WO2021005634A1 - Turbulence detection device and turbulence detection method - Google Patents

Turbulence detection device and turbulence detection method Download PDF

Info

Publication number
WO2021005634A1
WO2021005634A1 PCT/JP2019/026776 JP2019026776W WO2021005634A1 WO 2021005634 A1 WO2021005634 A1 WO 2021005634A1 JP 2019026776 W JP2019026776 W JP 2019026776W WO 2021005634 A1 WO2021005634 A1 WO 2021005634A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind direction
wind speed
blast
wind
cell
Prior art date
Application number
PCT/JP2019/026776
Other languages
French (fr)
Japanese (ja)
Inventor
洋 酒巻
清之 畑
康宏 藤井
佐藤 亮
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/026776 priority Critical patent/WO2021005634A1/en
Priority to JP2021530334A priority patent/JP6991397B2/en
Publication of WO2021005634A1 publication Critical patent/WO2021005634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Definitions

  • the present invention relates to an eddy detection device and a eddy detection method for detecting the range of influence of engine exhaust gas injected from a jet engine mounted on an aircraft.
  • Patent Document 1 describes an airport surface guidance support system that calculates a blast area based on aircraft position, movement information, or aircraft information. Is disclosed.
  • the behavior of the blast changes depending on the wind around the aircraft (hereinafter referred to as "background wind”). That is, the injection direction or speed of the blast changes depending on the background wind of the aircraft.
  • background wind the wind around the aircraft
  • the influence of the background wind is not taken into consideration and the actual blast region may not be detected. ..
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an eddy detection device that detects a blast region in consideration of a background wind.
  • the turbulence detection device is a doppler for each range cell divided into the range direction and the azimuth direction of the observation area based on the received signal based on the wave motion radiated to the observation area and reflected in the atmosphere of the observation area.
  • a moment calculation unit that calculates the velocity
  • a wind direction wind speed estimation unit that estimates the wind direction value and wind speed value for each range cell based on the Doppler velocity calculated by the moment calculation unit, and a wind direction value for each range cell estimated by the wind direction wind speed estimation unit.
  • It also has a blast detection unit that detects the blast region in the observation region based on the wind speed value.
  • the blast region can be detected in consideration of the background wind.
  • FIG. 5 is a diagram for explaining an image of a flow in which the first blast detection unit detects a blast cell in the first embodiment. It is a flowchart for demonstrating the outline of operation of the turbulence detection device which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structural example of the turbulence detection device which concerns on Embodiment 2. It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structural example of the turbulence detection device which concerns on Embodiment 3. It is a figure explaining the image of the attention range cell and the peripheral range cell when the peripheral range cell is 8 range cells adjacent to the attention cell in Embodiment 3.
  • FIG. It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 3.
  • the wind direction and wind speed estimation unit that estimates the wind direction value and the wind speed value after removing the range cell in which the response from an unnecessary object is mixed. It is a figure which shows the configuration example. It is a figure for demonstrating the operation of the unnecessary cell suppression part when the wind direction wind speed estimation part is provided with the unnecessary cell suppression part in Embodiment 1 to Embodiment 3.
  • 14A and 14B are diagrams showing an example of the hardware configuration of the turbulence detection device according to the first to third embodiments.
  • Embodiment 1 In recent years, due to the increase in aircraft users, it is desired to increase the traffic capacity at airports (hereinafter referred to as "airport traffic capacity"), especially at airports close to large cities.
  • airport traffic capacity One way to increase airport traffic capacity is to increase the runway utilization rate and increase the number of takeoffs and landings. Although it is one way to increase the number of runways in order to increase the airport traffic capacity, it is generally not easy to increase the number of runways.
  • the takeoff and landing intervals of aircraft on the airport surface are sufficient time to avoid the effects of wake turbulence caused by the flight of aircraft, as defined by the ICAO (International Civil Aviation Organization).
  • the distance is used as an index.
  • the wake turbulence refers to a wing tip vortex, a wake vortex, a wake turbulence, a waker bulence, or the like.
  • the blast of an aircraft taking off from one runway will affect the aircraft landing on the other runway as a sudden change in wind speed. Therefore, at airports with crossed runways, it is necessary to carry out more complicated operations for setting the takeoff and landing intervals of aircraft, taking into consideration ensuring sufficient time to avoid the effects of blasting.
  • the blast is high-temperature and high-pressure exhaust, and the range of influence of the blast extends to several hundred meters behind the engine of the aircraft. Therefore, not only the crossing runway but also the close parallel runway, the taxiway other than the runway, the parking lot, etc. are affected by the blast, and the operation of the towing tractor, the tag car, the bus, etc. is also affected. May affect. In this way, it is assumed that the blast of an aircraft will affect other aircraft, etc. on the airport surface of any airport, not limited to airports with crossed runways, and aircraft on the airport surface in consideration of blasting. The takeoff and landing interval must be secured.
  • blasting can be predicted to some extent by fixed point monitoring by an anemometer installed on the airport surface, aircraft movement information such as the position or speed of the aircraft, or aircraft aircraft information. Therefore, there is known a technique for detecting a blast region by using the position of an aircraft, the movement information of an aircraft, or the airframe information of an aircraft, as in the conventional technique described above.
  • the eddy detection device detects the blast region in consideration of the background wind.
  • the eddy airflow detection device is assumed to be mounted on, for example, a Doppler rider device.
  • the eddy detection device can be mounted on, for example, various observation devices using waves such as electromagnetic waves or sound waves for measuring the distance and velocity of a remote target or object.
  • the observation device include a radar device, a rider device, a soda device, and the like.
  • the radar device is, for example, a Doppler radar device
  • the rider device is, for example, the above-mentioned Doppler radar device, a light wave radar device, or a laser radar device
  • the soda device is, for example, a Doppler soda device or a sound wave radar device.
  • the eddy detection device detects a blast area in the observation area by using a received signal obtained as a result of the Doppler rider device transmitting and receiving a beam for observing the observation area in the airport plane.
  • FIG. 1 is a schematic diagram for explaining an example of an image of a blast observation state by the eddy detection device 1 according to the first embodiment.
  • the eddy detection device 1 detects the blast region in the observation region where the Doppler rider device 2 scans the beam.
  • the eddy detection device 1 detects a blast region in an observation region set on the airport surface of an airport having an intersecting runway.
  • the eddy detection device 1 detects a blast region at an airport having an intersecting runway, but this is only an example.
  • the eddy detection device 1 can detect a blast region on the airport surface of any airport.
  • the departure aircraft on the runway A has started taking off in the direction of the arrow 1000a on the left side of the drawing, and the blast 1001 is injected from the rear of the aircraft. Further, the arriving aircraft is approaching the runway B, which intersects the runway A, in the direction of the arrow 1000b on the right side of the drawing.
  • the Doppler rider device 2 equipped with the eddy turbulence detection device 1 horizontally scans the observation region set to include the runway A and the runway B at a predetermined altitude.
  • the predetermined altitude is, for example, the altitude at which the engine of an aircraft on the runway can exist (hereinafter referred to as "engine altitude").
  • the observation region in which the Doppler rider device 2 scans the beam is represented by a fan shape.
  • the Doppler rider device 2 performs the beam scanning at a preset cycle.
  • the eddy detection device 1 detects the blast region based on the result of the beam scanning of the observation region by the Doppler rider device 2.
  • the beam scanning from one radius to the other radius of the fan-shaped observation region for one cycle by the Doppler rider device 2 is referred to as one scan or one observation.
  • the observation area is fan-shaped, and the Doppler rider device 2 scans the fan-shaped range with a beam in one cycle.
  • the observation region is substantially circular and the Doppler rider device 2 is not limited to this.
  • No. 2 may perform beam scanning in a substantially circular range in one cycle.
  • the range in which the Doppler rider device 2 scans the beam in one cycle is represented by a substantially circular shape, the scan that goes around is called one scan or one observation.
  • the Doppler rider device 2 may perform beam scanning by transmitting and receiving not only one beam but also a plurality of beams at the same time.
  • the observation area is divided into an azimuth direction, which is the direction of beam scanning, and a range direction, which is substantially orthogonal to the direction of beam scanning. Specifically, the observation area is divided into a predetermined direction and a predetermined range. Each of a plurality of regions formed by dividing the observation region into the directional direction and the range direction is called a "range cell".
  • the directional direction is indicated by an arrow of 1002 and the range direction is indicated by an arrow of 1003.
  • the range direction is also referred to as a line-of-sight direction.
  • FIG. 2 is a diagram showing a configuration example of a Doppler rider device 2 equipped with the eddy detection device 1 according to the first embodiment.
  • the Doppler rider device 2 is equipped with an eddy detection device 1, and includes an electromagnetic wave emitting unit 21 and a transmitting / receiving unit 22.
  • the electromagnetic wave radiating unit 21 radiates an electromagnetic wave based on a transmitted light pulse transmitted from the transmitting / receiving unit 22 to the observation region in a preset period (hereinafter referred to as “wave radiating period”).
  • the electromagnetic wave emitting unit 21 converts the transmitted light pulse transmitted from the transmitting / receiving unit 22 into the transmitted light and radiates the transmitted light to the observation region in units of the wave radiation period. Then, the electromagnetic wave emitting unit 21 receives the reflected light of the transmitted light by the atmosphere in the observation region.
  • the electromagnetic wave emitting unit 21 is composed of, for example, a telescope that converges the transmitted light when radiating the transmitted light into space, and a reflecting mirror that controls the direction of radiation.
  • the transmitted light emitted by the electromagnetic wave emitting unit 21 to the observation region is reflected by fine particles in the atmosphere.
  • the frequency of the reflected light by the atmosphere is shifted by the Doppler effect.
  • the electromagnetic wave emitting unit 21 receives the reflected light from the atmosphere of the transmitted light radiated to the observation region, converts it into an electric signal, and then transmits the electric signal as a receiving signal to the transmitting / receiving unit 22.
  • the transmission / reception unit 22 generates an electric signal as a transmission light pulse that is a source of transmission light radiated to the observation region via the electromagnetic wave radiation unit 21. Further, the transmission / reception unit 22 receives a reception signal obtained by converting the reflected light by the atmosphere of the transmission light radiated by the electromagnetic wave radiation unit 21 into the observation region into an electric signal by the electromagnetic wave radiation unit 21. The transmission / reception unit 22 performs processing such as amplification and frequency conversion on the received reception signal, and then outputs the received signal after the processing to the eddy detection device 1.
  • the eddy detection device 1 detects the blast region based on the received signal output from the transmission / reception unit 22. The details of the eddy detection device 1 will be described later.
  • the eddy detection device 1 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
  • the blast intensity means the wind speed value of the blast.
  • the wind speed of the blast is the absolute wind speed.
  • FIG. 3 is a diagram showing a configuration example of the turbulence detection device 1 according to the first embodiment.
  • the eddy detection device 1 includes a moment calculation unit 101, a wind direction / wind speed estimation unit 102, a wind speed determination unit 103, a wind direction determination unit 104, and a blast detection unit 105.
  • the blast detection unit 105 includes a first blast detection unit 1051.
  • the moment calculation unit 101 acquires the received signal output from the transmission / reception unit 22 of the Doppler rider device 2, and from the spectrum of the acquired received signal, the signal strength (so-called “0th moment”) and the Doppler speed (so-called “0th moment”) for each range cell.
  • the so-called “primary moment”) or the spectral width (so-called "second moment”) or the like is calculated.
  • the Doppler speed is also referred to as the radial velocity.
  • the signal strength, the Doppler speed, the spectrum width, and the like calculated by the moment calculation unit 101 based on the received signal are collectively referred to as “moment information”.
  • the moment calculation unit 101 applies the calculated moment information to each range cell, and outputs a received signal to the wind direction and speed estimation unit 102.
  • the reception signal that the moment calculation unit 101 adds moment information and outputs to the wind direction wind speed estimation unit 102 is also referred to as a “reception signal after moment application”.
  • the wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value for each range cell by using the Doppler speed calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101. Since the technique for estimating the wind direction value and the wind velocity value from the Doppler velocity is a known technique, detailed description thereof will be omitted.
  • the wind direction and the wind speed estimated by the wind direction wind speed estimation unit 102 are also referred to as a “velocity vector”. At this time, the wind direction / wind speed estimation unit 102 estimates the wind direction value and the wind speed value using the Doppler velocity obtained based on at least two or more beams included in the predetermined small azimuth angle range.
  • the wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value on the assumption that the wind direction and the wind speed within the small azimuth angle range are uniform.
  • a method of setting the predetermined small azimuth angle range there is a method of setting the small azimuth angle range substantially without duplication, such as 0 ° to 10 °, 10 ° to 20 °, and so on. This is only an example, and the small azimuth range may be set while overlapping the small azimuth angle ranges, for example, 0 ° to 10 °, 5 ° to 15 °, and so on.
  • the wind direction wind speed estimation unit 102 applies the estimated wind direction value and the wind speed value to each range cell of the received signal after applying the moment, and outputs the estimated wind direction value and the wind speed value to the wind speed determination unit 103 and the wind direction determination unit 104.
  • the received signal after applying the moment, which the wind direction and wind speed estimating unit 102 assigns the wind direction and speed and outputs to the wind speed determination unit 103 and the wind direction determination unit 104, is also referred to as a “vector-added received signal”.
  • moment information is also added to each range cell of the received signal after the vector is added.
  • the wind speed determination unit 103 has a range cell in the blast region (hereinafter referred to as “blast cell”) for each range cell based on the wind speed value assigned to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102. It is determined whether or not the range cell is a candidate for the wind speed blast (hereinafter referred to as "wind speed blast candidate cell”). Specifically, the wind speed determination unit 103 determines for each range cell whether or not the wind speed value of the range cell exceeds a preset threshold value (hereinafter referred to as "wind speed determination threshold value").
  • the wind speed determination threshold is set in advance by a user or the like to a value suitable for determining blast.
  • the wind speed determination unit 103 determines that the range cell is a wind speed blast candidate cell, and adds a wind speed blast candidate cell flag to the wind speed blast candidate cell.
  • the wind speed determination unit 103 outputs the received signal after adding the vector to which the wind speed blast candidate cell flag is added to the wind speed blast candidate cell to the first blast detection unit 1051.
  • the vector-assigned reception signal that the wind speed determination unit 103 assigns the wind speed blast candidate cell flag and outputs to the first blast detection unit 1051 is also referred to as a “wind speed determination post-reception signal”.
  • the wind speed blast candidate cell flag is given to the wind speed blast candidate cell, and the moment information, the wind direction value, and the wind speed value are also given to each range cell of the received signal after the wind speed determination.
  • the wind speed blast candidate cell flag is given to the wind speed blast candidate cell, and the moment information, the wind direction value, and the wind speed value are given to each range cell.
  • each range cell of the received signal after the wind speed determination may be provided with at least a wind speed blast candidate cell flag when the range cell is a wind speed blast candidate cell and a wind speed value.
  • the wind direction determination unit 104 is a range cell in which the range cell is a candidate for a blast cell for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 (hereinafter, “wind direction blast candidate”). It is determined whether or not it is a "cell”. Specifically, the wind direction determination unit 104 presets the absolute value of the difference between the wind direction value of the range cell and the preset reference value (hereinafter referred to as "wind direction determination reference value”) for each range cell. It is determined whether or not it is within the above range (hereinafter referred to as "wind direction determination range").
  • a value in a direction in which the wind direction of the range cell is estimated to be blast is set in advance by a user or the like.
  • an angle indicating the wind direction of the blast, which poses a threat to the aircraft is set in advance by the user or the like.
  • Aircraft are generally considered to be more vulnerable to crosswinds than tailwinds or headwinds. Therefore, blasting poses a threat to aircraft on the runway in general when the blast is a crosswind with respect to the aircraft's airframe, in other words, when the blast is perpendicular to the orientation of the aircraft's airframe.
  • the "right angle” does not have to be strictly a "right angle”
  • the "right angle” also includes a "substantially right angle”.
  • the orientation of the aircraft on the runway is estimated to be approximately parallel to the orientation of the runway. Therefore, when the wind direction is perpendicular to the direction of the runway, it can be said that the wind direction is perpendicular to the direction of the aircraft body.
  • the wind direction determination unit 104 winds the range cell, which may be a threat to the aircraft, depending on the angle formed by the direction of the runway and the wind direction value given to the range cell. It shall be determined as a blast candidate cell. Then, it is assumed that the wind direction for determining the wind direction is set to the angle between the runway direction and the wind direction, which indicates the wind direction of the blast that poses a threat to the aircraft. In the first embodiment, as an example, it is assumed that "90 °" is set as the reference value for determining the wind direction. Further, it is assumed that " ⁇ 45 °" is set in the wind direction determination range with reference to the wind direction determination reference value 90 °.
  • the wind direction determination unit 104 determines that the range cell is a wind direction blast candidate cell, and tells the wind direction blast candidate cell the wind direction. Add the blast candidate cell flag.
  • the wind direction determination unit 104 outputs the received signal after adding the vector to which the wind direction blast candidate cell flag is added to the wind direction blast candidate cell to the first blast detection unit 1051.
  • the vector-assigned reception signal that the wind direction determination unit 104 assigns the wind direction blast candidate cell flag and outputs to the first blast detection unit 1051 is also referred to as a “wind direction determination post-reception signal”.
  • the wind direction blast candidate cell flag is given to the wind direction blast candidate cell, and the moment information, the wind direction value, and the wind speed value are also given to each range cell of the received signal after the wind direction determination.
  • the wind direction blast candidate cell flag is given to the wind direction blast candidate cell, and the moment information, the wind direction value, and the wind speed value are given to each range cell.
  • each range cell of the received signal after the wind direction determination may be given at least a wind direction blast candidate cell flag when the range cell is a wind direction blast candidate cell and a wind direction value.
  • the blast detection unit 105 detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102. Specifically, the first blast detection unit 1051 of the blast detection unit 105 blasts based on the wind speed determination reception signal output from the wind speed determination unit 103 and the wind direction determination reception signal output from the wind direction determination unit 104. Detect the area. The first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell in the received signal after the wind speed determination and the wind direction blast candidate cell in the received signal after the wind direction determination, and is a wind speed blast candidate cell and is a wind direction blast candidate cell. A range cell is detected as a blast cell.
  • the blast cell which is a wind speed blast candidate cell and is a wind direction blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting. That is, the first blast detection unit 1051 detects a range cell in which both the wind speed and the wind direction have the characteristics of blasting as the blast cell. The first blast detection unit 1051 may determine the wind speed blast candidate cell or the wind direction blast candidate cell by the wind speed blast candidate cell flag or the wind direction blast candidate cell flag.
  • FIG. 4 is a diagram for explaining an image of a flow in which the first blast detection unit 1051 detects a blast cell in the first embodiment.
  • the observation area of the Doppler rider device 2 is fan-shaped.
  • the images of the observation area are shown by 401, 402, and 403.
  • the range cell in the observation area is illustrated.
  • the first blast is detected from the wind speed blast candidate cell (shown by 401a in FIG. 4) determined by the wind speed determination unit 103 and the wind direction blast candidate cell (shown by 402a in FIG. 4) determined by the wind direction determination unit 104.
  • Section 1051 shows an image in which a range cell which is a wind speed blast candidate cell 401a and a wind direction blast candidate cell 402a is detected as a blast cell (shown by 403a in FIG. 4).
  • the blast cell 403a is a range cell having blast characteristics in both wind speed and direction.
  • the area containing the blast cell is the blast area.
  • the first blast detection unit 1051 outputs information about the detected blast region as a blast detection result. Specifically, the first blast detection unit 1051 outputs a reception signal to which at least information as to whether or not it is a blast cell is added to each range cell. In the first embodiment, the first blast detection unit 1051 gives each range cell information on whether or not it is a blast cell, and if the range cell is a blast cell, a reception signal to which a wind speed value and a wind direction value are given. , Shall be output. For example, the first blast detection unit 1051 may give information on whether or not the reception signal is a blast cell, a wind speed value, and a wind direction value to each range cell of the received signal output from the Doppler rider device 2. In this way, the first blast detection unit 1051 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
  • FIG. 5 is a flowchart for explaining an outline of the operation of the turbulence detection device 1 according to the first embodiment.
  • the moment calculation unit 101 acquires the reception signal output from the transmission / reception unit 22 of the Doppler rider device 2, and calculates the moment information for each range cell from the spectrum of the acquired reception signal (step ST501).
  • the wind direction / wind speed estimation unit 102 estimates the wind direction value and the wind speed value for each range cell using the Doppler speed calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101 in step ST501. (Step ST502).
  • the blast detection unit 105 detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102 in step ST502 (step ST503).
  • FIG. 6 is a flowchart for explaining a more specific operation of the eddy detection device 1 according to the first embodiment. Since the specific operations of steps ST601 to ST602 in FIG. 6 are the same as the specific operations of steps ST501 to ST502 in FIG. 5, duplicated description will be omitted.
  • the wind speed determination unit 103 is a wind speed blast candidate in which the range cell is a candidate for a blast cell for each range cell based on the wind speed value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST602. It is determined whether or not it is a cell (step ST603).
  • the wind speed determination unit 103 determines for each range cell whether or not the wind speed value of the range cell exceeds the wind speed determination threshold value. When the wind speed value of the range cell exceeds the wind speed determination threshold value, the wind speed determination unit 103 determines that the range cell is a wind speed blast candidate cell, and adds a wind speed blast candidate cell flag to the wind speed blast candidate cell. The wind speed determination unit 103 outputs the received signal after the wind speed determination to which the wind speed blast candidate cell flag is added to the wind speed blast candidate cell to the first blast detection unit 1051.
  • the wind direction determination unit 104 is a wind direction blast candidate in which the range cell is a candidate for a blast cell for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST602. It is determined whether or not it is a cell (step ST604). Specifically, the wind direction determination unit 104 determines for each range cell whether or not the absolute value of the difference between the wind direction value of the range cell and the wind direction determination reference value is within the wind direction determination range.
  • the wind direction determination unit 104 determines that the range cell is a wind direction blast candidate cell, and tells the wind direction blast candidate cell the wind direction. Add the blast candidate cell flag.
  • the wind direction determination unit 104 outputs a received signal after the wind direction determination, in which the wind direction blast candidate cell flag is added to the wind direction blast candidate cell, to the first blast detection unit 1051.
  • the first blast detection unit 1051 determines the blast region based on the wind speed determination post-received signal output from the wind speed determination unit 103 in step ST603 and the wind direction determination post-receiver signal output from the wind direction determination unit 104 in step ST604. Detect (step ST605). Specifically, the first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell in the received signal after the wind speed determination and the wind direction blast candidate cell in the received signal after the wind direction determination, and is a wind speed blast candidate cell. A range cell, which is a wind direction blast candidate cell, is detected as a blast cell. The first blast detection unit 1051 outputs information about the detected blast region as a blast detection result.
  • step ST603 and the process of step ST604 are described in parallel in FIG. 6, the process of step ST603 and the process of step ST604 may be sequentially performed.
  • the first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell and the wind direction blast candidate cell to detect the blast cell, but this is only an example.
  • the first blast detection unit 1051 may OR the wind speed blast candidate cell and the wind direction blast candidate cell to detect the blast cell.
  • the wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value
  • the wind speed determination unit 103 determines the wind speed blast candidate cell
  • the wind direction determination unit 104 determines the wind direction blast candidate cell, and the wind speed blast candidate cell is poor. It may be expected that many cells or wind direction blast candidate cells will be overlooked.
  • the first blast detection unit 1051 determines that the range cell having the characteristic of blasting at either the wind speed value or the wind direction value is a blast cell, so that the eddy air detection device 1 can be described as described above. It is possible to detect the blast region in consideration of the poor determination accuracy.
  • the small azimuth angle range in order to accurately estimate the wind direction value and wind speed value, it is necessary to set the small azimuth angle range to some extent.
  • problems such as deterioration of the resolution in the azimuth direction or difficulty in capturing local fluctuations in the wind direction value or the wind speed value may occur. Therefore, when the wind direction wind speed estimation unit 102 estimates the wind direction value and the wind speed value, it may be difficult to secure a wide small azimuth angle range.
  • the wind direction value or wind speed value estimated by the wind direction wind speed estimation unit 102 may include a wind direction value or a wind speed value with deteriorated accuracy. ..
  • a situation may occur in which the wind speed determination unit 103 misses the wind speed blast candidate cell.
  • a situation may occur in which the wind direction determination unit 104 misses the wind direction blast candidate cell.
  • the wind speed determination unit 103 determines, for example, the wind speed blast candidate cell. After that, the wind speed blast candidate cell may be corrected by image processing. Further, for example, the wind direction blast candidate cell 104 may determine the wind direction blast candidate cell and then perform image processing correction on the wind direction blast candidate cell. For example, the wind speed determination unit 103 or the wind direction determination unit 104 performs a morphology filter process. Since the morphology filter is a known general process, detailed description thereof will be omitted.
  • the wind speed determination unit 103 or the wind direction determination unit 104 improves the spatial inconsistency by performing the closing process. be able to.
  • the closing process is a series of processes in which the morphology filter performs a contraction process after an expansion process. Spatial inconsistency means that the wind speed blast candidate cell or the wind direction blast candidate cell is overlooked. Further, the wind speed determination unit 103 or the wind direction determination unit 104 can remove the erroneously estimated wind speed blast candidate cell or wind direction blast candidate cell by performing the opening process.
  • the opening process is a series of processes in which the morphology filter performs an expansion process after a contraction process.
  • the eddy detection device 1 determines the range cells having the characteristics of blasting with respect to the wind speed and the wind direction, corrects them, and then determines the final blast region as a logical product or a logical sum. You may try to do it. As a result, it is possible to suppress deterioration of accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and it is possible to detect the blast region with higher accuracy than when the blast region is detected without correction.
  • the turbulence detection device 1 is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal.
  • a moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101.
  • the blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102.
  • the wind speed value of the range cell exceeds the wind speed determination threshold for each range cell based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
  • the wind speed determination unit 103 determines whether or not the wind speed blast candidate cell is the wind speed blast candidate cell and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value and the wind direction determination reference for each range cell.
  • the wind direction blast candidate cell 104 determines whether or not the difference from the value is within the wind direction determination range, and the blast detection unit 105 is the wind speed blast candidate cell determined by the wind speed determination unit 103.
  • the first blast detecting unit 1051 for detecting the blast region from the wind direction blast candidate cell determined by the wind direction determining unit is provided. Therefore, the blast region can be detected in consideration of the background wind.
  • Embodiment 2 the eddy detection device 1 determines the blast region based on the absolute values of the wind direction and the wind speed.
  • the embodiment in which the blast region is detected will be described with the time change of the wind direction and the wind speed as the blast in a broad sense.
  • the eddy turbulence detection device 1a according to the second embodiment is also mounted on the doppler rider device 2 as an example, like the eddy turbulence detection device 1 according to the first embodiment. Since the configuration example of the Doppler rider device 2 equipped with the turbulence detection device 1a is the same as the configuration example of the Doppler rider device 2 described with reference to FIG. 2 in the first embodiment, duplicate description will be omitted.
  • the eddy detection device 1a outputs information on the blast region and the blast intensity as a result of detecting the blast region. In the second embodiment, the blast intensity means a time change of the wind speed of the blast.
  • FIG. 7 is a diagram showing a configuration example of the turbulence detection device 1a according to the second embodiment.
  • the eddy turbulence detection device 1a according to the second embodiment is different from the eddy turbulence detection device 1 according to the first embodiment in the wind direction wind speed storage unit 106, the wind speed time difference calculation unit 107, the wind direction time difference calculation unit 108, the wind speed time difference determination unit 109, and the wind direction.
  • the difference is that the time difference determination unit 110 is provided.
  • the eddy detection device 1a according to the second embodiment is different from the eddy detection device 1 according to the first embodiment in that the blast detection unit 105a includes the second blast detection unit 1052. Further, the eddy detection device 1a according to the second embodiment includes the wind speed determination unit 103, the wind direction determination unit 104, and the first blast detection unit 1051 provided in the eddy detection device 1 according to the first embodiment. I don't prepare.
  • the wind direction and wind speed storage unit 106 assigns the wind direction value and the wind speed value estimated by the wind direction and wind speed estimation unit 102 to the received signal based on the transmitted light radiated to the observation region during the wave radiation cycle and reflected in the atmosphere of the observation region. , The received signal after the vector is added is stored in the history. In the second embodiment, the wind direction wind speed estimation unit 102 stores the received signal after adding the vector in the wind direction wind speed storage unit 106. Further, the wind direction wind speed estimation unit 102 outputs the received signal after adding the vector to the wind speed time difference calculation unit 107 and the wind direction time difference calculation unit 108.
  • the wind direction and speed storage unit 106 is provided in the eddy detection device 1a, but this is only an example. The wind direction and speed storage unit 106 may be provided outside the eddy turbulence detection device 1a at a location where the turbulence detection device 1a can be referred to.
  • the wind speed time difference calculation unit 107 scans the wind speed value of the range cell and the received signal after the vector is applied for each range cell based on the wind speed value added to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102.
  • the difference from the wind speed value of the range cell based on the received signal after the previous vector is added (hereinafter referred to as "wind speed time difference") is calculated.
  • the wind speed time difference calculation unit 107 acquires the vector-added received signal before one scan of the vector-added received signal output from the wind direction wind speed estimation unit 102 from the wind direction wind speed storage unit 106.
  • the received signal after vector addition is given the date and time when the received signal was acquired by the Doppler rider device 2, and the wind speed time difference calculation unit 107 receives the received signal after vector addition one scan before the date and time. You just have to make a judgment. If the wind speed time difference calculation unit 107 cannot acquire the received signal after applying the vector one scan before, the received signal after applying the vector acquired at the time of the closest beam scanning within a predetermined time range set in advance. May be the received signal after adding the vector one scan before.
  • the wind speed time difference calculation unit 107 applies the calculated wind speed time difference information to each range cell of the vector-added received signal output from the wind direction wind speed estimation unit 102, and applies the vector-added received signal to the wind speed time difference determination unit 109. Output to.
  • the received signal after the vector addition, which the wind speed time difference calculation unit 107 adds the wind speed time difference and outputs to the wind speed time difference determination unit 109, is also referred to as “the received signal after the wind speed time difference is applied”.
  • the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind speed time difference is given.
  • the wind direction time difference calculation unit 108 scans the wind direction value of the range cell and the received signal after the vector is applied for each range cell based on the wind direction value added to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102.
  • the difference from the wind direction value of the range cell based on the received signal after the previous vector is added (hereinafter referred to as "wind direction time difference") is calculated.
  • the wind direction time difference is basically represented by a subordinate angle.
  • the wind direction time difference calculation unit 108 may acquire the vector addition-post-vector reception signal one scan before the vector-added reception signal output from the wind direction wind speed estimation unit 102 in the same manner as the wind speed time difference calculation unit 107.
  • the wind direction time difference calculation unit 108 applies the calculated wind direction time difference information to each range cell of the vector-added received signal output from the wind direction wind speed estimation unit 102, and the vector-added received signal is given to the wind direction time difference determination unit 110. Output to.
  • the received signal after giving the vector that the wind direction time difference calculating unit 108 gives the wind direction time difference and outputs to the wind direction time difference determining unit 110 is also referred to as “the received signal after giving the wind direction time difference”.
  • the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind direction time difference is given.
  • the wind speed time difference determination unit 109 sets the range cell as a candidate for a blast cell for each range cell based on the wind speed time difference information given to the received signal after the wind speed time difference is applied, which is output from the wind speed time difference calculation unit 107.
  • it is determined whether or not the cell is a “wind speed time difference blast candidate cell”.
  • the wind speed time difference determination unit 109 determines whether or not the wind speed time difference assigned to the range cell exceeds a preset threshold value (hereinafter referred to as “wind speed time difference determination threshold value”) for each range cell.
  • a value of a change in wind speed over time which is suitable for determining blast, is set in advance by a user or the like.
  • the wind speed time difference determination unit 109 determines that the range cell is a wind speed time difference blast candidate cell, and sets the wind speed time difference blast candidate cell as a wind speed time difference blast candidate cell. Add a cell flag.
  • the wind speed time difference determination unit 109 outputs the received signal after the wind speed time difference is applied to the wind speed time difference blast candidate cell with the wind speed time difference blast candidate cell flag added to the second blast detection unit 1052.
  • the received signal after the wind speed time difference is given, which the wind speed time difference determining unit 109 adds the wind speed time difference blast candidate cell flag and outputs to the second blast detecting unit 1052, is also referred to as "the received signal after the wind speed time difference determination".
  • the wind speed time difference blast candidate cell flag is given to the wind speed time difference blast candidate cell, and the moment information, the wind speed time difference information, the wind direction value and the wind direction value and each range cell of the received signal after the wind speed time difference judgment are given.
  • the wind speed value is also given.
  • the wind speed time difference blast candidate cell is given the wind speed time difference blast candidate cell flag, and the moment information, the wind speed time difference information, the wind direction value and the wind speed value are given to each range cell.
  • each range cell of the received signal after the wind speed time difference determination includes at least the wind speed time difference blast candidate cell flag when the range cell is the wind speed time difference blast candidate cell and the wind speed time difference information. Should be given.
  • the wind direction time difference determination unit 110 sets the range cell as a candidate for a blast cell for each range cell based on the information of the wind direction time difference given to the received signal after the wind direction time difference is applied, which is output from the wind direction time difference calculation unit 108.
  • it is determined whether or not the cell is a “wind direction time difference blast candidate cell”.
  • the wind direction time difference determination unit 110 determines whether or not the wind direction time difference given to the range cell exceeds a preset threshold value (hereinafter referred to as "wind direction time difference determination threshold value”) for each range cell.
  • a preset threshold value hereinafter referred to as "wind direction time difference determination threshold value”
  • a value of a change over time in the wind direction suitable for determining blast is set in advance by a user or the like.
  • the wind direction time difference determination unit 110 determines that the range cell is a wind direction time difference blast candidate cell, and sets the wind direction time difference blast candidate cell to the wind direction time difference blast candidate cell. Add a cell flag.
  • the wind direction time difference determination unit 110 outputs the received signal after the wind direction time difference is given to the wind direction time difference blast candidate cell with the wind direction time difference blast candidate cell flag added to the second blast detection unit 1052.
  • the wind direction time difference determination unit 110 assigns the wind direction time difference blast candidate cell flag and outputs the signal to the second blast detection unit 1052 after the wind direction time difference is applied, which is also referred to as a “wind direction time difference determination received signal”.
  • the wind direction time difference blast candidate cell flag is given to the wind direction time difference blast candidate cell, and each range cell of the received signal after determining the wind direction time difference has moment information, wind direction time difference information, wind direction value and The wind speed value is also given.
  • the wind direction time difference blast candidate cell is given the wind direction time difference blast candidate cell flag, and the moment information, the wind direction time difference, the wind direction value and the wind speed value are given to each range cell.
  • the wind direction time difference blast candidate cell flag when the range cell is the wind direction time difference blast candidate cell and the information of the wind direction time difference are given to each range cell of the received signal after the wind direction time difference determination. It suffices if it is done.
  • the blast detection unit 105a detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
  • the second blast detection unit 1052 of the blast detection unit 105a has a wind speed time difference determination reception signal output from the wind speed time difference determination unit 109 and a wind direction time difference determination reception signal output from the wind direction time difference determination unit 110.
  • the blast area is detected based on.
  • the second blast detection unit 1052 takes the logical product of the wind speed time difference blast candidate cell in the received signal after the wind speed time difference determination and the wind direction time difference blast candidate cell in the received signal after the wind direction time difference determination, and is a wind speed time difference blast candidate cell.
  • a range cell which is a wind direction time difference blast candidate cell, is detected as a blast cell.
  • the blast cell which is a wind speed time difference blast candidate cell and a wind direction time difference blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting.
  • the second blast detection unit 1052 may determine the wind speed time difference blast candidate cell or the wind direction time difference blast candidate cell by the wind speed time difference blast candidate cell flag or the wind direction time difference blast candidate cell flag.
  • the image of the flow in which the second blast detection unit 1052 detects the blast cell is the same as the image of the flow in which the first blast detection unit 1051 detects the blast cell described with reference to FIG. 4 in the first embodiment. is there.
  • the wind speed time difference and the wind direction time difference extract the temporal changes of the wind speed and the wind direction
  • the detected blast cell is a range cell in which the wind speed and the wind direction suddenly change in time.
  • the wind speed determination result is the wind speed time difference determination result
  • the wind direction determination result is the wind direction time difference determination result
  • the wind speed blast candidate cell 401a is the wind speed time difference blast candidate cell
  • the wind direction blast candidate cell 402a is the wind direction time difference blast candidate cell.
  • the second blast detection unit 1052 outputs the information regarding the detected blast region as the blast detection result. Specifically, the second blast detection unit 1052 outputs a reception signal to which at least information on whether or not the cell is a blast cell is added to each range cell. In the second embodiment, the second blast detection unit 1052 gives each range cell information on whether or not it is a blast cell, and if the range cell is a blast cell, information on the wind speed time difference and information on the wind direction time difference. The received signal shall be output. For example, the second blast detection unit 1052 adds information on whether or not the reception signal is a blast cell, information on the wind speed time difference, and information on the wind direction time difference to each range cell of the received signal output from the Doppler rider device 2. do it. In this way, the second blast detection unit 1052 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
  • FIG. 8 is a flowchart for explaining a more specific operation of the eddy detection device 1a according to the second embodiment. Since the specific operations of steps ST801 to ST802 of FIG. 8 are the same as the specific operations of steps ST601 to ST602 of FIG. 6 described in the first embodiment, duplicate description will be omitted. ..
  • the wind direction and wind speed estimation unit 102 stores the received signal after the vector addition to which the wind direction value and the wind speed value estimated in step ST802 are added in the wind direction and wind speed storage unit 106 (step ST803).
  • the wind speed time difference calculation unit 107 receives the wind speed value of the range cell and the reception after the vector is applied for each range cell based on the wind speed value assigned to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST802.
  • the wind speed time difference from the wind speed value of the range cell based on the received signal after the vector is applied before one scanning of the signal is calculated (step ST804).
  • the wind speed time difference calculation unit 107 outputs the calculated wind speed time difference information to the wind speed time difference determination unit 109 after giving the calculated wind speed time difference information to each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102. To do.
