WO2021007830A1 - Hybrid automatic repeat request design with unequal error protection - Google Patents

Hybrid automatic repeat request design with unequal error protection Download PDF

Info

Publication number
WO2021007830A1
WO2021007830A1 PCT/CN2019/096471 CN2019096471W WO2021007830A1 WO 2021007830 A1 WO2021007830 A1 WO 2021007830A1 CN 2019096471 W CN2019096471 W CN 2019096471W WO 2021007830 A1 WO2021007830 A1 WO 2021007830A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
reliability resources
resources
wireless communication
low reliability
Prior art date
Application number
PCT/CN2019/096471
Other languages
French (fr)
Inventor
Changlong Xu
Jian Li
Liangming WU
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/096471 priority Critical patent/WO2021007830A1/en
Publication of WO2021007830A1 publication Critical patent/WO2021007830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0086Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for hybrid automatic repeat request (HARQ) design with unequal error protection.
  • HARQ hybrid automatic repeat request
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  • a method of wireless communication may include receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receiving a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  • a wireless communication device for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmit a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a wireless communication device, may cause the one or more processors to: transmit an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmit a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  • an apparatus for wireless communication may include means for transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and means for transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  • a wireless communication device for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receive a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a wireless communication device, may cause the one or more processors to: receive an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receive a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  • an apparatus for wireless communication may include means for receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and means for receiving a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Figs. 3A and 3B are diagrams illustrating an example of operations performed by a transmitting wireless communication device for a HARQ design with unequal error protection, in accordance with various aspects of the present disclosure.
  • Figs. 4A and 4B are diagrams illustrating an example of operations performed by a receiving wireless communication device for a HARQ design with unequal error protection, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example process performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with HARQ design with unequal error protection, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direction operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • a wireless communication device may include means for transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; means for transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • a wireless communication device may include means for receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; means for receiving a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • An unequal error protection (UEP) scheme is a scheme designed to improve balance (e.g., in terms of error rate) between resources having different levels of reliability.
  • a wireless communication device e.g., a UE 120, a base station 110
  • a UEP scheme may be applied in this scenario in association with transmitting and receiving the transmission on the low reliability resources and the high reliability resources in order to improve balance between these resources.
  • a transmitting wireless communication device may demultiplex a string of bits into a first set of bits and a second set of bits for transmission on a set of low reliability resources and a set of high reliability resources, respectively.
  • the transmitting wireless communication device then channel codes the first set of bits (e.g., using a particular channel coding scheme) and transmits the channel coded first set of bits on the low reliability resources.
  • the transmitting wireless communication device also transmits the second set of bits on the high reliability resources.
  • the transmitting wireless communication device transmits the second set of bits without channel coding the second set of bits or, alternatively, after channel coding the second set of bits in a comparatively less protective manner (e.g., using a channel coding scheme that is less protective than the channel coding scheme used for channel coding the first set of bits) .
  • a receiving wireless communication device receives the channel coded first set of bits on the set of low reliability resources and decodes the channel coded first set of bits, and receives (and decodes, if needed) the second set of bits on the set of high reliability resources.
  • the UEP scheme improves balance (e.g., in terms of error rate) between the set of low reliability resources and the set of high reliability resources.
  • HARQ hybrid automatic repeat request
  • BLER block error rate
  • Some aspects described herein provide HARQ design with UEP.
  • the HARQ design described below reduces the BLER experienced when applying a UEP scheme (e.g., by approximately 50%) .
  • the HARQ design with UEP described below does not increase decoding complexity or memory size (e.g., as compared to a conventional HARQ design) . Additional details for HARQ design with UEP are described below.
  • Figs. 3A and 3B are diagrams illustrating an example of operations performed by a transmitting wireless communication device for a HARQ design with UEP, in accordance with various aspects of the present disclosure.
  • a wireless communication device e.g., a UE 120, a base station 110
  • a transmission e.g., a string of bits
  • a set of low reliability resources e.g., a set of resources in a communication channel known to be unreliable, error-prone, noisy, and/or the like
  • a set of high reliability resources e.g., a set of resources in a communication channel known to be reliable, error-free, noise-free, and/or the like
  • the wireless communication device is configured to apply a UEP scheme in association with transmitting the transmission on the low reliability resources and the high reliability resources.
  • the wireless communication device for an initial transmission of the string of bits (e.g., a group of bits including a set of cyclic redundancy check (CRC) bits) , the wireless communication device separates (e.g., demultiplexes) the string of bits into a first set of bits (identified as D 1 ) and a second set of bits (identified as D 2 ) .
  • the wireless communication device channel codes the first set of bits (e.g., using a particular channel coding scheme) .
  • the wireless communication device maps the channel coded first set of bits to the set of low reliability resources and, after modulation, transmits the channel coded first set of bits on the set of low reliability resources.
  • the wireless communication device also maps the second set of bits to the set of high reliability resources and, after modulation, transmits the second set of bits on the set of high reliability resources.
