WO2021005250A1 - Sistema y método para el diagnóstico de antenas - Google Patents

Sistema y método para el diagnóstico de antenas Download PDF

Info

Publication number
WO2021005250A1
WO2021005250A1 PCT/ES2020/000031 ES2020000031W WO2021005250A1 WO 2021005250 A1 WO2021005250 A1 WO 2021005250A1 ES 2020000031 W ES2020000031 W ES 2020000031W WO 2021005250 A1 WO2021005250 A1 WO 2021005250A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
under measurement
field
probe
probe antenna
Prior art date
Application number
PCT/ES2020/000031
Other languages
English (en)
French (fr)
Inventor
Guillermo ÁLVAREZ NARCIANDI
Jaime LAVIADA MARTÍNEZ
Yuri ÁLVAREZ LÓPEZ
Fernando LAS-HERAS ANDRÉS
Original Assignee
Universidad De Oviedo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo filed Critical Universidad De Oviedo
Priority to EP20837163.3A priority Critical patent/EP3995842A4/en
Publication of WO2021005250A1 publication Critical patent/WO2021005250A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the present invention relates to a system and a method for the diagnosis of antennas using a portable device.
  • the system comprises a probe antenna that is manually moved by the system operator along an arbitrary path and that captures the signals radiated by the antenna under measurement, a radio-frequency unit that measures the properties of said signal, a positioning means that provide the position of the probe antenna and a processing means that perform the diagnosis of the antenna under measurement from the data obtained.
  • the method of the invention comprises defining at least one reference surface close to the antenna under measurement, moving the probe antenna along a trajectory, homogenizing the spatial sampling of the measurements, processing the information to obtain the representation of the electromagnetic field and diagnose the antenna.
  • the invention is applicable in those sectors in which the diagnosis of antennas is required quickly, avoiding the use of large measurement systems, such as in the communications sector. In addition, it is of special interest in areas where antennas composed of many radiating elements are deployed, where the probability of failure of some component is not negligible.
  • the invention allows the detection of radiating elements with anomalous behavior, which is an important aspect to guarantee the correct operation of a system. This situation is common in advanced communication networks, such as those involving picocells deployed for 5G networks. BACKGROUND OF THE INVENTION
  • antennas and radiant electromagnetic emission systems are a fundamental aspect to guarantee compliance with their specifications. Advances in telecommunications systems require antennas with more demanding requirements, reducing margins and design tolerances.
  • radio frequency technology of the new 5G communication systems where in order to optimize coverage, it is intended to use telephone base stations equipped with smart antennas, that is, antennas capable of generating one or more beams that provide coverage to the users connected to said base station.
  • more and more satellite communications systems use techniques based on beamforming and electronic scanning, where the antennas incorporate electronic and radio frequency circuits that allow modifying the aiming of the antenna beam in real time (for example, equipment antennas of on-board communications in moving vehicles that have to keep pointing towards a satellite). This means that the technology of diagnosis and characterization of antennas, capable of carrying out the measurement of these antennas in realistic operating conditions, has acquired more and more prominence
  • antenna diagnosis systems can be classified into outdoor systems or ranges, and indoor systems or ranges. Outdoor systems or ranges allow direct measurement of the radiation pattern of the antenna to be diagnosed, since it is possible to separate the antenna under measurement from the antenna that is used as a probe, so that far-field measurements are taken.
  • the main drawbacks they present are fundamentally the great distance needed between the infrastructure where the antenna under measurement is placed and the probe antenna to be able to carry out the measurement in the far field.
  • anechoic chambers that, in order to minimize the reflection of radio waves on walls, floors, and ceilings, are entirely covered by a material that absorbs electromagnetic radiation.
  • the antenna under measurement is placed on a fixed base or tower with the ability to describe turns, and the antenna that is used as a measurement probe is placed on another base or stationary tower at a certain distance from the first. .
  • the electromagnetic field that radiates an antenna and / or radiating system can be classified mainly into two spatial regions: near field region, where the spatial distribution of radiated energy changes with distance to the antenna, and far field region, where the Spatial distribution of radiated energy does not change with distance to the antenna.
  • near field region where the spatial distribution of radiated energy changes with distance to the antenna
  • far field region where the Spatial distribution of radiated energy does not change with distance to the antenna.
  • the electromagnetic field Radiated by the antenna under measurement can be acquired in the near field or far field region.
  • the electromagnetic field is measured in the far field region (where Rmeasured is the distance between the antenna under measurement and the measurement probe, D is the diameter of the minimum sphere circumscribed to the antenna under measurement and A is the working wavelength).
  • the measurement of the radiation pattern of an antenna can only be carried out in the far field. If the antenna is measured in the near field region, it is necessary to apply a near field to far field transformation method to obtain the radiation pattern from the measurements made, since in the near field region the spatial distribution of radiated energy changes with distance.
  • the methods of transformation from near field to far field are based on the calculation of a set of coefficients that allow modeling the electromagnetic field radiated by the antenna, as described in the state of the art of patent document ES 2639687 (B2) .
  • Diagnosing an antenna in the near field region requires the measurement of both the amplitude and the phase of the electromagnetic field radiated by it. This requires measuring devices such as vector signal analyzers or two-channel receivers (phase and quadrature) or the use of a method for recovering the phase of the electromagnetic field.
  • the diagnosis of antennas and radiant systems of electromagnetic emissions includes not only the characterization of the radiation pattern but also the detection of faults and defects in the antenna, being of special interest in the case of groups of antennas (or arrays), where the failure of a single element degrades the characteristics of the radiation pattern (for example, worsening parameters such as directivity or secondary lobe ratio). It is also applied to detect deformations in reflector type antennas.
  • the detection of faults and defects in the antenna under measurement is carried out by characterizing the distribution of the electromagnetic field radiated at a distance as close as possible to its surface. From the representation of this field, it is possible to identify deformations or elements with incorrect operation.
  • the systems currently used to measure antennas which allow information to be retrieved for diagnosis, have several drawbacks, whether they are in the interior range or in the exterior range. In general, they are systems characterized by a high complexity, both constmctive and operative, which restricts its implementation. On the one hand, they require a specialized, complex infrastructure with large-volume facilities. On the other hand, the personnel in charge of the measures must be specialized, with training and extensive knowledge in the matter. Furthermore, electro-mechanical elements are also necessary for the positioning of the antenna under measurement and the probe used in the measurement. Likewise, the configuration and precision of the positioning system is one of the determining factors that define the type of antennas that can be measured in a specific antenna measurement system.
  • This document describes a system and method for the measurement of antennas using a posidonator consisting of a robotic arm, which allows the measurement of the field radiated by the antenna under measurement in different measurement ranges (flat, cylindrical, spherical).
  • the system has a positioning precision of less than 22 mm. Since for the diagnosis of an antenna it is required that the separation between two adjacent measurement points is equal or less than half a wavelength at the measurement frequency when using a detector capable of measuring amplitude and phase, and equal to or less than a quarter of a wavelength at the measurement frequency when using a detector capable of measuring only amplitude, The system described allows the measurement of antennas up to the frequency of 300 GHz.
  • the main limitation of systems that use this type of positioner is the high complexity and cost of an arm robotic. which also requires to be handled by an expert operator.
  • Patent document ES 2639687 presents an airborne system and a method for the characterization and measurement of antennas or radiating systems, made up of at least one air module, an earth station and a communication system between elements.
  • the invention also relates to the method of processing the radiated electromagnetic field to obtain both the radiation pattern and the field at the opening of the antenna for fault detection purposes.
  • This system is designed for measurements in-situ, outdoors, of antennas in operating conditions (so that it is not necessary to interrupt the radiocommunication service for the antenna diagnostics), located in hard-to-reach locations that make the use of airborne systems convenient.
  • a mobile device formed by at least one pair of antennas is presented, one with horizontal polarization and the other with vertical polarization.
  • the device also includes a position detector system, an electromagnetic field intensity detector, and an information processing unit.
  • the device allows to obtain the position of each measurement, providing intensity maps of the signals radiated by the device under measurement, for example, a WiFi transmitter.
  • Said patent document claims the ability to obtain specific parameters of the radiated signals, such as phase measurement and delay spread.
  • the system is limited to generating intensity maps of the captured signals or measuring certain of their parameters without obtaining the radiation diagram or the diagnosis of the emitting element.
  • the system consists of an optical positioning system that allows obtaining the position of the electric and magnetic field measurement probe at each measurement point. Said measurement probe is connected to a spectrum analyzer that allows the intensity of the electric and magnetic field to be acquired, allowing its visualization in real time.
  • the measurements obtained with the probe are not obtained with adequate sampling or processed to determine the source of said radiation, but are simply represented by creating intensity maps of electromagnetic emissions.
  • Patent document US 20180090837 presents a system and method to characterize the operation of active phased array antennas and their behavior against temperature changes. For this, measurements of the near field radiated by the antenna under measurement are combined using an XYZ measurement range that uses an articulated robotic arm with thermal images captured by a thermal camera.
  • the document claims the possibility of characterizing the amplitude and phase of each of the elements that make up the phased array antenna.
  • Canonical acquisition domains are used in this system.
  • the system requires the use of a complex infrastructure characterized by the use of an articulated robot.
  • it is a fixed, large system that is not indicated to characterize or diagnose antennas once deployed.
  • the present invention refers to a system for diagnosing antennas by means of measurements carried out moving by hand and without mechanical restrictions at least one probe antenna in front of the antenna under measurement, acquiring the radiated signal at a set of arbitrary points .
  • the system also includes positioning means capable of determining the position of the probe antenna used to capture the signal radiated by the antenna under measurement.
  • the data acquired from the radiated signal, as well as the position where these acquisitions have been made, are processed by processing means that calculate information on the distribution of electromagnetic fields in the aperture of the antenna under measurement. In this way it is possible to evaluate if the amplitudes and phases in the opening are correct, as well as the characteristics of the far field.
  • the invention also relates to a method for the diagnosis of antennas using the above system that comprises processing the measured values to obtain the field data on the aperture and the radiation pattern of the antenna under measurement.
  • antenna under measurement refers to the antenna that is analyzed and diagnosed to find possible anomalies in its operation.
  • An object of the present invention is, therefore, a system for the diagnosis of antennas that comprises:
  • At least one probe antenna which can be arbitrarily moved by hand by the person operating the system, which captures the signal radiated by the antenna under measurement when it moves along a path.
  • the probe antenna captures at least one component of the electric field at the point where it is located.
  • a radio frequency (RF) unit that measures one or more of the properties of the signal picked up by the probe antenna along a path.
  • the properties of the measured or captured signal refer either to the intensity and phase, or only to the intensity in the case that only one property of the signal captured by the signal is measured. probe antenna.
  • a positioning means that provides the position of the probe antenna along the path.
  • a processing means with at least one processor, a memory and a program or programs that are stored in the memory and that comprise a plurality of instructions.
  • the processing means carry out the diagnosis of the antenna under measurement, processing the properties of the signal measured by the radio frequency unit combined with the position of the probe antenna provided by the positioning means.
  • the probe antenna of the system is moved manually by an operator following an arbitrary trajectory, within an investigation volume.
  • the research volume comprises a reference surface located at a distance between 1 cm and 100 cm from the antenna under measurement.
  • a reference surface is called a virtual surface near which the probe antenna that captures the signal radiated by the antenna under measurement moves.
  • the processing means of the system comprise a plurality of instructions which, when executed by the processor, diagnose the antenna under measurement.
  • This diagnosis is carried out by calculating at least the tangential component of the electric field, or the magnetic field or both, in the antenna aperture under measurement based on a representation by means of an expansion in base functions of the equivalent currents in the aperture or electric field modes obtained from the properties of the signal captured by the probe antenna associated with the position provided by the positioning means.
  • it comprises two probe antennas with orthogonal polarizations allowing the measurement of the signal radiated by the antenna under measurement for two independent polarizations.
  • An example of a system capable of measuring two independent polarizations would be one comprising two antennas with orthogonal linear polarizations and an RF unit composed of two power detectors, each connected to a different antenna.
  • the radio frequency unit measures both the phase and the intensity of the signal captured by the probe antenna.
  • the radio frequency unit comprises a portable vector network analyzer.
  • An example of an RF unit capable of providing intensity and phase would be a vector network analyzer with at least two ports, with a wireless or wired interface that transmits the measurements made, together with an antenna that works as an electromagnetic field probe.
  • a vector network analyzer with at least two ports, with a wireless or wired interface that transmits the measurements made, together with an antenna that works as an electromagnetic field probe.
  • one of the ports of the vector network analyzer will be connected to the probe, which could be moved by hand, and the other would be connected to the antenna under measurement.
  • the RF unit provides the intensity of the signal picked up by the probe antenna.
  • the radio frequency unit comprises a power detector.
  • the radio frequency unit comprises a spectrum analyzer.
  • An example of an RF unit that provides intensity would be a power detector connected to an antenna through an RF port and whose video output is connected to an analog-digital converter that sends its data to the processing system through a wireless interface. or wired as a serial or USB port.
  • the RF unit would be composed of the power detector and the analog-digital converter together with the connection interface.
  • Another example of an RF unit that provides the intensity of the radiated signal is a spectrum analyzer with an interface, such as a GPIB port, that transmits the data obtained and that is connected to the probe antenna or antennas using flexible radio frequency cables. .
  • the RF unit is capable of extracting the information from the acquired radiated signal allowing it to detect parameters thereof.
  • An example of extraction of information from the radiated signal would be a system for diagnosis of antennas 5G capable of detecting and interpreting the Synchronization Signal Stock (SSB) blocks and measuring the intensity corresponding to each SSB, allowing to assign an Intensity to each beam radiated by the antenna under measurement.
  • the positioning means is an optical tracking system of the probe antenna along the path.
  • the optical tracking system comprises at least one infrared camera, or at least one visible spectrum camera, or at least one depth camera, or a combination of the foregoing. Even more preferably, the optical tracking system captures the movement of the probe antenna (s) by means of markers attached to the probe antenna (s), while the cameras are positioned in fixed positions. In another more preferred embodiment, the optical tracking system comprises a camera integrated in the probe antenna that captures successive images along the path. In one example, the captured images can be processed by fbtogrammetry. In another example, the integrated camera can be a depth camera, which measures point clouds continuously so that the position of the probe antenna can be obtained by comparing the differences between the point clouds.
  • the positioning means comprise an ultrawideband (UWB) positioning system that estimates the position of the probe antenna along the path.
  • UWB ultrawideband
  • the positioning means comprise an inertial sensor arranged on the probe antenna that provides the relative data of its position along the trajectory.
  • an inertial sensor can be embodied by an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes.
  • the positioning means provide the position of the probe antenna from the inertial sensor data combined with the images captured by the integrated camera.
  • the positioning means can integrate a depth camera and an IMU.
  • the position would be provided by applying the iterative closest point algorithm (iterative closest point, or ICP) using as input the point clouds measured by the depth camera and the inclination detected by the IMU.
  • ICP iterative closest point algorithm
  • the probe antenna and the RF unit are integrated into a single device.
  • the positioning means are integrated in the same device together with the probe antenna and the radio frequency unit.
