WO2021006478A1 - 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법 - Google Patents

동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법 Download PDF

Info

Publication number
WO2021006478A1
WO2021006478A1 PCT/KR2020/006809 KR2020006809W WO2021006478A1 WO 2021006478 A1 WO2021006478 A1 WO 2021006478A1 KR 2020006809 W KR2020006809 W KR 2020006809W WO 2021006478 A1 WO2021006478 A1 WO 2021006478A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
downlink
gain
synchronization signal
ssb
Prior art date
Application number
PCT/KR2020/006809
Other languages
English (en)
French (fr)
Inventor
김문홍
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to US17/286,523 priority Critical patent/US11637622B2/en
Priority to EP20772193.7A priority patent/EP3998715A4/en
Publication of WO2021006478A1 publication Critical patent/WO2021006478A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15578Relay station antennae loop interference reduction by gain adjustment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance

Definitions

  • the present invention relates to a radio repeater (RF repeater), and more particularly, to an apparatus for setting a gain of a radio repeater using a synchronization signal and a method therefor.
  • RF repeater radio repeater
  • 5G a next-generation mobile communication technology, requires ultra-wideband, ultra-low-latency, and ultra-multi access technologies to provide differentiated services compared to existing mobile communication.
  • quality that guarantees UHD (Ultra High Density) content service anywhere should be provided for mobile terminals such as tablets, and connected cars, driverless vehicles, etc.
  • Cell engineering that minimizes the coverage hole is required in order to provide a mobile communication service that does not exist.
  • Massive IoT service it should be able to provide 5G service to various sites to which IoT terminals are applied. Considering these various requirements, 5G services are expected to spread in most areas including indoors and outdoors.
  • the 5G wireless communication scheme is an FDD (Frequency Division Duplex) scheme in which mutual signals between a base station and a terminal are separated into respective frequency bands and transmitted using frequency resources, as shown in FIG. 1(A). As shown in (B) of, it can be classified by a Time Division Duplex (TDD) method that is transmitted by separating each time.
  • TDD Time Division Duplex
  • DL and UL signals are not separated on the time axis and are radiated constantly, so that power detection is relatively easy.
  • RF Repeater radio repeater
  • a wireless repeater transmits and receives downlink (DL) and uplink (UL) signals at different frequencies, a corresponding band can be easily separated using a band filter.
  • the wireless repeater since the wireless repeater uses the same frequency for both downlink (DL) and uplink (UL) signals and transmits and receives by separating the time, the radio repeater provides accurate information for downlink (DL) and uplink (UL) signals. Synchronization through periodic identification is required.
  • the 5G frequency band is the existing 2G.
  • the high-frequency bands of 3.5GHz and 28GHz which are higher than the 800MHz ⁇ 2.6GHz bands of 3G and 4G, increase radio wave loss, and are expected to generate more service shadow areas than before.
  • there are shadowed areas such as coverage holes, in-buildings, basements, and subways in outdoor NLOS (Non-line-of-sight propagation) areas, so there is a high possibility of deteriorating service quality.
  • NLOS Non-line-of-sight propagation
  • the present invention has been proposed to solve the above-described conventional problem, and an object of the present invention is to provide an apparatus and a method for automatically setting a gain of a wireless repeater.
  • the apparatus for setting a gain of a wireless repeater is a synchronization signal power that determines the average of the received power levels of the synchronization signal received more than a predetermined number of times as the synchronization signal power.
  • the apparatus further includes an uplink gain setting unit for setting an uplink gain of the radio repeater in the same manner as the set downlink gain.
  • the synchronization signal is characterized in that the SSB (Synchronization Signal Block) signal.
  • SSB Synchronization Signal Block
  • the synchronization signal power calculator uses the average of the received power levels of the synchronization signal received a predetermined number of times or more as the synchronization signal power. Determining, by a downlink power calculation unit, calculating downlink input power according to a ratio of synchronization signal power to data channel signal power based on the synchronization signal power, and downlink gain setting unit the calculated downlink input power And setting a downlink gain of the wireless repeater in consideration of the downlink output power of the wireless repeater based on the hardware standard of the wireless repeater.
  • the method further includes the step of setting, by an uplink gain setting unit, an uplink gain of the radio repeater equal to the set downlink gain.
  • the synchronization signal is characterized in that the SSB (Synchronization Signal Block) signal.
  • SSB Synchronization Signal Block
  • a downlink system gain and an uplink system gain can be automatically set based on a synchronization signal transmitted by a base station, that is, SSB. Accordingly, since the operator does not need to manually set the gain for the repeater, it is possible to smoothly perform the network construction for the shaded area and reduce the operating cost.
  • 1 is a diagram for describing a communication method between a base station and a terminal in a mobile communication system.
  • 2 and 3 are diagrams illustrating a format of 64 slots among transmission resources.
  • FIG. 4 is a diagram showing a TDD temporal distribution configuration in a 3.5 GHz band.
  • FIG. 5 is a diagram showing the structure of a repeater according to a communication method in a mobile communication system.
  • FIG. 6 is a diagram illustrating a mobile communication system to which an embodiment of the present invention is applied.
  • FIG. 7 and 8 are diagrams for explaining a comparison between a method of detecting a signal level in an FDD scheme and a TDD scheme.
  • FIG. 9 is a diagram for explaining a synchronization signal used in an embodiment of the present invention.
  • FIG. 10 is a view for explaining a method for calculating power according to an embodiment of the present invention.
  • FIG. 11 is a block diagram for explaining the configuration of a wireless repeater 12 according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method for setting a gain of a wireless repeater using a synchronization signal according to an embodiment of the present invention.
  • first and second are used to describe various elements, and are only used for the purpose of distinguishing one element from other elements, and to limit the elements. Not used.
  • a second component may be referred to as a first component, and similarly, a first component may be referred to as a second component.
  • a component when referred to as being "connected” or “connected” to another component, it means that it is logically or physically connected or can be connected. In other words, it should be understood that a component may be directly connected or connected to another component, but another component may exist in the middle, or may be indirectly connected or connected.
  • FIG. 6 is a diagram illustrating a mobile communication system to which an embodiment of the present invention is applied.
  • 7 and 8 are diagrams for explaining a comparison between a method of detecting a signal level in an FDD scheme and a TDD scheme.
  • 9 is a diagram for explaining a synchronization signal used in an embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a method for calculating power according to an embodiment of the present invention.
  • a mobile communication system includes a base station 11, a wireless repeater 12, and a terminal 13.
  • the connection between the wireless repeater 12 and the base station 11 and the mobile terminal 13 is made by wireless communication.
  • the wireless repeater 12 is installed in a shadow area such as a coverage hole, in building, underground, subway, etc. in a non-line-of-sight propagation (NLOS) area.
  • a downlink (DL) signal refers to a radio signal transmitted from the base station 11 to the mobile terminal 13, and an uplink (UL) signal is transmitted from the terminal 13 to the base station 11 It refers to a radio signal transmitted toward.
  • the wireless repeater 12 receives a downlink (DL) signal, which is a signal transmitted from the base station 11, amplifies it, and transmits it to the terminal 13.
  • the uplink (UL) signal transmitted by the terminal 13 is received, amplified, and then transmitted to the base station 11.
  • DL downlink
  • UL uplink
  • the wireless repeater 12 detects a relatively high base station input signal to detect average power, peak power, etc. I can. Based on this, an appropriate attenuation value of a radio path (RF Path) is derived, and a system gain is determined to set the maximum downlink power.
  • RF Path radio path
  • the downlink and uplink gains can be set equally.
  • the downlink (DL) signal and the uplink (UL) signal use the same frequency and are separated on a time axis.
  • the signal level is not constant (70). That is, the strength of the downlink signal is relatively large, there is no signal in the guard band, and the strength of the uplink signal is relatively small. Due to this instantaneous signal change, the 5G base station signal cannot be detected by the general power detection method, so the gain set-up of the wireless repeater is more difficult than the FDD method.