  • the wireless communication device may transmit the second set of bits without channel coding the second set of bits.
  • the wireless communication device may channel code the second set of bits (e.g., using a channel coding scheme that is less protective than the particular channel coding scheme used for channel coding the first set of bits) before transmitting the second set of bits.
  • the wireless communication device may channel code the second set of bits before transmitting the (channel coded) second set of bits on the set of high reliability resources.
  • the wireless communication device may transmit a retransmission of the string of bits.
  • the wireless communication device may receive (e.g., from a receiving wireless communication device) an indication of an error associated with receiving the string of bits, and may request a retransmission of the string of bits.
  • the wireless communication device may determine that a retransmission is needed in a manner similar to that associated with a typical HARQ procedure.
  • the wireless communication device channel codes at least a portion of the second set of bits (identified as D 2’ ) (e.g., using the particular channel coding scheme) .
  • the at least a portion of the second set of bits may include each of the second set of bits (i.e., the entire second set of bits) .
  • the at least a portion of the second set of bits may include a subset of the second set of bits.
  • the wireless communication device maps the channel coded at least a portion of the second set of bits to a set of low reliability resources (e.g., the same set of low reliability resources as those on which the channel coded first set of bits was transmitted in the initial transmission) and, after modulation, transmits the channel coded at least a portion of the second set of bits on the set of low reliability resources.
  • a set of low reliability resources e.g., the same set of low reliability resources as those on which the channel coded first set of bits was transmitted in the initial transmission
  • the wireless communication device also maps at least a portion of the first set of bits (identified as D 1’ ) to the set of high reliability resources (e.g., the same set of high reliability resources as those on which the second set of bits was transmitted in the initial transmission) and, after modulation, transmits the at least a portion of the first set of bits on the set of high reliability resources.
  • the at least a portion of the first set of bits may include each of the first set of bits (i.e., the entire first set of bits) .
  • the at least a portion of the first set of bits may include a subset of the first set of bits.
  • the wireless communication device may transmit the at least a portion of the first set of bits without channel coding the at least a portion of the first set of bits.
  • the wireless communication device may channel code the at least a portion of the first set of bits (e.g., using a channel coding scheme that is less protective than the particular channel coding scheme used for channel coding the at least a portion of the second set of bits) before transmitting the at least a portion of the first set of bits.
  • the wireless communication device may channel code the at least a portion of the first set of bits before transmitting the (channel coded) at least a portion of the first set of bits on the set of high reliability resources. In this way, the wireless communication device may utilize a HARQ design in the context of UEP.
  • Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with respect to Figs. 3A and 3B.
  • Figs. 4A and 4B are diagrams illustrating an example of operations performed by a receiving wireless communication device for a HARQ design with UEP, in accordance with various aspects of the present disclosure.
  • a wireless communication device e.g., a UE 120, a base station 110
  • receive a transmission e.g., a string of bits
  • the wireless communication device is configured to apply a UEP scheme in association with receiving the transmission on the low reliability resources and the high reliability resources.
  • the wireless communication device receives a signal (identified as Rx signal (1) ) associated with an initial transmission.
  • the initial transmission is received on a set of low reliability resources and a set of high reliability resources based at least in part on an initial transmission as described above in association with Fig. 3A.
  • the wireless communication device performs demodulation in association with receiving a first set bits, of a string of bits associated with the initial transmission, on the set of low reliability resources.
  • a result of the demodulation associated with the low reliability resources (identified as D 1 _LLR (1) ) is decoded in association with receiving the first set of bits.
  • the wireless communication device performs demodulation in association with receiving a second set of bits of the string of bits associated with the initial transmission (identified as D 2 _LLR (1) ) .
  • a result of decoding the first set of bits may be used in association with demodulating the second set of bits (e.g., in order to improve performance) .
  • the wireless communication device may decode the second set of bits in association with the second set of bits being received on the set of high reliability resources (e.g., when a transmitting wireless communication device applies channel coding to the second set of bits, as described above) .
  • the wireless communication device may receive a retransmission of the string of bits.
  • the wireless communication device may transmit (e.g., to a transmitting wireless communication device) an indication of an error associated with receiving the string of bits, may request a retransmission of the string of bits, and may receive the retransmission based at least in part on requesting the retransmission.
  • the wireless communication device may determine that a retransmission is needed in a manner similar to that associated with a typical HARQ procedure.
  • the wireless communication device receives a signal (identified as Rx signal (2) ) associated with a retransmission.
  • the retransmission is received on a set of low reliability resources and a set of high reliability resources based at least in part on a retransmission as described above in association with Fig. 3B.
  • the wireless communication device performs demodulation in association with receiving at least a portion of the second set bits, associated with the retransmission, on the set of low reliability resources.
  • a result of the demodulation associated with the low reliability resources (identified as D 2 _LLR (2) ) is decoded in association with receiving the at least a portion of the second set of bits.
  • the at least a portion of the second set of bits may include each of the second set of bits (i.e., the entire second set of bits) .
  • the at least a portion of the second set of bits may include a subset of the second set of bits.
  • the wireless communication device performs demodulation in association with receiving at least a portion of the first set of bits, associated with the retransmission, in association with receiving the at least a portion of the first set of bits (identified as D 1 _LLR (2) ) .