  • that device is a mobile phone.
  • the probe antennas of the system are those of a mobile phone;
  • the RF unit is the communication system of said mobile phone, which measures the properties of the signal radiated by the antenna under measurement;
  • the processing means is the mobile phone processing unit; and the positioning means are made up of the sensors of the mobile phone and its processing unit.
  • the processing means comprise a plurality of instructions which when executed by the processor cause the processing means to be configured to execute the method for diagnosing antennas of the invention.
  • the data processing subsystem also calculates the far-field radiation pattern of the antenna under measurement.
  • Another object of the present invention is a method for the diagnosis of antennas by means of the previous system from data of the signal radiated by them.
  • the method comprises the following steps: a) Defining at least one reference surface based on the properties of the signal radiated by an antenna under measurement that the radio frequency unit is capable of measuring.
  • the reference surface is located at a distance between 1 cm and 100 cm from the antenna under measurement.
  • b) Move a probe antenna manually describing an arbitrary trajectory within an Investigation volume.
  • the research volume includes the reference surface.
  • the signal radiated by the antenna under measurement is captured and its properties are measured by means of a radio frequency unit.
  • the position of the probe antenna along the path is also determined.
  • homogenizing spatial sampling refers to the establishment of a method that regulates the acquisition of data in arbitrary positions in such a way that a data set with a more balanced distribution is obtained, selecting a number of data maximum per unit volume that is within a preset range. d) Process the information acquired to obtain a representation of the electromagnetic field generated by the antenna under measurement as expansion in base functions. e) Diagnose the antenna under measurement by calculating at least the tangential component of the electric field, or the magnetic field, or both, in the aperture of the antenna under measurement. In this way it is possible to identify defective radiating elements.
  • the properties measured in step b) are both the phase and the intensity of the signal captured by the probe antenna and a single reference surface is defined.
  • the coefficients of the expansion in base functions of the electromagnetic field of step d) when both the phase and the intensity are measured are obtained by finding the coefficients that minimize the cost function where CF is the cost function, b is a column vector with the field measurements, x is a vector with the coefficients of the fundamental elements, and A is a matrix containing the linear relationship between the base functions and the field measurements.
  • SRM Source Reconstruction Method
  • the property measured in step b) is the intensity of the signal captured by the probe antenna.
  • two reference surfaces are defined.
  • the representation of the electromagnetic field generated from the expansion in base functions of step d) comprises the following substeps: di) Assigning an arbitrary initial phase to the data measured on the first reference surface. d.ii) Calculate the weights of the base functions as the coefficients that minimize the cost function
  • CFi is the cost function
  • bt is a column vector with the measurements of the field on the first surface with the measured intensity and with phase f 1
  • x a vector with the weights of the base functions
  • Ai a matrix containing the linear relationship between the base functions and field measurements on the first of the surfaces.
  • d.iv Calculate the coefficients of the base functions, which will be those that minimize the cost function where CF 2 is the cost function, b 2 is a column vector with the measurements of the field on the second surface with the measured amplitude and with the phase calculated in step d.iii), f 2 , x a vector with the weights of the base functions and a matrix containing the linear relationship between the base functions and the field measurements on the first of the surfaces.
  • dv) Calculate the field at the first reference surface from the expansion in base functions calculated in step d.iv) obtaining a phase vector ⁇ p lt corresponding to the field at the measured positions of the first reference surface.
  • d.vi Repeat steps from d.ii) to dv) if at least one convergence criterion is not reached. Otherwise this algorithm stops.
  • An example of a convergence criterion for stage d.vi) is that the number of iterations exceeds a set value.
  • Another example of a convergence criterion is that the error is below a threshold given by: where or is a parameter that balances the weight between the error on surface one and surface two.
  • An example would be the use of the source reconstruction method without using phase information (phaseless Sources Reconstruction Method, pSRM) that allows the representation of the radiated electromagnetic field intensity by means of equivalent currents, expressed by means of an expansion in base functions.
  • the homogenization of step c) comprises discretizing the investigation volume from the orthogonal projection at a distance h from some cells comprised in the reference surface or surfaces.
  • a plurality of non-overlapping discrete volumes are configured, where the number of captures of the radiated signal does not exceed a certain threshold. When the number of measurements exceeds the threshold, they are discarded. For example, only two measurements of the signal radiated by the antenna under measurement could be retained for each discrete volume, so that there are no cells with a significantly greater number of measurements than other cells.
  • the reference surface is flat and the discrete volumes are straight or cuboid prisms.
  • the method further comprises the step f) Calculate the radiation pattern of the antenna under measurement from the expansion in base functions obtained in step d).
  • stage e this new stage is added in which the far field is calculated from the expansion in base functions using near field to far field transformation techniques.
  • the base functions of the expansion of the electromagnetic field model the electric and magnetic currents expressed as linear combinations of said base functions.
  • the base functions of the electromagnetic field expansion are electromagnetic field modes.
  • An example of this would be the expansions in plane, cylindrical or spherical waves.
  • the modes are plane waves.
  • steps c), d) and e) are repeated for each of the beams radiated by the antenna under measurement.
  • a custom antenna with several beams would be an antenna of a base station of a 5G system that emits several beams. These beams can be identified and differentiated, and their intensity is measured in such a way that an expansion in different base functions is obtained for each beam.
  • the step e) of field calculation on aperture is implemented by calculating the radiated field from the expansion in base functions.
  • An example of calculating the field at aperture in the case that the base functions are plane waves would be a backward propagation using plane-to-plane propagations.
  • Another example of calculating the field in the opening in the case that the base functions are equivalent currents in the opening would be to use the equivalent currents in the opening since these already represent the tangential field in the opening.
  • the invention provides, compared to other systems that are currently known, a system for the diagnosis of antennas that avoids the use of mechanical positioning elements or large auxiliary structures, thanks to the use of a probe antenna that can be operated manually and to a positioning means that follows the free movement of the probe antenna.
  • the invention also provides a method that makes it possible to homogenize the sampled data, thus achieving greater flexibility, portability and rapid deployment of the system. Furthermore, the system and method avoid the need for an expert operator since they allow the system operator to perform the data acquisition without the need to previously define the path to follow and to move the probe antenna with a certain tolerance.
  • the system provides visual feedback in real time of the samples obtained, allowing the operator to know in which areas to increase the sampling.
  • the present invention provides the ability to handle this arbitrary data and convert it into information related to the field at the opening, thanks to a correct spacing of the data, thus allowing to know the amplitude and phase of the radiated field. by the different elements of the antenna, even in those cases in which there is no physical access to the aperture, such as when the antenna is protected by a radome.
  • the present invention is applicable in those sectors in which the diagnosis of antennas quickly, avoiding the use of large measurement systems, such as in the communications sector.
  • Fig. 1 shows an embodiment of the system corresponding to that described in example 1.
  • the figure shows the probe antenna (1), which is moved by the system operator with his hand in front of the antenna under measurement (3) describing an arbitrary trajectory (7), connected to a radio frequency unit (4) embodied in a portable vector network analyzer (13).
  • the antenna under measurement (3) is connected to the other port of said portable vector network analyzer (13) so that it is possible to obtain both the amplitude as the phase of the radiated signal (2) by the antenna under measurement (3) at the different acquisition positions along the path (7).
  • the positions of the probe antenna (1) in which measurements of the electric field radiated by the antenna under measure are made (3) are obtained by means of positioning means (5) materialized by an optical tracking system (8) formed by four Infrared cameras (9) connected to processing means (6) represented by a computer that processes and controls the acquisition of data.
  • the xyz coordinates and the inclination of the probe antenna (1) of the system are estimated by the optical tracking system (8) from the four markers (18) attached to the probe antenna (1).
  • Fig. 2 shows another embodiment of the system corresponding to that described in example 3.
  • the radio frequency unit (4), the probe antenna (1) and the positioning means (5) are integrated in a 5G smartphone mobile phone , which moves describing an arbitrary trajectory (7) in front of the antenna under measurement (3).
  • the radio frequency unit (4) is made up of the smartphone's communications system, the probe antennas (1) of the measurement system, responsible for acquiring the intensity of the radiated signal (2) by the antenna under measurement (3), They are those of the smartphone; and the positioning means (5) are constituted by the inertial sensors (10) and the depth camera (12) of the same telephone.
  • the acquired data are sent through a WIFI connection to a computer that forms the processing means (6) and that performs the diagnosis of the antenna under measurement (3).
  • Fig. 3 represents two reference surfaces (15) defined for the characterization of an antenna under measurement (3) using only infmation of the Intensity of the signal radiated (2) by it.
  • the two reference surfaces (15) are defined in front of the antenna under measurement (3).
  • both reference surfaces (15) are segmented into cells that are projected forming a plurality of three-dimensional discrete volumes (16) in the form of non-overlapping straight prisms, within which the number of field strength acquisitions.
  • the projection of the field intensity acquisition positions on each reference surface (15) is represented by a black circle.
  • Fig. 4 shows the basic flow chart of the method for diagnosing antennas with the system described in this invention. In the first place, the initialization of the system is carried out, which includes the definition of the reference surface or surfaces (15), as well as its segmentation into discrete volumes (16) that allow the spatial homogenization of the information acquired.
  • the probe antenna (1) is moved in front of the antenna under measurement (3) manually describing an arbitrary trajectory (7) according to the reference surfaces (15) previously defined.
  • acquisitions of the radiated signal (2) by the antenna under measurement (3) are made and the position of the probe antenna (1) in which said acquisitions have been made thanks to the information provided by the positioning means (5).
  • the spatial sampling of the antenna field under measurement is homogenized (3) discarding those measurements acquired in positions that are outside the previously defined discrete volumes (16) or that have been acquired within a discrete volume (16 ) in which the maximum number of acquisitions has been reached.
  • the field of the antenna under measurement (3) is characterized through its expansion in base functions calculated from the available measurements. Said characterization is updated, in a preferred embodiment of the method, as new measurements are obtained.
  • the far field radiated by the antenna under measurement (3) can be calculated and its field is modeled from the expansion in base functions.
  • a system was materialized consisting of an RF unit (4) consisting of a portable vector network analyzer (13) connected by a port and a coaxial cable to an electric field probe antenna (1) consisting of a cable-type antenna. open wave WR28 operating in the range 26.5 to 40 GHz (Ka band) that captures the radiated signal (2) by the antenna under measurement (3).
  • the other port of the portable vector network analyzer (13) is used to inject RF signal to the antenna under measurement (3).
  • This radio frequency unit (4) was capable of providing the amplitude and phase of the electric field in a polarization by measuring parameter S21.
  • the connection of this subsystem was made through a LAN interface that allowed to send and receive SCPI commands (Standard Commands for Programmable Instruments).
  • the positioning means (5) were materialized in an optical tracking system (8), consisting of 4 infrared cameras (9) connected by a switch to a computer that monitored 4 markers (18) attached to the probe antenna ( 1) electric field.
  • the processing software provided the position in x-y-z coordinates as well as the inclination of the antenna through the inclination angles (p / fch, roll and yaw) along the trajectory (7).
  • the processing means (6) were materialized in the same personal computer that processed the positioning data and that communicated with the portable vector network analyzer (13) using SCPI commands.
  • Example 1 To carry out the method for the diagnosis of antennas, the system described in Example 1 was used. The method was applied by carrying out the following steps: a) A single reference surface (15) was defined consisting of a plane of size 15 cm x 15 cm and located parallel to 5 cm from the opening of the antenna under measurement (3), since the radio frequency unit was capable of measuring the amplitude and phase of the radiated signal (2) by the antenna under measure (3). b) The operator continuously moved the electric field probe antenna (1) with his hand, describing an arbitrary trajectory (7) taking as a reference surface (15) the surface of step a) capturing the radiated signal (2) by the antenna under measurement (3), measuring its amplitude and phase, and determining the position of the probe antenna (1).
  • the spatial sampling was homogenized by retaining the first two measurements of the electromagnetic field acquired within each discrete volume (16).
  • the information acquired was processed to obtain a representation of the electromagnetic field generated by the antenna under measurement (3) in terms of currents magnetic, approximated by a linear combination of non-overlapping pulse-type base functions, in a 5 cm x 5 cm aperture by the following operation: where b is a column vector with the field measurements, x a vector with the coefficients of the magnetic currents and A + the pseudo-inverse of the matrix A whose element of the m- th row and n-th column contains the field radiated by the base function n-th at the m- th point where the field has been measured.
  • the antenna under measurement was diagnosed (3) by calculating the magnetic field at the aperture directly from the magnetic currents since they are already proportional to the tangential magnetic field.
  • Steps from b) to e) were repeated continuously, allowing the currents in the aperture to be viewed as the operator moved the probe antenna (1).
  • the reference surface (15) was divided into discrete volumes (16) formed by non-overlapping straight prisms of size 3.5 mm x 3.5 mm x 3.5 mm, with two of their faces parallel to the reference surface (15).
  • EXAMPLE 3 This example is oriented to the diagnosis of 5G active antennas in the 28GHz band.
  • the probe antennas (1) that acquired the radiated signal (2) were those of the mobile phone.
  • the measured data is sent through a WiFI connection and together with a time stamp to a personal computer.
  • the positioning means (5) were materialized in a depth camera (12) and an IMU (10), both belonging to the smartphone. Inclination data was obtained directly from the IMU (10). The position was obtained by calculating the relative xyz displacement between point clouds acquired by the depth camera (12), corrected for the inclination of the phone from the IMU (10) and processed by the Iterative Cfosest Point (ICP) algorithm. This data was processed in the CPU / GPU system of the smartphone and sent to a personal computer via a WiFi connection along with a timestamp.
  • ICP Iterative Cfosest Point
  • the processing means (6) were materialized in a personal computer that received the data of the intensity of each beam emitted by the antenna under measurement (3) and of the positions of the probe antenna (1) provided by the positioning means (5 ).
  • Example 3 To carry out the method for the diagnosis of antennas, the system described in Example 3 was used. The method was applied through the following steps: a) Two reference surfaces (15) were defined consisting of two planes of size 30 cm x 30 cm, located 5 cm and 15 cm, respectively, from the aperture of the antenna under measurement (3), since the radio frequency unit was only capable of measuring the intensity of the signal radiated (2) by the antenna under measurement (3). b) The operator continuously moved the electric field probe antenna (1) with his hand, describing an arbitrary trajectory (7) taking as reference surfaces (15) the surfaces of step a). c) The spatial sampling was homogenized by retaining the first two measurements of the electromagnetic field acquired within each discrete volume (16).
  • Steps from b) to f) were repeated continuously allowing the visualization of the currents in the aperture and the far field as the operator moved the probe antenna (1).
  • the reference surfaces (15) were divided into discrete volumes (16) formed by non-overlapping straight prisms of size 5 mm x 5 mm x 5 mm, with two of their faces parallel to the reference surfaces (15).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Sistema y método para el diagnóstico de antenas que comprende una antena sonda (1) que es desplazada manualmente por un operario frente a ia antena bajo medida (3) describiendo una trayectoria (7) arbitraria que capta la señal radiada (2), También comprende una unidad de radiofrecuencia (4) que mide las propiedades de dicha señal, unos medios de posicícnamiento (5) de la antena sonda (1), y un sistema de procesado que realiza la diagnosis de ia antena bajo medida (3). ES método comprende definir una superficie de referencia (15), desplazar la antena sonda (1) cerca de la antena bajo medida (3), homogeneizar el muestreo, procesar la información y realizar un diagnóstico calculando la componente tangencial del campo. De aplicación en aquellos sectores en los que se requiera la diagnosis de antenas, como por ejemplo en el sector de las comunicaciones. Resulta de especial interés en redes 5G.