  • the base station 11 periodically transmits a synchronization signal, that is, a Synchronization Signal Block (SSB) signal.
  • SSB Synchronization Signal Block
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH), as shown in FIG. 8.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal 13 When receiving the SSB, the terminal 13 uses a primary synchronization signal (PSS) among the received SSBs, and a secondary synchronization signal (SSS) to synchronize timing, frequency synchronization, and cell by frame/symbol unit. Identifies (Cell ID) detection, etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the base station 11 transmits the SSB as an essential control signal for basic synchronization between the base station 11 and the terminal 13 in every slot, and interworking between the base station 11 and the terminal 13 through this SSB. The most basic call connection procedure for this is done. Meanwhile, the remaining resources other than the SSB are allocated as a data channel signal, and resources may or may not be allocated according to the traffic load of the terminal 13. Moreover, even when resources are allocated, power control is performed according to a change in the wireless environment of the terminal 13, making it difficult to detect instantaneous power at a specific time.
  • PSS primary synchronization signal
  • SSS secondary
  • the present invention uses a synchronization signal transmitted by a base station for gain set-up of a wireless repeater. Specifically, it is essential to accurately measure a signal received from the base station 11 in order to set the appropriate downlink output power of the wireless repeater 12 that is wirelessly interlocked with the base station 11.
  • the SSB signal which is a synchronization signal, is transmitted periodically and maintains a constant level, so accurate measurement is possible.
  • the wireless repeater 12 uses a synchronization signal, that is, an SSB signal, periodically transmitted by the base station 11 at a constant level for gain set-up.
  • the downlink input power P_DL_Input of the instantaneous time when the SSB signal is emitted is composed of the sum of the power of the synchronization signal (SSB) and the power of the data channel signal as shown in Equation 1 below.
  • P_DL_Input P_SSB + P_PDSCH
  • P_DL_Input is the downlink input power, represents the maximum downlink power of the instantaneous time at which the SSB signal is emitted, and is a value for estimating the power of the signal input to the repeater 12.
  • P_SSB represents the synchronization signal power, which is the power of the SSB in the instantaneous time at which the SSB signal is emitted.
  • P_PDSCH denotes data channel signal power, which is the power of the data channel signal PDSCH in an instantaneous time from which the SSB signal is emitted.
  • the base station 11 may set the ratio of the power of each physical channel, and the ratio of the synchronous signal power to the data channel signal power (P_SSB: P_PDSCH) indicating the relative ratio of the synchronous signal power (P_SSB) to the data channel signal power (P_PDSCH). ) To use.
  • the base station 11 may provide this ratio to the wireless repeater 12 through a higher layer signal.
  • the wireless repeater 12 measures the synchronization signal power P_SSB through a synchronization signal periodically transmitted by the base station 11 at a constant level, that is, an SSB signal. And the wireless repeater 12 derives the data channel signal power (P_PDSCH) according to the synchronization signal power to the data channel signal power ratio (P_SSB: P_PDSCH) based on the synchronization signal power (P_SSB), and the synchronization signal according to Equation 1
  • the power (P_SSB) and the data channel signal power (P_PDSCH) are summed to derive the downlink input power (P_DL_Input), and an appropriate downlink gain of the wireless repeater 12 is automatically set.
  • 11 is a block diagram for explaining the configuration of a wireless repeater 12 according to an embodiment of the present invention.
  • a wireless repeater 12 includes a communication unit 110, a synchronization signal power calculation unit 120, a downlink power calculation unit 130, and a downlink gain setting unit 140. And an uplink gain setting unit 150.
  • the communication unit 110 is for communication between the base station 11 and the terminal 13 and operates in a TDD manner.
  • the communication unit 110 may detect and provide a synchronization signal transmitted from the base station 11, that is, an SSB signal.
  • the synchronization signal power calculation unit 120 is for calculating the synchronization signal power P_SSB.
  • the synchronization signal power calculation unit 120 receives the synchronization signal SSB periodically transmitted from the communication unit 110 at least a predetermined number of times, and calculates an average received power level of the synchronization signal SSB. That is, after receiving the synchronization signal n times, the synchronization signal power calculation unit 120 measures the power of the received synchronization signal n times, and calculates the average of the measured power of the synchronization signal as the synchronization signal power (P_SSB).
  • the synchronization signal power P_SSB may be -50dBm (10 -5 mW).
  • the downlink power calculation unit 130 is for calculating downlink input power P_DL_Input.
  • the base station 11 sets and uses the synchronization signal power to data channel signal power ratio (P_SSB: P_PDSCH). Accordingly, the downlink power calculation unit 130 may calculate the data channel signal power P_PDSCH based on the synchronization signal power P_SSB according to the synchronization signal power to the data channel signal power ratio (P_SSB: P_PDSCH). Then, the downlink power calculation unit 130 calculates the downlink input power P_DL_Input by summing the synchronization signal power P_SSB and the data channel signal power P_PDSCH according to Equation 1.
  • 9 x synchronization signal power (P_SSB) data channel signal power (P_PDSCH).
  • the downlink gain setting unit 140 is for obtaining a downlink system gain (DL_Gain).
  • the downlink gain setting unit 140 calculates the difference between the downlink output power (P_DL_Output) and the calculated downlink input power (P_DL_Input), which is the maximum downlink output power implemented in hardware (H/W), and downlinks.
  • the link system gain is automatically set. That is, the relay device may obtain a downlink system gain according to Equation 2 below.
  • DL_Gain represents a downlink system gain.
  • P_DL_Output represents the downlink output power, which is the maximum downlink output power implemented in hardware (H/W). That is, the downlink output power (P_DL_Output) is determined according to the hardware standard.
  • P_DL_Input represents the previously calculated downlink input power.
  • the uplink gain setting unit 150 is for setting an uplink system gain (UL System Gain).
  • FIG. 12 is a flowchart illustrating a method for setting a gain of a wireless repeater using a synchronization signal according to an embodiment of the present invention.
  • the wireless repeater 12 stores the synchronization signal power to data channel signal power ratio (P_SSB: P_PDSCH) set by the base station 11 in step S110.
  • P_SSB synchronization signal power to data channel signal power ratio
  • the synchronization signal power calculation unit 120 of the wireless repeater 12 receives the synchronization signal SSB periodically transmitted from the communication unit 110 in step S120 a predetermined number or more, and the average received power level of the synchronization signal SSB Is calculated as the synchronization signal power P_SSB. For example, after receiving the synchronization signal n times, the synchronization signal power calculating unit 120 measures the power of the received synchronization signal n times, and uses the average of the measured power of the synchronization signal as the synchronization signal power (P_SSB). Decide.
  • the synchronization signal power P_SSB may be -50dBm (10 -5 mW).
  • the downlink power calculation unit 130 of the wireless repeater 12 is based on the synchronization signal power P_SSB calculated earlier (S120) in step S130, the ratio of the synchronization signal power to the data channel signal power stored previously (S110).
  • the data channel signal power (P_PDSCH) is calculated according to (P_SSB: P_PDSCH), and the downlink input power (P_DL_Input) is calculated by summing the synchronization signal power (P_SSB) and the data channel signal power (P_PDSCH) according to Equation 1. .
  • 9 x synchronization signal power (P_SSB) data channel signal power (P_PDSCH).
  • the uplink gain setting unit 150 sets the UL system gain and the downlink system gain equally. This is because in the case of TDD, since the uplink and the downlink use the same frequency, the same path loss occurs.
  • the wireless repeater according to the present invention can automatically set a downlink system gain and an uplink system gain based on a synchronization signal transmitted by a base station, that is, SSB. Accordingly, since the operator does not need to manually set the gain for the repeater, it is possible to smoothly perform the network construction for the shaded area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 따른 무선중계기의 이득을 설정하기 위한 장치는 소정 횟수 이상 수신된 동기 신호의 수신 전력 레벨의 평균을 동기신호전력으로 결정하는 동기신호전력산출부와, 상기 동기신호전력을 기초로 동기신호전력 대 데이터채널신호전력 비율에 따라 하향링크입력전력을 산출하는 하향링크전력산출부와, 상기 산출된 하향링크입력전력을 기초로 무선중계기의 하드웨어 규격 상 하항링크출력전력을 고려하여 무선중계기의 하향링크 이득을 설정하는 하향링크이득설정부를 포함한다.

