WO2021004484A1 - 骑乘式割草机及其控制方法 - Google Patents

骑乘式割草机及其控制方法 Download PDF

Info

Publication number
WO2021004484A1
WO2021004484A1 PCT/CN2020/100881 CN2020100881W WO2021004484A1 WO 2021004484 A1 WO2021004484 A1 WO 2021004484A1 CN 2020100881 W CN2020100881 W CN 2020100881W WO 2021004484 A1 WO2021004484 A1 WO 2021004484A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
lawn mower
motor
riding lawn
steering wheel
Prior art date
Application number
PCT/CN2020/100881
Other languages
English (en)
French (fr)
Inventor
代修波
王磊
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to EP20836218.6A priority Critical patent/EP3977841A4/en
Priority to AU2020310369A priority patent/AU2020310369A1/en
Priority to CN202080005342.6A priority patent/CN112996379B/zh
Publication of WO2021004484A1 publication Critical patent/WO2021004484A1/zh
Priority to US17/570,751 priority patent/US20220124972A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • B62D11/003Electric or electronic control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • B62D5/006Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources

Definitions

  • This application relates to power tools, such as a riding lawn mower and its control method.
  • riding lawn mowers With the advent of riding lawn mowers, its structure becomes more and more complicated with the increase of functions. Riding lawn mowers not only need to perform functional tasks such as mowing, but also require users to control their travel.
  • the riding lawn mower in the related technology mainly uses fuel as its power, which is highly polluting and noisy.
  • Ride-on lawn mowers that use electricity as energy sources usually adopt operating lever control, which is not conducive to novice operation and use, and requires users to adjust the direction of the operating levers on both sides.
  • the present application provides a riding lawn mower control system, which adopts electronic operating parts to control the operation of the riding lawn mower, and effectively improves the stability of controlling the riding lawn mower and optimizes the operating experience.
  • the present application provides a riding lawn mower control method, which adopts a steering wheel to control the operation of the riding lawn mower, and can flexibly control the steering of the riding lawn mower, and the operation is simple and sensitive.
  • the embodiment of the present application provides a riding lawn mower, including: a seat for a user to ride; a power output assembly, the power output assembly includes a mowing element for outputting power to realize the mowing function and driving the The power output motor for the mowing element to output power; the walking component, which drives the wheels of the riding electric lawn mower to walk on the ground and includes a walking motor for driving the wheels and a walking controller for controlling the walking motor, so
  • the wheel includes driving wheels forming two sides; and also includes a control assembly.
  • the operating assembly includes an electronic steering wheel, a central controller, and a position sensor.
  • the position sensor is arranged on the electronic steering wheel to detect the user's rotational operation of the operating member.
  • the central controller can The position sensor is communicatively connected and the rotation operation instruction is obtained, and the active differential driving of the rear wheel is controlled by the walking controller to steer.
  • the embodiment of the present application provides a riding lawn mower, including: a seat for a user to ride; a power output assembly, the power output assembly includes a mowing element for outputting power to realize the mowing function and driving the The power output motor for the mowing element to output power; the walking component, which drives the wheels of the riding electric lawn mower to walk on the ground and includes a walking motor for driving the wheels; also includes a control component, and the operating component includes electronics The steering wheel and the speed operating part, the central controller and the position sensor.
  • the position sensor is set on the electronic steering wheel to detect the user's rotating operation of the operating part.
  • the speed operating part is connected to the central controller and used to control acceleration.
  • the central controller can communicate with each other. Connect the position sensor and obtain the rotation operation instruction, and apply negative torque to the inner wheel during rotation to reduce the speed to turn.
  • the embodiment of the present application provides a riding lawn mower, including: a seat for a user to ride; a power output assembly, the power output assembly includes a mowing element for outputting power to realize the mowing function and driving the A power take-off motor that outputs power from the mowing element; a walking assembly that drives the wheels of the riding electric lawn mower to walk on the ground and includes a walking motor for driving the wheels and a walking controller for controlling the walking motor, and A state sensor that detects the state of the wheel, the wheel includes driving wheels forming two sides; a control assembly, the operating assembly includes an operating member and a central controller connected to the operating member, and the central controller controls the station according to the actions of the operating member
  • the riding lawn mower is running; the operating assembly further includes an auxiliary motor and an auxiliary controller that controls the auxiliary motor, the auxiliary motor is coupled with the operating member, and the auxiliary controller detects the status of the wheels according to the status sensor Generate a feedback command to control the auxiliary motor to apply force feedback to the operating member.
  • the embodiment of the present application provides a steering wheel force feedback control method of a riding lawn mower, which includes: obtaining the direction of rotation of the steering wheel and determining the direction of the force feedback; obtaining the rotation angle and rotation angular acceleration of the steering wheel, the rotation speed of the wheel, and the first driving wheel Differential speed with the second driving wheel to determine the adjustment factor; according to the adjustment factor, the force feedback output to the steering wheel is controlled.
  • the embodiment of the application provides a walking control method for a riding lawn mower, including: S1: a position sensor acquires a steering signal of a steering operating member and a speed signal of a speed operating member; S2: analyzing the first The target driving speed of the driving wheel and the second driving wheel; S3: the status sensor acquires the actual speed of the first driving wheel and the second driving wheel; S4: determining the speed of the first motor and/or the second motor based on the actual speed and the target driving speed Target current torque component. S5: Control the first driving wheel and the second driving wheel to travel at the target driving speed, so that the riding lawn mower can steer or drive straight.
  • Fig. 1 is a perspective view of a riding lawn mower according to an embodiment of the present application
  • Figure 2 is a side view of the riding lawn mower according to an embodiment of the present application.
  • Figure 3 is a cross-sectional view of the riding lawn mower according to an embodiment of the present application.
  • Fig. 4 is a block diagram of a control system of a riding lawn mower according to an embodiment of the present application.
  • Fig. 5 is a block diagram of a control system of a riding lawn mower according to an embodiment of the present application.
  • Fig. 6 is a block diagram of a force feedback system of a riding lawn mower according to an embodiment of the present application.
  • Fig. 7 is an operation block diagram of the control module of the riding lawn mower according to an embodiment of the present application.
  • Fig. 8 is a three-dimensional structural view of a steering wheel of a riding lawn mower according to an embodiment of the present application.
  • FIG. 9 is a perspective structural view of the steering wheel of the riding lawn mower according to an embodiment of the present application from another angle;
  • Figure 10 is a walking control method of riding lawn mower
  • Figure 11 is a force feedback control method for the steering wheel of a riding lawn mower
  • Figure 12 is a control flow of the walking control module of the riding lawn mower
  • FIG. 13 is a graph of each phase voltage input to the electric tool according to an embodiment, and the voltage curve is approximately a sinusoidal waveform;
  • FIG. 14 is a graph of the voltage of each phase input to the electric tool in another embodiment, and the voltage curve is similar to a saddle-shaped waveform;
  • Fig. 15 is a block diagram of another embodiment of the control system of the present application.
  • Fig. 1 is a perspective view of a riding lawn mower according to an embodiment of the present application.
  • Fig. 2 is a side view of a riding lawn mower according to an embodiment of the present application.
  • Fig. 3 is a cross-sectional view of a riding lawn mower according to an embodiment of the present application.
  • the riding lawn mower includes a power output assembly 30 for performing mowing operations and a walking assembly 10 for performing walking actions.
  • the power output assembly 30 includes a mowing element 31 and a power output motor 32, and a mowing controller 514 that controls the power output motor 32.
  • the mowing element 31 is usually set as a cutting blade, and the mowing element 31 is connected to the power output motor 32, and the power output motor 32 drives the mowing element 31 to rotate to perform a cutting action.
  • the riding lawn mower also includes a power supply device for providing energy.
  • the riding lawn mower further includes a control system for controlling the operation of the riding lawn mower; the control system includes an operating component for the user to operate to control the operation of the walking component 10 and the power output component 30.
  • the operating components include a steering operating member, a speed operating member, and an output operating member.
  • the steering operating member is used to input the steering control of the riding lawn mower, and the speed operating member is used to output the speed control of the riding lawn mower.
  • the output operating member is used to control the operation of the riding lawn mower to mowing.
  • the control system also includes a control module and a sensing module.
  • the control module includes a central controller 511, a mowing sensor and other controllers used to control the operation of the riding lawn mower.
  • the sensing module includes at least a position sensor 521.
  • the position sensor 521 is arranged on the operating element to detect the user's operation action on the operating element.
  • the central controller 511 is communicatively connected to the position sensor 521, and receives the user's operation instruction through the position sensor 521 It is converted to the corresponding control command.
  • the operating member may include a steering wheel 21, and the user controls the traveling direction of the riding lawn mower by operating the steering wheel 21.
  • Fig. 4 is a block diagram of a control system of a riding lawn mower according to an embodiment of the present application.
  • Fig. 5 is a block diagram of a control system of a riding lawn mower according to an embodiment of the present application.
  • the walking assembly 10 includes a wheel 11 and a first motor 12 and a second motor 13.
  • the wheel 11 includes a front wheel 112 and a rear wheel 111.
  • the front wheel 112 is a universal wheel
  • the rear wheel 111 is used as a driving wheel.
  • the number of rear wheels 111 is two, including the first driving wheel 1111 and the second driving wheel 1112, the number of front wheels 112 can be two, or can be set to one or zero.
  • the first motor 12 is connected to the first drive wheel 1111 and drives the first drive wheel 1111 to rotate
  • the second motor 13 is connected to the second drive wheel 1112 and drives the second drive wheel 1112 to rotate.
  • the power output assembly 30 also includes The walking controller 512 is operatively connected to the central controller 511.
  • the walking controller 512 is communicatively connected with the first motor 12 and the second motor 13.
  • the central controller 511 receives and analyzes user operation instructions, and converts it to the first motor 12 and the control instructions of the second motor 13 are sent to the walking controller 512, and the walking controller 512 controls the operation of the first motor 12 and the second motor 13 according to the control instructions.
  • the above-mentioned communicable connection method can be a wired connection via a communication line or a wireless connection.
  • the walking assembly 10 also includes an output shaft coupled with the first motor 12 and the second motor 13. The output shaft is connected to the first driving wheel 1111 and the second driving wheel 1112, and the walking motor drives the driving wheel through the output shaft. Running.
  • the riding lawn mower also includes a seat 40 for a user to sit on and a frame supporting the seat 40 and wheels 11.
  • the seat 40 is mounted on the frame, and the steering wheel 21 is arranged on the seat 40.
  • a user sitting on the seat 40 can operate the steering wheel 21 to control the traveling direction of the riding lawn mower.
  • the walking controller 512 is set to two, namely the first controller 515 and the second controller 516, so that the first controller 515 and the first motor 12 are communicatively connected to control the operation of the first motor 12
  • the second controller 516 and the second motor 13 are communicatively connected to control the operation of the second motor 13.
  • the first controller 515 and the second controller 516 communicate with the central controller 511 respectively, and the central controller 511 is The control instruction converted by the user operation instruction is sent to the first controller 515 and the second controller 516, respectively, so as to control the traveling speed of the first driving wheel 1111 and the second driving wheel 1112.
  • a central controller 511 may control the first motor 12 and the second motor 13 to control the rotation speed of the first driving wheel 1111 and the second driving wheel 1112.
  • the steering operating member is implemented as a steering wheel 21, and the speed operating member is implemented as a speed pedal.
  • the steering wheel 21 includes an operating wheel 211 and a shaft.