  • a result of decoding the at least a portion of the second set of bits may be used in association with demodulating the at least a portion of the first set of bits (e.g., in order to improve performance) .
  • the at least a portion of the first set of bits may include each of the first set of bits (i.e., the entire first set of bits) .
  • the at least a portion of the first of bits may include a subset of the first set of bits.
  • the wireless communication device may decode the at least a portion of the first set of bits in association with the at least a portion of the first set of bits being received on the set of high reliability resources (e.g., when a transmitting wireless communication device applies channel coding to the at least a portion of the first set of bits, as described above) .
  • the wireless communication device may combine (e.g., soft-combine) a result of a demodulation performed in association with receiving the first set of bits in the initial transmission with a result of a demodulation performed in association with receiving the at least a portion of the first set of bits in the retransmission.
  • the wireless communication device may combine (e.g., soft-combine) a result of a demodulation performed in association with receiving the second set of bits in the initial transmission with a result of a demodulation performed in association with receiving the at least a portion of the second set of bits in the retransmission. In this way, performance associated with transmitting/receiving the string of bits (e.g., in terms of an error rate) can be improved.
  • Figs. 4A and 4B are provided as examples. Other examples may differ from what is described with respect to Figs. 4A and 4B.
  • the HARQ design described herein reduces a BLER experienced when applying a UEP scheme (e.g., as compared to a typical UEP scheme without HARQ) .
  • the HARQ design described herein reduces the BLER experienced when applying a UEP scheme by approximately 50%.
  • the HARQ design with UEP does not increase decoding complexity or memory size at the receiving wireless communication device (e.g., as compared to a conventional HARQ design) .
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where a wireless communication device (e.g., UE 120, base station 110, and/or the like) performs operations associated with HARQ design with unequal error protection, as described herein.
  • a wireless communication device e.g., UE 120, base station 110, and/or the like
  • process 500 may include transmitting an initial transmission of a first set of bits and a second set of bits (block 510) .
  • the wireless communication device e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like when the wireless communication device is a UE 120; using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like when the wireless communication device is a base station 110
  • the first set of bits is transmitted on a set of low reliability resources.
  • the first set of bits is channel coded before being transmitted on the set of low reliability resources.
  • the second set of bits is transmitted on a set of high reliability resources.
  • process 500 may include transmitting a retransmission of the first set of bits and the second set of bits (block 520) .
  • the wireless communication device e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like when the wireless communication device is a UE 120; using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like when the wireless communication device is a base station 110
  • At least a portion of the second set of bits is transmitted on a set of low reliability resources. In some aspects, the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources. In some aspects, at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the at least a portion of the first set of bits includes each of the first set of bits.
  • the at least a portion of the second set of bits includes each of the second set of bits.
  • the second set of bits when transmitting the initial transmission, is channel coded before being transmitted on the set of high reliability resources.
  • the at least a portion of the first set of bits is channel coded before being transmitted on the set of high reliability resources.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where a wireless communication device (e.g., UE 120, base station 110, and/or the like the like) performs operations associated with HARQ design with unequal error protection, as described herein.
  • a wireless communication device e.g., UE 120, base station 110, and/or the like the like
  • process 600 may include receiving an initial transmission of a first set of bits and a second set of bits (block 610) .
  • the wireless communication device e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, and/or the like when the wireless communication device is a UE 120; using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like when the wireless communication device is a base station 110
  • the first set of bits is received on a set of low reliability resources.
  • the first set of bits is decoded after being received on the set of low reliability resources.
  • the second set of bits is received on a set of high reliability resources.
  • process 600 may include receiving a retransmission of the first set of bits and the second set of bits (block 620) .
  • the wireless communication device e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, and/or the like when the wireless communication device is a UE 120; using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like when the wireless communication device is a base station 110
  • At least a portion of the second set of bits is received on a set of low reliability resources. In some aspects, the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources. In some aspects, at least a portion of the first set of bits is received on a set of high reliability resources.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • a result of a demodulation performed in association with receiving the first set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the first set of bits in the retransmission.
  • a result of a demodulation performed in association with receiving the second set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the second set of bits in the retransmission.
  • the at least a portion of the first set of bits includes each of the first set of bits.
  • the at least a portion of the second set of bits includes each of the second set of bits.
  • the second set of bits when receiving the initial transmission, is decoded in association with being received on the set of high reliability resources.
  • the at least a portion of the first set of bits is channel decoded in association with being on the set of high reliability resources.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may transmit an initial transmission of a first set of bits and a second set of bits, the first set of bits being channel coded before being transmitted on a set of low reliability resources, and the second set of bits being transmitted on a set of high reliability resources. Here, the wireless communication device may transmit a retransmission of the first set of bits and the second set of bits, at least a portion of the second set of bits being channel coded before being transmitted on a set of low reliability resources, and at least a portion of the first set of bits being transmitted on a set of high reliability resources. Numerous other aspects are provided.

