WO2021008189A1 - 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置 - Google Patents

基于微波光子辅助去斜后带宽合成的雷达探测方法及装置 Download PDF

Info

Publication number
WO2021008189A1
WO2021008189A1 PCT/CN2020/087451 CN2020087451W WO2021008189A1 WO 2021008189 A1 WO2021008189 A1 WO 2021008189A1 CN 2020087451 W CN2020087451 W CN 2020087451W WO 2021008189 A1 WO2021008189 A1 WO 2021008189A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency
signal
signals
skew
Prior art date
Application number
PCT/CN2020/087451
Other languages
English (en)
French (fr)
Inventor
潘时龙
马丛
陈浩
叶星炜
王祥传
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2021008189A1 publication Critical patent/WO2021008189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • G01S7/4866Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak by fitting a model or function to the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the invention relates to a radar detection method, in particular to a microwave photon assisted radar detection method and device.
  • Radar is an important means for humans to detect and recognize targets in all weather, and has extremely important applications in both civil and military fields.
  • linear frequency modulation signals with large bandwidth are widely used in radar systems.
  • radar systems have higher and higher requirements for resolution, traditional radar technology cannot meet the needs of future applications.
  • Optical domain de-skew processing is a technical solution currently reported in microwave photon radars that can reduce the radar system's high sampling rate requirements (see [F.Zhang,Q.Guo,Z.Wang,P.Zhou,G.Zhang, J. Sun, and S. Pan, "Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt.Express 25(14), 16274(2017).]).
  • the frequency of the skew signal of the large-bandwidth chirp signal is still very high, so the sampling rate is very high, high-frequency and large-bandwidth electronic devices are required, and it is difficult to process the data in real time. Therefore, research that can improve the range resolution of radar systems under low sampling rate requirements is of great significance to the improvement and improvement of the ability to detect targets.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a radar detection method based on microwave photon-assisted de-skew bandwidth synthesis. It also has the advantages of microwave photon technology and bandwidth synthesis radar technology, and can utilize low cost and low speed.
  • the electronic device realizes the fast processing of the equivalent large bandwidth signal and realizes the purpose of real-time high-resolution detection.
  • the radar detection method based on microwave photon assisted de-skewing bandwidth synthesis proposed in the present invention includes:
  • wavelength demultiplexing and polarization demultiplexing are performed on the combined optical signal, and the separated 2n modulated optical signals are divided into two channels, and one channel is photoelectrically converted into m-multiplied chirp signals. Radiated by the transmitting array element, the other path is used as the optical reference signal received by the optical domain de-skew;
  • the receiving end using the 2n optical reference signals to perform optical domain de-skew processing on the echo signals collected by the 2n receiving array elements, and then obtain 2n low-frequency de-skew signals carrying target information through photoelectric conversion; 2n low-frequency de-skew signals undergo analog-to-digital conversion, and perform phase and amplitude compensation in the digital domain, and then delay these 2n low-frequency de-skew signals by 0, ⁇ f 1 /k, ..., in the order of numbering from low to high.
  • the n polarization multiplexing modulated optical signals are obtained through n polarization division multiplexing modulators, and each polarization division multiplexing modulator modulates two intermediate frequency chirp electrical signals to two positive signals of one optical signal. Cross polarization state.
  • the polarization division multiplexing modulator is a polarization division multiplexing dual-parallel Mach-Zehnder modulator.
  • the optical domain de-skew processing is implemented by a Mach-Zehnder modulator working at an orthogonal bias point.
  • a radar detection device based on microwave photon-assisted de-skew and bandwidth synthesis including:
  • Optical domain signal frequency doubling and multiplexing module used to use 2n intermediate frequency chirp electrical signals with the same frequency modulation slope and increasing or decreasing center frequency in one-to-one correspondence between two orthogonal of n optical signals with different wavelengths
  • Electro-optical modulation in m-frequency double mode is performed on the polarization state, and the obtained n-channel polarization multiplexed modulated optical signal is combined into one channel and sent to the transmitting end.
  • the bandwidth B i of the i-th IF chirp electrical signal is greater than or equal to the first
  • the optical domain demultiplexing module which is located at the transmitting end, is used to perform wavelength demultiplexing and polarization demultiplexing on the combined optical signal, and divide the separated 2n channels of modulated optical signals into two channels.
  • the chirp signal converted into m-multiplied frequency is radiated out by the transmitting array element, and the other path is used as the optical reference signal received by optical domain de-skew;
