WO2021007819A1 - 显示模组的Gamma调试方法及其调试装置 - Google Patents

显示模组的Gamma调试方法及其调试装置 Download PDF

Info

Publication number
WO2021007819A1
WO2021007819A1 PCT/CN2019/096394 CN2019096394W WO2021007819A1 WO 2021007819 A1 WO2021007819 A1 WO 2021007819A1 CN 2019096394 W CN2019096394 W CN 2019096394W WO 2021007819 A1 WO2021007819 A1 WO 2021007819A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
sub
gray
pixel
signal
Prior art date
Application number
PCT/CN2019/096394
Other languages
English (en)
French (fr)
Inventor
张肖
郭星灵
周锦杰
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2019/096394 priority Critical patent/WO2021007819A1/zh
Priority to CN201980090090.9A priority patent/CN113383383A/zh
Publication of WO2021007819A1 publication Critical patent/WO2021007819A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • This application relates to the field of display technology, and in particular to a Gamma debugging method of a display module and a debugging device thereof.
  • Existing display screens such as liquid crystal displays or OLED displays, generally include thin film transistors. Due to the manufacturing process of the display screen, the characteristics of the thin film transistors or other components of the display screen will be inconsistent. For example, the threshold voltage of the thin film transistors is different. Even if the voltage applied to the thin film transistor is the same, the brightness of the display screen will still be inconsistent. .
  • the prior art In order to alleviate the problem of inconsistency in brightness across the display screen, the prior art generally adjusts gamma to make the brightness meet the requirements.
  • the existing gamma debugging method requires a lot of external equipment. Please refer to Figure 1.
  • a color analyzer, an external computer and debugging software are needed. After measurement, feedback, correction and other steps, the brightness and color of the display are satisfied. Claim.
  • the measurement error of the color analyzer will gradually increase as the brightness decreases, and the brightness deviation allowed by the Gamma adjustment gradually decreases with the increase of the brightness.
  • the technical problem to be solved by the embodiments of the present application is to provide a Gamma debugging method and a debugging device for a display module, which can accurately and quickly adjust the Gamma brightness without the aid of an instrument. .
  • the embodiment of the first aspect of the present application provides a Gamma debugging method of a display module, including:
  • An embodiment of the second aspect of the present application provides a Gamma debugging device for a display module, including:
  • the detection module is used to obtain the actual current value currently flowing through the display module according to the grayscale signal
  • the comparison module is used to compare the actual current value with the target current value corresponding to the gray-scale signal
  • the digital gamma control module is used to adjust the register value corresponding to the gray scale signal according to the difference between the actual current value and the target current value.
  • the display module can complete the debugging of Gamma with its own design, the display uniformity of the display module can be better; and the Gamma debugging method in this application solves the problem that the debugging solution in the prior art requires too much debugging equipment And the complex problems of the preparation process before debugging; debugging can be completed without the help of debugging equipment, but can be completed by using the internal structure of the display module, which is convenient to operate and low in cost; furthermore, this application fully analyzes the current and brightness of OLED devices when they emit light.
  • the relationship between the relationship and the voltage and current characteristics of the driving thin film transistor are debugged on the basis of theoretical calculations.
  • the debug process is simple and the debug speed is fast.
  • this application fully solves the original technical solution due to the color analyzer and other debugging Insufficient debugging accuracy and large debugging errors caused by the instrument, the use of the current-brightness characteristic curve of the OLED device can achieve precise debugging of the brightness.
  • FIG. 1 is a schematic diagram of gamma debugging of an OLED display screen in the prior art
  • FIG. 2 is a flowchart of a Gamma debugging method of a display module according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a Gamma debugging device of a display module according to an embodiment of the present application.
  • the embodiment of the application provides a Gamma debugging method for a display module.
  • the display module is an OLED display module.
  • the OLED display module includes an OLED display panel.
  • the OLED display panel includes a plurality of R sub-pixels, a plurality of B sub-pixels, and G sub-pixels, each sub-pixel includes an OLED (Organic Light-Emitting Diode) device and a driving thin film transistor.
  • OLED Organic Light-Emitting Diode
  • the anode of the OLED device is electrically connected to the drain of the driving thin film transistor
  • the cathode of the OLED device is electrically connected to the second power signal line
  • the voltage transmitted on the second power signal line is a low-level voltage, which drives the source of the thin film transistor It is electrically connected to the first power signal line
  • the voltage transmitted on the first power signal line is a high-level voltage
  • the gate of the driving thin film transistor is electrically connected to the data line.
  • the Gamma debugging method of the display module includes steps S110-S170.
  • the Gamma debugging method of the display module may also only include S150-S170, and not include steps S110-S140.
  • S110 Store the grayscale-register value initial correspondence table and the grayscale-target current value correspondence table, where each grayscale in the initial correspondence table has a one-to-one correspondence with the register value, and the grayscale-target current value corresponds to Each gray scale in the table has a one-to-one correspondence with the target current value, and the register value has a one-to-one correspondence with the drive voltage.
  • the brightness of the highest gray scale of the R sub-pixel, G sub-pixel, and B sub-pixel of the display panel can be determined, and then the R The brightness of the highest gray scale of the sub-pixel, G sub-pixel, and B sub-pixel can be calculated to obtain the target brightness of each other gray scale.
  • the number of gray levels of the R sub-pixel, G sub-pixel, and B sub-pixel is 256, that is, Gray0-Gray255.
  • the target brightness is in a linear relationship with the target current value, so that the target current value corresponding to each gray scale can be calculated, and then the gray scale-target current value correspondence table can be obtained.
  • Table 1 is the gray scale-target current value correspondence table of the R sub-pixel, the gray scale-target current value correspondence table of the G sub-pixel, the gray scale-target current value correspondence table of the B sub-pixel and the gray scale-target of the R sub-pixel
  • Table 1 is the gray scale-target current value correspondence table of the R sub-pixel, the gray scale-target current value correspondence table of the G sub-pixel, the gray scale-target current value correspondence table of the B sub-pixel and the gray scale-target of the R sub-pixel
  • the corresponding table of current value is similar, and is no longer represented by a graph.
  • three grayscale-target current value correspondence tables are pre-stored in the display module.
  • Grayscale Target current GrayR0 IR0 GrayR1 IR1 ... ... GrayR255 IR255
  • each register value corresponds to a unique driving voltage, that is, there are 1024 driving voltages, for example, V0-V1023, the register value 0 corresponds to the driving voltage V0,..., the register value 1023 corresponds to the driving voltage V1023.
  • the highest driving voltage V1023 is the highest voltage of the gamma voltage, generally 5V
  • the lowest driving voltage V0 is the lowest voltage of the gamma voltage, generally 0V, divided into 1023 parts (with the lowest driving voltage removed), this 1023
  • the voltage interval Vstep of every two adjacent driving voltages of the driving voltage is the same.
  • each gray scale of each sub-pixel has a one-to-one correspondence with the target current value.
  • the target current value corresponding to each gray scale is determined, according to the theoretical parameters of the driving thin film transistor (that is, the driving thin film transistor is not considered) Manufacturing error of components), for example, without considering the theoretical threshold voltage difference of driving thin film transistors, etc., according to the calculation formula of driving voltage-target current value, the theoretical driving voltage required for each target current value of each sub-pixel can be determined. After voltage, select the driving voltage closest to the calculated theoretical driving voltage from the 1024 driving voltages in the upper section, and correspond this driving voltage to the target current value.
  • the driving voltage is in a one-to-one correspondence with the register value
  • the target current value is in a one-to-one correspondence with the grayscale, so that the one-to-one correspondence between the grayscale and the register value can be obtained.
  • Table 2 is the grayscale-register value initial correspondence table of the R sub-pixel
  • the gray scale-register value initial correspondence table of the G sub-pixel, the gray scale-register value initial correspondence table of the B sub-pixel and the gray scale-register value initial correspondence table of the R sub-pixel are similar, and are no longer represented by graphs.