Description

HYBRID AUTOMATIC REPEAT REQUEST DESIGN WITH UNEQUAL ERROR PROTECTION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for hybrid automatic repeat request (HARQ) design with unequal error protection.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a wireless communication device, may include transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
In some aspects, a method of wireless communication, performed by a wireless communication device, may include receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receiving a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is  decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
In some aspects, a wireless communication device for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmit a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a wireless communication device, may cause the one or more processors to: transmit an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and transmit a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
In some aspects, an apparatus for wireless communication may include means for transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; and means for transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is  transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
In some aspects, a wireless communication device for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receive a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a wireless communication device, may cause the one or more processors to: receive an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and receive a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
In some aspects, an apparatus for wireless communication may include means for receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; and means for receiving a retransmission of the first set of bits and the second set of bits,  wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Figs. 3A and 3B are diagrams illustrating an example of operations performed by a transmitting wireless communication device for a HARQ design with unequal error protection, in accordance with various aspects of the present disclosure.
Figs. 4A and 4B are diagrams illustrating an example of operations performed by a receiving wireless communication device for a HARQ design with unequal error protection, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example process performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will  be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an  entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with HARQ design with unequal error protection, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direction operations of, for example, process  500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, a wireless communication device (e.g., UE 120, base station 110) may include means for transmitting an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is transmitted on a set of low reliability resources, wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein the second set of bits is transmitted on a set of high reliability resources; means for transmitting a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources, wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources; and/or the like. In some aspects, when the wireless communication device is a UE 120, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, when the wireless communication device is a base station 110, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, a wireless communication device (e.g., UE 120, base station 110) may include means for receiving an initial transmission of a first set of bits and a second set of bits, wherein the first set of bits is received on a set of low reliability resources, wherein the first set of bits is decoded after being received on the set of low reliability resources, and wherein the second set of bits is received on a set of high reliability resources; means for receiving a retransmission of the first set of bits and the second set of bits, wherein at least a portion of the second set of bits is received on a set of low reliability resources, wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and wherein at least a portion of the first set of bits is received on a set of high reliability resources; and/or the like. In some aspects, when the wireless communication device is a UE 120, such means may include one or more components of UE 120 described in connection with  Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, when the wireless communication device is a base station 110, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
An unequal error protection (UEP) scheme is a scheme designed to improve balance (e.g., in terms of error rate) between resources having different levels of reliability. For example, a wireless communication device (e.g., a UE 120, a base station 110) may need to transmit a transmission (e.g., a string of bits) using a set of low reliability resources (e.g., a set of resources in a communication channel known to be unreliable, error-prone, noisy, and/or the like) and a set of high reliability resources (e.g., a set of resources in a communication channel known to be reliable, error-free, noise-free, and/or the like) . A UEP scheme may be applied in this scenario in association with transmitting and receiving the transmission on the low reliability resources and the high reliability resources in order to improve balance between these resources.
According to the UEP scheme, a transmitting wireless communication device may demultiplex a string of bits into a first set of bits and a second set of bits for transmission on a set of low reliability resources and a set of high reliability resources, respectively. The transmitting wireless communication device then channel codes the first set of bits (e.g., using a particular channel coding scheme) and transmits the channel coded first set of bits on the low reliability resources. The transmitting wireless communication device also transmits the second set of bits on the high reliability resources. Notably, the transmitting wireless communication device transmits the second set of bits without channel coding the second set of bits or, alternatively, after channel coding the second set of bits in a comparatively less protective manner (e.g., using a channel coding scheme that is less protective than the channel coding scheme used for channel coding the first set of bits) . A receiving wireless communication device receives the channel coded first set of bits on the set of low reliability resources and decodes the channel coded first set of bits, and receives (and decodes, if needed) the  second set of bits on the set of high reliability resources. Here, the UEP scheme improves balance (e.g., in terms of error rate) between the set of low reliability resources and the set of high reliability resources.
However, a hybrid automatic repeat request (HARQ) procedure has not been defined in the context of UEP. As a result, a block error rate (BLER) experienced when applying a UEP scheme may be undesirably high.
Some aspects described herein provide HARQ design with UEP. In some aspects, the HARQ design described below reduces the BLER experienced when applying a UEP scheme (e.g., by approximately 50%) . Further, the HARQ design with UEP described below does not increase decoding complexity or memory size (e.g., as compared to a conventional HARQ design) . Additional details for HARQ design with UEP are described below.
Figs. 3A and 3B are diagrams illustrating an example of operations performed by a transmitting wireless communication device for a HARQ design with UEP, in accordance with various aspects of the present disclosure.
In Figs. 3A and 3B, a wireless communication device (e.g., a UE 120, a base station 110) is to transmit a transmission (e.g., a string of bits) using a set of low reliability resources (e.g., a set of resources in a communication channel known to be unreliable, error-prone, noisy, and/or the like) and a set of high reliability resources (e.g., a set of resources in a communication channel known to be reliable, error-free, noise-free, and/or the like) . Further the wireless communication device is configured to apply a UEP scheme in association with transmitting the transmission on the low reliability resources and the high reliability resources.
