WO2021007927A1 - 一种光电池辐照传感器 - Google Patents

一种光电池辐照传感器 Download PDF

Info

Publication number
WO2021007927A1
WO2021007927A1 PCT/CN2019/103459 CN2019103459W WO2021007927A1 WO 2021007927 A1 WO2021007927 A1 WO 2021007927A1 CN 2019103459 W CN2019103459 W CN 2019103459W WO 2021007927 A1 WO2021007927 A1 WO 2021007927A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electrically connected
main control
photocell
control chip
Prior art date
Application number
PCT/CN2019/103459
Other languages
English (en)
French (fr)
Inventor
王士涛
王士莹
吕圣苗
金晶
Original Assignee
江苏中信博新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中信博新能源科技股份有限公司 filed Critical 江苏中信博新能源科技股份有限公司
Publication of WO2021007927A1 publication Critical patent/WO2021007927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of photovoltaics, in particular to a photocell irradiation sensor.
  • the power generation of solar photovoltaic power generation system is affected by the local solar radiation, temperature, solar panel performance and other factors.
  • the solar radiation intensity directly affects the amount of power generation. The greater the radiation intensity, the greater the power generation, and the greater the power. .
  • Radiation intensity detection generally uses radiation sensors.
  • the current radiation sensors need to transmit the radiation value through a wired interface, which causes certain difficulties in the installation and wiring of the radiation sensors in the photovoltaic power generation system.
  • the present invention provides a photocell irradiation sensor that can be deployed flexibly and is maintenance-free, which can meet the current needs of smart photovoltaic power generation systems for continuous and comprehensive monitoring of irradiation.
  • the technical scheme of the present invention is as follows:
  • the photocell irradiation sensor provided by the present invention includes:
  • the main control chip controls the photocell selection circuit to select and connect to the irradiation sampling circuit
  • the irradiation sampling circuit obtains the short-circuit current of the photocell and transmits it to the main control chip;
  • the main control chip is based on Calculating the irradiance value of the photovoltaic cell by the short-circuit current, and sending the irradiance value of the photovoltaic cell through the wireless communication module;
  • the maximum power tracking circuit makes the photovoltaic cell work at the maximum power point under the control of the drive control signal of the main control chip Output electric energy at the position, and store the electric energy through the energy storage circuit, which is convenient for supplying power to each chip; the maximum power tracking circuit also collects the charging current, processes the charging current and feeds it back to the master The chip is convenient for the main control chip to adjust the drive control signal to control the maximum power tracking circuit.
  • the photocell selection circuit includes: a silicon photocell and a switch electrically connected to the silicon photocell; the switch is selected according to the channel of the main control chip, and inputs the output current of the silicon photocell to the irradiation sampling Circuit or maximum power tracking circuit.
  • the radiation sampling circuit includes: an operational amplifier and a short-circuit current sampling resistor; the non-inverting input terminal of the operational amplifier inputs the positive current of the silicon photovoltaic cell, and the non-inverting input terminal of the operational amplifier is grounded; The inverting input terminal of the amplifier inputs the negative current of the silicon photocell; the inverting input terminal and the output terminal of the operational amplifier are connected in parallel with a short-circuit current sampling resistor; the output terminal of the operational amplifier inputs the output short-circuit current to The main control chip.
  • the maximum power tracking circuit includes: a driving sub-circuit, a maximum power main circuit, and a sampling sub-circuit; wherein: the driving sub-circuit drives the maximum power main circuit in the silicon photovoltaic cell according to the PWM driving signal sent by the main control chip Work at the maximum power point to output electric energy and store energy through the energy storage circuit; the sampling sub-circuit performs charging current sampling, and amplifies the sampled charging current and feeds it back to the main control chip.
  • the driving sub-circuit includes a driving triode, the PWM driving control signal of the main control chip is input to the base of the driving triode through a resistor, and the emitter of the driving triode is grounded; the driving triode The collector is electrically connected to the maximum power main circuit to drive the maximum power main circuit;
  • the maximum power main circuit includes a circuit switch tube, a filter capacitor, a filter inductor, and a freewheeling diode; wherein, the base of the circuit switch tube is electrically connected to the collector of the driving triode, and the circuit switch tube
  • the emitter of the circuit switch is electrically connected to the positive terminal of the silicon battery through the switch, and the emitter and the base of the circuit switch are electrically connected through a resistor;
  • the collector of the circuit switch is electrically connected to the filter inductor Electrically connected, the other end of the filter inductor is electrically connected to the tank circuit; one end of the filter capacitor is electrically connected to the emitter of the circuit switch tube, and the other end of the filter capacitor is electrically connected to the freewheeling diode
  • the input terminal of the freewheeling diode is electrically connected, the input terminal of the freewheeling diode is electrically connected to the negative terminal of the silicon photocell through the switch, and the output terminal of the freewheeling diode is electrically connected to the collector of
  • the sampling sub-circuit includes a charging current sampling resistor and an operational amplifier; one end of the charging current sampling resistor is electrically connected to the negative terminal of the silicon photovoltaic cell and the input terminal of the freewheeling diode; The other end is grounded; the non-inverting input end of the operational amplifier is electrically connected to the input end of the freewheeling diode through a bias resistor, and the other end of the bias resistor is grounded through a capacitor; the inverting input of the operational amplifier The terminal is grounded through an amplifying resistor, the inverting input terminal and the output terminal of the operational amplifier are electrically connected through another amplifying resistor, and the output terminal of the operational amplifier is used as a charging current measurement point to connect to the main control chip. connection.
  • the energy storage circuit includes a farad capacitor and a stabilized power supply chip; the positive terminal of the farad capacitor is electrically connected to the filter inductor, and the negative terminal of the farad capacitor is grounded; the stabilized power supply chip The input terminal of is electrically connected to the filter inductor, and the output terminal of the regulated power supply chip is used as a power supply output terminal to supply power to each chip.
  • the wireless communication module uses a LORA communication method for wireless communication.
  • the wireless communication module includes a LORA chip SX1276.
  • the main control chip is a STM32L series single-chip microcomputer.
  • the main control chip is a single chip microcomputer STM32L151.
  • the photovoltaic cell radiation sensor of the present invention is simple to install and does not require operation and maintenance.
  • the photovoltaic cell (such as silicon photovoltaic cell) can be used as both a detection component and a power supply component.
  • the integrated design fully taps the device potential of silicon photovoltaic cells.
  • the circuit works together, so that the radiation sensor of this scheme has the ability to be self-powered. It can operate as an independent individual for a long time (it can work in the field for a long time), and it can also be connected with other sensors to form a sensor network to the photovoltaic power station and power generation module Conduct comprehensive monitoring according to the situation.
  • the photocell irradiation sensor of the present invention uses a wireless communication module to transmit the detected irradiance value. Therefore, the photocell irradiation sensor can be deployed flexibly, solving the problem of inconvenient installation and the need for wiring. Further, the wireless transmission module can use LoRa chips for wireless transmission. Due to the ultra-low power consumption of LoRa, in particular, silicon photocells are very advantageous for solar radiation detection. At the same time, LoRa wireless transmission allows the radiation sensor of this solution to be deployed arbitrarily and flexibly, which is particularly beneficial for the application scenarios of double-sided photovoltaic modules that require multi-point radiation monitoring.
  • Fig. 1 is a circuit connection block diagram of an embodiment of the photocell irradiation sensor of the present invention
  • FIG. 2 is a circuit connection block diagram of another embodiment of the photocell irradiation sensor of the present invention.
  • Fig. 3 is a circuit connection block diagram of another embodiment of the photocell irradiation sensor of the present invention.
  • FIG. 4 is a circuit connection diagram of another embodiment of the photocell irradiation sensor of the present invention.
  • FIG. 5 is a schematic diagram of the connection of each pin of the main control chip in another embodiment of the photocell irradiation sensor of the present invention.
  • the photocell irradiation sensor provided by the present invention includes:
  • the photovoltaic cell selection circuit 10 the main control chip 20 electrically connected to the photovoltaic cell selection circuit 10, and the radiation sampling circuit 30 electrically connected to the main control chip 20, the maximum power tracking circuit 40, the energy storage circuit 50, and the wireless Communication module 60; the maximum power tracking circuit 40 is also electrically connected to the energy storage circuit 50; wherein:
  • the main control chip 20 controls the photovoltaic cell selection circuit 10 to select and connect to the irradiation sampling circuit 30, the irradiation sampling circuit 30 obtains the short-circuit current of the photovoltaic cell and transmits it to the main control chip 20;
  • the main control chip 20 calculates the radiation value of the photovoltaic cell according to the short-circuit current, and sends the radiation value of the photovoltaic cell through the wireless communication module 60;
  • the maximum power tracking circuit 40 causes the photovoltaic cell to be controlled by the driving control signal of the main control chip 20. Work at the position of the maximum power point to output electrical energy, and store the electrical energy through the energy storage circuit 50 to facilitate power supply for each chip; the maximum power tracking circuit 40 also collects the charging current and processes the charging current Then it is fed back to the main control chip 20 so that the main control chip 20 can adjust the driving control signal and control the maximum power tracking circuit 40.
  • Photovoltaic cells are also called solar cells, which directly convert sunlight into electricity. Therefore, the characteristic of the photovoltaic cell is that it can convert the large amount of light energy absorbed by the earth from solar radiation into electrical energy. It is a semiconductor element that generates electromotive force under the irradiation of light.
  • photovoltaic cells such as selenium photovoltaic cells, silicon photovoltaic cells, thallium sulfide and silver sulfide photovoltaic cells.
  • the photovoltaic cell selection circuit 10 is used to provide the current of the photovoltaic cell; and whether the photovoltaic cell current is provided to the maximum power tracking circuit 40 or the irradiation sampling circuit 30 is controlled according to the selection of the main control chip 20.
  • the main control chip 20 controls the photocell selection circuit 10 to be connected to the radiation sampling circuit 30, and then the photocell selection circuit 10 adjusts the current of the photocell It is transmitted to the radiation sampling circuit 30, and then the radiation sampling circuit 30 obtains the short-circuit current of the photocell, and calculates the corresponding radiation value through the main control chip 20 (the short-circuit current is proportional to the radiation, and the radiation can be calculated according to the corresponding relationship. Finally, the calculated radiation value can be transmitted through the wireless communication module 60. The transmission of the radiation value through the wireless communication module 60 allows the photovoltaic cell radiation sensor of this solution to be deployed arbitrarily and flexibly, especially for multiple points.
  • the application scenario of the double-sided photovoltaic module for radiation monitoring is very advantageous; and if you are working in the field, you can choose to self-power through the photovoltaic cell in the gap of the radiation detection.
  • the main control chip 20 controls the photovoltaic cell selection circuit 10 and The radiation sampling circuit 30 is turned off, and the maximum power tracking circuit 40 is selected to be turned on. In this way, the maximum power tracking circuit 40 makes the photovoltaic cell work at the position of the maximum power point under the control of the driving control signal of the main control chip 20.
  • the electric energy is stored by the energy storage circuit 50, which is convenient for supplying power to each chip.
  • the wireless communication module transmits the radiation value through wireless communication, which allows the radiation sensor of this solution to be deployed arbitrarily and flexibly, especially for the application of double-sided photovoltaic modules that require multi-point radiation monitoring The scene is very favorable.
  • the photocell is used as both a detection component and a power supply component. The combined design fully taps the device potential of the photocell, and works with the corresponding circuit, so that the radiation sensor of this scheme has the self-powered ability, which can be used in the field for a long time. jobs.
  • the photovoltaic cell selection circuit 10 includes: a silicon photovoltaic cell 11 and a switch K1 electrically connected to the silicon photovoltaic cell 11;
  • the switch K1 inputs the output current of the silicon photocell 11 to the radiation sampling circuit 30 or the maximum power tracking circuit 40 according to the channel selection of the main control chip 20.
  • the silicon photocell 11 is generally installed on the upper surface of the radiation sensor, and the front side faces the sun to receive sunlight.
  • the silicon photocell 11 is connected to the switch K1, and the main control chip 20 controls the switch K1 to turn on or disconnect the silicon photocell 11 and subsequent circuits according to the "detection" or "power supply” function to be implemented. That is to say, the main control chip 20 realizes the function of radiation detection or power supply according to the current needs, and directs the silicon photocell 11 to the corresponding circuit through the switch K1, connects to the radiation sampling circuit 30 when measuring the radiation, and connects to the maximum when the power is supplied. Power tracking circuit 40.
  • the switch K1 can select the DPDT analog switch MAX20327.
  • the maximum power tracking circuit 40 includes: a driving sub-circuit 41, a maximum power main circuit 42 and a sampling sub-circuit 43; wherein: the driving sub-circuit 41 drives the sub-circuit according to the PWM driving signal sent by the main control chip 20
  • the maximum power main circuit 42 outputs electric energy when the silicon photovoltaic cell 11 is working at the maximum power point, and stores energy through the energy storage circuit 50; that is to say, the driving sub-circuit 41 drives the electric energy according to the PWM driving signal sent by the single-chip microcomputer 20.
  • the maximum power main circuit 42 works; the maximum power main circuit makes the silicon photovoltaic cell 11 work at the maximum power point according to the driving signal of the driving sub-circuit, and converts the solar power obtained by the silicon photovoltaic cell 11 into direct current power for the energy storage
  • the circuit 50 performs charging; the sampling sub-circuit 43 performs charging current sampling, and the sampled charging current is amplified and fed back to the main control chip 20.
  • the maximum power tracking circuit 40 works in conjunction with the main control chip 20, which is equivalent to a maximum power point tracking (MPPT) controller, which can detect the power generation voltage of the solar panel in real time, and track the maximum voltage and current value ( VI) to enable the system to charge the energy storage device with maximum power output.
  • MPPT maximum power point tracking
  • the output power of the photovoltaic cell is related to the working voltage of the MPPT controller. Only when it works at the most suitable voltage can its output power have a unique maximum value.
  • the MPPT controller will track the maximum power point of the solar panel in real time to maximize the efficiency of the solar panel. Through maximum power tracking, more power can be output, thereby improving charging efficiency. Theoretically speaking, the solar power generation system using MPPT controller will increase the efficiency by 50% than the traditional one.
  • the maximum power tracking circuit 40 detects the DC voltage and output current of the main loop, and then calculates the output power of the silicon photovoltaic cell 11 through the main control chip 20, and realizes the tracking of the maximum power point.
  • the main control chip 20 changes the current by changing the duty ratio of the driving signal, and therefore generates current disturbance.
  • the output current and voltage of the photovoltaic cell will also change accordingly.
  • the direction of the disturbance in the next cycle is determined. When the direction of the disturbance is correct, the output power of the silicon photovoltaic cell 11 will increase. Continue to perturb in the same direction, otherwise, perturb in the opposite direction. In this way, the perturbation and observation are repeated to make the output of the silicon photovoltaic cell 11 reach the maximum power point.
  • the radiation sampling circuit 30, as shown in FIG. 4, includes an operational amplifier M1 and a short-circuit current sampling resistor Ra; the non-inverting input terminal of the operational amplifier M1 inputs the positive current of the silicon photocell 11, and the operational amplifier M1 The non-inverting input terminal is grounded; the inverting input terminal of the operational amplifier M1 inputs the negative current of the silicon photocell 11; a short-circuit current sampling resistor Ra is connected in parallel between the inverting input terminal and the output terminal of the operational amplifier M1; The output terminal of the operational amplifier M1 inputs the output short-circuit current to the main control chip 20.
  • the circuit connection between the operational amplifier M1 and the silicon photocell 11 can utilize the short-circuit current of the silicon photocell 11.
  • the short-circuit current flows through the short-circuit current sampling resistor Ra, and an output voltage proportional to the short-circuit current is obtained at the short-circuit current output point D.
  • the main control chip 20 obtains the voltage value through AD sampling, calculates the short-circuit current, and the short-circuit current is proportional to the irradiation, and then obtains the irradiation value according to the corresponding relationship. Then the main control chip 20 transmits the calculated irradiance value through the wireless communication module 60.