  • the wind speed time difference determination unit 109 selects the wind speed time difference blast candidate for each range cell based on the wind speed time difference information given to the received signal after the wind speed time difference is applied, which is output from the wind speed time difference calculation unit 107 in step ST804. It is determined whether or not the cell is a cell (step ST805). Specifically, the wind speed time difference determination unit 109 determines for each range cell whether or not the wind speed time difference given to the range cell exceeds the wind speed time difference determination threshold value. When the wind speed time difference given to the range cell exceeds the wind speed time difference determination threshold value, the wind speed time difference determination unit 109 determines that the range cell is a wind speed time difference blast candidate cell, and sets the wind speed time difference blast candidate cell as a wind speed time difference blast candidate cell. Add a cell flag. The wind speed time difference determination unit 109 outputs the received signal after the wind speed time difference determination to which the wind speed time difference blast candidate cell flag is added to the wind speed time difference blast candidate cell to the second blast detection unit 1052.
  • the wind direction time difference calculation unit 108 adds the wind direction value of the range cell and the wind direction value of the range cell after the vector is applied to each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST802.
  • the wind direction time difference from the wind direction value of the range cell based on the received signal after the vector is applied before one scan of the received signal is calculated (step ST806).
  • the wind direction time difference calculation unit 108 outputs the calculated wind direction time difference information to the wind direction time difference determination unit 110 after giving the calculated wind direction time difference information to each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102. To do.
  • the wind direction time difference determination unit 110 selects the wind direction time difference blast candidate for each range cell based on the wind direction time difference information given to the received signal after the wind direction time difference is applied, which is output from the wind direction time difference calculation unit 108 in step ST806. It is determined whether or not it is a cell (step ST807). Specifically, the wind direction time difference determination unit 110 determines for each range cell whether or not the wind direction time difference given to the range cell exceeds the wind direction time difference determination threshold value. When the wind direction time difference given to the range cell exceeds the threshold value for determining the wind direction time difference, the wind direction time difference determination unit 110 determines that the range cell is a wind direction time difference blast candidate cell, and sets the wind direction time difference blast candidate cell to the wind direction time difference blast candidate cell. Add a cell flag. The wind direction time difference determination unit 110 outputs the received signal after the wind direction time difference determination to which the wind direction time difference blast candidate cell flag is added to the wind direction time difference blast candidate cell to the second blast detection unit 1052.
  • the second blast detection unit 1052 of the blast detection unit 105a receives the signal after the wind speed time difference determination output from the wind speed time difference determination unit 109 in step ST805 and the wind direction time difference determination output from the wind direction time difference determination unit 110 in step ST807.
  • the blast region is detected based on the post-received signal (step ST808).
  • the second blast detection unit 1052 takes the logical product of the wind speed time difference blast candidate cell in the received signal after the wind speed time difference determination and the wind direction time difference blast candidate cell in the received signal after the wind direction time difference determination, and obtains the wind speed time difference blast candidate cell.
  • the range cell which is a wind direction time difference blast candidate cell, is detected as a blast cell.
  • the second blast detection unit 1052 outputs the information regarding the detected blast region as the blast detection result. Specifically, the second blast detection unit 1052 receives at least information on whether or not the range cell is a blast cell, and if the range cell is a blast cell, information on the wind speed time difference and the wind direction time difference. Output the signal.
  • steps ST804 to ST805 and the processes of steps ST806 to ST807 are described in parallel, but the processes of steps ST804 to ST805 and the processes of steps ST806 to ST807 are sequentially performed. You may be asked.
  • the second blast detection unit 1052 detects the blast cell by taking the logical product of the wind speed time difference blast candidate cell and the wind direction time difference blast candidate cell. This is an example. It's just that.
  • the second blast detection unit 1052 may OR the wind speed time difference blast candidate cell and the wind direction time difference blast candidate cell to detect the blast cell.
  • the wind speed time difference determination unit 109 may determine the wind speed time difference blast candidate cell and then perform image processing correction on the wind speed time difference blast candidate cell.
  • the wind speed time difference determination unit 109 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind speed determination unit 103 performs image processing correction.
  • the wind direction time difference determination unit 110 may determine the wind direction time difference blast candidate cell and then perform image processing correction on the wind direction time difference blast candidate cell.
  • the wind direction time difference determination unit 110 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind direction determination unit 104 performs image processing correction.
  • the wind speed time difference determination unit 109 or the wind direction time difference determination unit 110 correct, it is possible to suppress the deterioration of the accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and the wind speed time difference blast candidate cell or the wind direction time difference blast. It is possible to detect the blast area in consideration of the occurrence of oversight of candidate cells.
  • the turbulence detection device 1a is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal.
  • a moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101.
  • the blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102.
  • the turbulence detection device 1a receives the wind speed value of the range cell and the reception one scan before each range cell based on the wind speed value of each range cell estimated by the wind direction wind speed estimation unit 102. Based on the wind speed time difference calculation unit 107 that calculates the wind speed time difference from the wind speed value of the range cell based on the signal, and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value of the range cell and one scan are performed for each range cell.
  • the wind direction time difference calculation unit 108 that calculates the wind direction time difference from the wind direction value of the range cell based on the previous received signal, and the wind speed time difference calculated by the wind speed time difference calculation unit 107 for each range cell exceeds the wind speed time difference determination threshold.
  • the wind direction time difference blast candidate cell is a wind direction time difference determination unit 109 that determines whether or not the cell is a blast candidate cell, and a wind direction time difference calculation unit 108 that exceeds the wind direction time difference determination threshold for each range cell.
  • the eddy detection device 1 determines the blast region based on the absolute values of the wind direction and the wind speed.
  • the blast region can also be estimated by extracting the boundary between the blast cell and the range cell other than the blast cell. Therefore, in the third embodiment, the spatial change of the wind direction and the wind speed is also defined as blast in a broad sense, and the blast region is detected by extracting the boundary between the blast cell and the range cell other than the blast cell by the spatial change of the wind direction and the wind speed. The form of is described.
  • the eddy turbulence detection device 1b according to the third embodiment is also mounted on the doppler rider device 2 as an example, like the eddy turbulence detection device 1 according to the first embodiment. Since the configuration example of the Doppler rider device 2 equipped with the turbulence detection device 1b is the same as the configuration example of the Doppler rider device 2 described with reference to FIG. 2 in the first embodiment, duplicate description will be omitted.
  • the eddy detection device 1b outputs information on the blast region and the blast intensity as a result of detecting the blast region. In the third embodiment, the blast intensity refers to a spatial change in the wind speed of the blast.
  • FIG. 9 is a diagram showing a configuration example of the turbulence detection device 1b according to the third embodiment.
  • the eddy airflow detection device 1b according to the third embodiment is different from the turbulence detection device 1 according to the first embodiment in the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space.
  • the difference is that the difference determination unit 114 is provided.
  • the eddy detection device 1b according to the third embodiment is different from the eddy detection device 1 according to the first embodiment in that the blast detection unit 105b includes a third blast detection unit 1053. Further, the eddy detection device 1b according to the third embodiment includes the wind speed determination unit 103, the wind direction determination unit 104, and the first blast detection unit 1051 provided in the eddy detection device 1 according to the first embodiment. I don't prepare.
  • the wind speed space difference calculation unit 111 sets the wind speed value of the range cell (hereinafter referred to as “attention range cell”) for each range cell based on the wind speed value given to the received signal after adding the vector output from the wind direction wind speed estimation unit 102.
  • the difference (hereinafter referred to as “wind speed space difference") from the wind speed value of the range cell around the attention range cell (hereinafter referred to as "peripheral range cell”) is calculated.
  • the wind speed spatial difference calculation unit 111 uses eight range cells adjacent to the range cell of interest as peripheral range cells, and calculates and calculates the difference between the wind speed value of the range cell of interest and the average value of the wind speed values of the peripheral range cells.
  • the difference is the wind speed space difference.
  • FIG. 10 is a diagram illustrating an image of the attention range cell and the peripheral range cell when the peripheral range cell is an 8-range cell adjacent to the attention cell in the third embodiment.
  • the wind speed space difference calculation unit 111 calculates the difference between the wind speed value of the range cell of interest and the average value of the wind speed values of the surrounding range cells, and the calculated difference is taken as the wind speed space difference.
  • the wind speed space difference calculation unit 111 may calculate the difference between the wind speed value of the range cell of interest and the median wind speed value of the peripheral range cells as the wind speed space difference. How the wind speed space difference calculation unit 111 calculates the wind speed space difference can be appropriately set. Further, here, as a specific example, the wind speed spatial difference calculation unit 111 gives an example in which the peripheral range cell is an 8-range cell adjacent to the range cell of interest, but this is only an example.
  • the wind speed space difference calculation unit 111 may set the peripheral range cell as a 4-range cell adjacent to the attention range cell, or the wind speed space difference calculation unit 111 may provide a guard cell and the average value of the range cells separated by one range cell from the attention range cell. Alternatively, the difference from the median value may be calculated as the wind speed space difference. Which range cell the wind speed spatial difference calculation unit 111 uses as the peripheral range cell can be appropriately set.
  • the wind speed space difference calculation unit 111 applies the calculated wind speed space difference information to each range cell of the received signal after vector addition output from the wind direction wind speed estimation unit 102, in other words, to each attention range cell, and after the vector is added.
  • the received signal is output to the wind speed space difference determination unit 113.
  • the received signal after the vector addition, which the wind speed space difference calculation unit 111 adds the wind speed space difference information and outputs to the wind speed space difference determination unit 113, is also referred to as a “receive signal after the wind speed space difference is applied”.
  • the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind speed space difference is given.
  • the wind direction space difference calculation unit 112 sets the wind direction value of the range cell of interest and the peripheral range cells of the range cell of interest for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction and speed estimation unit 102.
  • the difference from the average value of the wind direction value (hereinafter referred to as "wind direction space difference") is calculated.
  • the wind direction space difference is basically represented by a subordinate angle.
  • the wind direction space difference calculation unit 112 calculates the difference between the wind direction value of the range cell of interest and the average value of the wind direction values of the surrounding range cells, and the calculated difference is taken as the wind direction space difference.
  • the wind direction space difference calculation unit 112 may calculate the difference between the wind direction value of the range cell of interest and the median wind direction value of the surrounding range cells as the wind direction space difference. How the wind direction space difference calculation unit 112 calculates the wind direction space difference can be appropriately set. Further, here, as a specific example, the wind direction space difference calculation unit 112 gives an example in which the peripheral range cell is an 8-range cell adjacent to the range cell of interest, but this is only an example.
  • the wind direction space difference calculation unit 112 may use the peripheral range cells as four range cells adjacent to the attention range cell, or the wind direction space difference calculation unit 112 may provide a guard cell and mean the average value of the range cells separated by one range cell from the attention range cell. Alternatively, the difference from the median value may be calculated as the wind direction space difference. Which range cell the wind direction space difference calculation unit 112 uses as the peripheral range cell can be appropriately set.
  • the wind direction space difference calculation unit 112 applies the calculated wind direction space difference information to each range cell of the received signal after vector addition output from the wind direction wind speed estimation unit 102, in other words, to each attention range cell, and after the vector is added.
  • the received signal is output to the wind direction space difference determination unit 114.
  • the received signal after giving the vector that the wind direction space difference calculating unit 112 adds the information of the wind direction space difference and outputs it to the wind direction space difference determining unit 114 is also referred to as “the received signal after giving the wind direction space difference”.
  • the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind direction space difference is given.
  • the wind speed space difference determination unit 113 selects the range cell as a blast cell candidate for each range cell based on the wind speed space difference information given to the received signal after the wind speed space difference is applied, which is output from the wind speed space difference calculation unit 111. It is determined whether or not the cell is a range cell (hereinafter, “wind speed space difference blast candidate cell”). Specifically, in the wind speed space difference determination unit 113, the wind speed space difference given to the range cell for each range cell exceeds a preset threshold value (hereinafter referred to as “wind speed space difference determination threshold value”). Judge whether or not. In the wind speed spatial difference determination reference value, a value of a spatial change in wind speed suitable for determining blast is set in advance by a user or the like.
  • the wind speed space difference determination unit 113 determines that the range cell is a wind speed space difference blast candidate cell and sets it as a wind speed space difference blast candidate cell. , Wind speed space difference Blast candidate Cell flag is added.
  • the wind speed space difference determination unit 113 outputs the received signal after the wind speed space difference is given to the wind speed space difference blast candidate cell with the wind speed space difference blast candidate cell flag added to the third blast detection unit 1053.
  • the received signal after the wind speed space difference is given, which the wind speed space difference determining unit 113 adds the wind speed space difference blast candidate cell flag and outputs to the third blast detecting unit 1053, is also referred to as “the received signal after the wind speed space difference determination”.
  • the wind speed space difference blast candidate cell is given the wind speed space difference blast candidate cell flag, and each range cell of the received signal after the wind speed space difference judgment has moment information and wind speed space difference. Information, wind direction value and wind speed value are also given.
  • the wind speed space difference blast candidate cell is given the wind speed space difference blast candidate cell flag, and each range cell is given moment information, wind speed space difference information, wind direction value, and wind speed. It is assumed that a value is given, but this is only an example, and each range cell of the received signal after the wind speed space difference determination is at least a wind speed space difference blast candidate when the range cell is a wind speed space difference blast candidate cell. It suffices if the cell flag and the information on the wind speed space difference are added.
  • the wind direction space difference determination unit 114 selects the range cell as a blast cell candidate for each range cell based on the wind direction space difference information given to the received signal after the wind direction space difference is applied, which is output from the wind direction space difference calculation unit 112. It is determined whether or not the cell is a range cell (hereinafter referred to as “wind direction space difference blast candidate cell"). Specifically, in the wind direction space difference determination unit 114, the wind direction space difference given to the range cell for each range cell exceeds a preset threshold value (hereinafter referred to as “wind direction space difference determination threshold value”). Judge whether or not. In the threshold value for determining the difference in wind direction space, a value of a spatial change in wind direction suitable for determining blast is set in advance by a user or the like.
  • the wind direction space difference determination unit 114 determines that the range cell is a wind direction space difference blast candidate cell and sets it as a wind direction space difference blast candidate cell. , Wind direction space difference Blast candidate Cell flag is added.
  • the wind direction space difference determination unit 114 outputs the received signal after the wind direction space difference is given to the wind direction space difference blast candidate cell with the wind direction space difference blast candidate cell flag added to the third blast detection unit 1053.
  • the received signal after the wind direction space difference is given and output to the third blast detecting unit 1053 by the wind direction space difference determining unit 114 with the wind direction space difference blast candidate cell flag is also referred to as a “received signal after the wind direction space difference determination”.
  • the wind direction space difference blast candidate cell is given the wind direction space difference blast candidate cell flag, and each range cell of the received signal after determining the wind direction space difference has moment information and wind direction space difference. Information, wind direction and velocity values are also given.
  • the wind direction space difference blast candidate cell is given the wind direction space difference blast candidate cell flag, and the moment information, the wind direction space difference, the wind direction value, and the wind speed value are added to each range cell.
  • each range cell of the received signal after the wind direction space difference determination has at least a wind direction space difference blast candidate cell flag when the range cell is a wind direction space difference blast candidate cell.
  • Information on the difference in wind direction and space may be added.
  • the blast detection unit 105b detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
  • the third blast detection unit 1053 of the blast detection unit 105b uses the wind speed space difference determination unit 113 output as the wind speed space difference determination signal and the wind direction space difference determination unit 114 as the wind direction space difference determination signal. Based on this, the blast area is detected. Specifically, the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell in the received signal after the wind speed space difference determination and the wind direction space difference blast candidate cell in the received signal after the wind direction space difference determination, and obtains the wind speed.
  • a range cell that is a spatial difference blast candidate cell and is a wind direction spatial difference blast candidate cell is detected as a blast cell.
  • the blast cell which is a wind speed space difference blast candidate cell and a wind direction space difference blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting.
  • the third blast detection unit 1053 may determine the wind speed space difference blast candidate cell or the wind direction space difference blast candidate cell by the wind speed space difference blast candidate cell flag or the wind direction space difference blast candidate cell flag.
  • the image of the flow in which the third blast detection unit 1053 detects the blast cell is the same as the image of the flow in which the first blast detection unit 1051 detects the blast cell described with reference to FIG. 4 in the first embodiment. is there.
  • the wind speed space difference and the wind direction space difference extract the spatial changes in the wind speed and the wind direction
  • the detected blast cell tends to emphasize the boundary between the blast region and the non-blast region. It may be different from 4.
  • the wind speed determination result is the wind speed space difference determination result
  • the wind direction determination result is the wind direction space difference determination result
  • the wind speed blast candidate cell 401a is the wind speed space difference blast candidate cell
  • the wind direction blast candidate cell 402a is the wind direction space difference. If it is read as a blast candidate cell, it becomes an image of the flow in which the third blast detection unit 1053 detects the blast cell.
  • the third blast detection unit 1053 outputs information about the detected blast region as a blast detection result. Specifically, the third blast detection unit 1053 gives each range cell at least information on whether or not it is a blast cell, and the blast cell is a reception signal in which information on the wind speed space difference and information on the wind direction space difference are added. Is output. For example, the third blast detection unit 1053 adds information on whether or not the reception signal is a blast cell, information on the wind speed space difference, and information on the wind direction space difference to each range cell of the received signal output from the Doppler rider device 2. You can do it like this. In this way, the third blast detection unit 1053 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
  • the operation of the turbulence detection device 1b according to the third embodiment will be described.
  • the outline of the operation of the eddy detection device 1b according to the third embodiment is the same as the outline of the operation of the eddy detection device 1 according to the first embodiment described with reference to FIG. 5 in the first embodiment. The explanation given is omitted.
  • FIG. 11 is a flowchart for explaining a more specific operation of the turbulence detection device 1b according to the third embodiment. Since the specific operations of steps ST1101 to ST1102 of FIG. 11 are the same as the specific operations of steps ST601 to ST602 of FIG. 6 described in the first embodiment, duplicate description will be omitted. ..
  • the wind speed space difference calculation unit 111 sets the wind speed value of the range cell of interest and the range cell of interest for each range cell based on the wind speed value given to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102 in step ST1102.
  • the wind speed space difference from the wind speed value of the peripheral range cell of is calculated (step ST1103).
  • the wind speed space difference calculation unit 111 receives the calculated wind speed space difference information in each range cell of the received signal after giving the vector output from the wind direction wind speed estimation unit 102, in other words, after giving the wind speed space difference given to each attention range cell.
  • the signal is output to the wind speed space difference determination unit 113.
  • the wind speed space difference determination unit 113 uses the wind speed of the range cell for each range cell based on the information of the wind speed space difference added to the received signal after the wind speed space difference is applied, which is output from the wind speed space difference calculation unit 111 in step ST1103. It is determined whether or not the cell is a spatial difference blast candidate cell (step ST1104). Specifically, the wind speed space difference determination unit 113 determines for each range cell whether or not the wind speed space difference imparted to the range cell exceeds the wind speed space difference determination threshold value. When the wind speed space difference given to the range cell exceeds the wind speed space difference determination threshold value, the wind speed space difference determination unit 113 determines that the range cell is a wind speed space difference blast candidate cell and sets it as a wind speed space difference blast candidate cell.
  • Wind speed space difference Blast candidate Cell flag is added.
  • the wind speed space difference determination unit 113 outputs the received signal after the wind speed space difference determination to which the wind speed space difference blast candidate cell flag is added to the wind speed space difference blast candidate cell to the third blast detection unit 1053.
  • the wind direction space difference calculation unit 112 sets the wind direction value of the range cell of interest and the range cell of interest for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102 in step ST1102.
  • the wind direction value and the wind direction space difference of the peripheral range cells of the above are calculated (step ST1105).
  • the wind direction space difference calculation unit 112 receives the calculated wind direction space difference information in each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102, in other words, after the wind direction space difference is given to each attention range cell.
  • the signal is output to the wind direction space difference determination unit 114.
  • the wind direction space difference determination unit 114 sets the wind direction of each range cell based on the information of the wind direction space difference added to the received signal after the wind direction space difference is applied, which is output from the wind direction space difference calculation unit 112 in step ST1105. It is determined whether or not the cell is a spatial difference blast candidate cell (step ST1106). Specifically, the wind direction space difference determination unit 114 determines for each range cell whether or not the wind direction space difference given to the range cell exceeds the threshold value for determining the wind direction space difference. When the wind direction space difference given to the range cell exceeds the threshold value for determining the wind direction space difference, the wind direction space difference determination unit 114 determines that the range cell is a wind direction space difference blast candidate cell and sets it as a wind direction space difference blast candidate cell.
  • Wind direction space difference Blast candidate Cell flag is added.
  • the wind direction space difference determination unit 114 outputs the received signal after the wind direction space difference determination to which the wind direction space difference blast candidate cell flag is added to the wind direction space difference blast candidate cell to the third blast detection unit 1053.
  • the third blast detection unit 1053 of the blast detection unit 105b is the signal received after the wind speed space difference determination 113 output from the wind speed space difference determination unit 113 in step ST1104, and the wind direction space difference determination unit 114 output from the wind direction space difference determination unit 114 in step ST1106.
  • the blast region is detected based on the received signal (step ST1107).
  • the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell in the received signal after the wind speed space difference determination and the wind direction space difference blast candidate cell in the received signal after the wind direction space difference determination, and obtains the wind speed.
  • a range cell that is a spatial difference blast candidate cell and is a wind direction spatial difference blast candidate cell is detected as a blast cell.
  • the third blast detection unit 1053 outputs information about the detected blast region as a blast detection result. Specifically, the third blast detection unit 1053 outputs a reception signal to which at least information on whether or not the cell is a blast cell is added to each range cell. In the third embodiment, the third blast detection unit 1053 adds information on whether or not the range cell is a blast cell, and when the range cell is a blast cell, information on the wind speed space difference and information on the wind direction space difference. It is assumed that the received signal to which is added is output.
  • steps ST1103 to ST1104 and the processes of steps ST1105 to ST1106 are described in parallel, but the processes of steps ST1103 to ST1104 and the processes of steps ST1105 to ST1106 are sequentially performed. You may be asked.
  • the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell and the wind direction space difference blast candidate cell to detect the blast cell. Is just an example.
  • the third blast detection unit 1053 may OR the wind speed space difference blast candidate cell and the wind direction space difference blast candidate cell to detect the blast cell.
  • the wind speed space difference determination unit 113 may determine the wind speed space difference blast candidate cell and then perform image processing correction on the wind speed space difference blast candidate cell. ..
  • the wind speed spatial difference determination unit 113 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind speed determination unit 103 performs image processing correction.
  • the wind direction space difference determination unit 114 may determine the wind direction space difference blast candidate cell and then perform image processing correction on the wind direction space difference blast candidate cell.
  • the wind direction space difference determination unit 114 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind direction determination unit 104 performs image processing correction.
  • the wind speed space difference determination unit 113 or the wind direction space difference determination unit 114 By causing the wind speed space difference determination unit 113 or the wind direction space difference determination unit 114 to make corrections, it is possible to suppress deterioration in accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and the wind speed space difference blast candidate cell or It is possible to detect the blast region in consideration of the occurrence of oversight of the wind direction space difference blast candidate cell.
  • the turbulence detection device 1b is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal.
  • a moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101.
  • the blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102.
  • the turbulence detection device 1b is based on the wind speed value for each range cell measured by the wind direction wind speed estimation unit 102, and for each range cell, the wind speed value of the range cell and the surroundings of the range cell.
  • the wind speed space difference calculation unit 111 that calculates the wind speed space difference from the wind speed value of the range cell and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value of the range cell and the wind direction value of the range cell
  • the wind speed space difference calculation unit 112 that calculates the wind direction space difference from the wind direction value of the surrounding range cells, and the wind speed space difference calculated by the wind speed space difference calculation unit 111 for each range cell exceeds the wind speed space difference determination threshold.
  • the wind speed space difference determination unit 113 that determines whether or not the cell is a space difference blast candidate cell, and the wind direction space difference calculation unit 112 that determines the wind speed space difference for each range cell exceeds the wind direction space difference determination threshold.
  • a wind direction space difference determination unit 114 for determining whether or not the cell is a space difference candidate cell is provided, and the blast detection unit 105b includes a wind speed space difference blast candidate cell determined by the wind speed space difference determination unit 113 and a wind direction space difference determination unit. It is configured to include a third blast detection unit 1053 that detects a blast region from the wind direction space difference blast candidate cell determined by 114. Even with such a configuration, the eddy detection device 1a can detect the blast region in consideration of the background wind, like the eddy detection device 1 according to the first embodiment.
  • the turbulence detection devices 1, 1a and 1b include wind speed blast candidate cells, wind direction blast candidate cells, wind speed time difference blast candidate cells, wind direction time difference blast candidate cells, and wind speed space difference blast candidates. After determining the cell or the wind direction space difference blast candidate cell, the wind speed blast candidate cell, the wind direction blast candidate cell, the wind speed time difference blast candidate cell, the wind direction time difference blast candidate cell, the wind speed space difference blast candidate cell, or the wind direction space. By correcting the difference blast candidate cells, it was possible to reduce the effect of accuracy deterioration when estimating the wind direction value and wind speed value.
  • the range cell that leads to the deterioration of the estimation accuracy of the wind direction value and the wind speed value should be excluded. It may be.
  • an object such as another aircraft or a special vehicle may exist, and the object causes an obstacle to observation of the Doppler rider device 2. May become.
  • the observed value of the range cell reflects the aircraft body, and the wind direction wind speed estimation unit 102 uses the range cell to obtain the wind direction value and the wind speed value.
  • the estimation result of can be an abnormal value. Therefore, even if the wind direction and wind speed estimation unit 102 is configured to estimate the wind direction value and the wind speed value after removing the range cell in which the response from the object unnecessary for estimating the wind direction value and the wind speed value is mixed. Good.
  • an object that is unnecessary for estimating the wind direction value and the wind speed value is simply referred to as an "unnecessary object".
  • FIG. 12 shows that in the eddy detection devices 1, 1a and 1b according to the first to third embodiments, the wind direction value and the wind speed value are estimated after removing the range cell in which the response from an unnecessary object is mixed. It is a figure which shows the structural example of the wind direction wind speed estimation unit 102a which made it so. Note that, in FIG. 12, for the sake of simplicity, the description of the components of the eddy detection devices 1, 1a, 1b other than the wind direction and wind speed estimation unit 102a is omitted.
  • the wind direction wind speed estimation unit 102a includes an unnecessary cell suppression unit 1021.
  • the unnecessary cell suppression unit 1021 determines unnecessary range cells by using the moment information calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101, and suppresses the range cells determined to be unnecessary. The result is output.
  • the wind direction / wind speed estimation unit 102a estimates the wind direction value and the wind speed value for each range cell by using the Doppler velocity calculated by the moment calculation unit 101 for each range cell after the unnecessary cell suppression unit 1021 suppresses the unnecessary range cell.
  • FIG. 13 is a diagram for explaining the operation of the unnecessary cell suppression unit 1021 when the wind direction wind speed estimation unit 102a is provided with the unnecessary cell suppression unit 1021 in the first to third embodiments.
  • FIG. 13 shows an image of data of a certain line of sight.
  • the upper row schematically shows the signal strength and the lower row shows the Doppler speed.
  • the horizontal axis represents the range direction. Objects that are unnecessary when estimating the wind direction value and the wind speed value as described above appear as an increase in the value of the signal strength.
  • the unnecessary cell suppression unit 1021 detects an unnecessary range cell in which a response from an unnecessary object is mixed, by dividing it into a low-reflecting object and a high-reflecting object.
  • the unnecessary object is an object having a small spatial spread, the object often has a relatively low intensity value. Therefore, the unnecessary cell suppression unit 1021 uses a preset threshold value (hereinafter referred to as "low reflector extraction threshold value”) for extracting a low-reflecting object from an unnecessary object having a small spatial spread. To detect.
  • the unnecessary cell suppression unit 1021 uses a preset threshold value (hereinafter referred to as "high reflector extraction threshold value”) for extracting a highly reflective object from an unnecessary object having a large spatial spread. To detect.
  • an effective range cell is a range cell that is not affected by unnecessary objects and has a sufficient signal-to-noise power ratio.
  • an effective range cell is referred to as an "effective range cell”.
  • the unnecessary cell suppression unit 1021 replaces, for example, the value of the Doppler velocity of the range cell whose signal intensity exceeds only the threshold value for extracting low reflectors with the average value or the median value of the Doppler velocity values of the surrounding effective range cells.
  • the velocity values may be interpolated.
  • the unnecessary cell suppression unit 1021 invalidates all the values of the Doppler speed of the range cell and the range cell beyond the range cell. To do.
  • the unnecessary cell suppression unit 1021 is the value of the Doppler speed of the range cell whose signal intensity exceeds the high reflector extraction threshold when there is an effective range cell around the range cell whose signal intensity exceeds the high reflector extraction threshold. Interpolate.
  • the unnecessary cell suppression unit 1021 interpolates the value of the Doppler velocity of the range cell whose signal intensity exceeds the threshold value for extracting high-reflecting substances, and the value of the Doppler velocity of the range cell whose signal intensity exceeds only the threshold value for extracting low-reflecting objects described above. It may be performed in the same manner as the interpolation.
  • the unnecessary cell suppression unit 1021 of the unnecessary cell suppression unit 1021 of the range cell whose signal intensity exceeds the high-reflecting object extraction threshold value When there is no effective range cell around the range cell whose signal intensity exceeds the high-reflecting object extraction threshold value, the unnecessary cell suppression unit 1021 of the unnecessary cell suppression unit 1021 of the range cell whose signal intensity exceeds the high-reflecting object extraction threshold value.
  • the value of Doppler speed is invalid.
  • the unnecessary cell suppression unit 1021 outputs the information of the range cell in which the value of the Doppler speed is an invalid value as a result of suppressing the range cell determined to be unnecessary.
  • the wind direction wind speed estimation unit 102a excludes range cells in which the unnecessary cell suppression unit 1021 has an invalid value of the Doppler speed value, which is not subject to the wind direction value and wind speed value estimation processing.
  • the wind direction wind speed estimation unit 102a is configured to include the unnecessary cell suppression unit 1021, and the unnecessary cell suppression unit 1021 uses the signal strength value of the range cell to generate an unnecessary range cell.
  • the value of the Doppler speed of the range cell determined to be unnecessary and the range cell beyond the range cell determined to be unnecessary may be invalidated.
  • the eddy detection devices 1, 1a and 1b reduce the chances of estimating the wind direction value and the wind speed value by using a range cell unnecessary for estimating the wind direction value and the wind speed value, and reduce the wind direction. It is possible to reduce the deterioration of the accuracy of the estimation results of the value and the wind speed value.
  • the unnecessary cell suppression unit 1021 has a range cell in which the value of the Doppler speed is valid around the range cell in which the Doppler speed value is invalidated
  • the value of the Doppler speed is used by using the Doppler speed of the valid range cell.
  • the eddy airflow detection devices 1, 1a and 1b can reduce the range cells in which the wind direction wind speed estimation unit 102a cannot estimate the wind direction value and the wind speed value, and as a result, detect the blast region. It is possible to reduce the deterioration of accuracy.
  • the blast detection unit 105 of the eddy detection device 1 is the first blast detection unit 1051
  • the blast detection unit 105a of the eddy detection device 1a is the second blast detection unit 1052
  • the eddy airflow is the configuration in which the blast detection unit 105b of the detection device 1b includes the third blast detection unit 1053 has been described, but this is only an example.
  • the blast detection units 105, 105a, 105b may be provided in combination with the first blast detection unit 1051, the second blast detection unit 1052, or the third blast detection unit 1053.
  • the blast detection unit 105 may include a first blast detection unit 1051 and a second blast detection unit 1052.
  • the blast detection unit 105 may further include a third blast detection unit 1053.
  • the eddy detection devices 1, 1a, 1b when the blast detection units 105, 105a, 105b include the first blast detection unit 1051, the eddy detection devices 1, 1a, 1b are in the first embodiment.
  • the functions of the wind speed determination unit 103 and the wind direction determination unit 104 described above are also provided.
  • the eddy detection devices 1, 1a, 1b when the blast detection units 105, 105a, 105b are provided with the second blast detection unit 1052, the eddy detection devices 1, 1a, 1b are described in the second embodiment.
  • the functions of the wind speed time difference calculation unit 107, the wind direction time difference calculation unit 108, the wind speed time difference determination unit 109, and the wind direction time difference determination unit 110 described above are also provided.
  • the turbulence detection devices 1, 1a, 1b when the blast detection units 105, 105a, 105b include the third blast detection unit 1053, the eddy detection devices 1, 1a, 1b are described in the third embodiment.
  • the functions of the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space difference determination unit 114 described above are also provided.
  • the eddy detection device 1 is mounted on various observation devices, but this is only an example, and the eddy detection device 1 is a single unit. It may be used in.
  • FIGS. 14A and 14B are diagrams showing an example of the hardware configuration of the eddy detection devices 1, 1a and 1b according to the first to third embodiments.
  • the moment calculation unit 101 the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, and the wind speed time difference.
  • the function of the wind direction space difference determination unit 114 is realized by the processing circuit 1401.
  • the eddy detection devices 1, 1a, 1b detect the blast area in the observation area by using the received signal obtained as a result of the Doppler rider device 2 transmitting and receiving the beam to observe the observation area in the airport plane.
  • a processing circuit 1401 for performing control is provided.
  • the processing circuit 1401 may be dedicated hardware as shown in FIG. 14A, or may be a CPU (Central Processing Unit) 1405 that executes a program stored in the memory 1406 as shown in FIG. 14B.
  • CPU Central Processing Unit
  • the processing circuit 1401 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). Gate Array) or a combination of these is applicable.
  • the processing circuit 1401 is the CPU 1405, the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, and the wind speed time difference calculation unit 107. , Wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, wind speed space difference determination unit 113, and wind direction space difference.
  • the function of the determination unit 114 is realized by software, firmware, or a combination of software and firmware.
  • the 108, the wind speed time difference determination unit 109, the wind direction time difference determination unit 110, the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space difference determination unit 114 are HDDs.
  • the programs stored in the HDD 1402, the memory 1406, or the like include the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, and the blast detection units 105, 105a, 105b. , Wind speed time difference calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, and wind speed space difference determination.
  • the programs stored in the HDD 1402, the memory 1406, or the like include the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, and the blast detection units 105, 105a, 105b. , Wind speed time difference calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 11
  • the memory 1406 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Online Memory), an EEPROM (Electric Optical Memory), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Online Memory)
  • EEPROM Electrical Optical Memory
  • a sexual or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versaille Disc), or the like is applicable.
  • the moment calculation unit 101 The moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, the wind speed time difference calculation unit 107, and the wind direction time difference calculation unit.
  • the wind speed time difference determination unit 109 the wind direction time difference determination unit 110
  • the wind speed space difference calculation unit 111 the wind direction space difference calculation unit 112
  • the wind speed space difference determination unit 113 the wind direction space difference determination unit 114.
  • a part may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the moment calculation unit 101 realizes its function by the processing circuit 1401 as dedicated hardware, and the wind direction wind speed estimation unit 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, and the blast detection unit 105, 105a, 105b, wind speed time difference calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, and wind speed.
  • the functions of the space difference determination unit 113 and the wind direction space difference determination unit 114 can be realized by the processing circuit reading and executing the program stored in the memory 1406. Further, the wind direction and speed storage unit 106 uses the memory 1406.
  • the wind direction and speed storage unit 106 may be composed of an HDD 1402, an SSD (Solid State Drive), a DVD, or the like.
  • the eddy detection devices 1, 1a and 1b include an input interface device 1403 and an output interface device 1404 that communicate with an external device such as the Doppler rider device 2.
  • the eddy turbulence detection device is configured to detect the blast region in consideration of the background wind, for example, the eddy turbulence detection for detecting the engine exhaust gas injected from the jet engine mounted on the aircraft on the airport surface. It can be applied to the device.
  • 1,1a, 1b turbulence detection device 101 moment calculation unit, 102, 102a wind direction wind speed estimation unit, 103 wind speed determination unit, 104 wind direction determination unit, 105, 105a, 105b blast detection unit, 1051 first blast detection unit, 1052th 2 blast detection unit, 1053 third blast detection unit, 106 wind direction wind speed storage unit, 107 wind speed time difference calculation unit, 108 wind direction time difference calculation unit, 109 wind speed time difference determination unit, 110 wind direction time difference determination unit, 111 wind speed space difference calculation unit, 112 Wind direction space difference calculation unit, 113 wind speed space difference determination unit, 114 wind direction space difference determination unit, 1021 unnecessary cell suppression unit, 1401 processing circuit, 1402 HDD, 1403 input interface device, 1404 output interface device, 1405 CPU, 1406 memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This invention comprises: a moment calculation unit (101) for using a reception signal based on waves that have been emitted into an observation area and reflected by the atmosphere in the observation area to calculate the Doppler velocity for each range cell obtained by dividing the observation area in a range direction and azimuth direction, a wind-direction-and-wind-speed estimation unit (102) for estimating a wind direction value and wind speed value for each range cell on the basis of the Doppler velocities calculated by the moment calculation unit (101), and a blast detection unit (105) for detecting a blast area in the observation area on the basis of the wind direction values and wind speed values estimated by the wind-direction-and-wind-speed estimation unit (102) for each range cell.