Description

D E S C R I P C I Ó N
SISTEMA Y MÉTODO PARA EL DIAGNÓSTICO DE ANTENAS
SECTOR DE LA TÉCNICA
La presente invención hace referencia a un sistema y a un método para el diagnóstico de antenas mediante el uso de un dispositivo portátil. El sistema comprende una antena sonda que es desplazada manualmente por el operario del sistema a lo largo de una trayectoria arbitraria y que capta las señales radiadas por la antena bajo medida, una unidad de radiofrecuencia que mide las propiedades de dicha señal, unos medios de posicionamiento que proporcionan la posición de la antena sonda y unos medios de procesado que realizan la diagnosis de la antena bajo medida a partir de los datos obtenidos. El método de la invención comprende definir al menos una superficie de referencia próxima a la antena bajo medida, desplazar la antena sonda a lo largo de una trayectoria, homogeneizar el muestreo espacial de las medidas, procesar la información para obtener la representación del campo electromagnético y diagnosticar la antena.
La invención resulta de aplicación en aquellos sectores en los que se requiera la diagnosis de antenas de forma rápida, evitando el uso de sistemas de medida de gran tamaño, como por ejemplo en el sector de las comunicaciones. Además, resulta de especial interés en ámbitos en los que se despliegan antenas compuestas por muchos elementos radiantes, donde la probabilidad de fallo de algún componente no es desdeñable. La invención permite la detección de elementos radiantes de comportamiento anómalo, lo cual es un aspecto importante para garantizar el correcto funcionamiento de un sistema. Esta situación es común en las redes avanzadas de comunicaciones, como por ejemplo en las que intervienen picoceldas desplegadas para las redes 5G. ANTECEDENTES DE LA INVENCIÓN
La diagnosis de antenas y sistemas radiantes de emisiones electromagnéticas es un aspecto fundamental para garantizar el cumplimiento de las especificaciones de los mismos. El avance en los sistemas de telecomunicaciones requiere antenas con requisitos más exigentes, reduciéndose los márgenes y tolerancias en el diseño. A modo de ejemplo, se puede citar la tecnología de radiofrecuencia de los nuevos sistemas de comunicaciones 5G, donde con el fin de optimizar la cobertura, se pretende emplear estaciones base de telefonía equipadas con smart antenna s, esto es, antenas capaces de generar uno o varios haces que doten de cobertura a los usuarios conectados a dicha estación base. Igualmente, cada vez más sistemas de comunicaciones vía satélite emplean técnicas basadas en conformado de haz y barrido electrónico, donde las antenas incorporan circuitos electrónicos y de radiofrecuencia que permiten modificar el apuntamiento del haz de la antena en tiempo real (por ejemplo, antenas de equipos de comunicaciones embarcados en vehículos en movimiento que han de mantener el apuntamiento hacia un satélite). Esto hace que la tecnología de diagnosis y caracterización de antenas, capaces de llevar a cabo la medida de estas antenas en condiciones de operación realistas, haya adquirido cada vez más protagonismo
En lineas generales, los sistemas para diagnosis de antenas se pueden clasificar en sistemas o rangos en exteriores, y sistemas o rangos en interiores. Los sistemas o rangos en exteriores permiten la medida directa del diagrama de radiación de la antena que se pretende diagnosticar, dado que es posible separar la antena bajo medida de la antena que se emplea como sonda, de forma que se toman medidas en campo lejano. Los principales inconvenientes que presentan son fundamentalmente la gran distancia que se necesita entre la infraestructura donde se coloca la antena bajo medida y la antena sonda para poder realizar la medida en campo lejano. Además, la exposición a inclemencias meteorológicas también condiciona y limita su utilización.
Los sistemas o rangos en interiores típicamente se ubican en recintos fijos denominados cámaras anecoicas que, con el fin de minimizar la reflexión de las ondas de radio en paredes, suelos, y techos, están recubiertas en su totalidad por un material que absorbe la radiación electromagnética. Al Igual que los rangos en exteriores, la antena bajo medida se coloca en una base o torre fija con capacidad para describir giros, y la antena que se emplea como sonda de medida se coloca en otra base o torre estacionaria a cierta distancia de la primera.
El campo electromagnético que radia una antena y/o sistema radiante se puede clasificar principalmente en dos regiones espaciales: región de campo cercano, donde la distribución espacial de la energía radiada cambia con la distancia a la antena, y región de campo lejano, donde la distribución espacial de la energía radiada no cambia con la distancia a la antena. Dependiendo del tamaño de la antena bajo medida, de la frecuencia de trabajo y de la separación entre la antena bajo medida y la sonda de medida, el campo electromagnético radiado por la antena bajo medida puede ser adquirido en la región de campo cercano o de campo lejano. Típicamente se considera que si se cumplen las condiciones Rmedida > 2D2/l y Rmedida > 10A el campo electromagnético se mide en la región de campo lejano (donde Rmedida es la distancia entre la antena bajo medida y la sonda de medida, D es el diámetro de la mínima esfera circunscrita a la antena bajo medida y A es la longitud de onda de trabajo).
La medida del diagrama de radiación de una antena únicamente se puede realizar en campo lejano. Si se mide la antena en la región de campo cercano, es necesario aplicar un método de transformación de campo cercano a campo lejano para obtener el diagrama de radiación a partir de las medidas realizadas, dado que en la reglón de campo cercano la distribución espacial de la energía radiada cambia con la distancia. Los métodos de transformación de campo cercano a campo lejano se basan en el cálculo de un conjunto de coeficientes que permiten modelar el campo electromagnético radiado por la antena, tal y como se describe en el estado del arte del documento de patente ES 2639687 (B2).
La diagnosis de una antena en la región de campo cercano requiere de la medida tanto de la amplitud como de la fase del campo electromagnético radiado por la misma. Para ello se necesitan dispositivos de medida tales como analizadores vectoriales de señal o receptores de dos canales (fase y cuadratura) o el empleo de un método para la recuperación de la fase del campo electromagnético.
La diagnosis de antenas y sistemas radiantes de emisiones electromagnéticas comprende no solamente la caracterización del diagrama de radiación sino también la detección de fallos y defectos en la antena, siendo de especial interés en el caso de agrupaciones de antenas (o arrays), donde el fallo de un simple elemento degrada las características del diagrama de radiación (por ejemplo, empeorando parámetros como la directividad o relación de lóbulos secundarios). También se aplica para detectar deformaciones en antenas de tipo reflector. La detección de fallos y defectos en la antena bajo medida se realiza mediante la caracterización de la distribución del campo electromagnético radiado a una distancia lo más próxima posible a la superficie de la misma. A partir de la representación de dicho campo es posible identificar deformaciones o elementos con funcionamiento incorrecto.
Los sistemas actualmente utilizados para la medida de antenas, que permiten recuperar información para efectuar su diagnosis, presentan varios inconvenientes tanto si son en rango interior como en rango exterior. En general, son sistemas caracterizados por una elevada complejidad, tanto constmctiva como operativa, que restringe su implantación. Por una parte, requieren de una infraestructura especializada, compleja y con instalaciones de gran volumen. Por otra parte, el personal a cargo de las medidas debe ser especializado, con entrenamiento y amplios conocimientos en la materia. Además, también son necesarios elementos electro-mecánicos para el posicionamiento de la antena bajo medida y de la sonda empleada en la medida. Asimismo, la configuración y precisión del sistema de posicionamiento es uno de los condicionantes que definen el tipo de antenas que se pueden medir en un determinando sistema de medida de antenas. El desarrollo de los sistemas de posicionamiento ha permitido introducir sistemas basados en brazos robóticos para la medida de antenas como por ejemplo el descrito en la patente US 20180368011 (A1 ) o en el documento Gordon, J. A., Novotny, D. R., Francis, M. H., Wittmann, R. C., Butler, M. L., Curtln, A. E., & Guerrieri, J. R * MHIimeter-Wave Near-Field Measumments Using Coordinated Robotics. " IEEE Transactions on Antennas and Propagation, pp. 5351-5362, 2015, December, En este documento se describe un sistema y método para la medida de antenas empleando un posidonador consistente en un brazo robótico, que permite la medida del campo radiado por la antena bajo medida en diferentes rangos de medida (plano, cilindrico, esférico). El sistema presenta una precisión de posicionamiento inferior a 22 mm. Dado que para la diagnosis de una antena se requiere que la separación entre dos puntos de medida adyacentes sea igual o menor a media longitud de onda a la frecuencia de medida cuando se emplea un detector capaz de medir amplitud y fase, e igual o inferior a un cuarto de longitud de onda a la frecuencia de medida cuando se emplea un detector capaz de medir únicamente amplitud, el sistema descrito permite la medida de antenas hasta la frecuencia de 300 GHz. La principal limitación de los sistemas que emplean este tipo de posicionador es la elevada complejidad y coste de un brazo robótico. que además requiere ser manejado por un operador experto.
En el caso de diagnosis de antenas de grandes dimensiones, se han propuesto diferentes soluciones. En el documento de patente ES 2639687 (B2) se presenta un sistema aerotransportado y un método para la caracterización y medida de antenas o sistemas radiantes, formado por al menos un módulo aéreo, una estación terrena y un sistema de comunicación entre elementos. La invención también se refiere al método de procesado del campo electromagnético radiado para obtener tanto el diagrama de radiación como el campo en la apertura de la antena con fines de detección de fallos. Este sistema está concebido para medidas in-situ, en exteriores, de antenas en condiciones de operación (de forma que no sea necesario interrumpir el servicio de radiocomunicaciones para el diagnóstico de la antena), emplazadas en ubicaciones de difícil acceso que hagan conveniente el empleo de sistemas aerotransportados. Las principales limitaciones de este sistema y métodos son, por una parte, la máxima precisión en el posicionamiento y geo- referendación de las medidas, que se especifica en unos 3 cm, lo que impone un límite superior en frecuencia de las antenas que se pueden diagnosticar (se indica unos 5 GHz). Por otra parte, el empleo de un sistema aerotransportado incrementa la complejidad del sistema y la especialización de los operadores del mismo, comparable a la que presenta un rango de medida de antenas con partes móviles mecánicas. En el documento de A. Geise, O. Neitz, J. Migl, H.