WO2021004575A1 - Drive device for a hybrid powertrain - Google Patents

Drive device for a hybrid powertrain Download PDF

Info

Publication number
WO2021004575A1
WO2021004575A1 PCT/DE2020/100520 DE2020100520W WO2021004575A1 WO 2021004575 A1 WO2021004575 A1 WO 2021004575A1 DE 2020100520 W DE2020100520 W DE 2020100520W WO 2021004575 A1 WO2021004575 A1 WO 2021004575A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive device
rotor
angle
spring
equal
Prior art date
Application number
PCT/DE2020/100520
Other languages
German (de)
French (fr)
Inventor
Stephan Maienschein
Thorsten Krause
Erik Ernst
Markus Utz
Florian Baral
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112020003354.6T priority Critical patent/DE112020003354A5/en
Publication of WO2021004575A1 publication Critical patent/WO2021004575A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D25/082Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members co-inciding with the axis of rotation
    • F16D25/087Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members co-inciding with the axis of rotation the clutch being actuated by the fluid-actuated member via a diaphragm spring or an equivalent array of levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12313Wound springs characterised by the dimension or shape of spring-containing windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/648Clutch-plates; Clutch-lamellae for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations
    • F16F2228/005Material properties, e.g. moduli
    • F16F2228/007Material properties, e.g. moduli of solids, e.g. hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a drive device for a hybrid drive train of a motor vehicle with an internal combustion engine and an electric machine arranged coaxially to this, wherein between a rotor of the electric machine and an output shaft of the drive device, a torsional vibration damper with a between rotor and output shaft effectively arranged in the circumferential direction spring direction is arranged.
  • Drive devices for hybrid drive trains of motor vehicles contain an internal combustion engine and an electric machine which can be used as an electric motor and a generator, the rotor of which is arranged coaxially with the crankshaft of the internal combustion engine.
  • a torque transmission device for a hybrid vehicle with a corresponding drive device is known from the publication WO 2015/172784 A2, the internal combustion engine and electric machine being connectable by means of a friction clutch and a torsional vibration damper being arranged upstream and downstream of the friction clutch.
  • the mass moment of inertia of the rotor has a non-negligible influence on the vibration behavior of the drive train, in particular during part-load operation of the internal combustion engine.
  • the object of the invention is to develop a drive device.
  • the object of the invention is to propose a drive device for a hybrid drive train with improved torsional vibration isolation behavior, especially during partial load operation of the internal combustion engine.
  • the object is achieved by the subject matter of claim 1.
  • the claims dependent on claim 1 give advantageous embodiments of the subject matter of claim 1 again.
  • the proposed drive device is used in a hybrid drive train of a motor vehicle to provide the desired torque for transmission to drive wheels with the interposition of a transmission, for example a gearbox, dual clutch transmission, automatic transmission or the like.
  • the drive device contains an internal combustion engine and an electric machine arranged coaxially therewith.
  • the motor vehicle can be moved exclusively with an internal combustion engine or electric machine, in hybrid operation, recuperation or the like.
  • the electric machine can also start the internal combustion engine after it has been shut down.
  • the internal combustion engine is subject to torsional vibrations due to the design, so that a torsional vibration damper with a spring device effectively arranged between the rotor and the output shaft in the circumferential direction is arranged to isolate the torsional vibrations between a rotor of the electric machine and an output shaft of the drive device.
  • the torsional vibration damper is required for a given torsional angle range, i.e. with a corresponding relative rotation between rotor and Output shaft smaller than a maximum angle of rotation one
  • Torsion spring rate of the spring device less than or equal to 20 Nm / °, preferably less set equal to 10 Nm / °, particularly preferably less than or equal to 5 Nm / °.
  • a torsion spring rate is set which is reduced to the torsional vibration behavior of the internal combustion engine taking into account the moment of inertia of the rotor of the internal combustion engine in the partial load operation of the internal combustion engine compared to the remaining torsion spring rate at larger torsional angles.
  • a partial load operation of the internal combustion engine can be, for example, a creeping process of the motor vehicle with the hybrid's drive train, the rotor of the electric machine acting as a mass absorber. Because of this influence of the rotor, a correspondingly lower interpretation of the torsion spring rate at torsion angles is smaller than the maximum torsion angle of the torsional vibration damper.
  • the torsional vibration damper can have a predetermined clearance angle at which no torsional vibration damping takes place.
  • the predetermined Verduswinkelbe rich can be greater than 3 °, preferably greater than 5 ° up to a predetermined angle of rotation Ver, which is smaller than the maximum angle of rotation, for example smaller than half the maximum angle of rotation.
  • a hysteresis such as, for example, a friction hysteresis generated by means of a friction device can be connected in parallel to the predetermined angle of rotation range.
  • a clearance angle of the friction device over part of the predetermined angular range can be provided.
  • the hysteresis is, for example, greater than or equal to 8 Nm, preferably greater than or equal to 16 Nm.
  • the hysteresis and the torsion spring rate can be formed in a predetermined ratio to one another, which is, for example, smaller 94 and larger 376, the angle of rotation of the torsion spring rate being applied as a radian measure.
  • the torsional vibration damper it is designed as a so-called disc damper, in which an input part, for example, non-rotatably connected to the rotor, and an output part, for example an output hub for connection to the output shaft, are formed from disc parts that can be rotated to a limited extent about a rotor axis against the action of the spring device , wherein distributed over the circumference arranged helical compression springs are received in spring windows of the disc parts and end faces of the helical compression springs are acted upon by window flanks of the spring window in the circumferential direction.
  • the torsion spring rate of the given torsion angle range can be adjusted to the end faces of the helical compression springs and the window flanks of the spring window by means of at least a given angle of adjustment.
  • the angle of attack ⁇ F can be according to the equation
  • the angle of attack is preferably at least 2 °.
  • a friction clutch can be arranged between the crankshaft of the internal combustion engine and the rotor of the electrical machine.
  • the friction clutch can be as Be formed wet clutch.
  • the friction clutch can be arranged completely radially inner half of the rotor.
  • the friction clutch can be arranged axially spaced from the torsional vibration damper arranged radially inside the rotor.
  • another torsional vibration damper can be arranged between the crankshaft of the internal combustion engine and the rotor of the electric machine.
  • This torsional vibration damper can have a spring device formed from bow springs.
  • the spring device can be arranged on radial fleas of a stator of the electric machine.
  • Figure 1 shows a drive device in a schematic representation
  • Figure 2 shows the upper part of the constructively executed, about an axis of rotation
  • Figure 3 is a diagram of the torsion spring rate of the first torsional vibration
  • FIG. 4 shows the upper part of the rotational speed arranged around the axis of rotation
  • FIG. 5 shows a partial view of the torsional vibration damper from FIG. 4
  • FIG. 6 shows a diagram of the spring behavior of the torsional vibration damper of FIGS. 4 and 5.
  • FIG. 1 shows the drive device 1 provided for a hybrid drive train in a schematic representation.
  • the drive device 1 contains the internal combustion engine 2 with the crankshaft 3 and the electric machine 4 with the stator 5 and the rotor 6 arranged coaxially with the crankshaft 3.
  • the friction clutch 7 is arranged between the crankshaft 3 and the rotor 6, the friction clutch 7 is arranged.
  • the first torsional vibration damper 9 with the Federein device 10 and the friction device 1 1 connected in parallel to this is arranged.
  • the second torsional vibration damper 12 with the spring device 13 formed from bow springs and the friction device 14 connected in parallel to this is arranged.
  • the torsional vibration damper 9, 12 serve to isolate the torsional vibration of the internal combustion engine 2, the torsional vibration damper 9 being matched to the torsional vibrations of the internal combustion engine 2 dependent on the mass moment of inertia of the rotor 6 in partial load operation, for example during a crawling process of a drive train of a motor vehicle provided with the drive device 1.
  • the spring device 10 and the friction device are hen in a predetermined small torsion angle range between the rotor 6 and the output shaft 8, for example a transmission input shaft with torsion spring rates matched to the moment of inertia of the rotor 6 and a corresponding hysteresis verse.
  • FIG. 2 shows the upper part of the drive device 1 of FIG. 1, which is rotatably arranged about the axis of rotation d, in structural design in section without the internal combustion engine 2 (FIG. 1), the crankshaft of which is connected to the input part 16 of the second torsional vibration damper by means of the connecting means 15, for example screws 12 is connected.
  • the output part 17 of the torsional vibration damper 12 is rotatably received on the shaft 18, which is rotatably received on the support sleeve 19 connected to the stator 5.
  • the carrier sleeve 19 receives the actuation system 20 of the friction clutch 7 designed as a wet clutch radially on the outside.
  • the input part 21 of the friction clutch 7 is non-rotatably connected to the shaft 18, and the output part 22 of the friction clutch 7, which is designed as an outer disk carrier, is non-rotatably connected to the rotor 6.
  • the disk part 23 connects the rotor 6 with the input part 24 of the torsional vibration damper 9.
  • the input part 24 is formed from the two axially spaced, interconnected disk parts 25, 26, which receive the output part 27 of the torsional vibration damper 9 between them.
  • the output part 27 contains the disk part 28, which is connected to the output shaft 8 in a rotationally fixed manner by means of the hub 29.
  • the helical compression springs 30, which are distributed over the circumference and are loaded on the front side in the circumferential direction in the event of a relative rotation between the rotor 6 and the output shaft 8 the spring device 10 was added. Between tween the disc parts 26, 28, the friction device 11 is effective.
  • FIG 3 shows the diagram 31 with the torsional moment MT over the angle of rotation av of the torsional vibration damper 9 of Figure 2.
  • the torsional vibration damper 9 has the twist angle range Dan between the twist angle 0 and the twist angle ⁇ VG, for example greater than 3 °, compared to the maximum twist angle avmax up to 5 ° and less than half or a third of the maximum angle of rotation avmax with a slightly increasing torsional moment MG and thus with a low torsion spring rate CG, which affects the torsional vibration behavior of the drive device 1 ( Figures 1 and 2) when the internal combustion engine is operating at part load 2 is matched under the influence of the mass moment of inertia of the rotor 6.
  • QVG linearly developing torsion spring rates in graph 32 or increasing torsion spring rates in graph 33 can be provided for the torsion angles av.
  • FIG. 4 shows the upper part of the rotary vibration damper 9 of FIG. 2, which is arranged around the axis of rotation d, in section with the disk parts 25, 26, 28 and the helical compression springs 30 accommodated in the spring windows 34, 35, 36 and supported radially outward Spring windows 34, 35, 36 each have on both sides the end faces of the helical compression springs 30 in the circumferential direction acting on window flanks 37, 38, 39.
  • the angle of incidence OF shown in FIG. 5 is provided between the end faces of the helical compression springs 30 and the window flanks 39 of the spring window 36 of the disk part 28.
  • FIG. 5 shows a partial view of the torsional vibration damper 9 with the front disc part 25 removed (FIG. 4).
  • the helical compression springs 30 received in the spring windows 35, 36 are acted upon by the window flanks 38 of the pane part 25 in a flat manner.
  • the setting angle OF for example at least 2 °, is set between the window flanks 39 and the end faces of the helical compression springs 30.
  • FIG. 6 shows the modified diagram 40 compared to diagram 31 in FIG. 3 with the torsional moment MT over the twisting angle av.
  • the torsional moment MT is dragged within the twisting angle range Dan by means of the friction device 11 (FIG. 2) Frictional torque ⁇ MTR to provide a flysteresis in both directions over a given friction angle range AQTR, for example ⁇ 1 ° superimposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

