至所述第一控制处理器111,所述第一控制处理器111将压力值传输至显示装置进行显示,便于用户实时监测。
在本实施例中,所述第一控制处理器111为现场可编辑门阵列(Field-Programmable Gate Array:FPGA)板。所述FPGA生成第二激励信号,所述第二激励信号驱动探头20产生超声信号。所述FPGA发送第二激励信号,所述第一激励信号经所述剪切波驱动器112进行信号放大,进而所述第一激励信号激励所述探头20产生低频剪切波。所述低频剪切波在不同硬度组织中传播速度不同,所述超声信号携带所述第一剪切波的传播速度信息传输至所述组织参数检测模块110,进而准确定量的计算组织硬度。
所述成像模块120产生根据控制指令产生和处理成像信号,所述成像信号经所述探头20发出,用于进行精确的定位,进而为所述组织参数检测模块110选择探测的合适诊断位置和角度。所述成像模块120包括第二控制处理器121、第二信号放大器122、第二模数转换器123以及第二信号发射器124,所述第二控制处理器121与所述第二信号发射器124连接,所述第二控制处理器121发送驱动脉冲至所述第二信号发射器124,所述第二信号发射器124将所述驱动脉冲传递至所述探头20进而驱动探头20产生超声信号。所述第二控制处理器121与所述第二模数转换器123、第二信号放大器122依次连接,用于处理超声回波信号,即接收所述探头20探测的超声回波信号经所述第二信号放大器122进行信号放大后,所述第二模数转换器123将所述模拟信号转换为数字信号,所述数字信号传输至所述第二控制处理器121。
在本实施例中,所述第二控制处理器121为现场可编辑门阵列(Field-Programmable Gate Array:FPGA)板。当然根据设计需要,所述第一控制处理器111与所述第二控制处理器121可为STM32单片机、ARM芯片中的任意一种,只要能够实现数据处理、对其相连器件控制、发送第一激励信号和第二激励信号即可。
所述控制模块130用于处理所述组织参数检测信号和所述成像信号,并根据所述组织参数检测信号及所述成像信号控制所述探头20进行组织参数检测模式或者成像模式检测,所述控制模块130包括切换控制子模块131、探头切换单元132及阵元切换单元133,所述探头切换单元132与所述探头20连接并能够向所述探头20输出信号脉冲,同时实现不同探测物(探测肝脏、胸腔等身体部位)下,探头的切换,所述切换控制子模块131用于控制所述探头20在所述组织参数检测模式和所述成像模式之间切换。所述切换控制子模块131包括转换开关,所述转换开关用于将所述参数检测模块110或所述成像模块120与所述探头20连接。所述阵元切换单元133根据所述控制模块130发送的控制信号进行对应于成像模式的第一工作阵元以及对应于参数检测模式的第二工作阵元之间的切换。
探头20,集成成像检测模式和参数检测模式,包括剪切波发生器210、压力检测器220及换能器阵列230,所述剪切波发生器210经低频激励信号驱动产生低频剪切波,所述压力检测器220用于检测所述探头20对其接触部位的压力大小,所述换能器阵列230用于声(超声信号)电信号换。其中,所述压力检测器220将检测的压力值信息传递给所述组织参数检测模块110中的压力检测处理器116,所述压力检测处理器116将压力值信息传递给所述第一控制处理器111,进而实现实时监测所述探头20与其接触的部位之间的压力信息。在本实施例中,所述换能器阵列230包括阵元组件231,所述阵元组件231为压电陶瓷组件,用于声(超声信号)电(电信号)转换。所述阵元组件231包括第一工作阵元2311以及第二工作阵元2312,所述第一工作阵元2311用于实现实现超声成像模式的成像功能,所述第二工作阵元2312用于实现参数检测模式的参数检测功能。
所述第二工作阵元为一个或多个阵元;所述第一工作阵元为两个以上阵元。所述第一工作阵元2311的阵元数为N阵元,所述第二工作阵元2312为所述第一工作阵元2311的子集,所述第二工作阵元2312的阵元数为n。在本实施例中,所述第一工作阵元2311的阵元数为64阵元,根据设计需要,所述第二工作阵元2312的阵元数选取所述第一工作阵元2311的阵元数的中间位置,进而所述第二工作阵元2312的阵元数为16阵元。根据理论可知,所述第一工作阵元2311的阵元数可为64阵元至128阵元中的任 一组合阵元数。同理,所述第二工作阵元2312根据所述第一工作阵元2311的阵元数进行相应调整,即所述第二工作阵元2312的阵元数可为6阵元至16阵元中的任一组合阵元数。
剪切波发生器带动探头振动,所述探头的振动频率范围为:1-1000Hz。
阵元设计原理:各阵元间间距越小,陶瓷片越薄,频率越高,损耗越大。
在本实施例中,根据所述探头的探测深度及探测角度,确定所述阵元组件中各阵元间间距为0.01–20mm,根据要检测部位的响应频率,确定所述探头的频率带宽为0.5-50MHz,中心频率为2.5M,根据所述探头的探测深度及探测角度,确定所述探头半径为0.5–100mm。所述探头前端厚度小于等于20mm。所述探头包括线阵探头、相控阵探头、面阵探头或者凸阵探头中的一种。
所述组织弹性检测系统集成超声检测模式和弹性检测模式,进而集成影像引导功能和弹性检测功能。利用影像引导功能定位出最佳位置后,切换成弹性检测模式即启动弹性检测功能,实现弹性检测。探头20的应用实现不更换探头,不会造成位置偏移,能够准确、简便、高效的实现组织弹性检测。