  • the maximum power tracking circuit 40 is specifically shown in FIG. 4, wherein the driving sub-circuit includes a driving transistor S1, and the PWM driving control signal (point P input) of the main control chip 20 is input through a resistor R1 The base of the driving transistor S1 and the emitter of the driving transistor S1 are grounded; the collector of the driving transistor S1 is electrically connected to the maximum power main circuit to drive the maximum power main circuit;
  • the maximum power main circuit includes a circuit switch S2, a filter capacitor C1, a filter inductor L1, and a freewheeling diode Q1; wherein, the base of the circuit switch S2 is electrically connected to the collector of the driving triode S1 , The emitter of the circuit switch tube S2 is electrically connected to the positive terminal of the silicon battery 11 through the switch K1, and the emitter and the base of the circuit switch tube S2 are electrically connected through a resistor R2; the circuit The collector of the switch tube S2 is electrically connected to the filter inductor L1, and the other end of the filter inductor L1 is electrically connected to the tank circuit 50; one end of the filter capacitor C1 is connected to the emitter of the circuit switch tube S2.
  • the other end of the filter capacitor C1 is electrically connected to the input end of the freewheeling diode Q1, and the input end of the freewheeling diode Q1 is electrically connected to the negative terminal of the silicon photocell 11 through the switch K1 ,
  • the output terminal of the freewheeling diode Q1 is electrically connected to the collector of the circuit switch tube S2;
  • the sampling sub-circuit includes a charging current sampling resistor Rb and an operational amplifier M2; one end of the charging current sampling resistor Rb is electrically connected to the negative terminal of the silicon photovoltaic cell 11 and the input terminal of the freewheeling diode Q1; The other end of the charging current sampling resistor Rb is grounded; the non-inverting input end of the operational amplifier M2 is electrically connected to the input end of the freewheeling diode Q1 through a bias resistor R3, and the other end of the bias resistor R3 passes through a capacitor C3 After grounding; the inverting input terminal of the operational amplifier M2 is grounded through an amplifying resistor R4, and the inverting input terminal and the output terminal of the operational amplifier M2 are electrically connected through another amplifying resistor R5, and the operational amplifier The output terminal of M2 is used as the charging current measurement point F to be electrically connected to the main control chip 20.
  • the energy storage circuit 50 includes a farad capacitor C f and a regulated power supply chip LDO; the positive terminal of the farad capacitor C f is electrically connected to the filter inductor L1, and the negative terminal of the farad capacitor C f is grounded; The input terminal of the regulated power supply chip LDO is electrically connected to the filter inductor L1, and the output terminal of the regulated power supply chip LDO serves as a power supply output terminal to supply power to each chip.
  • the maximum power tracking circuit is a DC to DC conversion circuit.
  • the main control chip 20 measures the charging current at point F while adjusting the PWM duty cycle input at point P (point F is used as the charging current measurement point), according to the magnitude of the charging current Determine the adjustment direction of the PWM duty cycle of the driving signal input at point P (PWM driving control signal input point). If the current becomes larger, continue to adjust, if it becomes smaller, adjust in the opposite direction, forming a closed-loop control to maximize the charging current and power.
  • the charging current is sampled by the charging current sampling resistor Rb and amplified by the operational amplifier M2, and the output of the operational amplifier is connected to the AD interface of the main control chip 20 to obtain the charging current value through AD sampling.
  • the stable voltage output of the LDO power chip supplies power to the main control chip 20, the operational amplifier and the like.
  • the wireless communication module 60 uses the LORA communication method for wireless communication.
  • MCU master control chip
  • the wireless communication module 60 includes a LORA chip 20SX1276, and the RF frequency can be set according to the frequency allowed to be used in different countries in the world. Due to the ultra-low power consumption of LoRa, the silicon photocell 11 is very advantageous for solar radiation detection. LoRa wireless transmission allows the radiation sensor of this solution to be deployed arbitrarily and flexibly, which is particularly beneficial for the application scenarios of double-sided photovoltaic modules that require multi-point radiation monitoring.
  • the irradiation sampling circuit 30 is electrically connected to the main control chip 20, and the irradiation signal is transmitted to the main control chip 20 for measurement; the LoRa chip is electrically connected to the main control chip 20, and the main control chip 20 measures the The irradiation value is sent out via LoRa.
  • the maximum power tracking circuit 40 is electrically connected to the energy storage circuit 50, and the energy storage circuit 50 supplies power to other components.
  • the maximum power tracking circuit 40 is electrically connected to the energy storage circuit 50, the energy storage circuit 50 stores electric energy, and the energy storage circuit 50 supplies power to other components.
  • the main control chip 20 in any of the above embodiments can adopt STM32L series single-chip microcomputers.
  • the main control chip 20 realizes the entire detection, control, and communication functions, and adopts the STM32L series ultra-low power single-chip microcomputer based on the ARM Cortex-M3 core.
  • STM32L151 is suitable for battery-powered applications.
  • the schematic diagram of its connection with each circuit is shown in Figure 5:
  • the main control chip STM32L151 and the LoRa chip SX1276 are electrically connected through corresponding pins. Refer to Figure 5 for the specific connection pins, which will not be repeated here.
  • the pin AD0 of the main control chip STM32L151 is electrically connected to the short-circuit current measuring point D at the output end of the irradiation sampling circuit for receiving the photocell collected by the irradiation sampling circuit Short-circuit current, so as to perform corresponding calculations to obtain the irradiation value, and send the irradiation value through the LoRa chip SX1276.
  • the pin AD1 of the main control chip STM32L151 is electrically connected to the charging current measurement point F of the maximum power tracking circuit for receiving the charging current fed back by the maximum power tracking circuit, Therefore, the main control chip STM32L151 adjusts the PWM drive control signal of the maximum power tracking circuit according to the feedback charging current, so that the maximum power tracking circuit is at the maximum power position to output electric energy, and the electric energy is stored through the energy storage circuit, which can be Chip components are powered.
  • the pin TIM2_CH1 of the main control chip STM32L151 is electrically connected to the PWM drive input point P of the maximum power tracking circuit, which is used to input the PWM drive control signal to the maximum power tracking circuit. By adjusting the duty cycle of the PWM drive, the photovoltaic cell can work in The position of the maximum power point maximizes the output of electric energy.
  • the pin GPIO of the main control chip STM32L151 is electrically connected to the channel selection input point T of the switch in the photocell selection circuit, and the switch receives the control chip STM32L151 After the channel selection signal, the photocell is switched to the corresponding circuit to complete the corresponding "irradiation detection" or "power supply” function.
  • the photocell irradiation sensor of the present invention can realize long-term field work because it has a self-powered function.
  • the energy stored in the energy storage circuit can supply power to each chip component, and the power input pin of the main control chip STM32L151 can be electrically connected to the energy storage circuit to obtain corresponding electrical energy.
  • the silicon photocell irradiation sensor in this embodiment, if the photocell adopts a silicon photocell, the silicon photocell irradiation sensor has a LoRa wireless transmission function, an irradiation detection function, and a self-powered function.
  • the LoRa-based wireless communication method transmits data, which solves the problem of inconvenient installation and the need for wiring.
  • a silicon photocell is designed as a "detection" element and as a "power supply” element combined into one working mechanism. The two functions are switched by a switch. Since the short-circuit current of silicon photovoltaic cells is positively correlated with irradiation, an "irradiation sampling circuit" is designed.
  • This circuit obtains the short-circuit current of silicon photovoltaic cells, amplifies the short-circuit current and sends it to the main control chip for sampling and calculation to obtain the irradiation value.
  • the silicon photovoltaic cell works as a power supply element, and a "maximum power tracking circuit" is designed, which can maximize the power generation capacity of the silicon photovoltaic cell to provide as much electrical energy as possible.
  • the “Farad capacitor C f ” stores the electric energy generated by the silicon photovoltaic cell, and supplies power to other chips after being stabilized by the voltage stabilized power supply chip LDO.
  • LoRa has the characteristics of low power consumption
  • the main control chip also runs at low power consumption, and the entire system works The consumption will be relatively low, and the main control chip is used as the control core to control the above functions.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种光电池辐照传感器,包括:光电池选择电路(10)、与光电池选择电路(10)电连接的主控芯片(20)、及与主控芯片(20)电连接的辐照采样电路(30)、最大功率追踪电路(40)、储能电路(50)及无线通信模块(60);最大功率追踪电路(40)还与储能电路(50)电连接;主控芯片(20)根据要实现的"辐照检测"或者"供电"功能,控制光电池选择电路(10)接通或者断开光电池与后续电路的连接;主控芯片(20)选择"供电"功能时,主控芯片(20)控制最大功率追踪电路(4)使光电池工作在最大功率位置输出电能,并通过储能电路(5)存储起来,便于储能电路(50)给其他部件供电;当主控芯片(20)选择"辐照检测"功能时,辐照采样电路(30)把辐照信号传送给主控芯片(20)进行测量;无线通信模块(60)把测量出来的辐照数值通过无线通信方式发送出去。