Description

乱気流検出装置及び乱気流検出方法Eddy detection device and eddy detection method
 この発明は、航空機に搭載されたジェットエンジンから噴射されるエンジン排気の影響範囲を検出する乱気流検出装置及び乱気流検出方法に関するものである。 The present invention relates to an eddy detection device and a eddy detection method for detecting the range of influence of engine exhaust gas injected from a jet engine mounted on an aircraft.
 空港内の地上面(以下「空港面」という。)での航空機の離着陸の際は、他の航空機の飛行に伴って発生する後方乱気流による影響、及び、他の航空機に搭載されたジェットエンジンから噴射されるエンジン排気による影響も回避する必要がある。エンジン排気は、ジェットブラスト、エンジンブラスト、又は、ジェット噴流等とも呼ばれる。以下、エンジン排気、ジェットブラスト、エンジンブラスト、又は、ジェット噴流等を「ブラスト」という。
 ブラストの影響範囲(以下「ブラスト領域」という。)を検出する技術として、例えば、特許文献1には、航空機の位置、移動情報、又は機体情報に基づいてブラスト領域を算出する空港面誘導支援システムが開示されている。
When an aircraft takes off and landing on the ground surface (hereinafter referred to as the "airport surface") in the airport, the effects of wake turbulence generated by the flight of other aircraft and the jet engine mounted on the other aircraft It is also necessary to avoid the influence of the injected engine exhaust. Engine exhaust is also referred to as jet blast, engine blast, jet jet, or the like. Hereinafter, engine exhaust, jet blast, engine blast, jet jet, and the like are referred to as "blast".
As a technique for detecting the range of influence of blast (hereinafter referred to as "blast area"), for example, Patent Document 1 describes an airport surface guidance support system that calculates a blast area based on aircraft position, movement information, or aircraft information. Is disclosed.
特開2015-228101号公報JP-A-2015-228101
 ブラストの挙動は、航空機の周辺の風(以下「背景風」という。)により変化する。つまり、ブラストは、航空機の背景風により、噴射方向又は速度が変化する。
 特許文献1に開示されている技術に代表される、従来のブラスト領域を検出する技術では、背景風の影響が考慮されておらず、実際のブラスト領域を検出できない場合があるという課題があった。
The behavior of the blast changes depending on the wind around the aircraft (hereinafter referred to as "background wind"). That is, the injection direction or speed of the blast changes depending on the background wind of the aircraft.
In the conventional technique for detecting the blast region represented by the technique disclosed in Patent Document 1, there is a problem that the influence of the background wind is not taken into consideration and the actual blast region may not be detected. ..
 この発明は、上記のような課題を解消するためになされたもので、背景風を考慮して、ブラスト領域を検出する乱気流検出装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an eddy detection device that detects a blast region in consideration of a background wind.
 この発明に係る乱気流検出装置は、観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するモーメント算出部と、モーメント算出部が算出したドップラ速度に基づき、レンジセル毎の風向値及び風速値を推定する風向風速推定部と、風向風速推定部が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出するブラスト検出部を備えたものである。 The turbulence detection device according to the present invention is a doppler for each range cell divided into the range direction and the azimuth direction of the observation area based on the received signal based on the wave motion radiated to the observation area and reflected in the atmosphere of the observation area. A moment calculation unit that calculates the velocity, a wind direction wind speed estimation unit that estimates the wind direction value and wind speed value for each range cell based on the Doppler velocity calculated by the moment calculation unit, and a wind direction value for each range cell estimated by the wind direction wind speed estimation unit. It also has a blast detection unit that detects the blast region in the observation region based on the wind speed value.
 この発明によれば、背景風を考慮して、ブラスト領域を検出することができる。 According to the present invention, the blast region can be detected in consideration of the background wind.
実施の形態1に係る乱気流検出装置によるブラストの観測状況のイメージの一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the image of the observation state of blast by the eddy detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る乱気流検出装置を搭載したドップラライダ装置の構成例を示す図である。It is a figure which shows the configuration example of the Doppler rider apparatus equipped with the eddy airflow detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る乱気流検出装置の構成例を示す図である。It is a figure which shows the structural example of the turbulence detection device which concerns on Embodiment 1. FIG. 実施の形態1において、第1ブラスト検出部が、ブラストセルを検出する流れのイメージを説明するための図である。FIG. 5 is a diagram for explaining an image of a flow in which the first blast detection unit detects a blast cell in the first embodiment. 実施の形態1に係る乱気流検出装置の動作の概要について説明するためのフローチャートである。It is a flowchart for demonstrating the outline of operation of the turbulence detection device which concerns on Embodiment 1. FIG. 実施の形態1に係る乱気流検出装置の、より具体的な動作について説明するためのフローチャートである。It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る乱気流検出装置の構成例を示す図である。It is a figure which shows the structural example of the turbulence detection device which concerns on Embodiment 2. 実施の形態2に係る乱気流検出装置の、より具体的な動作について説明するためのフローチャートである。It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る乱気流検出装置の構成例を示す図である。It is a figure which shows the structural example of the turbulence detection device which concerns on Embodiment 3. 実施の形態3において、周辺レンジセルを注目セルに隣接する8レンジセルとした場合の、注目レンジセル及び周辺レンジセルのイメージを説明する図である。It is a figure explaining the image of the attention range cell and the peripheral range cell when the peripheral range cell is 8 range cells adjacent to the attention cell in Embodiment 3. FIG. 実施の形態3に係る乱気流検出装置の、より具体的な動作について説明するためのフローチャートである。It is a flowchart for demonstrating more specific operation of the turbulence detection apparatus which concerns on Embodiment 3. 実施の形態1~実施の形態3に係る乱気流検出装置において、不要な物体からの応答が混入しているレンジセルを除去した上で、風向値及び風速値を推定するようにした風向風速推定部の構成例を示す図である。In the eddy turbulence detection device according to the first to third embodiments, the wind direction and wind speed estimation unit that estimates the wind direction value and the wind speed value after removing the range cell in which the response from an unnecessary object is mixed. It is a figure which shows the configuration example. 実施の形態1~実施の形態3において、風向風速推定部が不要セル抑圧部を備えるようにした場合の、不要セル抑圧部の動作を説明するための図である。It is a figure for demonstrating the operation of the unnecessary cell suppression part when the wind direction wind speed estimation part is provided with the unnecessary cell suppression part in Embodiment 1 to Embodiment 3. 図14A,図14Bは、実施の形態1~実施の形態3に係る乱気流検出装置のハードウェア構成の一例を示す図である。14A and 14B are diagrams showing an example of the hardware configuration of the turbulence detection device according to the first to third embodiments.
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 近年、航空機利用者の増大により、特に大都市に近接する空港では、空港における交通容量(以下「空港交通容量」という。)の増加が望まれている。空港交通容量を増加させるための一方策としては、滑走路の利用率を上げ、離着陸数を増加させることが考えられる。なお、空港交通容量を増加させるため、滑走路を増設することも一方策ではあるが、滑走路の増設は、一般に、容易なことではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1.
In recent years, due to the increase in aircraft users, it is desired to increase the traffic capacity at airports (hereinafter referred to as "airport traffic capacity"), especially at airports close to large cities. One way to increase airport traffic capacity is to increase the runway utilization rate and increase the number of takeoffs and landings. Although it is one way to increase the number of runways in order to increase the airport traffic capacity, it is generally not easy to increase the number of runways.
 現行、空港面での航空機の離着陸間隔は、ICAO(International Civil Aviation Organization;国際民間航空機関)によって規定された、航空機の飛行に伴って発生する後方乱気流による影響を回避するのに十分な時間及び距離を指標としている。なお、後方乱気流とは、翼端渦、伴流渦、後曳き渦、又はウェイクタービュランス等をいう。
 しかし、例えば、交差滑走路を有する空港では、一方の滑走路から離陸する航空機のブラストが他方の滑走路に着陸する航空機に対し急激な風速変化として影響を及ぼすことが懸念されている。したがって、交差滑走路を有する空港では、航空機の離着陸間隔の設定について、ブラストの影響を回避するのに十分な時間の確保も考慮した、より複雑な運用がなされる必要がある。
 なお、ブラストは、高温高圧の排気であり、当該ブラストの影響範囲は、航空機のエンジン後方数100メートルに及ぶ。従って、交差滑走路だけでなく、近接平行滑走路、さらには、滑走路以外の誘導路又は駐機場等においてもブラストの影響が及び、トーイングトラクター、タグ車、又は、バス等の運用にも影響を及ぼす可能性がある。このように、交差滑走路を有する空港に限らず、あらゆる空港の空港面において、航空機のブラストが他の航空機等に対して影響を及ぼすことが想定され、ブラストを考慮して空港面での航空機の離着陸間隔が確保されなければならない。
Currently, the takeoff and landing intervals of aircraft on the airport surface are sufficient time to avoid the effects of wake turbulence caused by the flight of aircraft, as defined by the ICAO (International Civil Aviation Organization). The distance is used as an index. The wake turbulence refers to a wing tip vortex, a wake vortex, a wake turbulence, a waker bulence, or the like.
However, for example, at an airport having a crossing runway, there is concern that the blast of an aircraft taking off from one runway will affect the aircraft landing on the other runway as a sudden change in wind speed. Therefore, at airports with crossed runways, it is necessary to carry out more complicated operations for setting the takeoff and landing intervals of aircraft, taking into consideration ensuring sufficient time to avoid the effects of blasting.
The blast is high-temperature and high-pressure exhaust, and the range of influence of the blast extends to several hundred meters behind the engine of the aircraft. Therefore, not only the crossing runway but also the close parallel runway, the taxiway other than the runway, the parking lot, etc. are affected by the blast, and the operation of the towing tractor, the tag car, the bus, etc. is also affected. May affect. In this way, it is assumed that the blast of an aircraft will affect other aircraft, etc. on the airport surface of any airport, not limited to airports with crossed runways, and aircraft on the airport surface in consideration of blasting. The takeoff and landing interval must be secured.
 一方、ブラストは、空港面内に設置されている風向風速計により定点監視されているほか、航空機の位置もしくは速度等の航空機の移動情報、又は、航空機の機体情報により、ある程度予測できる。そのため、上述した従来技術のように、航空機の位置、航空機の移動情報、又は、航空機の機体情報を用いて、ブラスト領域を検出する技術が知られている。 On the other hand, blasting can be predicted to some extent by fixed point monitoring by an anemometer installed on the airport surface, aircraft movement information such as the position or speed of the aircraft, or aircraft aircraft information. Therefore, there is known a technique for detecting a blast region by using the position of an aircraft, the movement information of an aircraft, or the airframe information of an aircraft, as in the conventional technique described above.
 しかしながら、上述したとおり、ブラストの挙動は背景風により大きく変化する。
 滑走路の利用率を上げるには、時々刻々のブラスト領域の正確な把握が必要であるのに対し、従来の、上述したようなブラスト領域の予測方法では、背景風の影響を受けたブラスト領域を正確に把握することが困難であった。
However, as described above, the behavior of blasting changes greatly depending on the background wind.
In order to increase the utilization rate of the runway, it is necessary to accurately grasp the blast area from moment to moment, whereas in the conventional method of predicting the blast area as described above, the blast area affected by the background wind. It was difficult to grasp accurately.
 これに対し、実施の形態1に係る乱気流検出装置は、背景風を考慮して、ブラスト領域を検出するようにしている。 On the other hand, the eddy detection device according to the first embodiment detects the blast region in consideration of the background wind.
 実施の形態1に係る乱気流検出装置は、例えば、ドップラライダ装置に搭載されることを想定している。なお、これは一例に過ぎず、乱気流検出装置は、例えば、遠隔に存在する目標又は物体の距離及び速度を計測するための電磁波又は音波等の波動を用いた種々の観測装置に搭載され得る。観測装置としては、レーダ装置、ライダ装置、又は、ソーダ装置等が挙げられる。レーダ装置とは例えばドップラレーダ装置であり、ライダ装置とは例えば上記ドップラライダ装置、光波レーダ装置、又はレーザレーダ装置であり、ソーダ装置とは例えばドップラソーダ装置又は音波レーダ装置である。
 実施の形態1に係る乱気流検出装置は、ドップラライダ装置が空港面内の観測領域を観測するためにビームを送受信した結果得られた受信信号を用いて、観測領域内におけるブラスト領域を検出する。
The eddy airflow detection device according to the first embodiment is assumed to be mounted on, for example, a Doppler rider device. This is only an example, and the eddy detection device can be mounted on, for example, various observation devices using waves such as electromagnetic waves or sound waves for measuring the distance and velocity of a remote target or object. Examples of the observation device include a radar device, a rider device, a soda device, and the like. The radar device is, for example, a Doppler radar device, the rider device is, for example, the above-mentioned Doppler radar device, a light wave radar device, or a laser radar device, and the soda device is, for example, a Doppler soda device or a sound wave radar device.
The eddy detection device according to the first embodiment detects a blast area in the observation area by using a received signal obtained as a result of the Doppler rider device transmitting and receiving a beam for observing the observation area in the airport plane.
 図1は、実施の形態1に係る乱気流検出装置1によるブラストの観測状況のイメージの一例を説明するための模式図である。
 乱気流検出装置1は、ドップラライダ装置2がビーム走査する観測領域において、ブラスト領域を検出する。
 図1では、乱気流検出装置1は、交差滑走路を有する空港の空港面に設定された観測領域において、ブラスト領域を検出するものとしている。
 なお、図1では一例として、乱気流検出装置1は、交差滑走路を有する空港にて、ブラスト領域を検出するものとしたが、これは一例に過ぎない。
 乱気流検出装置1は、あらゆる空港の空港面において、ブラスト領域を検出することができる。
FIG. 1 is a schematic diagram for explaining an example of an image of a blast observation state by the eddy detection device 1 according to the first embodiment.
The eddy detection device 1 detects the blast region in the observation region where the Doppler rider device 2 scans the beam.
In FIG. 1, the eddy detection device 1 detects a blast region in an observation region set on the airport surface of an airport having an intersecting runway.
As an example in FIG. 1, the eddy detection device 1 detects a blast region at an airport having an intersecting runway, but this is only an example.
The eddy detection device 1 can detect a blast region on the airport surface of any airport.
 図1において、滑走路A上の出発機は、図上、左側の矢印1000aの方向に離陸を開始しており、機体後方からはブラスト1001が噴射されている。また、滑走路Aと交差する滑走路Bには、到着機が、図上、右側の矢印1000bの方向に進入している。
 乱気流検出装置1が搭載されたドップラライダ装置2は、滑走路A及び滑走路Bを含むように設定された観測領域を、所定の高度で水平にビーム走査する。所定の高度とは、例えば、滑走路上の航空機のエンジンが存在し得る高度(以下「エンジン高度」という。)である。なお、図1では、ドップラライダ装置2がビーム走査する観測領域は、扇形であらわされるものとしている。
 ドップラライダ装置2は、予め設定された周期で上記ビーム走査を行う。乱気流検出装置1は、ドップラライダ装置2が観測領域をビーム走査した結果に基づき、ブラスト領域の検出を行う。
In FIG. 1, the departure aircraft on the runway A has started taking off in the direction of the arrow 1000a on the left side of the drawing, and the blast 1001 is injected from the rear of the aircraft. Further, the arriving aircraft is approaching the runway B, which intersects the runway A, in the direction of the arrow 1000b on the right side of the drawing.
The Doppler rider device 2 equipped with the eddy turbulence detection device 1 horizontally scans the observation region set to include the runway A and the runway B at a predetermined altitude. The predetermined altitude is, for example, the altitude at which the engine of an aircraft on the runway can exist (hereinafter referred to as "engine altitude"). In FIG. 1, the observation region in which the Doppler rider device 2 scans the beam is represented by a fan shape.
The Doppler rider device 2 performs the beam scanning at a preset cycle. The eddy detection device 1 detects the blast region based on the result of the beam scanning of the observation region by the Doppler rider device 2.
 以下の説明において、ドップラライダ装置2による、一周期分の、扇形の観測領域の一方の半径から他方の半径までのビーム走査を、一走査又は一観測という。なお、ここでは、観測領域を扇形とし、ドップラライダ装置2は、一周期で、扇形の範囲をビーム走査するものとするが、これに限らず、観測領域が略円形状であり、ドップラライダ装置2は、一周期で、略円形状の範囲をビーム走査する場合もある。ドップラライダ装置2が一周期でビーム走査する範囲が略円形状であらわされる場合は、一周する走査を一走査又は一観測という。また、ドップラライダ装置2は、ビーム走査を、1本のビームに限らず、複数のビームを同時に送受信することで行ってもよい。 In the following description, the beam scanning from one radius to the other radius of the fan-shaped observation region for one cycle by the Doppler rider device 2 is referred to as one scan or one observation. Here, the observation area is fan-shaped, and the Doppler rider device 2 scans the fan-shaped range with a beam in one cycle. However, the observation region is substantially circular and the Doppler rider device 2 is not limited to this. No. 2 may perform beam scanning in a substantially circular range in one cycle. When the range in which the Doppler rider device 2 scans the beam in one cycle is represented by a substantially circular shape, the scan that goes around is called one scan or one observation. Further, the Doppler rider device 2 may perform beam scanning by transmitting and receiving not only one beam but also a plurality of beams at the same time.
 観測領域は、ビーム走査の方向である方位方向と、ビーム走査の方向と略直行するレンジ方向に区分けされる。具体的には、観測領域は、所定の方位毎及び所定のレンジ毎に、区分けされる。観測領域が方位方向及びレンジ方向に区分けされてできる複数の領域のそれぞれを、「レンジセル」という。
 図1において、方位方向を1002の矢印、レンジ方向を1003の矢印で示している。なお、レンジ方向は、視線方向ともいう。
The observation area is divided into an azimuth direction, which is the direction of beam scanning, and a range direction, which is substantially orthogonal to the direction of beam scanning. Specifically, the observation area is divided into a predetermined direction and a predetermined range. Each of a plurality of regions formed by dividing the observation region into the directional direction and the range direction is called a "range cell".
In FIG. 1, the directional direction is indicated by an arrow of 1002 and the range direction is indicated by an arrow of 1003. The range direction is also referred to as a line-of-sight direction.
 図2は、実施の形態1に係る乱気流検出装置1を搭載したドップラライダ装置2の構成例を示す図である。
 図2に示すように、ドップラライダ装置2は乱気流検出装置1を搭載し、電磁波放射部21及び送受信部22を備える。
FIG. 2 is a diagram showing a configuration example of a Doppler rider device 2 equipped with the eddy detection device 1 according to the first embodiment.
As shown in FIG. 2, the Doppler rider device 2 is equipped with an eddy detection device 1, and includes an electromagnetic wave emitting unit 21 and a transmitting / receiving unit 22.
 電磁波放射部21は、予め設定された周期(以下「波動放射周期」という。)単位で、送受信部22から伝送された送信光パルスに基づく電磁波を観測領域へ放射する。実施の形態1では、電磁波放射部21は、波動放射周期単位で、送受信部22から伝送された送信光パルスを送信光に変換して、当該送信光を観測領域へ放射する。そして、電磁波放射部21は、観測領域内の大気による、上記送信光の反射光を受信する。電磁波放射部21は、例えば、送信光を空間へ放射する際に送信光を収束させる望遠鏡、及び、放射の方向を制御する反射鏡で構成される。
 電磁波放射部21が観測領域へ放射した送信光は、大気中の微粒子で反射される。その際、反射位置の風速に応じてドップラ効果が生じるため、大気による反射光の周波数はドップラ効果による偏移を受ける。
 電磁波放射部21は、観測領域へ放射した送信光の、大気による反射光を受信し電気信号に変換した後、当該電気信号を受信信号として、送受信部22に伝送する。
The electromagnetic wave radiating unit 21 radiates an electromagnetic wave based on a transmitted light pulse transmitted from the transmitting / receiving unit 22 to the observation region in a preset period (hereinafter referred to as “wave radiating period”). In the first embodiment, the electromagnetic wave emitting unit 21 converts the transmitted light pulse transmitted from the transmitting / receiving unit 22 into the transmitted light and radiates the transmitted light to the observation region in units of the wave radiation period. Then, the electromagnetic wave emitting unit 21 receives the reflected light of the transmitted light by the atmosphere in the observation region. The electromagnetic wave emitting unit 21 is composed of, for example, a telescope that converges the transmitted light when radiating the transmitted light into space, and a reflecting mirror that controls the direction of radiation.
The transmitted light emitted by the electromagnetic wave emitting unit 21 to the observation region is reflected by fine particles in the atmosphere. At that time, since the Doppler effect occurs according to the wind speed at the reflection position, the frequency of the reflected light by the atmosphere is shifted by the Doppler effect.
The electromagnetic wave emitting unit 21 receives the reflected light from the atmosphere of the transmitted light radiated to the observation region, converts it into an electric signal, and then transmits the electric signal as a receiving signal to the transmitting / receiving unit 22.
 送受信部22は、電磁波放射部21を介して観測領域へ放射する送信光のもととなる送信光パルスを、電気信号として生成する。また、送受信部22は、電磁波放射部21が観測領域へ放射した送信光の、大気による反射光を、電磁波放射部21が電気信号に変換した受信信号を受信する。送受信部22は、受信した受信信号に、増幅、周波数変換等の処理を施した後、当該処理を施した後の受信信号を、乱気流検出装置1へ出力する。 The transmission / reception unit 22 generates an electric signal as a transmission light pulse that is a source of transmission light radiated to the observation region via the electromagnetic wave radiation unit 21. Further, the transmission / reception unit 22 receives a reception signal obtained by converting the reflected light by the atmosphere of the transmission light radiated by the electromagnetic wave radiation unit 21 into the observation region into an electric signal by the electromagnetic wave radiation unit 21. The transmission / reception unit 22 performs processing such as amplification and frequency conversion on the received reception signal, and then outputs the received signal after the processing to the eddy detection device 1.
 乱気流検出装置1は、送受信部22から出力された受信信号に基づき、ブラスト領域を検出する。乱気流検出装置1の詳細については、後述する。
 乱気流検出装置1は、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。実施の形態1において、ブラスト強度とは、ブラストの風速値をいう。なお、ブラストの風速は、絶対風速である。
The eddy detection device 1 detects the blast region based on the received signal output from the transmission / reception unit 22. The details of the eddy detection device 1 will be described later.
The eddy detection device 1 outputs information on the blast region and the blast intensity as a result of detecting the blast region. In the first embodiment, the blast intensity means the wind speed value of the blast. The wind speed of the blast is the absolute wind speed.
 図3は、実施の形態1に係る乱気流検出装置1の構成例を示す図である。
 乱気流検出装置1は、モーメント算出部101、風向風速推定部102、風速判定部103、風向判定部104、及び、ブラスト検出部105を備える。ブラスト検出部105は、第1ブラスト検出部1051を備える。
FIG. 3 is a diagram showing a configuration example of the turbulence detection device 1 according to the first embodiment.
The eddy detection device 1 includes a moment calculation unit 101, a wind direction / wind speed estimation unit 102, a wind speed determination unit 103, a wind direction determination unit 104, and a blast detection unit 105. The blast detection unit 105 includes a first blast detection unit 1051.
 モーメント算出部101は、ドップラライダ装置2の送受信部22から出力された受信信号を取得し、取得した受信信号のスペクトルから、レンジセル毎の、信号強度(いわゆる「0次モーメント」)、ドップラ速度(いわゆる「1次モーメント」)、又は、スペクトル幅(いわゆる「2次モーメント」)等を算出する。なお、ドップラ速度は、視線速度ともいう。実施の形態1において、モーメント算出部101が受信信号に基づいて算出する、信号強度、ドップラ速度、又は、スペクトル幅等を、まとめて「モーメント情報」ともいう。ドップラライダの受信信号からモーメント情報を算出する方法は、既知の一般的な方法を用いればよいため、詳細な説明を省略する。
 モーメント算出部101は、算出したモーメント情報を各レンジセルに付与して、受信信号を、風向風速推定部102に出力する。モーメント算出部101がモーメント情報を付与して風向風速推定部102に出力する受信信号を、「モーメント付与後受信信号」ともいう。
The moment calculation unit 101 acquires the received signal output from the transmission / reception unit 22 of the Doppler rider device 2, and from the spectrum of the acquired received signal, the signal strength (so-called “0th moment”) and the Doppler speed (so-called “0th moment”) for each range cell. The so-called "primary moment") or the spectral width (so-called "second moment") or the like is calculated. The Doppler speed is also referred to as the radial velocity. In the first embodiment, the signal strength, the Doppler speed, the spectrum width, and the like calculated by the moment calculation unit 101 based on the received signal are collectively referred to as “moment information”. As a method of calculating the moment information from the received signal of the Doppler rider, a known general method may be used, and thus detailed description thereof will be omitted.
The moment calculation unit 101 applies the calculated moment information to each range cell, and outputs a received signal to the wind direction and speed estimation unit 102. The reception signal that the moment calculation unit 101 adds moment information and outputs to the wind direction wind speed estimation unit 102 is also referred to as a “reception signal after moment application”.
 風向風速推定部102は、モーメント算出部101から出力されたモーメント付与後受信信号について、モーメント算出部101が算出したドップラ速度を用いて、レンジセル毎の、風向値及び風速値を推定する。ドップラ速度から風向値及び風速値を推定する技術は、既知の技術であるため詳細な説明は省略する。風向風速推定部102が推定する風向及び風速を、「速度ベクトル」ともいう。
 このとき、風向風速推定部102は、所定の小方位角範囲に含まれる少なくとも2本以上のビームに基づいて得られたドップラ速度を用いて、風向値及び風速値を推定する。風向風速推定部102は、風向値及び風速値を、上記小方位角範囲内の風向及び風速が一様であると仮定して推定する。なお、所定の小方位角範囲の設定方法としては、0°~10°、10°~20°、・・・というように、小方位角範囲を実質的に重複なく設定する方法が挙げられる。これは一例に過ぎず、例えば、0°~10°、5°~15°、・・・というように、小方位角範囲を重複させながら、当該小方位範囲を設定するようにしてもよい。
 風向風速推定部102は、推定した風向値及び風速値を、モーメント付与後受信信号の各レンジセルに付与して、風速判定部103及び風向判定部104に出力する。風向風速推定部102が風向及び風速を付与して風速判定部103及び風向判定部104に出力するモーメント付与後受信信号を、「ベクトル付与後受信信号」ともいう。なお、ベクトル付与後受信信号の各レンジセルには、風向値及び風速値の他、モーメント情報も付与されている。
The wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value for each range cell by using the Doppler speed calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101. Since the technique for estimating the wind direction value and the wind velocity value from the Doppler velocity is a known technique, detailed description thereof will be omitted. The wind direction and the wind speed estimated by the wind direction wind speed estimation unit 102 are also referred to as a “velocity vector”.
At this time, the wind direction / wind speed estimation unit 102 estimates the wind direction value and the wind speed value using the Doppler velocity obtained based on at least two or more beams included in the predetermined small azimuth angle range. The wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value on the assumption that the wind direction and the wind speed within the small azimuth angle range are uniform. As a method of setting the predetermined small azimuth angle range, there is a method of setting the small azimuth angle range substantially without duplication, such as 0 ° to 10 °, 10 ° to 20 °, and so on. This is only an example, and the small azimuth range may be set while overlapping the small azimuth angle ranges, for example, 0 ° to 10 °, 5 ° to 15 °, and so on.
The wind direction wind speed estimation unit 102 applies the estimated wind direction value and the wind speed value to each range cell of the received signal after applying the moment, and outputs the estimated wind direction value and the wind speed value to the wind speed determination unit 103 and the wind direction determination unit 104. The received signal after applying the moment, which the wind direction and wind speed estimating unit 102 assigns the wind direction and speed and outputs to the wind speed determination unit 103 and the wind direction determination unit 104, is also referred to as a “vector-added received signal”. In addition to the wind direction value and the wind speed value, moment information is also added to each range cell of the received signal after the vector is added.
 風速判定部103は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、レンジセル毎に、当該レンジセルがブラスト領域のレンジセル(以下「ブラストセル」という。)の候補となるレンジセル(以下「風速ブラスト候補セル」という。)であるか否かを判定する。具体的には、風速判定部103は、レンジセル毎に、当該レンジセルの風速値が、予め設定された閾値(以下「風速判定用閾値」という。)を超えているか否かを判定する。風速判定用閾値には、予め、ユーザ等によって、ブラストを判定するのに適した値が設定されている。風速判定部103は、レンジセルの風速値が風速判定用閾値を超えている場合、当該レンジセルは風速ブラスト候補セルであるとし、風速ブラスト候補セルに、風速ブラスト候補セルフラグを付与する。
 風速判定部103は、風速ブラスト候補セルに風速ブラスト候補セルフラグを付与したベクトル付与後受信信号を、第1ブラスト検出部1051に出力する。風速判定部103が風速ブラスト候補セルフラグを付与して第1ブラスト検出部1051に出力するベクトル付与後受信信号を、「風速判定後受信信号」ともいう。風速判定後受信信号において、風速ブラスト候補セルには風速ブラスト候補セルフラグが付与されている他、風速判定後受信信号の各レンジセルには、モーメント情報、風向値及び風速値も付与されている。なお、ここでは、風速判定後受信信号において、風速ブラスト候補セルには風速ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風速判定後受信信号の各レンジセルには、少なくとも、レンジセルが風速ブラスト候補セルである場合の風速ブラスト候補セルフラグと、風速値が付与されていればよい。
The wind speed determination unit 103 has a range cell in the blast region (hereinafter referred to as “blast cell”) for each range cell based on the wind speed value assigned to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102. It is determined whether or not the range cell is a candidate for the wind speed blast (hereinafter referred to as "wind speed blast candidate cell"). Specifically, the wind speed determination unit 103 determines for each range cell whether or not the wind speed value of the range cell exceeds a preset threshold value (hereinafter referred to as "wind speed determination threshold value"). The wind speed determination threshold is set in advance by a user or the like to a value suitable for determining blast. When the wind speed value of the range cell exceeds the wind speed determination threshold value, the wind speed determination unit 103 determines that the range cell is a wind speed blast candidate cell, and adds a wind speed blast candidate cell flag to the wind speed blast candidate cell.
The wind speed determination unit 103 outputs the received signal after adding the vector to which the wind speed blast candidate cell flag is added to the wind speed blast candidate cell to the first blast detection unit 1051. The vector-assigned reception signal that the wind speed determination unit 103 assigns the wind speed blast candidate cell flag and outputs to the first blast detection unit 1051 is also referred to as a “wind speed determination post-reception signal”. In the received signal after the wind speed determination, the wind speed blast candidate cell flag is given to the wind speed blast candidate cell, and the moment information, the wind direction value, and the wind speed value are also given to each range cell of the received signal after the wind speed determination. Here, in the received signal after the wind speed determination, the wind speed blast candidate cell flag is given to the wind speed blast candidate cell, and the moment information, the wind direction value, and the wind speed value are given to each range cell. Is only an example, and each range cell of the received signal after the wind speed determination may be provided with at least a wind speed blast candidate cell flag when the range cell is a wind speed blast candidate cell and a wind speed value.
 風向判定部104は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風向値に基づき、レンジセル毎に、当該レンジセルがブラストセルの候補となるレンジセル(以下「風向ブラスト候補セル」という。)であるか否かを判定する。具体的には、風向判定部104は、レンジセル毎に、当該レンジセルの風向値と予め設定された基準値(以下「風向判定用基準値」という。)との差の絶対値が、予め設定された範囲(以下「風向判定用範囲」という。)内であるか否かを判定する。風向判定用基準値には、予め、ユーザ等によって、レンジセルの風向がブラストと推定される方向の値が設定されている。具体的には、風向判定用基準値には、予め、ユーザ等によって、航空機の脅威となるブラストの風向を示す角度が設定されている。 The wind direction determination unit 104 is a range cell in which the range cell is a candidate for a blast cell for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 (hereinafter, “wind direction blast candidate”). It is determined whether or not it is a "cell". Specifically, the wind direction determination unit 104 presets the absolute value of the difference between the wind direction value of the range cell and the preset reference value (hereinafter referred to as "wind direction determination reference value") for each range cell. It is determined whether or not it is within the above range (hereinafter referred to as "wind direction determination range"). In the wind direction determination reference value, a value in a direction in which the wind direction of the range cell is estimated to be blast is set in advance by a user or the like. Specifically, in the wind direction determination reference value, an angle indicating the wind direction of the blast, which poses a threat to the aircraft, is set in advance by the user or the like.
 航空機は、一般に、追い風又は向かい風に比べ、横風に対して弱いとされている。そのため、ブラストが滑走路上の航空機の脅威となるのは、一般に、ブラストが航空機の機体に対して横風となる場合、言い換えれば、ブラストが航空機の機体の向きに対して直角となる場合である。なお、実施の形態1において、「直角」とは、厳密に「直角」である必要はなく、「直角」には、「略直角」も含む。
 一方、滑走路上の航空機の機体の向きは、滑走路の向きと略平行と推定される。そのため、風向が滑走路の向きに対して直角である場合、当該風向は航空機の機体の向きに対して直角であると言える。
 そこで、実施の形態1では、風向判定部104は、滑走路の向きと、レンジセルに付与されている風向値とがなす角によって、航空機の脅威となるブラストセルである可能性があるレンジセルを風向ブラスト候補セルと判定するものとする。そして、風向判定用基準値には、レンジセルの風向が、航空機にとって脅威となるブラストの風向を示す、滑走路の向きと風向とのなす角度が設定されているものとする。実施の形態1では、一例として、風向判定用基準値には、「90°」が設定されているものとする。また、風向判定用範囲には、風向判定用基準値90°を基準として、「±45°」が設定されているものとする。
Aircraft are generally considered to be more vulnerable to crosswinds than tailwinds or headwinds. Therefore, blasting poses a threat to aircraft on the runway in general when the blast is a crosswind with respect to the aircraft's airframe, in other words, when the blast is perpendicular to the orientation of the aircraft's airframe. In the first embodiment, the "right angle" does not have to be strictly a "right angle", and the "right angle" also includes a "substantially right angle".
On the other hand, the orientation of the aircraft on the runway is estimated to be approximately parallel to the orientation of the runway. Therefore, when the wind direction is perpendicular to the direction of the runway, it can be said that the wind direction is perpendicular to the direction of the aircraft body.
Therefore, in the first embodiment, the wind direction determination unit 104 winds the range cell, which may be a threat to the aircraft, depending on the angle formed by the direction of the runway and the wind direction value given to the range cell. It shall be determined as a blast candidate cell. Then, it is assumed that the wind direction for determining the wind direction is set to the angle between the runway direction and the wind direction, which indicates the wind direction of the blast that poses a threat to the aircraft. In the first embodiment, as an example, it is assumed that "90 °" is set as the reference value for determining the wind direction. Further, it is assumed that "± 45 °" is set in the wind direction determination range with reference to the wind direction determination reference value 90 °.
 風向判定部104は、レンジセルの風向値と風向判定用基準値との差の絶対値が風向判定用範囲内である場合、当該レンジセルは風向ブラスト候補セルであるとし、風向ブラスト候補セルに、風向ブラスト候補セルフラグを付与する。
 風向判定部104は、風向ブラスト候補セルに風向ブラスト候補セルフラグを付与したベクトル付与後受信信号を、第1ブラスト検出部1051に出力する。風向判定部104が風向ブラスト候補セルフラグを付与して第1ブラスト検出部1051に出力するベクトル付与後受信信号を、「風向判定後受信信号」ともいう。風向判定後受信信号において、風向ブラスト候補セルには風向ブラスト候補セルフラグが付与されている他、風向判定後受信信号の各レンジセルには、モーメント情報、風向値及び風速値も付与されている。なお、ここでは、風向判定後受信信号において、風向ブラスト候補セルには風向ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風向判定後受信信号の各レンジセルには、少なくとも、レンジセルが風向ブラスト候補セルである場合の風向ブラスト候補セルフラグと、風向値が付与されていればよい。
When the absolute value of the difference between the wind direction value of the range cell and the wind direction determination reference value is within the wind direction determination range, the wind direction determination unit 104 determines that the range cell is a wind direction blast candidate cell, and tells the wind direction blast candidate cell the wind direction. Add the blast candidate cell flag.
The wind direction determination unit 104 outputs the received signal after adding the vector to which the wind direction blast candidate cell flag is added to the wind direction blast candidate cell to the first blast detection unit 1051. The vector-assigned reception signal that the wind direction determination unit 104 assigns the wind direction blast candidate cell flag and outputs to the first blast detection unit 1051 is also referred to as a “wind direction determination post-reception signal”. In the received signal after the wind direction determination, the wind direction blast candidate cell flag is given to the wind direction blast candidate cell, and the moment information, the wind direction value, and the wind speed value are also given to each range cell of the received signal after the wind direction determination. Here, in the received signal after the wind direction determination, it is assumed that the wind direction blast candidate cell flag is given to the wind direction blast candidate cell, and the moment information, the wind direction value, and the wind speed value are given to each range cell. Is only an example, and each range cell of the received signal after the wind direction determination may be given at least a wind direction blast candidate cell flag when the range cell is a wind direction blast candidate cell and a wind direction value.
 ブラスト検出部105は、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出する。
 具体的には、ブラスト検出部105の第1ブラスト検出部1051は、風速判定部103から出力された風速判定後受信信号と、風向判定部104から出力された風向判定後受信信号に基づき、ブラスト領域を検出する。第1ブラスト検出部1051は、風速判定後受信信号における風速ブラスト候補セルと、風向判定後受信信号における風向ブラスト候補セルの論理積を取り、風速ブラスト候補セルであり、かつ、風向ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。風速ブラスト候補セルであり、かつ、風向ブラスト候補セルであるブラストセルは、風速及び風向がともにブラストの特徴を有しているレンジセルである。すなわち、第1ブラスト検出部1051は、風速及び風向がともにブラストの特徴を有しているレンジセルを、ブラストセルとして検出する。
 なお、第1ブラスト検出部1051は、風速ブラスト候補セル又は風向ブラスト候補セルを、風速ブラスト候補セルフラグ又は風向ブラスト候補セルフラグによって判断すればよい。
The blast detection unit 105 detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
Specifically, the first blast detection unit 1051 of the blast detection unit 105 blasts based on the wind speed determination reception signal output from the wind speed determination unit 103 and the wind direction determination reception signal output from the wind direction determination unit 104. Detect the area. The first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell in the received signal after the wind speed determination and the wind direction blast candidate cell in the received signal after the wind direction determination, and is a wind speed blast candidate cell and is a wind direction blast candidate cell. A range cell is detected as a blast cell. The blast cell, which is a wind speed blast candidate cell and is a wind direction blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting. That is, the first blast detection unit 1051 detects a range cell in which both the wind speed and the wind direction have the characteristics of blasting as the blast cell.
The first blast detection unit 1051 may determine the wind speed blast candidate cell or the wind direction blast candidate cell by the wind speed blast candidate cell flag or the wind direction blast candidate cell flag.
 ここで、図4は、実施の形態1において、第1ブラスト検出部1051が、ブラストセルを検出する流れのイメージを説明するための図である。なお、図4では、ドップラライダ装置2の観測領域は、扇形としている。図4において、観測領域のイメージを、401、402、及び、403で示している。なお、図4では、観測領域におけるレンジセルを図示するようにしている。
 図4では、風速判定部103が判定した風速ブラスト候補セル(図4の401aで示す)と、風向判定部104が判定した風向ブラスト候補セル(図4の402aで示す)から、第1ブラスト検出部1051が、風速ブラスト候補セル401aであり、かつ、風向ブラスト候補セル402aであるレンジセルを、ブラストセル(図4の403aで示す)として検出したイメージを示している。ブラストセル403aは、風速においても風向においても、ともに、ブラストの特徴を有するレンジセルである。ブラストセルを含む領域が、ブラスト領域である。
Here, FIG. 4 is a diagram for explaining an image of a flow in which the first blast detection unit 1051 detects a blast cell in the first embodiment. In FIG. 4, the observation area of the Doppler rider device 2 is fan-shaped. In FIG. 4, the images of the observation area are shown by 401, 402, and 403. In FIG. 4, the range cell in the observation area is illustrated.
In FIG. 4, the first blast is detected from the wind speed blast candidate cell (shown by 401a in FIG. 4) determined by the wind speed determination unit 103 and the wind direction blast candidate cell (shown by 402a in FIG. 4) determined by the wind direction determination unit 104. Section 1051 shows an image in which a range cell which is a wind speed blast candidate cell 401a and a wind direction blast candidate cell 402a is detected as a blast cell (shown by 403a in FIG. 4). The blast cell 403a is a range cell having blast characteristics in both wind speed and direction. The area containing the blast cell is the blast area.
 第1ブラスト検出部1051は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。具体的には、第1ブラスト検出部1051は、各レンジセルに、少なくとも、ブラストセルであるか否かの情報を付与した受信信号を出力する。実施の形態1では、第1ブラスト検出部1051は、各レンジセルに、ブラストセルであるか否かの情報に加え、当該レンジセルがブラストセルの場合には風速値及び風向値を付与した受信信号を、出力するものとする。例えば、第1ブラスト検出部1051は、ドップラライダ装置2から出力された受信信号の各レンジセルに、ブラストセルであるか否かの情報と、風速値及び風向値を付与するようにすればよい。
 このように、第1ブラスト検出部1051は、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。
The first blast detection unit 1051 outputs information about the detected blast region as a blast detection result. Specifically, the first blast detection unit 1051 outputs a reception signal to which at least information as to whether or not it is a blast cell is added to each range cell. In the first embodiment, the first blast detection unit 1051 gives each range cell information on whether or not it is a blast cell, and if the range cell is a blast cell, a reception signal to which a wind speed value and a wind direction value are given. , Shall be output. For example, the first blast detection unit 1051 may give information on whether or not the reception signal is a blast cell, a wind speed value, and a wind direction value to each range cell of the received signal output from the Doppler rider device 2.
In this way, the first blast detection unit 1051 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
