WO2021007895A1 - 离心叶轮加工特征识别方法 - Google Patents

离心叶轮加工特征识别方法 Download PDF

Info

Publication number
WO2021007895A1
WO2021007895A1 PCT/CN2019/099703 CN2019099703W WO2021007895A1 WO 2021007895 A1 WO2021007895 A1 WO 2021007895A1 CN 2019099703 W CN2019099703 W CN 2019099703W WO 2021007895 A1 WO2021007895 A1 WO 2021007895A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed
blade
group
leaf
centrifugal impeller
Prior art date
Application number
PCT/CN2019/099703
Other languages
English (en)
French (fr)
Inventor
于嘉鹏
路永辉
姜博宏
孙加明
张硕
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021007895A1 publication Critical patent/WO2021007895A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components

Definitions

  • the technology relates to the technical field of CAD/CAM, and particularly relates to a CAD, CAPP, and CAM fusion technology of a centrifugal impeller, specifically a method for identifying processing characteristics of a centrifugal impeller.
  • CAD, CAPP, and CAM are used to complete parts design, part process analysis, and CNC machining programming in modern industrial design and manufacturing, but the three are relatively independent systems, and information is not realized in the whole process of product design and manufacturing. Automatic sharing of data. At present, the processing geometric information of the CAD model cannot be automatically transferred to the CAM module, and it still needs to be manually obtained manually. This process is complicated and cumbersome, resulting in low efficiency of CNC machining programming.
  • the feature recognition technology can closely integrate the CAD module and the CAM module, making information transmission more simple and intelligent, thereby shortening the product manufacturing cycle and achieving the purpose of automatic programming.
  • Centrifugal impellers are recognized as complex and difficult-to-machine parts, which are widely used in aerospace engines, steam turbines, hydraulic pumps and other equipment.
  • the processing characteristics of centrifugal impellers mainly include main blades, splitter blades, hubs, hole surfaces, planes and other structures.
  • the main blades and splitter blades include seed surfaces such as coating surfaces, wall surfaces and blade root fillets.
  • Feature recognition refers to the process of automatically extracting geometric shapes with engineering significance from CAD models.
  • the feature type of the centrifugal impeller has not been covered, so there is no accurate and efficient method for the feature recognition of the centrifugal impeller.
  • the purpose of the present invention is to address the lack of the current CAM system for the processing feature recognition function of the centrifugal impeller and the deficiencies of the existing recognition methods.
  • the present invention proposes a method for identifying the processing feature of the centrifugal impeller.
  • the technical solution of the present invention is:
  • a method for identifying processing characteristics of a centrifugal impeller including the following steps:
  • Step 1 According to the development interface provided by the 3D modeling software, obtain the topology information and TAG value of the 3D solid model by running the written secondary development function script program, and extract each impeller model according to the topology information and TAG value obtained by extension Attributes of each face;
  • Step 2 Define the characteristics that meet the requirements of centrifugal impeller processing
  • Step 3 According to the processing and structural characteristics of the centrifugal impeller, formulate corresponding identification rules
  • Step 4 Identify the simple processing features of the centrifugal impeller plane and center hole by judging the type of seed surface
  • Step 5 Search and recognize the impeller hub, a group of adjacent blade features, their seed surfaces, and the number of blade groups based on the recognition rules, and extract geometric information of the features;
  • the definition of the characteristics that meet the requirements of centrifugal impeller processing refers to: by analyzing the structural characteristics of the impeller, the processing characteristics of the centrifugal impeller include hole characteristics, plane characteristics, hub surface characteristics, blade surface group, blade wall surface group, and blade root circle.
  • Cycle traversal to determine the positional relationship between the main blade coating surface and the seed surface in the blade wall surface group, identify the seed surface adjacent to the main blade coating surface as the main blade wall surface, and cycle to determine the main blade wall surface and leaf root
  • the positional relationship of the seed surface in the fillet surface group, the seed surface adjacent to the main blade wall surface is identified as the main blade root fillet surface, and the position relationship between the shunt blade coating surface and the seed surface in the blade wall surface group is determined by looping.
  • the seed surface adjacent to the covering surface of the shunt blade is identified as the shunt blade wall surface, and the positional relationship between the shunt blade wall surface and the seed surface in the root fillet surface group is determined by loop traversal, and the seed surface adjacent to the shunt blade wall surface is identified as The shunt blade blade root fillet surface.
  • the invention covers the required feature types for centrifugal impeller milling and drilling, adopts a rule-based method to identify features, does not need to define a feature library, and has high processing feature identification efficiency and high accuracy.
  • Figure 1 is a flowchart of a method for identifying machining characteristics of a centrifugal impeller.
  • Figure 2 is a flow chart of a method for obtaining topology information and TAG values of a three-dimensional solid model.
  • Figure 3 is a tree structure diagram of part of the topological information of the centrifugal impeller.
  • Figure 4 is a schematic diagram of the structure of the centrifugal impeller.
  • Figure 5 is a schematic diagram of the splitter blade structure of the centrifugal impeller.
  • Figure 6 is a schematic diagram of the main blade structure of the centrifugal impeller.
  • Fig. 7 is a flowchart for identifying the characteristics of the hub feature, a group of adjacent blade features, and the seed surface and the number of blade groups.
  • Figure 8 is a flowchart for judging whether two seed faces are adjacent and tangent.
  • Fig. 9 is a diagram showing the recognition results of the machining characteristics of the centrifugal impeller.
  • a method for identifying processing characteristics of a centrifugal impeller The flowchart of the method for identifying processing characteristics is shown in Figure 1.
  • Step 1 The three-dimensional modeling software used in this embodiment is UG (Unigraphics NX).
  • UG Unigraphics NX
  • the steps of developing a function script program to obtain the topology information and TAG value of the UG model are as follows: first call the function workpart->Bodies() in the UG software function library to obtain the TAG value of the centrifugal impeller UG model body, and then call the function UF_MODEL_ask_body_faces in the function library () Obtain the TAG linked list of all the seed faces, and obtain the TAG value of each seed face from the TAG linked list containing all the seed faces through the loop traversal calculation.
  • call the function in the function library UF_BREP_ask_topology() obtains the topology information of the UG model.