  • the operating wheel 211 can be in a circular or elliptical shape. It is convenient for users to operate.
  • One end of the axle body is connected to the bottom of the operating panel 211, and the other end of the axle body is connected to the frame.
  • one end of the axle body is connected to the side end of the frame and extends upwards for a preset distance before extending to the front of the seat. The overall occupied space of the riding lawn mower by the operating components is reduced, and the driving comfort of the user is improved.
  • the steering wheel 21 is provided with buttons for controlling the riding lawn mower, such as a starter, a light button, etc.
  • the output operating member can be set on the steering wheel 21, and the user can Operate the steering wheel to control the riding lawn mower while controlling its mowing process.
  • the above keys are connected to the central controller 511 by wirelessly or wiredly sending electrical signals to send operation instructions and processed and executed by the central controller 511.
  • the shaft body has a hollow design, and a signal line and/or power line for connecting the operating assembly and the walking assembly 10 are provided in it to protect and arrange the signal line or the power line.
  • the position sensor 521 includes at least a first sensor.
  • the first position sensor 521 detects the rotation angle of the steering wheel 21 operated by the user, and the detected displacement angle Transmitted to the central controller 511, the central controller 511 converts the rotation angle of the steering wheel 21 into a steering signal, which is the corresponding traveling steering angle of the riding lawn mower, and transmits the steering signal to the first controller 515 and the second controller 516, the first controller 515 and the second controller 516 control the first driving wheel 1111 and the driving wheel to drive differentially, or the central controller 511 directly controls the first driving wheel 1111 It travels at a differential speed with the second driving wheel 1112, so that the riding lawn mower turns according to the operation of the steering wheel 21 by the user.
  • control module further includes an operation controller, which is used to analyze the user's operation on the operation component and generate a corresponding operation instruction, and transmit the operation instruction to the central controller 511 to control the steering of the driver.
  • operation controller which is used to analyze the user's operation on the operation component and generate a corresponding operation instruction, and transmit the operation instruction to the central controller 511 to control the steering of the driver.
  • the first position sensor 521 detects the rotational displacement of the steering wheel 21 operated by the user, it transmits the displacement angle to the operating controller.
  • the operating controller converts the corresponding steering signal and sends it to the central controller 511.
  • the central controller 511 sends control Signal to directly control the differential driving of the first driving wheel 1111 and the second driving wheel 1112, or the central controller 511 sends control signals to the first controller 515 and the second controller 516, and the first controller 515 and the second controller 515
  • the controller 516 controls the first motor 12 and the second motor 13 to drive the first driving wheel 1111 and the second driving wheel 1112 to drive differentially to complete the steering of the riding lawn mower corresponding to the user controlling the steering wheel 21 to rotate.
  • the first position sensor 521 includes a rotating part and a fixing part that are arranged oppositely, the rotating part is arranged in the operating panel 211, and the fixing part is arranged near the shaft or the auxiliary motor 61 ,
  • the rotating member is driven to rotate by the user, and the user's operation action on the steering wheel 21 is obtained by changing the relative position relationship between the rotating member and the fixed member.
  • the fixed part and the rotating part are implemented as Hall sensors, that is, a Hall sensor is arranged in the fixed part, and the rotating part is at least partially set as a magnetic part, so that the rotation of the steering wheel 21 is detected by the Hall principle .
  • the first position sensor 521 is configured as a capacitive sensor, and the rotation displacement of the steering wheel 21 is read through the capacitance change.
  • the steering wheel 21 has an initial state, with an origin or standard axis as a reference.
  • the initial state corresponds to a straight or stopped state.
  • the steering wheel 21 is aligned directly in front of the origin or standard axis.
  • the first position sensor 521 detects the rotation angle of the steering wheel 21 relative to the origin or standard axis, and generates a corresponding steering command.
  • the rotation angle of the steering wheel 21 and the traveling steering angle of the riding lawn mower are in a one-to-one correspondence state.
  • the rotation angle of the steering wheel 21 and the steering angle of the riding lawn mower have a proportional correspondence, or a function
  • the conversion algorithm between the rotation angle of the steering wheel 21 and the steering angle of the riding lawn mower is stored in the operating controller or the central controller 511 to generate a corresponding steering command according to the rotation angle of the steering wheel 21.
  • the first position sensor 521 is implemented to detect the absolute position displacement of the steering wheel 21, that is, to detect the absolute rotation angle of the steering wheel 21, and analyze it as a control for the riding lawn mower
  • the steering command, the steering wheel 21 does not need to return to the origin at this time, and the absolute rotation angle of the steering wheel 21 is obtained as the rotation angle of the steering wheel 21 operated by the user, and the rotation angle of the steering wheel 21 corresponds to the riding lawn mower one by one.
  • the traveling steering angle for example, the rotation angle of the steering wheel 21 and the steering angle of the riding lawn mower have a proportional or functional corresponding relationship, and the steering angle of the steering wheel 21 is converted to the steering angle of the riding lawn mower
  • the algorithm is stored in the operating controller or the central controller 511 to generate a corresponding steering command according to the rotation angle of the steering wheel 21.
  • the speed pedal is set on the frame and used to control the traveling speed of the riding lawn mower.
  • the position sensor 521 further includes a second position sensor 521 provided with a speed pedal for detecting the operation of the speed pedal by the user.
  • the user transmits speed control commands by stepping on the speed pedal.
  • the set speed pedal has an initial state, that is, when the user does not apply force to the speed pedal, the speed pedal is in the original state, and the traveling speed of the riding lawn mower is zero.
  • the user exerts a force on the speed pedal to move the speed pedal down, and the downward angle corresponds to the traveling speed of the riding lawn mower one by one.
  • the downward movement angle of the speed pedal and the traveling speed of the riding lawn mower have Proportional correspondence, or function correspondence, and preset the conversion algorithm between the downward movement angle of the speed pedal and the traveling speed of the riding lawn mower in the operation sensor or the central sensor, and the operation sensor or the central sensor calculates the corresponding travel speed.
  • the walking assembly 10 also includes a state sensor 522 for detecting the state of walking.
  • the state sensor 522 is used to detect the state of the first motor 12 and the second motor 13, and the optional state sensor 522 includes a current sensor for acquiring the first
  • the state sensor 522 may also include a position sensor 521 to detect the rotation speed of the first motor 12 and the second motor 13 to obtain the information of the first driving wheel 1111 and the second driving wheel 1112.
  • the rotational speed, or directly through the position sensor 521 or the rotational speed of the first driving wheel 1111 and the second driving wheel 1112, for example, the state sensor 522 may also be set as a pressure sensor, by detecting the first motor 12 and the second motor 13 torque to obtain the walking state.
  • the state sensor 522 may also be arranged on the wheel 11 or the output shaft, and be implemented as a position sensor 521 such as a Hall sensor, etc., and used to directly detect the current rotation speed of the wheel 11.
  • the state sensor 522 includes not limited to any number of other gyroscopes, accelerometers, inertial measurement units, barometers, magnetometers, communication devices and other devices.
  • the first motor 12 and the second motor 13 are brushless motors, which have three-phase windings, and the three-phase windings are wound around the stator.
  • the control system also includes a drive circuit, and the control module is electrically connected and controls the operation of the drive circuit.
  • the driving circuit is electrically connected to the first motor 12 and the second motor 13, and is electrically connected to the power supply device, and drives the operation of the first motor 12 and the second motor 13 according to the control signal output by the control module.
  • the driving circuit is electrically connected to the three-phase windings of the first motor 12 and the second motor 13, and the driving circuit has at least a switch circuit for driving the rotor of the motor to operate according to the control signal of the control module.
  • the drive circuit has multiple drive states.
  • the stator winding of the motor generates a magnetic field.
  • the control module is configured to output a corresponding drive signal to the drive circuit according to the rotor rotation position of the motor to make the drive circuit.
  • Switching the driving state thereby changing the state of the voltage and/or current loaded on the windings of the motor, and generating an alternating magnetic field to drive the rotor to rotate, thereby realizing the driving of the motor.
  • the rotor position of the motor can be calculated and analyzed by the control module by sampling the current and/or voltage of the motor.
  • the driving circuit includes switching elements VT1, VT2, VT3, VT4, VT5, and VT6.
  • the switching elements VT1, VT2, VT3, VT4, VT5, and VT6 form a three-phase bridge.
  • VT1, VT3, and VT5 are upper bridge switches
  • VT2, VT4 VT6 is the lower bridge switch
  • the upper bridge switch and lower bridge switch of each phase bridge circuit are connected to the same winding.
  • Switching elements VT1-VT6 can choose field effect transistors, IGBT transistors, etc.
  • the gate terminal of each switching element is electrically connected with the control module, and the drain or source of each switching element is electrically connected with the winding of the motor.
  • the switching elements VT1-VT6 change the on state according to the drive signal output by the control module, thereby changing the voltage and/or current state of the power supply device loaded on the winding of the motor, and driving the motor to run.
  • the present application provides a motor control method that can output a control signal that changes with the rotor position to control the drive circuit according to the sampled current of the motor, so that the input voltage and/or current of the motor are approximately sinusoidal Wave changes make the motor have more current states, and more current states can synthesize approximately continuous vector torques in multiple directions. These vector torques move approximately along the circumference, and the motor rotor follows the direction of the multiple vector torques that move approximately along the circumference. , Thereby improving the efficiency of the whole machine.
  • the control module 1 can perform a series of processing to generate a PWM signal according to the motor sampling current and other data calculations, so that it can output a corresponding drive signal to control the operation of the drive circuit, so that at least one switching element of the drive circuit can change the on-off state, thereby making the input
  • the voltage to the motor is approximately a sine wave ( Figure 13) or a saddle-shaped waveform ( Figure 14).
  • Such a current or current can synthesize approximately continuous vector torques in multiple directions, and the motor rotor follows multiple vector torques that move approximately along the circumference. Synchronous rotation, thereby improving the efficiency of the whole machine, and at the same output torque, increasing the output speed.
  • Figures 13 and 14 are only diagrams of the relationship between the motor phase voltages (Ua, Ub, Uc) and the rotor position, and the phase difference of the phase voltages is 120 degrees.
  • the current of each phase of the motor and the rotor position are also approximately sine waves, and the phase difference of the current of each phase is 120 degrees.
  • the direction and magnitude of the voltage or current of each phase input to the motor all follow the change of the rotor position.
  • the maximum travel speed of the first driving wheel 1111 and the second driving wheel 1112 of the riding lawn mower is controlled by a speed pedal, and a steering signal is transmitted through the steering wheel 21, and the first driving wheel is controlled according to the steering signal.
  • the driving wheel 1111 and the second driving wheel 1112 travel at a differential speed to complete the steering control corresponding to the steering signal transmitted by the steering wheel 21.
  • the control of the traveling state of the riding lawn mower is achieved through closed-loop control.
  • the steering signal is obtained by analyzing the rotational displacement of the steering wheel 21, and the speed signal is obtained by analyzing the displacement of the speed pedal, and the corresponding first driving wheel is calculated.
  • the target driving speed of 1111 and the second driving wheel 1112, and the real-time speed of the first driving wheel 1111 and the second driving wheel 1112 are acquired according to the state sensor 522, and the adjustment speed signal is generated according to the real-time speed, the steering signal and the speed signal, and the speed signal is adjusted It includes the rotation speed of the first wheel and the rotation speed of the second wheel.
  • the rotation speed of the first wheel and the rotation speed of the second wheel can be controlled by controlling the torque of the first motor 12 and the second motor 13.