  • Optical domain de-skew receiving module which is located at the receiving end, is used to use the 2n optical reference signals to perform optical domain de-skew processing on the echo signals collected by 2n receiving array elements, and then obtain 2n carrying targets through photoelectric conversion Low-frequency de-skew signal of information;
  • the digital bandwidth synthesis module is used to perform analog-to-digital conversion on the 2n low-frequency de-skew signals, and perform phase and amplitude compensation in the digital domain, and then respectively extend the 2n low-frequency de-skew signals in the order of numbering from low to high.
  • ⁇ f 1 /k ..., ( ⁇ f 1 + ⁇ f 2 +...+ ⁇ f 2n-1 )/k, remove the overlapping part, and synthesize an equivalent bandwidth m[ ⁇ f 1 + ⁇ f 2 +...+ ⁇ f 2n-1 + (B 1 +B 2n )/2] chirp result, where k is the slope of the intermediate frequency chirp signal.
  • the optical domain signal frequency multiplication and multiplexing module includes n polarization division multiplexing modulators, and each polarization division multiplexing modulator modulates two intermediate frequency chirp electrical signals to two positive signals of an optical signal. Cross polarization state.
  • the polarization division multiplexing modulator is a polarization division multiplexing dual-parallel Mach-Zehnder modulator.
  • the optical domain de-skew receiving module includes 2n Mach-Zehnder modulators working at orthogonal bias points.
  • the present invention uses low-speed electronic devices to quickly synthesize and process the de-skew signal, realizes the processing of equivalent large-bandwidth signals, reduces the system's demand for sampling rate, and can effectively solve the problem of mismatch between optical broadband bearer and electrical narrowband processing, thereby obtaining Real-time high-resolution detection results; 2.
  • the present invention simultaneously adopts optical wavelength division multiplexing and polarization division multiplexing technology to transmit and process multiple channels of signals, which can realize a relatively compact structure and reduce system cost.
  • Figure 1 is a schematic diagram of the structure and principle of a radar detection device based on microwave photon-assisted de-skew and bandwidth synthesis according to the present invention
  • Figure 2 is a schematic structural diagram of a preferred embodiment of the radar detection device of the present invention.
  • Figure 3 is a schematic diagram of the principle of bandwidth synthesis
  • Figure 4 is a schematic diagram of the effect comparison before and after bandwidth synthesis.
  • the idea of the present invention is to use the characteristics of microwave photonics technology such as large bandwidth, low loss and multiple degrees of freedom of parallel processing combined with the characteristics of chirp to synthesize and process the de-skew signal with low-cost and low-speed electronic devices.
  • real-time high-resolution detection is realized.
  • the radar detection method based on microwave photon assisted de-skewing bandwidth synthesis proposed in the present invention includes:
  • wavelength demultiplexing and polarization demultiplexing are performed on the combined optical signal, and the separated 2n modulated optical signals are divided into two channels, and one channel is photoelectrically converted into m-multiplied chirp signals. Radiated by the transmitting array element, the other path is used as the optical reference signal received by the optical domain de-skew;
  • the receiving end using the 2n optical reference signals to perform optical domain de-skew processing on the echo signals collected by the 2n receiving array elements, and then obtain 2n low-frequency de-skew signals carrying target information through photoelectric conversion; 2n low-frequency de-skew signals undergo analog-to-digital conversion, and perform phase and amplitude compensation in the digital domain, and then delay these 2n low-frequency de-skew signals by 0, ⁇ f 1 /k, ..., in the order of numbering from low to high.
  • Figure 1 shows the basic structure of the radar detection device of the present invention.
  • the dotted lines in the figure represent electrical signals and the solid lines represent optical signals.
  • the radar detection device of the present invention includes:
  • Optical domain signal frequency doubling and multiplexing module used to use 2n intermediate frequency chirp electrical signals with the same frequency modulation slope and increasing or decreasing center frequency in one-to-one correspondence between two orthogonal of n optical signals with different wavelengths Electro-optical modulation in m-frequency double mode is performed on the polarization state, and the obtained n-channel polarization multiplexed modulated optical signal is combined into one channel and sent to the transmitting end.
  • the bandwidth B i of the i-th IF chirp electrical signal is greater than or equal to the first
  • the optical domain demultiplexing module which is located at the transmitting end, is used to perform wavelength demultiplexing and polarization demultiplexing on the combined optical signal, and divide the separated 2n channels of modulated optical signals into two channels.
  • the chirp signal converted into m-multiplied frequency is radiated out by the transmitting array element, and the other path is used as the optical reference signal received by optical domain de-skew;