Description

一种光电池辐照传感器 技术领域
本发明涉及光伏领域,尤其涉及一种光电池辐照传感器。
背景技术
太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响,其中太阳辐射强度的大小直接影响发电量的多少,辐射强度越大,发电量越大,功率越大。
辐射强度的检测一般采用辐照传感器,当前的辐照传感器需要通过有线接口将辐照数值传输出去,这就给辐照传感器在光伏发电系统中的安装、及布线造成一定的困难。此外,使用现有的辐照传感器维护困难,无法满足持续全面监测的需求。因此使用现在的辐照传感器存在安装不方便、需要布线、维护困难等问题。
发明内容
为解决上述至少一个技术问题,本发明提供一种可以灵活部署、免维护的光电池辐照传感器,可满足现阶段智慧型光伏发电系统中对辐照进行持续全面监测的需求。具体的,本发明的技术方案如下:
本发明提供的一种光电池辐照传感器,包括:
光电池选择电路、与所述光电池选择电路电连接的主控芯片、及与所述主控芯片电连接的辐照采样电路、最大功率追踪电路、储能电路、及无线通信模块;所述最大功率追踪电路还与所述储能电路电连接;其中:
当所述主控芯片控制所述光电池选择电路选择与所述辐照采样电路接通时,所述辐照采样电路获取光电池的短路电流,传输给所述主控芯片;所述主 控芯片根据所述短路电流计算出所述光电池的辐照值,并通过所述无线通信模块将所述光电池的辐照值发送出去;
当所述主控芯片控制所述光电池选择电路选择与所述最大功率追踪电路接通时,所述最大功率追踪电路在所述主控芯片的驱动控制信号的控制下使光电池工作在最大功率点的位置输出电能,并通过所述储能电路将所述电能进行存储,便于为各芯片供电;所述最大功率追踪电路还采集充电电流,并对所述充电电流处理后反馈给所述主控芯片,便于所述主控芯片调节驱动控制信号,控制所述最大功率追踪电路。
优选地,所述光电池选择电路包括:硅光电池、及与所述硅光电池电连接的切换开关;所述切换开关根据主控芯片的通道选择,将所述硅光电池的输出电流输入到辐照采样电路或最大功率追踪电路。
优选地,所述辐照采样电路包括:运算放大器、短路电流采样电阻;所述运算放大器的同相输入端输入所述硅光电池的正极电流,且所述运算放大器的同相输入端接地;所述运算放大器的反相输入端输入所述硅光电池的负极电流;所述运算放大器的反相输入端与输出端之间并联一短路电流采样电阻;所述运算放大器的输出端将输出的短路电流输入给所述主控芯片。
优选地,所述最大功率追踪电路包括:驱动子电路、最大功率主电路及采样子电路;其中:所述驱动子电路根据主控芯片发出的PWM驱动信号驱动所述最大功率主电路在硅光电池工作在最大功率点位置输出电能,并通过所述储能电路进行储能;所述采样子电路进行充电电流采样,并将采样的充电电流进行放大处理后反馈给主控芯片。
优选地,所述驱动子电路包括一驱动三极管,所述主控芯片的PWM驱动控制信号通过一电阻输入所述驱动三极管的基极,所述驱动三级管的发射极接地;所述驱动三极管的集电极与最大功率主电路电连接,驱动最大功率主电路;
所述最大功率主电路包含一电路开关管、滤波电容、滤波电感、续流二极管;其中,所述电路开关管的基极与所述驱动三级管的集电极电连接,所述电 路开关管的发射极通过所述切换开关与所述硅电池的正极端电连接,且所述电路开关管的发射极和基极通过一电阻电连接;所述电路开关管的集电极与所述滤波电感电连接,所述滤波电感的另一端与所述储能电路电连接;所述滤波电容的一端与所述电路开关管的发射极电连接,所述滤波电容的另一端与所述续流二极管的输入端电连接,所述续流二极管的输入端通过所述切换开关与所述硅光电池的负极端电连接,所述续流二极管的输出端与所述电路开关管的集电极电连接;
所述采样子电路包含一充电电流采样电阻及运算放大器;所述充电电流采样电阻的一端与所述硅光电池的负极端及所述续流二极管的输入端电连接;所述充电电流采样电阻的另一端接地;所述运算放大器的同相输入端通过一偏置电阻后与续流二极管的输入端电连接,所述偏置电阻的另一端通过一电容后接地;所述运算放大器的反相输入端通过一放大电阻后接地,所述运算放大器的反相输入端与输出端之间通过另一放大电阻电连接,且所述运算放大器的输出端作为充电电流测量点与所述主控芯片电连接。
优选地,所述储能电路包含一法拉电容,及一稳压电源芯片;所述法拉电容的正极端与所述滤波电感电连接,所述法拉电容的负极端接地;所述稳压电源芯片的输入端与所述滤波电感电连接,所述稳压电源芯片的输出端作为供电输出端为各芯片供电。
优选地,所述无线通信模块采用LORA通信方式进行无线通信。
优选地,所述无线通信模块包含一LORA芯片SX1276。
优选地,所述主控芯片为STM32L系列的单片机。
优选地,所述主控芯片为单片机STM32L151。
本发明至少包括以下一项技术效果:
(1)本发明的光电池辐照传感器安装简单、无需运维,光电池(比如硅光电池)既可以作为检测部件又可以作为供电部件,合二为一的设计充分挖掘硅光电池的器件潜能,与相应电路配合工作,使本方案的辐照传感器具有了自 供电能力,可作为独立个体长时间运行(可长时间野外工作),又可与其它传感器联网组成传感器网络对光伏电站和发电模组的辐照情况进行全面监测。
(2)本发明的光电池辐照传感器采用无线通信模块将检测到的辐照值传输出去,因此,该光电池辐照传感器可以灵活部署,解决安装不方便需要布线的问题。进一步的,该无线传输模块可采用LoRa芯片进行无线传输,由于LoRa超低功耗,特别的,硅光电池用于太阳辐照检测十分有利。同时,LoRa无线传输可使本方案的辐照传感器任意灵活部署,特别对需要多点辐照监测的双面光伏组件的应用场景很有利。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明光电池辐照传感器的一实施例的电路连接框图;
图2为本发明光电池辐照传感器的另一实施例的电路连接框图;
图3为本发明光电池辐照传感器的另一实施例的电路连接框图;
图4为本发明光电池辐照传感器的另一实施例的电路连接图;