  • Fig. 7 is an operation block diagram of the control module of the riding lawn mower according to an embodiment of the present application.
  • the rotation speed control logic of the first driving wheel 1111 and the second driving wheel 1112 is as follows. Taking the first driving wheel 1111 as an example, the control module obtains the sample current of the first motor 12 detected by the state sensor 522 to obtain the The real-time speed of a motor 12, the control module simultaneously obtains the steering signal detected by the position sensor 521 to obtain the target driving speed of the first motor 12; the control module adjusts the first motor 12 according to the sampled current, the actual speed and the target speed of the first motor 12 The motor 12 outputs torque to control the rotation speed of the first driving wheel 1111.
  • the control module may be the central controller 511 or the first controller 515, and the rotation speed of the first driving wheel 1111 may also be directly detected and acquired by the position sensor 521 provided on the first driving wheel 1111 or the first motor 12.
  • the control module also includes a first regulator 502.
  • the first regulator 502 compares, adjusts or transforms the target speed and actual speed of the first motor 12, and obtains the current position of the first motor 12 to obtain the target current torque component. Iq1 and target excitation current component Id2.
  • the first regulator 502 is implemented as a target current torque component generating unit, and the proportional and integral of the deviation are linearly combined to form a control variable to adjust and control the speed.
  • the control module includes a first conversion unit 501, and the first conversion unit 501 performs coordinate transformation on the sampled current of the first motor 12 to obtain the actual current torque component Iq2.
  • the first conversion unit 501 converts the sampled current into the current torque component Iq2 and the excitation current component Id2 through Clark transformation and Park transformation.
  • the target current torque component Iq1 and the actual current torque component Iq2 are used to control the torque, so that the actual current torque component Iq2 tends to the target current torque component Iq1, and the torque can drive the rotor to rotate.
  • the current torque component produces a magnetic field direction perpendicular to the rotor, and the magnetic field generated by the rotor receiving the current torque component is orthogonal to the rotor's magnetic field, which generates a rotational torque, which can drive the rotor to rotate.
  • a current component parallel to the direction of the rotor magnetic axis (excitation component Id) will also be generated, but the generated magnetic field is consistent with the rotor magnetic field and will not generate any torque. Therefore, in order to obtain the maximum
  • the target current torque component Iq1 should be minimized as much as possible, and it is usually taken as zero.
  • the control module also includes a second regulator 503 that compares the target current torque component Iq1 with the actual current torque component Iq2 and adjusts according to the comparison result to obtain the control amount of the first motor 12.
  • the second regulator 503 is implemented as a PI regulator, through which the PI regulator calculates the corresponding voltage torque component Vq according to the target current torque component Iq1 and the actual current torque component Iq2, and can be calculated according to The actual excitation current component Id1 and the target excitation current component Id2 calculate the corresponding voltage excitation component Vd.
  • the actual current torque component Iq2 can reach the target current torque component Iq1 in a short time and stabilize within the preset range of the target current torque component Iq1.
  • the magnetic field vector of the stator and the magnetic field vector of the rotor should be perpendicular to each other. Because the size and direction of the magnetic field are directly related to the size and direction of the current, it is necessary to control the size and direction of the three-phase input current, and controlling the current to generate the stator magnetic field perpendicular to the rotor magnetic field requires the control of the three-phase input voltage and current vector. Therefore, the control quantity of the first motor 12 here may be current and/or voltage, such as the direction of the current and the magnitude of the voltage.
  • the voltage torque component Vq is output as the control quantity of the first motor 12 through the control quantity PI regulator.
  • the control unit further includes a PWM generation unit 505 and a second conversion unit 504.
  • the second conversion unit 504 performs Park inverse transformation on the voltage torque component Vq, and the PWM generation unit 505 is based on the result of the second conversion single-distance transformation.
  • the corresponding PWM signal controls the motor torque by controlling the current torque component, thereby controlling the motor to stably reach the target speed within a preset time.
  • the PWM signal corresponds to the adjusted input voltage and/or current, including the magnitude of the voltage and the direction of the current.
  • the driving circuit includes a frequency converter, and the frequency converter drives the on and off states of the switching elements VT1 to VT6 in the switching circuit according to the generated PWM signal, so as to realize the power supply to the coils of each phase in the first motor 12.
  • the first motor 12 outputs an approximately sinusoidal current. Since the approximately sinusoidal current can resolve the current torque component, the actual current torque component can be controlled to stabilize at a preset time before reaching the target current torque component. Set within the range, so that the first motor 12 can respond at a preset time.
  • Figure 12 is a control flow of the walking control module of the riding lawn mower, refer to Figure 12:
  • S28 Control the on-off state of the switching element of the driving circuit according to the acquired PWM signal output control signal.
  • the second regulator 503, the first regulator 502, the first conversion unit 501, the PWM generation unit 505, and the second conversion unit 504 are arranged in the central controller 511.
  • Fig. 10 is a walking control method of a riding lawn mower.
  • a walking control method of a riding lawn mower including:
  • the position sensor 521 acquires the steering signal of the steering operating member and the speed signal of the speed operating member;
  • S2 Analyze the target driving speed of the first driving wheel 1111 and the second driving wheel 1112 according to the steering signal and the speed signal;
  • the state sensor 522 acquires the actual rotation speed of the first driving wheel 1111 and the second driving wheel 1112;
  • S4 Determine the target current torque component of the first motor 12 and/or the second motor 13 according to the actual rotation speed and the target drive rotation speed.
  • the control logic for the speed pedal to control the traveling speed of the riding lawn mower may be that when the riding lawn mower speed is zero, the user steps on the speed pedal to make the speed pedal move downward, and the position sensor 521 detects the speed pedal displacement , The speed at which it is passed to the riding lawn mower
  • the second driving wheel 1112 is arranged relatively to the right of the first driving wheel 1111, and the user is set to control the riding lawn mower through the speed operating member.
  • the grass mower travels at the target speed, and the control module controls the first motor 12 to output the corresponding target current torque component, so that the first motor 12 drives the first driving wheel 1111 to rotate at the first speed, and the first speed is equal to the target speed.
  • the control module calculates the second speed of the second driving wheel 1112 and makes the second speed less than the first speed, and the difference between the second speed and the first speed is determined by the angle at which the user turns the steering wheel 21, that is, the steering command input by the user.
  • the outer wheel maintains the target speed input by the user through the speed operating member, while the inner wheel is reduced relative to the original target speed. Adjust the corresponding motor to output a negative current torque component. At this time, the motor outputs a negative torque and generates electricity, and an energy recovery device can be set to recover energy from the motor.
  • the second speed may be a negative value.
  • the motor corresponding to the inner wheel outputs a negative current torque component and transitions from a negative torque state to a reverse drive. State and reduce the rotation speed of the inner wheel from the target speed to zero, and then to the opposite direction of the target rotation speed. At this time, the riding lawn mower is controlled to surround the first driving wheel 1111 and the second driving wheel 1112 A point of rotation between or above is zero radius turning.
  • the steering wheel 21 is provided with a first control zone and a second control zone.
  • the control zone and the third control zone correspond to the rotation angle interval of the steering wheel 21.
  • the first control zone is formed On both sides of the starting point, the second control zone and the third control zone are sequentially away from the first control zone and formed on both sides of the starting point.
  • the central controller 511 sends a control instruction to the walking controller 512 to control the speed of the inner wheel to a smaller extent.
  • the inner wheel and the outer wheel The steering is the same, so that the riding lawn mower travels to the front left or front right.
  • the speed of the negative torque applied by the inner wheel is controlled by the walking controller 512 to drop to zero.
  • the riding lawn mower rotates around the inner wheel.
  • the inner wheel is rotated in the negative direction by applying a negative torque, that is, it rotates in the opposite direction relative to the outer wheel.
  • the inner wheel and the outer wheel rotate at a preset ratio. The lawn mower rotates around a certain point of the axis between the rear wheels 111, so that a zero radius rotation can be achieved.
  • FIG. 6 is a block diagram of the force feedback system of the riding lawn mower according to an embodiment of the present application.
  • Fig. 8 is a perspective structural view of a steering wheel 21 of a riding lawn mower according to an embodiment of the present application.
  • Fig. 9 is a perspective structural view of the steering wheel 21 of the riding lawn mower according to an embodiment of the present application from another angle.
  • the riding lawn mower also includes a force feedback system, including an auxiliary motor 61 arranged near the steering wheel 21.
  • the auxiliary motor 61 is connected to the steering wheel 21 through a pulley or gear assembly, so that the auxiliary motor 61 can apply torque to the steering wheel 21,
  • the assist motor 61 may also receive the torque applied to the steering wheel 21 by the user.
  • the state sensor 522 is connected to the central controller 511, and is used to transmit detection information of the rotation speed or torque of the driving wheels.
  • the force feedback system also includes an auxiliary controller 62, which is connected to the central controller 511 and receives driving The rotation state information of the wheel, and the auxiliary motor 61 is controlled to give force feedback to the steering wheel 21 according to the rotation state information of the driving wheel.
  • the auxiliary motor 61 and the steering wheel 21 are connected by a pulley.
  • the force feedback system also includes an auxiliary controller.
  • the auxiliary motor 61 applies a torque to the steering wheel 21, so that the steering wheel 21 has an automatic centering function.
  • the state sensor 522 provided on the steering wheel 21 turns the steering wheel
  • the position information of 21 is sent to the auxiliary sensor and analyzed by the auxiliary sensor.
  • the auxiliary sensor controls the auxiliary motor 61 to output a corresponding torque to drive the steering wheel 21 back to its original position.
  • the auxiliary controller can also control the torque output of the auxiliary motor 61 by controlling the current torque component of the auxiliary motor 61, so that when the steering wheel 21 rotates relative to its initial position, the auxiliary motor 61 can return to its initial position.
  • the force of the position may have a tendency to return to its original position.
  • the steering wheel 21 is set to rotate in the first direction or the second direction relative to its initial state.
  • the first direction and the second direction are one of the pointer direction and the counterclockwise direction.
  • the steering wheel 21 is driven to the first direction relative to its initial state.
  • the displacement information of the steering wheel 21 is detected by the auxiliary sensor, and the displacement information is transmitted to the auxiliary controller.
  • the auxiliary controller analyzes the displacement information of the steering wheel 21 to calculate the torque provided by the auxiliary motor 61 to the steering wheel 21, and passes Adjust the positive or negative of the current torque component of the auxiliary motor 61, control the direction in which the auxiliary motor 61 provides torque to the second direction, and control the magnitude of the current torque component of the auxiliary motor 61 according to the degree of displacement of the steering wheel 21, that is, the steering wheel 21 is in the second direction.
  • the greater the angle of rotation in one direction the greater the torque provided by controlling the motor, so that the driving force for the auxiliary motor 61 to return to the right can be provided.
  • the control logic is the same, which will not be described in detail here.
  • the auxiliary motor 61 is not only used to urge the steering wheel 21 to return to the right, but the auxiliary motor 61 is used to increase the resistance during the operation of the steering wheel 21, thereby preventing the steering wheel 21 from being excessively rotated due to a small force being pushed, so that the riding lawn mower
  • the sensitivity is too high to prevent the steering wheel 21 from rotating excessively due to a small force being pushed, causing the riding lawn mower to rotate out of control, so as to optimize the user's control over the riding lawn mower;