  • Optical domain de-skew receiving module which is located at the receiving end, is used to use the 2n optical reference signals to perform optical domain de-skew processing on the echo signals collected by 2n receiving array elements, and then obtain 2n carrying targets through photoelectric conversion Low-frequency de-skew signal of information;
  • the digital bandwidth synthesis module is used to perform analog-to-digital conversion on the 2n low-frequency de-skew signals, and perform phase and amplitude compensation in the digital domain, and then respectively extend the 2n low-frequency de-skew signals in the order of numbering from low to high.
  • ⁇ f 1 /k ..., ( ⁇ f 1 + ⁇ f 2 +...+ ⁇ f 2n-1 )/k, remove the overlapping part, and synthesize an equivalent bandwidth m[ ⁇ f 1 + ⁇ f 2 +...+ ⁇ f 2n-1 + (B 1 +B 2n )/2] chirp result, where k is the slope of the intermediate frequency chirp signal.
  • the optical domain signal frequency multiplication and multiplexing module includes n polarization division multiplexing modulators, and each polarization division multiplexing modulator modulates two intermediate frequency chirp electrical signals into two orthogonal signals of an optical signal. On the polarization state.
  • the polarization multiplexing modulator may be a polarization division multiplexing double-parallel Mach-Zehnder modulator or a polarization-division multiplexing Mach-Zehnder modulator, etc.
  • the present invention preferably adopts a polarization-division multiplexing double-parallel Mach-Zehnder modulator.
  • Figure 2 The specific structure of this embodiment is shown in Figure 2, which consists of optical domain signal frequency multiplication and multiplexing modules (including lasers, polarization division multiplexing dual-parallel Mach-Zehnder modulator and optical wavelength division multiplexer), optical domain demultiplexing Use modules (including optical wavelength division multiplexer, polarization beam splitter, coupler, photodetector), optical domain de-skew receiving module (including Mach-Zehnder modulator, photodetector), digital bandwidth synthesis module, optical amplifier, It is composed of power amplifier, low noise amplifier, and transceiver array element.
  • the chirp signal in Figure 2 is generated by an electrical signal generator.
  • the optical carriers of different wavelengths generated by n lasers are input into the polarization division multiplexing dual-parallel Mach-Zehnder modulator.
  • the 2n intermediate frequency chirp signals generated by the electric signal generator are used as the driving signal, which can be expressed as:
  • the combined optical signal enters the optical amplifier and is amplified and then input to the optical domain demultiplexing module.
  • the modulator can produce different sidebands, that is, work in different multiplication modes:
  • the 4-fold frequency mode is taken as an example.
  • the optical wavelength division multiplexer separates the n optical signals of different wavelengths in the optical modulation signal into n optical signals, and each optical signal passes through a polarization beam splitter, so that two positive The cross polarization state is separated into two polarization state branches, and finally 2n optical signals are separated.
  • Each optical signal is divided into two branches through an optical coupler.
  • One of the branches is provided to the optical domain deskewing module as an optical reference signal, and the other branch is converted into a 4 times frequency electrical signal by a photodetector. ,
  • the signal after 4 times the frequency can be expressed as:
  • the signal that has been multiplied by 4 passes through the power amplifier and is fed into the transmitting array element to radiate into the environment containing the detection target.
  • the echo signal reflected by the target is received by the receiving element and enters the low-noise amplifier for amplification.
  • the amplified echo signal is modulated by the Mach-Zehnder modulator in the optical domain de-skew receiving module to modulate the reference optical signal, where Mach is The Zender modulator works at the quadrature bias point.
  • the output optical signal of the Mach-Zehnder modulator enters the low-frequency photodetector to complete the photoelectric conversion, thereby completing the de-skew. Assuming that the delay of the echo signal is ⁇ , the signal after de-skew can be expressed as:
  • r 1 (t) cos ⁇ 2 ⁇ [4f c1 ⁇ -2k 1 ⁇ 2 +4k 1 ⁇ t] ⁇ (4)
  • FIG. 3 is a schematic diagram of the basic principle of bandwidth synthesis after microwave photon de-skew processing.
  • the dashed box in the figure shows the waveform of the de-skew signal.
  • Figure 4 is a schematic diagram of the power spectrum comparison before and after the synthesis of the de-skew signal. It is obvious that the main lobe of the signal power spectrum after synthesis is much narrower than before synthesis, which indicates that the resolution after synthesis has been greatly improved. Through the existing radar algorithm, the distance, speed, image and other information of the detected target can be extracted from the combined de-skew processing result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于频谱拼接的射频线性调频信号生成方法。本发明将光载波转换为频率呈周期性变化的N个光脉冲连续拼接而成的多载波光信号,然后用原始射频线性调频信号对所述多载波光信号进行载波抑制单边带调制,得到光线性调频信号,最后用光线性调频信号与光载波的移频信号进行拍频即可得到带宽扩大为N倍的射频线性调频信号。本发明还公开了一种基于频谱拼接的射频线性调频信号生成装置。相比现有技术,本发明可生成带宽大幅提高的线性调频信号或双啁啾线性调频信号。