Description

동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법
본 발명은 무선중계기(RF repeater)에 관한 것으로서, 더욱 상세하게는 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법에 관한 것이다.
차세대 이동통신 기술인 5G에서는 기존 이동통신대비 차별적인 서비스 제공을 위해 초광대역, 초저지연, 초다중 접속 기술이 요구된다. 구체적으로, 5G 이동통신시스템에서는, 태블릿과 같은 이동 단말에 대해서 어느 곳에서든 UHD(Ultra High Density) 급 콘텐츠 서비스가 보장되는 품질을 제공하여야 하며, 커넥티드 카(Connected Car), 무인자동차 등에 대해 끊김 없는 이동통신서비스를 제공하기 위해서 커버리지 홀(Coverage Hole)을 최소화는 셀 엔지니어링(Cell Engineering)이 요구되고 있다. 또한, Massive IoT 서비스의 다양한 이용 사례(Use Case)를 고려하여, IoT 단말이 적용된 다양한 사이트에 5G 서비스를 제공할 수 있어야 한다. 이러한 다양한 요구 조건을 고려할 때, 5G 서비스는 실내 및 실외를 포함한 대부분의 영역에서 확산될 것으로 예상된다.
이러한 5G의 무선 통신 방식은 도 1의 (A)에 도시된 바와 같이, 주파수 자원을 이용하여 기지국과 단말간 상호 신호를 각각의 주파수 대역으로 분리하여 전송하는 FDD(Frequency Division Duplex) 방식과 도 1의 (B)에 도시된 바와 같이, 각각의 시간으로 분리하여 전송하는 TDD(Time Division Duplex) 방식으로 구분할 수 있다. FDD 방식의 경우 시간 축에서 하향링크(DL)와 상향링크(UL) 신호가 분리되지 않고 일정하게(Constant) 방사되어 상대적으로 전력 검출(Power Detection)이 용이하다. 반면, TDD 방식의 경우, 하향링크(DL)와 상향링크(UL) 신호가 시간 축으로 분리되어 전송되기 때문에 정확한 동기화가 이루어지고, 각 구간의 신호 유지 시간을 알고 있어야만 전력 검출이 가능하여 상대적으로 기술적 난이도가 높다.
5G에서는 표준상으로(3GPP TS38.211) 도 2 및 도 3에 도시된 바와 같이, 64개(0~63)의 슬롯(Slot) 형식이 정의 되었고, 우리나라의 경우, 도 4에 도시된 바와 같이, 3.5GHz 대역의 TDD 시간적 분배 구성을 4:1(DDDSU) 구조를 사용하며, S-Slot은 이동통신사업자간 32번 포맷을 공통 사용하는 것으로 법규화 되었다.
종래 이동통신에서는 기지국을 통해 커버리지 내의 양호한 서비스 제공을 목적으로 하나, 커버리지 영역 내의 다양한 지형적 특성, 건물 뒤 이면도로 영역, 건물 안 공간, 지하 공간 등의 영역에서는 기지국 신호가 미약하게 수신되어 서비스 품질의 열화가 발생되며, 이러한 문제를 비용 효율적으로 해소하기 위해 기지국으로부터 받은 신호를 증폭하여 단말에 전송하는 무선중계기(RF Repeater)가 운용되고 있다.
도 5에 도시된 바와 같이, FDD 방식에서 무선중계기는 하향링크(DL) 및 상향링크(UL) 신호를 서로 다른 주파수로 송수신하기 때문에 대역 필터를 이용하여 해당 대역을 용이하게 분리할 수 있다. 하지만, TDD 방식의 경우, 무선중계기는 하향링크(DL) 및 상향링크(UL) 신호 양자 모두 동일한 주파수를 사용하고 시간을 구분하여 송수신하기 때문에 하향링크(DL) 및 상향링크(UL) 신호 대한 정확한 주기 파악을 통한 동기화가 요구된다.
5G 주파수 대역은 기존 2G. 3G, 4G 대역인 800MHz~2.6GHz 대역보다 높은 3.5GHz, 28GHz 고주파 대역으로 상대적으로 전파손실이 증가하게 되어 기존보다 더 많은 서비스 음영 지역이 발생할 것으로 예상된다. 특히, 특히 옥외 NLOS(Non-line-of-sight propagation) 영역의 커버리지 홀(Coverage Hole), 인빌딩(In building), 지하, 지하철 등의 음영 지역이 존재하여, 서비스 품질 열화 가능성이 높다. 그럼에도 불구하고, 고가 및 대형 5G 기지국 장비를 설치하기 어렵고 투자 효율성이 낮아 이를 대체할 수 있는 5G 무선 중계기의 필요성이 더욱 높아질 것으로 예상된다. 또한, 상대적으로 기존 대비 더욱 많은 서비스 품질 저하 영역이 다수 발생할 것으로 인해 5G 무선중계기의 수는 증가할 것으로 예상된다. 이에 따라, 별도 운용자의 설정 없이 시스템 자체적으로 자동으로 설정할 수 있는 기능 개발이 요구된다.
본 발명은 상술한 종래의 문제점을 해결하고자 제안된 것으로서 본 발명의 목적은 무선중계기의 이득을 자체적으로 자동으로 설정할 수 있는 장치 및 이를 위한 방법을 제공함에 있다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 무선중계기의 이득을 설정하기 위한 장치는 소정 횟수 이상 수신된 동기 신호의 수신 전력 레벨의 평균을 동기신호전력으로 결정하는 동기신호전력산출부와, 상기 동기신호전력을 기초로 동기신호전력 대 데이터채널신호전력 비율에 따라 하향링크입력전력을 산출하는 하향링크전력산출부와, 상기 산출된 하향링크입력전력을 기초로 무선중계기의 하드웨어 규격 상 하항링크출력전력을 고려하여 무선중계기의 하향링크 이득을 설정하는 하향링크이득설정부를 포함한다.
상기 장치는 상기 설정된 하향링크 이득과 동일하게 상기 무선중계기의 상향링크 이득을 설정하는 상향링크이득설정부를 더 포함한다. 상기 하향링크전력산출부는 동기신호전력 대 데이터채널신호전력 비율에 상기 동기신호전력을 대입하여 데이터채널신호전력을 산출하고, 수학식 P_DL_Input = P_SSB + P_PDSCH에 따라 상기 하향링크입력전력을 산출하며, 상기 P_DL_Input는 하향링크입력전력이고, 상기 P_SSB는 동기신호전력이며, 상기 P_PDSCH는 데이터채널신호전력인 것을 특징으로 한다.
상기 하향링크이득설정부는 수학식 DL_Gain = P_DL_Output - P_DL_Input에 따라 하향링크 이득을 산출하며, 상기 DL_Gain는 하향링크 이득이고, 상기 P_DL_Output은 하항링크출력전력이고, 상기 P_DL_Input은 하향링크입력전력이며, 상기 하항링크출력전력은 하드웨어 규격에 따라 결정되는 것을 특징으로 한다.
상기 동기 신호는 SSB(Synchronization Signal Block) 신호인 것을 특징으로 한다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 무선중계기의 이득을 설정하기 위한 방법은 동기신호전력산출부가 소정 횟수 이상 수신된 동기 신호의 수신 전력 레벨의 평균을 동기신호전력으로 결정하는 단계와, 하향링크전력산출부가 상기 동기신호전력을 기초로 동기신호전력 대 데이터채널신호전력 비율에 따라 하향링크입력전력을 산출하는 단계와, 하향링크이득설정부가 상기 산출된 하향링크입력전력을 기초로 무선중계기의 하드웨어 규격 상 하항링크출력전력을 고려하여 무선중계기의 하향링크 이득을 설정하는 단계를 포함한다.