The invention relates to a drive device (1) for a hybrid powertrain of a motor vehicle comprising an internal combustion engine and an electric machine (4) arranged coaxially to the internal combustion engine. A torsional vibration damper (9) is arranged between a rotor (6) of the electric machine (4) and an output shaft (8) of the drive device (1), said torsional vibration damper comprising a spring device (10) which is arranged between the rotor (6) and the output shaft (8) so as to act in the circumferential direction. The aim of the invention is to provide an improved torsional vibration damping of the drive device (1) in a partial load range of the internal combustion engine while taking into consideration the mass moment of inertia of the rotor (6). This is achieved in that the torsion spring rate of the spring device (10) is less than or equal to 20 Nm/°, preferably less than or equal to 10 Nm/°, particularly preferably less than or equal to 5 Nm/°, in a specified rotational angle range between the rotor (6) and the output shaft (8), said rotational angle range being less than a maximum rotational angle.

Description

Antriebseinrichtunq für einen hybridischen Antriebsstranq Drive device for a hybrid drive train
Die Erfindung betrifft eine Antriebseinrichtung für einen hybridischen Antriebsstrang eines Kraftfahrzeugs mit einer Brennkraftmaschine und einer koaxial zu dieser ange ordneten Elektromaschine, wobei zwischen einem Rotor der Elektromaschine und ei ner Abtriebswelle der Antriebseinrichtung ein Drehschwingungsdämpfer mit einer zwi schen Rotor und Abtriebswelle in Umfangsrichtung wirksam angeordneten Federein- richtung angeordnet ist. The invention relates to a drive device for a hybrid drive train of a motor vehicle with an internal combustion engine and an electric machine arranged coaxially to this, wherein between a rotor of the electric machine and an output shaft of the drive device, a torsional vibration damper with a between rotor and output shaft effectively arranged in the circumferential direction spring direction is arranged.
Antriebseinrichtungen für hybridische Antriebsstränge von Kraftfahrzeugen enthalten eine Brennkraftmaschine und eine als Elektromotor und als Generator einsetzbare Elektromaschine, deren Rotor koaxial zu der Kurbelwelle der Brennkraftmaschine an geordnet ist. Aus der Druckschrift WO 2015/172784 A2 ist eine Drehmomentübertra- gungseinrichtung für ein Hybridfahrzeug mit einer entsprechenden Antriebseinrichtung bekannt, wobei Brennkraftmaschine und Elektromaschine mittels einer Reibungskupp lung verbindbar sind und vor und nach der Reibungskupplung jeweils ein Drehschwin gungsdämpfer angeordnet ist. Hierbei hat das Massenträgheitsmoment des Rotors ei nen nicht vernachlässigbaren Einfluss auf das Schwingungsverhalten des Antriebs- Strangs, insbesondere während eines Teillastbetriebs der Brennkraftmaschine. Drive devices for hybrid drive trains of motor vehicles contain an internal combustion engine and an electric machine which can be used as an electric motor and a generator, the rotor of which is arranged coaxially with the crankshaft of the internal combustion engine. A torque transmission device for a hybrid vehicle with a corresponding drive device is known from the publication WO 2015/172784 A2, the internal combustion engine and electric machine being connectable by means of a friction clutch and a torsional vibration damper being arranged upstream and downstream of the friction clutch. Here, the mass moment of inertia of the rotor has a non-negligible influence on the vibration behavior of the drive train, in particular during part-load operation of the internal combustion engine.
Aufgabe der Erfindung ist die Weiterbildung einer Antriebseinrichtung. Insbesondere ist Aufgabe der Erfindung, eine Antriebseinrichtung für einen hybridischen Antriebs strang mit verbessertem Drehschwingungsisolationsverhalten insbesondere während eines Teillastbetriebs der Brennkraftmaschine vorzuschlagen. Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von dem An spruch 1 abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegen stands des Anspruchs 1 wieder. The object of the invention is to develop a drive device. In particular, the object of the invention is to propose a drive device for a hybrid drive train with improved torsional vibration isolation behavior, especially during partial load operation of the internal combustion engine. The object is achieved by the subject matter of claim 1. The claims dependent on claim 1 give advantageous embodiments of the subject matter of claim 1 again.
Die vorgeschlagene Antriebseinrichtung dient in einem hybridischen Antriebsstrang eines Kraftfahrzeugs der Bereitstellung des gewünschten Drehmoments zur Übertra gung auf Antriebsräder unter Zwischenschaltung eines Getriebes, beispielsweise ei nes Schaltgetriebes, Doppelkupplungsgetriebes, Automatgetriebes oder dergleichen. Die Antriebseinrichtung enthält eine Brennkraftmaschine und eine koaxial zu dieser angeordneten Elektromaschine. Je nach Ausführungsform des hybridischen Antriebs strangs kann beispielsweise eine Fortbewegung des Kraftfahrzeugs ausschließlich mit Brennkraftmaschine oder Elektromaschine, im hybridischen Betrieb, Rekuperation oder dergleichen vorgesehen sein. Die Elektromaschine kann zudem die Brennkraft maschine nach Stillsetzung starten. The proposed drive device is used in a hybrid drive train of a motor vehicle to provide the desired torque for transmission to drive wheels with the interposition of a transmission, for example a gearbox, dual clutch transmission, automatic transmission or the like. The drive device contains an internal combustion engine and an electric machine arranged coaxially therewith. Depending on the embodiment of the hybrid drive train, for example, the motor vehicle can be moved exclusively with an internal combustion engine or electric machine, in hybrid operation, recuperation or the like. The electric machine can also start the internal combustion engine after it has been shut down.