  • the topology information is used to describe the boundary information of the UG model, including the connection relationship between the body, the surface, and the edge. It is based on the solid, shell, face, face, loop, and edge Edge, etc. are stored in a tree structure, where the partial topology information tree structure diagram of the centrifugal impeller in this embodiment is shown in Figure 3, and then the attributes of each seed surface of the impeller model are extracted according to the acquired topology information and TAG value.
  • Table 1 the seed surface attribute information of the partial surface of the centrifugal impeller extracted in this embodiment, where the attributes mainly include surface area, surface type, number of edges contained in the surface, perimeter of the surface, and number of tangent surfaces.
  • Step 2 Define the characteristics that meet the processing requirements of the centrifugal impeller.
  • the processing characteristics of the centrifugal impeller include hole characteristics, planar characteristics, hub surface characteristics, blade face groups, blade wall face groups, and blade root fillet faces.
  • the adjacent group of blade features includes main blade features and shunt blade features; said main blade features include main blade root fillet surface The main blade wall surface and the main blade covering surface; the shunt blade features include the shunt blade root fillet surface, the shunt blade wall surface and the shunt blade covering surface; all surfaces that define a feature are called the seed surface of the feature
  • the seed face set the seed face set containing all the main blade features and the shunt blade features is called the leaf face set; the seed face set containing all the main blade walls and the shunt blade wall is called the blade wall face group;
  • the seed surface set containing all the main blade root fillets and the splitting blade root fillets is called the root fillet surface set; the seed surface set containing all the main blade coating surfaces and the splitting blade coating surface is called the coating surface group.
  • the processing features to be identified of the centrifugal impeller in this embodiment mainly include planar features 1, hole features 2, hub surface features 3, a set of adjacent blade features 12, and hub surface features 3.
  • the tangent surface of the hub surface feature 3 is composed of the main blade root fillet surface seed surface 16 and the split blade root fillet surface seed surface 13;
  • the adjacent group of blade features 12 also includes the main blade feature 10 and the splitter blade feature 11;
  • the main blade feature 10 includes the main blade root fillet surface 4, the main blade wall surface 5 and the main blade cladding surface 6 equal division features;
  • the splitter blade feature 11 also includes the splitter blade root fillet surface 9
  • the splitter blade wall surface 8 and the splitter blade coating surface 7 are equally divided; as shown in the schematic diagram of the splitter blade structure of the centrifugal impeller in Figure 5, the splitter blade root fillet surface 9 includes the splitter blade root fillet surface seed surface 13;
  • the blade wall 8 includes the splitter blade wall seed surface 14;
  • the splitter blade coating surface 7 includes the splitter blade coating seed surface 15; as shown in the schematic diagram of the main blade structure of the centrifugal impeller, the main blade root fillet surface 4 includes the main The
  • Step 3 According to the processing and structural characteristics of the centrifugal impeller, formulate corresponding identification rules.
  • FIG. 6 is a schematic structural diagram of the main blade feature 10 in the schematic structural diagram of the centrifugal impeller of FIG. 4.
  • the structural characteristics of the centrifugal impeller are summarized as follows: 1The seed surface of each group of blade characteristics has the same surface area, and the number of surfaces with the same surface area is the number of blade groups; for example, the covering surface of all main blades has the same area, which The number of surfaces with the same covering area is the number of blade groups; 2The hub surface feature 3 has a tangent positional relationship with the main blade root fillet surface seed surface 16 and the split blade root fillet surface seed surface 13, and The surface with the most tangent surfaces is the hub surface feature 3.
  • the tangent surface of the hub surface feature 3 is composed of the main blade root fillet surface seed surface 16 and the shunt blade root fillet surface seed surface 13; 3
  • the main blade wall surface seed surface 17 has a tangent positional relationship with the seed surface 16 of the main blade root fillet, the seed surface 14 of the splitter blade wall surface and the seed surface 13 of the splitter blade root have a tangent positional relationship, the main blade wall seed surface 17 is
  • the seed surface 18 of the main blade coating surface has an adjacent but not tangent positional relationship.
  • the seed surface 14 of the splitter blade wall surface and the seed surface 15 of the splitter blade coating surface have an adjacent but not tangent positional relationship;
  • the seed surface 18 of the blade coating surface and the seed surface 15 of the shunt blade coating surface must be located on a group of adjacent leaf features 12; 5
  • the circumference of the main blade coating surface of the seed surface 18 is greater than the circumference of the seed surface 15 of the shunt blade coating surface long.
  • Cycle traversal to determine the positional relationship between the seed surface 18 of the main blade coating surface and the middle surface of the blade wall surface group identify the surface adjacent to the main blade coating surface seed surface 18 as the main blade wall seed surface 17, and cycle traverse to determine the main blade wall surface
  • the positional relationship between the seed surface 17 and the seed surface in the leaf root fillet surface group is identified as the main leaf root fillet surface seed surface 16, and the diverging leaf coating is judged by looping.
  • the seed surface adjacent to the seed surface 15 of the shunt blade coating surface is identified as the shunt blade wall seed surface 14, and it is traversed to determine the shunt blade wall seed surface 14 and the leaf
  • the positional relationship of the seed surfaces in the root fillet surface group identifies the seed surface adjacent to the seed surface 14 of the splitter blade wall surface as the split blade root fillet seed surface 13.
  • the cycle traversal in the formulation process of the corresponding recognition rule described in step 3 judges the positional relationship between the two seed faces, which is to judge two
  • the method for determining whether the seed faces are adjacent and tangent is as follows:
  • Step 4 Complete the identification of simple processing features such as the plane of the centrifugal impeller and the center hole by judging the type of seed surface;
  • Step 5 Search and recognize the impeller hub, a group of adjacent blade features, their seed surfaces, and the number of blade groups based on the recognition rules, and extract the geometric information of the features.
  • the centrifugal impeller processing feature recognition result obtained in this embodiment As shown in Figure 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心叶轮加工特征识别方法,包括以下步骤:第一,获取三维实体模型的拓扑信息和TAG值,并根据这些信息提取离心叶轮模型每个种子面的属性;第二,定义满足离心叶轮加工要求的特征;第三,依据离心叶轮的加工特征和结构特点,制定对应的识别规则和识别方法,并将其转换为特征识别算法程序;第四,通过判断种子面的类型完成对叶轮平面、中心孔等简单加工特征的识别;第五,基于制定的识别规则对叶轮轮毂、一组相邻叶片特征及其种子面、叶片组数进行搜索和识别,并提取特征的几何信息。以上方法具有特征识别效率高,准确度高的优点。