  • the force feedback when operating the steering wheel 21 allows the user to obtain the current steering degree according to the operating feel and the resistance received by the steering wheel 21.
  • the auxiliary sensor obtains the rotational displacement of the steering wheel 21, the steering wheel 21 is operated to calculate the angular acceleration of the steering wheel 21 relative to its center of rotation, and the current torque component of the auxiliary motor 61 and the angular acceleration of the steering wheel 21 displacement are set to a preset functional relationship, Generally, the greater the angular acceleration of the steering wheel 21, the greater the current torque component of the auxiliary motor 61, that is, the greater the force applied by the user when operating the steering wheel 21, the greater the resistance provided by the auxiliary motor 61, thereby ensuring the operation of the riding
  • the stability of the lawn mower prevents the user from excessively rotating the steering wheel 21 to make the riding lawn mower turn beyond the expected steering, and to give the user force feedback when operating the steering wheel 21, so that the user can operate according to the operating feel and the steering wheel 21 The resistance to get the current steering degree.
  • the state sensor 522 detects the torque or the rotation speed of the first motor 12 and the second motor 13 to obtain the rotation speed of the first driving wheel 1111 and the second driving wheel 1112, or the position sensor 521 directly detects the first driving The rotation speed of the wheel 1111 and the second driving wheel 1112, the auxiliary sensor acquires the rotation speed of the first driving wheel 1111 and the second driving wheel 1112, or the position sensor 521 provided in the speed operating member detects the target rotation speed output by the user, according to the acquired target
  • the rotation speed or the real-time rotation speed of the wheels controls the corresponding torque output by the auxiliary motor 61, and the greater the target rotation speed or the real-time rotation speed of the wheels, the greater the output torque of the auxiliary motor 61 is controlled, that is, when the riding lawn mower is running The faster the speed, the greater the force required to control the steering, and prevent the user from controlling the steering wheel 21 to rotate too much, making the riding lawn mower turn too large when running at high speed, causing accidents and improving the operation.
  • the auxiliary controller 62 is provided with an algorithm, which analyzes the magnitude and direction of the force feedback of the corresponding auxiliary motor 61 according to the rotation state of the driving wheel. Exemplarily, when the riding lawn mower is running, sometimes the driving wheel will encounter obstacles or low-lying conditions, which will affect the speed or torque of the driving wheel.
  • the state sensor 522 detects the driving wheel The state is fed back to the central controller 511 and then to the auxiliary controller 62, or directly sent to the auxiliary controller.
  • the auxiliary controller 62 analyzes the current wheel 11 state and the expected state driving error corresponding to the user control command.
  • the auxiliary motor 61 is controlled to drive the steering wheel 21 to give the corresponding torque according to the feedback command, so that the feedback of the steering wheel 21 and the current wheel 11 travel
  • the state is the same, that is, when the riding lawn mower has a tendency to drive to the right, the force generated by the auxiliary motor 61 is fed back to the steering wheel 21, and the steering wheel 21 is controlled to rotate to the right at the same time, or has a tendency to rotate to the right.
  • the steering wheel 21 can effectively feed back the current riding state information of the riding lawn mower to the user, can timely control the traveling process, and optimize the user's driving experience.
  • the preset value corresponding to the current state of the wheel 11 and the expected state driving error corresponding to the user control instruction may be zero, that is, the steering wheel 21 reflects the rotation state of the wheel in real time.
  • the auxiliary controller 62 analyzes that the speed of the first driving wheel 1111 is lower than the expected speed, and then according to the first driving The difference in the running speed of the wheel 1111 generates a feedback command, and the force exerted by the auxiliary motor 61 on the steering wheel 21 creates a certain obstacle for the user to control the steering wheel 21 to remind the user of the current wheel 11 state.
  • the auxiliary motor 61 can also generate force feedback to remind the user of the current operating state of the wheels 11.
  • the algorithm for calculating the force feedback command in the auxiliary controller 62 can also be set in the central controller 511, and the central controller 511 calculates the magnitude and direction of the force feedback corresponding to the feedback command, and transmits it to The auxiliary controller 62 controls the operation of the auxiliary motor 61 and applies torque to the steering wheel 21 according to the feedback command.
  • the force feedback system further includes an auxiliary sensor 242 arranged in the auxiliary motor 61.
  • the auxiliary sensor 242 is connected to the auxiliary motor 61 for detecting the operating state of the auxiliary motor 61, because the auxiliary motor 61 passes through a pulley or a gear and a steering wheel. 21 is directly connected and driven by the rotation of the steering wheel 21, so that the user's operation action on the steering wheel 21 can be directly obtained by detecting the rotation state of the auxiliary motor 61 to obtain the user's steering control instruction and send it to the central controller 511.
  • the auxiliary controller controls the auxiliary motor 61 to output force feedback
  • the force feedback has an adjustment factor for adjusting the magnitude of the force feedback of the auxiliary motor 61 to the steering wheel 21 by controlling the current torque component.
  • the auxiliary controller is connected with the sensor module to obtain the steering wheel 21 rotation angle, the steering wheel 21 rotation angular acceleration, the wheel speed, the differential speed of the first driving wheel 1111 and the second driving wheel 1112 detected by the sensor module, and set initial values for the above values , When the steering wheel 21 rotation angle, steering wheel 21 rotation angular acceleration, wheel speed, the first driving wheel 1111 and the second driving wheel 1112 differential speed are greater than the initial value, respectively and according to the pre-algorithm to increase the adjustment factor and get the final adjustment
  • the value of the factor which controls the torque output by the auxiliary motor 61 according to the adjustment factor, is transmitted to the steering wheel 21 to inform the user of the current riding state of the riding lawn mower as force feedback, and adaptively increase the user’s rotation resistance to improve control stability and safety Sex.
  • FIG. 11 is a force feedback control method for the steering wheel 21 of a riding lawn mower, and referring to FIG. 11, a force feedback control method for the steering wheel 21 of a riding lawn mower is provided.
  • S12 Obtain the rotation angle and the rotation angular acceleration of the steering wheel 21, the wheel speed, the differential speed of the first driving wheel 1111 and the second driving wheel 1112, and determine the adjustment factor;
  • a heat dissipation fan is provided on the auxiliary motor 61 to dissipate heat to the auxiliary motor 61 to prevent the auxiliary motor 61 from stopping due to overheating or affecting its own performance.
  • the heat dissipation fan may be arranged to be coaxially connected with the motor shaft of the auxiliary motor 61 and driven to rotate to dissipate heat to the auxiliary motor 61.
  • the steering wheel 21 is provided with a damping member, the damping member is made of damping material or implemented as a damper such as a damping hinge, and the rotation resistance of the steering wheel 21 is increased by the damping member, thereby The steering wheel 21 is prevented from being excessively rotated due to a small force being pushed, so that the riding lawn mower is too sensitive, so as to optimize the user's control of the riding lawn mower.
  • the position sensor 521 includes a rotating part and a fixing part that are arranged oppositely.
  • the rotating part is arranged in the operating panel 211, and the fixing part is arranged near the shaft or the auxiliary motor 61 to rotate.
  • the member is driven to rotate by the user, and the user's operation action on the steering wheel 21 is obtained by changing the relative position relationship between the rotating member and the fixed member.
  • the fixed part and the rotating part are implemented as Hall sensors, that is, a Hall sensor is arranged in the fixed part, and the rotating part is at least partially set as a magnetic part, so that the rotation of the steering wheel 21 is detected by the Hall principle .
  • the rotating part and the fixed part are configured as capacitors, and the rotation state of the steering wheel 21 is read through circuit changes.
  • the shaft body is provided with a signal line for connecting the position sensor 521 and the central controller 511, and the signal line is implemented as a spring-type signal line, which can effectively adapt to the signal driven by the rotation of the steering wheel 21
  • the line rotation greatly increases the service life of the signal line.
  • the operating component further includes a display screen 212, which is arranged on the steering wheel 21, the display screen and the central controller 511 are connected wirelessly or wiredly, and the display screen is provided with The button is for the user to operate the riding lawn mower.
  • the display screen 212 is arranged on the steering wheel 21 and is independent of the steering wheel 21, so that the display screen is not driven to rotate as the steering wheel 21 rotates.
  • the steering wheel 21 is provided with a control key for controlling reversing, which can be set as a paddle.
  • a control key for controlling reversing which can be set as a paddle.
  • the paddle can be used to switch the riding style The lawn mower is switched to the reverse mode.
  • the central controller 511 controls the current torque components output by the first motor 12 and the second motor 13 to be negative values, and in the non-turning process In this case, the output current and torque components are the same, so that the first motor 12 and the second motor 13 simultaneously become the reverse driving state, driving the first driving wheel 1111 and the second driving wheel 1112 to reverse, thereby realizing the riding cutting The reversing action of the lawn mower.
  • the control system may not include a central controller, that is, the control module includes an auxiliary controller, a mowing controller 514, a walking controller, and a walking controller may include
  • the first and second controllers, operation controllers, sensors include position sensing state sensors, etc.
  • the above controllers and sensors are connected through bus communication and transmit information in one direction, that is, the sensors only have the function of receiving information or transmitting information .
  • the control system further includes a display screen controller 517, which is bidirectionally connected to the bus.
  • the display screen controller 517 is connected to the display screen to control its display content, and obtains the control instructions of the riding lawn mower from the user through the display screen, and transmits the user instructions through the bus.
  • the content disclosed in this application can not only be applied to riding lawn mowers, but also to other riding electric machines that work indoors or outdoors. In addition to outputting power for walking on the ground, It can also achieve other functions besides walking by outputting other forms of power. It can be considered as riding electric machinery, such as riding snowplow, riding agricultural machinery, riding mop, riding Type sweeper, etc. In fact, as long as these tools include the substantive content described above in this application, they all fall within the protection scope of this application.
  • the riding lawn mower also includes a battery pack for providing energy and a battery pack installation slot, so that the battery pack 141 can also provide an energy source for the electric tool, that is, the battery pack 141 in this application is not only It can be applied to the riding lawn mower, and can also be applied to other electric tools, thereby improving the adaptability of the battery pack 141 and also improving the adaptability of the riding lawn mower to the battery pack 141. ability.
  • the user can completely remove the battery pack 141 and apply it to other electric tools, thereby avoiding the waste of resources and reducing the use cost.
  • the user can completely borrow the battery pack 141 in other electric tools as the battery pack 141.
  • a riding lawn mower which includes: a blade for cutting grass; a main body configured to support the blade, and the main body includes at least one bracket mounted on the On a riding lawn mower; an operating assembly, the operating assembly includes a steering wheel connected to the main body of the riding lawn mower; a target speed input unit connected to the steering wheel to generate a target speed command signal;
  • a universal wheel set coupled to the front side of the at least one bracket; a driveable wheel set, coupled to the rear side of the at least one bracket, the driveable wheel set includes: a left-hand driveable wheel; and a right-hand drive Driving wheel; a walking drive motor group, coupled with a driveable wheel group, at least comprising: a left drive motor connected to one of the driveable wheel groups; a right drive motor connected to one of the driveable wheel groups;
  • the actual position detection unit is associated with the left drivable wheel and the right drivable wheel to generate the actual position signals of the left drivable wheel and the right drivable
  • the steering wheel includes a fixed piece, a rotating piece that rotates relative to the fixed piece, and a spring-type signal line.
  • the fixed piece has a first surface
  • the rotating piece includes a second surface opposite to the first surface.
  • the signal line is electrically connected between the first surface of the fixed part and the second surface of the rotating part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Harvester Elements (AREA)