Die Brennkraftmaschine ist dabei konstruktionsbedingt drehschwingungsbehaftet, so dass zur Isolation der Drehschwingungen zwischen einem Rotor der Elektromaschine und einer Abtriebswelle der Antriebseinrichtung ein Drehschwingungsdämpfer mit ei ner zwischen Rotor und Abtriebswelle in Umfangsrichtung wirksam angeordneten Fe dereinrichtung angeordnet ist. Um den Drehschwingungsdämpferspezifisch auf einen von dem Massenträgheitsmoment der Elektromaschine beeinflussten Drehschwin gungsverlauf insbesondere im Teillastbereich der Brennkraftmaschine abzustimmen und damit eine Beruhigung des hybridischen Antriebsstrangs mit der vorgeschlagenen Antriebseinrichtung zu erzielen, ist bei einem vorgegebenen Verdrehwinkelbereich des Drehschwingungsdämpfers, also bei einer entsprechenden relativen Verdrehung zwischen Rotor und Abtriebswelle kleiner als einem maximalen Verdrehwinkel eine The internal combustion engine is subject to torsional vibrations due to the design, so that a torsional vibration damper with a spring device effectively arranged between the rotor and the output shaft in the circumferential direction is arranged to isolate the torsional vibrations between a rotor of the electric machine and an output shaft of the drive device. In order to adapt the torsional vibration damper specifically to a torsional vibration curve influenced by the mass moment of inertia of the electric machine, especially in the partial load range of the internal combustion engine, and thus to achieve a smoothing of the hybrid drive train with the proposed drive device, the torsional vibration damper is required for a given torsional angle range, i.e. with a corresponding relative rotation between rotor and Output shaft smaller than a maximum angle of rotation one
Torsionsfederrate der Federeinrichtung kleiner gleich 20 Nm/°, bevorzugt kleiner gleich 10 Nm/°, besonders bevorzugt kleiner gleich 5 Nm/° eingestellt. Dies bedeutet, dass bei kleinen Verdrehwinkeln des Drehschwingungsdämpfers eine Torsionsfeder rate eingestellt ist, die auf das Drehschwingungsverhalten der Brennkraftmaschine un ter Berücksichtigung des Massenträgheitsmoments des Rotors der Brennkraftma schine im Teillastbetrieb der Brennkraftmaschine gegenüber der restlichen Torsionsfe derrate bei größeren Verdrehwinkeln erniedrigt ist. Ein Teillastbetrieb der Brennkraft maschine kann beispielsweise ein Kriechvorgang des Kraftfahrzeugs mit dem hybridi schen Antriebsstrang sein, wobei sich der Rotor der Elektromaschine als Massetilger auswirkt. Aufgrund dieses Einflusses des Rotors ist eine entsprechend geringere Aus legung der Torsionsfederrate bei Verdrehwinkeln kleiner als der maximale Verdreh winkel des Drehschwingungsdämpfers. Torsion spring rate of the spring device less than or equal to 20 Nm / °, preferably less set equal to 10 Nm / °, particularly preferably less than or equal to 5 Nm / °. This means that at small torsion angles of the torsional vibration damper a torsion spring rate is set which is reduced to the torsional vibration behavior of the internal combustion engine taking into account the moment of inertia of the rotor of the internal combustion engine in the partial load operation of the internal combustion engine compared to the remaining torsion spring rate at larger torsional angles. A partial load operation of the internal combustion engine can be, for example, a creeping process of the motor vehicle with the hybrid's drive train, the rotor of the electric machine acting as a mass absorber. Because of this influence of the rotor, a correspondingly lower interpretation of the torsion spring rate at torsion angles is smaller than the maximum torsion angle of the torsional vibration damper.
Der Drehschwingungsdämpfer kann einen vorgegebenen Freiwinkel aufweisen, bei dem keine Drehschwingungsdämpfung stattfindet. Der vorgegebene Verdrehwinkelbe reich kann größer als 3°, bevorzugt größer als 5° bis zu einem vorgegebenen Ver drehwinkel ausgebildet sein, der kleiner als der maximale Verdrehwinkel, beispiels weise kleiner als die Hälfte des maximalen Verdrehwinkels ist. The torsional vibration damper can have a predetermined clearance angle at which no torsional vibration damping takes place. The predetermined Verdrehwinkelbe rich can be greater than 3 °, preferably greater than 5 ° up to a predetermined angle of rotation Ver, which is smaller than the maximum angle of rotation, for example smaller than half the maximum angle of rotation.
Dem vorgegebenen Verdrehwinkelbereich kann zumindest teilweise eine Hysterese wie beispielsweise eine mittels einer Reibeinrichtung erzeugte Reibhysterese parallel geschaltet sein. Ein Freiwinkel der Reibeinrichtung über einen Teil des vorgegebenen Winkelbereichs kann vorgesehen sein. Die Hysterese beträgt beispielsweise größer gleich 8 Nm, bevorzugt größer gleich 16 Nm. A hysteresis such as, for example, a friction hysteresis generated by means of a friction device can be connected in parallel to the predetermined angle of rotation range. A clearance angle of the friction device over part of the predetermined angular range can be provided. The hysteresis is, for example, greater than or equal to 8 Nm, preferably greater than or equal to 16 Nm.
In vorteilhafter Weise können die Hysterese und die Torsionsfederrate in einem vorge gebenen Verhältnis zueinander ausgebildet sein, welches beispielsweise kleiner 94 und größer 376 ist, wobei der Verdrehwinkel der Torsionsfederrate als Bogenmaß in Ansatz gebracht ist. Gemäß einer vorteilhaften Ausführungsform des Drehschwingungsdämpfers ist dieser als sogenannter Scheibendämpfer ausgebildet, bei dem ein beispielsweise mit dem Rotor drehfest verbundenes Eingangsteil und ein beispielsweise eine Ausgangsnabe zur Verbindung mit der Abtriebswelle bildendes Ausgangsteil aus gegeneinander um eine Rotorachse entgegen der Wirkung der Federeinrichtung begrenzt verdrehbaren Scheibenteilen gebildet ist, wobei über den Umfang verteilt angeordnete Schrauben druckfedern in Federfenstern der Scheibenteile aufgenommen sind und Stirnseiten der Schraubendruckfedern von Fensterflanken der Federfenster in Umfangsrichtung beaufschlagt sind. Advantageously, the hysteresis and the torsion spring rate can be formed in a predetermined ratio to one another, which is, for example, smaller 94 and larger 376, the angle of rotation of the torsion spring rate being applied as a radian measure. According to an advantageous embodiment of the torsional vibration damper, it is designed as a so-called disc damper, in which an input part, for example, non-rotatably connected to the rotor, and an output part, for example an output hub for connection to the output shaft, are formed from disc parts that can be rotated to a limited extent about a rotor axis against the action of the spring device , wherein distributed over the circumference arranged helical compression springs are received in spring windows of the disc parts and end faces of the helical compression springs are acted upon by window flanks of the spring window in the circumferential direction.