 実施の形態1に係る乱気流検出装置1の動作について説明する。
 図5は、実施の形態1に係る乱気流検出装置1の動作の概要について説明するためのフローチャートである。
 モーメント算出部101は、ドップラライダ装置2の送受信部22から出力された受信信号を取得し、取得した受信信号のスペクトルから、レンジセル毎の、モーメント情報を算出する(ステップST501)。
 風向風速推定部102は、ステップST501にてモーメント算出部101から出力されたモーメント付与後受信信号について、モーメント算出部101が算出したドップラ速度を用いて、レンジセル毎の、風向値及び風速値を推定する(ステップST502)。
 ブラスト検出部105は、ステップST502にて風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出する(ステップST503)。
The operation of the turbulence detection device 1 according to the first embodiment will be described.
FIG. 5 is a flowchart for explaining an outline of the operation of the turbulence detection device 1 according to the first embodiment.
The moment calculation unit 101 acquires the reception signal output from the transmission / reception unit 22 of the Doppler rider device 2, and calculates the moment information for each range cell from the spectrum of the acquired reception signal (step ST501).
The wind direction / wind speed estimation unit 102 estimates the wind direction value and the wind speed value for each range cell using the Doppler speed calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101 in step ST501. (Step ST502).
The blast detection unit 105 detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102 in step ST502 (step ST503).
 図6は、実施の形態1に係る乱気流検出装置1の、より具体的な動作について説明するためのフローチャートである。
 なお、図6のステップST601~ステップST602の具体的な動作は、図5のステップST501~ステップST502の具体的な動作と同様であるため、重複した説明を省略する。
 風速判定部103は、ステップST602にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、レンジセル毎に、当該レンジセルがブラストセルの候補となる風速ブラスト候補セルであるか否かを判定する(ステップST603)。具体的には、風速判定部103は、レンジセル毎に、当該レンジセルの風速値が風速判定用閾値を超えているか否かを判定する。風速判定部103は、レンジセルの風速値が風速判定用閾値を超えている場合、当該レンジセルは風速ブラスト候補セルであるとし、風速ブラスト候補セルに、風速ブラスト候補セルフラグを付与する。
 風速判定部103は、風速ブラスト候補セルに風速ブラスト候補セルフラグを付与した風速判定後受信信号を、第1ブラスト検出部1051に出力する。
FIG. 6 is a flowchart for explaining a more specific operation of the eddy detection device 1 according to the first embodiment.
Since the specific operations of steps ST601 to ST602 in FIG. 6 are the same as the specific operations of steps ST501 to ST502 in FIG. 5, duplicated description will be omitted.
The wind speed determination unit 103 is a wind speed blast candidate in which the range cell is a candidate for a blast cell for each range cell based on the wind speed value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST602. It is determined whether or not it is a cell (step ST603). Specifically, the wind speed determination unit 103 determines for each range cell whether or not the wind speed value of the range cell exceeds the wind speed determination threshold value. When the wind speed value of the range cell exceeds the wind speed determination threshold value, the wind speed determination unit 103 determines that the range cell is a wind speed blast candidate cell, and adds a wind speed blast candidate cell flag to the wind speed blast candidate cell.
The wind speed determination unit 103 outputs the received signal after the wind speed determination to which the wind speed blast candidate cell flag is added to the wind speed blast candidate cell to the first blast detection unit 1051.
 風向判定部104は、ステップST602にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風向値に基づき、レンジセル毎に、当該レンジセルがブラストセルの候補となる風向ブラスト候補セルであるか否かを判定する(ステップST604)。具体的には、風向判定部104は、レンジセル毎に、当該レンジセルの風向値と風向判定用基準値との差の絶対値が、風向判定用範囲内であるか否かを判定する。風向判定部104は、レンジセルの風向値と風向判定用基準値との差の絶対値が風向判定用範囲内である場合、当該レンジセルは風向ブラスト候補セルであるとし、風向ブラスト候補セルに、風向ブラスト候補セルフラグを付与する。
 風向判定部104は、風向ブラスト候補セルに風向ブラスト候補セルフラグを付与した風向判定後受信信号を、第1ブラスト検出部1051に出力する。
The wind direction determination unit 104 is a wind direction blast candidate in which the range cell is a candidate for a blast cell for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST602. It is determined whether or not it is a cell (step ST604). Specifically, the wind direction determination unit 104 determines for each range cell whether or not the absolute value of the difference between the wind direction value of the range cell and the wind direction determination reference value is within the wind direction determination range. When the absolute value of the difference between the wind direction value of the range cell and the wind direction determination reference value is within the wind direction determination range, the wind direction determination unit 104 determines that the range cell is a wind direction blast candidate cell, and tells the wind direction blast candidate cell the wind direction. Add the blast candidate cell flag.
The wind direction determination unit 104 outputs a received signal after the wind direction determination, in which the wind direction blast candidate cell flag is added to the wind direction blast candidate cell, to the first blast detection unit 1051.
 第1ブラスト検出部1051は、ステップST603にて風速判定部103から出力された風速判定後受信信号と、ステップST604にて風向判定部104から出力された風向判定後受信信号に基づき、ブラスト領域を検出する(ステップST605)。
 具体的には、第1ブラスト検出部1051は、風速判定後受信信号における風速ブラスト候補セルと、風向判定後受信信号における風向ブラスト候補セルの論理積を取り、風速ブラスト候補セルであり、かつ、風向ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。
 第1ブラスト検出部1051は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。
The first blast detection unit 1051 determines the blast region based on the wind speed determination post-received signal output from the wind speed determination unit 103 in step ST603 and the wind direction determination post-receiver signal output from the wind direction determination unit 104 in step ST604. Detect (step ST605).
Specifically, the first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell in the received signal after the wind speed determination and the wind direction blast candidate cell in the received signal after the wind direction determination, and is a wind speed blast candidate cell. A range cell, which is a wind direction blast candidate cell, is detected as a blast cell.
The first blast detection unit 1051 outputs information about the detected blast region as a blast detection result.
 図6において、ステップST603の処理とステップST604の処理を並列的に記載したが、ステップST603の処理とステップST604の処理は、逐次的に行われるようにしてもよい。 Although the process of step ST603 and the process of step ST604 are described in parallel in FIG. 6, the process of step ST603 and the process of step ST604 may be sequentially performed.
 以上の実施の形態1では、第1ブラスト検出部1051は、風速ブラスト候補セルと風向ブラスト候補セルの論理積を取って、ブラストセルを検出するようにしたが、これは一例に過ぎない。例えば、第1ブラスト検出部1051は、風速ブラスト候補セルと風向ブラスト候補セルの論理和を取って、ブラストセルを検出するようにしてもよい。
 例えば、風向風速推定部102による風向値及び風速値の推定精度、風速判定部103による風速ブラスト候補セルの判定精度、又は、風向判定部104による風向ブラスト候補セルの判定精度が悪く、風速ブラスト候補セル又は風向ブラスト候補セルの見逃し等が多く発生すると予想される場合もある。このような場合に、第1ブラスト検出部1051が、風速値又は風向値の一方でもブラストの特徴を有しているレンジセルをブラストセルと判定することで、乱気流検出装置1は、上述したような判定精度が悪いことを考慮した、ブラスト領域の検出を行うことができる。
In the first embodiment described above, the first blast detection unit 1051 takes the logical product of the wind speed blast candidate cell and the wind direction blast candidate cell to detect the blast cell, but this is only an example. For example, the first blast detection unit 1051 may OR the wind speed blast candidate cell and the wind direction blast candidate cell to detect the blast cell.
For example, the wind direction and wind speed estimation unit 102 estimates the wind direction value and the wind speed value, the wind speed determination unit 103 determines the wind speed blast candidate cell, or the wind direction determination unit 104 determines the wind direction blast candidate cell, and the wind speed blast candidate cell is poor. It may be expected that many cells or wind direction blast candidate cells will be overlooked. In such a case, the first blast detection unit 1051 determines that the range cell having the characteristic of blasting at either the wind speed value or the wind direction value is a blast cell, so that the eddy air detection device 1 can be described as described above. It is possible to detect the blast region in consideration of the poor determination accuracy.
 また、一般に、風向値及び風速値を精度良く推定するためには、小方位角範囲をある程度広く設定する必要がある。一方で、小方位角範囲を広く設定すると、方位角方向の分解能が劣化する、又は、局所的な風向値もしくは風速値の変動が捉えづらくなる等の問題が発生することがある。そのため、風向風速推定部102が、風向値及び風速値を推定するにあたり、広い小方位角範囲を確保することが困難となる場合が考えられる。風向風速推定部102が広い小方位角範囲を確保することが困難である場合、風向風速推定部102が推定する風向値又は風速値には、精度の劣化した風向値又は風速値が含まれ得る。その結果、風速判定部103が、風速ブラスト候補セルを見逃す等の事態が発生することがあり得る。また、風向判定部104が、風向ブラスト候補セルを見逃す等の事態が発生することがあり得る。 Also, in general, in order to accurately estimate the wind direction value and wind speed value, it is necessary to set the small azimuth angle range to some extent. On the other hand, if the small azimuth angle range is set wide, problems such as deterioration of the resolution in the azimuth direction or difficulty in capturing local fluctuations in the wind direction value or the wind speed value may occur. Therefore, when the wind direction wind speed estimation unit 102 estimates the wind direction value and the wind speed value, it may be difficult to secure a wide small azimuth angle range. When it is difficult for the wind direction wind speed estimation unit 102 to secure a wide small azimuth angle range, the wind direction value or wind speed value estimated by the wind direction wind speed estimation unit 102 may include a wind direction value or a wind speed value with deteriorated accuracy. .. As a result, a situation may occur in which the wind speed determination unit 103 misses the wind speed blast candidate cell. In addition, a situation may occur in which the wind direction determination unit 104 misses the wind direction blast candidate cell.
 上述したような、風速ブラスト候補セル又は風向ブラスト候補セルの判定の精度が劣化することに対応するため、以上の実施の形態1において、風速判定部103は、例えば、風速ブラスト候補セルを判定した後、当該風速ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。また、例えば、風向判定部104は、風向ブラスト候補セルを判定した後、当該風向ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。例えば、風速判定部103又は風向判定部104は、モルフォロジーフィルタ処理を行う。モルフォロジーフィルタは、既知の一般的な処理であるため、詳細な説明は省略するが、例えば、風速判定部103又は風向判定部104は、クロージング処理を行うことによって、空間的な不整合を改善することができる。クロージング処理とは、モルフォロジーフィルタにおいて膨張処理後に収縮処理を行う一連の処理である。空間的な不整合とは、風速ブラスト候補セル又は風向ブラスト候補セルの見逃し等をいう。また、風速判定部103又は風向判定部104は、オープニング処理を行うことによって、誤推定した風速ブラスト候補セル又は風向ブラスト候補セルを除去することができる。オープニング処理とは、モルフォロジーフィルタにおいて収縮処理後に膨張処理を行う一連の処理である。
 このように、実施の形態1に係る乱気流検出装置1は、風速及び風向に対しブラストの特徴を有するレンジセルを判定した後、それぞれ補正した後に、論理積もしくは論理和として最終的なブラスト領域を判定するようにしてもよい。これにより、風向値及び風速値推定の過程で発生する精度の劣化を抑えることができ、補正を行うことなくブラスト領域を検出する場合に比べ、より精度の高いブラスト領域の検出が可能である。
In order to deal with the deterioration in the accuracy of the determination of the wind speed blast candidate cell or the wind direction blast candidate cell as described above, in the above-described first embodiment, the wind speed determination unit 103 determines, for example, the wind speed blast candidate cell. After that, the wind speed blast candidate cell may be corrected by image processing. Further, for example, the wind direction blast candidate cell 104 may determine the wind direction blast candidate cell and then perform image processing correction on the wind direction blast candidate cell. For example, the wind speed determination unit 103 or the wind direction determination unit 104 performs a morphology filter process. Since the morphology filter is a known general process, detailed description thereof will be omitted. However, for example, the wind speed determination unit 103 or the wind direction determination unit 104 improves the spatial inconsistency by performing the closing process. be able to. The closing process is a series of processes in which the morphology filter performs a contraction process after an expansion process. Spatial inconsistency means that the wind speed blast candidate cell or the wind direction blast candidate cell is overlooked. Further, the wind speed determination unit 103 or the wind direction determination unit 104 can remove the erroneously estimated wind speed blast candidate cell or wind direction blast candidate cell by performing the opening process. The opening process is a series of processes in which the morphology filter performs an expansion process after a contraction process.
As described above, the eddy detection device 1 according to the first embodiment determines the range cells having the characteristics of blasting with respect to the wind speed and the wind direction, corrects them, and then determines the final blast region as a logical product or a logical sum. You may try to do it. As a result, it is possible to suppress deterioration of accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and it is possible to detect the blast region with higher accuracy than when the blast region is detected without correction.
 以上のように、実施の形態1によれば、乱気流検出装置1は、観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するモーメント算出部101と、モーメント算出部101が算出したドップラ速度に基づき、レンジセル毎の風向値及び風速値を推定する風向風速推定部102と、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出するブラスト検出部105を備えるように構成した。より具体的には、実施の形態1において、乱気流検出装置1は、風向風速推定部102が推定したレンジセル毎の風速値に基づき、レンジセル毎に、当該レンジセルの風速値が風速判定用閾値を超えている風速ブラスト候補セルであるか否かを判定する風速判定部103と、風向風速推定部102が推定したレンジセル毎の風向値に基づき、レンジセル毎に、当該レンジセルの風向値と風向判定用基準値との差が風向判定用範囲内である風向ブラスト候補セルであるか否かを判定する風向判定部104とを備え、ブラスト検出部105は、風速判定部103が判定した風速ブラスト候補セルと、風向判定部が判定した風向ブラスト候補セルから、ブラスト領域を検出する第1ブラスト検出部1051を備えるように構成した。そのため、背景風を考慮して、ブラスト領域を検出することができる。 As described above, according to the first embodiment, the turbulence detection device 1 is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal. A moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101. The blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102. More specifically, in the first embodiment, in the turbulence detection device 1, the wind speed value of the range cell exceeds the wind speed determination threshold for each range cell based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102. Based on the wind speed determination unit 103 that determines whether or not the wind speed blast candidate cell is the wind speed blast candidate cell and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value and the wind direction determination reference for each range cell. The wind direction blast candidate cell 104 determines whether or not the difference from the value is within the wind direction determination range, and the blast detection unit 105 is the wind speed blast candidate cell determined by the wind speed determination unit 103. , The first blast detecting unit 1051 for detecting the blast region from the wind direction blast candidate cell determined by the wind direction determining unit is provided. Therefore, the blast region can be detected in consideration of the background wind.
 実施の形態2.
 実施の形態1では、乱気流検出装置1は、風向及び風速の絶対的な値によりブラスト領域を判定していた。
 一方、滑走路上の航空機にとっては、滑走路上で風向及び風速が急激に変化することも、脅威となる。そこで、実施の形態2では、風向及び風速の時間変化も広義のブラストとして、ブラスト領域を検出する実施の形態について説明する。
Embodiment 2.
In the first embodiment, the eddy detection device 1 determines the blast region based on the absolute values of the wind direction and the wind speed.
On the other hand, for aircraft on the runway, sudden changes in wind direction and speed on the runway also pose a threat. Therefore, in the second embodiment, the embodiment in which the blast region is detected will be described with the time change of the wind direction and the wind speed as the blast in a broad sense.
 実施の形態2に係る乱気流検出装置1aも、実施の形態1に係る乱気流検出装置1と同様、一例として、ドップラライダ装置2に搭載されるものとする。
 乱気流検出装置1aを搭載したドップラライダ装置2の構成例は、実施の形態1において、図2を用いて説明したドップラライダ装置2の構成例と同様であるため、重複した説明を省略する。
 乱気流検出装置1aは、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。実施の形態2において、ブラスト強度とは、ブラストの風速の時間変化をいう。
The eddy turbulence detection device 1a according to the second embodiment is also mounted on the doppler rider device 2 as an example, like the eddy turbulence detection device 1 according to the first embodiment.
Since the configuration example of the Doppler rider device 2 equipped with the turbulence detection device 1a is the same as the configuration example of the Doppler rider device 2 described with reference to FIG. 2 in the first embodiment, duplicate description will be omitted.
The eddy detection device 1a outputs information on the blast region and the blast intensity as a result of detecting the blast region. In the second embodiment, the blast intensity means a time change of the wind speed of the blast.
 図7は、実施の形態2に係る乱気流検出装置1aの構成例を示す図である。
 図7において、実施の形態1にて図3を用いて説明した乱気流検出装置1の構成と同様の構成については、同じ符号を付して重複した説明を省略する。
 実施の形態2に係る乱気流検出装置1aは、実施の形態1に係る乱気流検出装置1とは、風向風速格納部106、風速時間差算出部107、風向時間差算出部108、風速時間差判定部109、風向時間差判定部110を備える点が異なる。また、実施の形態2に係る乱気流検出装置1aは、実施の形態1に係る乱気流検出装置1とは、ブラスト検出部105aが第2ブラスト検出部1052を備える点が異なる。また、実施の形態2に係る乱気流検出装置1aは、実施の形態1に係る乱気流検出装置1が備えていた、風速判定部103、風向判定部104、及び、第1ブラスト検出部1051をいずれも備えない。
FIG. 7 is a diagram showing a configuration example of the turbulence detection device 1a according to the second embodiment.
In FIG. 7, the same reference numerals are given to the same configurations as those of the turbulence detection device 1 described with reference to FIG. 3 in the first embodiment, and duplicate description will be omitted.
The eddy turbulence detection device 1a according to the second embodiment is different from the eddy turbulence detection device 1 according to the first embodiment in the wind direction wind speed storage unit 106, the wind speed time difference calculation unit 107, the wind direction time difference calculation unit 108, the wind speed time difference determination unit 109, and the wind direction. The difference is that the time difference determination unit 110 is provided. Further, the eddy detection device 1a according to the second embodiment is different from the eddy detection device 1 according to the first embodiment in that the blast detection unit 105a includes the second blast detection unit 1052. Further, the eddy detection device 1a according to the second embodiment includes the wind speed determination unit 103, the wind direction determination unit 104, and the first blast detection unit 1051 provided in the eddy detection device 1 according to the first embodiment. I don't prepare.
 風向風速格納部106は、波動放射周期に観測領域に放射され当該観測領域の大気で反射された送信光に基づく受信信号に、風向風速推定部102が推定した風向値及び風速値が付与された、ベクトル付与後受信信号を、履歴で格納する。
 実施の形態2では、風向風速推定部102は、ベクトル付与後受信信号を、風向風速格納部106に格納する。また、風向風速推定部102は、ベクトル付与後受信信号を、風速時間差算出部107、及び、風向時間差算出部108に出力する。
 なお、ここでは、図7に示すように、風向風速格納部106は、乱気流検出装置1aに備えられるものとするが、これは一例に過ぎない。風向風速格納部106は、乱気流検出装置1aの外部の、乱気流検出装置1aが参照可能な場所に備えられるようになっていてもよい。
The wind direction and wind speed storage unit 106 assigns the wind direction value and the wind speed value estimated by the wind direction and wind speed estimation unit 102 to the received signal based on the transmitted light radiated to the observation region during the wave radiation cycle and reflected in the atmosphere of the observation region. , The received signal after the vector is added is stored in the history.
In the second embodiment, the wind direction wind speed estimation unit 102 stores the received signal after adding the vector in the wind direction wind speed storage unit 106. Further, the wind direction wind speed estimation unit 102 outputs the received signal after adding the vector to the wind speed time difference calculation unit 107 and the wind direction time difference calculation unit 108.
Here, as shown in FIG. 7, the wind direction and speed storage unit 106 is provided in the eddy detection device 1a, but this is only an example. The wind direction and speed storage unit 106 may be provided outside the eddy turbulence detection device 1a at a location where the turbulence detection device 1a can be referred to.
 風速時間差算出部107は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、各レンジセルについて、レンジセルの風速値と、当該ベクトル付与後受信信号の一走査前のベクトル付与後受信信号に基づくレンジセルの風速値との差(以下「風速時間差」という。)を算出する。
 風速時間差算出部107は、風向風速推定部102から出力されたベクトル付与後受信信号の一走査前のベクトル付与後受信信号を、風向風速格納部106から取得する。例えば、ベクトル付与後受信信号には、ドップラライダ装置2において受信信号を取得した日時が付与されているものとし、風速時間差算出部107は、当該日時から、一走査前のベクトル付与後受信信号を判断するようにすればよい。
 なお、風速時間差算出部107は、一走査前のベクトル付与後受信信号を取得不可能な場合、予め設定された所定の時間範囲内で、最も近接するビーム走査時に取得されたベクトル付与後受信信号を、一走査前のベクトル付与後受信信号とすればよい。
 風速時間差算出部107は、算出した風速時間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセルに付与して、当該ベクトル付与後受信信号を、風速時間差判定部109に出力する。風速時間差算出部107が風速時間差を付与して風速時間差判定部109に出力するベクトル付与後受信信号を、「風速時間差付与後受信信号」ともいう。なお、風速時間差付与後受信信号の各レンジセルには、風速時間差の他、風向値、風速値、及び、モーメント情報も付与されている。
The wind speed time difference calculation unit 107 scans the wind speed value of the range cell and the received signal after the vector is applied for each range cell based on the wind speed value added to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102. The difference from the wind speed value of the range cell based on the received signal after the previous vector is added (hereinafter referred to as "wind speed time difference") is calculated.
The wind speed time difference calculation unit 107 acquires the vector-added received signal before one scan of the vector-added received signal output from the wind direction wind speed estimation unit 102 from the wind direction wind speed storage unit 106. For example, it is assumed that the received signal after vector addition is given the date and time when the received signal was acquired by the Doppler rider device 2, and the wind speed time difference calculation unit 107 receives the received signal after vector addition one scan before the date and time. You just have to make a judgment.
If the wind speed time difference calculation unit 107 cannot acquire the received signal after applying the vector one scan before, the received signal after applying the vector acquired at the time of the closest beam scanning within a predetermined time range set in advance. May be the received signal after adding the vector one scan before.
The wind speed time difference calculation unit 107 applies the calculated wind speed time difference information to each range cell of the vector-added received signal output from the wind direction wind speed estimation unit 102, and applies the vector-added received signal to the wind speed time difference determination unit 109. Output to. The received signal after the vector addition, which the wind speed time difference calculation unit 107 adds the wind speed time difference and outputs to the wind speed time difference determination unit 109, is also referred to as “the received signal after the wind speed time difference is applied”. In addition to the wind speed time difference, the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind speed time difference is given.
 風向時間差算出部108は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風向値に基づき、各レンジセルについて、レンジセルの風向値と、当該ベクトル付与後受信信号の一走査前のベクトル付与後受信信号に基づくレンジセルの風向値との差(以下「風向時間差」という。)を算出する。風向時間差は、基本的に、劣角で表わされるものとする。
 風向時間差算出部108は、風速時間差算出部107と同様の方法で、風向風速推定部102から出力されたベクトル付与後受信信号の一走査前のベクトル付与後受信信号を、取得すればよい。
 風向時間差算出部108は、算出した風向時間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセルに付与して、当該ベクトル付与後受信信号を、風向時間差判定部110に出力する。風向時間差算出部108が風向時間差を付与して風向時間差判定部110に出力するベクトル付与後受信信号を、「風向時間差付与後受信信号」ともいう。なお、風向時間差付与後受信信号の各レンジセルには、風向時間差の他、風向値、風速値、及び、モーメント情報も付与されている。
The wind direction time difference calculation unit 108 scans the wind direction value of the range cell and the received signal after the vector is applied for each range cell based on the wind direction value added to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102. The difference from the wind direction value of the range cell based on the received signal after the previous vector is added (hereinafter referred to as "wind direction time difference") is calculated. The wind direction time difference is basically represented by a subordinate angle.
The wind direction time difference calculation unit 108 may acquire the vector addition-post-vector reception signal one scan before the vector-added reception signal output from the wind direction wind speed estimation unit 102 in the same manner as the wind speed time difference calculation unit 107.
The wind direction time difference calculation unit 108 applies the calculated wind direction time difference information to each range cell of the vector-added received signal output from the wind direction wind speed estimation unit 102, and the vector-added received signal is given to the wind direction time difference determination unit 110. Output to. The received signal after giving the vector that the wind direction time difference calculating unit 108 gives the wind direction time difference and outputs to the wind direction time difference determining unit 110 is also referred to as “the received signal after giving the wind direction time difference”. In addition to the wind direction time difference, the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind direction time difference is given.
 風速時間差判定部109は、風速時間差算出部107から出力された風速時間差付与後受信信号に付与されている風速時間差の情報に基づき、レンジセル毎に、当該レンジセルが、ブラストセルの候補となるレンジセル(以下「風速時間差ブラスト候補セル」という。)であるか否かを判定する。具体的には、風速時間差判定部109は、レンジセル毎に、当該レンジセルに付与されている風速時間差が、予め設定された閾値(以下「風速時間差判定用閾値」という。)を超えているか否かを判定する。風速時間差判定用閾値には、予め、ユーザ等によって、ブラストを判定するのに適した、風速の時間的な変化の値が設定されている。風速時間差判定部109は、レンジセルに付与されている風速時間差が風速時間差判定用閾値を超えている場合、当該レンジセルは風速時間差ブラスト候補セルであるとし、風速時間差ブラスト候補セルに、風速時間差ブラスト候補セルフラグを付与する。
 風速時間差判定部109は、風速時間差ブラスト候補セルに、風速時間差ブラスト候補セルフラグを付与した風速時間差付与後受信信号を、第2ブラスト検出部1052に出力する。風速時間差判定部109が風速時間差ブラスト候補セルフラグを付与して第2ブラスト検出部1052に出力する風速時間差付与後受信信号を、「風速時間差判定後受信信号」ともいう。風速時間差判定後受信信号において、風速時間差ブラスト候補セルには風速時間差ブラスト候補セルフラグが付与されている他、風速時間差判定後受信信号の各レンジセルには、モーメント情報、風速時間差の情報、風向値及び風速値も付与されている。なお、ここでは、風速時間差判定後受信信号において、風速時間差ブラスト候補セルには風速時間差ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風速時間差の情報、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風速時間差判定後受信信号の各レンジセルには、少なくとも、レンジセルが風速時間差ブラスト候補セルである場合の風速時間差ブラスト候補セルフラグと、風速時間差の情報が付与されていればよい。
The wind speed time difference determination unit 109 sets the range cell as a candidate for a blast cell for each range cell based on the wind speed time difference information given to the received signal after the wind speed time difference is applied, which is output from the wind speed time difference calculation unit 107. Hereinafter, it is determined whether or not the cell is a “wind speed time difference blast candidate cell”). Specifically, the wind speed time difference determination unit 109 determines whether or not the wind speed time difference assigned to the range cell exceeds a preset threshold value (hereinafter referred to as “wind speed time difference determination threshold value”) for each range cell. To judge. In the wind speed time difference determination threshold value, a value of a change in wind speed over time, which is suitable for determining blast, is set in advance by a user or the like. When the wind speed time difference given to the range cell exceeds the wind speed time difference determination threshold value, the wind speed time difference determination unit 109 determines that the range cell is a wind speed time difference blast candidate cell, and sets the wind speed time difference blast candidate cell as a wind speed time difference blast candidate cell. Add a cell flag.
The wind speed time difference determination unit 109 outputs the received signal after the wind speed time difference is applied to the wind speed time difference blast candidate cell with the wind speed time difference blast candidate cell flag added to the second blast detection unit 1052. The received signal after the wind speed time difference is given, which the wind speed time difference determining unit 109 adds the wind speed time difference blast candidate cell flag and outputs to the second blast detecting unit 1052, is also referred to as "the received signal after the wind speed time difference determination". In the received signal after the wind speed time difference judgment, the wind speed time difference blast candidate cell flag is given to the wind speed time difference blast candidate cell, and the moment information, the wind speed time difference information, the wind direction value and the wind direction value and each range cell of the received signal after the wind speed time difference judgment are given. The wind speed value is also given. Here, in the received signal after the wind speed time difference determination, the wind speed time difference blast candidate cell is given the wind speed time difference blast candidate cell flag, and the moment information, the wind speed time difference information, the wind direction value and the wind speed value are given to each range cell. However, this is only an example, and each range cell of the received signal after the wind speed time difference determination includes at least the wind speed time difference blast candidate cell flag when the range cell is the wind speed time difference blast candidate cell and the wind speed time difference information. Should be given.
 風向時間差判定部110は、風向時間差算出部108から出力された風向時間差付与後受信信号に付与されている風向時間差の情報に基づき、レンジセル毎に、当該レンジセルが、ブラストセルの候補となるレンジセル(以下「風向時間差ブラスト候補セル」という。)であるか否かを判定する。具体的には、風向時間差判定部110は、レンジセル毎に、当該レンジセルに付与されている風向時間差が、予め設定された閾値(以下「風向時間差判定用閾値」という。)を超えているか否かを判定する。風向時間差判定用閾値には、予め、ユーザ等によって、ブラストを判定するのに適した、風向の時間的な変化の値が設定されている。風向時間差判定部110は、レンジセルに付与されている風向時間差が風向時間差判定用閾値を超えている場合、当該レンジセルは風向時間差ブラスト候補セルであるとし、風向時間差ブラスト候補セルに、風向時間差ブラスト候補セルフラグを付与する。
 風向時間差判定部110は、風向時間差ブラスト候補セルに風向時間差ブラスト候補セルフラグを付与した風向時間差付与後受信信号を、第2ブラスト検出部1052に出力する。風向時間差判定部110が風向時間差ブラスト候補セルフラグを付与して第2ブラスト検出部1052に出力する風向時間差付与後受信信号を、「風向時間差判定後受信信号」ともいう。風向時間差判定後受信信号において、風向時間差ブラスト候補セルには風向時間差ブラスト候補セルフラグが付与されている他、風向時間差判定後受信信号の各レンジセルには、モーメント情報、風向時間差の情報、風向値及び風速値も付与されている。なお、ここでは、風向時間差判定後受信信号において、風向時間差ブラスト候補セルには風向時間差ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風向時間差、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風向時間差判定後受信信号の各レンジセルには、少なくとも、レンジセルが風向時間差ブラスト候補セルである場合の風向時間差ブラスト候補セルフラグと、風向時間差の情報が付与されていればよい。
The wind direction time difference determination unit 110 sets the range cell as a candidate for a blast cell for each range cell based on the information of the wind direction time difference given to the received signal after the wind direction time difference is applied, which is output from the wind direction time difference calculation unit 108. Hereinafter, it is determined whether or not the cell is a “wind direction time difference blast candidate cell”). Specifically, the wind direction time difference determination unit 110 determines whether or not the wind direction time difference given to the range cell exceeds a preset threshold value (hereinafter referred to as "wind direction time difference determination threshold value") for each range cell. To judge. In the threshold value for determining the wind direction time difference, a value of a change over time in the wind direction suitable for determining blast is set in advance by a user or the like. When the wind direction time difference given to the range cell exceeds the threshold value for determining the wind direction time difference, the wind direction time difference determination unit 110 determines that the range cell is a wind direction time difference blast candidate cell, and sets the wind direction time difference blast candidate cell to the wind direction time difference blast candidate cell. Add a cell flag.
The wind direction time difference determination unit 110 outputs the received signal after the wind direction time difference is given to the wind direction time difference blast candidate cell with the wind direction time difference blast candidate cell flag added to the second blast detection unit 1052. The wind direction time difference determination unit 110 assigns the wind direction time difference blast candidate cell flag and outputs the signal to the second blast detection unit 1052 after the wind direction time difference is applied, which is also referred to as a “wind direction time difference determination received signal”. In the received signal after determining the wind direction time difference, the wind direction time difference blast candidate cell flag is given to the wind direction time difference blast candidate cell, and each range cell of the received signal after determining the wind direction time difference has moment information, wind direction time difference information, wind direction value and The wind speed value is also given. Here, in the received signal after the wind direction time difference determination, the wind direction time difference blast candidate cell is given the wind direction time difference blast candidate cell flag, and the moment information, the wind direction time difference, the wind direction value and the wind speed value are given to each range cell. However, this is only an example, and at least the wind direction time difference blast candidate cell flag when the range cell is the wind direction time difference blast candidate cell and the information of the wind direction time difference are given to each range cell of the received signal after the wind direction time difference determination. It suffices if it is done.
 ブラスト検出部105aは、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出する。
 具体的には、ブラスト検出部105aの第2ブラスト検出部1052は、風速時間差判定部109から出力された風速時間差判定後受信信号と、風向時間差判定部110から出力された風向時間差判定後受信信号に基づき、ブラスト領域を検出する。第2ブラスト検出部1052は、風速時間差判定後受信信号における風速時間差ブラスト候補セルと、風向時間差判定後受信信号における風向時間差ブラスト候補セルの論理積を取り、風速時間差ブラスト候補セルであり、かつ、風向時間差ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。風速時間差ブラスト候補セルであり、かつ、風向時間差ブラスト候補セルであるブラストセルは、風速及び風向がともにブラストの特徴を有しているレンジセルである。
 なお、第2ブラスト検出部1052は、風速時間差ブラスト候補セル又は風向時間差ブラスト候補セルを、風速時間差ブラスト候補セルフラグ又は風向時間差ブラスト候補セルフラグによって判断すればよい。
The blast detection unit 105a detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
Specifically, the second blast detection unit 1052 of the blast detection unit 105a has a wind speed time difference determination reception signal output from the wind speed time difference determination unit 109 and a wind direction time difference determination reception signal output from the wind direction time difference determination unit 110. The blast area is detected based on. The second blast detection unit 1052 takes the logical product of the wind speed time difference blast candidate cell in the received signal after the wind speed time difference determination and the wind direction time difference blast candidate cell in the received signal after the wind direction time difference determination, and is a wind speed time difference blast candidate cell. A range cell, which is a wind direction time difference blast candidate cell, is detected as a blast cell. The blast cell, which is a wind speed time difference blast candidate cell and a wind direction time difference blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting.
The second blast detection unit 1052 may determine the wind speed time difference blast candidate cell or the wind direction time difference blast candidate cell by the wind speed time difference blast candidate cell flag or the wind direction time difference blast candidate cell flag.
 第2ブラスト検出部1052が、ブラストセルを検出する流れのイメージは、実施の形態1において、図4を用いて説明した、第1ブラスト検出部1051がブラストセルを検出する流れのイメージと同様である。ただし、風速時間差及び風向時間差は、風速及び風向の時間的な変化を抽出することから、検出されるブラストセルは、風速及び風向が時間的に急激に変化したレンジセルである。
 例えば、図4において、風速判定結果を風速時間差判定結果とし、風向判定結果を風向時間差判定結果として、風速ブラスト候補セル401aを風速時間差ブラスト候補セル、風向ブラスト候補セル402aを風向時間差ブラスト候補セルと読み替えれば、第2ブラスト検出部1052がブラストセルを検出する流れのイメージとなる。
The image of the flow in which the second blast detection unit 1052 detects the blast cell is the same as the image of the flow in which the first blast detection unit 1051 detects the blast cell described with reference to FIG. 4 in the first embodiment. is there. However, since the wind speed time difference and the wind direction time difference extract the temporal changes of the wind speed and the wind direction, the detected blast cell is a range cell in which the wind speed and the wind direction suddenly change in time.
For example, in FIG. 4, the wind speed determination result is the wind speed time difference determination result, the wind direction determination result is the wind direction time difference determination result, the wind speed blast candidate cell 401a is the wind speed time difference blast candidate cell, and the wind direction blast candidate cell 402a is the wind direction time difference blast candidate cell. In other words, it becomes an image of the flow in which the second blast detection unit 1052 detects the blast cell.
 第2ブラスト検出部1052は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。具体的には、第2ブラスト検出部1052は、各レンジセルに、少なくとも、ブラストセルであるか否かの情報を付与した受信信号を出力する。実施の形態2では、第2ブラスト検出部1052は、各レンジセルに、ブラストセルであるか否かの情報に加え、当該レンジセルがブラストセルの場合には風速時間差の情報及び風向時間差の情報を付与した受信信号を、出力するものとする。例えば、第2ブラスト検出部1052は、ドップラライダ装置2から出力された受信信号の各レンジセルに、ブラストセルであるか否かの情報と、風速時間差の情報及び風向時間差の情報を付与するようにすればよい。
 このように、第2ブラスト検出部1052は、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。
The second blast detection unit 1052 outputs the information regarding the detected blast region as the blast detection result. Specifically, the second blast detection unit 1052 outputs a reception signal to which at least information on whether or not the cell is a blast cell is added to each range cell. In the second embodiment, the second blast detection unit 1052 gives each range cell information on whether or not it is a blast cell, and if the range cell is a blast cell, information on the wind speed time difference and information on the wind direction time difference. The received signal shall be output. For example, the second blast detection unit 1052 adds information on whether or not the reception signal is a blast cell, information on the wind speed time difference, and information on the wind direction time difference to each range cell of the received signal output from the Doppler rider device 2. do it.
In this way, the second blast detection unit 1052 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
 実施の形態2に係る乱気流検出装置1aの動作について説明する。
 実施の形態2に係る乱気流検出装置1aの動作の概要は、実施の形態1において図5を用いて説明した、実施の形態1に係る乱気流検出装置1の動作の概要と同様であるため、重複した説明を省略する。
 図8は、実施の形態2に係る乱気流検出装置1aの、より具体的な動作について説明するためのフローチャートである。
 なお、図8のステップST801~ステップST802の具体的な動作は、実施の形態1で説明した、図6のステップST601~ステップST602の具体的な動作と同様であるため、重複した説明を省略する。
The operation of the turbulence detection device 1a according to the second embodiment will be described.
The outline of the operation of the eddy detection device 1a according to the second embodiment is the same as the outline of the operation of the eddy detection device 1 according to the first embodiment described with reference to FIG. 5 in the first embodiment. The explanation given is omitted.
FIG. 8 is a flowchart for explaining a more specific operation of the eddy detection device 1a according to the second embodiment.
Since the specific operations of steps ST801 to ST802 of FIG. 8 are the same as the specific operations of steps ST601 to ST602 of FIG. 6 described in the first embodiment, duplicate description will be omitted. ..
 風向風速推定部102は、ステップST802にて推定した風向値及び風速値を付与したベクトル付与後受信信号を、風向風速格納部106に格納する(ステップST803)。
 風速時間差算出部107は、ステップST802にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、各レンジセルについて、レンジセルの風速値と、当該ベクトル付与後受信信号の一走査前のベクトル付与後受信信号に基づくレンジセルの風速値との風速時間差を算出する(ステップST804)。
 風速時間差算出部107は、算出した風速時間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセルに付与した風速時間差付与後受信信号を、風速時間差判定部109に出力する。
The wind direction and wind speed estimation unit 102 stores the received signal after the vector addition to which the wind direction value and the wind speed value estimated in step ST802 are added in the wind direction and wind speed storage unit 106 (step ST803).
The wind speed time difference calculation unit 107 receives the wind speed value of the range cell and the reception after the vector is applied for each range cell based on the wind speed value assigned to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST802. The wind speed time difference from the wind speed value of the range cell based on the received signal after the vector is applied before one scanning of the signal is calculated (step ST804).