  • three grayscale-register value initial correspondence tables are stored in the display module, and the above three initial correspondence tables are calculated based on ideal conditions, and process errors and the like are not considered.
  • the grayscale-register value initial correspondence table needs to be adjusted.
  • the 0th gray scale is completely black, corresponding to the 0th register value (the driving voltage corresponding to the 0th register value is the lowest voltage), no adjustment is required.
  • the gray-scale signal when debugging is first performed, it needs to be triggered manually by the user or staff.
  • the gray-scale signal can be triggered by hardware, the gray-scale signal can be triggered by software, or the gray-scale signal can be triggered automatically by other methods.
  • Level signal the gray level signal includes Gamma debugging information for a certain gray level, such as information about debugging the nth gray level; when in the debugging process, for example, the n-1th gray level was previously Debugging, it can automatically trigger the gray scale signal for debugging the nth gray scale.
  • the display module After being triggered, the display module will obtain a gray-scale signal for debugging the n-th gray-scale.
  • the signal can be a voltage signal, a current signal or other signals.
  • the grayscale signal is, for example, a grayscale signal for debugging the nth grayscale, where, here, the nth grayscale is greater than the 0th grayscale and less than or equal to the highest grayscale.
  • the highest gray level is the 255th gray level, that is, the nth gray level is less than or equal to the 255th gray level.
  • the grayscale signal belongs to the X sub-pixel, where the X sub-pixel is one of the R sub-pixel, G sub-pixel, and B sub-pixel.
  • the X sub-pixel is the R sub-pixel as an example for description.
  • the register value corresponding to the nth grayscale can be obtained through the grayscale-register value initial correspondence table, because the register value There is a one-to-one correspondence with the driving voltage, so that the corresponding driving voltage Vx can be obtained, where x is a positive integer and x ⁇ 1023.
  • the target current value In corresponding to the nth gray scale can be obtained from the gray scale-target current value correspondence table.
  • S140 Drive the display panel of the display module by the driving voltage
  • the display module transmits the driving voltage Vx to the gate of the driving thin film transistor through the data line, and then drives the display panel of the display module, and the OLED device emits light.
  • the display panel of the display module will emit light.
  • the OLED devices in all types of sub-pixels on the display panel of the display module can emit light, or only one type of sub-pixel can emit light.
  • the OLED devices in all types of sub-pixels emit light, that is, the OLED devices in the R sub-pixels, G sub-pixels, and B sub-pixels are all driven by the driving voltage and emit light.
  • the picture displayed by the display panel It is a white screen.
  • the display module when the display panel is driven, current will flow in the OLED device, and the display module obtains the actual current value of the OLED device currently flowing through the display panel, and the actual current value is the current sampled by the display module.
  • the specific current sampling method is a conventional technique in the field, which will not be repeated here.
  • the target current value corresponding to the gray-scale signal can be obtained according to the gray-scale-target current value correspondence table.
  • the display module compares the actual current value with the target current value corresponding to the gray-scale signal.
  • the target current value may also be delivered from the outside by the display module, and calculated by the staff and input to the display module.
  • S170 Adjust the register value corresponding to the grayscale signal according to the difference between the actual current value and the target current value.
  • a preset range is stored in the display module in advance.
  • the preset range is, for example, [c, d], where c is a negative number and d is a positive number.
  • the display module compares the actual current value with the target current value. If the difference between the actual current value and the target current value is outside the preset range, it means that the difference is within an unacceptable range. In this case, the actual current value does not meet the requirements.
  • the light emission of the OLED device does not meet the requirements at this time.
  • the corresponding driving voltage needs to be adjusted. Since the driving voltage corresponds to the register value, the corresponding register is adjusted in this embodiment.
  • the value can achieve the purpose of adjusting the driving voltage, and the register value is adjusted to obtain the new corresponding register value. Specifically, when the actual current value is greater than the target current value, the original corresponding register value needs to be lowered, that is, the new corresponding register value is smaller than the original corresponding register value. When the actual current value is less than the target current value, At this time, it is necessary to adjust the corresponding register value, that is, the new corresponding register value is larger than the original corresponding register value. Then, the register value corresponding to the adjusted grayscale signal is stored. After that, return to step S150.
  • the register value corresponding to the nth gray scale is the adjusted register value, not the original corresponding register value, and then steps S160 and S170 are executed until the difference between the actual current value and the target current value is preset Within the range, the register corresponding to the nth gray scale does not need to be adjusted.
  • the step of adjusting the register value corresponding to the grayscale signal according to the difference between the actual current value and the target current value specifically includes: if the actual current value minus the target current value is greater than the upper limit of the preset range, Then the register value corresponding to the gray scale signal is subtracted from a to obtain the new corresponding register value, where a is an integer of 1-5; if the actual current value minus the target current value is less than the lower limit of the preset range, the gray The register value corresponding to the order signal is increased by b to obtain the new corresponding register value, where b is an integer of 1-5.
  • a can be maintained at a relatively large value, for example, 4. ,5.
  • the value of b is less than the value of a, which is a comparison
  • a small value, for example, b is 3.
  • the register value corresponding to the nth gray scale can reach the final register value that meets the requirements quickly.
  • b can be maintained at a relatively large value.
  • the value of a should be less than the value of b in the previous debugging, for example, a is 3, and then if the actual The result of subtracting the target current value from the current value becomes less than the lower limit of the preset range.
  • the value of b is smaller than the value of the previous debugging a, for example, b is 2, and then continue debugging according to this logic until the actual current The result of subtracting the target current value from the value is within the preset range.
  • the difference between the actual current value minus the target current value and the upper limit or lower limit of the preset range can also be adjusted to the preset range at one time according to the difference. For example, if the actual current value minus the target current value is 0.2mA higher than the upper limit of the preset range, two register values are pre-designed for each phase difference of 0.1mA.
  • the actual current value minus the target current value and the upper limit Adjust the 4 register values, that is, the original register value minus 4 can get the new register value, and the new register value meets the requirements; if the actual current value minus the target current value is lower than the lower limit of the preset range 0.2mA, pre-designed for each phase difference of 0.1mA corresponds to 2 register values. At this time, adjust the 4 register values according to the difference between the actual current value minus the target current value and the lower limit, that is, increase the original register value by 4 to get a new Register value, the new register value meets the requirements.
  • the difference between the actual current value and the target current value is within the preset range, it means that the difference is within an acceptable range.
  • the actual current value meets the requirements, so the corresponding drive voltage is not Adjustment is required, that is, the corresponding register value does not need to be adjusted.
  • the nth gray scale and the corresponding register value do not need to be adjusted to maintain the register value corresponding to the gray scale signal.
  • the register value is the final register value.
  • the display module debugs the Gamma of the R sub-pixel, G sub-pixel, and B sub-pixel at the same time, that is, simultaneously corresponds to the gray scale-register value of the R sub-pixel, G sub-pixel, and B sub-pixel
  • the relationship is adjusted, among which, the gray scales of the R sub-pixel, G sub-pixel, and B sub-pixel may be the same or different during simultaneous debugging.
  • the R sub-pixel adjusts the nth gray scale
  • the G sub-pixel adjusts the m-th gray scale.