Description

离心叶轮加工特征识别方法 技术领域
本技术涉及CAD/CAM技术领域,特别涉及一种离心叶轮的CAD,CAPP,CAM融合技术,具体地说是一种离心叶轮加工特征识别方法。
背景技术
CAD、CAPP、CAM在现代工业设计制造中被分别用来完成零件设计、零件工艺分析和数控加工编程等工作,但三者是相对独立的系统,在产品设计制造全过程中,并未实现信息数据的自动共享。目前,CAD模型的加工几何信息不能自动传递给CAM模块,仍需人工手动获取,此过程复杂繁琐,造成数控加工编程效率低下。而特征识别技术可以使CAD模块与CAM模块紧密结合起来,使信息传递更加简捷和智能,从而缩短产品制造周期,实现自动化编程的目的。
离心叶轮是一类公认复杂的难加工零件,其广泛的应用于航空航天的发动机、汽轮机、液压泵等设备。离心叶轮的加工特征主要有主叶片、分流叶片、轮毂、孔面、平面等结构,其中主叶片和分流叶片又包含了包覆面、壁面和叶根圆角面等种子面。
目前在离心叶轮数控加工编程中,需要编程人员手动选择孔面、平面、轮毂、一组相邻的叶片等特征。除此之外,还需要手动输入叶片组数,选择主叶片和分流叶片的种子面等操作、此过程需要大量的人机交互,选择对象非常繁琐,极易出错。由于每个CAD模型都包含完整的产品信息,没必要在加工编程时浪费时间去选择每一个加工对象,因此迫切需要特征识别技术对叶轮加工特征进行自动识别和提取,将CAD模块和CAM模块紧密的结合起来,使得信息传递更加简捷和智能,从而大大提高编程效率。特征识别是指从CAD模型中将具有工程意义的几何形状自动提取的过程。目前的特征识别技术中,还没有覆盖离心叶轮的特征类型,因此对离心叶轮的特征识别还没有准确、高效的方法。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的是针对目前CAM系统缺少针对离心叶轮加工特征识别功能,以及现有识别方法的不足,本发明提出一种离心叶轮加工特征识别方法。
为实现上述技术目的,本发明的技术方案为:
一种离心叶轮加工特征识别方法,包括以下步骤:
步骤1:根据三维造型软件提供的开发接口,通过运行编写的二次开发函数脚本程序获取三维实体模型的拓扑信息和TAG值,并根据拓获取的所述的拓扑信息和TAG值提取叶轮模型每个面的属性;
步骤2:定义满足离心叶轮加工要求的特征;
步骤3:依据离心叶轮的加工特征和结构特点,制定对应的识别规则;
步骤4:通过判断种子面的类型完成对离心叶轮平面、中心孔的简单加工特征的识别;
步骤5:基于所述识别规则对叶轮轮毂、一组相邻叶片特征及其种子面和叶片组数进行搜索和识别,并提取特征的几何信息;
所述的定义满足离心叶轮加工要求的特征是指:通过分析叶轮的结构特点,得出离心叶轮的加工特征包括孔特征、平面特征、轮毂面特征、叶片面组、叶片壁面组、叶根圆角面组、包覆面组、相邻的一组叶片特征和叶片组数量;其中相邻的一组叶片特征又包括主叶片特征和分流叶片特征;主叶片特征包括主叶片叶根圆角面、主叶片壁面和主叶片包覆面;分流叶片特征包括分流叶片叶根圆角面、分流叶片壁面和分流叶片包覆面;定义组成某个特征的所有面称为该特征的种子面集合,根据种子面集合的定义,其中包含所有主叶片特征和分流叶片特征的种子面集合称为叶片面组;包含所有主叶片壁面和分流叶片壁面的种子面集合称为叶片壁面组;包含所有主叶片叶根圆角和分流叶片叶根圆角的种子面集合称为叶根圆角面组;包含所有主叶片包覆面和分流叶片包覆面的种子面集合称为包覆面组。
所述识别规则的制定过程如下:
1)循环遍历判断叶轮每个种子面的类型和种子面所包含边数量,并规定当种 子面的类型为平面时,结束对平面特征的识别,定义种子面的类型为圆柱面并且只含有两条边的种子面为叶轮的孔面特征;
2)循环遍历判断叶轮每个种子面的相切面数量,定义相切面数量最多的种子面为轮毂面特征;
3)循环遍历判断离心叶轮的所有种子面的面积属性,若某一种子面有与这一种子面面积相等的其他面,则将这些面积相等的种子面收集并存储在叶片面组中;