The wind speed time difference calculation unit 107 outputs the calculated wind speed time difference information to the wind speed time difference determination unit 109 after giving the calculated wind speed time difference information to each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102. To do.
 風速時間差判定部109は、ステップST804にて風速時間差算出部107から出力された風速時間差付与後受信信号に付与されている風速時間差の情報に基づき、レンジセル毎に、当該レンジセルが、風速時間差ブラスト候補セルであるか否かを判定する(ステップST805)。具体的には、風速時間差判定部109は、レンジセル毎に、当該レンジセルに付与されている風速時間差が風速時間差判定用閾値を超えているか否かを判定する。風速時間差判定部109は、レンジセルに付与されている風速時間差が風速時間差判定用閾値を超えている場合、当該レンジセルは風速時間差ブラスト候補セルであるとし、風速時間差ブラスト候補セルに、風速時間差ブラスト候補セルフラグを付与する。
 風速時間差判定部109は、風速時間差ブラスト候補セルに、風速時間差ブラスト候補セルフラグを付与した風速時間差判定後受信信号を、第2ブラスト検出部1052に出力する。
The wind speed time difference determination unit 109 selects the wind speed time difference blast candidate for each range cell based on the wind speed time difference information given to the received signal after the wind speed time difference is applied, which is output from the wind speed time difference calculation unit 107 in step ST804. It is determined whether or not the cell is a cell (step ST805). Specifically, the wind speed time difference determination unit 109 determines for each range cell whether or not the wind speed time difference given to the range cell exceeds the wind speed time difference determination threshold value. When the wind speed time difference given to the range cell exceeds the wind speed time difference determination threshold value, the wind speed time difference determination unit 109 determines that the range cell is a wind speed time difference blast candidate cell, and sets the wind speed time difference blast candidate cell as a wind speed time difference blast candidate cell. Add a cell flag.
The wind speed time difference determination unit 109 outputs the received signal after the wind speed time difference determination to which the wind speed time difference blast candidate cell flag is added to the wind speed time difference blast candidate cell to the second blast detection unit 1052.
 風向時間差算出部108は、ステップST802にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されているに風向値に基づき、各レンジセルについて、レンジセルの風向値と、当該ベクトル付与後受信信号の一走査前のベクトル付与後受信信号に基づくレンジセルの風向値との風向時間差を算出する(ステップST806)。
 風向時間差算出部108は、算出した風向時間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセルに付与した風向時間差付与後受信信号を、風向時間差判定部110に出力する。
The wind direction time difference calculation unit 108 adds the wind direction value of the range cell and the wind direction value of the range cell after the vector is applied to each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction wind speed estimation unit 102 in step ST802. The wind direction time difference from the wind direction value of the range cell based on the received signal after the vector is applied before one scan of the received signal is calculated (step ST806).
The wind direction time difference calculation unit 108 outputs the calculated wind direction time difference information to the wind direction time difference determination unit 110 after giving the calculated wind direction time difference information to each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102. To do.
 風向時間差判定部110は、ステップST806にて風向時間差算出部108から出力された風向時間差付与後受信信号に付与されている風向時間差の情報に基づき、レンジセル毎に、当該レンジセルが、風向時間差ブラスト候補セルであるか否かを判定する(ステップST807)。具体的には、風向時間差判定部110は、レンジセル毎に、当該レンジセルに付与されている風向時間差が、風向時間差判定用閾値を超えているか否かを判定する。風向時間差判定部110は、レンジセルに付与されている風向時間差が風向時間差判定用閾値を超えている場合、当該レンジセルは風向時間差ブラスト候補セルであるとし、風向時間差ブラスト候補セルに、風向時間差ブラスト候補セルフラグを付与する。
 風向時間差判定部110は、風向時間差ブラスト候補セルに風向時間差ブラスト候補セルフラグを付与した風向時間差判定後受信信号を、第2ブラスト検出部1052に出力する。
The wind direction time difference determination unit 110 selects the wind direction time difference blast candidate for each range cell based on the wind direction time difference information given to the received signal after the wind direction time difference is applied, which is output from the wind direction time difference calculation unit 108 in step ST806. It is determined whether or not it is a cell (step ST807). Specifically, the wind direction time difference determination unit 110 determines for each range cell whether or not the wind direction time difference given to the range cell exceeds the wind direction time difference determination threshold value. When the wind direction time difference given to the range cell exceeds the threshold value for determining the wind direction time difference, the wind direction time difference determination unit 110 determines that the range cell is a wind direction time difference blast candidate cell, and sets the wind direction time difference blast candidate cell to the wind direction time difference blast candidate cell. Add a cell flag.
The wind direction time difference determination unit 110 outputs the received signal after the wind direction time difference determination to which the wind direction time difference blast candidate cell flag is added to the wind direction time difference blast candidate cell to the second blast detection unit 1052.
 ブラスト検出部105aの第2ブラスト検出部1052は、ステップST805にて風速時間差判定部109から出力された風速時間差判定後受信信号と、ステップST807にて風向時間差判定部110から出力された風向時間差判定後受信信号に基づき、ブラスト領域を検出する(ステップST808)。
 具体的には、第2ブラスト検出部1052は、風速時間差判定後受信信号における風速時間差ブラスト候補セルと、風向時間差判定後受信信号における風向時間差ブラスト候補セルの論理積を取り、風速時間差ブラスト候補セルであり、かつ、風向時間差ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。
 第2ブラスト検出部1052は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。具体的には、第2ブラスト検出部1052は、各レンジセルに、少なくとも、ブラストセルであるか否かの情報と、当該レンジセルがブラストセルの場合には風速時間差及び風向時間差の情報を付与した受信信号を、出力する。
The second blast detection unit 1052 of the blast detection unit 105a receives the signal after the wind speed time difference determination output from the wind speed time difference determination unit 109 in step ST805 and the wind direction time difference determination output from the wind direction time difference determination unit 110 in step ST807. The blast region is detected based on the post-received signal (step ST808).
Specifically, the second blast detection unit 1052 takes the logical product of the wind speed time difference blast candidate cell in the received signal after the wind speed time difference determination and the wind direction time difference blast candidate cell in the received signal after the wind direction time difference determination, and obtains the wind speed time difference blast candidate cell. The range cell, which is a wind direction time difference blast candidate cell, is detected as a blast cell.
The second blast detection unit 1052 outputs the information regarding the detected blast region as the blast detection result. Specifically, the second blast detection unit 1052 receives at least information on whether or not the range cell is a blast cell, and if the range cell is a blast cell, information on the wind speed time difference and the wind direction time difference. Output the signal.
 図8において、ステップST804~ステップST805の処理と、ステップST806~ステップST807の処理を並列的に記載したが、ステップST804~ステップST805の処理と、ステップST806~ステップST807の処理は、逐次的に行われるようにしてもよい。 In FIG. 8, the processes of steps ST804 to ST805 and the processes of steps ST806 to ST807 are described in parallel, but the processes of steps ST804 to ST805 and the processes of steps ST806 to ST807 are sequentially performed. You may be asked.
 なお、以上の実施の形態2において、第2ブラスト検出部1052は、風速時間差ブラスト候補セルと風向時間差ブラスト候補セルの論理積を取って、ブラストセルを検出するようにしていたが、これは一例に過ぎない。例えば、第2ブラスト検出部1052は、風速時間差ブラスト候補セルと風向時間差ブラスト候補セルの論理和を取って、ブラストセルを検出するようにしてもよい。 In the second embodiment described above, the second blast detection unit 1052 detects the blast cell by taking the logical product of the wind speed time difference blast candidate cell and the wind direction time difference blast candidate cell. This is an example. It's just that. For example, the second blast detection unit 1052 may OR the wind speed time difference blast candidate cell and the wind direction time difference blast candidate cell to detect the blast cell.
 また、以上の実施の形態2において、風速時間差判定部109は、風速時間差ブラスト候補セルを判定した後、当該風速時間差ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。風速時間差判定部109は、実施の形態1にて説明した、風速判定部103が画像処理的な補正を行う方法と同様の方法で、画像処理的な補正を行えばよい。
 また、風向時間差判定部110は、風向時間差ブラスト候補セルを判定した後、当該風向時間差ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。風向時間差判定部110は、実施の形態1にて説明した、風向判定部104が画像処理的な補正を行う方法と同様の方法で、画像処理的な補正を行えばよい。
 風速時間差判定部109又は風向時間差判定部110が補正を行うようにすることで、風向値及び風速値推定の過程で発生する精度の劣化を抑えることができ、風速時間差ブラスト候補セル又は風向時間差ブラスト候補セルの見逃し等の発生を考慮した、ブラスト領域の検出が可能である。
Further, in the second embodiment, the wind speed time difference determination unit 109 may determine the wind speed time difference blast candidate cell and then perform image processing correction on the wind speed time difference blast candidate cell. The wind speed time difference determination unit 109 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind speed determination unit 103 performs image processing correction.
Further, the wind direction time difference determination unit 110 may determine the wind direction time difference blast candidate cell and then perform image processing correction on the wind direction time difference blast candidate cell. The wind direction time difference determination unit 110 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind direction determination unit 104 performs image processing correction.
By making the wind speed time difference determination unit 109 or the wind direction time difference determination unit 110 correct, it is possible to suppress the deterioration of the accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and the wind speed time difference blast candidate cell or the wind direction time difference blast. It is possible to detect the blast area in consideration of the occurrence of oversight of candidate cells.
 以上のように、実施の形態2によれば、乱気流検出装置1aは、観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するモーメント算出部101と、モーメント算出部101が算出したドップラ速度に基づき、レンジセル毎の風向値及び風速値を推定する風向風速推定部102と、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出するブラスト検出部105を備えるように構成した。より具体的には、実施の形態2において、乱気流検出装置1aは、風向風速推定部102が推定したレンジセル毎の風速値に基づき、レンジセル毎に、当該レンジセルの風速値と、一走査前の受信信号に基づくレンジセルの風速値との風速時間差を算出する風速時間差算出部107と、風向風速推定部102が推定したレンジセル毎の風向値に基づき、レンジセル毎に、当該レンジセルの風向値と、一走査前の受信信号に基づくレンジセルの風向値との風向時間差を算出する風向時間差算出部108と、レンジセル毎に、風速時間差算出部107が算出した風速時間差が風速時間差判定用閾値を超えている風速時間差ブラスト候補セルであるか否かを判定する風速時間差判定部109と、レンジセル毎に、風向時間差算出部108が算出した風向時間差が風向時間差判定用閾値を超えている風向時間差ブラスト候補セルであるか否かを判定する風向時間差判定部110とを備え、ブラスト検出部105aは、風速時間差判定部109が判定した風速時間差ブラスト候補セルと、風向時間差判定部110が判定した風向時間差ブラスト候補セルから、ブラスト領域を検出する第2ブラスト検出部1052を備えるように構成した。このような構成としても、乱気流検出装置1aは、実施の形態1に係る乱気流検出装置1同様、背景風を考慮して、ブラスト領域を検出することができる。 As described above, according to the second embodiment, the turbulence detection device 1a is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal. A moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101. The blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102. More specifically, in the second embodiment, the turbulence detection device 1a receives the wind speed value of the range cell and the reception one scan before each range cell based on the wind speed value of each range cell estimated by the wind direction wind speed estimation unit 102. Based on the wind speed time difference calculation unit 107 that calculates the wind speed time difference from the wind speed value of the range cell based on the signal, and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value of the range cell and one scan are performed for each range cell. The wind direction time difference calculation unit 108 that calculates the wind direction time difference from the wind direction value of the range cell based on the previous received signal, and the wind speed time difference calculated by the wind speed time difference calculation unit 107 for each range cell exceeds the wind speed time difference determination threshold. Whether the wind direction time difference blast candidate cell is a wind direction time difference determination unit 109 that determines whether or not the cell is a blast candidate cell, and a wind direction time difference calculation unit 108 that exceeds the wind direction time difference determination threshold for each range cell. A wind direction time difference determination unit 110 for determining whether or not the wind direction time difference is determined, and the blast detection unit 105a is composed of a wind direction time difference blast candidate cell determined by the wind speed time difference determination unit 109 and a wind direction time difference blast candidate cell determined by the wind direction time difference determination unit 110. It is configured to include a second blast detection unit 1052 for detecting a blast region. Even with such a configuration, the eddy detection device 1a can detect the blast region in consideration of the background wind, like the eddy detection device 1 according to the first embodiment.
 実施の形態3.
 実施の形態1では、乱気流検出装置1は、風向及び風速の絶対的な値によりブラスト領域を判定していた。
 ブラスト領域は、ブラストセルと、ブラストセル以外のレンジセルとの境界を抽出することでも、推定できる。そこで、実施の形態3では、風向及び風速の空間変化も広義のブラストとし、風向及び風速の空間変化によってブラストセルとブラストセル以外のレンジセルとの境界を抽出することで、ブラスト領域を検出する実施の形態について説明する。
Embodiment 3.
In the first embodiment, the eddy detection device 1 determines the blast region based on the absolute values of the wind direction and the wind speed.
The blast region can also be estimated by extracting the boundary between the blast cell and the range cell other than the blast cell. Therefore, in the third embodiment, the spatial change of the wind direction and the wind speed is also defined as blast in a broad sense, and the blast region is detected by extracting the boundary between the blast cell and the range cell other than the blast cell by the spatial change of the wind direction and the wind speed. The form of is described.
 実施の形態3に係る乱気流検出装置1bも、実施の形態1に係る乱気流検出装置1同様、一例として、ドップラライダ装置2に搭載されるものとする。
 乱気流検出装置1bを搭載したドップラライダ装置2の構成例は、実施の形態1において、図2を用いて説明したドップラライダ装置2の構成例と同様であるため、重複した説明を省略する。
 乱気流検出装置1bは、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。実施の形態3において、ブラスト強度とは、ブラストの風速の空間的変化をいう。
The eddy turbulence detection device 1b according to the third embodiment is also mounted on the doppler rider device 2 as an example, like the eddy turbulence detection device 1 according to the first embodiment.
Since the configuration example of the Doppler rider device 2 equipped with the turbulence detection device 1b is the same as the configuration example of the Doppler rider device 2 described with reference to FIG. 2 in the first embodiment, duplicate description will be omitted.
The eddy detection device 1b outputs information on the blast region and the blast intensity as a result of detecting the blast region. In the third embodiment, the blast intensity refers to a spatial change in the wind speed of the blast.
 図9は、実施の形態3に係る乱気流検出装置1bの構成例を示す図である。
 図9において、実施の形態1にて図3を用いて説明した乱気流検出装置1の構成と同様の構成については、同じ符号を付して重複した説明を省略する。
 実施の形態3に係る乱気流検出装置1bは、実施の形態1に係る乱気流検出装置1とは、風速空間差算出部111、風向空間差算出部112、風速空間差判定部113、及び、風向空間差判定部114を備える点が異なる。また、実施の形態3に係る乱気流検出装置1bは、実施の形態1に係る乱気流検出装置1とは、ブラスト検出部105bが第3ブラスト検出部1053を備える点が異なる。また、実施の形態3に係る乱気流検出装置1bは、実施の形態1に係る乱気流検出装置1が備えていた、風速判定部103、風向判定部104、及び、第1ブラスト検出部1051をいずれも備えない。
FIG. 9 is a diagram showing a configuration example of the turbulence detection device 1b according to the third embodiment.
In FIG. 9, the same reference numerals are given to the same configurations as those of the turbulence detection device 1 described with reference to FIG. 3 in the first embodiment, and duplicate description will be omitted.
The eddy airflow detection device 1b according to the third embodiment is different from the turbulence detection device 1 according to the first embodiment in the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space. The difference is that the difference determination unit 114 is provided. Further, the eddy detection device 1b according to the third embodiment is different from the eddy detection device 1 according to the first embodiment in that the blast detection unit 105b includes a third blast detection unit 1053. Further, the eddy detection device 1b according to the third embodiment includes the wind speed determination unit 103, the wind direction determination unit 104, and the first blast detection unit 1051 provided in the eddy detection device 1 according to the first embodiment. I don't prepare.
 風速空間差算出部111は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、各レンジセルについて、レンジセル(以下「注目レンジセル」という。)の風速値と、当該注目レンジセルの周辺のレンジセル(以下「周辺レンジセル」という。)の風速値との差(以下「風速空間差」という。)を算出する。具体例を挙げると、例えば、風速空間差算出部111は、注目レンジセルに隣接する8レンジセルを周辺レンジセルとし、注目レンジセルの風速値と周辺レンジセルの風速値の平均値との差を算出し、算出した差を、風速空間差とする。
 図10は、実施の形態3において、周辺レンジセルを注目セルに隣接する8レンジセルとした場合の、注目レンジセル及び周辺レンジセルのイメージを説明する図である。
The wind speed space difference calculation unit 111 sets the wind speed value of the range cell (hereinafter referred to as “attention range cell”) for each range cell based on the wind speed value given to the received signal after adding the vector output from the wind direction wind speed estimation unit 102. , The difference (hereinafter referred to as "wind speed space difference") from the wind speed value of the range cell around the attention range cell (hereinafter referred to as "peripheral range cell") is calculated. To give a specific example, for example, the wind speed spatial difference calculation unit 111 uses eight range cells adjacent to the range cell of interest as peripheral range cells, and calculates and calculates the difference between the wind speed value of the range cell of interest and the average value of the wind speed values of the peripheral range cells. The difference is the wind speed space difference.
FIG. 10 is a diagram illustrating an image of the attention range cell and the peripheral range cell when the peripheral range cell is an 8-range cell adjacent to the attention cell in the third embodiment.
 なお、ここでは、風速空間差算出部111は、注目レンジセルの風速値と周辺レンジセルの風速値の平均値との差を算出し、算出した差を、風速空間差とするものとしたが、これは一例に過ぎない。風速空間差算出部111は、注目レンジセルの風速値と周辺レンジセルの風速値の中央値との差を風速空間差として算出するようにしてもよい。風速空間差算出部111が、どのように風速空間差を算出するかは、適宜設定可能である。
 また、ここでは、具体例として、風速空間差算出部111が、周辺レンジセルを、注目レンジセルに隣接する8レンジセルとする例を挙げたが、これは一例に過ぎない。例えば、風速空間差算出部111は、周辺レンジセルを、注目レンジセルに隣接する4レンジセルとしてもよいし、風速空間差算出部111は、ガードセルを設け、注目レンジセルから1レンジセル分離れたレンジセルの平均値又は中央値との差を、風速空間差として算出するようにしてもよい。風速空間差算出部111がどのレンジセルを周辺レンジセルとするかは、適宜設定可能である。
Here, the wind speed space difference calculation unit 111 calculates the difference between the wind speed value of the range cell of interest and the average value of the wind speed values of the surrounding range cells, and the calculated difference is taken as the wind speed space difference. Is just an example. The wind speed space difference calculation unit 111 may calculate the difference between the wind speed value of the range cell of interest and the median wind speed value of the peripheral range cells as the wind speed space difference. How the wind speed space difference calculation unit 111 calculates the wind speed space difference can be appropriately set.
Further, here, as a specific example, the wind speed spatial difference calculation unit 111 gives an example in which the peripheral range cell is an 8-range cell adjacent to the range cell of interest, but this is only an example. For example, the wind speed space difference calculation unit 111 may set the peripheral range cell as a 4-range cell adjacent to the attention range cell, or the wind speed space difference calculation unit 111 may provide a guard cell and the average value of the range cells separated by one range cell from the attention range cell. Alternatively, the difference from the median value may be calculated as the wind speed space difference. Which range cell the wind speed spatial difference calculation unit 111 uses as the peripheral range cell can be appropriately set.
 風速空間差算出部111は、算出した風速空間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセル、言い換えれば、各注目レンジセルに付与して、当該ベクトル付与後受信信号を、風速空間差判定部113に出力する。風速空間差算出部111が風速空間差の情報を付与して風速空間差判定部113に出力するベクトル付与後受信信号を、「風速空間差付与後受信信号」ともいう。なお、風速空間差付与後受信信号の各レンジセルには、風速空間差の情報の他、風向値、風速値、及び、モーメント情報も付与されている。 The wind speed space difference calculation unit 111 applies the calculated wind speed space difference information to each range cell of the received signal after vector addition output from the wind direction wind speed estimation unit 102, in other words, to each attention range cell, and after the vector is added. The received signal is output to the wind speed space difference determination unit 113. The received signal after the vector addition, which the wind speed space difference calculation unit 111 adds the wind speed space difference information and outputs to the wind speed space difference determination unit 113, is also referred to as a “receive signal after the wind speed space difference is applied”. In addition to the wind speed space difference information, the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind speed space difference is given.
 風向空間差算出部112は、風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風向値に基づき、各レンジセルについて、注目レンジセルの風向値と、当該注目レンジセルの周辺レンジセルの風向値の平均値との差(以下「風向空間差」という。)を算出する。風向空間差は、基本的に、劣角で表わされるものとする。 The wind direction space difference calculation unit 112 sets the wind direction value of the range cell of interest and the peripheral range cells of the range cell of interest for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction and speed estimation unit 102. The difference from the average value of the wind direction value (hereinafter referred to as "wind direction space difference") is calculated. The wind direction space difference is basically represented by a subordinate angle.
 なお、ここでは、風向空間差算出部112は、注目レンジセルの風向値と周辺レンジセルの風向値の平均値との差を算出し、算出した差を、風向空間差とするものとしたが、これは一例に過ぎない。風向空間差算出部112は、注目レンジセルの風向値と周辺レンジセルの風向値の中央値との差を風向空間差として算出するようにしてもよい。風向空間差算出部112が、どのように風向空間差を算出するかは、適宜設定可能である。
 また、ここでは、具体例として、風向空間差算出部112が、周辺レンジセルを、注目レンジセルに隣接する8レンジセルとする例を挙げたが、これは一例に過ぎない。例えば、風向空間差算出部112は、周辺レンジセルを、注目レンジセルに隣接する4レンジセルとしてもよいし、風向空間差算出部112は、ガードセルを設け、注目レンジセルから1レンジセル分離れたレンジセルの平均値又は中央値との差を、風向空間差として算出するようにしてもよい。風向空間差算出部112がどのレンジセルを周辺レンジセルとするかは、適宜設定可能である。
Here, the wind direction space difference calculation unit 112 calculates the difference between the wind direction value of the range cell of interest and the average value of the wind direction values of the surrounding range cells, and the calculated difference is taken as the wind direction space difference. Is just an example. The wind direction space difference calculation unit 112 may calculate the difference between the wind direction value of the range cell of interest and the median wind direction value of the surrounding range cells as the wind direction space difference. How the wind direction space difference calculation unit 112 calculates the wind direction space difference can be appropriately set.
Further, here, as a specific example, the wind direction space difference calculation unit 112 gives an example in which the peripheral range cell is an 8-range cell adjacent to the range cell of interest, but this is only an example. For example, the wind direction space difference calculation unit 112 may use the peripheral range cells as four range cells adjacent to the attention range cell, or the wind direction space difference calculation unit 112 may provide a guard cell and mean the average value of the range cells separated by one range cell from the attention range cell. Alternatively, the difference from the median value may be calculated as the wind direction space difference. Which range cell the wind direction space difference calculation unit 112 uses as the peripheral range cell can be appropriately set.
 風向空間差算出部112は、算出した風向空間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセル、言い換えれば、各注目レンジセルに付与して、当該ベクトル付与後受信信号を、風向空間差判定部114に出力する。風向空間差算出部112が風向空間差の情報を付与して風向空間差判定部114に出力するベクトル付与後受信信号を、「風向空間差付与後受信信号」ともいう。なお、風向空間差付与後受信信号の各レンジセルには、風向空間差の情報の他、風向値、風速値、及び、モーメント情報も付与されている。 The wind direction space difference calculation unit 112 applies the calculated wind direction space difference information to each range cell of the received signal after vector addition output from the wind direction wind speed estimation unit 102, in other words, to each attention range cell, and after the vector is added. The received signal is output to the wind direction space difference determination unit 114. The received signal after giving the vector that the wind direction space difference calculating unit 112 adds the information of the wind direction space difference and outputs it to the wind direction space difference determining unit 114 is also referred to as “the received signal after giving the wind direction space difference”. In addition to the wind direction space difference information, the wind direction value, the wind speed value, and the moment information are also given to each range cell of the received signal after the wind direction space difference is given.
 風速空間差判定部113は、風速空間差算出部111から出力された風速空間差付与後受信信号に付与されている風速空間差の情報に基づき、レンジセル毎に、当該レンジセルが、ブラストセルの候補となるレンジセル(以下「風速空間差ブラスト候補セル」)であるか否かを判定する。具体的には、風速空間差判定部113は、レンジセル毎に、当該レンジセルに付与されている風速空間差が、予め設定された閾値(以下「風速空間差判定用閾値」という。)を超えているか否かを判定する。風速空間差判定用基準値には、予め、ユーザ等によって、ブラストを判定するのに適した、風速の空間的な変化の値が設定されている。風速空間差判定部113は、レンジセルに付与されている風速空間差が風速空間差判定用閾値を超えている場合、当該レンジセルは風速空間差ブラスト候補セルであるとし、風速空間差ブラスト候補セルに、風速空間差ブラスト候補セルフラグを付与する。 The wind speed space difference determination unit 113 selects the range cell as a blast cell candidate for each range cell based on the wind speed space difference information given to the received signal after the wind speed space difference is applied, which is output from the wind speed space difference calculation unit 111. It is determined whether or not the cell is a range cell (hereinafter, “wind speed space difference blast candidate cell”). Specifically, in the wind speed space difference determination unit 113, the wind speed space difference given to the range cell for each range cell exceeds a preset threshold value (hereinafter referred to as “wind speed space difference determination threshold value”). Judge whether or not. In the wind speed spatial difference determination reference value, a value of a spatial change in wind speed suitable for determining blast is set in advance by a user or the like. When the wind speed space difference given to the range cell exceeds the wind speed space difference determination threshold value, the wind speed space difference determination unit 113 determines that the range cell is a wind speed space difference blast candidate cell and sets it as a wind speed space difference blast candidate cell. , Wind speed space difference Blast candidate Cell flag is added.
 風速空間差判定部113は、風速空間差ブラスト候補セルに、風速空間差ブラスト候補セルフラグを付与した風速空間差付与後受信信号を、第3ブラスト検出部1053に出力する。風速空間差判定部113が風速空間差ブラスト候補セルフラグを付与して第3ブラスト検出部1053に出力する風速空間差付与後受信信号を、「風速空間差判定後受信信号」ともいう。風速空間差判定後受信信号において、風速空間差ブラスト候補セルには風速空間差ブラスト候補セルフラグが付与されている他、風速空間差判定後受信信号の各レンジセルには、モーメント情報、風速空間差の情報、風向値及び風速値も付与されている。なお、ここでは、風速空間差判定後受信信号において、風速空間差ブラスト候補セルには風速空間差ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風速空間差の情報、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風速空間差判定後受信信号の各レンジセルには、少なくとも、レンジセルが風速空間差ブラスト候補セルである場合の風速空間差ブラスト候補セルフラグと、風速空間差の情報が付与されていればよい。 The wind speed space difference determination unit 113 outputs the received signal after the wind speed space difference is given to the wind speed space difference blast candidate cell with the wind speed space difference blast candidate cell flag added to the third blast detection unit 1053. The received signal after the wind speed space difference is given, which the wind speed space difference determining unit 113 adds the wind speed space difference blast candidate cell flag and outputs to the third blast detecting unit 1053, is also referred to as “the received signal after the wind speed space difference determination”. In the received signal after the wind speed space difference judgment, the wind speed space difference blast candidate cell is given the wind speed space difference blast candidate cell flag, and each range cell of the received signal after the wind speed space difference judgment has moment information and wind speed space difference. Information, wind direction value and wind speed value are also given. Here, in the received signal after the wind speed space difference determination, the wind speed space difference blast candidate cell is given the wind speed space difference blast candidate cell flag, and each range cell is given moment information, wind speed space difference information, wind direction value, and wind speed. It is assumed that a value is given, but this is only an example, and each range cell of the received signal after the wind speed space difference determination is at least a wind speed space difference blast candidate when the range cell is a wind speed space difference blast candidate cell. It suffices if the cell flag and the information on the wind speed space difference are added.
 風向空間差判定部114は、風向空間差算出部112から出力された風向空間差付与後受信信号に付与されている風向空間差の情報に基づき、レンジセル毎に、当該レンジセルが、ブラストセルの候補となるレンジセル(以下「風向空間差ブラスト候補セル」という。)であるか否かを判定する。具体的には、風向空間差判定部114は、レンジセル毎に、当該レンジセルに付与されている風向空間差が、予め設定された閾値(以下「風向空間差判定用閾値」という。)を超えているか否かを判定する。風向空間差判定用閾値には、予め、ユーザ等によって、ブラストを判定するのに適した、風向の空間的な変化の値が設定されている。風向空間差判定部114は、レンジセルに付与されている風向空間差が風向空間差判定用閾値を超えている場合、当該レンジセルは風向空間差ブラスト候補セルであるとし、風向空間差ブラスト候補セルに、風向空間差ブラスト候補セルフラグを付与する。 The wind direction space difference determination unit 114 selects the range cell as a blast cell candidate for each range cell based on the wind direction space difference information given to the received signal after the wind direction space difference is applied, which is output from the wind direction space difference calculation unit 112. It is determined whether or not the cell is a range cell (hereinafter referred to as "wind direction space difference blast candidate cell"). Specifically, in the wind direction space difference determination unit 114, the wind direction space difference given to the range cell for each range cell exceeds a preset threshold value (hereinafter referred to as “wind direction space difference determination threshold value”). Judge whether or not. In the threshold value for determining the difference in wind direction space, a value of a spatial change in wind direction suitable for determining blast is set in advance by a user or the like. When the wind direction space difference given to the range cell exceeds the threshold value for determining the wind direction space difference, the wind direction space difference determination unit 114 determines that the range cell is a wind direction space difference blast candidate cell and sets it as a wind direction space difference blast candidate cell. , Wind direction space difference Blast candidate Cell flag is added.
 風向空間差判定部114は、風向空間差ブラスト候補セルに風向空間差ブラスト候補セルフラグを付与した風向空間差付与後受信信号を、第3ブラスト検出部1053に出力する。風向空間差判定部114が風向空間差ブラスト候補セルフラグを付与して第3ブラスト検出部1053に出力する風向空間差付与後受信信号を、「風向空間差判定後受信信号」ともいう。風向空間差判定後受信信号において、風向空間差ブラスト候補セルには風向空間差ブラスト候補セルフラグが付与されている他、風向空間差判定後受信信号の各レンジセルには、モーメント情報、風向空間差の情報、風向値及び風速値も付与されている。なお、ここでは、風向空間差判定後受信信号において、風向空間差ブラスト候補セルには風向空間差ブラスト候補セルフラグが付与され、各レンジセルには、モーメント情報、風向空間差、風向値及び風速値が付与されているものとするが、これは一例に過ぎず、風向空間差判定後受信信号の各レンジセルには、少なくとも、レンジセルが風向空間差ブラスト候補セルである場合の風向空間差ブラスト候補セルフラグと、風向空間差の情報が付与されていればよい。 The wind direction space difference determination unit 114 outputs the received signal after the wind direction space difference is given to the wind direction space difference blast candidate cell with the wind direction space difference blast candidate cell flag added to the third blast detection unit 1053. The received signal after the wind direction space difference is given and output to the third blast detecting unit 1053 by the wind direction space difference determining unit 114 with the wind direction space difference blast candidate cell flag is also referred to as a “received signal after the wind direction space difference determination”. In the received signal after determining the wind direction space difference, the wind direction space difference blast candidate cell is given the wind direction space difference blast candidate cell flag, and each range cell of the received signal after determining the wind direction space difference has moment information and wind direction space difference. Information, wind direction and velocity values are also given. Here, in the received signal after determining the wind direction space difference, the wind direction space difference blast candidate cell is given the wind direction space difference blast candidate cell flag, and the moment information, the wind direction space difference, the wind direction value, and the wind speed value are added to each range cell. Although it is assumed that this is given, this is only an example, and each range cell of the received signal after the wind direction space difference determination has at least a wind direction space difference blast candidate cell flag when the range cell is a wind direction space difference blast candidate cell. , Information on the difference in wind direction and space may be added.
 ブラスト検出部105bは、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出する。
 ブラスト検出部105bの第3ブラスト検出部1053は、風速空間差判定部113から出力された風速空間差判定後受信信号と、風向空間差判定部114から出力された風向空間差判定後受信信号に基づき、ブラスト領域を検出する。
 具体的には、第3ブラスト検出部1053は、風速空間差判定後受信信号における風速空間差ブラスト候補セルと、風向空間差判定後受信信号における風向空間差ブラスト候補セルの論理積を取り、風速空間差ブラスト候補セルであり、かつ、風向空間差ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。風速空間差ブラスト候補セルであり、かつ、風向空間差ブラスト候補セルであるブラストセルは、風速及び風向がともにブラストの特徴を有しているレンジセルである。
 なお、第3ブラスト検出部1053は、風速空間差ブラスト候補セル又は風向空間差ブラスト候補セルを、風速空間差ブラスト候補セルフラグ又は風向空間差ブラスト候補セルフラグによって判断すればよい。
The blast detection unit 105b detects the blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction wind speed estimation unit 102.
The third blast detection unit 1053 of the blast detection unit 105b uses the wind speed space difference determination unit 113 output as the wind speed space difference determination signal and the wind direction space difference determination unit 114 as the wind direction space difference determination signal. Based on this, the blast area is detected.
Specifically, the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell in the received signal after the wind speed space difference determination and the wind direction space difference blast candidate cell in the received signal after the wind direction space difference determination, and obtains the wind speed. A range cell that is a spatial difference blast candidate cell and is a wind direction spatial difference blast candidate cell is detected as a blast cell. The blast cell, which is a wind speed space difference blast candidate cell and a wind direction space difference blast candidate cell, is a range cell in which both the wind speed and the wind direction have the characteristics of blasting.
The third blast detection unit 1053 may determine the wind speed space difference blast candidate cell or the wind direction space difference blast candidate cell by the wind speed space difference blast candidate cell flag or the wind direction space difference blast candidate cell flag.
 第3ブラスト検出部1053が、ブラストセルを検出する流れのイメージは、実施の形態1において、図4を用いて説明した、第1ブラスト検出部1051がブラストセルを検出する流れのイメージと同様である。ただし、風速空間差及び風向空間差は、風速及び風向の空間的な変化を抽出することから、検出されるブラストセルは、ブラスト領域と非ブラスト領域の境界が強調される傾向を有する点が図4と異なる可能性がある。
 例えば、図4において、風速判定結果を風速空間差判定結果とし、風向判定結果を風向空間差判定結果として、風速ブラスト候補セル401aを風速空間差ブラスト候補セル、風向ブラスト候補セル402aを風向空間差ブラスト候補セルと読み替えれば、第3ブラスト検出部1053がブラストセルを検出する流れのイメージとなる。
The image of the flow in which the third blast detection unit 1053 detects the blast cell is the same as the image of the flow in which the first blast detection unit 1051 detects the blast cell described with reference to FIG. 4 in the first embodiment. is there. However, since the wind speed space difference and the wind direction space difference extract the spatial changes in the wind speed and the wind direction, the detected blast cell tends to emphasize the boundary between the blast region and the non-blast region. It may be different from 4.
For example, in FIG. 4, the wind speed determination result is the wind speed space difference determination result, the wind direction determination result is the wind direction space difference determination result, the wind speed blast candidate cell 401a is the wind speed space difference blast candidate cell, and the wind direction blast candidate cell 402a is the wind direction space difference. If it is read as a blast candidate cell, it becomes an image of the flow in which the third blast detection unit 1053 detects the blast cell.
 第3ブラスト検出部1053は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。具体的には、第3ブラスト検出部1053は、各レンジセルに、少なくとも、ブラストセルであるか否かの情報と、ブラストセルには風速空間差の情報及び風向空間差の情報を付与した受信信号を、出力する。例えば、第3ブラスト検出部1053は、ドップラライダ装置2から出力された受信信号の各レンジセルに、ブラストセルであるか否かの情報と、風速空間差の情報及び風向空間差の情報を付与するようにすればよい。
 このように、第3ブラスト検出部1053は、ブラスト領域を検出した結果として、ブラスト領域及びブラスト強度に関する情報を出力する。
The third blast detection unit 1053 outputs information about the detected blast region as a blast detection result. Specifically, the third blast detection unit 1053 gives each range cell at least information on whether or not it is a blast cell, and the blast cell is a reception signal in which information on the wind speed space difference and information on the wind direction space difference are added. Is output. For example, the third blast detection unit 1053 adds information on whether or not the reception signal is a blast cell, information on the wind speed space difference, and information on the wind direction space difference to each range cell of the received signal output from the Doppler rider device 2. You can do it like this.
In this way, the third blast detection unit 1053 outputs information on the blast region and the blast intensity as a result of detecting the blast region.
 実施の形態3に係る乱気流検出装置1bの動作について説明する。
 実施の形態3に係る乱気流検出装置1bの動作の概要は、実施の形態1において図5を用いて説明した、実施の形態1に係る乱気流検出装置1の動作の概要と同様であるため、重複した説明を省略する。
The operation of the turbulence detection device 1b according to the third embodiment will be described.
The outline of the operation of the eddy detection device 1b according to the third embodiment is the same as the outline of the operation of the eddy detection device 1 according to the first embodiment described with reference to FIG. 5 in the first embodiment. The explanation given is omitted.
 図11は、実施の形態3に係る乱気流検出装置1bの、より具体的な動作について説明するためのフローチャートである。
 なお、図11のステップST1101~ステップST1102の具体的な動作は、実施の形態1で説明した、図6のステップST601~ステップST602の具体的な動作と同様であるため、重複した説明を省略する。
 風速空間差算出部111は、ステップST1102にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風速値に基づき、各レンジセルについて、注目レンジセルの風速値と、当該注目レンジセルの周辺レンジセルの風速値との風速空間差を算出する(ステップST1103)。
 風速空間差算出部111は、算出した風速空間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセル、言い換えれば、各注目レンジセルに付与した風速空間差付与後受信信号を、風速空間差判定部113に出力する。
FIG. 11 is a flowchart for explaining a more specific operation of the turbulence detection device 1b according to the third embodiment.
Since the specific operations of steps ST1101 to ST1102 of FIG. 11 are the same as the specific operations of steps ST601 to ST602 of FIG. 6 described in the first embodiment, duplicate description will be omitted. ..
The wind speed space difference calculation unit 111 sets the wind speed value of the range cell of interest and the range cell of interest for each range cell based on the wind speed value given to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102 in step ST1102. The wind speed space difference from the wind speed value of the peripheral range cell of is calculated (step ST1103).