Um auf weitere Elemente zur Bereitstellung der Torsionsfederrate in dem vorgegebe nen Verdrehwinkelbereich verzichten zu können, kann die Torsionsfederrate des vor gegebenen Verdrehwinkelbereichs mittels zumindest eines vorgegebenen Anstellwin kels den Stirnflächen der Schraubendruckfedern und den Fensterflanken der Feder fenster eingestellt sein. Durch die Ausbildung eines Anstellwinkels an einer oder bei den Fensterflanken des Eingangs- und/oder des Ausgangsteils des Drehschwin gungsdämpfers erfolgt bei Verdrehwinkeln innerhalb des vorgegebenen Verdrehwin kels lediglich eine teilweise Beaufschlagung der Schraubendruckfedern mit entspre chend verringerter Torsionsfederrate. In order to be able to dispense with further elements for providing the torsion spring rate in the given torsion angle range, the torsion spring rate of the given torsion angle range can be adjusted to the end faces of the helical compression springs and the window flanks of the spring window by means of at least a given angle of adjustment. By forming an angle of attack on one or the window flanks of the input and / or output part of the torsional vibration damper, only a partial application of the helical compression springs with a correspondingly reduced torsion spring rate takes place at angles of rotation within the specified Verdrehwin angle.
Beispielsweise kann der Anstellwinkel ÖF gemäß der Gleichung For example, the angle of attack ÖF can be according to the equation
ÖF > 0,7 * 2 * Dan ÖF> 0.7 * 2 * Dan
mit dem vorgegebenen Verdrehwinkelbereich Dan eingestellt sein. In bevorzugter Weise beträgt der Anstellwinkel zumindest 2°. be set with the predetermined twist angle range Dan. The angle of attack is preferably at least 2 °.
Zur besseren Steuerung der verschiedenen Betriebszustände der Antriebseinrichtung kann zwischen der Kurbelwelle der Brennkraftmaschine und dem Rotor der Elektro- maschine eine Reibungskupplung angeordnet sein. Die Reibungskupplung kann als Nasskupplung ausgebildet sein. Die Reibungskupplung kann vollständig radial inner halb des Rotors angeordnet sein. Die Reibungskupplung kann axial beabstandet zu dem radial innerhalb des Rotors angeordneten Drehschwingungsdämpfer angeordnet sein. For better control of the various operating states of the drive device, a friction clutch can be arranged between the crankshaft of the internal combustion engine and the rotor of the electrical machine. The friction clutch can be as Be formed wet clutch. The friction clutch can be arranged completely radially inner half of the rotor. The friction clutch can be arranged axially spaced from the torsional vibration damper arranged radially inside the rotor.
Zur weiteren Verbesserung der Isolation von Drehschwingungen der Antriebseinrich tung kann zwischen der Kurbelwelle der Brennkraftmaschine und dem Rotor der Elektromaschine ein weiterer Drehschwingungsdämpfer angeordnet sein. Dieser Drehschwingungsdämpfer kann eine aus Bogenfedern gebildete Federeinrichtung auf weisen. Die Federeinrichtung kann auf radialer Flöhe eines Stators der Elektroma schine angeordnet sein. To further improve the isolation of torsional vibrations of the drive device, another torsional vibration damper can be arranged between the crankshaft of the internal combustion engine and the rotor of the electric machine. This torsional vibration damper can have a spring device formed from bow springs. The spring device can be arranged on radial fleas of a stator of the electric machine.
Die Erfindung wird anhand des in den Figuren 1 bis 6 dargestellten Ausführungsbei spiels näher erläutert. Diese zeigen: The invention is explained in more detail with reference to the game Ausführungsbei shown in Figures 1 to 6. These show:
Figur 1 eine Antriebseinrichtung in schematischer Darstellung, Figure 1 shows a drive device in a schematic representation,
Figur 2 den oberen Teil der konstruktiv ausgeführten, um eine Drehachse Figure 2 shows the upper part of the constructively executed, about an axis of rotation
angeordneten Antriebseinrichtung der Figur 1 im Schnitt, arranged drive device of Figure 1 in section,
Figur 3 ein Diagramm der Torsionsfederrate des ersten Drehschwingungs Figure 3 is a diagram of the torsion spring rate of the first torsional vibration
dämpfers der Figur 2, damper of Figure 2,
Figur 4 den oberen Teil des um die Drehachse angeordneten Drehschwin FIG. 4 shows the upper part of the rotational speed arranged around the axis of rotation
gungsdämpfers der Figur 2 im Schnitt, movement damper of Figure 2 in section,
Figur 5 eine Teilansicht des Drehschwingungsdämpfers der Figur 4 FIG. 5 shows a partial view of the torsional vibration damper from FIG. 4
und and
Figur 6 ein Diagramm des Federverhaltens des Drehschwingungsdämpfers der Figuren 4 und 5. Die Figur 1 zeigt die für einen hybridischen Antriebsstrang vorgesehene Antriebsein richtung 1 in schematischer Darstellung. Die Antriebseinrichtung 1 enthält die Brenn kraftmaschine 2 mit der Kurbelwelle 3 und die Elektromaschine 4 mit dem Stator 5 und dem koaxial zu der Kurbelwelle 3 angeordneten Rotor 6. Zwischen der Kurbel welle 3 und dem Rotor 6 ist die Reibungskupplung 7 angeordnet. Zwischen dem Rotor 6 und der Abtriebswelle 8 ist der erste Drehschwingungsdämpfer 9 mit der Federein richtung 10 und der parallel zu dieser geschalteten Reibeinrichtung 1 1 angeordnet. Zwischen der Kurbelwelle 3 und der Reibungskupplung 7 ist der zweite Drehschwin gungsdämpfer 12 mit der aus Bogenfedern gebildeten Federeinrichtung 13 und der parallel zu dieser geschalteten Reibeinrichtung 14 angeordnet. FIG. 6 shows a diagram of the spring behavior of the torsional vibration damper of FIGS. 4 and 5. FIG. 1 shows the drive device 1 provided for a hybrid drive train in a schematic representation. The drive device 1 contains the internal combustion engine 2 with the crankshaft 3 and the electric machine 4 with the stator 5 and the rotor 6 arranged coaxially with the crankshaft 3. Between the crankshaft 3 and the rotor 6, the friction clutch 7 is arranged. Between the rotor 6 and the output shaft 8, the first torsional vibration damper 9 with the Federein device 10 and the friction device 1 1 connected in parallel to this is arranged. Between the crankshaft 3 and the friction clutch 7, the second torsional vibration damper 12 with the spring device 13 formed from bow springs and the friction device 14 connected in parallel to this is arranged.