4)循环遍历判断轮毂面与所述叶片面组中的种子面的位置关系,将所述叶片面组中与轮毂面特征相邻并且相切的种子面收集起来,存储为叶根圆角面组,循环判断叶根圆角面组中的种子面与所述叶片面组中的种子面的位置关系,将与叶根圆角面组相邻并相切的叶片面组中的种子面收集起来,存储为叶片壁面组,将与叶根圆角面组不相邻的叶片面组中的种子面收集起来,存储为包覆面组,并计算所述包覆面组中的种子面数量,其中所述包覆面组中所含的种子面数量的二分之一记为叶片组数量;
5)循环遍历计算包覆面组中任意两个种子面的距离,定义距离最近的两个包覆面为相邻一组叶片的包覆面,通过比较两个包覆面的周长大小,确定周长相对较大的包覆面为主叶片包覆面,剩下的一个包覆面为分流叶片包覆面;
6)循环遍历判断主叶片包覆面与叶片壁面组中种子面的位置关系,将与主叶片包覆面相邻的种子面识别为主叶片壁面,循环遍历判断所述主叶片壁面与叶根圆角面组中种子面的位置关系,将与主叶片壁面相邻的种子面识别为主叶片叶根圆角面,循环遍历判断分流叶片包覆面与叶片壁面组中种子面的位置关系,将与分流叶片包覆面相邻的种子面识别为分流叶片壁面,循环遍历判断分流叶片壁面与叶根圆角面组中种子面的位置关系,将与分流叶片壁面相邻的种子面识别为分流叶片叶根圆角面。
发明的有益效果
有益效果
本发明涵盖了离心叶轮铣削加工和钻加工所需求的特征类型,采用基于规则的方法对特征进行识别,不需要定义特征库,且加工特征识别效率高、正确率高 。
对附图的简要说明
附图说明
图1为离心叶轮加工特征识别方法流程图。
图2为获取三维实体模型的拓扑信息和TAG值的方法流程图。
图3为离心叶轮的部分拓扑信息树型结构图。
图4为离心叶轮的结构示意图。
图5为离心叶轮的分流叶片结构示意图。
图6为离心叶轮的主叶片结构示意图。
图7为轮毂特征、一组相邻叶片特征及其种子面和叶片组数特征识别的流程图。
图8为判断两个种子面是否相邻、相切的流程图。
图9为离心叶轮加工特征识别结果图。
1-平面特征,2-孔特征,3-轮毂面特征,4-主叶片叶根圆角面,5-主叶片壁面,6-主叶片包覆面,7-分流叶片包覆面,8-分流叶片壁面,9-分流叶片叶根圆角面,10-主叶片特征,11-分流叶片特征,12-相邻的一组叶片特征,13-分流叶片叶根圆角面种子面,14-分流叶片壁面种子面,15-分流叶片包覆面种子面,16-主叶片叶根圆角面种子面,17-主叶片壁面种子面,18-主叶片包覆面种子面。
发明实施例
本发明的实施方式
下面是结合附图对本发明的技术方案进行详细说明。
如图1-9所示。
一种离心叶轮加工特征识别方法,其加工特征识别方法流程图如图1所示,首先获取三维实体模型的拓扑信息和TAG值,根据这些信息提取叶轮零件每个面的属性;其次依据离心叶轮的加工特征和结构特点,制定对应的识别规则;再通过判断种子面的类型完成对离心叶轮平面、中心孔等简单加工特征的识别;最后基于特征识别规则对叶轮轮毂、一组相邻叶片特征及其种子面、叶片组数进行搜索和识别,并提取特征的几何信息;包含如下步骤:
步骤1:本实施例中采用的三维造型软件为UG(Unigraphics NX),根据UG提供的开发接口,根据如图2获取三维实体模型的拓扑信息和TAG值的方法流程图所示,编写二次开发函数脚本程序获取UG模型的拓扑信息和TAG值的步骤如下:首先调用UG软件函数库中的函数workpart->Bodies()获取离心叶轮UG模型体的TAG值,然后调用函数库中的函数UF_MODEL_ask_body_faces()获取所有种子面的TAG链表,并通过循环遍历计算从包含所有种子面的TAG链表中获取每个种子面的TAG值,得到每个种子面的TAG值后,再调用函数库中的函数UF_BREP_ask_topology()获取UG模型的拓扑信息,所述的拓扑信息是用于描述UG模型的边界信息,包括体、面、边的连接关系,并以体Solid、壳Shell、面Face、环Loop、边Edge等存储在树形结构中,其中本实施例中的离心叶轮的部分拓扑信息树型结构图如图3所示,然后根据获取的拓扑信息和TAG值提取叶轮模型每个种子面的属性,如表1所示,为本实施例中提取的离心叶轮的部分面的种子面属性信息,这里的属性主要包括表面积、面类型、面所包含边数量、面的周长和相切面数量。