The wind speed space difference calculation unit 111 receives the calculated wind speed space difference information in each range cell of the received signal after giving the vector output from the wind direction wind speed estimation unit 102, in other words, after giving the wind speed space difference given to each attention range cell. The signal is output to the wind speed space difference determination unit 113.
 風速空間差判定部113は、ステップST1103にて風速空間差算出部111から出力された風速空間差付与後受信信号に付与されている風速空間差の情報に基づき、レンジセル毎に、当該レンジセルが風速空間差ブラスト候補セルであるか否かを判定する(ステップST1104)。具体的には、風速空間差判定部113は、レンジセル毎に、当該レンジセルに付与されている風速空間差が風速空間差判定用閾値を超えているか否かを判定する。風速空間差判定部113は、レンジセルに付与されている風速空間差が風速空間差判定用閾値を超えている場合、当該レンジセルは風速空間差ブラスト候補セルであるとし、風速空間差ブラスト候補セルに、風速空間差ブラスト候補セルフラグを付与する。
 風速空間差判定部113は、風速空間差ブラスト候補セルに、風速空間差ブラスト候補セルフラグを付与した風速空間差判定後受信信号を、第3ブラスト検出部1053に出力する。
The wind speed space difference determination unit 113 uses the wind speed of the range cell for each range cell based on the information of the wind speed space difference added to the received signal after the wind speed space difference is applied, which is output from the wind speed space difference calculation unit 111 in step ST1103. It is determined whether or not the cell is a spatial difference blast candidate cell (step ST1104). Specifically, the wind speed space difference determination unit 113 determines for each range cell whether or not the wind speed space difference imparted to the range cell exceeds the wind speed space difference determination threshold value. When the wind speed space difference given to the range cell exceeds the wind speed space difference determination threshold value, the wind speed space difference determination unit 113 determines that the range cell is a wind speed space difference blast candidate cell and sets it as a wind speed space difference blast candidate cell. , Wind speed space difference Blast candidate Cell flag is added.
The wind speed space difference determination unit 113 outputs the received signal after the wind speed space difference determination to which the wind speed space difference blast candidate cell flag is added to the wind speed space difference blast candidate cell to the third blast detection unit 1053.
 風向空間差算出部112は、ステップST1102にて風向風速推定部102から出力されたベクトル付与後受信信号に付与されている風向値に基づき、各レンジセルについて、注目レンジセルの風向値と、当該注目レンジセルの周辺レンジセルの風向値と風向空間差を算出する(ステップST1105)。
 風向空間差算出部112は、算出した風向空間差の情報を、風向風速推定部102から出力されたベクトル付与後受信信号の各レンジセル、言い換えれば、各注目レンジセルに付与した風向空間差付与後受信信号を、風向空間差判定部114に出力する。
The wind direction space difference calculation unit 112 sets the wind direction value of the range cell of interest and the range cell of interest for each range cell based on the wind direction value given to the received signal after the vector is applied, which is output from the wind direction and wind speed estimation unit 102 in step ST1102. The wind direction value and the wind direction space difference of the peripheral range cells of the above are calculated (step ST1105).
The wind direction space difference calculation unit 112 receives the calculated wind direction space difference information in each range cell of the vector-added reception signal output from the wind direction wind speed estimation unit 102, in other words, after the wind direction space difference is given to each attention range cell. The signal is output to the wind direction space difference determination unit 114.
 風向空間差判定部114は、ステップST1105にて風向空間差算出部112から出力された風向空間差付与後受信信号に付与されている風向空間差の情報に基づき、レンジセル毎に、当該レンジセルが風向空間差ブラスト候補セルであるか否かを判定する(ステップST1106)。具体的には、風向空間差判定部114は、レンジセル毎に、当該レンジセルに付与されている風向空間差が、風向空間差判定用閾値を超えているか否かを判定する。風向空間差判定部114は、レンジセルに付与されている風向空間差が風向空間差判定用閾値を超えている場合、当該レンジセルは風向空間差ブラスト候補セルであるとし、風向空間差ブラスト候補セルに、風向空間差ブラスト候補セルフラグを付与する。
 風向空間差判定部114は、風向空間差ブラスト候補セルに風向空間差ブラスト候補セルフラグを付与した風向空間差判定後受信信号を、第3ブラスト検出部1053に出力する。
The wind direction space difference determination unit 114 sets the wind direction of each range cell based on the information of the wind direction space difference added to the received signal after the wind direction space difference is applied, which is output from the wind direction space difference calculation unit 112 in step ST1105. It is determined whether or not the cell is a spatial difference blast candidate cell (step ST1106). Specifically, the wind direction space difference determination unit 114 determines for each range cell whether or not the wind direction space difference given to the range cell exceeds the threshold value for determining the wind direction space difference. When the wind direction space difference given to the range cell exceeds the threshold value for determining the wind direction space difference, the wind direction space difference determination unit 114 determines that the range cell is a wind direction space difference blast candidate cell and sets it as a wind direction space difference blast candidate cell. , Wind direction space difference Blast candidate Cell flag is added.
The wind direction space difference determination unit 114 outputs the received signal after the wind direction space difference determination to which the wind direction space difference blast candidate cell flag is added to the wind direction space difference blast candidate cell to the third blast detection unit 1053.
 ブラスト検出部105bの第3ブラスト検出部1053は、ステップST1104にて風速空間差判定部113から出力された風速空間差判定後受信信号と、ステップST1106にて風向空間差判定部114から出力された風向空間差判定後受信信号に基づき、ブラスト領域を検出する(ステップST1107)。
 具体的には、第3ブラスト検出部1053は、風速空間差判定後受信信号における風速空間差ブラスト候補セルと、風向空間差判定後受信信号における風向空間差ブラスト候補セルの論理積を取り、風速空間差ブラスト候補セルであり、かつ、風向空間差ブラスト候補セルであるレンジセルを、ブラストセルとして検出する。
 第3ブラスト検出部1053は、検出したブラスト領域に関する情報を、ブラスト検出結果として、出力する。具体的には、第3ブラスト検出部1053は、各レンジセルに、少なくとも、ブラストセルであるか否かの情報を付与した受信信号を出力する。実施の形態3では、第3ブラスト検出部1053は、各レンジセルに、ブラストセルであるか否かの情報に加え、当該レンジセルがブラストセルの場合には風速空間差の情報及び風向空間差の情報を付与した受信信号を、出力するものとする。
The third blast detection unit 1053 of the blast detection unit 105b is the signal received after the wind speed space difference determination 113 output from the wind speed space difference determination unit 113 in step ST1104, and the wind direction space difference determination unit 114 output from the wind direction space difference determination unit 114 in step ST1106. After determining the wind direction space difference, the blast region is detected based on the received signal (step ST1107).
Specifically, the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell in the received signal after the wind speed space difference determination and the wind direction space difference blast candidate cell in the received signal after the wind direction space difference determination, and obtains the wind speed. A range cell that is a spatial difference blast candidate cell and is a wind direction spatial difference blast candidate cell is detected as a blast cell.
The third blast detection unit 1053 outputs information about the detected blast region as a blast detection result. Specifically, the third blast detection unit 1053 outputs a reception signal to which at least information on whether or not the cell is a blast cell is added to each range cell. In the third embodiment, the third blast detection unit 1053 adds information on whether or not the range cell is a blast cell, and when the range cell is a blast cell, information on the wind speed space difference and information on the wind direction space difference. It is assumed that the received signal to which is added is output.
 図11において、ステップST1103~ステップST1104の処理と、ステップST1105~ステップST1106の処理を並列的に記載したが、ステップST1103~ステップST1104の処理と、ステップST1105~ステップST1106の処理は、逐次的に行われるようにしてもよい。 In FIG. 11, the processes of steps ST1103 to ST1104 and the processes of steps ST1105 to ST1106 are described in parallel, but the processes of steps ST1103 to ST1104 and the processes of steps ST1105 to ST1106 are sequentially performed. You may be asked.
 なお、以上の実施の形態3において、第3ブラスト検出部1053は、風速空間差ブラスト候補セルと風向空間差ブラスト候補セルの論理積を取って、ブラストセルを検出するようにしていたが、これは一例に過ぎない。例えば、第3ブラスト検出部1053は、風速空間差ブラスト候補セルと風向空間差ブラスト候補セルの論理和を取って、ブラストセルを検出するようにしてもよい。 In the above-described third embodiment, the third blast detection unit 1053 takes the logical product of the wind speed space difference blast candidate cell and the wind direction space difference blast candidate cell to detect the blast cell. Is just an example. For example, the third blast detection unit 1053 may OR the wind speed space difference blast candidate cell and the wind direction space difference blast candidate cell to detect the blast cell.
 また、以上の実施の形態3において、風速空間差判定部113は、風速空間差ブラスト候補セルを判定した後、当該風速空間差ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。風速空間差判定部113は、実施の形態1にて説明した、風速判定部103が画像処理的な補正を行う方法と同様の方法で、画像処理的な補正を行えばよい。
 また、風向空間差判定部114は、風向空間差ブラスト候補セルを判定した後、当該風向空間差ブラスト候補セルに、画像処理的な補正を行うようにしてもよい。風向空間差判定部114は、実施の形態1にて説明した、風向判定部104が画像処理的な補正を行う方法と同様の方法で、画像処理的な補正を行えばよい。
 風速空間差判定部113又は風向空間差判定部114が補正を行なうようにすることで、風向値及び風速値推定の過程で発生する精度の劣化を抑えることができ、風速空間差ブラスト候補セル又は風向空間差ブラスト候補セルの見逃し等の発生を考慮した、ブラスト領域の検出が可能である。
Further, in the third embodiment, the wind speed space difference determination unit 113 may determine the wind speed space difference blast candidate cell and then perform image processing correction on the wind speed space difference blast candidate cell. .. The wind speed spatial difference determination unit 113 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind speed determination unit 103 performs image processing correction.
Further, the wind direction space difference determination unit 114 may determine the wind direction space difference blast candidate cell and then perform image processing correction on the wind direction space difference blast candidate cell. The wind direction space difference determination unit 114 may perform image processing correction in the same manner as the method described in the first embodiment in which the wind direction determination unit 104 performs image processing correction.
By causing the wind speed space difference determination unit 113 or the wind direction space difference determination unit 114 to make corrections, it is possible to suppress deterioration in accuracy that occurs in the process of estimating the wind direction value and the wind speed value, and the wind speed space difference blast candidate cell or It is possible to detect the blast region in consideration of the occurrence of oversight of the wind direction space difference blast candidate cell.
 以上のように、実施の形態3によれば、乱気流検出装置1bは、観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するモーメント算出部101と、モーメント算出部101が算出したドップラ速度に基づき、レンジセル毎の風向値及び風速値を推定する風向風速推定部102と、風向風速推定部102が推定した、レンジセル毎の風向値及び風速値に基づき、観測領域におけるブラスト領域を検出するブラスト検出部105を備えるように構成した。より具体的には、実施の形態3において、乱気流検出装置1bは、風向風速推定部102が測定したレンジセル毎の風速値に基づき、レンジセル毎に、当該レンジセルの風速値と、当該レンジセルの周辺のレンジセルの風速値との風速空間差を算出する風速空間差算出部111と、風向風速推定部102が推定したレンジセル毎の風向値に基づき、レンジセル毎に、当該レンジセルの風向値と、当該レンジセルの周辺のレンジセルの風向値との風向空間差を算出する風向空間差算出部112と、レンジセル毎に、風速空間差算出部111が算出した風速空間差が風速空間差判定用閾値を超えている風速空間差ブラスト候補セルであるか否かを判定する風速空間差判定部113と、レンジセル毎に、風向空間差算出部112が算出した風向空間差が風向空間差判定用閾値を超えている風向ブラスト空間差候補セルであるか否かを判定する風向空間差判定部114とを備え、ブラスト検出部105bは、風速空間差判定部113が判定した風速空間差ブラスト候補セルと、風向空間差判定部114が判定した風向空間差ブラスト候補セルから、ブラスト領域を検出する第3ブラスト検出部1053を備えるように構成した。このような構成としても、乱気流検出装置1aは、実施の形態1に係る乱気流検出装置1同様、背景風を考慮して、ブラスト領域を検出することができる。 As described above, according to the third embodiment, the turbulence detection device 1b is based on the received signal based on the wave motion radiated to the observation region and reflected in the atmosphere of the observation region, in the range direction of the observation region and based on the received signal. A moment calculation unit 101 that calculates the Doppler speed for each range cell divided in the azimuth direction, and a wind direction wind speed estimation unit 102 that estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit 101. The blast detecting unit 105 for detecting the blast region in the observation region is provided based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit 102. More specifically, in the third embodiment, the turbulence detection device 1b is based on the wind speed value for each range cell measured by the wind direction wind speed estimation unit 102, and for each range cell, the wind speed value of the range cell and the surroundings of the range cell. Based on the wind speed space difference calculation unit 111 that calculates the wind speed space difference from the wind speed value of the range cell and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit 102, the wind direction value of the range cell and the wind direction value of the range cell The wind speed space difference calculation unit 112 that calculates the wind direction space difference from the wind direction value of the surrounding range cells, and the wind speed space difference calculated by the wind speed space difference calculation unit 111 for each range cell exceeds the wind speed space difference determination threshold. The wind speed space difference determination unit 113 that determines whether or not the cell is a space difference blast candidate cell, and the wind direction space difference calculation unit 112 that determines the wind speed space difference for each range cell exceeds the wind direction space difference determination threshold. A wind direction space difference determination unit 114 for determining whether or not the cell is a space difference candidate cell is provided, and the blast detection unit 105b includes a wind speed space difference blast candidate cell determined by the wind speed space difference determination unit 113 and a wind direction space difference determination unit. It is configured to include a third blast detection unit 1053 that detects a blast region from the wind direction space difference blast candidate cell determined by 114. Even with such a configuration, the eddy detection device 1a can detect the blast region in consideration of the background wind, like the eddy detection device 1 according to the first embodiment.
 以上の実施の形態1~実施の形態3では、乱気流検出装置1,1a,1bは、風速ブラスト候補セル、風向ブラスト候補セル、風速時間差ブラスト候補セル、風向時間差ブラスト候補セル、風速空間差ブラスト候補セル、又は、風向空間差ブラスト候補セルの判定を行った後に、風速ブラスト候補セル、風向ブラスト候補セル、風速時間差ブラスト候補セル、風向時間差ブラスト候補セル、風速空間差ブラスト候補セル、又は、風向空間差ブラスト候補セルに対して補正を行うことで、風向値及び風速値の推定時の精度劣化の影響を低減可能にしていた。しかし、これに限らず、乱気流検出装置1,1a,1bにおいて、風向風速推定部102が風向値及び風速値を推定する過程において、風向値及び風速値の推定精度の劣化に繋がるレンジセルを除くようにしてもよい。 In the above-described first to third embodiments, the turbulence detection devices 1, 1a and 1b include wind speed blast candidate cells, wind direction blast candidate cells, wind speed time difference blast candidate cells, wind direction time difference blast candidate cells, and wind speed space difference blast candidates. After determining the cell or the wind direction space difference blast candidate cell, the wind speed blast candidate cell, the wind direction blast candidate cell, the wind speed time difference blast candidate cell, the wind direction time difference blast candidate cell, the wind speed space difference blast candidate cell, or the wind direction space. By correcting the difference blast candidate cells, it was possible to reduce the effect of accuracy deterioration when estimating the wind direction value and wind speed value. However, not limited to this, in the eddy detection devices 1, 1a, 1b, in the process of estimating the wind direction value and the wind speed value by the wind direction wind speed estimation unit 102, the range cell that leads to the deterioration of the estimation accuracy of the wind direction value and the wind speed value should be excluded. It may be.
 航空機のエンジン高度上には、例えば、風向風速計測用の鉄塔又は建造物の他、他の航空機又は特殊車両等の物体が存在することがあり、当該物体がドップラライダ装置2の観測の障害となる場合がある。例えば、あるレンジセルに他の航空機機体からの反射信号が混入した場合、当該レンジセルの観測値は、航空機機体を反映したものとなり、風向風速推定部102による、当該レンジセルを用いた風向値及び風速値の推定結果は、異常な値となり得る。
 そこで、風向風速推定部102が、風向値及び風速値の推定に不要な物体からの応答が混入しているレンジセルを除去した上で、風向値及び風速値を推定する構成とするようにしてもよい。以下、風向値及び風速値の推定に不要な物体を、単に「不要な物体」という。
On the engine altitude of an aircraft, for example, in addition to a steel tower or a structure for measuring wind direction and wind speed, an object such as another aircraft or a special vehicle may exist, and the object causes an obstacle to observation of the Doppler rider device 2. May become. For example, when a reflection signal from another aircraft body is mixed in a certain range cell, the observed value of the range cell reflects the aircraft body, and the wind direction wind speed estimation unit 102 uses the range cell to obtain the wind direction value and the wind speed value. The estimation result of can be an abnormal value.
Therefore, even if the wind direction and wind speed estimation unit 102 is configured to estimate the wind direction value and the wind speed value after removing the range cell in which the response from the object unnecessary for estimating the wind direction value and the wind speed value is mixed. Good. Hereinafter, an object that is unnecessary for estimating the wind direction value and the wind speed value is simply referred to as an "unnecessary object".
 図12は、実施の形態1~実施の形態3に係る乱気流検出装置1,1a,1bにおいて、不要な物体からの応答が混入しているレンジセルを除去した上で、風向値及び風速値を推定するようにした風向風速推定部102aの構成例を示す図である。
 なお、図12では、説明の簡単のため、風向風速推定部102a以外の、乱気流検出装置1,1a,1bの構成部の記載は省略している。
 風向風速推定部102aは、不要セル抑圧部1021を備える。
 不要セル抑圧部1021は、モーメント算出部101から出力されたモーメント付与後受信信号について、モーメント算出部101が算出したモーメント情報を用いて、不要なレンジセルの判定を行い、不要と判定したレンジセルを抑圧した結果を出力する。
 風向風速推定部102aは、不要セル抑圧部1021が不要なレンジセルを抑圧した後の各レンジセルについて、モーメント算出部101が算出したドップラ速度を用いて、レンジセル毎の風向値及び風速値を推定する。
FIG. 12 shows that in the eddy detection devices 1, 1a and 1b according to the first to third embodiments, the wind direction value and the wind speed value are estimated after removing the range cell in which the response from an unnecessary object is mixed. It is a figure which shows the structural example of the wind direction wind speed estimation unit 102a which made it so.
Note that, in FIG. 12, for the sake of simplicity, the description of the components of the eddy detection devices 1, 1a, 1b other than the wind direction and wind speed estimation unit 102a is omitted.
The wind direction wind speed estimation unit 102a includes an unnecessary cell suppression unit 1021.
The unnecessary cell suppression unit 1021 determines unnecessary range cells by using the moment information calculated by the moment calculation unit 101 for the received signal after applying the moment output from the moment calculation unit 101, and suppresses the range cells determined to be unnecessary. The result is output.
The wind direction / wind speed estimation unit 102a estimates the wind direction value and the wind speed value for each range cell by using the Doppler velocity calculated by the moment calculation unit 101 for each range cell after the unnecessary cell suppression unit 1021 suppresses the unnecessary range cell.
 図13は、実施の形態1~実施の形態3において、風向風速推定部102aが不要セル抑圧部1021を備えるようにした場合の、不要セル抑圧部1021の動作を説明するための図である。
 なお、図13は、ある一視線のデータのイメージを示しており、図13において、上段は信号強度、下段はドップラ速度を模式的にあらわしている。信号強度の図及びドップラ速度の図において、横軸は、レンジ方向をあらわす。上述したような、風向値及び風速値を推定する際に不要となる物体は、信号強度の値の増加となってあらわれる。
FIG. 13 is a diagram for explaining the operation of the unnecessary cell suppression unit 1021 when the wind direction wind speed estimation unit 102a is provided with the unnecessary cell suppression unit 1021 in the first to third embodiments.
Note that FIG. 13 shows an image of data of a certain line of sight. In FIG. 13, the upper row schematically shows the signal strength and the lower row shows the Doppler speed. In the signal strength diagram and the Doppler velocity diagram, the horizontal axis represents the range direction. Objects that are unnecessary when estimating the wind direction value and the wind speed value as described above appear as an increase in the value of the signal strength.
 不要セル抑圧部1021は、不要な物体からの応答が混入している不要なレンジセルを、低反射物と高反射物の2つに分けて、検出する。
 不要な物体が、空間的な広がりの小さい物体である場合、当該物体は、比較的低い強度値を有することが多い。そこで、不要セル抑圧部1021は、空間的な広がりが小さい、不要な物体を、低反射物を抽出するための、予め設定された閾値(以下「低反射物抽出用閾値」という。)を用いて、検出する。
 一方、不要な物体が、航空機機体等、空間的な広がりの大きい物体である場合、当該物体は、比較的高い強度値を有することが多い。そこで、不要セル抑圧部1021は、空間的な広がりが大きい、不要な物体を、高反射物を抽出するための、予め設定された閾値(以下「高反射物抽出用閾値」という。)を用いて、検出する。
The unnecessary cell suppression unit 1021 detects an unnecessary range cell in which a response from an unnecessary object is mixed, by dividing it into a low-reflecting object and a high-reflecting object.
When the unnecessary object is an object having a small spatial spread, the object often has a relatively low intensity value. Therefore, the unnecessary cell suppression unit 1021 uses a preset threshold value (hereinafter referred to as "low reflector extraction threshold value") for extracting a low-reflecting object from an unnecessary object having a small spatial spread. To detect.
On the other hand, when the unnecessary object is an object having a large spatial expanse such as an aircraft body, the object often has a relatively high intensity value. Therefore, the unnecessary cell suppression unit 1021 uses a preset threshold value (hereinafter referred to as "high reflector extraction threshold value") for extracting a highly reflective object from an unnecessary object having a large spatial spread. To detect.
 不要セル抑圧部1021は、レンジセルの信号強度が、低反射物抽出用閾値のみを超える場合(図13のA参照)、当該レンジセルのドップラ速度の値を、無効値化する。このとき、不要セル抑圧部1021は、当該レンジセルの周囲に有効なレンジセルが存在する場合は、有効レンジセルのドップラ速度を用いてドップラ速度の値を補間する。有効なレンジセルとは、不要な物体による影響がなく、また、十分な信号対雑音電力比が得られているレンジセルのことをいう。以下、有効なレンジセルのことを、「有効レンジセル」という。不要セル抑圧部1021は、例えば、信号強度が低反射物抽出用閾値のみを超えるレンジセルのドップラ速度の値を、周囲の有効レンジセルのドップラ速度の値の平均値又は中央値で置き換えることで、ドップラ速度の値の補間を行えばよい。 When the signal strength of the range cell exceeds only the threshold value for extracting low reflectors (see A in FIG. 13), the unnecessary cell suppression unit 1021 invalidates the value of the Doppler speed of the range cell. At this time, when an effective range cell exists around the range cell, the unnecessary cell suppression unit 1021 interpolates the value of the Doppler speed using the Doppler speed of the effective range cell. An effective range cell is a range cell that is not affected by unnecessary objects and has a sufficient signal-to-noise power ratio. Hereinafter, an effective range cell is referred to as an "effective range cell". The unnecessary cell suppression unit 1021 replaces, for example, the value of the Doppler velocity of the range cell whose signal intensity exceeds only the threshold value for extracting low reflectors with the average value or the median value of the Doppler velocity values of the surrounding effective range cells. The velocity values may be interpolated.
 レンジセルの信号強度が高反射物抽出用閾値を超える場合、一般に、複数のレンジセルが連なっていることが多く、また、信号強度が高反射物抽出用閾値を超えるレンジセル以遠は、ドップラライダ装置2のビームが遮蔽され、無効になっていることが多い。
 そこで、不要セル抑圧部1021は、レンジセルの信号強度が、高反射物抽出用閾値を超える場合(図13のB参照)、当該レンジセル及び当該レンジセル以遠のレンジセルのドップラ速度の値を全て無効値化する。このとき、不要セル抑圧部1021は、信号強度が高反射物抽出用閾値を超えるレンジセルの周囲に有効レンジセルが存在する場合は、信号強度が高反射物抽出用閾値を超えるレンジセルのドップラ速度の値を補間する。不要セル抑圧部1021は、信号強度が高反射物抽出用閾値を超えるレンジセルのドップラ速度の値の補間を、上述した、信号強度が低反射物抽出用閾値のみを超えるレンジセルのドップラ速度の値の補間と同様の方法で、行えばよい。不要セル抑圧部1021は、信号強度が高反射物抽出用閾値を超えるレンジセルの周囲に有効レンジセルが存在しない場合は、不要セル抑圧部1021は、信号強度が高反射物抽出用閾値を超えるレンジセルのドップラ速度の値を無効値とする。
When the signal intensity of the range cell exceeds the threshold value for extracting high-reflecting material, in general, a plurality of range cells are often connected, and when the signal strength exceeds the threshold value for extracting high-reflecting material, the range cell beyond the range cell is the Doppler rider device 2. The beam is often blocked and disabled.
Therefore, when the signal intensity of the range cell exceeds the threshold value for extracting high reflectors (see B in FIG. 13), the unnecessary cell suppression unit 1021 invalidates all the values of the Doppler speed of the range cell and the range cell beyond the range cell. To do. At this time, the unnecessary cell suppression unit 1021 is the value of the Doppler speed of the range cell whose signal intensity exceeds the high reflector extraction threshold when there is an effective range cell around the range cell whose signal intensity exceeds the high reflector extraction threshold. Interpolate. The unnecessary cell suppression unit 1021 interpolates the value of the Doppler velocity of the range cell whose signal intensity exceeds the threshold value for extracting high-reflecting substances, and the value of the Doppler velocity of the range cell whose signal intensity exceeds only the threshold value for extracting low-reflecting objects described above. It may be performed in the same manner as the interpolation. When there is no effective range cell around the range cell whose signal intensity exceeds the high-reflecting object extraction threshold value, the unnecessary cell suppression unit 1021 of the unnecessary cell suppression unit 1021 of the range cell whose signal intensity exceeds the high-reflecting object extraction threshold value. The value of Doppler speed is invalid.
 不要セル抑圧部1021は、ドップラ速度の値を無効値としたレンジセルの情報を、不要と判定したレンジセルを抑圧した結果として、出力する。
 風向風速推定部102aは、不要セル抑圧部1021がドップラ速度の値を無効値としたレンジセルは、風向値及び風速値の推定処理の対象外とする。
The unnecessary cell suppression unit 1021 outputs the information of the range cell in which the value of the Doppler speed is an invalid value as a result of suppressing the range cell determined to be unnecessary.
The wind direction wind speed estimation unit 102a excludes range cells in which the unnecessary cell suppression unit 1021 has an invalid value of the Doppler speed value, which is not subject to the wind direction value and wind speed value estimation processing.
 以上のように、乱気流検出装置1,1a,1bにおいて、風向風速推定部102aが不要セル抑圧部1021を備える構成とし、不要セル抑圧部1021が、レンジセルの信号強度値を用いて不要なレンジセルを判定し、不要と判定したレンジセル、又は、不要と判定したレンジセル以遠のレンジセルのドップラ速度の値を無効値化するようにしてもよい。このような構成とすることで、乱気流検出装置1,1a,1bは、風向値及び風速値を推定するのに不要なレンジセルを用いて風向値及び風速値の推定を行う機会を低減し、風向値及び風速値の推定結果の精度劣化を低減することができる。また、不要セル抑圧部1021は、ドップラ速度値を無効値化したレンジセルの周囲に、ドップラ速度の値が有効なレンジセルがある場合は、当該有効なレンジセルのドップラ速度を用いて、ドップラ速度の値を補間するようにしたので、乱気流検出装置1,1a,1bは、風向風速推定部102aが風向値及び風速値の推定を行うことが不可能なレンジセルを低減でき、結果として、ブラスト領域の検出の精度劣化を低減できる。 As described above, in the eddy airflow detection devices 1, 1a and 1b, the wind direction wind speed estimation unit 102a is configured to include the unnecessary cell suppression unit 1021, and the unnecessary cell suppression unit 1021 uses the signal strength value of the range cell to generate an unnecessary range cell. The value of the Doppler speed of the range cell determined to be unnecessary and the range cell beyond the range cell determined to be unnecessary may be invalidated. With such a configuration, the eddy detection devices 1, 1a and 1b reduce the chances of estimating the wind direction value and the wind speed value by using a range cell unnecessary for estimating the wind direction value and the wind speed value, and reduce the wind direction. It is possible to reduce the deterioration of the accuracy of the estimation results of the value and the wind speed value. Further, when the unnecessary cell suppression unit 1021 has a range cell in which the value of the Doppler speed is valid around the range cell in which the Doppler speed value is invalidated, the value of the Doppler speed is used by using the Doppler speed of the valid range cell. The eddy airflow detection devices 1, 1a and 1b can reduce the range cells in which the wind direction wind speed estimation unit 102a cannot estimate the wind direction value and the wind speed value, and as a result, detect the blast region. It is possible to reduce the deterioration of accuracy.
 また、以上の実施の形態1~実施の形態3では、乱気流検出装置1のブラスト検出部105が第1ブラスト検出部1051、乱気流検出装置1aのブラスト検出部105aが第2ブラスト検出部1052、乱気流検出装置1bのブラスト検出部105bが第3ブラスト検出部1053を、備える構成について説明したが、これは一例に過ぎない。ブラスト検出部105,105a,105bは、第1ブラスト検出部1051、第2ブラスト検出部1052、又は、第3ブラスト検出部1053を組み合わせて備えるようにすることもできる。
 具体例を挙げると、例えば、乱気流検出装置1において、ブラスト検出部105は、第1ブラスト検出部1051及び第2ブラスト検出部1052を備えるようにすることができる。ブラスト検出部105は、さらに、第3ブラスト検出部1053も備えるようにしてもよい。
 但し、乱気流検出装置1,1a,1bにおいて、ブラスト検出部105,105a,105bが、第1ブラスト検出部1051を備えるようにする場合、乱気流検出装置1,1a,1bは、実施の形態1にて説明した、風速判定部103及び風向判定部104の機能も備えるようにする。また、乱気流検出装置1,1a,1bにおいて、ブラスト検出部105,105a,105bが、第2ブラスト検出部1052を備えるようにする場合、乱気流検出装置1,1a,1bは、実施の形態2にて説明した、風速時間差算出部107、風向時間差算出部108、風速時間差判定部109及び風向時間差判定部110の機能も備えるようにする。また、乱気流検出装置1,1a,1bにおいて、ブラスト検出部105,105a,105bが、第3ブラスト検出部1053を備えるようにする場合、乱気流検出装置1,1a,1bは、実施の形態3にて説明した、風速空間差算出部111、風向空間差算出部112、風速空間差判定部113及び風向空間差判定部114の機能も備えるようにする。
Further, in the above-described first to third embodiments, the blast detection unit 105 of the eddy detection device 1 is the first blast detection unit 1051, the blast detection unit 105a of the eddy detection device 1a is the second blast detection unit 1052, and the eddy airflow. The configuration in which the blast detection unit 105b of the detection device 1b includes the third blast detection unit 1053 has been described, but this is only an example. The blast detection units 105, 105a, 105b may be provided in combination with the first blast detection unit 1051, the second blast detection unit 1052, or the third blast detection unit 1053.
To give a specific example, for example, in the eddy detection device 1, the blast detection unit 105 may include a first blast detection unit 1051 and a second blast detection unit 1052. The blast detection unit 105 may further include a third blast detection unit 1053.
However, in the eddy detection devices 1, 1a, 1b, when the blast detection units 105, 105a, 105b include the first blast detection unit 1051, the eddy detection devices 1, 1a, 1b are in the first embodiment. The functions of the wind speed determination unit 103 and the wind direction determination unit 104 described above are also provided. Further, in the eddy detection devices 1, 1a, 1b, when the blast detection units 105, 105a, 105b are provided with the second blast detection unit 1052, the eddy detection devices 1, 1a, 1b are described in the second embodiment. The functions of the wind speed time difference calculation unit 107, the wind direction time difference calculation unit 108, the wind speed time difference determination unit 109, and the wind direction time difference determination unit 110 described above are also provided. Further, in the turbulence detection devices 1, 1a, 1b, when the blast detection units 105, 105a, 105b include the third blast detection unit 1053, the eddy detection devices 1, 1a, 1b are described in the third embodiment. The functions of the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space difference determination unit 114 described above are also provided.
 また、以上の実施の形態1~実施の形態3では、乱気流検出装置1は、種々の観測装置に搭載されることを前提としたが、これは一例に過ぎず、乱気流検出装置1は、単体で用いられるものとしてもよい。 Further, in the above-described first to third embodiments, it is assumed that the eddy detection device 1 is mounted on various observation devices, but this is only an example, and the eddy detection device 1 is a single unit. It may be used in.
 図14A,図14Bは、実施の形態1~実施の形態3に係る乱気流検出装置1,1a,1bのハードウェア構成の一例を示す図である。
 実施の形態1~実施の形態3において、モーメント算出部101と、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114の機能は、処理回路1401により実現される。すなわち、乱気流検出装置1,1a,1bは、ドップラライダ装置2が空港面内の観測領域を観測するためにビームを送受信した結果得られた受信信号を用いて、観測領域内におけるブラスト領域を検出する制御を行うための処理回路1401を備える。
 処理回路1401は、図14Aに示すように専用のハードウェアであっても、図14Bに示すようにメモリ1406に格納されるプログラムを実行するCPU(Central Processing Unit)1405であってもよい。
14A and 14B are diagrams showing an example of the hardware configuration of the eddy detection devices 1, 1a and 1b according to the first to third embodiments.
In the first to third embodiments, the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, and the wind speed time difference. Calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, wind speed space difference determination unit 113, The function of the wind direction space difference determination unit 114 is realized by the processing circuit 1401. That is, the eddy detection devices 1, 1a, 1b detect the blast area in the observation area by using the received signal obtained as a result of the Doppler rider device 2 transmitting and receiving the beam to observe the observation area in the airport plane. A processing circuit 1401 for performing control is provided.
The processing circuit 1401 may be dedicated hardware as shown in FIG. 14A, or may be a CPU (Central Processing Unit) 1405 that executes a program stored in the memory 1406 as shown in FIG. 14B.
 処理回路1401が専用のハードウェアである場合、処理回路1401は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。 When the processing circuit 1401 is dedicated hardware, the processing circuit 1401 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). Gate Array) or a combination of these is applicable.
 処理回路1401がCPU1405の場合、モーメント算出部101と、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114の機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせにより実現される。すなわち、モーメント算出部101と、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114は、HDD(Hard Disk Drive)1402、メモリ1406等に記憶されたプログラムを実行するCPU1405、又はシステムLSI(Large-Scale Integration)等の処理回路により実現される。また、HDD1402、又はメモリ1406等に記憶されたプログラムは、モーメント算出部101と、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114の手順や方法をコンピュータに実行させるものであるとも言える。ここで、メモリ1406とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)等が該当する。 When the processing circuit 1401 is the CPU 1405, the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, and the wind speed time difference calculation unit 107. , Wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, wind speed space difference determination unit 113, and wind direction space difference. The function of the determination unit 114 is realized by software, firmware, or a combination of software and firmware. That is, the moment calculation unit 101, the wind direction / wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, the wind speed time difference calculation unit 107, and the wind direction time difference calculation unit. The 108, the wind speed time difference determination unit 109, the wind direction time difference determination unit 110, the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space difference determination unit 114 are HDDs. It is realized by a processing circuit such as (Hard Disc Drive) 1402, a CPU 1405 that executes a program stored in a memory 1406 or the like, or a system LSI (Large-Scale Integration). The programs stored in the HDD 1402, the memory 1406, or the like include the moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, and the blast detection units 105, 105a, 105b. , Wind speed time difference calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, and wind speed space difference determination. It can be said that the procedure and method of the unit 113 and the wind direction space difference determination unit 114 are executed by the computer. Here, the memory 1406 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Online Memory), an EEPROM (Electric Optical Memory), etc. A sexual or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versaille Disc), or the like is applicable.
 なお、モーメント算出部101と、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、モーメント算出部101については専用のハードウェアとしての処理回路1401でその機能を実現し、風向風速推定部102,102aと、風速判定部103と、風向判定部104と、ブラスト検出部105,105a,105bと、風速時間差算出部107と、風向時間差算出部108と、風速時間差判定部109と、風向時間差判定部110と、風速空間差算出部111と、風向空間差算出部112と、風速空間差判定部113と、風向空間差判定部114については処理回路がメモリ1406に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 また、風向風速格納部106は、メモリ1406を使用する。なお、これは一例であって、風向風速格納部106は、HDD1402、SSD(Solid State Drive)、又は、DVD等によって構成されるものであってもよい。
 また、乱気流検出装置1,1a,1bは、ドップラライダ装置2等の外部の装置との通信を行う、入力インタフェース装置1403、及び、出力インタフェース装置1404を有する。
The moment calculation unit 101, the wind direction wind speed estimation units 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, the blast detection units 105, 105a, 105b, the wind speed time difference calculation unit 107, and the wind direction time difference calculation unit. About the functions of 108, the wind speed time difference determination unit 109, the wind direction time difference determination unit 110, the wind speed space difference calculation unit 111, the wind direction space difference calculation unit 112, the wind speed space difference determination unit 113, and the wind direction space difference determination unit 114. , A part may be realized by dedicated hardware, and a part may be realized by software or firmware. For example, the moment calculation unit 101 realizes its function by the processing circuit 1401 as dedicated hardware, and the wind direction wind speed estimation unit 102, 102a, the wind speed determination unit 103, the wind direction determination unit 104, and the blast detection unit 105, 105a, 105b, wind speed time difference calculation unit 107, wind direction time difference calculation unit 108, wind speed time difference determination unit 109, wind direction time difference determination unit 110, wind speed space difference calculation unit 111, wind direction space difference calculation unit 112, and wind speed. The functions of the space difference determination unit 113 and the wind direction space difference determination unit 114 can be realized by the processing circuit reading and executing the program stored in the memory 1406.
Further, the wind direction and speed storage unit 106 uses the memory 1406. This is just an example, and the wind direction and speed storage unit 106 may be composed of an HDD 1402, an SSD (Solid State Drive), a DVD, or the like.
Further, the eddy detection devices 1, 1a and 1b include an input interface device 1403 and an output interface device 1404 that communicate with an external device such as the Doppler rider device 2.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, in the present invention, within the scope of the invention, any combination of each embodiment, modification of any component of each embodiment, or omission of any component in each embodiment is possible. ..
 この発明に係る乱気流検出装置は、背景風を考慮して、ブラスト領域を検出するように構成したため、例えば、空港面において、航空機に搭載されたジェットエンジンから噴射されるエンジン排気を検出する乱気流検出装置に適用することができる。 Since the eddy turbulence detection device according to the present invention is configured to detect the blast region in consideration of the background wind, for example, the eddy turbulence detection for detecting the engine exhaust gas injected from the jet engine mounted on the aircraft on the airport surface. It can be applied to the device.
1,1a,1b 乱気流検出装置、101 モーメント算出部、102,102a 風向風速推定部、103 風速判定部、104 風向判定部、105,105a,105b ブラスト検出部、1051 第1ブラスト検出部、1052 第2ブラスト検出部、1053 第3ブラスト検出部、106 風向風速格納部、107 風速時間差算出部、108 風向時間差算出部、109 風速時間差判定部、110 風向時間差判定部、111 風速空間差算出部、112 風向空間差算出部、113 風速空間差判定部、114 風向空間差判定部、1021 不要セル抑圧部、1401 処理回路、1402 HDD、1403 入力インタフェース装置、1404 出力インタフェース装置、1405 CPU、1406 メモリ。 1,1a, 1b turbulence detection device, 101 moment calculation unit, 102, 102a wind direction wind speed estimation unit, 103 wind speed determination unit, 104 wind direction determination unit, 105, 105a, 105b blast detection unit, 1051 first blast detection unit, 1052th 2 blast detection unit, 1053 third blast detection unit, 106 wind direction wind speed storage unit, 107 wind speed time difference calculation unit, 108 wind direction time difference calculation unit, 109 wind speed time difference determination unit, 110 wind direction time difference determination unit, 111 wind speed space difference calculation unit, 112 Wind direction space difference calculation unit, 113 wind speed space difference determination unit, 114 wind direction space difference determination unit, 1021 unnecessary cell suppression unit, 1401 processing circuit, 1402 HDD, 1403 input interface device, 1404 output interface device, 1405 CPU, 1406 memory.