Description

基于微波光子辅助去斜后带宽合成的雷达探测方法及装置 技术领域
本发明涉及一种雷达探测方法,尤其涉及一种微波光子辅助的雷达探测方法及装置。
背景技术
雷达是人类进行全天候目标探测与识别的重要手段,在民用和军事领域都有着极其重要的应用。为了实现高距离分辨率的探测,在雷达系统中广泛采用了具有大带宽的线性调频信号。然而,随着雷达系统对分辨率的要求越来越高,传统的雷达技术难以满足未来应用的需求。将具有带宽大、传输损耗小、抗电磁干扰等特点的微波光子技术应用于雷达系统,可以提高传统雷达的技术性能(参见[G.Serafino,F.Scotti,L.Lembo,B.Hussain,C.Porzi,A.Malacarne,S.Maresca,D.Onori,P.Ghelfi,and A.Bogoni,“Toward a new generation of radar systems based on microwave photonic technologies,”J.Lightw.Technol.37(2),643–650(2019).])。但是,对超大带宽的线性调频信号直接进行采样、脉冲压缩,需要很高的采样率和很强的信号处理能力,很难进行实时处理。
光域去斜处理是目前报道的微波光子雷达中可以降低雷达系统对高采样率要求的一种技术方案(参见[F.Zhang,Q.Guo,Z.Wang,P.Zhou,G.Zhang,J.Sun,and S.Pan,“Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,”Opt.Express 25(14),16274(2017).])。但是在远距离探测情况下,大带宽线性调频信号的去斜信号频率依然很高,因此对采样率有很高的要求,需要高频大带宽的电子器件,且难以对数据进行实时处理。因此,研究能够在低采样率需求的情况下,提高雷达系统距离分辨率,对检测目标能力的提升和改善非常有意义。
发明内容
本发明所要解决的技术问题在于克服现有技术不足,提供一种基于微波光子辅助去斜后带宽合成的雷达探测方法,同时具有微波光子技术和带宽合成雷达技术的优势,可利用低成本的低速电子器件实现等效大带宽信号的快速处理,实现 实时高分辨率探测的目的。
本发明所提出的基于微波光子辅助去斜后带宽合成的雷达探测方法,包括:
用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数,i=1,2,…,2n-1;
在发射端,对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
在接收端,利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
优选地,所述n路偏振复用调制光信号通过n个偏分复用调制器得到,每个偏分复用调制器将两个中频线性调频电信号分别调制于一路光信号的两个正交偏振态上。
进一步优选地,所述偏分复用调制器为偏分复用双平行马赫增德尔调制器。
优选地,所述光域去斜处理通过工作在正交偏置点的马赫增德尔调制器实现。
根据相同的发明思路还可以得到以下技术方案:
基于微波光子辅助去斜后带宽合成的雷达探测装置,包括:
光域信号倍频及复用模块,用于用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个 与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数,i=1,2,…,2n-1;
光域解复用模块,其位于发射端,用于对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
光域去斜接收模块,其位于接收端,用于利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;
数字带宽合成模块,用于对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
优选地,所述光域信号倍频及复用模块包括n个偏分复用调制器,每个偏分复用调制器将两个中频线性调频电信号分别调制于一路光信号的两个正交偏振态上。
进一步优选地,所述偏分复用调制器为偏分复用双平行马赫增德尔调制器。
优选地,所述光域去斜接收模块包括2n个工作在正交偏置点的马赫增德尔调制器。
相比现有技术,本发明技术方案具有以下有益效果:
1、本发明利用低速电子器件对去斜信号快速合成处理,实现等效大带宽信号的处理,降低系统对采样率的需求,可以有效解决光宽带承载和电窄带处理不匹配的问题,从而获得实时的高分辨探测结果;2、本发明同时采用光波分复用和偏分复用技术对多路信号传输、处理,可实现较为紧凑的结构,减小系统成本。
附图说明
图1为本发明基于微波光子辅助去斜后带宽合成的雷达探测装置的结构原理示意图;
图2为本发明雷达探测装置一个优选实施例的结构示意图。
图3为带宽合成的原理示意图;
图4为带宽合成前、后的效果对比示意图。
具体实施方式
针对现有技术不足,本发明的思路是利用微波光子技术的大带宽、低损耗及多并行处理自由度等特性结合线性调频波的特点,以低成本的低速电子器件对去斜信号合成处理,以解决传统雷达的工作带宽瓶颈,实现实时的高分辨率探测。
本发明所提出的基于微波光子辅助去斜后带宽合成的雷达探测方法,包括:
用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数,i=1,2,…,2n-1;
在发射端,对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
在接收端,利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