图5为本发明光电池辐照传感器的另一实施例中主控芯片各管脚连接示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其他实施例中也可以实现本申请。在其他情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节 妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所述描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其他特征、整体、步骤、操作、元素、组件和/或集合的存在或添加。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘出了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
本发明提供的一种光电池辐照传感器,实施例如图1所示,包括:
光电池选择电路10、与所述光电池选择电路10电连接的主控芯片20、及与所述主控芯片20电连接的辐照采样电路30、最大功率追踪电路40、储能电路50、及无线通信模块60;所述最大功率追踪电路40还与所述储能电路50电连接;其中:
当所述主控芯片20控制所述光电池选择电路10选择与所述辐照采样电路30接通时,所述辐照采样电路30获取光电池的短路电流,传输给所述主控芯片20;所述主控芯片20根据所述短路电流计算出所述光电池的辐照值,并通过所述无线通信模块60将所述光电池的辐照值发送出去;
当所述主控芯片20控制所述光电池选择电路10选择与所述最大功率追踪电路40接通时,所述最大功率追踪电路40在所述主控芯片20的驱动控制信号的控制下使光电池工作在最大功率点的位置输出电能,并通过所述储能电路50将所述电能进行存储,便于为各芯片供电;所述最大功率追踪电路40还采集充电电流,并对所述充电电流处理后反馈给所述主控芯片20,便于所述主控芯片20调节驱动控制信号,控制所述最大功率追踪电路40。
光电池也叫太阳能电池,直接把太阳光转变成电。因此光电池的特点是能够把地球从太阳辐射中吸收的大量光能转化换成电能,是一种在光的照射下产生电动势的半导体元件。光电池的种类很多,常用有硒光电池、硅光电池、和硫化铊、硫化银光电池等。
本实施例中,光电池选择电路10,用于提供光电池的电流;而该光电池电流是提供给最大功率追踪电路40还是辐照采样电路30,则是根据主控芯片20的选择控制。具体的,如果想要通过该光电池辐照传感器实现辐照检测的功能,那么主控芯片20就控制光电池选择电路10与辐照采样电路30接通,那么该光电池选择电路10就将光电池的电流传输给辐照采样电路30,进而该辐照采样电路30再获取光电池的短路电流,并通过主控芯片20计算相应的辐照数值(短路电流与辐照成正比,根据对应关系计算可得到辐照值),最后通过无线通信模块60可将该计算出的辐照数值传输出去,通过无线通信模块60来传输辐照数值可使本方案的光电池辐照传感器任意灵活部署,特别对需要多点辐照监测的双面光伏组件的应用场景很有利;而如果在野外工作的时候,那么可以选择在辐照检测的间隙通过光电池进行自供电,具体的,主控芯片20控制光电池选择电路10与辐照采样电路30断开,而选择与最大功率追踪电路40接通,这样,最大功率追踪电路40在所述主控芯片20的驱动控制信号的控制下使光电池工作在最大功率点的位置输出电能,并通过所述储能电路50将所述电能进行存储,便于为各芯片供电。
本实施例中,一方面,无线通信模块将辐照值通过无线通信的方式传输出去,可使本方案的辐照传感器任意灵活部署,特别对需要多点辐照监测的双面光伏组件的应用场景很有利。另一方面,光电池既作为检测部件又作为供电部件,合二为一的设计充分挖掘光电池的器件潜能,与相应电路配合工作,使本方案的辐照传感器具有了自供电能力,可长时间野外工作。
本发明的另一实施例,在上述实施例的基础上,所述光电池选择电路10,如图2所示,包括:硅光电池11、及与所述硅光电池11电连接的切换开关K1;所述切换开关K1根据主控芯片20的通道选择,将所述硅光电池11的输出电流输入到辐照采样电路30或最大功率追踪电路40。
硅光电池11一般安装在辐照传感器的上表面,正面朝向太阳接受太阳光照射。硅光电池11与切换开关K1连接,主控芯片20根据要实现的“检测”或者“供电”功能控制切换开关K1接通或者断开硅光电池11与后续电路的连接。也就是说主控芯片20根据当前需要实现辐照检测还是供电功能把硅光电池11通过切换开关K1导向相对应的电路,在测量辐照时连接到辐照采样电路30,在供电时连接到最大功率追踪电路40。较佳的,该切换开关K1可选择DPDT模拟开关MAX20327。
最大功率追踪电路40,如图3所示,包括:驱动子电路41、最大功率主电路42及采样子电路43;其中:所述驱动子电路41根据主控芯片20发出的PWM驱动信号驱动所述最大功率主电路42在硅光电池11工作在最大功率点位置输出电能,并通过所述储能电路50进行储能;也就是说所述驱动子电路41根据单片机20发出的PWM驱动信号驱动所述最大功率主电路42工作;所述最大功率主电路根据所述驱动子电路的驱动信号使硅光电池11工作在最大功率点,并将硅光电池11获取的太阳能电力转换为直流电给所述储能电路50进行充电;所述采样子电路43进行充电电流采样,并将采样的充电电流进行放大处理后反馈给主控芯片20。
最大功率追踪电路40协同主控芯片20工作,也就相当于最大功率点跟踪(Maximum Power Point Tracking,简称MPPT)控制器,其能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出对储能器件充电。光伏电池的输出功率与MPPT控制器的工作电压有关,只有工作在最合适的电压下,它的输出功率才会有个唯一的最大值。MPPT控制器会实时跟踪太阳能板中的最大的功率点,来发挥出太阳能板的最大功效。通过最大功率跟踪,可以输出更多的电量,从而提高充电效率。理论上讲,使用MPPT控制器的太阳能发电系统会比传统的效率提高50%。
最大功率追踪电路40检测主回路直流电压及输出电流,再通过主控芯片20计算出硅光电池11的输出功率,并实现对最大功率点的追踪。主控芯片20通过改变驱动信号的占空比,来改变电流,因此产生了电流的扰动。同时,光伏电池的输出电流电压亦将随之变化,通过测量扰动前后光伏电池输出功率和电压的变化,以决定下一周期的扰动方向,当扰动方向正确时硅光电池11输出功率增加,下周期继续朝同一方向扰动,反之,朝反方向扰动,如此,反复进行着扰动与观察来使硅光电池11输出达最大功率点。