  • the gray scale is debugged, and the B sub-pixel is debugged for the kth gray scale, where the 0th gray scale ⁇ the m gray scale, the k th gray scale ⁇ the highest gray scale and m and k are positive integers, and n, m, k It can be the same or different.
  • the display module can also debug the Gamma of the R sub-pixel, G sub-pixel, and B sub-pixel, that is, the Gamma adjustment of the R sub-pixel, G sub-pixel, and B sub-pixel. It is time-sharing.
  • the display module of this embodiment can complete the debugging of Gamma with its own design, which can make the display uniformity of the display module better; and the Gamma debugging method in this application solves the debugging required by the debugging solution in the prior art
  • the relationship with brightness and the voltage and current characteristics of driving thin film transistors are debugged on the basis of theoretical calculations.
  • the debugging process is simple and the debugging speed is fast.
  • this application fully solves the problem of color analysis in the original technical solution. For problems such as insufficient debugging accuracy and large debugging errors caused by debugging instruments such as instruments, the current-brightness characteristic curve of the OLED device can be used to achieve accurate brightness debugging.
  • the lowest gray level of the display module is the 0th gray level
  • the highest gray level of the display module is the jth gray level
  • j is a positive integer.
  • Steps S120-S170 are executed for the first gray scale to the jth gray scale, that is, steps S120-S170 are first executed for the first gray scale, and the register value corresponding to the first gray scale is adjusted until the first gray scale and the final register value Corresponding, and then send a grayscale signal for debugging the second grayscale
  • the display module performs steps S120-S170 on the second grayscale, and adjusts the register value corresponding to the second grayscale until the second grayscale and the final The register value corresponds, and then the signal for debugging the third gray scale is sent; ...;
  • the display module performs steps S120-S170 for the j gray scale, and adjusts the register value corresponding to the j gray scale until the j gray scale Correspond to the register value that
  • steps S120-S150 may not be performed from the first gray level, but steps S120-S150 may be performed from other gray levels, such as the third gray level to the j-th gray level.
  • steps S120-S170 are all executed, or steps S120-S170 are all executed from the 10th gray scale to the j-th gray scale.
  • the debugging method further includes: when the gray-scale signal is the highest gray-scale gray-scale signal, burning the register value corresponding to the adjusted gray-scale signal into the Gamma module.
  • the debugging of each gray level may also only perform steps S150-S170.
  • the lowest gray level of the display module is the 0th gray level
  • the highest gray level of the display module is the jth gray level
  • j is a positive integer. In this embodiment j is 255.
  • Steps S120-S170 are not performed for all gray levels here. Only some gray levels perform steps S120-S170. In this part of gray levels, the starting gray level can be the first gray level or the second gray level. Gray scale, 3rd gray scale, 10th gray scale and other gray scales.
  • i gray levels are selected from the first gray level to the j gray level, where i is a positive integer and less than j, and steps S120-S170 are performed for the selected i gray levels, and then the i gray levels
  • the gray scale corresponds to the final register value
  • the final register values corresponding to other gray scales are adjusted according to the final register values corresponding to the i gray scales that have been obtained, specifically calculated to obtain the final register values of all gray scales.
  • the final correspondence table of grayscale-register value is obtained.
  • the debugging method further includes: burning the final grayscale-register value correspondence table into the Gamma module.
  • the debugging of each gray level may also only perform steps S150-S170.
  • the actual current value is the average current value
  • the average current value is the average current value of the X sub-pixels.
  • the step of obtaining the actual current value currently flowing through the display panel specifically includes: collecting the display panel preset according to the grayscale signal The current value flowing through all X sub-pixels in the area; the average current value of the X sub-pixels is calculated according to the current values of the multiple X sub-pixels.
  • the display panel of the display module includes a plurality of X sub-pixels, and at least part of the plurality of X sub-pixels are distributed in a predetermined area defined in advance, and the predetermined area may be a small area.
  • the display module collects the current values flowing through all X sub-pixels in the preset area. These current values may be the same or different, and then calculate the current values of the X sub-pixels based on the collected current values of the multiple X sub-pixels. Average current value, the specific calculation method is to sum all collected current values and divide by the number of current values, or obtain the average current value through other calculation methods.
  • this application also provides a Gamma debugging device corresponding to the above method. Please refer to FIG. 3.
  • the Gamma debugging device of the display module in the embodiment shown in FIG. 3 is used to execute the method of the above embodiment of the application.
  • Only the parts related to the embodiments of the present application are shown.
  • the Gamma debugging device of the present application includes a target current storage module 110, a grayscale switching module 120, a grayscale generation module 130, a detection module 140, a comparison module 150, and a digital gamma control module 160.
  • the Gamma debugging device may also only include the detection module 140, the comparison module 150, and the digital gamma control module 160, but not the target current storage module 110, the grayscale switching module 120, and the grayscale Generate module 130.
  • the target current storage module 110 is used to store the gray scale-target current value correspondence table
  • the digital gamma control module is also used to store the gray scale-register value initial correspondence table, where each gray scale in the initial correspondence table The level and the register value are in a one-to-one correspondence, and in the gray level-target current value correspondence table, each gray level is in a one-to-one correspondence with the target current value, and the register value and the driving voltage are in a one-to-one correspondence.
  • the gray scale switching module 120 is used to obtain the gray scale signal for debugging; the gray scale switching module 120 is also used to obtain the corresponding register value according to the gray scale signal, and obtain the corresponding driving voltage according to the register value , And obtain the target current value corresponding to the gray-scale signal from the gray-scale-target current value correspondence table.
  • the grayscale generation module 130 is used to drive the display panel of the display module by driving voltage.
  • the detection module 140 is configured to obtain the actual current value currently flowing through the display module according to the grayscale signal.
  • the comparison module 150 is used to compare the actual current value with the target current value corresponding to the grayscale signal.
  • the digital gamma control (DGC) module 160 is used to adjust the register value corresponding to the gray scale signal according to the difference between the actual current value and the target current value.
  • the digital gamma control module is specifically configured to maintain the register value corresponding to the grayscale signal when the difference between the actual current value and the target current value is less than a preset range.
  • the digital gamma control module is specifically configured to: if the result of subtracting the target current value from the actual current value is greater than the upper limit of the preset range, subtract a from the register value originally corresponding to the grayscale signal to obtain the new corresponding register value, Where a is an integer of 1-5; if the actual current value minus the target current value is less than the lower limit of the preset range, the original corresponding register value of the gray-scale signal increases by b to obtain the new corresponding register value, where b is An integer of 1-5.
  • the Gamma debugging device further includes a one-time programmable (OTP) module 170, which is used to set the register value corresponding to the adjusted gray-scale signal when the gray-scale signal is the highest gray-scale signal Burn into the Gamma module.
  • OTP one-time programmable
  • DGC digital gamma control
  • the display panel of the display module includes three types of sub-pixels.
  • the three types of sub-pixels are R sub-pixels, G sub-pixels, and B sub-pixels.
  • the gray-scale signal belongs to X sub-pixels, where X The sub-pixel is one of R sub-pixel, G sub-pixel, and B sub-pixel; the actual current value is an average current value, and the average current value is an average current value of X sub-pixels, and the detection module is specifically configured to:
  • the average current value of the X sub-pixels is calculated according to the current values of the multiple X sub-pixels.
  • the number of the grayscale-register value initial correspondence table and the grayscale-target current value correspondence table are three respectively, corresponding to R sub-pixels, G sub-pixels, and B sub-pixels, respectively.