图1显示了本发明雷达探测装置的基本结构,图中的虚线表示电信号,实线表示光信号。如图1所示,本发明雷达探测装置包括:
光域信号倍频及复用模块,用于用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数, i=1,2,…,2n-1;
光域解复用模块,其位于发射端,用于对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
光域去斜接收模块,其位于接收端,用于利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;
数字带宽合成模块,用于对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
其中,所述光域信号倍频及复用模块包括n个偏分复用调制器,每个偏分复用调制器将两个中频线性调频电信号分别调制于一路光信号的两个正交偏振态上。通过调节偏分复用调制器的偏置点可控制调制器的工作模式,进而调节倍频次数m。所述偏振复用调制器可以为偏分复用双平行马赫曾德尔调制器或偏分复用马赫曾德尔调制器等,本发明优选采用偏分复用双平行马赫曾德尔调制器。
为便于公众理解,下面通过一个具体实施例来对本发明的技术方案进行进一步详细说明:
本实施例的具体结构如图2所示,其由光域信号倍频及复用模块(包含激光器、偏分复用双平行马赫增德尔调制器和光波分复用器)、光域解复用模块(包含光波分复用器、偏振分束器、耦合器、光电探测器)、光域去斜接收模块(包含马赫增德尔调制器、光电探测器)、数字带宽合成模块、光放大器、功率放大器、低噪声放大器、收发阵元组成。图2中线性调频信号由电信号发生器产生。
首先,n个激光器产生的不同波长的光载波输入偏分复用双平行马赫曾德尔调制器。电信号发生器产生的2n个中频线性调频信号作为驱动信号,其可表示为:
Figure PCTCN2020087451-appb-000001
其中,1≤i≤2n,-T i/2≤t≤T i/2,V s、f ci、k i、T i分别为信号的幅度、中心频率、调频斜率和脉宽;信号的带宽B i=k iT i,中心频率间隔Δf i=f ci+1-f ci;每两个电中频线性调频信号对一个波长的两个偏振态进行调制,从而将2n个电中频信号转换为n路光信号,将这n路光信号输入到光波分复用器合并为1路光调制信号。合并后的光信号进入光放大器放大后输入到光域解复用模块。通过控制调制器的偏置电压可使调制器产生不同的边带,即工作在不同的倍频模式:
1倍频模式(m=1):每一个偏振态上的两个子调制器和其合成臂均偏置于正交点,两个调制器端口分别接所述电中频线性调频信号经过90°微波电桥后产生的两路相位相差90°的信号;此时只保留载波和+1或-1阶边带;
2倍频模式(m=2):每一个偏振态上的两个子调制器都偏置于最小点,其合成臂偏置于最大点,两个调制器端口分别接所述电中频线性调频信号;此时只保留+1和-1阶边带;
4倍频模式(m=4):每一个偏振态上的两个子调制器都偏置于最大工作点,其合成臂偏置于最小点,两个调制器端口分别接所述电中频线性调频信号经过90°微波电桥后产生的两路相位相差90°的信号;此时只保留+2和-2阶边带。
在此实施例中,以4倍频模式为例。
在光域解复用模块中,通过光波分复用器将光调制信号中n个不同波长的光信号分离为n路光信号,每一路光信号经过一个偏振分束器,从而使得两个正交偏振态分离为两个偏振态支路,最终分离出2n路光信号。每一路光信号再经过一个光耦合器分为两个支路,其中一个支路提供给光域去斜接收模块作为光参考信号,另外一个支路经过光电探测器转换为4倍频的电信号,经过4倍频后的信号可以表示为:
I i(t)∝cos[2π(4f cit+2k it 2)]   (2)
经过4倍频后的信号经过功率放大器后馈入发射阵元辐射至包含探测目标的环境中。
经目标反射的回波信号被接收阵元接收,进入低噪声放大器放大,经过放大后的回波信号通过光域去斜接收模块中的马赫增德尔调制器对参考光信号进行调制,此处马赫增德尔调制器工作在正交偏置点。马赫增德尔调制器的输出光信号进入低频的光电探测器完成光电转换,从而完成去斜。假设回波信号的延时为 τ,则去斜后的信号可表示为:
r i(t)cos{2π[4f ciτ-2k iτ 2+4k iτt]}    (3)
为了便于理解,以两个信号(i=1,2)为例,将其分别表示为:
r 1(t)=cos{2π[4f c1τ-2k 1τ 2+4k 1τt]}   (4)
Figure PCTCN2020087451-appb-000002
使两个信号具有相同的调频斜率,即k 1=k 2,将信号r 2(t)延时T=Δf 1/k,得到:
r 2(t-T)=cos{2π[4f c1τ-2k 1τ 2+4k 1τt]}    (6)
可以看出,(4)(6)两式表达形式完全相同,此时两个信号即可拼接在一起。与之相似,2n路去斜信号做相应延时后即可拼接为一个信号。
在数字带宽合成模块中将2n个信号经过模数转换后,通过数字信号处理将其第1~2n个信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,并将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果。图3为微波光子去斜处理后带宽合成的基本原理示意图,图中虚线框内为去斜信号的波形表示。图4是去斜信号合成前后的功率谱对比示意图,很明显可以看出合成后的信号功率谱主瓣比合成前窄很多,这表明合成后的分辨率得到了很大的提高。通过现有的雷达算法即可在合成后的去斜处理结果中提取出探测目标的距离、速度、图像等信息。