表1离心叶轮的种子面属性信息表
Figure PCTCN2019099703-appb-000001
步骤2:定义满足离心叶轮加工要求的特征,通过分析叶轮的结构特点,得出离心叶轮的加工特征包括孔特征、平面特征、轮毂面特征、叶片面组、叶片壁面组、叶根圆角面组、包覆面组、相邻的一组叶片特征和叶片组数量;其中相 邻的一组叶片特征又包括主叶片特征和分流叶片特征;所述主叶片特征包括主叶片叶根圆角面、主叶片壁面和主叶片包覆面;所述分流叶片特征包括分流叶片叶根圆角面、分流叶片壁面和分流叶片包覆面;定义组成某个特征的所有面称为该特征的种子面集合,根据所述种子面集合的定义,其中包含所有主叶片特征和分流叶片特征的种子面集合称为叶片面组;包含所有主叶片壁面和分流叶片壁面的种子面集合称为叶片壁面组;包含所有主叶片叶根圆角和分流叶片叶根圆角的种子面集合称为叶根圆角面组;包含所有主叶片包覆面和分流叶片包覆面的种子面集合称为包覆面组。
如图4离心叶轮的结构示意图所示,本实施例中离心叶轮的待识别加工特征主要包括平面特征1、孔特征2、轮毂面特征3、相邻的一组叶片特征12、轮毂面特征3和叶片组数量;其中轮毂面特征3的相切面由主叶片叶根圆角面种子面16和分流叶片叶根圆角面种子面13构成;相邻的一组叶片特征12又包括主叶片特征10和分流叶片特征11;主叶片特征10包括主叶片叶根圆角面4、主叶片壁面5和主叶片包覆面6等分特征;分流叶片特征11又包括分流叶片叶根圆角面9、分流叶片壁面8和分流叶片包覆面7等分特征;如图5离心叶轮的分流叶片结构示意图所示,分流叶片叶根圆角面9包括分流叶片叶根圆角面种子面13;分流叶片壁面8包括分流叶片壁面种子面14;分流叶片包覆面7包括分流叶片包覆面种子面15;如图6离心叶轮的主叶片结构示意图所示,主叶片叶根圆角面4包括主叶片叶根圆角种子面16,主叶片壁面5包括主叶片壁面种子面17,主叶片包覆面6包括主叶片包覆面种子面18。
步骤3:依据离心叶轮的加工特征和结构特点,制定对应的识别规则。
如图4离心叶轮的结构示意图、图5离心叶轮的分流叶片结构示意图、图6离心叶轮的主叶片结构示意图所示,其中图5为图4离心叶轮的结构示意图中的分流叶片特征11的结构示意图,图6为图4离心叶轮的结构示意图中的主叶片特征10的结构示意图。离心叶轮的结构特点概述如下:①每组叶片特征的种子面具有相同的表面积,且表面积相同的面的数量即为叶片组数;例如,所有主叶片的包覆面具有相同的面积,与包覆面面积相同的面的数量即为叶片组数;②轮毂面特征3与主叶片叶根圆角面种子面16和分流叶片叶根圆角面种子面13具有相切的位 置关系,且所含相切面最多的面即为轮毂面特征3,轮毂面特征3的相切面由主叶片叶根圆角面种子面16和分流叶片叶根圆角面种子面13构成;③主叶片壁面种子面17与主叶片叶根圆角面种子面16具有相切的位置关系,分流叶片壁面种子面14与分流叶片叶根圆角面种子面13具有相切的位置关系,主叶片壁面种子面17与主叶片包覆面种子面18具有相邻但不相切的位置关系,分流叶片壁面种子面14与分流叶片包覆面种子面15具有相邻但不相切的位置关系;④距离最近的主叶片包覆面种子面18与分流叶片包覆面种子面15一定位于一组相邻叶片特征12上;⑤主叶片包覆面种子面18的周长大于分流叶片包覆面种子面15的周长。
如图1离心叶轮加工特征识别方法流程图与图7轮毂特征、一组相邻叶片特征及其种子面和叶片组数特征识别的流程图所示,步骤3所述的识别规则的制定过程如下:
1)循环遍历判断叶轮每个种子面的类型和种子面所包含边数量,并规定当种子面的类型为平面时,结束对对平面特征的识别,定义种子面的类型为圆柱面并且只含有两条边的种子面为叶轮的孔面特征;