Claims (9)

  1.  観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するモーメント算出部と、
     前記モーメント算出部が算出したドップラ速度に基づき、前記レンジセル毎の風向値及び風速値を推定する風向風速推定部と、
     前記風向風速推定部が推定した、前記レンジセル毎の風向値及び風速値に基づき、前記観測領域におけるブラスト領域を検出するブラスト検出部
     を備えた乱気流検出装置。
    A moment calculation unit that calculates the Doppler velocity for each range cell divided into the range direction and the azimuth direction of the observation area based on the received signal based on the waves radiated to the observation area and reflected in the atmosphere of the observation area.
    A wind direction wind speed estimation unit that estimates the wind direction value and the wind speed value for each range cell based on the Doppler velocity calculated by the moment calculation unit.
    An eddy detection device including a blast detection unit that detects a blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit.
  2.  前記風向風速推定部が推定した前記レンジセル毎の風速値に基づき、前記レンジセル毎に、当該レンジセルの風速値が風速判定用閾値を超えている風速ブラスト候補セルであるか否かを判定する風速判定部と、
     前記風向風速推定部が推定した前記レンジセル毎の風向値に基づき、前記レンジセル毎に、当該レンジセルの風向値と風向判定用基準値との差が風向判定用範囲内である風向ブラスト候補セルであるか否かを判定する風向判定部とを備え、
     前記ブラスト検出部は、
     前記風速判定部が判定した風速ブラスト候補セルと、前記風向判定部が判定した風向ブラスト候補セルから、前記ブラスト領域を検出する第1ブラスト検出部を備えた
     ことを特徴とする請求項1記載の乱気流検出装置。
    Based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit, the wind speed determination for each range cell determines whether or not the wind speed value of the range cell is a wind speed blast candidate cell that exceeds the wind speed determination threshold value. Department and
    A wind direction blast candidate cell in which the difference between the wind direction value of the range cell and the wind direction determination reference value is within the wind direction determination range for each range cell based on the wind direction value for each range cell estimated by the wind direction wind speed estimation unit. Equipped with a wind direction determination unit that determines whether or not
    The blast detection unit
    The first aspect of claim 1, wherein the wind speed blast candidate cell determined by the wind speed determination unit and a first blast detection unit for detecting the blast region from the wind direction blast candidate cell determined by the wind direction determination unit are provided. Turbulence detector.
  3.  前記波動は波動放射周期単位で放射され、
     前記風向風速推定部が推定した前記レンジセル毎の風速値に基づき、前記レンジセル毎に、当該レンジセルの風速値と、一走査前の前記受信信号に基づく前記レンジセルの風速値との風速時間差を算出する風速時間差算出部と、
     前記風向風速推定部が推定した前記レンジセル毎の風向値に基づき、前記レンジセル毎に、当該レンジセルの風向値と、一走査前の前記受信信号に基づく前記レンジセルの風向値との風向時間差を算出する風向時間差算出部と、
     前記レンジセル毎に、前記風速時間差算出部が算出した風速時間差が風速時間差判定用閾値を超えている風速時間差ブラスト候補セルであるか否かを判定する風速時間差判定部と、
     前記レンジセル毎に、前記風向時間差算出部が算出した風向時間差が風向時間差判定用閾値を超えている風向時間差ブラスト候補セルであるか否かを判定する風向時間差判定部とを備え、
     前記ブラスト検出部は、
     前記風速時間差判定部が判定した風速時間差ブラスト候補セルと、前記風向時間差判定部が判定した風向時間差ブラスト候補セルから、前記ブラスト領域を検出する第2ブラスト検出部を備えた
     ことを特徴とする請求項1記載の乱気流検出装置。
    The wave is radiated in units of wave radiation period,
    Based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit, the wind speed time difference between the wind speed value of the range cell and the wind speed value of the range cell based on the received signal one scan before is calculated for each range cell. Wind speed time difference calculation unit and
    Based on the wind direction value for each range cell estimated by the wind direction wind speed estimation unit, the wind direction time difference between the wind direction value of the range cell and the wind direction value of the range cell based on the received signal one scan before is calculated for each range cell. Wind direction time difference calculation unit and
    For each range cell, a wind speed time difference determination unit that determines whether or not the wind speed time difference calculated by the wind speed time difference calculation unit is a wind speed time difference blast candidate cell that exceeds the wind speed time difference determination threshold value.
    Each range cell is provided with a wind direction time difference determination unit that determines whether or not the wind direction time difference calculated by the wind direction time difference calculation unit is a wind direction time difference blast candidate cell that exceeds the threshold value for determining the wind direction time difference.
    The blast detection unit
    A claim comprising a second blast detecting unit that detects a blast region from a wind speed time difference blast candidate cell determined by the wind speed time difference determining unit and a wind direction time difference blast candidate cell determined by the wind direction time difference determining unit. Item 1. The turbulence detection device according to item 1.
  4.  前記風向風速推定部が測定した前記レンジセル毎の風速値に基づき、前記レンジセル毎に、当該レンジセルの風速値と、当該レンジセルの周辺のレンジセルの風速値との風速空間差を算出する風速空間差算出部と、
     前記風向風速推定部が推定した前記レンジセル毎の風向値に基づき、前記レンジセル毎に、当該レンジセルの風向値と、当該レンジセルの周辺のレンジセルの風向値との風向空間差を算出する風向空間差算出部と、
     前記レンジセル毎に、前記風速空間差算出部が算出した風速空間差が風速空間差判定用閾値を超えている風速空間差ブラスト候補セルであるか否かを判定する風速空間差判定部と、
     前記レンジセル毎に、前記風向空間差算出部が算出した風向空間差が風向空間差判定用閾値を超えている風向空間差ブラスト候補セルであるか否かを判定する風向空間差判定部とを備え、
     前記ブラスト検出部は、
     前記風速空間差判定部が判定した風速空間差ブラスト候補セルと、前記風向空間差判定部が判定した風向空間差ブラスト候補セルから、前記ブラスト領域を検出する第3ブラスト検出部を備えた
     ことを特徴とする請求項1記載の乱気流検出装置。
    Based on the wind speed value for each range cell measured by the wind direction wind speed estimation unit, the wind speed space difference calculation for calculating the wind speed space difference between the wind speed value of the range cell and the wind speed value of the range cells around the range cell for each range cell. Department and
    Based on the wind direction value for each range cell estimated by the wind direction wind speed estimation unit, the wind direction space difference calculation for calculating the wind direction space difference between the wind direction value of the range cell and the wind direction value of the range cells around the range cell for each range cell. Department and
    For each range cell, a wind speed space difference determination unit that determines whether or not the wind speed space difference calculated by the wind speed space difference calculation unit is a wind speed space difference blast candidate cell that exceeds the wind speed space difference determination threshold.
    Each range cell is provided with a wind direction space difference determination unit that determines whether or not the wind direction space difference calculation unit calculates whether or not the wind direction space difference is a wind direction space difference blast candidate cell that exceeds the threshold value for determining the wind direction space difference. ,
    The blast detection unit
    The wind speed space difference blast candidate cell determined by the wind speed space difference determination unit and the third blast detection unit for detecting the blast region from the wind direction space difference blast candidate cell determined by the wind direction space difference determination unit are provided. The turbulence detection device according to claim 1.
  5.  前記波動は波動放射周期単位で放射され、
     前記ブラスト検出部は、
     前記風向風速推定部が推定した前記レンジセル毎の風速値に基づき、風速値が風速判定用閾値を超えていると判定された風速ブラスト候補セルと、前記風向風速推定部が推定した前記レンジセル毎の風向値に基づき、風向値と風向判定用基準値との差が風向判定用範囲内であると判定された風向ブラスト候補セルから、前記ブラスト領域を検出する第1ブラスト検出部、
     又は、
     前記風向風速推定部が推定した前記レンジセル毎の風速値に基づき、風速値と、一走査前の受信信号に基づくレンジセルの風速値との風速時間差が風速時間差判定用閾値を超えていると判定された風速時間差ブラスト候補セルと、前記風向風速推定部が推定した前記レンジセル毎の風向値に基づき、風向値と一走査前の受信信号に基づくレンジセルの風向値との風向時間差が風向時間差判定用閾値を超えていると判定された風向時間差ブラスト候補セルから、前記ブラスト領域を検出する第2ブラスト検出部
     又は、
     前記風向風速推定部が測定した前記レンジセル毎の風速値に基づき、風速値と、周辺のレンジセルの風速値との風速空間差が風速空間差判定用閾値を超えると判定された風速空間差ブラスト候補セルと、前記風向風速推定部が推定した前記レンジセル毎の風速値に基づき、風向値と周辺のレンジセルの風向値との風向空間差が風向空間差判定用閾値を超えていると判定された風向空間差ブラスト候補セルから、前記ブラスト領域を検出する第3ブラスト検出部
     のうち、少なくとも2つを備える
     ことを特徴とする請求項1記載の乱気流検出装置。
    The wave is radiated in units of wave radiation period,
    The blast detection unit
    Based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit, the wind speed blast candidate cell determined that the wind speed value exceeds the wind speed determination threshold, and each range cell estimated by the wind direction wind speed estimation unit. The first blast detection unit that detects the blast region from the wind direction blast candidate cell for which the difference between the wind direction value and the wind direction determination reference value is determined to be within the wind direction determination range based on the wind direction value.
    Or
    Based on the wind speed value for each range cell estimated by the wind direction wind speed estimation unit, it is determined that the wind speed time difference between the wind speed value and the wind speed value of the range cell based on the received signal one scan before exceeds the wind speed time difference determination threshold. Based on the wind speed time difference blast candidate cell and the wind direction value for each range cell estimated by the wind direction wind speed estimation unit, the wind direction time difference between the wind direction value and the wind direction value of the range cell based on the received signal one scan before is the threshold for determining the wind direction time difference. The second blast detection unit that detects the blast region from the wind direction time difference blast candidate cell determined to exceed
    Based on the wind speed value for each range cell measured by the wind direction and wind speed estimation unit, it is determined that the wind speed space difference between the wind speed value and the wind speed value of the surrounding range cells exceeds the wind speed space difference determination threshold. Based on the wind speed value for each range cell estimated by the cell and the wind direction and wind speed estimation unit, the wind direction is determined to exceed the wind direction space difference determination threshold value between the wind direction value and the wind direction value of the surrounding range cells. The turbulence detection device according to claim 1, further comprising at least two of the third blast detection units that detect the blast region from the spatial difference blast candidate cell.
  6.  前記風向風速推定部は、
     前記レンジセル毎に、信号強度と低反射物判定用閾値との比較、及び、信号強度と高反射物判定用閾値との比較を行い、
     信号強度が、前記低反射物判定用閾値を超えており、かつ、前記高反射物判定用閾値を超えていないレンジセルである場合、当該レンジセルのドップラ速度の値を無効値化する不要セル抑圧部を備えた
     ことを特徴とする請求項1記載の乱気流検出装置。
    The wind direction and speed estimation unit
    For each range cell, the signal intensity is compared with the threshold value for determining a low reflector, and the signal intensity is compared with the threshold value for determining a high reflector.
    When the signal strength is a range cell that exceeds the threshold value for determining a low reflector and does not exceed the threshold value for determining a high reflector, an unnecessary cell suppression unit that invalidates the value of the Doppler speed of the range cell. The turbulence detection device according to claim 1, wherein the turbulence detection device is provided.
  7.  前記風向風速推定部は、
     前記レンジセル毎に、信号強度と低反射物抽出用閾値との比較、及び、信号強度と高反射物抽出用閾値との比較を行い、
     信号強度が、前記低反射物抽出用閾値を超えており、かつ、前記高反射物抽出用閾値を超えているレンジセルである場合、当該レンジセルのドップラ速度の値、又は、当該レンジセル以遠のレンジセルのドップラ速度の値を無効値化する不要セル抑圧部を備えた
     ことを特徴とする請求項1記載の乱気流検出装置。
    The wind direction and speed estimation unit
    For each range cell, the signal intensity is compared with the threshold value for extracting low-reflecting substances, and the signal intensity is compared with the threshold value for extracting high-reflecting substances.
    When the signal strength exceeds the threshold value for extracting low-reflecting substances and exceeds the threshold value for extracting high-reflecting substances, the value of the Doppler speed of the range cell or the range cell beyond the range cell. The turbulence detection device according to claim 1, further comprising an unnecessary cell suppression unit that invalidates the value of the Doppler velocity.
  8.  前記不要セル抑圧部は、ドップラ速度の値を無効値化したレンジセルについて、当該ドップラ速度の値を無効値化したレンジセルの周囲に有効レンジセルが存在する場合、当該ドップラ速度の値を無効値化したレンジセルのドップラ速度の値を、前記有効レンジセルのドップラ速度の値に基づき補間する
     ことを特徴とする請求項6又は請求項7記載の乱気流検出装置。
    The unnecessary cell suppression unit invalidates the value of the Doppler velocity when there is an effective range cell around the range cell in which the value of the Doppler velocity is invalidated for the range cell in which the value of the Doppler velocity is invalidated. The eddy turbulence detection device according to claim 6 or 7, wherein the value of the Doppler velocity of the range cell is interpolated based on the value of the Doppler velocity of the effective range cell.
  9.  モーメント算出部が、観測領域に放射され当該観測領域の大気で反射された波動に基づく受信信号に基づいて、当該観測領域の、レンジ方向及び方位方向に区分けされたレンジセル毎のドップラ速度を算出するステップと、
     風向風速推定部が、前記モーメント算出部が算出したドップラ速度に基づき、前記レンジセル毎の風向値及び風速値を推定するステップと、
     ブラスト検出部が、前記風向風速推定部が推定した、前記レンジセル毎の風向値及び風速値に基づき、前記観測領域におけるブラスト領域を検出するステップ
     を備えた乱気流検出方法。
    The moment calculation unit calculates the Doppler velocity for each range cell divided into the range direction and the azimuth direction of the observation area based on the received signal based on the wave radiated to the observation area and reflected in the atmosphere of the observation area. Steps and
    A step in which the wind direction and speed estimation unit estimates the wind direction value and the wind speed value for each range cell based on the Doppler speed calculated by the moment calculation unit.
    An eddy detection method comprising a step in which a blast detection unit detects a blast region in the observation region based on the wind direction value and the wind speed value for each range cell estimated by the wind direction and wind speed estimation unit.
PCT/JP2019/026776 2019-07-05 2019-07-05 Turbulence detection device and turbulence detection method WO2021005634A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/026776 WO2021005634A1 (en) 2019-07-05 2019-07-05 Turbulence detection device and turbulence detection method
JP2021530334A JP6991397B2 (en) 2019-07-05 2019-07-05 Eddy detection device and eddy detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026776 WO2021005634A1 (en) 2019-07-05 2019-07-05 Turbulence detection device and turbulence detection method