Claims (8)

  1. 基于微波光子辅助去斜后带宽合成的雷达探测方法,其特征在于,包括:
    用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数,i=1,2,…,2n-1;
    在发射端,对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
    在接收端,利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
  2. 如权利要求1所述雷达探测方法,其特征在于,所述n路偏振复用调制光信号通过n个偏分复用调制器得到,每个偏分复用调制器将两个中频线性调频电信号分别调制于一路光信号的两个正交偏振态上。
  3. 如权利要求2所述雷达探测方法,其特征在于,所述偏分复用调制器为偏分复用双平行马赫增德尔调制器。
  4. 如权利要求1所述雷达探测方法,其特征在于,所述光域去斜处理通过工作在正交偏置点的马赫增德尔调制器实现。
  5. 基于微波光子辅助去斜后带宽合成的雷达探测装置,其特征在于,包括:
    光域信号倍频及复用模块,用于用调频斜率相等而中心频率依次增大或减小的2n个中频线性调频电信号一一对应地在n路不同波长的光信号的两个正交偏振态上分别进行m倍频模式的电光调制,并将所得到的n路偏振复用调制光信号合为一路后送至发射端,第i个中频线性调频电信号的带宽B i大于等于第i+1个与第i个中频线性调频电信号的中心频率间的频率间隔Δf i,m、n均为正整数, i=1,2,…,2n-1;
    光域解复用模块,其位于发射端,用于对所述合路光信号进行波长解复用和偏振解复用,并将分离出的2n路调制光信号都分为两路,一路光电转换为m倍频的线性调频信号后被发射阵元辐射出去,另外一个路作为光域去斜接收的光参考信号;
    光域去斜接收模块,其位于接收端,用于利用所述2n个光参考信号对2n个接收阵元收集的回波信号分别进行光域去斜处理,再经光电转换得到2n个携带目标信息的低频去斜信号;
    数字带宽合成模块,用于对所述2n个低频去斜信号进行模数转换,并在数字域进行相位、幅度补偿,然后按照编号由低到高的次序对这2n个低频去斜信号分别延时0,Δf 1/k,…,(Δf 1+Δf 2+…+Δf 2n-1)/k,将重叠部分去除,从而合成一个等效带宽为m[Δf 1+Δf 2+…+Δf 2n-1+(B 1+B 2n)/2]的线性调频信号的去斜结果,其中k为所述中频线性调频电信号的斜率。
  6. 如权利要求5所述雷达探测装置,其特征在于,所述光域信号倍频及复用模块包括n个偏分复用调制器,每个偏分复用调制器将两个中频线性调频电信号分别调制于一路光信号的两个正交偏振态上。
  7. 如权利要求6所述雷达探测装置,其特征在于,所述偏分复用调制器为偏分复用双平行马赫增德尔调制器。
  8. 如权利要求5所述雷达探测装置,其特征在于,所述光域去斜接收模块包括2n个工作在正交偏置点的马赫增德尔调制器。
PCT/CN2020/087451 2019-07-16 2020-04-28 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置 WO2021008189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641364.0A CN110350980B (zh) 2019-07-16 2019-07-16 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置
CN201910641364.0 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021008189A1 true WO2021008189A1 (zh) 2021-01-21