-J. Steiner, T. Fritzel, C. Hunscher, T. F. Eibert,“A Crane Basad Portable Antanna Measurement System - System Description and Validation", IEEE Transactions on Antennas and Propagation, pp. 1-12, 2019, se describe un sistema y método para la medida de antenas donde la sonda empleada para la medida del campo radiado, así como el equipamiento de radiofrecuencia, se encuentra embarcado en una góndola colgada de un puente-grúa que se desplaza por encima de la antena o sistema radiante bajo medida. El sistema propuesto involucra la adquisición del campo radiado en superficies de medida irregulares debido a la naturaleza de los movimientos descritos por la góndola. El sistema presenta diversas limitaciones como la necesidad de una Infraestructura de grandes dimensiones que soporte la góndola. Asimismo, el manejo del sistema es complejo, ya que el diseño de la trayectoria y la orientación de la antena sonda requiere tener en cuenta todas las inercias de la góndola, peso, fricciones o aceleraciones entre otros aspectos de la dinámica de la misma, tal y como los propios autores mencionan en el artículo en el que presentan el sistema. En el documento de patente US 20180351631 (A1 ) se presenta un dispositivo móvil formado por al menos una pareja de antenas, una con polarización horizontal y otra con polarización vertical. El dispositivo incluye también un sistema detector de posición, un detector de intensidad del campo electromagnético y una unidad de procesado de la información. El dispositivo permite obtener la posición de cada medida, proporcionando mapas de intensidad de las señales radiadas por el dispositivo bajo medida, por ejemplo, un emisor de WiFi. En dicho documento de patente se reivindica la capacidad para obtener parámetros específicos de las señales radiadas, tales como medida de fase y la dispersión de retardo. Sin embargo, el sistema se limita a generar mapas de intensidad de las señales captadas o a medir ciertos de sus parámetros sin llegar a obtener el diagrama de radiación o el diagnóstico del elemento emisor de las mismas. En el documento de H. He, P. Maheshwari, and D. J. Pommerenke,“The develapmenf af án EM-f¡eld probing sysíem for manual near-fíeld scanning. * IEEE Transactions on Electromagnetic Compatibility, 58, 356-363, Aprñ 2016, se presenta un sistema y método para la diagnosis de circuitos electrónicos mediante la medida del campo eléctrico y magnético radiado por los componentes electrónicos constituyentes de los mismos. El sistema está formado por un sistema de posidonamiento óptico que permite obtener la posición de la sonda de medida del campo eléctrico y magnético en cada punto de medida. Dicha sonda de medida está conectada a un analizador de espectros que permite adquirir la intensidad del campo eléctrico y magnético, permitiendo su visuallzación en tiempo real. Sin embargo, las medidas obtenidas con la sonda no son obtenidas con un muestreo adecuado ni procesadas para determinar la fuente de dicha radiación, sino que simplemente se representan creando mapas de intensidad de las emisiones electromagnéticas. Esto impide, por ejemplo, el modelado del campo con elementos sencillos tales como funciones base en términos de las cuales se pueden expresar los campos en la apertura o modos de radiación (p.ej. expansión en ondas esféricas, planas o cilindricas) que permitan obtener representaciones más precisas del funcionamiento del sistema radiante, lo cual impide una mayor precisión en la diagnosis de la antena. Por ejemplo, si la antena está protegida por un radomo, este sistema no permitirla obtener los campos en el interior de dicho radomo. En el documento de patente US 20180090837 (A1 ) se presenta un sistema y método para caracterizar el funcionamiento de antenas de tipo active phased array y su comportamiento frente a cambios de temperatura. Para ello se combinan medidas del campo cercano radiado por la antena bajo medida empleando un rango de medida XYZ que emplea un brazo robótico articulado con imágenes térmicas captadas por una cámara térmica. En el documento se reivindica la posibilidad de caracterizar la amplitud y la fase de cada uno de los elementos que conforman la antena de tipo phased array. En este sistema se emplean dominios de adquisición canónicos. Sin embargo, el sistema requiere el uso de una compleja infraestructura caracterizada por el uso de un robot articulado. Asi mismo, es un sistema fijo, de gran tamaño y que no está indicado para caracterizar o diagnosticar antenas una vez desplegadas.
En el documento de patente US 9439092 (B1 ) se presenta un sistema y método para llevar a cabo el diagnóstico de antenas de telefonía móvil. En esta invención se emplean mapas de calor para determinar los elementos o antenas que presentan un funcionamiento anómalo, dado que la imagen térmica de las antenas es proporcional a la potencia de emisión de las mismas. La principal desventaja de esta invención es que sólo es útil en antenas que irradien suficiente calor. Además, no permite la obtención de la amplitud o fase del campo en la apertura, por lo que no permite una diagnosis adecuada de agrupaciones de antenas. Además, tampoco permite la medida del diagrama de radiación, es decir, no permite una evaluación de las consecuencias del funcionamiento anómalo de un elemento radiante, que podría radiar de forma aceptable dentro de las especificaciones necesarias sin que fuera necesaria su reparación o reemplazo.
EXPLICACIÓN DE LA INVENCIÓN La presente invención se refiere a un sistema para la diagnosis de antenas mediante medidas realizadas moviendo a mano y sin restricciones mecánicas al menos una antena sonda en frente de la antena bajo medida, adquiriendo la señal radiada en un conjunto de puntos arbitrarios. El sistema también incluye unos medios de posicionamiento capaces de determinar la posición de la antena sonda empleada para captar la señal radiada por la antena bajo medida. Los datos adquiridos de la señal radiada, asi como la posición donde se han realizado esas adquisiciones, son procesados por unos medios de procesado que calculan información de la distribución de los campos electromagnéticos en la apertura de la antena bajo medida. De este modo es posible evaluar si las amplitudes y fases en la apertura son correctas, así como las características del campo lejano.
La invención también se refiere a un método para la diagnosis de antenas utilizando el sistema anterior que comprende procesar los valores medidos para obtener los datos de campo en la apertura y el diagrama de radiación de la antena bajo medida. A efectos de esta invención y su descripción, antena bajo medida se refiere a la antena que es analizada y diagnosticada para encontrar posibles anomalías en su funcionamiento.
Un objeto de la presente invención es, por tanto, un sistema para la diagnosis de antenas que comprende:
Al menos una antena sonda, que puede ser movida a mano de manera arbitrarla por la persona que opera el sistema, que capta la señal radiada por la antena bajo medida cuando se desplaza a lo largo de una trayectoria. La antena sonda capta al menos una componente del campo eléctrico en el punto en el que se sitúa. Una unidad de radiofrecuencia (RF) que mide una o varias de las propiedades de la señal captada por la antena sonda a lo largo de una trayectoria.
A los efectos de esta Invención y su descripción, las propiedades de la señal medida o captada se refieren o bien a la intensidad y fase, o bien únicamente a la intensidad en el caso de que solo se mida una propiedad de la señal captada por la antena sonda.
Unos medios de posicionamiento que proporcionan la posición de la antena sonda a lo largo de la trayectoria.
Unos medios de procesado con al menos un procesador, una memoria y un programa o programas que están almacenados en la memoria y que comprenden una pluralidad de instrucciones. Los medios de procesado realizan la diagnosis de la antena bajo medida, procesando las propiedades de la señal medidas por la unidad de radiofrecuencia combinadas con la posición de la antena sonda proporcionada por los medios de posicionamiento.
La antena sonda del sistema es desplazadle manualmente por un operario siguiendo una trayectoria arbitraria, dentro de un volumen de investigación. El volumen de investigación comprende una superficie de referencia que se sitúa a una distancia comprendida entre 1 cm y 100 cm de la antena bajo medida.
A efectos de esta invención y su descripción, se denomina superficie de referencia a una superficie virtual cerca de la cual se mueve la antena sonda que capta la señal radiada por la antena bajo medida.
Por otro lado, los medios de procesado del sistema comprenden una pluralidad de instrucciones que cuando son ejecutadas por el procesador diagnostican la antena bajo medida. Esta diagnosis se realiza mediante el cálculo de al menos la componente tangencial del campo eléctrico, o del campo magnético o de ambos, en la apertura de antena bajo medida en base a una representación mediante una expansión en funciones base de las corrientes equivalentes en la apertura o modos de campo eléctrico obtenidos a partir de las propiedades de la señal captada por la antena sonda asociadas a la posición proporcionada por los medios de posicionamiento. En una realización preferida del sistema, este comprende dos antenas sonda con polarizaciones ortogonales permitiendo medir la señal radiada por la antena bajo medida para dos polarizaciones independientes. Un ejemplo de sistema con capacidad para medir dos polarizaciones independientes sería uno comprendiendo dos antenas con polarizaciones lineales ortogonales y una unidad de RF compuesta por dos detectores de potencia, cada uno de ellos conectado a una antena diferente.
En otra realización preferida, la unidad de radiofrecuencia mide tanto la fase como la intensidad de la señal captada por la antena sonda. En una realización más preferida, la unidad de radiofrecuencia comprende un analizador vectorial de redes portátil.
Un ejemplo de unidad de RF capaz de proporcionar la intensidad y fase sería un analizador vectorial de redes de al menos dos puertos, con una interfaz inalámbrica o cableada que transmite las medidas realizadas, junto con una antena que funciona a modo de sonda de campo electromagnético. En este ejemplo de realización, uno de los puertos del analizador vectorial de redes se conectarla a la sonda, la cual se podría mover a mano, y el otro se conectaría a la antena bajo medida.
En otra realización preferida del sistema, la unidad de RF proporciona la intensidad de la señal captada por la antena sonda. En una realización más preferida, la unidad de radiofrecuencia comprende un detector de potencia. En otra realización preferida, la unidad de radiofrecuencia comprende un analizador de espectros.
Un ejemplo de unidad de RF que proporciona intensidad seria un detector de potencia conectado a una antena por un puerto de RF y cuya salida de vídeo se conecta a un conversor analógico-digital que envía sus datos al sistema de procesado a través de una interfaz inalámbrica o cableada como un puerto serie o USB. En este ejemplo, la unidad de RF estaría compuesta por el detector de potencia y el conversor analógico-digital junto con la interfaz de conexión. Otro ejemplo de unidad de RF que proporciona la intensidad de la señal radiada es un analizador de espectros con un interfaz, como por ejemplo un puerto GPIB, que transmita los datos obtenidos y que se conecta a la antena o antenas sonda mediante cables de radiofrecuencia flexibles.
En otra realización preferida del sistema, la unidad de RF es capaz de extraer la información de la señal radiada adquirida permitiendo detectar parámetros de la misma. Un ejemplo de extracción de información de la señal radiada sería un sistema para diagnosis de antenas 5G capaz de la detección e interpretación de los bloques Synchronization Signal Stock (SSB) y de medida de la intensidad correspondiente a cada SSB, permitiendo asignar una Intensidad a cada haz radiado por la antena bajo medida. En otra realización preferida, los medios de posicionamiento son un sistema de seguimiento óptico de la antena sonda a lo largo de la trayectoria.
En una realización más preferida, el sistema de seguimiento óptico comprende al menos una cámara infrarroja, o al menos una cámara de espectro visible, o al menos una cámara de profundidad, o una combinación de las anteriores. Aún más preferidamente, el sistema de seguimiento óptico captura el movimiento de la antena o antenas sonda mediante unos marcadores unidos a la antena o antenas sonda, mientras las cámaras están colocadas en posiciones fijas. En otra realización más preferida, el sistema de seguimiento óptico comprende una cámara integrada en la antena sonda que capta imágenes sucesivas a lo largo de la trayectoria. En un ejemplo, las imágenes captadas pueden ser procesadas mediante fbtogrametrla. En otro ejemplo, la cámara integrada puede ser una cámara de profundidad, que mide nubes de puntos de manera continua de modo que la posición de la antena sonda se puede obtener comparando las diferencias entre las nubes de puntos.
En otra realización preferida, los medios de posicionamiento comprenden un sistema de posicionamiento ultrawideband (UWB) que estima la posición de la antena sonda a lo largo de la trayectoria.
En otra realización preferida, los medios de posicionamiento comprenden un sensor inercial dispuesto en la antena sonda que proporciona los datos relativos de su posición a lo largo de la trayectoria. Asi, por ejemplo, un sensor inercial puede materializarse mediante una unidad de medida inercial ( inertial measurement unit o IMU) equipada con acelerómetros y giroscopios.