辐照采样电路30,如图4所示,包括:运算放大器M1、短路电流采样电阻Ra;所述运算放大器M1的同相输入端输入所述硅光电池11的正极电流,且所述运算放大器M1的同相输入端接地;所述运算放大器M1的反相输入端输入所述硅光电池11的负极电流;所述运算放大器M1的反相输入端与输出端之间并联一短路电流采样电阻Ra;所述运算放大器M1的输出端将输出的短路电流输入给所述主控芯片20。
运算放大器M1与硅光电池11的这种电路连接方式可以把硅光电池11的短路电流发挥出来,短路电流流经短路电流采样电阻Ra,在短路电流输出点D得到一个与短路电流成正比的输出电压,主控芯片20通过AD采样得到电压值,计算出短路电流,而短路电流与辐照成正比,进而根据对应关系得到辐照值。然后主控芯片20再通过无线通信模块60将计算出的辐照值传输出去。
较佳的,最大功率追踪电路40具体如图4所示,其中,所述驱动子电路包括一驱动三极管S1,所述主控芯片20的PWM驱动控制信号(P点输入)通过一电阻R1输入所述驱动三极管S1的基极,所述驱动三级管S1的发射极接地;所述驱动三极管S1的集电极与最大功率主电路电连接,驱动最大功率主电路;
所述最大功率主电路包含一电路开关管S2、滤波电容C1、滤波电感L1、续流二极管Q1;其中,所述电路开关管S2的基极与所述驱动三级管S1的集电极电连接,所述电路开关管S2的发射极通过所述切换开关K1与所述硅电池11的正极端电连接,且所述电路开关管S2的发射极和基极通过电阻R2电连接;所述电路开关管S2的集电极与所述滤波电感L1电连接,所述滤波电感L1的另一端与所述储能电路50电连接;所述滤波电容C1的一端与所述电路开关管S2的发射极电连接,所述滤波电容C1的另一端与所述续流二极管Q1的输入端电连接,所述续流二极管Q1的输入端通过所述切换开关K1与所述硅光电池11的负极端电连接,所述续流二极管Q1的输出端与所述电路开关管S2的集电极电连接;
所述采样子电路包含一充电电流采样电阻Rb及运算放大器M2;所述充电电流采样电阻Rb的一端与所述硅光电池11的负极端及所述续流二极管Q1的输入端电连接;所述充电电流采样电阻Rb的另一端接地;所述运算放大器M2的同相输入端通过一偏置电阻R3后与续流二极管Q1的输入端电连接,所述偏置电阻R3的另一端通过一电容C3后接地;所述运算放大器M2的反相输入端通过一放大电阻R4后接地,所述运算放大器M2的反相输入端与输出端之间通过另一放大电阻R5电连接,且所述运算放大器M2的输出端作为充电电流测量点F与所述主控芯片20电连接。
储能电路50包含一法拉电容C f,及一稳压电源芯片LDO;所述法拉电容C f的正极端与所述滤波电感L1电连接,所述法拉电容C f的负极端接地;所述 稳压电源芯片LDO的输入端与所述滤波电感L1电连接,所述稳压电源芯片LDO的输出端作为供电输出端为各芯片供电。
本实施例中,为使硅光电池11工作在最大功率点的位置最大化地输出电能。该最大功率追踪电路为直流到直流的变换电路,主控芯片20在调整P点输入的PWM占空比的同时测量F点的充电电流(F点作为充电电流测量点),根据充电电流的大小决定P点(PWM驱动控制信号输入点)输入的驱动信号PWM占空比的调整方向。如果电流变大则继续调整,如果变小则反方向调整,形成闭环控制使充电电流和功率保持最大化。充电电流通过充电电流采样电阻Rb采样并通过运算放大器M2放大,运放的输出连接到主控芯片20的AD接口通过AD采样获得充电电流值。LDO电源芯片稳定电压输出给主控芯片20、运放等供电。
较佳的,无线通信模块60采用LORA通信方式进行无线通信。通过基于LoRa扩频的无线通讯,MCU(主控芯片)把辐照数据传送出去。进一步地,所述无线通信模块60包含一LORA芯片20SX1276,RF频率可根据世界各国不同国家允许使用的频率设置。由于LoRa超低功耗,硅光电池11用于太阳辐照检测十分有利。LoRa无线传输可使本方案的辐照传感器任意灵活部署,特别对需要多点辐照监测的双面光伏组件的应用场景很有利。
上述实施例中所述辐照采样电路30与主控芯片20电连接,把辐照信号传送给主控芯片20进行测量;LoRa芯片与主控芯片20电连接,主控芯片20把测量出来的辐照数值通过LoRa发送出去。最大功率追踪电路40与储能电路50电连接,储能电路50给其他部件供电。最大功率追踪电路40与储能电路50电连接,通过储能电路50存储电能,储能电路50再给其他部件供电。
上述任一实施例中的主控芯片20可采用STM32L系列的单片机,较佳的,主控芯片20实现整个检测、控制、通讯功能,采用基于ARM Cortex-M3内核的STM32L系列超低功耗单片机STM32L151,适用于电池供电的应用场合,其与各电路连接示意图如图5所示:
(1)关于主控芯片与无线通信模块的电连接:主控芯片STM32L151与LoRa芯片SX1276通过相应管脚进行电连接,具体连接管脚参见图5,此处不赘述。
(2)关于主控芯片与辐照采样电路的电连接:主控芯片STM32L151的管脚AD0与辐照采样电路输出端的短路电流测量点D电连接,用于接收辐照采样电路采集的光电池的短路电流,从而进行相应计算获取辐照值,并通过LoRa芯片SX1276将该辐照值发送出去。
(3)关于主控芯片与最大功率追踪电路的电连接:主控芯片STM32L151的管脚AD1与最大功率追踪电路的充电电流测量点F电连接,用于接收最大功率追踪电路反馈的充电电流,从而该主控芯片STM32L151根据该反馈的充电电流来调整最大功率追踪电路的PWM驱动控制信号,使得最大功率追踪电路处于最大功率位置输出电能,并将该电能通过储能电路进行存储,可为各芯片部件供电。该主控芯片STM32L151的管脚TIM2_CH1与最大功率追踪电路的PWM驱动输入点P电连接,用于向最大功率追踪电路输入PWM驱动控制信号,通过调节PWM驱动的占空比,从而使光电池工作在最大功率点的位置最大化地输出电能。
(4)关于主控芯片与光电池选择电路的电连接:主控芯片STM32L151的管脚GPIO与光电池选择电路中的切换开关的通道选择输入点T电连接,该切换开关接收到主控芯片STM32L151的通道选择信号后,将光电池切换接通至相应的电路,从而完成相应的“辐照检测”或“供电”功能。