Abstract

一种显示模组的Gamma调试方法,包括:根据灰阶信号获得当前流过显示模组的实际电流值;将实际电流值和与灰阶信号对应的目标电流值进行比较;根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。本申请实施例还公开了一种显示模组的Gamma调试装置。

Description

显示模组的Gamma调试方法及其调试装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示模组的Gamma调试方法及其调试装置。
背景技术
现有的显示屏,例如液晶显示屏或OLED显示屏,一般包括薄膜晶体管。由于显示屏制程的原因,会导致显示屏的薄膜晶体管或者其他元器件的特性不一致,例如薄膜晶体管的阈值电压存在差异,导致即使施加给薄膜晶体管的电压一致,显示屏各处的亮度仍然会不一致。
为了减轻显示屏各处亮度不一致的问题,现有技术一般对gamma进行调试,来使亮度满足要求。现有的gamma调试方法需要用到很多外在设备,请参见图1,需要用到色彩分析仪、外界的电脑及调试软件等,经过测量、反馈、修正等步骤使显示屏亮度及色彩等满足要求。然而,上述调试过程中,色彩分析仪的测量误差会随着亮度的降低而逐渐增加,而Gamma调试允许的亮度偏差随着亮度的增加逐渐减小,这两者之间的矛盾导致Gamma调试在低灰阶难度较大;而且,Gamma调试需要借助外界仪器进行调节,调试过程繁杂,需要仪器较多,调试结果难免存在误差,而且成本较高。
发明内容
本申请实施例所要解决的技术问题在于,提供一种显示模组的Gamma调试方法及其调试装置,不需要借助仪器即可精准快速调试Gamma亮度。。
本申请第一方面实施例提供了一种显示模组的Gamma调试方法,包括:
根据灰阶信号获得当前流过显示模组的实际电流值;
将实际电流值和与灰阶信号对应的目标电流值进行比较;
根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。
本申请第二方面一实施例提供一种显示模组的Gamma调试装置,包括:
检测模块,其用于根据灰阶信号获得当前流过显示模组的实际电流值;
比较模块,其用于将实际电流值和与灰阶信号对应的目标电流值进行比较;
数字伽马控制模块,其用于根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。
实施本申请实施例,具有如下有益效果:
由于显示模组借助自身的设计就可以完成对Gamma的调试,可以使显示模组的显示均一性较好;而且本申请中的Gamma调试方法解决了现有技术中调试方案所需调试器材过多及调试前准备过程复杂的问题;调试时不需要借助调试器材,利用显示模组内部架构即可完成,操作方便,成本较低;再有,本申请充分分析了OLED器件发光时电流与亮度之间的关系,以及驱动薄膜晶体管的电压电流特性,在理论计算的基础上进行调试,调试过程简单,且调试速度快;还有,本申请充分解决了原有技术方案中由于色彩分析仪等调试仪器的原因所造成的调试精度不够,调试误差大等问题,利用OLED器件电流-亮度特性曲线,可以实现对亮度的精准调试。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术OLED显示屏进行gamma调试的示意图;
图2是本申请一实施例显示模组的Gamma调试方法的流程图;
图3是本申请一实施例显示模组的Gamma调试装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请说明书、权利要求书和附图中出现的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同的对象,而并非用于描述特定的顺序。
本申请实施例提供一种显示模组的Gamma调试方法,显示模组为OLED显示模组,OLED显示模组包括OLED显示面板,OLED显示面板包括多个R子像素、多个B子像素和多个G子像素,每个子像素包括OLED(Organic Light-Emitting Diode,有机发光二极管)器件、驱动薄膜晶体管。其中,OLED器件的阳极与驱动薄膜晶体管的漏极电连接,OLED器件的阴极与第二电源信号线电连接,第二电源信号线上传输的电压为低电平电压,驱动薄膜晶体管的源极与第一电源信号线电连接,第一电源信号线上传输的电压为高电平电压,驱动薄膜晶体管的栅极与数据线电连接。请参见图2,在本实施例中,显示模组的Gamma调试方法包括步骤S110-S170。另外,在本申请的其他实施例中,显示模组的Gamma调试方法还可以仅包括S150-S170,而不包括步骤S110-S140。
S110:存储灰阶-寄存器值初始对应表和灰阶-目标电流值对应表,其中,在初始对应表中各灰阶与寄存器值成一一对应关系,且,在灰阶-目标电流值对应表中各灰阶与目标电流值成一一对应关系,寄存器值与驱动电压成一一对应关系。
在本实施例中,当显示模组可能用到的白色最高亮度及色坐标确定后,显示面板的R子像素、G子像素、B子像素的最高灰阶的亮度即可确定,然后由R子像素、G子像素、B子像素的最高灰阶的亮度可以计算得到其他各灰阶的目标亮度。在本实施例中R子像素、G子像素、B子像素的灰阶数目为256,即Gray0-Gray255。在OLED显示模组中,目标亮度与目标电流值成线性关系, 从而可以计算得到各灰阶对应的目标电流值,进而可以得到灰阶-目标电流值对应表,请见下表1,其中,表1是R子像素的灰阶-目标电流值对应表,G子像素的灰阶-目标电流值对应表、B子像素的灰阶-目标电流值对应表与R子像素的灰阶-目标电流值对应表相似,不再用图表表示。在本实施例中,三张灰阶-目标电流值对应表预先存在显示模组内。
灰阶 目标电流
GrayR0 IR0
GrayR1 IR1
GrayR255 IR255
表1
在本实施例中,OLED显示模组中存在多个寄存器值,在本实施例中寄存器值假设为1024个,例如为0-1023,当然也可以是其他数目。每个寄存器值对应一个唯一的驱动电压,也即有1024个驱动电压,例如为V0-V1023,寄存器值0与驱动电压V0对应,…,寄存器值1023与驱动电压V1023对应。其中在1024个驱动电压中最高驱动电压V1023为gamma电压的最高电压,一般为5V,最低驱动电压V0为gamma电压的最低电压,一般为0V,分为1023份(去掉最低驱动电压),这1023份驱动电压每相邻两份的驱动电压的电压间隔Vstep相同,电压间隔Vstep等于gamma电压的最高电压减去gamma电压的最低电压再除以1023,也即Vstesp=(V1023-V0)/1023,例如电压间隔Vstep为0.0049V等,该些驱动电压最终会被输出给数据线。
根据表1,每种子像素的各灰阶与目标电流值成一一对应关系,当每个灰阶对应的目标电流值确定后,根据驱动薄膜晶体管的理论参数(也即不考虑驱动薄膜晶体管等元器件的制造误差),例如不考虑驱动薄膜晶体管的理论阈值电压差异等,根据驱动电压-目标电流值的计算公式可以确定每种子像素各目标电流值需要的理论驱动电压,当计算得到理论驱动电压后,从上段中1024个驱动电压中选出与计算的理论驱动电压最接近的驱动电压,将该驱动电压与目标电流值相对应,由于驱动电压是与寄存器值成一一对应关系,而目标电流 值是与灰阶成一一对应关系,从而可以得到灰阶与寄存器值的一一对应关系,请见下表2,其中,表2是R子像素的灰阶-寄存器值初始对应表,G子像素的灰阶-寄存器值初始对应表、B子像素的灰阶-寄存器值初始对应表与R子像素的灰阶-寄存器值初始对应表相似,不再用图表表示。在本实施例中,三张灰阶-寄存器值初始对应表存在显示模组内,且上述三张初始对应表是基于理想情况下计算得到的,是未考虑制程误差等情形。在本实施例中,由于OLED显示面板在制程过程中各处的驱动薄膜晶体管存在差异,从而导致显示不均,为了克服这种显示不均,灰阶-寄存器值初始对应表需要进行调整,其中,第0灰阶是全黑,与第0寄存器值对应(第0寄存器值对应的驱动电压为最低电压),不需要调整。