Abstract

一种骑乘式割草机及其控制方法,骑乘式割草机包括座椅(40);动力输出组件(30),动力输出组件(30)包括割草元件(31)和用于驱动割草元件(31)输出动力的动力输出马达(32);行走组件(10),带动骑乘式电动割草机在地面上行走的车轮(11)并包括用于驱动车轮的行走马达(12,13)以及控制行走马达(12,13)的行走控制器(512),车轮(11)包括形成两侧的驱动轮(1111,1112);还包括控制组件,操作组件包括方向盘(21),中央控制器(511)以及位置传感器(521),位置传感器(521)设置于方向盘(21)用以检测用户对操作组件的转动操作动作,中央控制器(511)可通信地连接位置传感器(521)并获取转动操作指令,并通过行走控制器(512)控制后轮(111)主动差速行驶以转向。

Description

骑乘式割草机及其控制方法
本申请要求申请日为2019年7月9日、申请号为201910612977.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动工具,例如涉及一骑乘式割草机及其控制方法。
背景技术
随着骑乘式割草机的出现,其结构随着功能的增加愈发复杂,骑乘式割草机不仅需要进行功能性作业如割草,还需要用户控制下行进。相关技术中的骑乘式割草机主要采用燃油为动力,污染较大且有噪音。采用电力为能源的骑乘式割草机通常采用操作杆控制,不利于新手操作使用,而且需要用户自己调节两侧的操作杆的方向。
在骑乘式割草机的转向控制中,为了满足割草需求,需要骑乘式割草机可以角度灵活地转向,但是相关技术中的骑乘式割草机的操作对于新手来说,转向操作增加了割草精力和时间,并不利于草坪的高效维护。
发明内容
本申请提供一种骑乘式割草机控制系统,其采用电子操作件控制骑乘式割草机的运行,并有效地提升了操控骑乘式割草机的稳定性和优化了操作体验。
本申请提供一种骑乘式割草机控制方法,其采用方向盘控制骑乘式割草机的运行,并可灵活控制所述骑乘式割草机转向,操作简单灵敏。
本申请实施例提供一种骑乘式割草机,包括:座椅,供用户乘坐;动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达以及控制行走马达的行走控制器,所述车轮包括形成两侧的驱动轮;还包括控制组件,操作组件包括电子方向盘,中央控制器以及位置传感器,位置传感器设置于电子方向盘用以检测用户对操作件的转动操作动作,中央控制器可通信地连接位置传感器并获取转动操作指令,并通过行走控制器控制后轮主动差速行驶以转向。
本申请实施例提供一种骑乘式割草机,包括:座椅,供用户乘坐;动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达;还包括控制组件,操作组件包括电子方向盘和速度操作件,中央控制器以及位置传感器,位置传感器设置于电子方向盘用以检测用户对操作件的转动操作动作,速度操作件连接于中央控制器并用于控制加速,中央控制器可通信地连接位置传感器并获取转动操作指令,并通过对转动过程的内侧轮施加负扭矩使之降速以转向。
本申请实施例提供一种骑乘式割草机,包括:座椅,供用户乘坐;动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达以及控制行走马达的行走控制器,以及检测车轮状态的状态传感器,所述车轮包括形成两侧的驱动轮;控制组件,操作组件包括操作件和与所述操作件连接的中央控制器,通过所述中央控制器根据操作件动作控制所述骑乘式割草机运行;所述操作组件还包括辅助马达和控制辅助马达的辅助控制器,所述辅助马达和所述操作件联接,所述辅助控制器根据状态传感器对车轮的状态检测生成反馈指令,控制辅助马达对操作件施加力反馈。
本申请实施例提供一种骑乘式割草机方向盘力反馈控制方法,包括:获取方向盘的转动方向,确定力反馈的方向;获取方向盘的转动角度和转动角加速度、车轮转速、第一驱动轮和第二驱动轮差速,确定调节因数;根据调节因数控制输出给方向盘的力反馈大小。
本申请实施例提供一种骑乘式割草机的行走控制方法,包括:S1:位置传感器获取转向操作件的转向信号以及速度操作件的速度信号;S2:根据转向信号和速度信号分析第一驱动轮和第二驱动轮的目标驱动转速;S3:状态传感器获取第一驱动轮和第二驱动轮的实际转速;S4:根据实际转速和目标驱动转速确定第一马达和/或第二马达的目标电流转矩分量。S5:控制第一驱动轮和第二驱动轮以目标驱动速度行进,使得骑乘式割草机转向或直线行驶。
附图说明
图1是本申请一个实施方式的骑乘式割草机的立体图;
图2是本申请一个实施方式的骑乘式割草机的侧视图;
图3是本申请一个实施方式的骑乘式割草机的剖视图;
图4是本申请一个实施方式的骑乘式割草机的控制系统框图;
图5是本申请一个实施方式的骑乘式割草机的控制系统框图;
图6是本申请一个实施方式的骑乘式割草机的力反馈系统框图;
图7是本申请一个实施方式的骑乘式割草机的控制模块运行框图;
图8是本申请一个实施方式的骑乘式割草机的方向盘的立体结构图;
图9是本申请的一个实施方式的骑乘式割草机的方向盘另一个角度的立体结构图;
图10是骑乘式割草机的行走控制方法;
图11是骑乘式割草机方向盘力反馈控制方法;
图12是骑乘式割草机行走控制模块的一种控制流程;
图13是一种实施方式的输入至电动工具的各相电压曲线图,电压曲线近似呈正弦波形;
图14是另一种实施方式的输入至电动工具的各相电压曲线图,电压曲线近似马鞍状波形;
图15是本申请另一种控制系统的实施方式的框图。
具体实施方式
图1是本申请一个实施方式的骑乘式割草机的立体图。图2是本申请一个实施方式的骑乘式割草机的侧视图。图3是本申请一个实施方式的骑乘式割草机的剖视图。如图1所示骑乘式割草机包括执行割草作业的动力输出组件30和执行行走动作的行走组件10。动力输出组件30包括割草元件31和动力输出马达32,以及控制动力输出马达32的割草控制器514。割草元件31通常被设置为切割刀片,割草元件31和动力输出马达32连接,动力输出马达32运行带动割草元件31旋转进行切割动作。所述骑乘式割草机还包括电源装置,电源装置用于提供能源。
所述骑乘式割草机还包括控制系统,用于控制所述骑乘式割草机的运行;控制系统包括操作组件,供用户操作以控制行走组件10和动力输出组件30的运行。操作组件包括转向操作件、速度操作件以及输出操作件,转向操作件用于输入所述骑乘式割草机的转向控制,速度操作件用于输出所述骑乘式割草机的速度控制,输出操作件用于控制所述骑乘式割草机的运行割草。
控制系统还包括控制模块和传感模块,控制模块包括中央控制器511,割草传感器等用于控制骑乘式割草机运行的控制器。传感模块至少包括位置传感器521,位置传感器521设置于操作件用于检测用户对操作件的操作动作,中央控制器511可通信地连接位置传感器521,通过位置传感器521接收用户的操作指令并将其转换到对应的控制指令。所述操作件可以包括方向盘21,用户通过操作方向盘21控制所述骑乘式割草机的行进方向。
图4是本申请一个实施方式的骑乘式割草机的控制系统框图。图5是本申请一个实施方式的骑乘式割草机的控制系统框图。所述行走组件10包括车轮11以及第一马达12和第二马达13,车轮11包括前轮112和后轮111,可选的,使得前轮112为万向轮,后轮111设为驱动轮,后轮111的数量为两个,包括第一驱动轮1111和第二驱动轮1112,前轮112的数量可以为两个,也可以设为一个或者零个。第一马达12设置与第一驱动轮1111连接并驱动第一驱动轮1111转动,第二马达13设置与第二驱动轮1112连接并驱动第二驱动轮1112转动,所述动力输出组件30还包括与中央控制器511可工作连接地行走控制器512,行走控制器512与第一马达12和第二马达13可通信地连接,中央控制器511接收用户操作指令并分析,转换成对第一马达12和第二马达13的控制指令,并发送到行走控制器512内,由行走控制器512根据控制指令控制第一马达12和第二马达13运行。上述的可通讯地连接方式可以是通过通讯线有线连接,也可以是无线连接。所述行走组件10还包括与第一马达12和第二马达13联接地输出轴,输出轴并分别与第一驱动轮1111和第二驱动轮1112连接,并通过输出轴使得行走马达带动驱动轮运转。
所述骑乘式割草机还包括供用户乘坐的座椅40和支撑座椅40和车轮11的车架,座椅40被安装在车架上,所述方向盘21被设置在座椅40的前方,供坐在座椅40上的用户操作方向盘21以控制所述骑乘式割草机的行进方向。可选的,所述行走控制器512被设置为两个,分别为第一控制器515和第二控制器516,使得第一控制器515和第一马达12通信连接以控制第一马达12的运行,第二控制器516和第二马达13可通信地连接以控制第二马达13的运行,第一控制器515和第二控制器516分别和中央控制器511通信联通,中央控制器511根据用户操作指令转换的控制指令分别发送到第一控制器515和第二控制器516,从而控制第一驱动轮1111和第二驱动轮1112的行进速度。
示例性的,在另一种实施方式中,可由一个中央控制器511控制第一马达12和第二马达13,以控制第一驱动轮1111和第二驱动轮1112的转速。
在本申请的一个实施方式中,转向操作件被实施为方向盘21,速度操作件被实施为速度踏板,所述方向盘21包括操作盘211和轴体,操作盘211可以为圆形或椭圆等形态方便用户操作,轴体一端连接操作盘211底部,轴体另一端与车架连接,可选的,轴体一端连接于车架侧端并向上延伸预设距离后再向座位正前方延伸,从而降低操作组件对所述骑乘式割草机的总体占用空间,提升用户驾驶的舒适感。可选的,所述方向盘21上设有用于控制所述骑乘式割草机的按键,如启动件,灯光键等,可选的,可将输出操作件设置在方向盘21上,用户可在操作方向盘控制所述骑乘式割草机行进的同时控制其割草进程。以上按键通过无线或有线地发送电信号与中央控制器511连接,以发送操作指令并由中央控制器511处理执行。
可选的,轴体为中空设计,其内设有用于连接操作组件和行走组件10的信号线和/或电源线,以对信号线或电源线进行保护和排线。
用户旋转方向盘以发出对所述骑乘式割草机的转向指令,位置传感器521至少包括第一传感器,由第一位置传感器521检测用户操作方向盘21的旋转角度,并将其检测到的位移角度传递到中央控制器511,由中央控制器511将方向盘21的旋转角度转换为转向信号,其为对应的所述骑乘式割草机的行进转向角度,并将转向信号传递给第一控制器515和第二控制器516,由第一控制器515和第二控制器516控制所述第一驱动轮1111和所述驱动轮差速行驶,或由中央控制器511直接控制第一驱动轮1111和第二驱动轮1112差速行驶,以使得所述骑乘式割草机按照用户对方向盘21的操作而转向。
在另一种实施方式中,控制模块还包括操作控制器,用于分析用户对操作组件的操作并生成对应的操作指令,并将操作指令传递到中央控制器511,以控制驱动器转向。此时,第一位置传感器521检测用户操作方向盘21的旋转位移后,将位移角度传递给操作控制器,由操作控制器转化对应的转向信号发送到中央控制器511,由中央控制器511发送控制信号,直接控制第一驱动轮1111和第二驱动轮1112差速行驶,或者由中央控制器511发送控制信号到第一控制器515和第二控制器516,由第一控制器515和第二控制器516分别控制第一马达12和第二马达13驱动第一驱动轮1111和第二驱动轮1112差速行驶,以完成对应用户控制方向盘21转动的所述骑乘式割草机的转向。
在本申请的一些实施例中,所述第一位置传感器521包括相对设置的转动件和固定件,所述转动件被设置在操作盘211内,固定件被设置在轴体或辅助 马达61附近,转动件被用户带动转动,并通过转动件和固定件的相对位置关系的改变获取用户对方向盘21的操作动作。可选的,所述固定件和转动件被实施为霍尔传感器,即在固定件内设置霍尔传感器,并使得转动件至少部分被设置为磁性件,从而通过霍尔原理检测方向盘21的转动。在另一种实施方式中,所述第一位置传感器521被设置为电容传感器,并通过电容量变化读取方向盘21的转动位移。
在一种实施方式中,方向盘21具有起始状态,以一原点或标准轴为参照,起始状态对应直行或停止状态,方向盘21正前方对准于原点或标准轴,用户操作方向盘21转动时,由第一位置传感器521检测方向盘21相对原点或标准轴的转动角度,并生成对应的转向指令。示例性的,方向盘21的转动角度和骑乘式割草机的行进转向角度为一一对应状态,例如,方向盘21的转动角度和骑乘式割草机的转向角度具有比例对应关系,或者函数关系,并将方向盘21的转动角度和骑乘式割草机的转向角度的转换算法储存在操作控制器或中央控制器511内,以根据方向盘21的转动角度生成对应的转向指令。