As shown in Fig. 3A, for an initial transmission of the string of bits (e.g., a group of bits including a set of cyclic redundancy check (CRC) bits) , the wireless communication device separates (e.g., demultiplexes) the string of bits into a first set of bits (identified as D 1) and a second set of bits (identified as D 2) . As shown, the wireless communication device channel codes the first set of bits (e.g., using a particular channel coding scheme) . The wireless communication device maps the channel coded first set of bits to the set of low reliability resources and, after modulation, transmits the channel coded first set of bits on the set of low reliability resources. As further shown, the wireless communication device also maps the second set of bits to the set of high reliability resources and, after modulation, transmits the second set of bits on the set of high reliability resources. In some aspects, the wireless communication device may  transmit the second set of bits without channel coding the second set of bits. Alternatively, in some aspects, the wireless communication device may channel code the second set of bits (e.g., using a channel coding scheme that is less protective than the particular channel coding scheme used for channel coding the first set of bits) before transmitting the second set of bits. In other words, when transmitting the initial transmission, the wireless communication device may channel code the second set of bits before transmitting the (channel coded) second set of bits on the set of high reliability resources.
As shown in Fig. 3B, the wireless communication device may transmit a retransmission of the string of bits. For example, the wireless communication device may receive (e.g., from a receiving wireless communication device) an indication of an error associated with receiving the string of bits, and may request a retransmission of the string of bits. In some aspects, the wireless communication device may determine that a retransmission is needed in a manner similar to that associated with a typical HARQ procedure.
As shown in Fig. 3B, for the retransmission of the string of bits, the wireless communication device channel codes at least a portion of the second set of bits (identified as D 2’) (e.g., using the particular channel coding scheme) . In some aspects, the at least a portion of the second set of bits may include each of the second set of bits (i.e., the entire second set of bits) . Alternatively, the at least a portion of the second set of bits may include a subset of the second set of bits. The wireless communication device maps the channel coded at least a portion of the second set of bits to a set of low reliability resources (e.g., the same set of low reliability resources as those on which the channel coded first set of bits was transmitted in the initial transmission) and, after modulation, transmits the channel coded at least a portion of the second set of bits on the set of low reliability resources.
As further shown, the wireless communication device also maps at least a portion of the first set of bits (identified as D 1’) to the set of high reliability resources (e.g., the same set of high reliability resources as those on which the second set of bits was transmitted in the initial transmission) and, after modulation, transmits the at least a portion of the first set of bits on the set of high reliability resources. In some aspects, the at least a portion of the first set of bits may include each of the first set of bits (i.e., the entire first set of bits) . Alternatively, the at least a portion of the first set of bits may include a subset of the first set of bits. In some aspects, the wireless communication  device may transmit the at least a portion of the first set of bits without channel coding the at least a portion of the first set of bits. Alternatively, in some aspects, the wireless communication device may channel code the at least a portion of the first set of bits (e.g., using a channel coding scheme that is less protective than the particular channel coding scheme used for channel coding the at least a portion of the second set of bits) before transmitting the at least a portion of the first set of bits. In other words, when transmitting the retransmission, the wireless communication device may channel code the at least a portion of the first set of bits before transmitting the (channel coded) at least a portion of the first set of bits on the set of high reliability resources. In this way, the wireless communication device may utilize a HARQ design in the context of UEP.
As indicated above, Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with respect to Figs. 3A and 3B.
Figs. 4A and 4B are diagrams illustrating an example of operations performed by a receiving wireless communication device for a HARQ design with UEP, in accordance with various aspects of the present disclosure.
In Figs. 4A and 4B, a wireless communication device (e.g., a UE 120, a base station 110) is to receive a transmission (e.g., a string of bits) using a set of low reliability resources and a set of high reliability resources. Further the wireless communication device is configured to apply a UEP scheme in association with receiving the transmission on the low reliability resources and the high reliability resources.
As shown in Fig. 4A, the wireless communication device receives a signal (identified as Rx signal  (1) ) associated with an initial transmission. In some aspects, the initial transmission is received on a set of low reliability resources and a set of high reliability resources based at least in part on an initial transmission as described above in association with Fig. 3A. As shown, the wireless communication device performs demodulation in association with receiving a first set bits, of a string of bits associated with the initial transmission, on the set of low reliability resources. As shown, a result of the demodulation associated with the low reliability resources (identified as D 1_LLR  (1) ) is decoded in association with receiving the first set of bits. As further shown, the wireless communication device performs demodulation in association with receiving a second set of bits of the string of bits associated with the initial transmission (identified as D 2_LLR  (1) ) . As shown, in some aspects, a result of decoding the first set of bits may be used in association with demodulating the second set of bits (e.g., in  order to improve performance) . In some aspects, when receiving the initial transmission, the wireless communication device may decode the second set of bits in association with the second set of bits being received on the set of high reliability resources (e.g., when a transmitting wireless communication device applies channel coding to the second set of bits, as described above) .
As shown in Fig. 4B, the wireless communication device may receive a retransmission of the string of bits. For example, the wireless communication device may transmit (e.g., to a transmitting wireless communication device) an indication of an error associated with receiving the string of bits, may request a retransmission of the string of bits, and may receive the retransmission based at least in part on requesting the retransmission. In some aspects, the wireless communication device may determine that a retransmission is needed in a manner similar to that associated with a typical HARQ procedure.
As shown in Fig. 4B, the wireless communication device receives a signal (identified as Rx signal  (2) ) associated with a retransmission. In some aspects, the retransmission is received on a set of low reliability resources and a set of high reliability resources based at least in part on a retransmission as described above in association with Fig. 3B. As shown, the wireless communication device performs demodulation in association with receiving at least a portion of the second set bits, associated with the retransmission, on the set of low reliability resources. As shown, a result of the demodulation associated with the low reliability resources (identified as D 2_LLR  (2) ) is decoded in association with receiving the at least a portion of the second set of bits. In some aspects, the at least a portion of the second set of bits may include each of the second set of bits (i.e., the entire second set of bits) . Alternatively, the at least a portion of the second set of bits may include a subset of the second set of bits.