Die Drehschwingungsdämpfer 9, 12 dienen der Drehschwingungsisolation der Brenn kraftmaschine 2, wobei der Drehschwingungsdämpfer 9 auf die von dem Massenträg heitsmoment des Rotors 6 abhängigen Drehschwingungen der Brennkraftmaschine 2 im Teillastbetrieb beispielsweise während eines Kriechvorgangs eines mit der An triebseinrichtung 1 versehenen Antriebsstrangs eines Kraftfahrzeugs abgestimmt ist. Flierzu sind die Federeinrichtung 10 und die Reibeinrichtung in einem vorgegebenen kleinen Verdrehwinkelbereich zwischen dem Rotor 6 und der Abtriebswelle 8, bei spielsweise einer Getriebeeingangswelle mit auf das Massenträgheitsmoment des Ro tors 6 abgestimmten Torsionsfederraten und einer entsprechenden Hysterese verse hen. The torsional vibration damper 9, 12 serve to isolate the torsional vibration of the internal combustion engine 2, the torsional vibration damper 9 being matched to the torsional vibrations of the internal combustion engine 2 dependent on the mass moment of inertia of the rotor 6 in partial load operation, for example during a crawling process of a drive train of a motor vehicle provided with the drive device 1. In addition, the spring device 10 and the friction device are hen in a predetermined small torsion angle range between the rotor 6 and the output shaft 8, for example a transmission input shaft with torsion spring rates matched to the moment of inertia of the rotor 6 and a corresponding hysteresis verse.
Die Figur 2 zeigt den oberen Teil der um die Drehachse d verdrehbar angeordneten Antriebseinrichtung 1 der Figur 1 in konstruktiver Ausbildung im Schnitt ohne die Brennkraftmaschine 2 (Figur 1 ), deren Kurbelwelle mittels der Verbindungsmittel 15, beispielsweise Schrauben mit dem Eingangsteil 16 des zweiten Drehschwingungs dämpfers 12 verbunden ist. Das Ausgangsteil 17 des Drehschwingungsdämpfers 12 ist auf der Welle 18 drehfest aufgenommen, welche verdrehbar an der mit dem Stator 5 verbundenen Trägerhülse 19 aufgenommen ist. Die Trägerhülse 19 nimmt radial au ßen das Betätigungssystem 20 der als Nasskupplung ausgebildeten Reibungskupp lung 7 auf. Das Eingangsteil 21 der Reibungskupplung 7 ist drehfest mit der Welle 18 verbunden, das als Außenlammellenträger ausgebildete Ausgangsteil 22 der Rei bungskupplung 7 ist drehfest mit dem Rotor 6 verbunden. Das Scheibenteil 23 verbin det den Rotor 6 mit dem Eingangsteil 24 des Drehschwingungsdämpfers 9. Das Ein gangsteil 24 ist aus den beiden axial beabstandeten, miteinander verbundenen Schei benteilen 25, 26 gebildet, welche zwischen sich das Ausgangsteil 27 des Drehschwin gungsdämpfers 9 aufnehmen. Das Ausgangsteil 27 enthält das mittels der Nabe 29 mit der Abtriebswelle 8 drehfest verbundene Scheibenteil 28. In den Scheibenteilen 25, 26, 28 sind die über den Umfang verteilt angeordneten und stirnseitig jeweils in Umfangsrichtung bei einer Relativverdrehung zwischen Rotor 6 und Abtriebswelle 8 belasteten Schraubendruckfedern 30 der Federeinrichtung 10 aufgenommen. Zwi schen den Scheibenteilen 26, 28 ist die Reibeinrichtung 1 1 wirksam. FIG. 2 shows the upper part of the drive device 1 of FIG. 1, which is rotatably arranged about the axis of rotation d, in structural design in section without the internal combustion engine 2 (FIG. 1), the crankshaft of which is connected to the input part 16 of the second torsional vibration damper by means of the connecting means 15, for example screws 12 is connected. The output part 17 of the torsional vibration damper 12 is rotatably received on the shaft 18, which is rotatably received on the support sleeve 19 connected to the stator 5. The carrier sleeve 19 receives the actuation system 20 of the friction clutch 7 designed as a wet clutch radially on the outside. The input part 21 of the friction clutch 7 is non-rotatably connected to the shaft 18, and the output part 22 of the friction clutch 7, which is designed as an outer disk carrier, is non-rotatably connected to the rotor 6. The disk part 23 connects the rotor 6 with the input part 24 of the torsional vibration damper 9. The input part 24 is formed from the two axially spaced, interconnected disk parts 25, 26, which receive the output part 27 of the torsional vibration damper 9 between them. The output part 27 contains the disk part 28, which is connected to the output shaft 8 in a rotationally fixed manner by means of the hub 29. In the disk parts 25, 26, 28 are the helical compression springs 30, which are distributed over the circumference and are loaded on the front side in the circumferential direction in the event of a relative rotation between the rotor 6 and the output shaft 8 the spring device 10 was added. Between tween the disc parts 26, 28, the friction device 11 is effective.
Die Figur 3 zeigt das Diagramm 31 mit dem Torsionsmoment MT über den Verdreh winkel av des Drehschwingungsdämpfers 9 der Figur 2. Der Drehschwingungsdämp fer 9 weist gegenüber dem maximalen Verdrehwinkel avmax den Verdrehwinkelbereich Dan zwischen dem Verdrehwinkel 0 und dem Verdrehwinkel ÖVG, beispielsweise grö ßer 3° bis 5° und kleiner als die Hälfte oder ein Drittel des maximalen Verdrehwinkels avmax mit einem gering ansteigenden Torsionsmoment MG und damit mit einer gerin gen Torsionsfederrate CG auf, die auf das Drehschwingungsverhalten der Antriebsein richtung 1 (Figuren 1 und 2) bei einem Teillastbetrieb der Brennkraftmaschine 2 unter Einfluss des Massenträgheitsmoments des Rotors 6 abgestimmt ist. Im weiteren Ver lauf der Torsionsfederrate bei den vorgegebenen Verdrehwinkeln QVG überschreiten- den Verdrehwinkeln av können beispielsweise sich linear weiterentwickelnde Torsi onsfederraten in Graph 32 oder ansteigende Torsionsfederraten in Graph 33 vorgese hen sein. Figure 3 shows the diagram 31 with the torsional moment MT over the angle of rotation av of the torsional vibration damper 9 of Figure 2. The torsional vibration damper 9 has the twist angle range Dan between the twist angle 0 and the twist angle ÖVG, for example greater than 3 °, compared to the maximum twist angle avmax up to 5 ° and less than half or a third of the maximum angle of rotation avmax with a slightly increasing torsional moment MG and thus with a low torsion spring rate CG, which affects the torsional vibration behavior of the drive device 1 (Figures 1 and 2) when the internal combustion engine is operating at part load 2 is matched under the influence of the mass moment of inertia of the rotor 6. In the further course of the torsion spring rate at the specified torsion angles exceed QVG- For example, linearly developing torsion spring rates in graph 32 or increasing torsion spring rates in graph 33 can be provided for the torsion angles av.