灰阶 寄存器值
GrayR0 0
GrayR1 3
GrayR2 6
GrayR255 1020
表2
S120:获得进行调试的灰阶信号;
在本实施例中,当最开始进行调试时,需要用户或者工作人员手动触发,可以通过硬件进行触发灰阶信号,也可以通过软件进行触发灰阶信号,或者也可以通过其他方式的自动触发灰阶信号,灰阶信号中有包括对某个灰阶进行Gamma调试的信息,例如对第n灰阶进行调试的信息;当处于调试过程中时,例如前面对第n-1灰阶进行了调试,可以自动触发对第n灰阶进行调试的灰阶信号。触发后,显示模组会获得对第n灰阶进行调试的灰阶信号,该信号可以是电压信号,也可以是电流信号或者其他信号。在本实施例中,灰阶信号例如是对第n阶灰阶进行调试的灰阶信号,其中,在这里,第n灰阶大于第0灰阶,且小于或等于最高灰阶,在本实施例中,最高灰阶为第255灰阶,也即第n灰阶小于或等于第255灰阶。
在这里,灰阶信号属于X子像素,其中X子像素为R子像素、G子像素、B子像素其中之一。为了方便描述,在本实施例中以X子像素为R子像素为例进行说明。
S130:根据灰阶信号获得对应的寄存器值,并根据寄存器值获得对应的驱动电压,且从灰阶-目标电流值对应表中获取灰阶信号对应的目标电流值;
在本实施例中,通过灰阶信号可以知道是对X子像素的第n灰阶进行调试后,通过灰阶-寄存器值初始对应表可以得到第n灰阶所对应的寄存器值,由于寄存器值与驱动电压成一一对应关系,从而可以得到对应的驱动电压Vx,x为正整数且x≤1023。而且,知道第n灰阶后,可以从灰阶-目标电流值对应表中获取第n灰阶对应的目标电流值In。
S140:通过驱动电压驱动显示模组的显示面板;
在本实施例中,当根据灰阶信号得到驱动电压Vx后,显示模组将驱动电压Vx通过数据线传输给驱动薄膜晶体管的栅极,进而驱动显示模组的显示面板,OLED器件会发光,从而显示模组的显示面板会发光。在本实施例中,显示模组的显示面板上的所有种类的子像素内的OLED器件可以均发光,也可以只有一种子像素发光。在本实施例中所有种类的子像素内的OLED器件均发光,也即R子像素、G子像素、B子像素内的OLED器件均被驱动电压驱动,均发光,此时显示面板显示的画面为白色画面。
S150:根据灰阶信号获得当前流过显示模组的实际电流值;
在本实施例中,当显示面板被驱动后,OLED器件中会有电流流过,显示模组获得当前流过显示面板的OLED器件的实际电流值,该实际电流值是显示模组通过电流采样的方式实际获得的,具体电流采样的方式为本领域的常规技术,在此不再赘述。
S160:将实际电流值和与灰阶信号对应的目标电流值进行比较;
在本实施例中,通过侦测获得实际电流值后,而且灰阶信号对应某个灰阶是确定的,根据灰阶-目标电流值对应表可以得到灰阶信号对应的目标电流值,其后显示模组将实际电流值与灰阶信号对应的目标电流值进行比较。另外,在本申请的其他实施例中,目标电流值还可以是显示模组从外部输送进入的,是工作人员计算好输入给显示模组的。
S170:根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。
在本实施例中,显示模组中有提前存储预设范围,预设范围例如为[c,d],其中c为负数,d为正数。当获得实际电流值后,显示模组将实际电流值与目标电流值进行比对,若实际电流值与目标电流值的差异在预设范围之外,则表示差异是在不可以接受的范围之内,此时实际电流值不符合要求,对应的,此时OLED器件的发光不符合要求,需要调整对应的驱动电压,由于驱动电压与寄存器值是对应的,本实施例中通过调整对应的寄存器值就可以达到调整驱动电压的目的,寄存器值经过调整后得到新对应的寄存器值。具体的,当实际电流值大于目标电流值时,此时需要调低原先对应的寄存器值,也即新对应的寄存器值比原先对应的寄存器值要小,当实际电流值小于目标电流值时,此时需要调高原先对应的寄存器值,也即新对应的寄存器值比原先对应的寄存器值要大。然后,将调整后的灰阶信号所对应的寄存器值进行存储。此后返回步骤S150,此时第n灰阶对应的寄存器值为调整后的寄存器值,而不是原先对应的寄存器值,接着运行步骤S160、S170,直到实际电流值与目标电流值的差异在预设范围之内,此时第n灰阶对应的寄存器不需要再调整。
在本实施例中,根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值的步骤具体包括:如果实际电流值减去目标电流值的结果大于预设范围的上限,则该灰阶信号对应的寄存器值减去a以获得新对应的寄存器值,其中a为1-5的整数;如果实际电流值减去目标电流值的结果小于预设范围的下限,则该灰阶信号对应的寄存器值增加b以获得新对应的寄存器值,其中b为1-5的整数。在本实施例中,对于同一个第n灰阶的调试,如果前几次的调试所得调试的结果均是大于预设范围的上限,此时的a可以维持是比较大的值,例如为4、5,其后,经过前面几次对第n灰阶的调试,如果实际电流值减去目标电流值的结果变为小于预设范围的下限,此时b的值小于a的值,是比较小的值,例如b为3,其后,如果实际电流值减去目标电流值的结果变为大于预设范围的上限,此时a的值要小于前一次调试b的值,例如a为2,然后按照这样的逻辑继续进行调试,直到实际电流值减去目标电流值的结果在预设范围内。通过这样设置可以比较快的使第n灰阶对应的寄存器值快速到达 最终符合要求的寄存器值。当然,如果反过来也可以,也即对于同一个第n灰阶的调试,如果前几次的调试所得调试的结果均是小于预设范围的下限,此时的b可以维持是比较大的值,例如为4、5,然后如果实际电流值减去目标电流值的结果变为大于预设范围的上限,此时a的值要小于前一次调试b的值,例如a为3,接着如果实际电流值减去目标电流值的结果变为小于预设范围的下限,此时的b的值要小于前一次调试a的值,例如b为2,然后按照这样的逻辑继续进行调试,直到实际电流值减去目标电流值的结果在预设范围内。通过这样设置可以比较快的使第n灰阶对应的寄存器值快速到达最终符合要求的寄存器值。另外,在本申请的其他实施例中,还可以根据实际电流值减去目标电流值的结果相对预设范围的上限或者下限的差距,根据差距可以一次性调整到预设范围内。例如,如果实际电流值减去目标电流值的结果相对预设范围的上限高0.2mA,预先设计每相差0.1mA对应2个寄存器值,此时根据实际电流值减去目标电流值的结果与上限的差距调整4个寄存器值,也即原先的寄存器值减去4可以得到新的寄存器值,该新的寄存器值符合要求;如果实际电流值减去目标电流值的结果相对预设范围的下限低0.2mA,预先设计每相差0.1mA对应2个寄存器值,此时根据实际电流值减去目标电流值的结果与下限的差距调整4个寄存器值,也即原先的寄存器值增加4可以得到新的寄存器值,该新的寄存器值符合要求。
在本实施例中,若实际电流值与目标电流值的差异在预设范围之内,则表示差异是在可以接受的范围之内,此时实际电流值是符合要求,因而对应的驱动电压不需要进行调整,也即对应的寄存器值不需要调整,此时第n灰阶与对应的寄存器值不需要进行调整,维持灰阶信号所对应的寄存器值,此时寄存器值即为最终寄存器值。