As further shown, the wireless communication device performs demodulation in association with receiving at least a portion of the first set of bits, associated with the retransmission, in association with receiving the at least a portion of the first set of bits (identified as D 1_LLR  (2) ) . As shown, in some aspects, a result of decoding the at least a portion of the second set of bits may be used in association with demodulating the at least a portion of the first set of bits (e.g., in order to improve performance) . In some aspects, the at least a portion of the first set of bits may include each of the first set of bits (i.e., the entire first set of bits) . Alternatively, the at least a portion of the first of bits may include a subset of the first set of bits. In some aspects,  when receiving the retransmission, the wireless communication device may decode the at least a portion of the first set of bits in association with the at least a portion of the first set of bits being received on the set of high reliability resources (e.g., when a transmitting wireless communication device applies channel coding to the at least a portion of the first set of bits, as described above) .
In some aspects, as shown in Fig. 4B, the wireless communication device may combine (e.g., soft-combine) a result of a demodulation performed in association with receiving the first set of bits in the initial transmission with a result of a demodulation performed in association with receiving the at least a portion of the first set of bits in the retransmission. In some aspects, the wireless communication device may combine (e.g., soft-combine) a result of a demodulation performed in association with receiving the second set of bits in the initial transmission with a result of a demodulation performed in association with receiving the at least a portion of the second set of bits in the retransmission. In this way, performance associated with transmitting/receiving the string of bits (e.g., in terms of an error rate) can be improved.
As indicated above, Figs. 4A and 4B are provided as examples. Other examples may differ from what is described with respect to Figs. 4A and 4B.
In some aspects, the HARQ design described herein reduces a BLER experienced when applying a UEP scheme (e.g., as compared to a typical UEP scheme without HARQ) . For example, in some aspects, the HARQ design described herein reduces the BLER experienced when applying a UEP scheme by approximately 50%. Further, as illustrated in the above examples, the HARQ design with UEP does not increase decoding complexity or memory size at the receiving wireless communication device (e.g., as compared to a conventional HARQ design) .
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure. Example process 500 is an example where a wireless communication device (e.g., UE 120, base station 110, and/or the like) performs operations associated with HARQ design with unequal error protection, as described herein.
As shown in Fig. 5, in some aspects, process 500 may include transmitting an initial transmission of a first set of bits and a second set of bits (block 510) . For example, the wireless communication device (e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the  like when the wireless communication device is a UE 120; using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like when the wireless communication device is a base station 110) may transmit an initial transmission of a first set of bits and a second set of bits, as described above. In some aspects, the first set of bits is transmitted on a set of low reliability resources. In some aspects, the first set of bits is channel coded before being transmitted on the set of low reliability resources. In some aspects, the second set of bits is transmitted on a set of high reliability resources.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting a retransmission of the first set of bits and the second set of bits (block 520) . For example, the wireless communication device (e.g., using controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like when the wireless communication device is a UE 120; using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like when the wireless communication device is a base station 110) may transmit a retransmission of the first set of bits and the second set of bits, as described above. In some aspects, at least a portion of the second set of bits is transmitted on a set of low reliability resources. In some aspects, the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources. In some aspects, at least a portion of the first set of bits is transmitted on a set of high reliability resources.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the at least a portion of the first set of bits includes each of the first set of bits.
In a second aspect, alone or in combination with the first aspect, the at least a portion of the second set of bits includes each of the second set of bits.
In a third aspect, alone or in combination with one or more of the first and second aspects, when transmitting the initial transmission, the second set of bits is channel coded before being transmitted on the set of high reliability resources.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, when transmitting the retransmission, the at least a portion of the  first set of bits is channel coded before being transmitted on the set of high reliability resources.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a wireless communication device, in accordance with various aspects of the present disclosure. Example process 600 is an example where a wireless communication device (e.g., UE 120, base station 110, and/or the like the like) performs operations associated with HARQ design with unequal error protection, as described herein.
As shown in Fig. 6, in some aspects, process 600 may include receiving an initial transmission of a first set of bits and a second set of bits (block 610) . For example, the wireless communication device (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, and/or the like when the wireless communication device is a UE 120; using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like when the wireless communication device is a base station 110) may receive an initial transmission of a first set of bits and a second set of bits, as described above. In some aspects, the first set of bits is received on a set of low reliability resources. In some aspects, the first set of bits is decoded after being received on the set of low reliability resources. In some aspects, the second set of bits is received on a set of high reliability resources.
As further shown in Fig. 6, in some aspects, process 600 may include receiving a retransmission of the first set of bits and the second set of bits (block 620) . For example, the wireless communication device (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, and/or the like when the wireless communication device is a UE 120; using antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like when the wireless communication device is a base station 110) may receive a retransmission of the first set of bits and the second set of bits, as described above. In some aspects, at least a portion of the second set of bits is received on a set of low reliability resources. In some aspects, the at least a portion of the second set of bits  is decoded after being received on the set of low reliability resources. In some aspects, at least a portion of the first set of bits is received on a set of high reliability resources.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, a result of a demodulation performed in association with receiving the first set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the first set of bits in the retransmission.
In a second aspect, alone or in combination with the first aspect, a result of a demodulation performed in association with receiving the second set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the second set of bits in the retransmission.
In a third aspect, alone or in combination with one or more of the first and second aspects, the at least a portion of the first set of bits includes each of the first set of bits.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the at least a portion of the second set of bits includes each of the second set of bits.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, when receiving the initial transmission, the second set of bits is decoded in association with being received on the set of high reliability resources.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, for the retransmission, the at least a portion of the first set of bits is channel decoded in association with being on the set of high reliability resources.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is  used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (18)