En una realización más preferida, los medios de posicionamiento proporcionan la posición de la antena sonda a partir de los datos del sensor inercial combinados con las imágenes captadas por la cámara integrada. Por ejemplo, los medios de posicionamiento pueden integrar una cámara de profundidad y una IMU. En este ejemplo, la posición se proporcionaría aplicando el algoritmo iterativo del punto más cercano (iterativa closest point, o ICP) usando como entrada las nubes de puntos medidas por la cámara de profundidad y la inclinación detectada por la IMU.
En otra realización preferida, la antena sonda y la unidad de RF están integrados en un único dispositivo. En una realización más preferida, los medios de posicionamiento están integrados en un mismo dispositivo junto a la antena sonda y la unidad de radiofrecuencia.
En una realización aún más preferida, ese dispositivo es un teléfono móvil. Asi, por ejemplo, las antenas sonda del sistema son las de un teléfono móvil; la unidad de RF es el sistema de comunicaciones de dicho teléfono móvil, el cual mide las propiedades de la señal radiada por la antena bajo medida; los medios de procesado son la unidad de procesamiento del teléfono móvil; y los medios de posicionamiento lo constituyen los sensores del teléfono móvil y su unidad de procesado.
En otra realización preferida, los medios de procesado comprenden una pluralidad de instrucciones que cuando son ejecutadas por el procesador hacen que los medios de procesado estén configurados para ejecutar el método para el diagnóstico de antenas de la invención. En otra realización preferida de cualquiera de las anteriores, el subsistema de procesado de datos también calcula el diagrama de radiación en campo lejano de la antena bajo medida.
Otro objeto de la presente Invención es un método para el diagnóstico de antenas mediante el sistema anterior a partir de datos de la señal radiada por las mismas. El método comprende las siguientes etapas: a) Definir al menos una superficie de referencia en base a las propiedades de la señal radiada por una antena bajo medida que la unidad de radiofrecuencia es capaz de medir. La superficie de referencia se sitúa a una distancia comprendida entre 1 cm y 100 cm de la antena bajo medida. b) Desplazar una antena sonda de forma manual describiendo una trayectoria arbitraria dentro de un volumen de Investigación. El volumen de investigación comprende la superficie de referencia. A medida que se deslaza la antena sonda, se va captando la señal radiada por la antena bajo medida y se miden sus propiedades mediante una unidad de radiofrecuencia. También se determina la posición de la antena sonda a lo largo de la trayectoria. c) Homogenizar el muestreo espacial de medidas de la señal radiada por la antena bajo medida.
A los efectos de esta invención y su descripción, homogenizar el muestreo espacial se refiere al establecimiento de un método que regula la adquisición de datos en posiciones arbitrarias de forma que se obtiene un conjunto de datos con una distribución más equilibrada, seleccionando un número de datos máximo por unidad de volumen que esté dentro de un rango preestablecido. d) Procesar la información adquirida para obtener una representación del campo electromagnético generado por la antena bajo medida como expansión en funciones base. e) Diagnosticar la antena bajo medida mediante el cálculo de al menos la componente tangencial del campo eléctrico, o del campo magnético o de ambos, en la apertura de antena bajo medida. De esta forma es posible identificar elementos radiantes defectuosos.
En una realización preferida del método, las propiedades medidas en la etapa b) son tanto la fase como la intensidad de la señal captada por la antena sonda y se define una única superficie de referencia.
En una realización más preferida, los coeficientes de la expansión en funciones base del campo electromagnético de la etapa d) cuando se miden tanto la fase como la intensidad se obtienen encontrando los coeficientes que minimizan la función de coste
Figure imgf000014_0001
siendo CF la función de coste, b un vector columna con las medidas del campo, x un vector con los coeficientes de los elementos fundamentales y A una matriz conteniendo la relación lineal entre las funciones base y las medidas del campo. Un ejemplo serla el uso del método de reconstrucción de fuentes (Sources Reconstructíon Method, o SRM), que permite la representación del campo electromagnético radiado mediante corrientes equivalentes. En otra realización preferida del método, la propiedad medida en la etapa b) es la intensidad de la señal captada por la antena sonda. En una realización más preferida, en la etapa a) se definen dos superficies de referencia. En una realización aún más preferida, la representación del campo electromagnético generado a partir de la expansión en funciones base de la etapa d) comprende las siguientes subetapas: d.i) Asignar una fase inicial arbitraria a los datos medidos en la primera superficie de referencia. d.ii) Calcular los pesos de las funciones base como los coeficientes que minimizan la función de coste
Figure imgf000015_0001
siendo CFi la función de coste, bt un vector columna con las medidas del campo en la primera superficie con la intensidad medida y con fase f1, x un vector con los pesos de las funciones base y Ai una matriz conteniendo la relación lineal entre las funciones base y las medidas del campo en la primera de las superficies. d.iii) Calcular el campo en la segunda superficie de referencia a partir de la expansión en funciones base calculada en el paso d.ii) obteniendo un vector de fases f2 correspondiente al campo en las posiciones medidas de la segunda superficie de referencia. d.iv) Calcular los coeficientes de las funciones base, que serán los que minimizan la función de coste
Figure imgf000015_0002
siendo CF2 la función de coste, b2 un vector columna con las medidas del campo en la segunda superficie con la amplitud medida y con la fase calculada en el paso d.iii), f2, x un vector con los pesos de las funciones base y una matriz conteniendo la relación lineal entre las funciones base y las medidas del campo en la primera de las superficies. d.v) Calcular al campo en la primera superficie de referencia a partir de la expansión en funciones base calculada en el paso d.iv) obteniendo un vector de fases <plt correspondiente al campo en las posiciones medidas de la primera superficie de referencia. d.vi) Repetir los pasos desde d.ii) hasta d.v) si no se alcanza al menos un criterio de convergencia. En caso contrario este algoritmo se para.
Un ejemplo de criterio de convergencia para la etapa d.vi) es que el número de iteraciones supere un valor establecido. Otro ejemplo de criterio de convergencia es que el error esté por debajo de un umbral dado por:
Figure imgf000016_0001
siendo o un parámetro que balancea el peso entre el error en la superficie uno y la superficie dos. Un ejemplo seria el uso del método de reconstrucción de fuentes sin emplear información de fase ( phaseless Sources Reconstructíon Method, pSRM) que permite la representación de la intensidad de campo electromagnético radiado mediante corrientes equivalentes, expresadas mediante una expansión en funciones base.
En otra realización preferida del método, la homogeneización de la etapa c) comprende discretizar el volumen de investigación a partir de la proyección ortogonal a una distancia h de unas celdas comprendidas en la superficie o superficies de referencia. De esta manera se configura una pluralidad de volúmenes discretos no solapados, donde el número de capturas de la señal radiada no supera cierto umbral. Cuando el número de medidas supera el umbral, se descartan. Por ejemplo, se podrían retener sólo dos medidas de la señal radiada por la antena bajo medida por cada volumen discreto, de manera que no haya celdas con un número de medidas significativamente mayor que otras celdas.
En una realización más preferida, la superficie de referencia es plana y los volúmenes discretos son prismas rectos o cuboides.
En otra realización especifica del método, tras la etapa e), el método además comprende la etapa f) Calcular el diagrama de radiación de la antena bajo medida a partir de la expansión en funciones base obtenida en la etapa d).
Tras la etapa e) se añade esta nueva etapa en la que se calcula el campo lejano a partir de la expansión en funciones base empleando técnicas de transformación campo cercano a campo lejano.
En otra realización preferida del método, las funciones base de la expansión del campo electromagnético modelan las corrientes eléctricas y magnéticas expresadas como combinaciones lineales de dichas funciones base.
En otra realización preferida del método, las funciones base de la expansión del campo electromagnético son modos de campo electromagnético. Un ejemplo de serían las expansiones en ondas planas, cilindricas o esféricas. En una realización especifica de la anterior realización, los modos son ondas planas.
En otra realización especifica del método, las etapas c), d) y e) se repiten para cada uno de los haces radiados por la antena bajo medida. Por ejemplo, una antena bajo medida con varios haces serla una antena de una estación base de un sistema 5G que emite varios haces. Estos haces pueden ser identificados y diferenciados, y su intensidad se mide de forma que se obtiene una expansión en funciones base diferente para cada haz.
En otra realización preferida del método de cualquier de las anteriores la etapa e) de cálculo de campo en la apertura se implementa calculando el campo radiado a partir de la expansión en funciones base. Un ejemplo de cálculo del campo en la apertura en el caso de que las funciones base sean ondas planas seria una propagación hacia atrás usando propagaciones de plano a plano. Otro ejemplo de cálculo del campo en la apertura en el caso de que las funciones base sean comentes equivalentes en la apertura serla utilizar las propias corrientes equivalentes en la apertura pues estas ya representan el campo tangencial en la apertura.
La invención aporta, frente a otros sistemas que actualmente se conocen, un sistema para la diagnosis de antenas que evita el uso de elementos de posiclonamiento mecánicos o de grandes estructuras auxiliares, gracias al uso de una antena sonda que se puede operar manualmente y a unos medios de posicionamiento que siguen el movimiento libre de la antena sonda.
La invención también proporciona un método que permite homogenizar los datos muestreados, consiguiendo así una mayor flexibilidad, portabilidad y rápido despliegue del sistema. Además, el sistema y método evitan la necesidad de un operador experto puesto que permiten que el operador del sistema realice la adquisición de datos sin la necesidad de la definición previa de la trayectoria a seguir y que desplace la antena sonda con una cierta tolerancia.
Asimismo, el sistema proporciona realimentación visual en tiempo real de las muestras obtenidas permitiendo al operador saber en qué zonas debe incrementar el muestreo. Frente a otras invenciones que sí permiten movimientos arbitrarios, la presente invención aporta la capacidad para manejar estos datos arbitrarios y convertirlos en información relativa al campo en la apertura, gracias a un correcto espaciado de los datos permitiendo asi conocer la amplitud y fase del campo radiado por los diferentes elementos de la antena, incluso en aquellos casos en los que no hay un acceso físico a la apertura, como por ejemplo cuando la antena está protegida por un radomo La presente invención resulta de aplicación en aquellos sectores en los que se requiera la diagnosis de antenas de forma rápida, evitando el uso de sistemas de medida de gran tamaño, como por ejemplo en el sector de las comunicaciones. Además, resulta de especial relevancia en ámbitos en los que se despliegan muchas antenas compuestas por muchos elementos radiantes dado que la probabilidad de que algún elemento de la cadena transmisora como, por ejemplo, desfasadores o atenuadores para modelar el haz, sufra un fallo no es despreciable. Un ejemplo de este último escenario es el despliegue de picoceldas trabajando en banda de milimétricas para comunicaciones 5G.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La Fig. 1 muestra una realización del sistema correspondiente al descrito en el ejemplo 1. En la figura se muestra la antena sonda (1 ), que es desplazada por el operador del sistema con su mano frente a la antena bajo medida (3) describiendo una trayectoria (7) arbitraria, conectada a una unidad de radiofrecuencia (4) materializada en analizador vectorial de redes portátil (13). La antena bajo medida (3) se encuentra conectada al otro puerto de dicho analizador vectorial de redes portátil (13) de forma que es posible obtener tanto la amplitud como la fase de la señal radiada (2) por la antena bajo medida (3) en las distintas posiciones de adquisición a lo largo de la trayectoria (7). Las posiciones de la antena sonda (1 ) en las que se realizan medidas del campo eléctrico radiado por la antena bajo medida (3) se obtienen mediante unos medios de posicionamiento (5) materializados mediante un sistema de seguimiento óptico (8) formado por cuatro cámaras Infrarrojas (9) conectadas a unos medios de procesado (6) representados mediante un ordenador que procesa y controla la adquisición de datos. Las coordenadas x-y-z y la inclinación de la antena sonda (1 ) del sistema son estimadas por el sistema de seguimiento óptico (8) a partir de los cuatro marcadores (18) fijados a la antena sonda (1 ).