상기 방법은 상향링크이득설정부가 상기 설정된 하향링크 이득과 동일하게 상기 무선중계기의 상향링크 이득을 설정하는 단계를 더 포함한다.
상기 하향링크입력전력을 산출하는 단계는 상기 하향링크전력산출부가 동기신호전력 대 데이터채널신호전력 비율에 상기 동기신호전력을 대입하여 데이터채널신호전력을 산출하는 단계와, 상기 하향링크전력산출부가 수학식 P_DL_Input = P_SSB + P_PDSCH에 따라 상기 하향링크입력전력을 산출하는 단계;를 포함하며, 상기 P_DL_Input는 하향링크입력전력이고, 상기 P_SSB는 동기신호전력이며, 상기 P_PDSCH는 데이터채널신호전력인 것을 특징으로 한다.
상기 하향링크 이득을 설정하는 단계는 상기 하향링크이득설정부가 수학식 DL_Gain = P_DL_Output - P_DL_Input에 따라 하향링크 이득을 산출하는 단계;를 포함하며, 상기 DL_Gain는 하향링크 이득이고, 상기 P_DL_Output은 하항링크출력전력이고, 상기 P_DL_Input은 하향링크입력전력이며, 상기 하항링크출력전력은 하드웨어 규격에 따라 결정되는 것을 특징으로 한다.
상기 동기 신호는 SSB(Synchronization Signal Block) 신호인 것을 특징으로 한다.
본 발명에 따르면, 기지국이 전송하는 동기 신호, 즉, SSB를 기반으로 하향링크 시스템 이득(DL System Gain) 및 상향링크 시스템 이득(UL System Gain)을 자동으로 설정할 수 있다. 이에 따라, 운영자가 중계기에 대한 이득 설정을 수동으로 할 필요가 없기 때문에 음영 지역을 대비한 네트워크 구축을 원활하게 수행할 수 있으며, 운영 비용을 절감할 수 있다.
도 1은 이동통신시스템에서의 기지국과 단말간 통신 방식을 설명하기 위한 도면이다.
도 2 및 도 3은 전송 리소스 중 64개의 슬롯 형식을 도시한 도면이다.
도 4는 3.5GHz 대역의 TDD 시간적 분배 구성을 도시한 도면이다.
도 5는 이동통신시스템에서의 통신 방식에 따른 중계기의 구조를 도시한 도면이다.
도 6은 본 발명의 실시예가 적용되는 이동통신시스템을 설명하기 위한 도면이다.
도 7 및 도 8은 FDD 방식과 TDD 방식에서 신호 레벨을 검출하는 방법을 비교하여 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에서 사용되는 동기 신호를 설명하기 위한 도면이다.
도 10은 본 발명의 실시예에 따른 전력을 산출하기 위한 방법을 설명하기 위한 도면이다.
도 11은 본 발명의 실시예에 따른 무선중계기(12)의 구성을 설명하기 위한 블록도이다.
도 12는 본 발명의 실시예에 따른 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 방법을 설명하기 위한 흐름도이다.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하기 위해 사용하는 것으로, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 뿐, 상기 구성요소들을 한정하기 위해 사용되지 않는다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다.
더하여, 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급할 경우, 이는 논리적 또는 물리적으로 연결되거나, 접속될 수 있음을 의미한다. 다시 말해, 구성요소가 다른 구성요소에 직접적으로 연결되거나 접속되어 있을 수 있지만, 중간에 다른 구성요소가 존재할 수도 있으며, 간접적으로 연결되거나 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 명세서에서 기술되는 "포함 한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
먼저, 본 발명의 실시예가 적용되는 이동통신시스템에 대해서 설명하기로 한다. 도 6은 본 발명의 실시예가 적용되는 이동통신시스템을 설명하기 위한 도면이다. 도 7 및 도 8은 FDD 방식과 TDD 방식에서 신호 레벨을 검출하는 방법을 비교하여 설명하기 위한 도면이다. 도 9는 본 발명의 실시예에서 사용되는 동기 신호를 설명하기 위한 도면이다. 그리고 도 10은 본 발명의 실시예에 따른 전력을 산출하기 위한 방법을 설명하기 위한 도면이다.
먼저, 도 6을 참조하면, 본 발명의 실시예에 따른 이동통신시스템은 기지국(11), 무선중계기(12) 및 단말(13)을 포함한다. 여기서, 무선중계기(12)와 기지국(11) 및 이동 단말(13) 간의 연결은 무선 통신으로 이루어진다.
특히, 무선중계기(12)는 NLOS(Non-line-of-sight propagation) 영역의 커버리지 홀(Coverage Hole), 인빌딩(In building), 지하, 지하철 등의 음영 지역에 설치된다. 하향링크(DL: Down Link) 신호는 기지국(11)으로부터 이동 단말(13)을 향해 전송되는 무선 신호를 의미하며, 상향링크(UL: Up Link) 신호는 단말(13)로부터 기지국(11)을 향해 전송되는 무선 신호를 의미한다. 무선중계기(12)는 기지국(11)이 전송하는 신호인 하향링크(DL) 신호를 수신하여 증폭 후, 단말(13)로 전송한다. 또한, 단말(13)이 전송한 상향링크(UL) 신호를 수신하여 증폭 후 기지국(11)으로 전달한다.
한편, 일반적인 FDD 방식의 경우, 도 7의 (e)에 도시된 바와 같이, 기지국(11)이 전송하는 신호인 하향링크(DL) 신호 및 단말(13)이 전송하는 신호인 상향링크(UL) 신호가 주파수 대역으로 구분되어 시간 축으로 일정하게 송출된다.
이러한 FDD 방식에서, 도 7의 (f)에 도시된 바와 같이, 신호 레벨이 일정(60)하기 때문에 무선중계기(12)는 상대적으로 높은 기지국 입력 신호를 검출하여 평균 전력, 피크 전력 등을 검출할 수 있다. 이를 기반으로 무선 경로(RF Path)의 적정 감쇠(Attenuation)값을 도출하고, 시스템 이득을 결정하여 하향링크 최대 전력을 설정할 수 있다. 상향링크의 경우, 하향링크 감쇠값을 기초로 하향링크와 동일한 이득을 설정함으로써, 하향링크 및 상향링크 이득을 동일하게 설정할 수 있다.