Die Figur 4 zeigt den oberen Teil des um die Drehachse d angeordneten Drehschwin- gungsdämpfers 9 der Figur 2 im Schnitt mit den Scheibenteilen 25, 26, 28 und den in den Federfenstern 34, 35, 36 untergebrachten und radial nach außen abgestützten Schraubendruckfedern 30. Die Federfenster 34, 35, 36 weisen jeweils beidseitig die Stirnseiten der Schraubendruckfedern 30 in Umfangsrichtung beaufschlagende Fens terflanken 37, 38, 39 auf. Zur Darstellung der Torsionsfederraten CG der Figur 3 ohne zusätzliche Federelemente der Federeinrichtung 10 ist zwischen den Stirnseiten der Schraubendruckfedern 30 und den Fensterflanken 39 der Federfenster 36 des Schei benteils 28 der in Figur 5 gezeigte Anstellwinkel OF vorgesehen. FIG. 4 shows the upper part of the rotary vibration damper 9 of FIG. 2, which is arranged around the axis of rotation d, in section with the disk parts 25, 26, 28 and the helical compression springs 30 accommodated in the spring windows 34, 35, 36 and supported radially outward Spring windows 34, 35, 36 each have on both sides the end faces of the helical compression springs 30 in the circumferential direction acting on window flanks 37, 38, 39. To show the torsion spring rates CG of FIG. 3 without additional spring elements of the spring device 10, the angle of incidence OF shown in FIG. 5 is provided between the end faces of the helical compression springs 30 and the window flanks 39 of the spring window 36 of the disk part 28.
Die Figur 5 zeigt eine Teilansicht des Drehschwingungsdämpfers 9 bei vorderem ab genommenem Scheibenteil 25 (Figur 4). Die in den Federfenstern 35, 36 aufgenom- menen Schraubendruckfedern 30 werden von den Fensterflanken 38 des Scheiben teils 25 plan anliegend beaufschlagt. Zwischen den Fensterflanken 39 und den Stirn seiten der Schraubendruckfedern 30 ist der Anstellwinkel OF, beispielsweise zumin dest 2° eingestellt. Flierdurch wird bei einer Verdrehung der Scheibenteile 26, 28 ge geneinander um die Drehachse zuerst der radial innere Teil der Schraubendruckfe- dern 30 mit einem entsprechend verringerten Torsionsmoment verdreht. Hierdurch stellen sich bei entsprechender Auslegung des Anstellwinkels OF verringerte Torsions federraten in dem Verdrehwinkelbereich Dan (Figur 3) ein. Bei Überschreiten des An stellwinkels OF werden die Schraubendruckfedern 30 gleichmäßig belastet, so dass sich die ursprünglich vorgesehene Torsionsfederrate der Schraubendruckfedern 30 einstellt. Es versteht sich, dass die Fensterflanken 37 des Scheibenteils 25 (Figur 4) entsprechend den Fensterflanken 38 des Scheibenteils 26 ausgebildet sind. FIG. 5 shows a partial view of the torsional vibration damper 9 with the front disc part 25 removed (FIG. 4). The helical compression springs 30 received in the spring windows 35, 36 are acted upon by the window flanks 38 of the pane part 25 in a flat manner. The setting angle OF, for example at least 2 °, is set between the window flanks 39 and the end faces of the helical compression springs 30. As a result, when the disk parts 26, 28 are rotated against one another about the axis of rotation, the radially inner part of the helical compression springs 30 is rotated first with a correspondingly reduced torsional moment. This results in reduced torsional spring rates in the torsion angle range Dan (FIG. 3) with an appropriate design of the angle of attack OF. When the angle of attack OF is exceeded, the helical compression springs 30 are evenly loaded, so that the originally intended torsion spring rate of the helical compression springs 30 adjusts. It goes without saying that the window flanks 37 of the pane part 25 (FIG. 4) are designed in accordance with the window flanks 38 of the pane part 26.
Die Figur 6 zeigt das gegenüber dem Diagramm 31 der Figur 3 abgeänderte Dia gramm 40 mit dem Torsionsmoment MT über den Verdrehwinkel av. Im Unterschied zu dem Diagramm 31 ist dem Torsionsmoment MT innerhalb des Verdrehwinkelbe reichs Dan mittels der Reibeinrichtung 11 (Figur 2) ein verschlepptes Reibmoment ± MTR zur Bereitstellung einer Flysterese jeweils in beide Richtungen über einen vorge gebenen Reibwinkelbereich AQTR, beispielsweise ± 1 ° überlagert. FIG. 6 shows the modified diagram 40 compared to diagram 31 in FIG. 3 with the torsional moment MT over the twisting angle av. In contrast to diagram 31, the torsional moment MT is dragged within the twisting angle range Dan by means of the friction device 11 (FIG. 2) Frictional torque ± MTR to provide a flysteresis in both directions over a given friction angle range AQTR, for example ± 1 ° superimposed.
Bezuqszeichenliste Antriebseinrichtung Reference list drive device
Brennkraftmaschine Internal combustion engine
Kurbelwelle crankshaft
Elektromaschine Electric machine
Stator stator
Rotor rotor
Reibungskupplung Friction clutch
Abtriebswelle Output shaft
Drehschwingungsdämpfer Torsional vibration damper
Federeinrichtung Spring device
Reibeinrichtung Friction device
Drehschwingungsdämpfer Torsional vibration damper
Federeinrichtung Spring device
Reibeinrichtung Friction device
Verbindungsmittel Lanyard
Eingangsteil Input part
Ausgangsteil Output part
Welle wave
Trägerhülse Carrier sleeve
Betätigungssystem Actuation system
Eingangsteil Input part
Ausgangsteil Output part
Scheibenteil Disc part
Eingangsteil Input part
Scheibenteil Disc part
Scheibenteil Disc part
Ausgangsteil Output part
Scheibenteil Disc part
Nabe hub
Schraubendruckfeder Helical compression spring
Diagramm 32 Graph diagram 32 graph
33 Graph 33 graph
34 Federfenster 34 spring window
35 Federfenster 35 spring windows
36 Federfenster 36 spring windows
37 Fensterflanke 37 Window edge
38 Fensterflanke 38 window flank
39 Fensterflanke 39 window flank
40 Diagramm 40 diagram
CG Torsionsfederrate CG torsion spring rate
d Drehachse d axis of rotation
MG vorgegebenes Torsionsmoment MT Torsionsmoment MG specified torsional moment MT torsional moment
MTR Reibmoment MTR frictional torque
OF Anstellwinkel OF angle of attack
av Verdrehwinkel av twist angle
OVG vorgegebener Verdrehwinkel avmax maximaler Verdrehwinkel Dan Verdrehwinkelbereich OVG specified twist angle avmax maximum twist angle Dan twist angle range
AQTR Reibwinkelbereich AQTR friction angle range