在本实施例中,显示模组是同时对R子像素、G子像素、B子像素的Gamma进行调试,也即同时对R子像素、G子像素、B子像素的灰阶-寄存器值对应关系进行调整,其中,同时调试时R子像素、G子像素、B子像素调试的灰阶可以相同,也可以不相同,例如R子像素对第n灰阶进行调试,G子像素对第m灰阶进行调试,B子像素对第k灰阶进行调试,其中,第0灰阶<第m灰阶、第k灰阶≤最高灰阶且m、k为正整数,且n、m、k可以相同也可以不相同。 另外,在申请的其他实施例中,显示模组还可以分别对R子像素、G子像素、B子像素的Gamma进行调试,也即R子像素、G子像素、B子像素对Gamma的调试是分时进行的。
本实施例的显示模组借助自身的设计就可以完成对Gamma的调试,可以使显示模组的显示均一性较好;而且本申请中的Gamma调试方法解决了现有技术中调试方案所需调试器材过多及调试前准备过程复杂的问题;调试时不需要借助调试器材,利用显示模组内部架构即可完成,操作方便,成本较低;再有,本申请充分分析了OLED器件发光时电流与亮度之间的关系,以及驱动薄膜晶体管的电压电流特性,在理论计算的基础上进行调试,调试过程简单,且调试速度快;还有,本申请充分解决了原有技术方案中由于色彩分析仪等调试仪器的原因所造成的调试精度不够,调试误差大等问题,利用OLED器件电流-亮度特性曲线,可以实现对亮度的精准调试。
在本实施例中,所述显示模组的最低灰阶为第0灰阶,显示模组的最高灰阶为第j灰阶,且j为正整数,在本实施例中j为255,第1灰阶至第j灰阶均执行步骤S120-S170,也即首先对第1灰阶执行步骤S120-S170,对第1灰阶对应的寄存器值进行调整,直到第1灰阶与最终寄存器值对应,然后发送对第2灰阶进行调试的灰阶信号,接着显示模组对第2灰阶执行步骤S120-S170,对第2灰阶对应的寄存器值进行调整,直到第2灰阶与最终寄存器值对应,接着发送对第3灰阶进行调试的信号;…;最后显示模组对第j灰阶执行步骤S120-S170,对第j灰阶对应的寄存器值进行调整,直到第j灰阶与最终符合要求的寄存器值对应。其后得到灰阶-寄存器值最终对应表。另外,在本申请的其他实施例中,也可以不从第1灰阶开始执行步骤S120-S150,而是可以从其他灰阶开始执行步骤S120-S150,例如第3灰阶至第j灰阶均执行步骤S120-S170,或者第10灰阶至第j灰阶均执行步骤S120-S170,…。在本实施例中,所述调试方法还包括:当灰阶信号为最高灰阶的灰阶信号时,将调整后的灰阶信号所对应的寄存器值烧录到Gamma模块内。也即对第1灰阶-第n灰阶调试完成后,灰阶-寄存器值最终对应表会烧录到Gamma模块中,其后显示模组可以在Gamma模块中调用灰阶-寄存器值最终对应表。另外,在本申请的其他实施例中,各灰阶的调试还可以仅执行步骤S150-S170。
另外,在本申请的其他实施例中,所述显示模组的最低灰阶为第0灰阶,显示模组的最高灰阶为第j灰阶,且j为正整数,在本实施例中j为255,在此处不是所有灰阶都执行步骤S120-S170,只有部分灰阶执行步骤S120-S170,在这部分灰阶中,开始灰阶可以是第1灰阶,也可以是第2灰阶、第3灰阶、第10灰阶等其他灰阶。具体说来,从第1灰阶至第j灰阶中选出i个灰阶,其中i为正整数且小于j,选出的i个灰阶均执行步骤S120-S170,其后这i个灰阶对应最终的寄存器值,其他灰阶对应的最终寄存器值根据已得出的i个灰阶对应的最终寄存器值进行调整,具体为计算得出,从而得到所有灰阶的最终寄存器值,也即得到灰阶-寄存器值最终对应表。在本实施例中,所述调试方法还包括:将灰阶-寄存器值最终对应表烧录到Gamma模块内。另外,在本申请的其他实施例中,各灰阶的调试还可以仅执行步骤S150-S170。
在本实施例中,实际电流值为平均电流值,平均电流值为X子像素的平均电流值,获得当前流过显示面板的实际电流值的步骤具体包括:根据灰阶信号采集显示面板预设区域内的流过所有X子像素的电流值;根据多个X子像素的所述电流值计算得到X子像素平均电流值。在本实施例中,显示模组的显示面板包括多个X子像素,多个X子像素中的至少部分分布在提前划定的预设区域内,该预设区域可以是一个小面积的区域,也可以是整个显示面板,该预设区域可以为方形、圆形或者其他形状。显示模组采集预设区域内流过所有X子像素的电流值,该些电流值可能相同,也可能有差异,然后根据该采集到的多个X子像素的电流值计算得到X子像素的平均电流值,具体计算方式为所有采集的电流值求和并除以电流值的数目,或者通过其他计算方式得到平均电流值。
另外,本申请还提供一种对应上述方法的Gamma调试装置,请参见图3,图3所示实施例的显示模组的Gamma调试装置用于执行本申请上述实施例的方法,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照前面本申请上述实施例的方法。本申请的Gamma调试装置包括目标电流存储模块110、灰阶切换模块120、灰阶生成模块130、检测模块140、比较模块150、数字伽马控制模块160。另外,在本申请的其他实施例中,Gamma调试装置还可以仅包括检测模块140、比较模块150、数字伽马控制模块160, 而不包括目标电流存储模块110、灰阶切换模块120、灰阶生成模块130。
具体说来,目标电流存储模块110,其用于存储灰阶-目标电流值对应表,数字伽马控制模块还用于存储灰阶-寄存器值初始对应表,其中,在初始对应表中各灰阶与寄存器值成一一对应关系,且,在灰阶-目标电流值对应表中各灰阶与目标电流值成一一对应关系,寄存器值与驱动电压成一一对应关系。
灰阶切换模块120,灰阶切换模块120用于获得进行调试的灰阶信号;所述灰阶切换模块120还用于根据灰阶信号获得对应的寄存器值,并根据寄存器值获得对应的驱动电压,且从灰阶-目标电流值对应表中获取灰阶信号对应的目标电流值。
灰阶生成模块130,其用于通过驱动电压驱动显示模组的显示面板。
检测模块140,其用于根据灰阶信号获得当前流过显示模组的实际电流值。
比较模块150,其用于将实际电流值和与灰阶信号对应的目标电流值进行比较。
数字伽马控制(DGC)模块160,其用于根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。所述数字伽马控制模块具体用于当实际电流值与目标电流值之间的差异小于预设范围时,维持灰阶信号所对应的寄存器值。所述数字伽马控制模块具体用于:如果实际电流值减去目标电流值的结果大于预设范围的上限,则该灰阶信号原先对应的寄存器值减去a以获得新对应的寄存器值,其中a为1-5的整数;如果实际电流值减去目标电流值的结果小于预设范围的下限,则该灰阶信号原先对应的寄存器值增加b以获得新对应的寄存器值,其中b为1-5的整数。
在本实施例中,Gamma调试装置还包括一次性可编程(OTP)模块170,其用于当灰阶信号为最高灰阶的灰阶信号时,将调整后的灰阶信号所对应的寄存器值烧录到Gamma模块内。在本实施例中,所述数字伽马控制(DGC)模块160还用于:将调整后的灰阶信号所对应的寄存器值进行存储。
在本实施例中,显示模组的显示面板包括三种子像素,三种所述子像素分别为R子像素、G子像素、B子像素,所述灰阶信号属于X子像素,其中,X子像素为R子像素、G子像素、B子像素其中之一;所述实际电流值为平均电流 值,所述平均电流值为X子像素的平均电流值,所述检测模块具体用于:
根据灰阶信号采集显示面板预设区域内的流过所有X子像素的电流值;
根据多个X子像素的所述电流值计算得到X子像素平均电流值。
在本实施例中,所述灰阶-寄存器值初始对应表和灰阶-目标电流值对应表的数目分别为3个,分别对应R子像素、G子像素、B子像素。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (21)