반면, 5G의 경우 데이터 트래픽 중 하향링크 트래픽이 많기 때문에 TDD로 표준이 정립되어 상용화되고 있다. TDD 방식의 경우, 도 8의 (g)에 도시된 바와 같이, 하향링크(DL) 신호와 상향링크(UL) 신호는 동일한 주파수를 사용하며, 시간 축 상에서 분리된다. 이러한 TDD 방식의 경우, 도 8의 (g)에 도시된 바와 같이, 그 신호 레벨이 일정하지 않다(70). 즉, 하향링크 신호의 세기는 상대적으로 크고, 가드 대역의 신호는 없으며, 상향링크 신호의 세기는 상대적으로 작다. 이러한 순시적 신호의 변화로 인해 일반적인 전력 검출 방식으로 5G 기지국 신호 검출이 불가하기 때문에 무선중계기의 이득 설정(Gain Set-up)이 FDD 방식 대비 난이 하다.
한편, 5G에서, 기지국(11)과 단말(13) 간 호 접속을 위해 기지국(11)과 단말(13) 간 상호 동기화가 필수적으로 요구된다. 이를 위해 기지국(11)은 동기 신호, 즉, SSB(Synchronization Signal Block) 신호를 주기적으로 전송한다. 이러한 SSB 신호는 트래픽 상황과 무관하게 전송 시, 신호 레벨이 항상 일정하게 유지된다. SSB는 도 8에 도시된 바와 같이, PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말(13)은 SSB를 수신하면, 수신된 SSB 중 1차로 PSS(Primary Synchronization Signal), 2차로 SSS(Secondary Synchronization Signal)를 이용하여 프레임/심볼(Frame/Symbol) 단위 타이밍 동기화, 주파수 동기화, 셀 식별자(Cell ID) 검출 등을 수행한다. 기지국(11)은 매 슬롯(Slot) 마다 기지국(11)과 단말(13)간 기본적인 동기화를 위한 필수적인 제어 신호로 SSB를 전송하며, 이러한 SSB를 통해 기지국(11)과 단말(13) 간 연동을 위한 가장 기초적인 호 접속 절차가 이루어진다. 한편, SSB 이외의 나머지 리소스는 데이터 채널 신호로 할당되며 단말(13)의 트래픽 부하(Traffic Load)에 따라 리소스(Resource)가 할당되거나, 할당되지 않을 수 있다. 더욱이, 리소스가 할당될 경우에도 단말(13)의 무선환경 변화에 따라 전력 제어(Power Control)가 진행되어 특정 시간에 순시적인 전력 검출(Power Detection)이 어렵다.
따라서 본 발명은 무선중계기의 이득 설정(Gain Set-up)을 위해 기지국이 전송하는 동기 신호를 이용한다. 구체적으로 설명하면, 기지국(11)과 무선으로 연동되는 무선중계기(12)의 하향링크 적정 출력 전력 설정을 위해서는 기지국(11)으로부터 입력 받은 신호에 대한 정확한 측정이 필수적이다. 동기 신호인 SSB 신호는 신호 레벨이 주기적으로 전송되며 일정 레벨 수준을 지속적으로 유지하기 때문에 정확한 측정이 가능하지만, 데이터 채널 신호의 경우, 트래픽에 따른 출력 변화가 있기 때문에 정확한 측정은 불가능하다. 따라서 무선중계기(12)는 이득 설정(Gain Set-up)을 위해 기지국(11)이 주기적으로 일정한 레벨로 전송되는 동기 신호, 즉, SSB 신호를 이용한다.
도 10을 참조하면, SSB 신호가 방사되는 순시적 시간의 하항링크입력전력(P_DL_Input)은 다음의 수학식 1과 같이 동기 신호(SSB) 전력과 데이터 채널 신호 전력의 합으로 구성된다.
[수학식 1]
P_DL_Input = P_SSB + P_PDSCH
여기서, P_DL_Input는 하항링크입력전력이며, SSB 신호가 방사되는 순시적 시간의 최대 하향링크 전력을 나타내며, 중계기(12)에 입력되는 신호의 전력을 추정하기 위한 값이다. P_SSB는 SSB 신호가 방사되는 순시적 시간의 SSB의 전력인 동기신호전력을 나타낸다. 그리고, P_PDSCH는 SSB 신호가 방사되는 순시적 시간의 데이터 채널 신호(PDSCH)의 전력인 데이터채널신호전력을 의미한다. 또한, 기지국(11)은 각 물리적 채널의 전력의 비율을 설정할 수 있으며 동기신호전력(P_SSB) 대비 데이터채널신호전력(P_PDSCH)의 상대적인 비율을 나타내는 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)을 설정하여 사용한다. 예컨대, 기지국은 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)을 파라미터를 통해 1 대 9로 설정할 수 있다(P_SSB: P_PDSCH = 10% : 90% = 1:9). 기지국(11)은 상위 계층 신호를 통해 무선중계기(12)로 이러한 비율을 제공할 수 있다.
무선중계기(12)는 기지국(11)이 주기적으로 일정한 레벨로 전송되는 동기 신호, 즉, SSB 신호를 통해 동기신호전력(P_SSB)을 측정한다. 그리고 무선중계기(12)는 동기신호전력(P_SSB)을 기초로 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)에 따라 데이터채널신호전력(P_PDSCH)을 도출하고, 수학식 1에 따라 동기신호전력(P_SSB)과 데이터채널신호전력(P_PDSCH)을 합산하여 하향링크입력전력(P_DL_Input)을 도출해 무선중계기(12)의 적정 하향링크 이득을 자동으로 설정한다.
그러면, 본 발명의 실시예에 따른 무선중계기(12)의 구성에 대해 보다 상세하게 설명하기로 한다. 도 11은 본 발명의 실시예에 따른 무선중계기(12)의 구성을 설명하기 위한 블록도이다.
도 11을 참조하면, 본 발명의 실시예에 따른 무선중계기(12)는 통신부(110), 동기신호전력산출부(120), 하향링크전력산출부(130), 하향링크이득설정부(140) 및 상향링크이득설정부(150)를 포함한다.
통신부(110)는 기지국(11)과 단말(13) 간의 통신을 위한 것이며, TDD 방식으로 동작된다. 특히, 통신부(110)는 기지국(11)으로부터 전송되는 동기 신호, 즉, SSB 신호를 검출하여 제공할 수 있다.
동기신호전력산출부(120)는 동기신호전력(P_SSB)을 산출하기 위한 것이다. 동기신호전력산출부(120)는 통신부(110)로부터 주기적으로 전송되는 동기 신호(SSB)를 소정 횟수 이상 제공 받고, 해당 동기 신호(SSB)의 평균 수신 전력 레벨을 산출한다. 즉, 동기신호전력산출부(120)는 동기 신호를 n 번 수신한 후, 수신된 동기 신호의 전력을 n 번 측정하고, 측정된 동기 신호의 전력의 평균을 동기신호전력(P_SSB)으로 산출한다. 예컨대, 동기신호전력(P_SSB)은 -50dBm(10-5 mW)가 될 수 있다.