Claims

Patentansprüche Claims
1. Antriebseinrichtung (1 ) für einen hybridischen Antriebsstrang eines Kraftfahr zeugs mit einer Brennkraftmaschine (2) und einer koaxial zu dieser angeordne ten Elektromaschine (4), wobei zwischen einem Rotor (6) der Elektromaschine (4) und einer Abtriebswelle (8) der Antriebseinrichtung (1 ) ein Drehschwin gungsdämpfer (9) mit einer zwischen Rotor (6) und Abtriebswelle (8) in Um fangsrichtung wirksam angeordneten Federeinrichtung (10) angeordnet ist, dadurch gekennzeichnet, dass bei einem vorgegebenen Verdrehwinkelbereich (Dan) zwischen Rotor (6) und Abtriebswelle (8) kleiner als einem maximalen Verdrehwinkel (av) eine Torsionsfederrate (CG) der Federeinrichtung kleiner gleich 20 Nm/°, bevorzugt kleiner gleich 10 Nm/°, besonders bevorzugt kleiner gleich 5 Nm/° eingestellt ist. 1. Drive device (1) for a hybrid drive train of a motor vehicle with an internal combustion engine (2) and a coaxially to this angeordne th electric machine (4), between a rotor (6) of the electric machine (4) and an output shaft (8) of the Drive device (1) a torsional vibration damper (9) is arranged with a spring device (10) effectively arranged between the rotor (6) and the output shaft (8) in the circumferential direction, characterized in that for a given torsional angle range (Dan) between the rotor (6) and output shaft (8) less than a maximum angle of rotation (av) a torsion spring rate (CG) of the spring device is set to be less than or equal to 20 Nm / °, preferably less than or equal to 10 Nm / °, particularly preferably less than or equal to 5 Nm / °.
2. Antriebseinrichtung (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der vorgegebene Verdrehwinkelbereich (Dan) größer als 3°, bevorzugt größer als 5° ist. 2. Drive device (1) according to claim 1, characterized in that the predetermined angle of rotation range (Dan) is greater than 3 °, preferably greater than 5 °.
3. Antriebseinrichtung (1 ) Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine über zumindest einen Teil des Verdrehwinkelbereichs (Dan) eingestellte Hyste- rese größer gleich 8 Nm, bevorzugt größer gleich 16 Nm ist. 3. Drive device (1) claim 1 or 2, characterized in that a hysteresis set over at least part of the torsion angle range (Dan) is greater than or equal to 8 Nm, preferably greater than or equal to 16 Nm.
4. Antriebseinrichtung (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekenn zeichnet, dass ein Verhältnis eines Bogenwinkels einer über den Verdrehwin kelbereich (Dan) eingestellten Flysterese und der Torsionsfederrate (CG) kleiner 94 und größer 376 ist. 4. Drive device (1) according to one of claims 1 to 3, characterized in that a ratio of an arc angle of a flysteresis set over the twisting angle range (Dan) and the torsion spring rate (CG) is less than 94 and greater than 376.
5. Antriebseinrichtung (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, dass ein Eingangsteil (24) und ein Ausgangsteil (27) des Drehschwin gungsdämpfers (9) aus gegeneinander um eine Drehachse (d) entgegen der Wirkung der Federeinrichtung (10) begrenzt verdrehbaren Scheibenteilen (25, 26, 28) gebildet ist, wobei über den Umfang verteilt angeordnete Schrauben druckfedern (30) in Federfenstern (34, 35, 36) der Scheibenteile (25, 26, 28) aufgenommen sind und Stirnseiten der Schraubendruckfedern (30) von Fens terflanken (37, 38, 39) der Federfenster (34, 35, 36) in Umfangsrichtung beauf schlagt sind. 5. Drive device (1) according to one of claims 1 to 4, characterized in that an input part (24) and an output part (27) of the rotary vibration damper (9) from each other about an axis of rotation (d) against the action of the spring device ( 10) disc parts with limited rotation (25, 26, 28), with helical compression springs (30) distributed over the circumference being received in spring windows (34, 35, 36) of the pane parts (25, 26, 28) and end faces of the helical compression springs (30) of window flanks (37 , 38, 39) of the spring window (34, 35, 36) are acted upon in the circumferential direction.
6. Antriebseinrichtung (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass die Torsionsfederrate (CG) des vorgegebenen Verdrehwinkelbereichs (Dan) mittels zumindest eines vorgegebenen Anstellwinkels (ÖF) zwischen den Stirnflächen der Schraubendruckfedern (30) und zumindest einer Fensterflanke (39) eines Federfensters (36) eingestellt ist. 6. Drive device (1) according to claim 5, characterized in that the torsion spring rate (CG) of the predetermined angle of rotation range (Dan) by means of at least one predetermined angle of attack (ÖF) between the end faces of the helical compression springs (30) and at least one window flank (39) of a spring window (36) is set.
7. Antriebseinrichtung (1 ) nach Anspruch 6, dadurch gekennzeichnet, dass der Anstellwinkel ÖF gemäß der Gleichung 7. Drive device (1) according to claim 6, characterized in that the angle of attack ÖF according to the equation
ÖF > 0,7 * 2 * Dan ÖF> 0.7 * 2 * Dan
mit dem vorgegebenen Verdrehwinkelbereich Dan eingestellt ist. is set with the predetermined twist angle range Dan.
8. Antriebseinrichtung (1 ) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Anstellwinkel (ÖF) größer gleich 2° beträgt. 8. Drive device (1) according to claim 6 or 7, characterized in that the angle of attack (ÖF) is greater than or equal to 2 °.
9. Antriebseinrichtung (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekenn zeichnet, dass zwischen einer Kurbelwelle (3) der Brennkraftmaschine (2) und einem Rotor (6) der Elektromaschine (4) eine Reibungskupplung (7) angeord net ist. 9. Drive device (1) according to one of claims 1 to 8, characterized in that a friction clutch (7) is angeord net between a crankshaft (3) of the internal combustion engine (2) and a rotor (6) of the electric machine (4).
10. Antriebseinrichtung (1 ) nach einem der Ansprüche 1 bis 9, dadurch gekenn zeichnet, dass zwischen einer Kurbelwelle (3) der Brennkraftmaschine (2) und einem Rotor (6) der Elektromaschine (4) ein weiterer Drehschwingungsdämpfer (12) angeordnet ist. 10. Drive device (1) according to one of claims 1 to 9, characterized in that a further torsional vibration damper (12) is arranged between a crankshaft (3) of the internal combustion engine (2) and a rotor (6) of the electric machine (4).
PCT/DE2020/100520 2019-07-05 2020-06-18 Drive device for a hybrid powertrain WO2021004575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020003354.6T DE112020003354A5 (en) 2019-07-05 2020-06-18 DRIVE DEVICE FOR A HYBRID POWERTRAIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019118220.4 2019-07-05
DE102019118220.4A DE102019118220A1 (en) 2019-07-05 2019-07-05 Drive device for a hybrid drive train