Publications (1)

Publication Number Publication Date
WO2021005634A1 true WO2021005634A1 (en) 2021-01-14

Family

ID=74113915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026776 WO2021005634A1 (en) 2019-07-05 2019-07-05 Turbulence detection device and turbulence detection method

Country Status (2)

Country Link
JP (1) JP6991397B2 (en)
WO (1) WO2021005634A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712108A (en) * 1985-10-21 1987-12-08 Isc Cardion Electronics, Inc. Method and apparatus for detecting microbursts
JP2002267753A (en) * 2001-03-14 2002-09-18 Mitsubishi Electric Corp Wind shear detector
US20140278109A1 (en) * 2013-03-12 2014-09-18 LogLinear Group, LLC Single beam fmcw radar wind speed and direction determination
JP2018517091A (en) * 2015-05-19 2018-06-28 オフィル コーポレイション System and method for predicting the arrival of wind events

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066548A (en) 2012-09-25 2014-04-17 Mitsubishi Electric Corp Laser radar device
WO2017208375A1 (en) 2016-05-31 2017-12-07 淳一 古本 Doppler shift analysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712108A (en) * 1985-10-21 1987-12-08 Isc Cardion Electronics, Inc. Method and apparatus for detecting microbursts
JP2002267753A (en) * 2001-03-14 2002-09-18 Mitsubishi Electric Corp Wind shear detector
US20140278109A1 (en) * 2013-03-12 2014-09-18 LogLinear Group, LLC Single beam fmcw radar wind speed and direction determination
JP2018517091A (en) * 2015-05-19 2018-06-28 オフィル コーポレイション System and method for predicting the arrival of wind events

Also Published As

Publication number Publication date
JP6991397B2 (en) 2022-01-12
JPWO2021005634A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP3301457B1 (en) Laser air data sensor mounting and operation for eye safety
US11971507B2 (en) Systems and methods for mitigating optical crosstalk in a light ranging and detection system
EP3235735B1 (en) Method and system for generating a collision alerting during aircraft taxiing
US7576680B1 (en) Pulse pattern for weather phenomenon and incursion detection system and method
US20180321386A1 (en) Light detection and ranging (lidar) ice detection system
TWI712998B (en) Aircraft docking system
CN103577697A (en) FOD detection method based on road surface point cloud data
US11719824B2 (en) Distance measuring device, control method of distance measuring device, and control program of distance measuring device
US20210221398A1 (en) Methods and systems for processing lidar sensor data
WO2019112514A1 (en) Rain filtering techniques for autonomous vehicle
JP6991397B2 (en) Eddy detection device and eddy detection method
JP4541101B2 (en) Other vehicle detector and other vehicle detection method
KR101970222B1 (en) Apparatus for preventing detecting double track
WO2019188509A1 (en) Radar image processing device, radar image processing method, and storage medium
JP5511196B2 (en) Back turbulence detector
JP2006133203A (en) Wind profiler system
JP6595284B2 (en) Autonomous mobile robot
JP2012088289A (en) Target control device and target control method
JP5892215B2 (en) Target management apparatus and target management method
JP2003172778A (en) Turbulence detection device and turbulence detection method
CN106768369A (en) Airborne alarm device
De Ceglie et al. SASS: a bi-spectral panoramic IRST-results from measurement campaigns with the Italian Navy
KR102020746B1 (en) Apparatus and method for detecting aerial vehicles by using gnss receiver network
JP5626823B2 (en) Object detection system, object detection method and object detection control program used in the object detection system
JP3638862B2 (en) Turbulence detection device and turbulence detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937341

Country of ref document: EP

Kind code of ref document: A1