하향링크전력산출부(130)는 하향링크입력전력(P_DL_Input)을 산출하기 위한 것이다. 전술한 바와 같이, 기지국(11)은 기지국은 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)을 설정하여 사용한다. 따라서 하향링크전력산출부(130)는 동기신호전력(P_SSB)을 기초로 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)에 따라 데이터채널신호전력(P_PDSCH)을 산출할 수 있다. 이어서, 하향링크전력산출부(130)는 수학식 1에 따라 동기신호전력(P_SSB)과 데이터채널신호전력(P_PDSCH)을 합산하여 하향링크입력전력(P_DL_Input)을 산출한다. 예컨대, 동기 신호(SSB)의 평균 수신 전력 레벨, 즉, 동기신호전력(P_SSB)이 10-5 mW이고, 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)이 1: 9라고 가정하면, 하향링크전력산출부(130)는 다음과 같이 하향링크입력전력(P_DL_Input)을 구할 수 있다. 하향링크입력전력(P_DL_Input) = 1 x 동기신호전력(P_SSB) + 9 x 동기신호전력(P_SSB) = 1 x 10-5 mW + 9 x 10-5 mW = 10-4 mW (-40dBm). 여기서, 9 x 동기신호전력(P_SSB) = 데이터채널신호전력(P_PDSCH)을 의미한다.
하향링크이득설정부(140)는 하향링크 시스템 이득(DL System Gain: DL_Gain)을 구하기 위한 것이다. 하향링크이득설정부(140)는 중계장치는 하드웨어(H/W)상 구현된 최대 하향링크 출력 전력인 하항링크출력전력(P_DL_Output) 및 산출된 하향링크입력전력(P_DL_Input)의 차를 산출하여 하향링크 시스템 이득(DL System Gain)을 자동으로 설정한다. 즉, 중계장치는 다음의 수학식 2에 따라 하향링크 시스템 이득(DL System Gain)을 구할 수 있다.
[수학식 2]
DL_Gain = P_DL_Output - P_DL_Input
여기서, DL_Gain은 하향링크 시스템 이득을 나타낸다. 또한, P_DL_Output는 하드웨어(H/W)상 구현된 최대 하향링크 출력 전력인 하항링크출력전력을 나타낸다. 즉, 하항링크출력전력(P_DL_Output)은 하드웨어 규격에 따라 결정된다. 그리고 P_DL_Input은 앞서 산출된 하향링크입력전력을 나타낸다.
만약, 하드웨어상 구현된 하항링크출력전력(P_DL_Output)이 +30dBm라고 가정하면, 수학식 2에 따라 하향링크 시스템 이득(DL_Gain)은 +30dBm - (-40dBm) = +70dB가 된다.
상향링크이득설정부(150)는 상향링크 시스템 이득(UL System Gain)을 설정하기 위한 것이다. 무선중계기(12)는 TDD를 사용하며, TDD의 경우, 상향링크 시스템 이득(UL System Gain)을 하향링크 시스템 이득(DL System Gain)과 동일하게 설정한다. 즉, TDD의 경우, 상향링크와 하향링크가 동일한 주파수를 사용하기 때문에 동일한 경로 손실(Pathloss)이 발생한다. 따라서 상향링크이득설정부(150)는 상향링크 시스템 이득(UL System Gain)과 하향링크 시스템 이득(DL System Gain)을 동일하게 설정할 수 있다. 예컨대, 상향링크이득설정부(150)는 상향링크 시스템 이득을 UL_Gain = DL_Gain = +70dB와 같이 설정할 수 있다.
다음으로, 본 발명의 실시예에 따른 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 방법에 대해 설명하기로 한다. 도 12는 본 발명의 실시예에 따른 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 방법을 설명하기 위한 흐름도이다.
도 12를 참조하면, 무선중계기(12)는 S110 단계에서 기지국(11)이 설정한 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)을 저장한 상태라고 가정한다.
무선중계기(12)의 동기신호전력산출부(120)는 S120 단계에서 통신부(110)로부터 주기적으로 전송되는 동기 신호(SSB)를 소정 횟수 이상 제공 받고, 해당 동기 신호(SSB)의 평균 수신 전력 레벨을 산출하여 동기신호전력(P_SSB)으로 결정한다. 예를 들면, 동기신호전력산출부(120)는 동기 신호를 n 번 수신한 후, 수신된 동기 신호의 전력을 n 번 측정하고, 측정된 동기 신호의 전력의 평균을 동기신호전력(P_SSB)으로 결정한다. 일례로, 동기신호전력(P_SSB)은 -50dBm(10-5 mW)가 될 수 있다.
다음으로, 무선중계기(12)의 하향링크전력산출부(130)는 S130 단계에서 앞서(S120) 산출된 동기신호전력(P_SSB)을 기초로 앞서(S110) 저장된 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)에 따라 데이터채널신호전력(P_PDSCH)을 산출하고, 수학식 1에 따라 동기신호전력(P_SSB)과 데이터채널신호전력(P_PDSCH)을 합산하여 하향링크입력전력(P_DL_Input)을 산출한다. 예컨대, 동기 신호(SSB)의 평균 수신 전력 레벨, 즉, 동기신호전력(P_SSB)이 10-5 mW이고, 동기신호전력 대 데이터채널신호전력 비율(P_SSB: P_PDSCH)이 1: 9라고 가정하면, 하향링크전력산출부(130)는 하향링크입력전력(P_DL_Input) = 1 x 동기신호전력(P_SSB) + 9 x 동기신호전력(P_SSB) = 1 x 10-5 mW + 9 x 10-5 mW = 10-4 mW (-40dBm). 여기서, 9 x 동기신호전력(P_SSB) = 데이터채널신호전력(P_PDSCH)을 의미한다.
하향링크이득설정부(140)는 S140 단계에서 수학식 2에 따라 하드웨어(H/W)상 구현된 하항링크출력전력(P_DL_Output) 및 앞서(S130) 산출된 하향링크입력전력(P_DL_Input)의 차를 산출하여 하향링크 시스템 이득(DL System Gain)을 자동으로 설정한다. 예를 들면, 하드웨어상 구현된 하항링크출력전력(P_DL_Output)이 +30dBm라고 가정하면, 수학식 2에 따라 하향링크 시스템 이득(DL_Gain)은 +30dBm - (-40dBm) = +70dB가 된다.
상향링크이득설정부(150)는 S150 단계에서 따라서 상향링크이득설정부(150)는 상향링크 시스템 이득(UL System Gain)과 하향링크 시스템 이득(DL System Gain)을 동일하게 설정한다. 이는 TDD의 경우, 상향링크와 하향링크가 동일한 주파수를 사용하기 때문에 동일한 경로 손실(Pathloss)이 발생하기 때문이다. 예컨대, 상향링크이득설정부(150)는 상향링크 시스템 이득을 UL_Gain = DL_Gain = +70dB와 같이 설정할 수 있다.
본 발명에 따른 무선중계기는 기지국이 전송하는 동기 신호, 즉, SSB를 기반으로 하향링크 시스템 이득(DL System Gain) 및 상향링크 시스템 이득(UL System Gain)을 자동으로 설정할 수 있다. 이에 따라, 운영자가 중계기에 대한 이득 설정을 수동으로 할 필요가 없기 때문에 음영 지역을 대비한 네트워크 구축을 원활하게 수행할 수 있다.