在本申请的另一种实施方式中,所述第一位置传感器521被实施为检测方向盘21的绝对位置位移,即检测方向盘21的绝对转动角度,并分析作为控制所述骑乘式割草机转向的指令,此时方向盘21不需要回正到原点,获取方向盘21每次的绝对转动角度作为用户操作的方向盘21的转动角度,且方向盘21的转动角度一一对应骑乘式割草机的行进转向角度,例如,方向盘21的转动角度和骑乘式割草机的转向角度具有比例对应关系,或者函数对应关系,并将方向盘21的转动角度和骑乘式割草机的转向角度的转换算法储存在操作控制器或中央控制器511内,以根据方向盘21的转动角度生成对应的转向指令。
速度踏板被设置在车架上,并用于控制骑乘式割草机的行进速度。在一种实施方式中,位置传感器521还包括设置检测速度踏板的第二位置传感器521,用于检测用户对速度踏板的操作。用户通过踩踏速度踏板以传输速度控制指令。可选的,设置速度踏板具有一个初始状态,即用户不对速度踏板施加力时,速度踏板处于原始状态,对应骑乘式割草机的行进速度为零。用户对速度踏板施加作用力使得速度踏板下移,下移的角度一一对应骑乘式割草机的行进速度,对应的,速度踏板的下移角度和骑乘式割草机的行进速度具有比例对应关系,或者函数对应关系,并将速度踏板的下移角度和骑乘式割草机的行进速度的转换算法预设在操作传感器或中央传感器中,由操作传感器或中央传感器计算对 应的行进速度。
所述行走组件10还包括设置检测行走状态的状态传感器522,所述状态传感器522用于检测第一马达12和第二马达13状态,可选的状态传感器522包括电流传感器,用于获取第一马达12和第二马达13的采用电流,状态传感器522还可以包括位置传感器521,用以检测第一马达12和第二马达13的转速,以获取第一驱动轮1111和第二驱动轮1112的转速,或通过位置传感器521直接或者第一驱动轮1111和第二驱动轮1112的转速,示例性的,所述状态传感器522也可以被设置为压力传感器,通过检测第一马达12和第二马达13的转矩以获取行走状态。在一实施例中,所述状态传感器522还可以被设置在车轮11或输出轴上,并被实施为位置传感器521如霍尔传感器等,并用于直接检测车轮11的当前转速。所述状态传感器522包括不限制于任何数量的其它陀螺仪,加速度计,惯性测量单元,气压计,磁力计,通信设备等设备。
在本实施方式中,第一马达12和第二马达13为无刷电机,其具有三相绕组,三相绕组绕设于定子。控制系统还包括驱动电路,控制模块电连接并控制驱动电路运行。驱动电路电连接到第一马达12和第二马达13,并电连接于电源装置,并根据控制模块输出的控制信号驱动第一马达12和第二马达13的运行。驱动电路分别电连接到第一马达12和第二马达13的三相绕组,并且驱动电路至少具有开关电路,用于根据控制模块的控制信号驱动电机的转子运转。
为了使电机转动,驱动电路具有多个驱动状态,在一个驱动状态下电机的定子绕组会产生一个磁场,控制模块被配置为依据电机的转子转动位置输出相应的驱动信号至驱动电路以使驱动电路切换驱动状态,从而改变加载在电机的绕组上的电压和/或电流的状态,产生交变的磁场驱动转子转动,进而实现对电机的驱动。电机的转子位置,可通过采样电机的电流和/或电机的电压,由控制模块计算分析获得。
驱动电路包括开关元件VT1、VT2、VT3、VT4、VT5、VT6,开关元件VT1、VT2、VT3、VT4、VT5、VT6组成三相电桥,其中VT1、VT3、VT5为上桥开关,VT2、VT4、VT6为下桥开关,各相桥电路的上桥开关和下桥开关连接于同一绕组。开关元件VT1-VT6可选用场效应管、IGBT晶体管等。各开关元件的栅极端分别与控制模块电性连接,各个开关元件的漏极或源极与电机的绕组电连接。开关元件VT1-VT6依据控制模块输出的驱动信号改变接通状态,从而改变电源装置加载在电机的绕组上的电压和/或电流状态,驱动电机运转。
为此,本申请提供一种电机控制方法,能够根据电机的采样电流,输出跟随所述转子位置变化的而变化的控制信号来控制驱动电路,以使得电机的输入电压和/或电流呈近似正弦波变化,使得电机具有更多电流状态,更多电流状态能够合成多个方向近似连续的矢量力矩,这些矢量力矩方向近似沿圆周移动,电机转子跟随方向近似沿圆周移动的多个矢量力矩同步旋转,从而提升整机效率。
控制模块1能够根据电机采样电流和其它数据计算进行一系列的处理生成PWM信号,从而能够输出对应的驱动信号控制驱动电路工作,以使驱动电路的至少一个开关元件改变通断状态,从而使得输入至电机的电压近似呈正弦波(图13)或马鞍状波形(图14),这样的电流或电流能够合成多个方向近似连续的矢量力矩,电机转子跟随方向近似沿圆周移动的多个矢量力矩同步旋转,从而提升整机效率,且在输出相同扭矩下,提高输出速度。其中,图13和图14只是电机各相电压(Ua、Ub、Uc)与转子位置的关系图,各相电压相位差为120度。同样地,电机各相电流与转子位置也成近似呈正弦波,各相电流相位差为120度。也即是说,输入至电机的各相电压或电流的方向与大小均跟随转子位置的变化而变化。
在一种实施方式中,通过速度踏板控制所述骑乘式割草机第一驱动轮1111和第二驱动轮1112的最大行进速度,并通过方向盘21传输转向信号,并根据转向信号控制第一驱动轮1111和第二驱动轮1112差速行驶,以完成方向盘21传输的转向信号对应的转向控制。可选的,对骑乘式割草机的行进状态的控制是通过闭环控制实现,通过分析方向盘21旋转位移获取转向信号,通过分析速度踏板的位移获取速度信号,计算出对应的第一驱动轮1111和第二驱动轮1112的目标驱动转速,并根据状态传感器522获取第一驱动轮1111和第二驱动轮1112的实时转速,根据实时转速、转向信号以及速度信号生成调节速度信号,调节速度信号包括第一车轮的转速和第二车轮的转速,可选的,通过控制第一马达12和第二马达13的转矩以控制第一车轮的转速和第二车轮的转速。
图7是本申请一个实施方式的骑乘式割草机的控制模块运行框图。示例性的,对第一驱动轮1111和第二驱动轮1112的转速控制逻辑如下,以第一驱动轮1111为例,控制模块获取状态传感器522检测的第一马达12的采样电流,以获取第一马达12的实时转速,控制模块同时获取位置传感器521检测的转向信号,以获取第一马达12的目标驱动转速;控制模块根据采样电流,第一马达 12的实际转速和目标转速,调节第一马达12输出转矩以控制第一驱动轮1111的转速。可选的,控制模块可以是中央控制器511或第一控制器515,第一驱动轮1111的转速还可以通过设置在第一驱动轮1111或第一马达12上的位置传感器521直接检测获取。
控制模块还包括第一调节器502,所述第一调节器502根据第一马达12目标转速和实际转速进行比较、调节或变换等,并获取第一马达12当前位置,获得目标电流转矩分量Iq1以及目标励磁电流分量Id2。在一种实施方式中,所述第一调节器502被实施为目标电流转矩分量生成单元,将偏差的比例和积分通过线性组合构成控制量,对速度进行调节控制。控制模块包括第一转换单元501,第一转换单元501根据第一马达12的采样电流,对其进行坐标变换后得到实际电流转矩分量Iq2。在一种实施方式中,所述第一转换单元501通过Clark变换和Park变换将采样电流变换到电流转矩分量Iq2和励磁电流分量Id2。
目标电流转矩分量Iq1和实际电流转矩分量Iq2用于控制转矩,使得实际电流转矩分量Iq2趋向于目标电流转矩分量Iq1,转矩能带动转子转动。对于直流无刷电机而言,电流转矩分量产生垂直于转子的磁场方向,转子受到电流转矩分量所产生的磁场正交于转子的磁场,这就产生了旋转力矩,从而能够带动转子转动。在对电流变换分解过程中,还会产生电流平行于转子磁轴方向的电流分量(励磁分量Id),但其所产生的磁场与转子磁场一致,不会产生任何的力矩,因此,为了获得最大的目标电流转矩分量Iq1,应尽量使励磁分量Id最小化,通常将其取为零。
控制模块还包括第二调节器503,第二调节器503将目标电流转矩分量Iq1和实际电流转矩分量Iq2进行比较,并根据比较结果进行调节,以获取第一马达12的控制量。可选的,第二调节器503被实施为PI调节器,通过PI调节器根据目标电流转矩分量Iq1和实际电流转矩分量Iq2,经过算法计算出对应的电压转矩分量Vq,并可根据实际励磁电流分量Id1和目标励磁电流分量Id2计算对应的电压励磁分量Vd。通过控制电压转矩分量Vq和电压励磁分量Vd,将实际电流转矩分量Iq2能够在较短时间内达到目标电流转矩分量Iq1,并稳定在目标电流转矩分量Iq1的预设范围内。
若要是使马达的转矩时刻保持最大,则定子磁场向量应与转子磁场向量相互垂直。又因为磁场的大小与方向与电流的大小与方向有着直接的关系,因此需要控制三相输入的电流大小与方向,而控制电流产生定子磁场与转子磁场垂 直就需要控制三相输入电压及其电流向量。因此,此处的第一马达12的控制量可以是电流和/或电压,例如电流的方向和电压的大小。可选的,通过控制量PI调节器输出电压转矩分量Vq作为第一马达12的控制量。
所述控制单元还包括PWM生成单元505以及第二转换单元504,所述第二转换单元504对电压转矩分量Vq进行Park逆变换,所述PWM生成单元505根据第二转换单远变换的结果,对应的PWM信号,通过控制电流转矩分量控制电机转矩,从而控制电机在预设时间内稳定到达目标转速。该PWM信号对应于调整后的输入电压和/或电流,包括电压的大小,电流的方向等。
所述驱动电路包括变频器,通过变频器根据生成的PWM信号,驱动开关电路中开关元件VT1至VT6的通断状态,实现对第一马达12内各相线圈的供电。由此,第一马达12输出近似正弦的电流,由于该近似正弦电流能够使得分解出电流转矩分量,从而能够控制该实际电流转矩分量在预设时间稳定在达到目标电流转矩分量的预设范围内,从而能够使得第一马达12能够在预设时间响应。
图12是骑乘式割草机行行走控制模块的一种控制流程,参照图12:
S21:获取马达采样电流;
S22:电流坐标变换;
S23:获取电流转矩分量Iq2和励磁电流分量Id;
S24:获取马达实际转速和位置;
S25:获取目标电流转矩分量Iq1;
S26:根据目标电流转矩分量Iq1和电流转矩分量Iq2获取电压转矩分量Vq;
S27:对电压转矩分量Vq进行坐标逆变换,并生成用于控制电机的PWM信号;
S28:根据获取的PWM信号输出控制信号控制驱动电路的开关元件的通断状态。
可选的,第二调节器503、第一调节器502、第一转换单元501、PWM生成单元505、第二转换单元504被设置在中央控制器511内。
综上,图10是骑乘式割草机的行走控制方法,参照图10,提供一种骑乘式割草机的行走控制方法,包括:
S1:位置传感器521获取转向操作件的转向信号以及速度操作件的速度信号;
S2:根据转向信号和速度信号分析第一驱动轮1111和第二驱动轮1112的 目标驱动转速;
S3:状态传感器522获取第一驱动轮1111和第二驱动轮1112的实际转速;
S4:根据实际转速和目标驱动转速确定第一马达12和/或第二马达13的目标电流转矩分量。
S5:控制第一驱动轮和第二驱动轮以目标驱动速度行进,
速度踏板控制所述骑乘式割草机行进速度的控制逻辑可以为,在骑乘式割草机速度为零时,用户踩动速度踏板使得速度踏板向下位移,位置传感器521检测速度踏板位移,将其传递给骑乘式割草机的速度
在一实施例中,以控制骑乘式割草机向右行驶为例,设置第二驱动轮1112相对设置在第一驱动轮1111右边,并设置用户通过速度操作件控制所述骑乘式割草机以目标速度行进,通过控制模块控制第一马达12输出对应的目标电流转矩分量,从而使得第一马达12驱动第一驱动轮1111以第一速度转动,第一速度等于目标转速,通过控制模块计算第二驱动轮1112的第二速度,并使得第二速度小于第一速度,且第二速度和第一速度的差值决定于用户转动方向盘21的角度,即用户输入的转向指令。
从而,在用户操作骑乘式割草机直行到转向的过程中,外侧轮保持用户通过速度操作件输入的目标速度,而内侧轮相对原始的目标速度降速,对内侧轮的速度降低是通过调节对应的马达输出负的电流转矩分量,此时马达输出负扭矩并发电,并可设置能量回收装置对该马达进行能量回收。示例性的,当用户转动方向盘21幅度较大并突破阈值时,第二速度可以为负值,此时内侧轮对应的马达输出负的电流转矩分量,并从负扭矩状态转变到反向驱动状态,并将内侧轮的转速从目标速度降到零,再降为与目标转速相反的反向,此时所述骑乘式割草机被控制围绕第一驱动轮1111和第二驱动轮1112之间或其上的一点转动,即为零半径转向。
为了便于用户操作所述骑乘式割草机进行割草作业,在计算方向盘21的转动方向对应的骑乘式割草机的转动方向时,所述方向盘21设有第一控制区,第二控制区以及第三控制区,所述第一控制区,第二控制区以及第三控制区对应着方向盘21的转动角度区间,以方向盘21未转动状态对应方向为起始点,第一控制区形成于起始点两侧,第二控制区及第三控制区依次远离第一控制区并形成于起始点两侧。
用户在控制方向盘21转动角度在第一控制区内时,所述中央控制器511发 送控制指令到行走控制器512,控制内侧轮对应幅度的较小程度地降速,此时内侧轮和外侧轮转向相同,使得所述骑乘式割草机对应的向左前方或右前方行驶。用户在控制方向盘21到第二控制区内时,内侧轮被行走控制器512控制施加负转矩速度降为零,此时所述骑乘式割草机以内侧轮为圆心转动。用户在控制方向盘21到第三控制区时,内侧轮被施加负转矩负方向转动,即相对外侧轮反向转动,此时内侧轮和外侧轮速度以预设比值转动,所述骑乘式割草机围绕后轮111之间轴线的某一点转动,从而可实现零半径转动。