Family

ID=68176522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087451 WO2021008189A1 (zh) 2019-07-16 2020-04-28 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置

Country Status (2)

Country Link
CN (1) CN110350980B (zh)
WO (1) WO2021008189A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406662A (zh) * 2021-06-17 2021-09-17 南京航空航天大学 步进调频体制微波光子宽带mimo雷达探测方法及装置
CN113721202A (zh) * 2021-08-16 2021-11-30 南京航空航天大学 基于宽带频谱感知的微波光子雷达探测方法及装置
CN114122728A (zh) * 2021-11-24 2022-03-01 中国人民解放军国防科技大学 一种基于微波光子移相器的均匀圆形相控阵测向方法
CN114189281A (zh) * 2021-12-02 2022-03-15 南京航空航天大学 基于频域相位联合的光延时测量方法及装置
CN115173949A (zh) * 2022-06-09 2022-10-11 青岛农业大学 一种占空比可调的整流余弦微波信号发生器、方法及设备
CN115225160A (zh) * 2022-06-19 2022-10-21 中国人民解放军空军工程大学 一种倍频相位编码线性调频信号产生和接收的装置和方法
CN116182916A (zh) * 2023-04-27 2023-05-30 四川省医学科学院·四川省人民医院 一种宽带相位调制处理的光子传感系统
CN117406238A (zh) * 2023-10-09 2024-01-16 北京交通大学 一种微波光子双模式成像系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350980B (zh) * 2019-07-16 2020-06-26 南京航空航天大学 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置
CN113030929B (zh) * 2021-02-09 2023-06-06 清华大学 一种宽带雷达信号接收装置及接收方法
CN113612541B (zh) * 2021-09-09 2022-09-30 北京电子工程总体研究所 基于tdoa的目标模拟信号光子链路传输延时测量装置
CN114614903B (zh) * 2022-03-29 2023-12-15 中国科学院半导体研究所 一种光子信号发生器和发生方法
CN115276803B (zh) * 2022-08-01 2023-10-13 南京航空航天大学 一种全双工光载无线通信方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843398B1 (en) * 2016-05-20 2017-12-12 Rockwell Collins, Inc. Photonic direct sampling digital receiver
CN108287349A (zh) * 2018-01-10 2018-07-17 南京航空航天大学 微波光子mimo雷达探测方法及微波光子mimo雷达系统
CN108988955A (zh) * 2018-07-11 2018-12-11 南京航空航天大学 基于多路光参考信号的微波光子雷达探测方法、装置
CN110350980A (zh) * 2019-07-16 2019-10-18 南京航空航天大学 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472449B (zh) * 2013-09-16 2015-04-15 电子科技大学 一种基于mimo图像域的bp宽带合成方法
CN108761437B (zh) * 2018-04-08 2020-07-03 南京航空航天大学 微波光子全极化雷达探测方法及微波光子全极化雷达
CN108761398A (zh) * 2018-05-31 2018-11-06 南京航空航天大学 微波光子双波段雷达探测方法及微波光子双波段雷达
CN109818680B (zh) * 2019-03-04 2020-03-10 南京航空航天大学 微波光子宽带射频收发方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843398B1 (en) * 2016-05-20 2017-12-12 Rockwell Collins, Inc. Photonic direct sampling digital receiver
CN108287349A (zh) * 2018-01-10 2018-07-17 南京航空航天大学 微波光子mimo雷达探测方法及微波光子mimo雷达系统
CN108988955A (zh) * 2018-07-11 2018-12-11 南京航空航天大学 基于多路光参考信号的微波光子雷达探测方法、装置
CN110350980A (zh) * 2019-07-16 2019-10-18 南京航空航天大学 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406662B (zh) * 2021-06-17 2022-03-11 南京航空航天大学 步进调频体制微波光子宽带mimo雷达探测方法及装置
CN113406662A (zh) * 2021-06-17 2021-09-17 南京航空航天大学 步进调频体制微波光子宽带mimo雷达探测方法及装置
CN113721202B (zh) * 2021-08-16 2023-12-05 南京航空航天大学 基于宽带频谱感知的微波光子雷达探测方法及装置
CN113721202A (zh) * 2021-08-16 2021-11-30 南京航空航天大学 基于宽带频谱感知的微波光子雷达探测方法及装置
CN114122728A (zh) * 2021-11-24 2022-03-01 中国人民解放军国防科技大学 一种基于微波光子移相器的均匀圆形相控阵测向方法
CN114122728B (zh) * 2021-11-24 2024-04-26 中国人民解放军国防科技大学 一种基于微波光子移相器的均匀圆形相控阵测向方法
CN114189281A (zh) * 2021-12-02 2022-03-15 南京航空航天大学 基于频域相位联合的光延时测量方法及装置
CN115173949A (zh) * 2022-06-09 2022-10-11 青岛农业大学 一种占空比可调的整流余弦微波信号发生器、方法及设备
CN115225160A (zh) * 2022-06-19 2022-10-21 中国人民解放军空军工程大学 一种倍频相位编码线性调频信号产生和接收的装置和方法
CN115225160B (zh) * 2022-06-19 2023-12-08 中国人民解放军空军工程大学 一种倍频相位编码线性调频信号产生和接收的装置和方法
CN116182916A (zh) * 2023-04-27 2023-05-30 四川省医学科学院·四川省人民医院 一种宽带相位调制处理的光子传感系统
CN116182916B (zh) * 2023-04-27 2023-07-07 四川省医学科学院·四川省人民医院 一种宽带相位调制处理的光子传感系统
CN117406238A (zh) * 2023-10-09 2024-01-16 北京交通大学 一种微波光子双模式成像系统
CN117406238B (zh) * 2023-10-09 2024-05-28 北京交通大学 一种微波光子双模式成像系统