Claims (8)

  1. 소정 횟수 이상 수신된 동기 신호의 수신 전력 레벨의 평균을 동기신호전력으로 결정하는 동기신호전력산출부;
    상기 동기신호전력을 기초로 동기신호전력 대 데이터채널신호전력 비율에 따라 하향링크입력전력을 산출하는 하향링크전력산출부; 및
    하드웨어 규격에 따라 결정되는 하향링크출력전력에서 상기 산출된 하량링크입력전력을 차감하여 하향링크 이득을 산출하며, 상기 하향링크 이득을 설정하는 하향링크이득설정부;
    를 포함하는 무선중계기의 이득을 설정하기 위한 장치.
  2. 제1항에 있어서,
    상기 장치는
    상기 설정된 하향링크 이득과 동일하게 상기 무선중계기의 상향링크 이득을 설정하는 상향링크이득설정부;를 더 포함하는
    무선중계기의 이득을 설정하기 위한 장치.
  3. 제1항에 있어서,
    상기 하향링크전력산출부는
    동기신호전력 대 데이터채널신호전력 비율에 상기 동기신호전력을 대입하여 데이터채널신호전력을 산출하고,
    수학식 P_DL_Input = P_SSB + P_PDSCH에 따라 상기 하향링크입력전력을 산출하며,
    상기 P_DL_Input는 하향링크입력전력이고,
    상기 P_SSB는 동기신호전력이며,
    상기 P_PDSCH는 데이터채널신호전력인 것을 특징으로 하는
    무선중계기의 이득을 설정하기 위한 장치.
  4. 제1항에 있어서,
    상기 동기 신호는 SSB(Synchronization Signal Block) 신호인 것을 특징으로 하는
    무선중계기의 이득을 설정하기 위한 장치.
  5. 동기신호전력산출부가 소정 횟수 이상 수신된 동기 신호의 수신 전력 레벨의 평균을 동기신호전력으로 결정하는 단계;
    하향링크전력산출부가 상기 동기신호전력을 기초로 동기신호전력 대 데이터채널신호전력 비율에 따라 하향링크입력전력을 산출하는 단계;
    하향링크이득설정부가 하드웨어 규격에 따라 결정되는 하향링크출력전력에서 상기 산출된 하향링크입력전력을 차감하여 하향링크 이득을 산출하며, 상기 하향링크 이득을 설정하는 단계;
    를 포함하는 무선중계기의 이득을 설정하기 위한 방법.
  6. 제5항에 있어서,
    상기 방법은
    상향링크이득설정부가 상기 설정된 하향링크 이득과 동일하게 상기 무선중계기의 상향링크 이득을 설정하는 단계;를 더 포함하는 것을 특징으로 하는
    무선중계기의 이득을 설정하기 위한 방법.
  7. 제5항에 있어서,
    상기 하향링크입력전력을 산출하는 단계는
    상기 하향링크전력산출부가 동기신호전력 대 데이터채널신호전력 비율에 상기 동기신호전력을 대입하여 데이터채널신호전력을 산출하는 단계;
    상기 하향링크전력산출부가 수학식 P_DL_Input = P_SSB + P_PDSCH에 따라 상기 하향링크입력전력을 산출하는 단계;를 포함하며,
    상기 P_DL_Input는 하향링크입력전력이고,
    상기 P_SSB는 동기신호전력이며,
    상기 P_PDSCH는 데이터채널신호전력인 것을 특징으로 하는
    무선중계기의 이득을 설정하기 위한 방법.
  8. 제5항에 있어서,
    상기 동기 신호는 SSB(Synchronization Signal Block) 신호인 것을 특징으로 하는
    무선중계기의 이득을 설정하기 위한 방법.
PCT/KR2020/006809 2019-07-09 2020-05-27 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법 WO2021006478A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/286,523 US11637622B2 (en) 2019-07-09 2020-05-27 Apparatus and method of setting gain of RF repeater using synchronization signal
EP20772193.7A EP3998715A4 (en) 2019-07-09 2020-05-27 APPARATUS AND METHOD FOR ADJUSTING THE GAIN OF A RADIO FREQUENCY REPEATER USING A SYNCHRONIZING SIGNAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190082468A KR102153434B1 (ko) 2019-07-09 2019-07-09 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법
KR10-2019-0082468 2019-07-09