La Fig. 2 muestra otra realización del sistema correspondiente al descrito en el ejemplo 3. En este caso la unidad de radiofrecuencia (4), la antena sonda (1 ) y los medios de posicionamiento (5) están integrados en un teléfono móvil smartphone 5G, que se desplaza describiendo una trayectoria (7) arbitraria frente a la antena bajo medida (3). La unidad de radiofrecuencia (4) está formada por el sistema de comunicaciones del smartphone·, las antenas sonda (1 ) del sistema de medida, encargadas de adquirir la intensidad de la señal radiada (2) por la antena bajo medida (3), son las propias del smartphone ; y los medios de posicionamiento (5) los constituyen los sensores ¡nerciales (10) y la cámara de profundidad (12) del mismo teléfono. Los datos adquiridos son enviados a través de una conexión WIFI a un ordenador que forma los medios de procesado (6) y que realiza la diagnosis de la antena bajo medida (3).
La Fig. 3 representa dos superficies de referencia (15) definidas para la caracterización de una antena bajo medida (3) empleando solo infamación de la Intensidad de la señal radiada (2) por la misma. Las dos superficies de referencia (15) se definen frente a la antena bajo medida (3). Para la homogenelzaclón del muestreo espacial de los datos medidos, ambas superficies de referencia (15) se segmentan en celdas que se proyectan formando una pluralidad de volúmenes discretos (16) tridimensionales en forma de prismas rectos no solapados, dentro de los cuales se limita el número de adquisiciones de intensidad de campo. En este caso, la proyección de las posiciones de adquisición de intensidad de campo sobre cada superficie de referencia (15) se representa con un circulo negro. Además de la homogeneizadón espacial, estos volúmenes discretos (16) permiten descartar muestras que estén demasiado alejadas de las superficies de referencia (15) más allá de una cierta tolerancia dada por la altura h de los prismas rectos. La trayectoria (7) arbitraria descrita por la antena sonda (1 ) se representa mediante una linea sólida terminada en una punta de flecha en cada superficie de referencia (15). La Fig. 4 muestra el flujograma básico del método para el diagnóstico de antenas con el sistema descrito en esta invención. En primer lugar, se realiza la inicialización del sistema, que comprende la definición de la superficie o superficies de referencia (15), así como su segmentación en volúmenes discretos (16) que permitan la homogenización espacial de la información adquirida. Posteriormente, se desplaza la antena sonda (1 ) frente a la antena bajo medida (3) de forma manual describiendo una trayectoria (7) arbitraria de acuerdo a las superficies de referencia (15) previamente definidas. Durante dicho desplazamiento se realizan adquisiciones de la señal radiada (2) por la antena bajo medida (3) (bien intensidad y fase o únicamente intensidad, dependiendo de las capacidades de la unidad de radiofrecuencia (4)) y se calcula la posición de la antena sonda (1 ) en la que se han hecho dichas adquisiciones gracias a la información proporcionada por los medios de posicionamiento (5). Asimismo, durante la adquisición se homogeniza el muestreo espacial del campo de la antena bajo medida (3) descartando aquellas medidas adquiridas en posiciones que estén fuera de los volúmenes discretos (16) previamente definidos o que se hayan adquirido dentro de un volumen discreto (16) en el que se haya alcanzado el número de adquisiciones máximo. Finalmente, se caracteriza el campo de la antena bajo medida (3) a través de su expansión en funciones base calculada a partir de las medidas disponibles. Dicha caracterización es actualizada, en una realización preferente del método, a medida que se obtienen nuevas medidas. De forma opcional se puede calcular el campo lejano radiado por la antena bajo medida (3) y a partir de la expansión en funciones base se modela su campo.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Para una mejor comprensión de la presente invención, se exponen los siguientes ejemplos de realización preferente, descritos en detalle, que deben entenderse sin carácter limitativo del alcance de la invención.
EJEMPLO 1
Se materializó un sistema constituido por una unidad de RF (4) consistente en un analizador vectorial de redes portátil (13) conectado por un puerto y un cable coaxial a una antena sonda (1 ) de campo eléctrico consistente en una antena de tipo gula de onda abierta WR28 operando en el rango 26.5 a 40 GHz (banda Ka) que capta la señal radiada (2) por la antena bajo medida (3). El otro puerto del analizador vectorial de redes portátil (13) se utiliza para inyectar señal de RF a la antena bajo medida (3). Esta unidad de radiofrecuencia (4) era capaz de proporcionar la amplitud y fase del campo eléctrico en una polarización mediante la medida del parámetro S21. La conexión de este subsistema se realizaba mediante una interfaz LAN que permitía enviar y recibir comandos SCPI ( Standard Commands for Pmgrammable Instruments).
Los medios de poslcionamiento (5) se materializaron en un sistema de seguimiento óptico (8), constituido por 4 cámaras infrarrojas (9) conectadas mediante un switch a un ordenador que realizaba el seguimiento de 4 marcadores (18) unidos a la antena sonda (1 ) de campo eléctrico. El software de procesado proporcionaba la posición en coordenadas x-y-z asi como la inclinación de la antena mediante los ángulos de inclinación (p/fch, roll y yaw ) a lo largo de la trayectoria (7).
Los medios de procesado (6) se materializaron en el mismo ordenador personal que procesaba los datos de posicionamiento y que se comunicaba con el analizador vectorial de redes portátil (13) mediante comandos SCPI.
EJEMPLO 2
Para llevar a cabo el método para el diagnóstico de antenas se utilizó el sistema descrito en el Ejemplo 1. El método se aplicó mediante la realización de las siguientes etapas: a) Se definió una única superficie de referencia (15) consistente en un plano de tamaño 15 cm x 15 cm y situado paralelo a 5 cm de la apertura de la antena bajo medida (3), ya que la unidad de radiofrecuencia era capaz de medir la amplitud y la fase de la señal radiada (2) por la antena bajo medida (3). b) El operador movió de manera continua la antena sonda (1 ) de campo eléctrico con su mano, describiendo una trayectoria (7) arbitraria tomando como superficie de referencia (15) la superficie del paso a) captando la señal radiada (2) por la antena bajo medida (3), midiendo su amplitud y fase, y determinando la posición de la antena sonda (1 ). c) Se homogenizó el muestreo espacial reteniendo las dos primeras medidas de campo electromagnético adquirido dentro de cada volumen discreto (16). d) Se procesó la Información adquirida para obtener una representación del campo electromagnético generado por la antena bajo medida (3) en términos de las corrientes magnéticas, aproximadas por una combinación lineal de funciones base de tipo pulso no solapadas, en una apertura de tamaño 5 cm x 5 cm mediante la siguiente operación:
Figure imgf000022_0001
siendo b un vector columna con las medidas del campo, x un vector con los coeficientes de las corrientes magnéticas y A+ la pseudoinversa de la matriz A cuyo elemento de la fila m- ésima y columna n-ésima contiene el campo radiado por la función base n-ésima en el m- ésimo punto donde se ha medido el campo. e) se diagnosticó la antena bajo medida (3) mediante el cálculo del campo magnético en la apertura de manera directa a partir de las corrientes magnéticas pues ya son proporcionales al campo magnético tangencial.
Las etapas desde la b) hasta la e) se repitieron de manera continua permitiendo la visualización de las corrientes en la apertura a medida que el operador movía la antena sonda (1 ).
La superficie de referencia (15) se dividió en volúmenes discretos (16) formados por prismas rectos no solapados de tamaño 3.5 mm x 3.5 mm x 3.5 mm, con dos de sus caras paralelas a la superficie de referencia (15).
EJEMPLO 3 Este ejemplo está orientado a la diagnosis de antenas activas 5G en la banda de 28GHz. En este ejemplo, la unidad de radiofrecuencia (4) del sistema se materializó en el sistema de comunicaciones de un teléfono inteligente 5G con capacidad para detectar la intensidad de los distintos haces 5G emitidos por la antena bajo medida (3) identificados por los bloques SSB. Las antenas sonda (1 ) que adquirían la señal radiada (2) eran las propias del teléfono móvil. Los datos medidos se envían a través de una conexión WiFI y junto a una marca de tiempo a un ordenador personal.
Los medios de posicionamiento (5) se materializaron en una cámara de profundidad (12) y una IMU (10), ambos pertenecientes al teléfono inteligente. Los datos de inclinación se obtenían directamente de la IMU (10). La posición se obtenía calculando el desplazamiento x-y-z relativo entre nubes de puntos adquiridas por la cámara de profundidad (12), corregidas por la inclinación del teléfono procedente de la IMU (10) y procesadas por el algoritmo Iterative Cfosest Point (ICP). Estos datos eran procesados en el sistema de CPU/GPU del teléfono inteligente y eran enviados a un ordenador personal a través de una conexión WiFi junto con una marca de tiempo.
Los medios de procesado (6) se materializaron en un ordenador personal que recibía los datos de la intensidad de cada haz emitido por antena bajo medida (3) y de las posiciones de la antena sonda (1 ) proporcionadas por los medios de posicionamiento (5). EJEMPLO 4
Para llevar a cabo el método para el diagnóstico de antenas se utilizó el sistema descrito en el Ejemplo 3. El método se aplicó mediante las siguientes etapas: a) Se definieron dos superficies de referencia (15) consistentes en dos planos de tamaño 30 cm x 30 cm, situados a 5 cm y 15 cm, respectivamente, de la apertura de la antena bajo medida (3), ya que la unidad de radiofrecuencia solo era capaz de medir la intensidad de la señal radiada (2) por la antena bajo medida (3). b) El operador movió de manera continua la antena sonda (1 ) de campo eléctrico con su mano describiendo una trayectoria (7) arbitraria tomando como superficies de referencia (15) las superficies del paso a). c) Se homogenizó el muestreo espacial reteniendo las dos primeras medidas de campo electromagnético adquirido dentro de cada volumen discreto (16). d) Se calculó una expansión en funciones base consistentes en ondas planas siguiendo ios pasos del d.i) al d.vi) descritos en las realizaciones del método para cada haz medido. e) Se calculó el campo tangencial en la apertura a partir de la expansión en ondas planas. f) Se calculó el diagrama de radiación de la antena bajo medida (3) para cada haz medido a partir del espectro visible de ondas planas, con la siguiente expresión:
Figure imgf000024_0001
donde r, 6 y F son las coordenadas esféricas, k el número de onda el espectro de
Figure imgf000024_0002
ondas planas.
Las etapas desde la b) hasta la f) se repitieron de manera continua permitiendo la visuallzación de las corrientes en la apertura y el campo lejano a medida que el operador movía la antena sonda (1 ). Las superficies de referencia (15) se dividieron en volúmenes discretos (16) formadas por prismas rectos no solapados de tamaño 5 mm x 5 mm x 5 mm, con dos de sus caras paralelas a las superficies de referencia (15).