2)循环遍历判断叶轮每个种子面的相切面数量,定义相切面数量最多的种子面为轮毂面特征;
3)循环遍历判断离心叶轮的所有种子面的面积属性,判断是否有与该种子面面积相等的其他种子面,若某一种子面有与该种子面面积相等的其他种子面,则将这些面积相等的种子面收集并存储在叶片面组中;
4)循环遍历判断轮毂面特征3与叶片面组中的种子面的位置关系,将叶片面组中与轮毂面特征3相邻并且相切的种子面收集起来,存储为叶根圆角面组blend[i],其中i表示叶根圆角面组中种子面的数量;循环遍历判断叶根圆角面组blend[i]中的种子面与叶片面组中的种子面的位置关系,将与叶根圆角面组blend[i]相邻并相切的叶片面组中的种子面收集起来,存储为叶片壁面组blade[k],其中k表示叶片壁面组中种子面的数量,将与叶根圆角面组blend[i]不相邻的叶片面组中的种子面收集起来,存储为包覆面组shroud[m],其中m表示包覆面组中种子面的数量,其中包覆面组shroud[m]中所含的种子面数量m的二分之一记为叶片组数量,即叶片组数量为m/2;
5)循环遍历计算包覆面组中任意两个种子面的距离,定义距离最近的两个包覆面为相邻一组叶片的包覆面,通过比较两个包覆面的周长大小,确定周长相对较大的包覆面为主叶片包覆面,剩下的一个包覆面为分流叶片包覆面,例如主叶片包覆面种子面18与分流叶片包覆面种子面15相比,主叶片包覆面种子面18的周长大于分流叶片包覆面种子面15的周长。
6)如图4离心叶轮的结构示意图、图5离心叶轮的分流叶片结构示意图、图6离心叶轮的主叶片结构示意图所示,其中图5为图4离心叶轮的结构示意图中的分流叶片特征11的结构示意图,图6为图4离心叶轮的结构示意图中的主叶片特征10的结构示意图。循环遍历判断主叶片包覆面种子面18与叶片壁面组中面的位置关系,将与主叶片包覆面种子面18相邻的面识别为主叶片壁面种子面17,循环遍历判断主叶片壁面种子面17与叶根圆角面组中种子面的位置关系,将与主叶片壁面种子面17相邻的种子面识别为主叶片叶根圆角面种子面16,循环遍历判断分流叶片包覆面种子面15与叶片壁面组中种子面的位置关系,将与分流叶片包覆面种子面15相邻的种子面识别为分流叶片壁面种子面14,循环遍历判断分流叶片壁面种子面14与叶根圆角面组中种子面的位置关系,将与分流叶片壁面种子面14相邻的种子面识别为分流叶片叶根圆角面种子面13。
如图8判断两个种子面是否相邻、相切的流程图所示,步骤3所述的对应识别规则的制定过程中所述的循环遍历判断两个种子面的位置关系,即为判断两个种子面是否相邻、相切的方法,其判断步骤如下:
①输入两个种子面,分别定义为face1和face2,获取与种子面face1相邻的所有种子面,并定义与种子面face1相邻的所有种子面为faces1,获取与种子面face2相邻的所有种子面,并定义与种子面face2相邻的所有种子面为faces2;
②判断faces1和faces2是否存在公共面,若faces1和faces2中存在公共面,则判断面face1和面face2相邻,并转到下一步③,如果两者不存在公共面,则判定两个种子面face1和face2不相邻,并输出判断结果;
③如果种子面face1和种子面face2相邻,则取种子面face1和种子面face2公共边的中点并定义为M,求中点M在种子面face1上的法向轴并定义为a,求中点M在种子面face2上的法向轴并定义为b;
④求法向轴a与法向轴b的夹角并定义为β;
⑤判断夹角β是否等于零,如果β等于零,则判定两个种子面face1和face2相切,否则,判定两个种子面不相切仅相邻,并输出判断结果。
步骤4:通过判断种子面的类型完成对离心叶轮平面、中心孔等的简单加工特征的识别;
步骤5:基于所述识别规则对叶轮轮毂、一组相邻叶片特征及其种子面和叶片组数进行搜索和识别,并提取特征的几何信息,本实施例中获得的离心叶轮加工特征识别结果如图9所示。