  1. 一种显示模组的Gamma调试方法,其特征在于,包括:根据灰阶信号获得当前流过显示模组的显示面板的实际电流值;
    将实际电流值和与灰阶信号对应的目标电流值进行比较;
    根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。
  2. 如权利要求1所述的Gamma调试方法,其特征在于,在根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值的步骤之后还包括步骤:将调整后的灰阶信号所对应的寄存器值进行存储。
  3. 如权利要求1所述的Gamma调试方法,其特征在于,根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值的步骤具体包括:当实际电流值与目标电流值之间的差异小于预设范围时,维持灰阶信号所对应的寄存器值。
  4. 如权利要求3所述的Gamma调试方法,其特征在于,在当实际电流值与目标电流值之间的差异小于预设范围时,维持灰阶信号所对应的寄存器值的步骤之后还包括步骤:当灰阶信号为最高灰阶的灰阶信号时,将调整后的灰阶信号所对应的寄存器值烧录到Gamma模块内。
  5. 如权利要求1所述的Gamma调试方法,其特征在于,根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值的步骤具体包括:
    如果实际电流值减去目标电流值的结果大于预设范围的上限,则该灰阶信号原先对应的寄存器值减去a以获得新对应的寄存器值,其中a为1-5的整数;
    如果实际电流值减去目标电流值的结果小于预设范围的下限,则该灰阶信号原先对应的寄存器值增加b以获得新对应的寄存器值,其中b为1-5的整数。
  6. 如权利要求1所述的Gamma调试方法,其特征在于,根据灰阶信号获 得当前流过显示模组的实际电流值的步骤之前还包括步骤:
    存储灰阶-寄存器值初始对应表和灰阶-目标电流值对应表,其中,在初始对应表中各灰阶与寄存器值成一一对应关系,且,在灰阶-目标电流值对应表中各灰阶与目标电流值成一一对应关系,寄存器值与驱动电压成一一对应关系。
  7. 如权利要求6所述的Gamma调试方法,其特征在于,在根据灰阶信号获得当前流过显示模组的实际电流值的步骤之前且在存储灰阶-寄存器值初始对应表和灰阶-目标电流值对应表的步骤之后还包括步骤:
    获得进行调试的灰阶信号;
    根据灰阶信号获得对应的寄存器值,并根据寄存器值获得对应的驱动电压,且从灰阶-目标电流值对应表中获取灰阶信号对应的目标电流值;
    通过驱动电压驱动显示模组的显示面板。
  8. 如权利要求7所述的Gamma调试方法,其特征在于,显示模组的显示面板包括三种子像素,三种所述子像素分别为R子像素、G子像素、B子像素,所述灰阶信号属于X子像素,其中,X子像素为R子像素、G子像素、B子像素其中之一。
  9. 如权利要求8所述的Gamma调试方法,其特征在于,通过驱动电压驱动显示模组的显示面板的步骤具体包括:
    通过驱动电压驱动R子像素、G子像素和B子像素。
  10. 如权利要求8所述的Gamma调试方法,其特征在于,所述实际电流值为平均电流值,所述平均电流值为X子像素的平均电流值,根据灰阶信号获得当前流过显示模组的实际电流值的步骤具体包括:
    根据灰阶信号采集显示面板预设区域内的流过所有X子像素的电流值;
    根据多个X子像素的所述电流值计算得到X子像素平均电流值。
  11. 如权利要求8所述的Gamma调试方法,其特征在于,所述灰阶-寄存器值初始对应表和灰阶-目标电流值对应表的数目分别为3个,分别对应R子像素、G子像素、B子像素。
  12. 如权利要求8所述的Gamma调试方法,其特征在于,所述Gamma调试方法应用于R子像素、G子像素、B子像素,且R子像素、G子像素、B子像素的调试方法同时进行或者分别进行。
  13. 一种显示模组的Gamma调试装置,其特征在于,包括:
    检测模块,其用于根据灰阶信号获得当前流过显示模组的实际电流值;
    比较模块,其用于将实际电流值和与灰阶信号对应的目标电流值进行比较;
    数字伽马控制模块,其用于根据实际电流值与目标电流值之间的差异调整灰阶信号所对应的寄存器值。
  14. 如权利要求13所述的Gamma调试装置,其特征在于,所述数字伽马控制模块还用于将调整后的灰阶信号所对应的寄存器值进行存储。
  15. 如权利要求13所述的Gamma调试装置,其特征在于,所述数字伽马控制模块具体用于当实际电流值与目标电流值之间的差异小于预设范围时,维持灰阶信号所对应的寄存器值。
  16. 如权利要求15所述的Gamma调试装置,其特征在于,还包括一次性可编程模块,其用于当灰阶信号为最高灰阶的灰阶信号时,将调整后的灰阶信号所对应的寄存器值烧录到Gamma模块内。
  17. 如权利要求13所述的Gamma调试装置,其特征在于,所述数字伽马控制模块具体用于:
    如果实际电流值减去目标电流值的结果大于预设范围的上限,则该灰阶信号原先对应的寄存器值减去a以获得新对应的寄存器值,其中a为1-5的整数;
    如果实际电流值减去目标电流值的结果小于预设范围的下限,则该灰阶信号原先对应的寄存器值增加b以获得新对应的寄存器值,其中b为1-5的整数。
  18. 如权利要求13所述的Gamma调试装置,其特征在于,所述数字伽马控制模块还用于存储灰阶-寄存器值初始对应表,所述调试装置还包括目标电流存储模块,所述目标电流存储模块用于存储灰阶-目标电流值对应表,其中,在初始对应表中各灰阶与寄存器值成一一对应关系,且,在灰阶-目标电流值对应表中各灰阶与目标电流值成一一对应关系,寄存器值与驱动电压成一一对应关系。
  19. 如权利要求18所述的Gamma调试装置,其特征在于,还包括灰阶切换模块、灰阶生成模块,其中,所述灰阶切换模块用于获得进行调试的灰阶信号;所述灰阶切换模块还用于根据灰阶信号获得对应的寄存器值,并根据寄存器值获得对应的驱动电压,且从灰阶-目标电流值对应表中获取灰阶信号对应的目标电流值;所述灰阶生成模块用于通过驱动电压驱动显示模组的显示面板。
  20. 如权利要求13所述的Gamma调试装置,其特征在于,显示模组的显示面板包括三种子像素,三种所述子像素分别为R子像素、G子像素、B子像素,所述灰阶信号属于X子像素,其中,X子像素为R子像素、G子像素、B子像素其中之一;所述实际电流值为平均电流值,所述平均电流值为X子像素的平均电流值,所述检测模块具体用于:
    根据灰阶信号采集显示面板预设区域内的流过所有X子像素的电流值;
    根据多个X子像素的所述电流值计算得到X子像素平均电流值。
  21. 如权利要求13所述的Gamma调试装置,其特征在于,所述灰阶-寄存器值初始对应表和灰阶-目标电流值对应表的数目分别为3个,分别对应R子像素、G子像素、B子像素。
PCT/CN2019/096394 2019-07-17 2019-07-17 显示模组的Gamma调试方法及其调试装置 WO2021007819A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/096394 WO2021007819A1 (zh) 2019-07-17 2019-07-17 显示模组的Gamma调试方法及其调试装置
CN201980090090.9A CN113383383A (zh) 2019-07-17 2019-07-17 显示模组的Gamma调试方法及其调试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096394 WO2021007819A1 (zh) 2019-07-17 2019-07-17 显示模组的Gamma调试方法及其调试装置