在本申请的一个实施方式中,图6是本申请一个实施方式的骑乘式割草机的力反馈系统框图。图8是本申请一个实施方式的骑乘式割草机的方向盘21的立体结构图。图9是本申请的一个实施方式的骑乘式割草机的方向盘21另一个角度的立体结构图。所述骑乘式割草机还包括力反馈系统,包括设置在方向盘21附近的辅助马达61,辅助马达61通过皮带轮或齿轮组件和方向盘21连接,使得辅助马达61可以向方向盘21施加转矩,辅助马达61也可以接收用户向方向盘21施加的转矩。所述状态传感器522与中央控制器511连接,用于传输对驱动轮的转速或转矩的检测信息,力反馈系统还包括辅助控制器62,辅助控制器62与中央控制器511连接并接收驱动轮的转动状态信息,并根据驱动轮的转动状态信息控制辅助马达61对方向盘21做出力反馈。可选的,辅助马达61和方向盘21通过皮带轮连接。
力反馈系统还包括辅助控制器,通过辅助马达61和方向盘21的连接,使得辅助马达61对方向盘21施加转矩,使得方向盘21具有自动回中的功能,设置在方向盘21的状态传感器522将方向盘21的位置信息发送给辅助传感器,并由辅助传感器分析,在方向盘21相对其原始状态发生位移时,辅助传感器控制辅助马达61输出对应的转矩,带动方向盘21回到其原始位置。因此,辅助控制器也可以通过控制辅助马达61的电流转矩分量,控制辅助马达61输出的转矩,使得方向盘21在相对其初始位置发生转动位移时,受辅助马达61驱动具有回到其初始位置的作用力或者有着回到其初始位置的趋势。
设置方向盘21相对其起始状态可向第一方向或第二方向转动,第一方向和第二方向分别指针方向和逆时针方向的一种,在方向盘21被带动相对其起始状态向第一方向转动时,通过辅助传感器检测到方向盘21的位移信息,并将位移信息传递给辅助控制器,由辅助控制器分析方向盘21的位移信息以计算出辅助马达61应对方向盘21提供的扭矩,且通过调节辅助马达61的电流转矩分量的 正负,控制辅助马达61提供扭矩的方向为第二方向,并根据方向盘21的位移程度控制辅助马达61的电流转矩分量的大小,即方向盘21在第一方向转动的角度越大,控制所述马达提供的转矩越大,从而可以提供使得辅助马达61回正的驱动力。在方向盘21向第二方向转动时,控制逻辑相同,在此不再详述。
辅助马达61不仅用于促使方向盘21回正,辅助马达61用于增加操作方向盘21过程中的阻力,从而防止方向盘21因较小的力被推动而过度旋转,使得所述骑乘式割草机灵敏度过高,防止方向盘21因较小的力被推动而过度旋转,使得骑乘式割草机超出控制的转动,以优化用户对骑乘式割草机行进的控制;并以此给用户在操作方向盘21时的力反馈,使得用户可以根据操作手感及方向盘21受到的阻力获取当前的转向程度。
可选的,辅助传感器获取方向盘21的旋转位移,由操作方向盘21计算方向盘21相对其旋转中心的角加速度,设置辅助马达61的电流转矩分量和方向盘21位移的角加速度成预设函数关系,通常的,方向盘21的角加速度越大,辅助马达61的电流转矩分量越大,即用户操作方向盘21时施加的力越大,辅助马达61提供的阻力越大,从而保证操作所述骑乘式割草机的稳定性,防止用户过度旋转方向盘21使得骑乘式割草机超出预期的转向,并以此给用户在操作方向盘21时的力反馈,使得用户可以根据操作手感及方向盘21受到的阻力获取当前的转向程度。
可选的,通过状态传感器522检测第一马达12和第二马达13的转矩或转速,以获取第一驱动轮1111和第二驱动轮1112的转速,或者通过位置传感器521直接检测第一驱动轮1111和第二驱动轮1112的转速,辅助传感器获取第一驱动轮1111和第二驱动轮1112的转速,或者通过设置在速度操作件的位置传感器521检测用户输出的目标转速,根据获取的目标转速或车轮的实时转速,控制辅助马达61输出的对应转矩,且使得目标转速或车轮实时转速越大时,控制辅助马达61输出转矩越大,即在所述骑乘式割草机行驶速度越快时,使得控制转向所需的力越大,防止用户控制方向盘21转动幅度过大,使得所述骑乘式割草机高速运行时转向程度过大,造成意外,以提升操作所述骑乘式割草机的安全性。
所述辅助控制器62内设有算法,其根据驱动轮的转动状态分析对应的辅助马达61力反馈大小以及方向。示例性地,在所述骑乘式割草机运行时,有时候驱动轮会碰到障碍物或者低洼等情况,此时会影响驱动轮的转速或转矩,由状 态传感器522检测驱动轮的状态,并反馈到中央控制器511再到辅助控制器62内,或直接发送给辅助控制器,由辅助控制器62分析当前车轮11状态与用户控制指令对应的预期状态行驶误差,在误差大于一预设值时,判断行驶状态异常,并根据行驶误差生成对应的方向盘21的反馈指令,控制辅助马达61根据反馈指令带动方向盘21给出对应的转矩,使得方向盘21的反馈和当前车轮11行驶状态一致,即所述骑乘式割草机有向右行驶的趋势时,通过辅助马达61产生力反馈到方向盘21,控制方向盘21同时向右转动,或具有向右转动的趋势,用户感知方向盘21的位移控制方向盘21以相反的方向位移,以矫正所述骑乘式割草机行进姿态。使得方向盘21可以有效地向用户反馈当前骑乘式割草机行驶状态信息,可以对行进过程中的及时控制,优化用户的驾驶体验。
示例性的,当前车轮11状态与用户控制指令对应的预期状态行驶误差对应的预设值可以是零,即方向盘21实时反应车轮的转动状态。如在驾驶骑乘式割草机的过程中,第一驱动轮1111因碰到障碍物速度降低,所述辅助控制器62分析第一驱动轮1111的速度低于预期速度,则根据第一驱动轮1111运行的速度差生成一反馈指令,通过辅助马达61对方向盘21施加的力,对用户控制方向盘21产生一定阻碍,以提醒用户当前车轮11状态。在车轮11转向的过程中,也可以通过辅助马达61生成力反馈提醒用户当前车轮11的运转状态。
可选的,所述辅助控制器62内用于计算力反馈指令的算法也可以设置在中央控制器511内,由中央控制器511计算反馈指令对应的力反馈大小和方向,并将其传递到辅助控制器62,由辅助控制器62根据反馈指令控制辅助马达61运行并对方向盘21施加转矩。
可选的,所述力反馈系统还包括设置在辅助马达61内的辅助传感器242,辅助传感器242与辅助马达61连接用于检测辅助马达61的运行状态,由于辅助马达61通过皮带轮或齿轮和方向盘21直接联接并被方向盘21转动带动,从而可以通过检测辅助马达61的转动状态直接获取用户对方向盘21的操作动作,以获取用户的转向控制指令并将其发送给中央控制器511。
在一种实施方式中,辅助控制器控制辅助马达61输出力反馈,力反馈的具有调节因数,用于通过控制电流转矩分量调节辅助马达61对方向盘21力反馈的大小。辅助控制器与传感模块连接,获取传感模块检测的方向盘21转动角度,方向盘21转动角加速度,车轮转速,第一驱动轮1111和第二驱动轮1112差速,且对以上数值设置初始值,在方向盘21转动角度,方向盘21转动角加速度, 车轮转速,第一驱动轮1111和第二驱动轮1112差速大于各初始值时,分别并按预先算法的提升调节因数并得出最终的调节因数数值,从而根据调节因数控制辅助马达61输出的力矩,传递给方向盘21以告知用户当前的骑乘式割草机的行进状态作为力反馈,并适应地增加用户转动阻力提升控制稳定性和安全性。
图11是骑乘式割草机方向盘21力反馈控制方法,参照图11提供一种骑乘式割草机方向盘21力反馈控制方法,
S11:获取方向盘21的转动方向,确定力反馈的方向;
S12:获取方向盘21的转动角度和转动角加速度、车轮转速、第一驱动轮1111和第二驱动轮1112差速,确定调节因数;
S13:根据调节因数控制输出给方向盘21的力反馈大小。
可选的,为了提升辅助马达61的散热性能,辅助马达61上设有散热风扇,用于对辅助马达61的散热,防止辅助马达61因过热停止工作或影响自身性能。散热风扇可设置与辅助马达61的电机轴同轴连接,并被带动转动以对辅助马达61散热。
在本申请的另一种实施例中,所述方向盘21内设有阻尼件,所述阻尼件由阻尼材料制作或者被实施为阻尼器如阻尼铰链,通过阻尼件增加方向盘21的转动阻力,从而防止方向盘21因较小的力被推动而过度旋转,使得所述骑乘式割草机灵敏度过高,以优化用户对骑乘式割草机行进的控制。
在本申请的一些实施例中,所述位置传感器521包括相对设置的转动件和固定件,所述转动件被设置在操作盘211内,固定件被设置在轴体或辅助马达61附近,转动件被用户带动转动,并通过转动件和固定件的相对位置关系的改变获取用户对方向盘21的操作动作。可选的,所述固定件和转动件被实施为霍尔传感器,即在固定件内设置霍尔传感器,并使得转动件至少部分被设置为磁性件,从而通过霍尔原理检测方向盘21的转动。在另一种实施方式中,所述转动件和固定件被设置为电容,并通过电路变化读取方向盘21的转动状态。
在本申请的一些实施例中,所述轴体内设有供位置传感器521和中央控制器511连接的信号线,信号线被实施为弹簧式信号线,从而可以有效地适应方向盘21转动带动的信号线转动,大幅度提升了信号线的使用寿命。
在本申请的一些实施中,所述操作组件还包括显示屏212,所述显示屏212被设置在方向盘21上,显示屏和中央控制器511无线或有线地连接,所述显示屏内设有按键供用户操作所述骑乘式割草机。在一种实施方式中,所述显示屏 212设置于方向盘21之上,并相对方向盘21独立,使得显示屏不随着方向盘21转动而被带动转动。
可选的,所述方向盘21上设有用于控制倒车的控制键,可以设置为拨片,在用户需要操作所述骑乘式割草机倒车时,通过拨动所述拨片将骑乘式割草机转换到倒车模式,中央控制器511接收到控制键传递的倒车控制指令后,控制所述第一马达12和第二马达13输出的电流转矩分量为负值,并在未转向过程中,输出的电流转矩分量相同,使得第一马达12和第二马达13同时变为反向驱动状态,带动第一驱动轮1111和第二驱动轮1112倒转,从而实现所述骑乘式割草机的倒车动作。
参照图15是本申请另一种控制系统的实施方式的框图,控制系统也可以不包括中央控制器,即控制模块包括辅助控制器,割草控制器514,行走控制器,行走控制器可以包括第一控制器和第二控制器,操作控制器,传感器包括位置传感状态传感器等,以上控制器和传感器通过总线通讯连接,并且单向传输信息,即传感器只具有接收信息或传递信息的功能。可选的,所述控制系统还包括显示屏控制器517,显示屏控制器517双向连接于总线。显示屏控制器517连接于显示屏控制其显示内容,并获取用户通过显示屏对骑乘式割草机的控制指令,通过总线传输用户指令。
本申请所揭露的内容,除了可以应用到骑乘式割草机外,还可以用于在室内或室外进行工作的其它骑乘式电动机械,这里除了能够输出在地面上行走的动力之外,还能够通过输出其它形式的动力来实现除了行走之外的其它功能均可以认为是骑乘式电动机械,例如骑乘式扫雪机、骑乘式农业机械、骑乘式拖地车、骑乘式扫地机等。事实上,只要这些工具包括本申请中的以上描述的实质性内容均属于本申请所保护的范围。
所述骑乘式割草机还包括用于提供能量的电池包和电池包安装槽,从而电池包141还能够给电动工具提供能量来源,也即是说,本申请中的电池包141不仅仅可以应用到所述骑乘式割草机中,还可以应用到其它电动工具中,从而提高了电池包141的适配性能,也提高了所述骑乘式割草机适配电池包141的能力。这样,当所述骑乘式割草机不用时,用户完全可以将电池包141拆卸下来以应用到其它的电动工具中,从而避免了资源的浪费,降低了使用成本。或者说,当用户需要使用所述骑乘式割草机时,用户完全可以借用其它的电动工具中的电池包141作为电池包141。
在本申请的另一个实施方式中,提供骑乘式割草机,包括:刀片,用于割草;主体,设置成用于支撑所述刀片,所述主体包括至少一个支架,安装在所述骑乘式割草机上;操作组件,所述操作组件包括方向盘,联接至所述骑乘式割草机的主体;目标速度输入单元,联接到所述方向盘,用以产生目标速度的指令信号;万向轮组,联接到所述至少一个支架的前侧;可驱动轮组,联接到所述至少一个支架的后侧,所述可驱动轮组包括:左侧可驱动轮;以及右侧可驱动轮;行走驱动马达组,与可驱动轮组联接,至少包括:联接到所述可驱动轮组之一的左侧驱动马达;联接到所述可驱动轮组之一的右侧驱动马达;实际位置检测单元,与左侧可驱动轮和右侧可驱动轮关联,用以分别产生左侧可驱动轮和右侧可驱动轮的实际位置信号;主控制单元,包括一个或多个控制器,与目标速度输入单元、实际位置检测单元和行走驱动马达组电性连接,根据获得所述目标速度输入单元产生的指令信号和实际位置检测单元产生的实际位置信号,分别输出与左侧驱动马达和右侧驱动马达对应的驱动控制信号,以使得左侧可驱动轮和右侧可驱动轮差速进行小半径或大致零半径转弯。所述方向盘包括固定件、和相对固定件转动的转动件、以及弹簧式信号线,所述固定件具有第一表面,所述转动件包括与第一表面相对的第二表面,所述弹簧式信号线电性连接在所述固定件的第一表面和转动件的第二表面之间。