Claims

R E I V I N D I C A C I O N E S
1. Sistema para el diagnóstico de antenas de antenas, que comprende: al menos una antena sonda (1 ) que capta la señal radiada (2) por la antena bajo medida (3) cuando se desplaza a lo largo de una trayectoria (7); una unidad de radiofrecuencia (4) que mide una o varias de las propiedades de la señal captada por la antena sonda (1 ) a lo largo de una trayectoria (7);
- unos medios de posidonamiento (5) que proporcionan la posidón de la antena sonda
(1 ) a lo largo de la trayectoria (7);
. unos medios de procesado (6) con al menos un procesador, una memoria y un programa o programas que están almacenados en la memoria y que comprenden una pluralidad de instrucciones, que realizan la diagnosis de la antena bajo medida
(3) procesando las propiedades de la señal medidas por la unidad de radiofrecuencia
(4) combinadas con la posición proporcionada por los medios de posicionamiento (5); caracterizado por que la antena sonda (1 ) es desplazada manualmente por un operario siguiendo una trayectoria (7) arbitraria dentro de un volumen de investigación, que comprende una superficie de reférenda (15) que se sitúa a una distancia comprendida entre 1 cm y 100 cm de la antena bajo medida (3), y por que los medios de procesado (6) comprenden una pluralidad de instrucciones que cuando son ejecutadas por el procesador diagnostican la antena bajo medida (3) mediante el cálculo de al menos la componente tangencial del campo eléctrico, o del campo magnético o de ambos, en la apertura de antena bajo medida (3) en base a una representación mediante una expansión en funciones base de las corrientes equivalentes en la apertura o modos de campo eléctrico obtenidos a partir de las propiedades de la señal captada por la antena sonda (1 ) asociadas a la posición proporcionada por los medios de posicionamiento (5).
2. Sistema según la relvindlcadón 1 caracterizado por que comprende dos antenas sonda
(2) con polarizaciones ortogonales y una unidad de radiofrecuenda (4) que mide una o varias de las propiedades de la señal captada por cada antena sonda.
3. Sistema según la reivindicación 1 caracterizado por que la unidad de radiofrecuencia (4) mide tanto la fase como la intensidad de la señal captada por la antena sonda (1 ).
4. Sistema según la reivindicación 3 caraderizado por que la unidad de radiofrecuenda (4) comprende un analizador vectorial de redes portátil (13).
5. Sistema según la reivindicación 1 caracterizado por que la unidad de radiofrecuencia (4) mide la intensidad de la señal captada por la antena sonda (1 ),
6. Sistema según la reivindicación 5 caracterizado por que la unidad de radiofrecuencia (4) comprende un detector de potencia (14).
7. Sistema según la reivindicación 5 caracterizado por que la unidad de radiofrecuencia (4) comprende un analizador de espectros.
8. Sistema según la reivindicación 1 caracterizado por que los medios de posidonamiento (5) son un sistema de seguimiento óptico (8) de la antena sonda (1 ) a lo largo de la trayectoria (7). 9. Sistema según la reivindicación 8 caracterizado por que el sistema de seguimiento óptico
(8) comprende al menos una cámara infrarroja
(9) o ai menos una cámara de espectro visible o al menos una cámara de profundidad (12), o una combinación de las anteriores.
10. Sistema según la reivindicación 8 caracterizado por que los medios de posidonamiento (5) comprenden una cámara integrada (1 1 ) en la antena sonda (1 ) que capta imágenes sucesivas a lo largo de la trayectoria (7).
1 1. Sistema según la reivindicación 1 caracterizado por que los medios de posidonamiento (5) comprenden un sistema de posidonamiento ultrawkleband (UWB) de la antena sonda (1 ) a lo largo de la trayectoria (7).
12. Sistema según la reivindicación 1 caracterizado por que los medios de posidonamiento (5) comprenden un sensor inerdal (10) dispuesto en la antena sonda (1 ) que proporciona los datos relativos de su posición a lo largo de la trayectoria (7).
13. Sistema según las reivindicaciones 10 y 12 caracterizado por que los medios de posicionamiento (5) proporcionan la posición de la antena sonda (1 ) a partir de los datos del sensor inercial (10) combinados con las imágenes captadas por la cámara integrada
(11).
14. Sistema según la reivindicación 1 caracterizado por que la antena sonda (1 ) se encuentra integrada en la unidad de radiofrecuencia (4).
15. Sistema según la reivindicación 14 caracterizado por que los medios de posicionamiento (5) y los medios de procesado (6) están integrados en un mismo dispositivo junto a la antena sonda (1 ) y la unidad de radiofrecuencia (4).
16. Sistema según la reivindicación 15 caracterizado por que el dispositivo es un teléfono móvil (19).
17. Sistema según las reivindicación 1 caracterizado por que los medios de procesado (6) comprenden una pluralidad de instrucciones que cuando son ejecutadas por el procesador hacen que los medios de procesado (6) estén configurados para ejecutar el método según cualquiera de las reivindicaciones 18 a 28.
18. Método para el diagnóstico de antenas mediante el sistema de la reivindicación 1 que comprende las siguientes etapas: a) definir al menos una superficie de referencia (15) en base a las propiedades de la señal radiada (2) por una antena bajo medida (3), donde la superficie de referencia (15) se sitúa a una distancia comprendida entre 1 cm y 100 cm de la antena bajo medida (3); b) desplazar una antena sonda (1 ) de forma manual describiendo una trayectoria (7) arbitraria dentro de un volumen de investigación que comprende la superficie de referencia (15), captando la señal radiada (2) por la antena bajo medida (3) y midiendo sus propiedades mediante una unidad de radiofrecuencia (4), y determinando la posición de la antena sonda (1 ) a lo largo de la trayectoria (7); c) homogenizar el muestreo espacial de medidas de la señal radiada (2) por la antena bajo medida (3); d) procesar la información adquirida para obtener una representación del campo electromagnético generado por la antena bajo medida (3) como expansión en funciones base; e) diagnosticar la antena bajo medida (3) mediante el cálculo de al menos la componente tangencial del campo eléctrico, o del campo magnético o de ambos en la apertura de antena bajo medida (3).
19. Método según la reivindicación 18 caracterizado por que las propiedades medidas en la etapa b) son tanto la fase como la intensidad de la señal captada por la antena sonda
(1 ).
20. Método según la reivindicación 19 caracterizado por que los coeficientes de la expansión en funciones base del campo electromagnético de la etapa d) se obtienen encontrando los coeficientes que minimizan la función de coste
Figure imgf000028_0001
siendo CF la función de coste, b un vector columna con las medidas del campo, x un vector con los coeficientes de los elementos fundamentales y A una matriz conteniendo la relación lineal entre los elementos fundamentales y las medidas del campo.
21. Método según la reivindicación 18 caracterizado por que la propiedad medida en la etapa b) es la intensidad de la señal captada por la antena sonda (1 ).
22. Método según la reivindicación 21 caracterizado por que en la etapa a) se definen dos superficies de referencia (15).
23. Método según la reivindicación 22 caracterizado por que la representación del campo electromagnético generado a partir de la expansión en funciones base de la etapa d) comprende las siguientes subetapas: d.i) asignar una fase inicial arbitraria a los datos medidos en la primera superficie de referencia (15); d.ii) calcular los pesos de las funciones base como los coeficientes que minimizan la función de coste
Figure imgf000029_0002
siendo CFi la función de coste, b1 un vector columna con las medidas del campo en la primera superficie con la intensidad medida y con fase f1, x un vector con los pesos de las funciones base y A i una matriz conteniendo la relación lineal entre las funciones base y las medidas del campo en la primera de las superficies; d.iii) calcular el campo en la segunda superficie de referencia (15) a partir de la expansión en funciones base calculada en el paso d.ii) obteniendo un vector de fases f2 correspondiente al campo en las posiciones medidas de la segunda superficie de referencia (15); d.iv) calcular los coeficientes de las funciones base, que serán los que minimizan la función de coste
Figure imgf000029_0001
siendo CF2 la función de coste, bs un vector columna con las medidas del campo en la segunda superficie con la amplitud medida y con la fase calculada en el paso d.iii), f2, x un vector con los pesos de las funciones base y A2 una matriz conteniendo la relación lineal entre las funciones base y las medidas del campo en la primera de las superficies; d.v) calcular el campo en la primera superficie de referencia (15) a partir de la expansión en funciones base calculada en el paso d.iv) obteniendo un vector de fases correspondiente al campo en las posiciones medidas de la primera superficie de referencia (15); d.vi) repetir los pasos desde d.ii) hasta d.v) si no se alcanza al menos un criterio de convergencia.
24. Método según la reivindicación 19 caracterizado por que la homogeneización de la etapa c) comprende discretizar el volumen de investigación a partir de la proyección ortogonal a una distancia h de unas celdas comprendidas en la superficie de referencia (15), configurando así una pluralidad de volúmenes discretos (16) no solapados, donde el número de capturas de la señal radiada (2) no supera cierto umbral.
25. Método según la reivindicación 24 caracterizado por que la superficie de referencia (15) es plana y los volúmenes discretos (16) son prismas rectos.
26. Método según la reivindicación 18 caracterizado por que tras la etapa e) además comprende la etapa f) calcular el diagrama de radiación de la antena bajo medida (3) a partir de la expansión en funciones base obtenida en la etapa d).
27. Método según la reivindicación 18 donde las funciones base de la etapa d) modelan las corrientes equivalentes en la apertura de la antena bajo medida (3).
28. Método según la reivindicación 18 caracterizado por que las etapas c), d) y e) se repiten para cada uno de los haces radiados por la antena bajo medida (3).
PCT/ES2020/000031 2019-07-05 2020-06-26 Sistema y método para el diagnóstico de antenas WO2021005250A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20837163.3A EP3995842A4 (en) 2019-07-05 2020-06-26 ANTENNA DIAGNOSTIC SYSTEM AND PROCEDURES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201900105A ES2802304B2 (es) 2019-07-05 2019-07-05 Sistema y método para el diagnóstico de antenas
ESP201900105 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021005250A1 true WO2021005250A1 (es) 2021-01-14