Claims (2)

  1. 一种离心叶轮加工特征识别方法,其特征在于,包括以下步骤:
    步骤1:根据三维造型软件提供的开发接口,通过运行编写的二次开发函数脚本程序获取三维实体模型的拓扑信息和TAG值,并根据获取的所述的拓扑信息和TAG值提取叶轮模型每个面的属性;
    步骤2:定义满足离心叶轮加工要求的特征;
    步骤3:依据离心叶轮的加工特征和结构特点,制定对应的识别规则;
    步骤4:通过判断种子面的类型完成对离心叶轮平面、中心孔的简单加工特征的识别;
    步骤5:基于所述识别规则对叶轮轮毂、一组相邻叶片特征及其种子面和叶片组数进行搜索和识别,并提取特征的几何信息;
    所述的定义满足离心叶轮加工要求的特征是指:通过分析叶轮的结构特点,得出离心叶轮的加工特征包括孔特征、平面特征、轮毂面特征、叶片面组、叶片壁面组、叶根圆角面组、包覆面组、相邻的一组叶片特征和叶片组数量;其中相邻的一组叶片特征又包括主叶片特征和分流叶片特征;所述主叶片特征包括主叶片叶根圆角面、主叶片壁面和主叶片包覆面;所述分流叶片特征包括分流叶片叶根圆角面、分流叶片壁面和分流叶片包覆面;定义组成某个特征的所有面称为这个特征的种子面集合,根据所述种子面集合的定义,其中包含所有主叶片特征和分流叶片特征的种子面集合称为叶片面组;包含所有主叶片壁面和分流叶片壁面的种子面集合称为叶片壁面组;包含所有主叶片叶根圆角和分流叶片叶根圆角的种子面集合称为叶根圆角面组;包含所有主叶片包覆面和分流叶片包覆面的种子面集合称为包覆面组。
  2. 根据权利要求1所述的一种离心叶轮加工特征识别方法,其特征在于所述的识别规则的制定过程如下:
    1)循环遍历判断叶轮每个种子面的类型和种子面所包含边数量, 并规定当种子面的类型为平面时,结束对平面特征的识别,定义种子面的类型为圆柱面并且只含有两条边的种子面为叶轮的孔面特征;
    2)循环遍历判断叶轮每个种子面的相切面数量,定义相切面数量最多的种子面为轮毂面特征;
    3)循环遍历判断离心叶轮的所有种子面的面积属性,若某一种子面有与这一种子面面积相等的其他面,则将这些面积相等的种子面收集并存储在叶片面组中;
    4)循环遍历判断轮毂面与所述叶片面组中的种子面的位置关系,将所述叶片面组中与轮毂面特征相邻并且相切的种子面收集起来,存储为叶根圆角面组,循环判断叶根圆角面组中的种子面与所述叶片面组中的种子面的位置关系,将与叶根圆角面组相邻并相切的叶片面组中的种子面收集起来,存储为叶片壁面组,将与叶根圆角面组不相邻的叶片面组中的种子面收集起来,存储为包覆面组,并计算所述包覆面组中的种子面数量,其中所述包覆面组中所含的种子面数量的二分之一记为叶片组数量;
    5)循环遍历计算所述包覆面组中任意两个种子面的距离,定义距离最近的两个包覆面为相邻一组叶片的包覆面,通过比较两个包覆面的周长大小,确定周长相对较大的包覆面为主叶片包覆面,剩下的一个包覆面为分流叶片包覆面;
    6)循环遍历判断所述主叶片包覆面与叶片壁面组中种子面的位置关系,将与所述主叶片包覆面相邻的种子面识别为主叶片壁面,循环遍历判断所述主叶片壁面与叶根圆角面组中种子面的位置关系,将与所述主叶片壁面相邻的种子面识别为主叶片叶根圆角面种子面,循环遍历判断所述分流叶片包覆面种子面与叶片壁面组中种子面的位置关系,将与所述分流叶片包覆面种子面相邻的种子面识别为分流叶片壁面种子面,循环遍历判断所述分流叶片壁面种子面与叶根圆角面组中种子面的位置关系,将与所述分流叶 片壁面种子面相邻的种子面识别为分流叶片叶根圆角面种子面。
PCT/CN2019/099703 2019-07-16 2019-08-08 离心叶轮加工特征识别方法 WO2021007895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910639258.9A CN110390155B (zh) 2019-07-16 2019-07-16 离心叶轮加工特征识别方法
CN201910639258.9 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021007895A1 true WO2021007895A1 (zh) 2021-01-21