Publications (1)

Publication Number Publication Date
WO2021006478A1 true WO2021006478A1 (ko) 2021-01-14

Family

ID=72707955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006809 WO2021006478A1 (ko) 2019-07-09 2020-05-27 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법

Country Status (4)

Country Link
US (1) US11637622B2 (ko)
EP (1) EP3998715A4 (ko)
KR (1) KR102153434B1 (ko)
WO (1) WO2021006478A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182746A1 (ko) * 2022-03-25 2023-09-28 엘지전자 주식회사 무선통신 시스템에서 장치의 동작 방법 및 상기 방법을 이용하는 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200425602Y1 (ko) * 2006-06-27 2006-09-06 포스데이타 주식회사 Tdd방식을 사용하는 무선통신 시스템에서의자동이득제어 장치 및 송수신기
KR101243333B1 (ko) * 2011-12-01 2013-03-13 주식회사 쏠리드 롱텀에볼루션 시스템에서 중계기 송신 전력을 조절하는 장치
KR20140081501A (ko) * 2012-12-21 2014-07-01 주식회사 케이티 중계기의 동기 획득 시스템 및 방법
KR101470441B1 (ko) * 2014-07-10 2014-12-12 주식회사알에프윈도우 캐스케이드 연결방식의 이동형 ics 중계장치
KR20190013621A (ko) * 2017-07-28 2019-02-11 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079957B1 (ko) 2004-08-27 2011-11-04 주식회사 케이티 전력 검출기를 이용한 tdd 중계 장치 및 링크 제어신호 발생 방법
US9094083B2 (en) * 2010-05-18 2015-07-28 Qualcomm Incorporated Systems, apparatus and methods to facilitate efficient repeater usage
WO2012070614A1 (ja) * 2010-11-25 2012-05-31 シャープ株式会社 無線通信システム、伝送路選択方法、及び伝送路選択プログラム
US9407405B2 (en) * 2012-04-06 2016-08-02 Lg Electronics Inc. Method of receiving downlink data and wireless device using the method
KR101791633B1 (ko) * 2014-03-29 2017-10-30 주식회사 쏠리드 간섭 제거 중계 장치
KR101825416B1 (ko) * 2014-12-30 2018-03-22 주식회사 쏠리드 간섭 제거 중계 장치
US10743362B2 (en) * 2016-09-27 2020-08-11 Lg Electronics Inc. Method whereby user equipment operates in wireless communication system, and device for supporting same
JP6816311B2 (ja) * 2017-06-16 2021-01-20 エルジー エレクトロニクス インコーポレイティド 同期信号ブロックを測定する方法及びそのための装置
US10715244B2 (en) * 2017-12-29 2020-07-14 Wilson Electronics, Llc Signal booster with balanced gain control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200425602Y1 (ko) * 2006-06-27 2006-09-06 포스데이타 주식회사 Tdd방식을 사용하는 무선통신 시스템에서의자동이득제어 장치 및 송수신기
KR101243333B1 (ko) * 2011-12-01 2013-03-13 주식회사 쏠리드 롱텀에볼루션 시스템에서 중계기 송신 전력을 조절하는 장치
KR20140081501A (ko) * 2012-12-21 2014-07-01 주식회사 케이티 중계기의 동기 획득 시스템 및 방법
KR101470441B1 (ko) * 2014-07-10 2014-12-12 주식회사알에프윈도우 캐스케이드 연결방식의 이동형 ics 중계장치
KR20190013621A (ko) * 2017-07-28 2019-02-11 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 38.211 standard for 5G", EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI, article "Physical channels and modulation"
See also references of EP3998715A4

Also Published As

Publication number Publication date
EP3998715A4 (en) 2022-09-07
US11637622B2 (en) 2023-04-25
US20210359748A1 (en) 2021-11-18
EP3998715A1 (en) 2022-05-18
KR102153434B1 (ko) 2020-09-21

Similar Documents

Publication Publication Date Title
US7961689B2 (en) Method and apparatus for determining an end of a subframe in a TDD system
US8687514B2 (en) Base station device and interference suppression method
WO2013176529A1 (en) Method and apparatus for transmitting and receiving reference signal in mobile communcation system using beamforming
WO2014003503A1 (en) Method and apparatus for transmitting signal in beam forming-based communication system
US7853203B2 (en) Method and system for selecting a relay station in a communication system using a multihop relay scheme
US6728228B1 (en) Method and system for measuring and reporting received signal strength
WO2013012156A1 (ko) Lte 시스템에서의 핸드오버 방법 및 이를 위한 장치
WO2012141418A2 (ko) 스케일러블 대역폭을 지원하는 운용 시스템 및 펨토셀 기지국
KR101339696B1 (ko) 중계 및 대응하는 방법을 구현하기 위한 기지국, 중계국, 및 이동 단말
WO2010002169A2 (ko) 이동통신 시스템에서 핸드오버 메시지 송신 전력 제어 방법 및 장치
KR101217966B1 (ko) 조정되지 않은 시간 분할 듀플렉스 통신 네트워크들 간의 동기화
CN101322339B (zh) 用于广播对应于相邻基站的负载信息的方法和设备
EP2475197A1 (en) Mobile communication system, mobile station device, base station device, and electric wave interference reducing method
JPH1042338A (ja) 無線通信システムにおける編成パラメータを決定するための方法
US20080214221A1 (en) Radio Base Station System
WO2011065773A2 (ko) 무선 채널의 주파수 선택적 특성을 증가시키는 중계 방법 및 이를 이용하는 중계 장치
WO2011055870A1 (ko) 중계기, 기지국의 동작방법 및 장치
KR20100069063A (ko) 비 면허 대역을 이용하여 끊김 없는 서비스를 제공하는 무선 통신 시스템 및 장치
WO2014073780A1 (ko) 신호 처리 시스템, 디지털 신호 처리 장치 및 그 시스템에서의 송신 전력 제어 방법
WO2002041511A1 (en) Operations, administration and maintenance of components in a mobility network
WO2021006478A1 (ko) 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법
WO2009145537A2 (ko) 초소형 기지국의 송신 전력 제어 방법 및 이에 적용되는 초소형 기지국
WO2011062439A2 (en) Method and apparatus for allocating femto cell information for handover in a wireless communication system
WO2013073825A1 (ko) 이동 통신 시스템에서 백오프 펙터 값 결정 방법 및 장치
CN116886137B (zh) 一种交叉极化漏缆mimo通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020772193

Country of ref document: EP

Effective date: 20220209