Family

ID=74114594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/000031 WO2021005250A1 (es) 2019-07-05 2020-06-26 Sistema y método para el diagnóstico de antenas

Country Status (3)

Country Link
EP (1) EP3995842A4 (es)
ES (1) ES2802304B2 (es)
WO (1) WO2021005250A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447730A (zh) * 2021-06-10 2021-09-28 成都华芯天微科技有限公司 一种球面天线近场校准与扫描方法、系统及终端
CN113899957A (zh) * 2021-09-30 2022-01-07 武汉大学 基于双差相位观测值的室外天线绝对标定方法及系统
CN113917241A (zh) * 2021-09-06 2022-01-11 西安电子科技大学 一种天线方向图快速测量和预估方法、系统、设备及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876276B1 (en) * 2006-08-02 2011-01-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Antenna near-field probe station scanner
US9439092B1 (en) 2015-07-27 2016-09-06 Sprint Communications Company L.P. Detection of component fault at cell towers
US20170089968A1 (en) * 2015-09-30 2017-03-30 Sky Align Solutions Private Limited Antenna communication system and antenna integrated smart device thereof
ES2639687B2 (es) 2017-03-03 2018-02-20 Universidad De Oviedo Sistema aerotransportado y método para la caracterización y medida de antenas o sistemas radiantes
US20180090837A1 (en) 2016-09-13 2018-03-29 The Board Of Regents Of The University Of Oklahoma Radio frequency scanner
US20180351631A1 (en) 2016-02-03 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Radio wave measurement device
US20180368011A1 (en) 2016-07-22 2018-12-20 ETS-Lindgren Inc. System and method for over-the-air testing of milli-meter wave and other beamforming technologies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291130B (zh) * 2016-07-29 2019-08-20 昆山瀚德通信科技有限公司 一种任意曲面扫描的近场天线测量方法
US20190086459A1 (en) * 2017-07-07 2019-03-21 The Governors Of The University Of Alberta Systems and methods for measuring and characterizing antenna performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876276B1 (en) * 2006-08-02 2011-01-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Antenna near-field probe station scanner
US9439092B1 (en) 2015-07-27 2016-09-06 Sprint Communications Company L.P. Detection of component fault at cell towers
US20170089968A1 (en) * 2015-09-30 2017-03-30 Sky Align Solutions Private Limited Antenna communication system and antenna integrated smart device thereof
US20180351631A1 (en) 2016-02-03 2018-12-06 Panasonic Intellectual Property Management Co., Ltd. Radio wave measurement device
US20180368011A1 (en) 2016-07-22 2018-12-20 ETS-Lindgren Inc. System and method for over-the-air testing of milli-meter wave and other beamforming technologies
US20180090837A1 (en) 2016-09-13 2018-03-29 The Board Of Regents Of The University Of Oklahoma Radio frequency scanner
ES2639687B2 (es) 2017-03-03 2018-02-20 Universidad De Oviedo Sistema aerotransportado y método para la caracterización y medida de antenas o sistemas radiantes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. GEISEO. NEITZJ. MIGLH.-J. STEINERT. FRITZELC. HUNSCHERT. F. EIBERT: "A Crane Based Portable Antenna Measurement System - System Description and Validation", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, pages 1 - 12
GORDON, J. A.NOVOTNY, D. R.FRANCIS, M. H.WITTMANN, R. C.BUTLER, M. L.CURTIN, A. E.GUERRIERI, J. R: "Millimeter-Wave Near-Field Measurements Using Coordinated Robotics", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, pages 5351 - 5362, XP011592471, DOI: 10.1109/TAP.2015.2496110
H. HEP. MAHESHWARID. J. POMMERENKE: "The development of an EM-field probing system for manual near-field scanning", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, vol. 58, April 2016 (2016-04-01), pages 356 - 363, XP011602093, DOI: 10.1109/TEMC.2015.2496376

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447730A (zh) * 2021-06-10 2021-09-28 成都华芯天微科技有限公司 一种球面天线近场校准与扫描方法、系统及终端
CN113447730B (zh) * 2021-06-10 2023-12-15 成都华芯天微科技有限公司 一种球面天线近场校准与扫描方法、系统及终端
CN113917241A (zh) * 2021-09-06 2022-01-11 西安电子科技大学 一种天线方向图快速测量和预估方法、系统、设备及终端
CN113899957A (zh) * 2021-09-30 2022-01-07 武汉大学 基于双差相位观测值的室外天线绝对标定方法及系统
CN113899957B (zh) * 2021-09-30 2024-03-29 武汉大学 基于双差相位观测值的室外天线绝对标定方法及系统

Also Published As

Publication number Publication date
EP3995842A1 (en) 2022-05-11
ES2802304A1 (es) 2021-01-18
EP3995842A4 (en) 2023-08-30
ES2802304B2 (es) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2021005250A1 (es) Sistema y método para el diagnóstico de antenas
CN107238825B (zh) 一种利用矢量网络仪实现天线发射时rcs的测试方法
ES2639687B2 (es) Sistema aerotransportado y método para la caracterización y medida de antenas o sistemas radiantes
US10879608B2 (en) Radio frequency scanner
US9322864B2 (en) Methods and apparatus for evaluating radiated performance of MIMO wireless devices in three dimensions
Umeyama et al. UAV-based far-field antenna pattern measurement method for polarimetric weather radars: Simulation and error analysis
CN110460400A (zh) 一种阵列天线总辐射功率的测量方法、装置和系统
CN109581078B (zh) 一种适用于半空间环境中天线的方向图测量系统及方法
JP2017510144A (ja) 車両に対するワイヤレス通信をテストするための方法及び装置
EP2637039B1 (en) Frequency field scanning
Semkin et al. Characterization of radio links at 60 GHz using simple geometrical and highly accurate 3-D models
Álvarez-Narciandi et al. Portable freehand system for real-time antenna diagnosis and characterization
Salari et al. Unmanned Aerial Vehicles for High-Frequency Measurements: An accurate, fast, and cost-effective technology
KR102319704B1 (ko) 측정 시스템 및 방법
Lebrón et al. A novel near-field robotic scanner for surface, RF and thermal characterization of millimeter-wave active phased array antenna
Fernández et al. Advances in antenna measurement and characterization using unmanned aerial vehicles
WO2023216595A1 (zh) 有源天线的测试系统
Nsengiyumva et al. New $ W $-band scattering measurement system: Proof of concept and results for 2-D objects
CN113917241A (zh) 一种天线方向图快速测量和预估方法、系统、设备及终端
Sierra-Castañer Review of recent advances and future challenges in antenna measurement
Gueuning et al. Plane-wave spectrum methods for the near-field characterization of very large structures using UAVs: The SKA radio telescope case
Álvarez-Narciandi et al. Rapidly deployable portable system for real-time antenna diagnostics and characterization
Sierra-Castañer Recent Developments in Automotive Antenna Measurements
Foged et al. Spherical near field testing of small antennas from 800MHz to 18GHz
CN110869777A (zh) 一种基于移动平台的天线测试方法、装置及信息处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837163

Country of ref document: EP

Effective date: 20220207