  1. A method of wireless communication performed by a wireless communication device, comprising:
    transmitting an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is transmitted on a set of low reliability resources,
    wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein the second set of bits is transmitted on a set of high reliability resources; and
    transmitting a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  2. The method of claim 1, wherein the at least a portion of the first set of bits includes each of the first set of bits.
  3. The method of claim 1, wherein the at least a portion of the second set of bits includes each of the second set of bits.
  4. The method of claim 1, wherein, when transmitting the initial transmission, the second set of bits is channel coded before being transmitted on the set of high reliability resources.
  5. The method of claim 1, wherein, when transmitting the retransmission, the at least a portion of the first set of bits is channel coded before being transmitted on the set of high reliability resources.
  6. A method of wireless communication performed by a wireless communication device, comprising:
    receiving an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is received on a set of low reliability resources,
    wherein the first set of bits is decoded after being received on the set of low reliability resources, and
    wherein the second set of bits is received on a set of high reliability resources; and
    receiving a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is received on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  7. The method of claim 6, wherein a result of a demodulation performed in association with receiving the first set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the first set of bits in the retransmission.
  8. The method of claim 6, wherein a result of a demodulation performed in association with receiving the second set of bits in the initial transmission is soft-combined with a result of a demodulation performed in association with receiving the at least a portion of the second set of bits in the retransmission.
  9. The method of claim 6, wherein the at least a portion of the first set of bits includes each of the first set of bits.
  10. The method of claim 6, wherein the at least a portion of the second set of bits includes each of the second set of bits.
  11. The method of claim 6, wherein, when receiving the initial transmission, the second set of bits is decoded in association with being received on the set of high reliability resources.
  12. The method of claim 6, wherein, for the retransmission, the at least a portion of the first set of bits is channel decoded in association with being on the set of high reliability resources.
  13. A wireless communication device for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is transmitted on a set of low reliability resources,
    wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein the second set of bits is transmitted on a set of high reliability resources; and
    transmit a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  14. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a wireless communication device, cause the one or more processors to:
    transmit an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is transmitted on a set of low reliability resources,
    wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein the second set of bits is transmitted on a set of high reliability resources; and
    transmit a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  15. An apparatus for wireless communication, comprising:
    means for transmitting an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is transmitted on a set of low reliability resources,
    wherein the first set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein the second set of bits is transmitted on a set of high reliability resources; and
    means for transmitting a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is transmitted on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is channel coded before being transmitted on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is transmitted on a set of high reliability resources.
  16. A wireless communication device for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is received on a set of low reliability resources,
    wherein the first set of bits is decoded after being received on the set of low reliability resources, and
    wherein the second set of bits is received on a set of high reliability resources; and
    receive a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is received on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  17. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a wireless communication device, cause the one or more processors to:
    receive an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is received on a set of low reliability resources,
    wherein the first set of bits is decoded after being received on the set of low reliability resources, and
    wherein the second set of bits is received on a set of high reliability resources; and
    receive a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is received on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is received on a set of high reliability resources.
  18. An apparatus for wireless communication, comprising:
    means for receiving an initial transmission of a first set of bits and a second set of bits,
    wherein the first set of bits is received on a set of low reliability resources,
    wherein the first set of bits is decoded after being received on the set of low reliability resources, and
    wherein the second set of bits is received on a set of high reliability resources; and
    means for receiving a retransmission of the first set of bits and the second set of bits,
    wherein at least a portion of the second set of bits is received on a set of low reliability resources,
    wherein the at least a portion of the second set of bits is decoded after being received on the set of low reliability resources, and
    wherein at least a portion of the first set of bits is received on a set of high reliability resources.
PCT/CN2019/096471 2019-07-18 2019-07-18 Hybrid automatic repeat request design with unequal error protection WO2021007830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096471 WO2021007830A1 (en) 2019-07-18 2019-07-18 Hybrid automatic repeat request design with unequal error protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096471 WO2021007830A1 (en) 2019-07-18 2019-07-18 Hybrid automatic repeat request design with unequal error protection