(5)关于主控芯片与储能电路的电连接,图5中未示出,本发明的光电池辐照传感器可实现长时间野外工作,因为其具备自供电功能。储能电路存储的电能可为各芯片部件供电,该主控芯片STM32L151的电源输入管脚可与储能电路电连接,从而获取相应的电能。
本实施例中的光电池辐照传感器,若其光电池采用硅光电池,则该硅光电池辐照传感器带有LoRa无线传输功能、辐照检测功能和自供电功能。基于 LoRa的无线通讯方式传输数据,解决了安装不方便需要布线的问题。为了免除维护,实现能够自我供电并能够存储电能,因此设计了硅光电池作为“检测”元件和作为“供电”元件合二为一的工作机制,两种功能通过切换开关进行切换。由于硅光电池的短路电流与辐照正相关,因此设计了“辐照采样电路”,该电路获取硅光电池的短路电流,对短路电流进行放大后输送到主控芯片进行采样计算获得辐照数值。在采样间隙,硅光电池作为供电元件工作,设计了“最大功率追踪电路”,该电路可以让硅光电池的发电能力最大化的发挥出来以提供尽可能多的电能。“法拉电容C f”把硅光电池产生的电能存储起来,经稳压电源芯片LDO稳压后为其他芯片供电,由于LoRa具有低功耗的特点,主控芯片同样低功耗运行,整个系统功耗也会比较低,主控芯片作为控制核心控制实现上述功能。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种光电池辐照传感器,其特征在于,包括:
    光电池选择电路、与所述光电池选择电路电连接的主控芯片、及与所述主控芯片电连接的辐照采样电路、最大功率追踪电路、储能电路、及无线通信模块;所述最大功率追踪电路还与所述储能电路电连接;其中:
    当所述主控芯片控制所述光电池选择电路选择与所述辐照采样电路接通时,所述辐照采样电路获取光电池的短路电流,传输给所述主控芯片;所述主控芯片根据所述短路电流计算出所述光电池的辐照值,并通过所述无线通信模块将所述光电池的辐照值发送出去;
    当所述主控芯片控制所述光电池选择电路选择与所述最大功率追踪电路接通时,所述最大功率追踪电路在所述主控芯片的驱动控制信号的控制下使光电池工作在最大功率点的位置输出电能,并通过所述储能电路将所述电能进行存储,便于为各芯片供电;所述最大功率追踪电路还采集充电电流,并对所述充电电流处理后反馈给所述主控芯片,便于所述主控芯片调节驱动控制信号,控制所述最大功率追踪电路。
  2. 根据权利要求1所述的一种光电池辐照传感器,其特征在于,所述光电池选择电路包括:硅光电池、及与所述硅光电池电连接的切换开关;所述切换开关根据主控芯片的通道选择,将所述硅光电池的输出电流输入到辐照采样电路或最大功率追踪电路。
  3. 根据权利要求2所述的一种光电池辐照传感器,其特征在于,所述辐照采样电路包括:运算放大器、短路电流采样电阻;所述运算放大器的同相输入端输入所述硅光电池的正极电流,且所述运算放大器的同相输入端接地;所述运算放大器的反相输入端输入所述硅光电池的负极电流;所述运算放大器的 反相输入端与输出端之间并联一短路电流采样电阻;所述运算放大器的输出端将输出的短路电流输入给所述主控芯片。
  4. 根据权利要求2所述的一种光电池辐照传感器,其特征在于,所述最大功率追踪电路包括:驱动子电路、最大功率主电路及采样子电路;其中:
    所述驱动子电路根据主控芯片发出的PWM驱动信号驱动所述最大功率主电路在硅光电池工作在最大功率点位置输出电能,并通过所述储能电路进行储能;所述采样子电路进行充电电流采样,并将采样的充电电流进行放大处理后反馈给主控芯片。
  5. 根据权利要求4所述的一种光电池辐照传感器,其特征在于,所述驱动子电路包括一驱动三极管,所述主控芯片的PWM驱动控制信号通过一电阻输入所述驱动三极管的基极,所述驱动三级管的发射极接地;所述驱动三极管的集电极与最大功率主电路电连接,驱动最大功率主电路;
    所述最大功率主电路包含一电路开关管、滤波电容、滤波电感、续流二极管;其中,所述电路开关管的基极与所述驱动三级管的集电极电连接,所述电路开关管的发射极通过所述切换开关与所述硅电池的正极端电连接,且所述电路开关管的发射极和基极通过一电阻电连接;所述电路开关管的集电极与所述滤波电感电连接,所述滤波电感的另一端与所述储能电路电连接;所述滤波电容的一端与所述电路开关管的发射极电连接,所述滤波电容的另一端与所述续流二极管的输入端电连接,所述续流二极管的输入端通过所述切换开关与所述硅光电池的负极端电连接,所述续流二极管的输出端与所述电路开关管的集电极电连接;
    所述采样子电路包含一充电电流采样电阻及运算放大器;所述充电电流采样电阻的一端与所述硅光电池的负极端及所述续流二极管的输入端电连接;所述充电电流采样电阻的另一端接地;所述运算放大器的同相输入端通过一偏置 电阻后与续流二极管的输入端电连接,所述偏置电阻的另一端通过一电容后接地;所述运算放大器的反相输入端通过一放大电阻后接地,所述运算放大器的反相输入端与输出端之间通过另一放大电阻电连接,且所述运算放大器的输出端作为充电电流测量点与所述主控芯片电连接。
  6. 根据权利要求5所述的一种光电池辐照传感器,其特征在于,所述储能电路包含一法拉电容,及一稳压电源芯片;所述法拉电容的正极端与所述滤波电感电连接,所述法拉电容的负极端接地;所述稳压电源芯片的输入端与所述滤波电感电连接,所述稳压电源芯片的输出端作为供电输出端为各芯片供电。
  7. 根据权利要求1所述的一种光电池辐照传感器,其特征在于,所述无线通信模块采用LORA通信方式进行无线通信。
  8. 根据权利要求7所述的一种光电池辐照传感器,其特征在于,所述无线通信模块包含一LORA芯片SX1276。
  9. 根据权利要求1所述的一种光电池辐照传感器,其特征在于,所述主控芯片为STM32L系列的单片机。
  10. 根据权利要求1-9任一项所述的一种光电池辐照传感器,其特征在于,所述主控芯片为单片机STM32L151。
PCT/CN2019/103459 2019-06-28 2019-08-29 一种光电池辐照传感器 WO2021007927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910580301.9 2019-06-28
CN201910580301.9A CN110196099A (zh) 2019-06-28 2019-06-28 一种光电池辐照传感器