Publications (1)

Publication Number Publication Date
WO2021004575A1 true WO2021004575A1 (en) 2021-01-14

Family

ID=71614658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100520 WO2021004575A1 (en) 2019-07-05 2020-06-18 Drive device for a hybrid powertrain

Country Status (2)

Country Link
DE (2) DE102019118220A1 (en)
WO (1) WO2021004575A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021105886B3 (en) * 2021-03-11 2022-02-03 Schaeffler Technologies AG & Co. KG Hybrid device with a spring-loaded connecting element
DE102021204585A1 (en) 2021-05-06 2022-11-10 Zf Friedrichshafen Ag Hybrid transmission with linear spring characteristic, vehicle, starting procedure and control unit
DE102021130139A1 (en) 2021-10-05 2023-04-06 Schaeffler Technologies AG & Co. KG Torsional vibration damper with axial spring failure protection formed by a flange
DE102021128900A1 (en) 2021-11-05 2023-05-11 Schaeffler Technologies AG & Co. KG power train device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019585A1 (en) * 2008-05-16 2009-11-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive train for motor vehicle, comprises internal combustion engine, electric machine, automatic drive, two friction clutches and two trosional vibration dampers, where torque converter is arranged directly after electric machine
DE102013213422A1 (en) * 2012-07-10 2014-02-06 Schaeffler Technologies AG & Co. KG Torque clutch for transmitting rotational torque from drive motor to gearbox in powertrain of motor car, has vibration damper that is provided to transmit rotational torque between input side and intermediate flange
US20150231957A1 (en) * 2012-09-25 2015-08-20 Valeo Equipments Electriques Moteur Transmission assembly for a motor vehicle
WO2015139790A1 (en) * 2014-03-19 2015-09-24 Zf Friedrichshafen Ag Hybrid module and drive train having such a module
WO2015172784A2 (en) 2014-05-16 2015-11-19 Schaeffler Technologies AG & Co. KG Torque transmission device for a hybrid vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106926A1 (en) * 2007-03-08 2008-09-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torsional vibration damper
DE102011102225A1 (en) * 2010-06-10 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Two-mass flywheel for use as torsional vibration damper between combustion engine and gear box in drive train of motor car, has primary-sided pressurization devices axially engaged in front sides of bow springs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019585A1 (en) * 2008-05-16 2009-11-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive train for motor vehicle, comprises internal combustion engine, electric machine, automatic drive, two friction clutches and two trosional vibration dampers, where torque converter is arranged directly after electric machine
DE102013213422A1 (en) * 2012-07-10 2014-02-06 Schaeffler Technologies AG & Co. KG Torque clutch for transmitting rotational torque from drive motor to gearbox in powertrain of motor car, has vibration damper that is provided to transmit rotational torque between input side and intermediate flange
US20150231957A1 (en) * 2012-09-25 2015-08-20 Valeo Equipments Electriques Moteur Transmission assembly for a motor vehicle
WO2015139790A1 (en) * 2014-03-19 2015-09-24 Zf Friedrichshafen Ag Hybrid module and drive train having such a module
WO2015172784A2 (en) 2014-05-16 2015-11-19 Schaeffler Technologies AG & Co. KG Torque transmission device for a hybrid vehicle

Also Published As

Publication number Publication date
DE102019118220A1 (en) 2021-01-07
DE112020003354A5 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2021004575A1 (en) Drive device for a hybrid powertrain
DE19522225B4 (en) torsional vibration damper
EP2981734B1 (en) Torque transmission device
EP3198169B1 (en) Clutch disk with a torsional vibration damper
DE102011085983B4 (en) Centrifugal pendulum device
WO2010063251A1 (en) Torsion vibration damper
WO2010102789A1 (en) Drive train for hybrid drives and torsion damper
WO2014095186A1 (en) Torsional vibration damper and torsional vibration damping method
EP4127509A1 (en) Torsional vibration damper having an axis of rotation for a drive train
DE112017003936T5 (en) damper device
WO2011000340A1 (en) Torque transmission device
EP1730425A1 (en) Pulley
DE112017004158T5 (en) DAMPER DEVICE
WO2019242795A1 (en) Hybrid drive unit in a powertrain of a motor vehicle
DE102019105388A1 (en) Hybrid drive train with a torsional vibration damper and torsional vibration damper for a hybrid drive train
EP3631239A1 (en) Torque transmitting device
DE102012209897A1 (en) Hub device for torsional vibration damper of motor car clutch disk, has cone surrounding hub in axial portion, and rotary drive attaching cone to hub with rotary backlash that allows predetermined setting angle between hub and cone
WO2015018413A1 (en) Torsional vibration damper
WO2020228899A1 (en) Torsional vibration damper with multiple-flange damper and predamper and system and clutch disc having torsional vibration damper
WO2010060406A1 (en) Disk set arrangement for a chain cvt having a function-optimized disk set contour
WO2020233734A1 (en) Belt pulley decoupler with axial toothing on both sides and auxiliary unit drive
DE102019133233A1 (en) Torsional vibration damper
DE102018119193A1 (en) Clutch disc with a rotation axis for a friction clutch
DE102009049625A1 (en) Drive train for motor vehicle i.e. passenger car, has input shaft coupled with flywheel device and torsion absorption device, where absorbing device absorbs torsional vibrations by using spring element and attached to coupling device
DE102016014525A1 (en) Hybrid powertrain for a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740226

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020003354

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740226

Country of ref document: EP

Kind code of ref document: A1