当探头20实现影像引导功能时,所述控制模块130发送控制信号控制所述换能器阵列开启N个阵元组件,进入成像模式,同时,所述控制模块发送控制信号传输至所述阵元切换单元133,所述阵元切换单元133控制探头20第一工作阵元2311工作,所述第二控制处理器121发送驱动脉冲至所述第二信号发射器124,所述第二信号发射器124将所述驱动脉冲传递至所述探头20进而驱动探头20内的换能器阵列230,所述换能器阵列230内的第一工作阵元2311受激励产生并发射超声波,进而进行待测对象的位置进行检测。所述超声波的回波信号经所述探头20接收,经换能器阵列230内的第一工作阵元2311将所述回波信号转换为电信号,并传输至所述成像模块120,所述成像模块120内的第二信号放大器122将所述电信号放大后传输至所述第二模数转换器123进行模数转换,将数字信号至所述第二控制处理器121,所述第二控制处理器121对所述数字信号进行数据转换、处理、滤波等操作后,将所述处理后的数字信号传输至 显示装置进行显示,得到超声检测图像。
当探头20实现弹性检测功能时,所述控制模块130发送控制信号控制所述换能器阵列开启n个阵元组件,进入弹性检测模式。同时,所述控制模块发送控制信号传输至所述阵元切换单元133,所述阵元切换单元133控制探头20第二工作阵元2312工作,此时,所述第二工作阵元2312内多个阵元并联,相当于合成一个阵元,所述弹性检测模块110的第一控制处理器111发送低频激励信号至探头20,所述探头20内的第二工作阵元2312受激励,进而驱动探头20内的剪切波发生器210产生低频剪切波,所述组织参数检测模块110的第一控制处理器111发送高压激励信号传输至所述探头20后,所述高压激励信号驱动所述换能器阵列230内的第二工作阵元2312,产生并发射超声波,以追踪低频剪切波在待测组织中的运动。所述换能器阵列230接收所述超声波的回波,第二工作阵元2312将所述回波转换成电信号,所述电信号经弹性检测模块110的第一信号放大器113放大后传输至所述第一模数转换器114进行模数转换,将数字信号至所述弹性检测模块110的第一控制处理器111,所述第一控制处理器111对所述数字信号进行数字处理、转换及滤波后,传输至所述显示装置进行显示,进而得到组织弹性检测结果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种探头,能够执行成像检测和参数检测,其特征在于,包括:
    剪切波发生器,经低频激励信号驱动产生低频剪切波;
    换能器阵列,用于声电转换,其包括阵元组件,所述阵元组件用于实现超声成像模式或参数检测模式检测,所述阵元组件包括第一工作阵元以及第二工作阵元,所述第一工作阵元用于实现超声成像模式的成像功能,所述第二工作阵元用于实现参数检测模式的参数检测功能。
  2. 根据权利要求1所述的探头,其特征在于,所述第二工作阵元为一个或多个阵元;所述第一工作阵元为两个以上阵元。
  3. 根据权利要求1所述的探头,其特征在于,
    所述剪切波发生器带动探头振动,所述探头的振动频率范围为:1-1000Hz。
  4. 根据权利要求1所述的探头,其特征在于,所述探头的频率带宽由待测对象的响应频率确定。
  5. 如权利要求4所述的探头,其特征在于,
    所述探头的频率带宽范围为0.5-50MHz。
  6. 根据权利要求1所述的探头,其特征在于,所述阵元组件中各阵元间间距由所述探头的探测深度和探测角度确定。
  7. 如权利要求6所述的探头,其特征在于,
    所述阵元组件中各阵元间间距范围为0.01-20mm。
  8. 根据权利要求1所述的探头,其特征在于,所述探头包括线阵探头、相控阵探头、面阵探头或者凸阵探头中的一种。
  9. 根据权利要求1所述的探头,其特征在于,
    所述探头半径由所述探头的探测深度及探测角度确定。
  10. 根据权利要求9所述的探头,其特征在于,
    所述探头半径范围为0.5-100mm。
  11. 根据权利要求1所述的探头,其特征在于,所述探头前端厚度小于等于20mm。
  12. 一种组织弹性检测系统,其特征在于,包括组织参数检测模块、成像模块、控制模块以及权利要求1至11中任一项所述的探头:
    所述组织参数检测模块,用于根据控制指令产生和处理组织参数检测信号;
    所述成像模块,用于根据控制指令产生和处理成像信号;
    所述控制模块,与所述组织参数检测模块、所述成像模块以及所述探头相连,用于控制所述探头进入参数检测模式或者成像模式,以及向所述组织参数检测模块或成像模块发送控制指令。
  13. 根据权利要求12所述的组织弹性检测系统,其特征在于,
    所述控制模块包括切换控制子模块,所述切换控制子模块用于控制所述探头在所述组织参数检测模式和所述成像超模式之间切换。
PCT/CN2020/090552 2019-07-15 2020-05-15 探头和组织弹性检测系统 WO2021008218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910635652.5 2019-07-15
CN201910635652.5A CN110301938A (zh) 2019-07-15 2019-07-15 探头和组织弹性检测系统