Publications (1)

Publication Number Publication Date
WO2021007927A1 true WO2021007927A1 (zh) 2021-01-21

Family

ID=67755441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103459 WO2021007927A1 (zh) 2019-06-28 2019-08-29 一种光电池辐照传感器

Country Status (3)

Country Link
CN (1) CN110196099A (zh)
AU (1) AU2019101739A4 (zh)
WO (1) WO2021007927A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545887A1 (de) * 1991-11-29 1993-06-09 Wilhelm Steiner Ein transportables Messgerät zur Erfassung der UV-Strahlendosis als Schutz vor gesundheitlichen Schädigungen der Haut
CN101169338A (zh) * 2007-11-16 2008-04-30 北京恒基伟业投资发展有限公司 具有测量光照强度功能的手机及其方法
CN101551437A (zh) * 2009-04-23 2009-10-07 华中科技大学 一种太阳电池参数测试装置
CN102809424A (zh) * 2011-06-02 2012-12-05 徐州捷扬电子科技有限公司 一种太阳能充电式光照度计
CN102879089A (zh) * 2012-10-15 2013-01-16 广州中晶新能源工程有限公司 一种日辐照强度及光伏发电量采集设备
CN202793586U (zh) * 2012-09-27 2013-03-13 天津大学 基于无线传感器网络的辐照度测试仪
CN103090968A (zh) * 2011-11-03 2013-05-08 昆山市工业技术研究院有限责任公司 二线制光照强度变送器电路
CN104457978A (zh) * 2014-10-20 2015-03-25 青岛农业大学 一种光辐照强度检测器及其检测方法
CN104980105A (zh) * 2015-06-01 2015-10-14 北京汇能精电科技股份有限公司 一种测试太阳能光伏发电系统最大功率点跟踪算法性能的方法
CN107543606A (zh) * 2016-06-23 2018-01-05 扬中市润宇电力设备有限公司 一种光辐照强度检测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114838A1 (ja) * 2010-03-15 2011-09-22 コニカミノルタセンシング株式会社 太陽電池評価装置および太陽電池評価方法
EP2431832B1 (en) * 2010-09-21 2013-05-15 ABB Research Ltd Method and arrangement for tracking the maximum power point of a photovoltaic module
CN209945552U (zh) * 2019-06-28 2020-01-14 江苏中信博新能源科技股份有限公司 一种光电池辐照传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545887A1 (de) * 1991-11-29 1993-06-09 Wilhelm Steiner Ein transportables Messgerät zur Erfassung der UV-Strahlendosis als Schutz vor gesundheitlichen Schädigungen der Haut
CN101169338A (zh) * 2007-11-16 2008-04-30 北京恒基伟业投资发展有限公司 具有测量光照强度功能的手机及其方法
CN101551437A (zh) * 2009-04-23 2009-10-07 华中科技大学 一种太阳电池参数测试装置
CN102809424A (zh) * 2011-06-02 2012-12-05 徐州捷扬电子科技有限公司 一种太阳能充电式光照度计
CN103090968A (zh) * 2011-11-03 2013-05-08 昆山市工业技术研究院有限责任公司 二线制光照强度变送器电路
CN202793586U (zh) * 2012-09-27 2013-03-13 天津大学 基于无线传感器网络的辐照度测试仪
CN102879089A (zh) * 2012-10-15 2013-01-16 广州中晶新能源工程有限公司 一种日辐照强度及光伏发电量采集设备
CN104457978A (zh) * 2014-10-20 2015-03-25 青岛农业大学 一种光辐照强度检测器及其检测方法
CN104980105A (zh) * 2015-06-01 2015-10-14 北京汇能精电科技股份有限公司 一种测试太阳能光伏发电系统最大功率点跟踪算法性能的方法
CN107543606A (zh) * 2016-06-23 2018-01-05 扬中市润宇电力设备有限公司 一种光辐照强度检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, CHUNFU ET AL.: "Design of maximum power point tracking controller with photovoltaic power generation", CHINA MEASUREMENT & TEST, vol. 40, no. 2,, 31 March 2014 (2014-03-31), ISSN: 1674-5124, DOI: 20200307165910 *

Also Published As

Publication number Publication date
CN110196099A (zh) 2019-09-03
AU2019101739A4 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN108306333B (zh) 用于互联的直流电源的电路
US20180234051A1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
Hiwale et al. An efficient MPPT solar charge controller
US10090701B2 (en) Solar power generation system
CN110021955B (zh) 集成储能功能的光伏发电系统及动态平衡电能的方法
US20240053786A1 (en) String optima for tracking equal voltage in units of strings, and solar power generation system to which same is applied
CN102780398B (zh) 智能太阳能光伏电池板的组件优化器及其控制方法
KR102412303B1 (ko) 전류값을 이용하여 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
CN109787271B (zh) 能源利用系统及相应的实现方法
CN102176184B (zh) 光伏电池最大功率点跟踪控制电路
CN102879089A (zh) 一种日辐照强度及光伏发电量采集设备
CN108899987B (zh) 一种具有mppt功能的太阳能充电控制电路
CN103066888B (zh) 一种具有自补偿功能的光伏组件
CN103294102A (zh) 一种基于温度检测的太阳能cvt控制方法
US10399441B2 (en) Digital load management for variable output energy systems
CN102386808A (zh) 具有最大功率跟踪的光伏控制器
CN209945552U (zh) 一种光电池辐照传感器
CN202285377U (zh) 一种基于负载阻抗调节型光伏控制器
WO2021007927A1 (zh) 一种光电池辐照传感器
CN202524145U (zh) 一种高效率的太阳能充电装置
CN105226737B (zh) 一种高采收率光伏充电方法及装置
CN201203813Y (zh) 一种光伏发电输出匹配控制器
CN109787213B (zh) 供电系统及其实现方法
TW201519456A (zh) 適應性太陽能集電裝置
CN206041800U (zh) 一种分布式mppt光伏集成组件控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937595

Country of ref document: EP

Kind code of ref document: A1