Family

ID=68286653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099703 WO2021007895A1 (zh) 2019-07-16 2019-08-08 离心叶轮加工特征识别方法

Country Status (2)

Country Link
CN (1) CN110390155B (zh)
WO (1) WO2021007895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114576200B (zh) * 2022-02-28 2024-07-05 温州合泰汽车传动系统有限公司 一种基于ug设计而成的叶轮

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871563A (zh) * 2003-10-23 2006-11-29 富士通株式会社 加工信息产生装置、程序和加工信息产生方法
CN101667030A (zh) * 2008-06-19 2010-03-10 奥林巴斯株式会社 加工信息制作装置、方法及程序
CN102289537A (zh) * 2011-06-20 2011-12-21 南京航空航天大学 一种复杂结构件多体特征识别方法
CN103807209A (zh) * 2014-02-13 2014-05-21 沈阳斯特机械制造有限公司 一种离心压缩机的闭式叶轮
CN103927426A (zh) * 2014-05-06 2014-07-16 南京航空航天大学 航空发动机整体叶盘特征识别方法
CN104281098A (zh) * 2014-10-27 2015-01-14 南京航空航天大学 一种复杂曲面动态加工特征建模方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710720B1 (en) * 2005-04-08 2009-07-08 Dassault Systèmes Method of computer-aided design of a modeled object having several faces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871563A (zh) * 2003-10-23 2006-11-29 富士通株式会社 加工信息产生装置、程序和加工信息产生方法
CN101667030A (zh) * 2008-06-19 2010-03-10 奥林巴斯株式会社 加工信息制作装置、方法及程序
CN102289537A (zh) * 2011-06-20 2011-12-21 南京航空航天大学 一种复杂结构件多体特征识别方法
CN103807209A (zh) * 2014-02-13 2014-05-21 沈阳斯特机械制造有限公司 一种离心压缩机的闭式叶轮
CN103927426A (zh) * 2014-05-06 2014-07-16 南京航空航天大学 航空发动机整体叶盘特征识别方法
CN104281098A (zh) * 2014-10-27 2015-01-14 南京航空航天大学 一种复杂曲面动态加工特征建模方法

Also Published As

Publication number Publication date
CN110390155B (zh) 2020-10-23
CN110390155A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN112070769B (zh) 一种基于dbscan的分层点云分割方法
CN103341787B (zh) 基于特征的数控加工刀具半径补偿方法
CN103164582B (zh) 三维cad模型相交制造特征识别方法
CN103926879B (zh) 航空发动机机匣特征识别方法
CN116452583B (zh) 点云缺陷检测方法、装置、系统及存储介质
CN112446123B (zh) 一种整体叶盘三坐标测量机测头位姿规划方法
CN114138012B (zh) 一种风机叶片巡检方法、装置、设备及存储介质
CN110232742A (zh) 3d打印分层控制算法
CN108073747A (zh) 飞机结构件三维设计模型质量检测系统及方法
Xú et al. STEP-NC based reverse engineering of in-process model of NC simulation
WO2021007895A1 (zh) 离心叶轮加工特征识别方法
CN103927426B (zh) 航空发动机整体叶盘特征识别方法
CN106447781B (zh) 一种基于Minkowski和面向自动装配的碰撞检测方法
CN115410036A (zh) 一种高压架空输电线路关键要素激光点云自动分类方法
CN108073136A (zh) 一种三轴数控加工的加工域计算方法
CN106485218A (zh) 基于腔分组与特征抑制的薄壁多腔件加工特征识别方法
CN116416377A (zh) 针对薄壁管激光切割的加工特征的识别方法、装置及系统
CN112861285B (zh) 压气机几何建模方法及可读存储介质
CN112035976B (zh) 一种轴类机加工零件三维工序模型自动生成方法
CN116956527A (zh) 材料加工信息处理方法、装置、设备及存储介质
Shi et al. Recent Research and Prospect on Feature Recognition of Three-dimensional Model
CN110659652A (zh) 风机装置Creo模型的特征匹配性检测系统
CN118394988B (zh) 基于bim技术的装配式建筑数据优化存储方法及系统
CN117252869B (zh) 一种cad图纸墙体路径信息提取方法及系统
Yao et al. A 3D reconstruction method for sheet parts using binocular camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938104

Country of ref document: EP

Kind code of ref document: A1