Also Published As

Publication number Publication date
CN110350980A (zh) 2019-10-18
CN110350980B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021008189A1 (zh) 基于微波光子辅助去斜后带宽合成的雷达探测方法及装置
CN108287349B (zh) 微波光子mimo雷达探测方法及微波光子mimo雷达系统
CN111190160B (zh) 微波光子多波段雷达探测方法及微波光子多波段雷达
CN109387833B (zh) 基于微波光子正交差频复用的mimo雷达探测方法及装置
CN109818681B (zh) 基于双光频梳和差频复用的mimo雷达探测方法及装置
CN108919244B (zh) 微波光子全波段雷达探测方法及微波光子全波段雷达
CN112099048B (zh) 基于时分-差频复用的微波光子mimo雷达探测方法及系统
CN108761437B (zh) 微波光子全极化雷达探测方法及微波光子全极化雷达
CN113253286B (zh) 基于注入锁定倍频的相干微波光子雷达探测方法及系统
CN109818680B (zh) 微波光子宽带射频收发方法及装置
WO2015127575A1 (zh) 全光控相控阵雷达发射机
CN110350981B (zh) 一种基于光子学的宽带调频微波信号生成方法及装置
CN112152720B (zh) 多频段双啁啾微波信号产生及抗光纤色散传输系统及方法
CN109143203B (zh) 基于偏振复用光学倍频微波光子相干雷达收发装置及方法
CN109375200B (zh) 基于光子上变频的光载分布式雷达探测方法及装置
CN111580071B (zh) 双波段线性调频雷达正交解调接收方法及装置
CN112578379A (zh) 光子辅助的脉冲体制微波雷达探测方法及装置
CN113114380B (zh) 基于光子采样及相干接收的微波光子雷达探测方法及系统
CN116338592A (zh) 一种基于光子混频技术的微波光子雷达系统及探测方法
CN116626693A (zh) 一种基于光子倍频的相干微波光子雷达探测方法和系统
CN115128589B (zh) 一种微波光子mimo雷达探测方法及系统
CN112180356A (zh) 一种双啁啾线性调频信号产生方法及其装置
CN116068541A (zh) 基于真延时的微波光子相控阵雷达探测方法及系统
CN112924968B (zh) 基于光子去调频接收技术的脉冲体制sar系统
CN116106917A (zh) 一种并行线性调频连续波激光雷达测距测速系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840619

Country of ref document: EP

Kind code of ref document: A1