Publications (1)

Publication Number Publication Date
WO2021007830A1 true WO2021007830A1 (en) 2021-01-21

Family

ID=74209592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096471 WO2021007830A1 (en) 2019-07-18 2019-07-18 Hybrid automatic repeat request design with unequal error protection

Country Status (1)

Country Link
WO (1) WO2021007830A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490972A (en) * 2003-01-27 2004-04-21 西南交通大学 Uniform and ununiform modulated constellation mapping based nonisoprotective mixed automatic retransmission inquiry method
CN101064708A (en) * 2006-04-30 2007-10-31 华为技术有限公司 Multi-carrier system frequency resource mapping method and apparatus
US20120266038A1 (en) * 2009-12-28 2012-10-18 Huawei Technologies Co., Ltd. Data transmission method and network side device
WO2013179133A1 (en) * 2012-05-29 2013-12-05 Alcatel Lucent Method and apparatus for bit-rearrangement based relay forwarding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490972A (en) * 2003-01-27 2004-04-21 西南交通大学 Uniform and ununiform modulated constellation mapping based nonisoprotective mixed automatic retransmission inquiry method
CN101064708A (en) * 2006-04-30 2007-10-31 华为技术有限公司 Multi-carrier system frequency resource mapping method and apparatus
US20120266038A1 (en) * 2009-12-28 2012-10-18 Huawei Technologies Co., Ltd. Data transmission method and network side device
WO2013179133A1 (en) * 2012-05-29 2013-12-05 Alcatel Lucent Method and apparatus for bit-rearrangement based relay forwarding

Similar Documents

Publication Publication Date Title
EP3753174B1 (en) Phase-tracking reference signal mapping
WO2021184296A1 (en) Configuration and indication for enabling uplink transmission with multiple codewords
US20210218437A1 (en) Physical uplink shared channel repetition with frequency hopping
WO2021168597A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
US11638263B2 (en) Beamformed channel busy ratio
US11751225B2 (en) Dynamic switching of search space configurations under user equipment capability
US20230027316A1 (en) Demodulation reference signal time domain bundling
EP4032210B1 (en) Techniques for transmitting sidelink channel state information feedback
US11424800B2 (en) Techniques for scheduling a front-loaded sidelink channel state information reference signal
WO2021189277A1 (en) One-shot harq-ack feedback enhancements
WO2019157762A1 (en) Techniques and apparatuses for channel state determination or reference signaling with traffic preemption
US11606127B2 (en) Techniques for sidelink channel state information reporting
US20210250953A1 (en) Control resource set for new radio
WO2021217287A1 (en) Channel state information reporting timing configuration
WO2021154445A1 (en) Timing advance command in downlink control information
WO2021030825A1 (en) Event triggered reference signal transmission
WO2021007830A1 (en) Hybrid automatic repeat request design with unequal error protection
US11924837B2 (en) Techniques for physical uplink control channel beam failure recovery reselection
US11540239B2 (en) Synchronization signal block transmission using spatial division multiplexing
WO2021232327A1 (en) Uplink management for uplink split data radio bearer configuration
WO2021163956A1 (en) Slot aggregation for configured grant communications with base stations
WO2022120625A1 (en) Communications using a neural network based at least in part on an indicated input size and/or input structure
US20210045068A1 (en) Sidelink transmit power control commands
WO2021142708A1 (en) Beam indication for a physical uplink control channel
WO2021232400A1 (en) Transmission scheme for radio resource control messages using raptor encoding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937579

Country of ref document: EP

Kind code of ref document: A1