Publications (1)

Publication Number Publication Date
WO2021007819A1 true WO2021007819A1 (zh) 2021-01-21

Family

ID=74209624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096394 WO2021007819A1 (zh) 2019-07-17 2019-07-17 显示模组的Gamma调试方法及其调试装置

Country Status (2)

Country Link
CN (1) CN113383383A (zh)
WO (1) WO2021007819A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203090A (zh) * 2021-12-16 2022-03-18 霸州市云谷电子科技有限公司 Gamma调试方法、装置及存储介质
CN114333680A (zh) * 2022-02-11 2022-04-12 芯颖科技有限公司 显示面板及其供电方法、装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815755B1 (ko) * 2006-11-09 2008-03-20 삼성에스디아이 주식회사 감마 보정 장치 및 이를 구비한 유기 전계발광 표시장치
US20090195483A1 (en) * 2008-02-06 2009-08-06 Leadis Technology, Inc. Using standard current curves to correct non-uniformity in active matrix emissive displays
CN105304024A (zh) * 2015-11-30 2016-02-03 上海天马有机发光显示技术有限公司 一种显示面板的像素电流补偿方法和系统
CN105590587A (zh) * 2016-03-24 2016-05-18 京东方科技集团股份有限公司 一种用于显示模组的伽马校正方法和装置
CN106251797A (zh) * 2016-07-18 2016-12-21 京东方科技集团股份有限公司 一种显示面板的伽马调试方法及装置
CN106448559A (zh) * 2016-10-31 2017-02-22 昆山国显光电有限公司 一种调整显示器伽马寄存器的值的方法及装置
CN108492772A (zh) * 2018-03-30 2018-09-04 京东方科技集团股份有限公司 一种Gamma调节方法及Gamma调节系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702215B (zh) * 2016-04-26 2018-05-25 京东方科技集团股份有限公司 伽马电压校正方法及装置
CN109949744B (zh) * 2019-04-17 2021-04-27 京东方科技集团股份有限公司 伽马电压校正方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815755B1 (ko) * 2006-11-09 2008-03-20 삼성에스디아이 주식회사 감마 보정 장치 및 이를 구비한 유기 전계발광 표시장치
US20090195483A1 (en) * 2008-02-06 2009-08-06 Leadis Technology, Inc. Using standard current curves to correct non-uniformity in active matrix emissive displays
CN105304024A (zh) * 2015-11-30 2016-02-03 上海天马有机发光显示技术有限公司 一种显示面板的像素电流补偿方法和系统
CN105590587A (zh) * 2016-03-24 2016-05-18 京东方科技集团股份有限公司 一种用于显示模组的伽马校正方法和装置
CN106251797A (zh) * 2016-07-18 2016-12-21 京东方科技集团股份有限公司 一种显示面板的伽马调试方法及装置
CN106448559A (zh) * 2016-10-31 2017-02-22 昆山国显光电有限公司 一种调整显示器伽马寄存器的值的方法及装置
CN108492772A (zh) * 2018-03-30 2018-09-04 京东方科技集团股份有限公司 一种Gamma调节方法及Gamma调节系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203090A (zh) * 2021-12-16 2022-03-18 霸州市云谷电子科技有限公司 Gamma调试方法、装置及存储介质
CN114333680A (zh) * 2022-02-11 2022-04-12 芯颖科技有限公司 显示面板及其供电方法、装置

Also Published As

Publication number Publication date
CN113383383A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US10777134B2 (en) Detection method of pixel circuit comprising verifying phase, driving method of display panel, display device and pixel circuit
US11670231B2 (en) Display driving circuit and a display device including the same
US11024229B2 (en) Display panel and detection method thereof, and display device
US10102798B2 (en) Detection circuit, detection method and drive system
JP4045285B2 (ja) アクティブマトリックス発光ダイオード画素構造およびその方法
CN102203846B (zh) 具有初始非均匀性补偿的电致发光显示器
US20070290958A1 (en) Method and apparatus for averaged luminance and uniformity correction in an amoled display
JP2015129934A (ja) 有機発光表示装置及びその駆動方法
US11417276B2 (en) Display panel, and display driving method and display driving circuit for the same
CN107909965A (zh) 用于显示面板的补偿方法和装置
US10068528B2 (en) Apparatus and method for sensing display panel
CN101595518A (zh) 有源矩阵显示器的补偿方法
WO2021007819A1 (zh) 显示模组的Gamma调试方法及其调试装置
CN109949750B (zh) 显示装置及其驱动方法
CN112071264B (zh) 伽马校正方法及装置
US20180226044A1 (en) Drive method of liquid crystal display device and liquid crystal display device
US11238800B2 (en) Set-voltage generation unit, set-voltage generation method and display device
US20220215783A1 (en) Display driver including crack resistance measurement circuit and method of measuring crack of display panel
CN108962111B (zh) 充电曲线获得方法、模组和显示装置
CN111862897B (zh) 用于源极驱动装置的驱动方法及其显示系统
WO2023024934A1 (zh) 显示面板的亮度调节方法及装置
KR20180025038A (ko) 유기발광표시장치 및 그 제조 방법
EP4181112A1 (en) Display apparatus, display panel and driving method therefor, and detection method for pixel circuit
US10210783B2 (en) Apparatus and method for sensing display panel
KR20210086018A (ko) 표시 장치 및 그의 soe 마진 최적화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937780

Country of ref document: EP

Kind code of ref document: A1