Claims (13)

  1. 一种骑乘式割草机,包括:
    刀片,用于割草;
    主体,设置成用于支撑所述刀片,所述主体包括至少一个支架,安装在所述骑乘式割草机上;
    操作组件,所述操作组件包括方向盘,联接至所述骑乘式割草机的主体;
    目标速度输入单元,联接到所述方向盘,用以产生目标速度的指令信号;
    万向轮组,联接到所述至少一个支架的前侧;
    可驱动轮组,联接到所述至少一个支架的后侧,所述可驱动轮组包括:
    左侧可驱动轮;以及
    右侧可驱动轮;
    行走驱动马达组,与可驱动轮组联接,至少包括:
    联接到所述可驱动轮组之一的左侧驱动马达;
    联接到所述可驱动轮组之一的右侧驱动马达;
    实际位置检测单元,与左侧可驱动轮和右侧可驱动轮关联,用以分别产生左侧可驱动轮和右侧可驱动轮的实际位置信号;
    主控制单元,包括一个或多个控制器,与目标速度输入单元、实际位置检测单元和行走驱动马达组电性连接,根据获得所述目标速度输入单元产生的指令信号和实际位置检测单元产生的实际位置信号,通过FOC磁定向控制技术分别输出与左侧驱动马达和右侧驱动马达对应的驱动控制信号,以使得左侧可驱动轮和右侧可驱动轮差速进行小半径或大致零半径转弯。
  2. 如权利要求1所述的骑乘式割草机,其中:所述方向盘包括固定件、和相对固定件转动的转动件、以及弹簧式信号线,所述固定件具有第一表面,所述转动件包括与第一表面相对的第二表面,所述弹簧式信号线电性连接在所述固定件的第一表面和转动件的第二表面之间。
  3. 如权利要求1所述的骑乘式割草机,还包括至少与所述可驱动轮组之一关联的力反馈传感器,用于检测所述可驱动轮的阻力波动状态。
  4. 如权利要求3所述的骑乘式割草机,还包括与方向盘联接的辅助电机、以及与辅助电机、力反馈传感器电性连接的辅助控制器,所述辅助控制器通过接收所述力反馈传感器检测的所述可驱动轮的阻力波动状态,输出与阻力波动状态对应的控制信号至辅助电机。
  5. 一种骑乘式割草机,包括:
    刀片,用于割草;
    主体,设置成用于支撑所述刀片,所述主体包括至少一个支架,安装在所述骑乘式割草机上;
    操作组件,所述操作组件包括方向盘,联接至所述骑乘式割草机的主体;
    目标速度输入单元,联接到所述方向盘,用以产生目标速度的指令信号;
    万向轮组,联接到所述至少一个支架的前侧;
    可驱动轮组,联接到所述至少一个支架的后侧,所述可驱动轮组包括:
    左侧可驱动轮;以及
    右侧可驱动轮;
    行走驱动马达组,与可驱动轮组联接,至少包括:
    联接到所述可驱动轮组之一的左侧驱动马达;
    联接到所述可驱动轮组之一的右侧驱动马达;
    实际位置检测单元,与左侧可驱动轮和右侧可驱动轮关联,用以分别产生左侧可驱动轮和右侧可驱动轮的实际位置信号;
    主控制单元,包括一个或多个控制器,与目标速度输入单元、实际位置检测单元和行走驱动马达组电性连接,根据获得所述目标速度输入单元产生的指令信号和实际位置检测单元产生的实际位置信号,输出与左侧驱动马达和右侧驱动马达分别对应的驱动控制信号,以使得左侧可驱动轮和右侧可驱动轮差速进行小半径或大致零半径转弯。
  6. 如权利要求5所述的骑乘式割草机,其中:所述方向盘包括固定件、和相对固定件转动的转动件、以及弹簧式信号线,所述固定件具有第一表面,所述转动件包括与第一表面相对的第二表面,所述弹簧式信号线电性连接在所述固定件的第一表面和转动件的第二表面之间。
  7. 如权利要求5所述的骑乘式割草机,还包括至少与所述可驱动轮组之一关联的力反馈传感器,用于检测所述可驱动轮的阻力波动状态。
  8. 如权利要求7所述的骑乘式割草机,还包括与方向盘联接的辅助电机、以及与辅助电机、力反馈传感器电性连接的辅助控制器,所述辅助控制器通过接收所述力反馈传感器检测的所述可驱动轮的阻力波动状态,输出与阻力波动状态对应的控制信号至辅助电机。
  9. 一种骑乘式割草机,包括:
    座椅,供用户乘坐;
    动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;
    行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达以及控制行走马达的行走控制器,所述车轮包括形成两侧的驱动轮;
    控制组件,操作组件包括电子方向盘,中央控制器以及位置传感器,位置传感器设置于电子方向盘用以检测用户对操作件的转动操作动作,中央控制器可通信地连接位置传感器并获取转动操作指令,并通过行走控制器控制后轮主动差速行驶以转向。
  10. 一种骑乘式割草机,包括:
    座椅,供用户乘坐;
    动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;
    行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达;
    还包括控制组件,操作组件包括电子方向盘和速度操作件,中央控制器以及位置传感器,位置传感器设置于电子方向盘用以检测用户对操作件的转动操作动作,速度操作件连接于中央控制器并用于控制加速,中央控制器可通信地连接位置传感器并获取转动操作指令,并通过对转动过程的内侧轮施加负扭矩使之降速以转向。
  11. 一种骑乘式割草机,包括:
    座椅,供用户乘坐;
    动力输出组件,动力输出组件包括用于输出动力以实现割草功能的割草元件和用于驱动所述割草元件输出动力的动力输出马达;
    行走组件,带动所述骑乘式电动割草机在地面上行走的车轮并包括用于驱动所述车轮的行走马达以及控制行走马达的行走控制器,以及检测车轮状态的状态传感器,所述车轮包括形成两侧的驱动轮;
    控制组件,操作组件包括操作件和与所述操作件连接的中央控制器,通过所述中央控制器根据操作件动作控制所述骑乘式割草机运行;
    所述操作组件还包括辅助马达和控制辅助马达的辅助控制器,所述辅助马达和所述操作件联接,所述辅助控制器根据状态传感器对车轮的状态检测生成 反馈指令,控制辅助马达对操作件施加力反馈。
  12. 一种骑乘式割草机方向盘力反馈控制方法,包括:
    获取方向盘的转动方向,确定力反馈的方向;
    获取方向盘的转动角度和转动角加速度、车轮转速、第一驱动轮和第二驱动轮差速,确定调节因数;
    根据调节因数控制输出给方向盘的力反馈大小。
  13. 一种骑乘式割草机的行走控制方法,包括:
    位置传感器获取转向操作件的转向信号以及速度操作件的速度信号;
    根据转向信号和速度信号分析第一驱动轮和第二驱动轮的目标驱动转速;
    状态传感器获取第一驱动轮和第二驱动轮的实际转速;
    根据实际转速和目标驱动转速确定第一马达和/或第二马达的目标电流转矩分量;
    控制第一驱动轮和第二驱动轮以目标驱动速度行进,使得骑乘式割草机转向或直线行驶。
PCT/CN2020/100881 2019-07-09 2020-07-08 骑乘式割草机及其控制方法 WO2021004484A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20836218.6A EP3977841A4 (en) 2019-07-09 2020-07-08 RIDE-ON LAWN MOWERS AND CONTROL METHOD THEREOF
AU2020310369A AU2020310369A1 (en) 2019-07-09 2020-07-08 Riding lawn mower and control method thereof
CN202080005342.6A CN112996379B (zh) 2019-07-09 2020-07-08 骑乘式割草机及其控制方法
US17/570,751 US20220124972A1 (en) 2019-07-09 2022-01-07 Riding lawn mower and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910612977.1 2019-07-09
CN201910612977 2019-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/570,751 Continuation US20220124972A1 (en) 2019-07-09 2022-01-07 Riding lawn mower and control method thereof

Publications (1)

Publication Number Publication Date
WO2021004484A1 true WO2021004484A1 (zh) 2021-01-14

Family

ID=74114369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100881 WO2021004484A1 (zh) 2019-07-09 2020-07-08 骑乘式割草机及其控制方法

Country Status (5)

Country Link
US (1) US20220124972A1 (zh)
EP (1) EP3977841A4 (zh)
CN (1) CN112996379B (zh)
AU (1) AU2020310369A1 (zh)
WO (1) WO2021004484A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243946A1 (en) * 2018-03-28 2021-08-12 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus for the same
US20210245798A1 (en) * 2020-02-11 2021-08-12 Toyota Jidosha Kabushiki Kaisha Steering device and steering system including steering devices
CN114097399A (zh) * 2021-11-12 2022-03-01 江苏大学 适用于果园及草坪割草机的可视化测试实验平台及方法
WO2023039874A1 (en) * 2021-09-18 2023-03-23 Nanjing Chervon Industry Co., Ltd. Riding lawn mower, display interface of a power tool and riding machine
WO2023039872A1 (en) * 2021-09-18 2023-03-23 Nanjing Chervon Industry Co., Ltd. Riding lawn mower
WO2023071515A1 (zh) * 2021-10-29 2023-05-04 南京泉峰科技有限公司 自行走式工作机及割草机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859644B2 (en) * 2020-03-24 2024-01-02 Stabilus Gmbh Piston assemblies and methods of using same
WO2023220568A2 (en) * 2022-05-09 2023-11-16 Polaris Industries Inc. Utility vehicle
EP4340187A2 (en) * 2022-08-23 2024-03-20 Black & Decker, Inc. Electric drive motor for moving apparatus
WO2024078473A1 (zh) * 2022-10-11 2024-04-18 南京泉峰科技有限公司 骑乘式割草设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202340430U (zh) * 2011-06-23 2012-07-25 宁波大叶园林设备有限公司 骑乘割草机
CN102656988A (zh) * 2011-07-12 2012-09-12 宁波大叶园林设备有限公司 函数波刀片自离合骑乘割草机
US20140298767A1 (en) * 2013-04-05 2014-10-09 Worldlawn Power Equipment, Inc. Tractor mower with enhanced turning radius
CN104443008A (zh) * 2013-09-22 2015-03-25 联创汽车电子有限公司 电动助力转向系统
CN204598688U (zh) * 2015-03-09 2015-09-02 罗利伟 一种适合各种复杂地形的万向无人驾驶草坪割草机
CN205454604U (zh) * 2016-01-22 2016-08-17 扬州维邦园林机械有限公司 一种电池动力草坪车
US20180092299A1 (en) * 2016-01-19 2018-04-05 Sears Brands, L.L.C. Lawn mowing apparatus with mower deck alignment sensors
CN108781704A (zh) * 2017-04-28 2018-11-13 苏州宝时得电动工具有限公司 自动割草机系统及其自动割草机
CN109937679A (zh) * 2019-04-08 2019-06-28 洛阳理工学院 一种割草机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808032B2 (en) * 2001-12-14 2004-10-26 Textron Inc. Drive-by-wire lawn mower
US7017327B2 (en) * 2003-12-10 2006-03-28 Deere & Company Hybrid electric tool carrier
JP4857952B2 (ja) * 2006-06-28 2012-01-18 株式会社日立製作所 電気駆動車両
US7894957B2 (en) * 2008-01-28 2011-02-22 Textron Innovations Inc. Dynamic tactical steering feedback
JP5401682B2 (ja) * 2008-04-18 2014-01-29 株式会社 神崎高級工機製作所 電動対地作業車両
US8783391B2 (en) * 2010-09-15 2014-07-22 The Toro Company Power vehicle with adjustable velocity profiles
CN107371562B (zh) * 2016-05-16 2020-07-17 南京德朔实业有限公司 动力工具、割草机及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202340430U (zh) * 2011-06-23 2012-07-25 宁波大叶园林设备有限公司 骑乘割草机
CN102656988A (zh) * 2011-07-12 2012-09-12 宁波大叶园林设备有限公司 函数波刀片自离合骑乘割草机
US20140298767A1 (en) * 2013-04-05 2014-10-09 Worldlawn Power Equipment, Inc. Tractor mower with enhanced turning radius
CN104443008A (zh) * 2013-09-22 2015-03-25 联创汽车电子有限公司 电动助力转向系统
CN204598688U (zh) * 2015-03-09 2015-09-02 罗利伟 一种适合各种复杂地形的万向无人驾驶草坪割草机
US20180092299A1 (en) * 2016-01-19 2018-04-05 Sears Brands, L.L.C. Lawn mowing apparatus with mower deck alignment sensors
CN205454604U (zh) * 2016-01-22 2016-08-17 扬州维邦园林机械有限公司 一种电池动力草坪车
CN108781704A (zh) * 2017-04-28 2018-11-13 苏州宝时得电动工具有限公司 自动割草机系统及其自动割草机
CN109937679A (zh) * 2019-04-08 2019-06-28 洛阳理工学院 一种割草机器人

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243946A1 (en) * 2018-03-28 2021-08-12 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus for the same
US11812688B2 (en) * 2018-03-28 2023-11-14 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus with position detection for the same
US20210245798A1 (en) * 2020-02-11 2021-08-12 Toyota Jidosha Kabushiki Kaisha Steering device and steering system including steering devices
US11634172B2 (en) * 2020-02-11 2023-04-25 Toyota Jidosha Kabushiki Kaisha Steering device and steering system including steering devices
WO2023039874A1 (en) * 2021-09-18 2023-03-23 Nanjing Chervon Industry Co., Ltd. Riding lawn mower, display interface of a power tool and riding machine
WO2023039872A1 (en) * 2021-09-18 2023-03-23 Nanjing Chervon Industry Co., Ltd. Riding lawn mower
EP4231812A4 (en) * 2021-09-18 2023-12-20 Nanjing Chervon Industry Co., Ltd. MOWING MACHINE
EP4231813A4 (en) * 2021-09-18 2024-01-24 Nanjing Chervon Ind Co Ltd RIDING LAWN MOWER, POWER TOOL DISPLAY INTERFACE AND MOUNTING MACHINE
WO2023071515A1 (zh) * 2021-10-29 2023-05-04 南京泉峰科技有限公司 自行走式工作机及割草机
CN114097399A (zh) * 2021-11-12 2022-03-01 江苏大学 适用于果园及草坪割草机的可视化测试实验平台及方法
CN114097399B (zh) * 2021-11-12 2023-01-17 江苏大学 适用于果园及草坪割草机的可视化测试实验平台及方法

Also Published As

Publication number Publication date
CN112996379B (zh) 2023-09-08
CN112996379A (zh) 2021-06-18
US20220124972A1 (en) 2022-04-28
AU2020310369A1 (en) 2022-02-03
EP3977841A1 (en) 2022-04-06
EP3977841A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2021004484A1 (zh) 骑乘式割草机及其控制方法
US6789640B1 (en) Yaw control for a personal transporter
CN104163198B (zh) 电动动力转向装置
CN111756280A (zh) 骑乘式割草机
JP5867782B2 (ja) 車両用操舵装置
CN101981808B (zh) 电动机控制装置
WO2020253821A1 (zh) 骑乘式割草机
CN103079933A (zh) 电动转向装置
CN106314060A (zh) 一种电动式主动稳定杆的控制系统及其控制方法
CN112740892A (zh) 骑乘式割草机
JPWO2018181750A1 (ja) 車両
CN113753164A (zh) 一种体感车运行的控制系统及方法
CN104242740A (zh) 动平衡车电机驱动信号的生成方法及其装置
WO2023169231A1 (zh) 骑乘式割草设备
CN112061231A (zh) 一种商用车智能电动助力转向控制方法及控制器
US20230363307A1 (en) Riding lawn mower
CN109815598A (zh) 一种增强电动汽车控制系统中电机对油门响应速度算法
CN115669349A (zh) 后走式自推工作机
WO2023060562A1 (en) Riding lawn mower
WO2023071515A1 (zh) 自行走式工作机及割草机
CN110696952B (zh) 一种两轮自平衡移动机器人及其控制方法
US20240099185A1 (en) Walk-behind electric device
EP4344525A1 (en) Walk-behind electric device
KR20200137831A (ko) 전기 자전거 구동 시스템 및 그 제어방법
US20240109582A1 (en) Active/semi-active steer-by-wire system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020836218

Country of ref document: EP

Effective date: 20211231

ENP Entry into the national phase

Ref document number: 2020310369

Country of ref document: AU

Date of ref document: 20200708

Kind code of ref document: A