Publications (1)

Publication Number Publication Date
WO2021008218A1 true WO2021008218A1 (zh) 2021-01-21

Family

ID=68081196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090552 WO2021008218A1 (zh) 2019-07-15 2020-05-15 探头和组织弹性检测系统

Country Status (2)

Country Link
CN (1) CN110301938A (zh)
WO (1) WO2021008218A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301938A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 探头和组织弹性检测系统
CN110720948B (zh) * 2019-11-12 2021-02-02 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法
CN111110279A (zh) * 2020-01-13 2020-05-08 卓瑞姆生物技术有限公司 一种超声成像设备及其成像方法
CN113081041B (zh) * 2021-04-06 2024-02-13 无锡海斯凯尔医学技术有限公司 复合设备的控制方法、装置、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699280A (zh) * 2009-10-15 2010-04-28 北京索瑞特医学技术有限公司 超声无损检测粘弹性介质弹性的方法及其装置
WO2015104582A1 (en) * 2014-01-08 2015-07-16 Amid S.R.L. Method and device for estimation of the elastic properties of tissues, particularly muscle tissues
CN105395218A (zh) * 2015-11-10 2016-03-16 中国科学院声学研究所 超声弹性成像系统及方法
CN205458781U (zh) * 2016-02-23 2016-08-17 汕头市超声仪器研究所有限公司 一种剪切波弹性成像与准静态弹性成像相结合的超声成像设备
CN110301938A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 探头和组织弹性检测系统
CN110301939A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 组织成像和参数检测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679B (zh) * 2011-08-04 2014-05-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
CN108095762A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN208838001U (zh) * 2018-01-18 2019-05-10 北京索瑞特医学技术有限公司 复合探头及测量系统
CN211049411U (zh) * 2019-07-15 2020-07-21 无锡海斯凯尔医学技术有限公司 探头和组织弹性检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699280A (zh) * 2009-10-15 2010-04-28 北京索瑞特医学技术有限公司 超声无损检测粘弹性介质弹性的方法及其装置
WO2015104582A1 (en) * 2014-01-08 2015-07-16 Amid S.R.L. Method and device for estimation of the elastic properties of tissues, particularly muscle tissues
CN105395218A (zh) * 2015-11-10 2016-03-16 中国科学院声学研究所 超声弹性成像系统及方法
CN205458781U (zh) * 2016-02-23 2016-08-17 汕头市超声仪器研究所有限公司 一种剪切波弹性成像与准静态弹性成像相结合的超声成像设备
CN110301938A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 探头和组织弹性检测系统
CN110301939A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 组织成像和参数检测系统

Also Published As

Publication number Publication date
CN110301938A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021008218A1 (zh) 探头和组织弹性检测系统
WO2021008217A1 (zh) 组织成像和参数检测系统
US9986973B2 (en) Method for shear wave ultrasound vibrometry with interleaved push and detection pulses
JP5283888B2 (ja) 超音波診断装置
JP5420884B2 (ja) 超音波診断装置
EP0146073B1 (en) Ultrasonic diagnosing apparatus
CN105395218A (zh) 超声弹性成像系统及方法
JP2005534455A5 (zh)
WO2013018905A1 (ja) 超音波プローブ及び超音波診断装置
CN101460094A (zh) 多频多普勒超声波探头
JP2021151494A (ja) 非対称送信信号を用いる超音波システム
AU2019228303B2 (en) Hybrid elastography method, probe, and device for hybrid elastography
JP2012055355A (ja) 超音波診断装置
JP2012050516A (ja) 携帯型超音波診断装置
JP2002253549A (ja) 超音波撮像装置、超音波撮像方法及び探触子
JP4945326B2 (ja) 超音波診断装置
JP4074100B2 (ja) 超音波画像診断装置
US8905933B2 (en) Ultrasonic diagnostic apparatus
CN211049411U (zh) 探头和组织弹性检测系统
CN211049410U (zh) 组织成像和参数检测系统
JP2013141575A (ja) 超音波診断装置、超音波プローブ及びプログラム
KR20110003057A (ko) 초음파 프로브 및 초음파 진단장치
JP2012196390A (ja) 超音波診断装置
KR101053286B1 (ko) 초음파 프로브 및 초음파 진단장치
KR102303830B1 (ko) 고조파 영상을 생성할 수 있는 초음파 진단 장치 및 고조파 영상을 포함하는 초음파 영상 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839569

Country of ref document: EP

Kind code of ref document: A1