WO2021004110A1 - 一种水空两栖跨介质仿生机器飞鱼 - Google Patents

一种水空两栖跨介质仿生机器飞鱼 Download PDF

Info

Publication number
WO2021004110A1
WO2021004110A1 PCT/CN2020/085042 CN2020085042W WO2021004110A1 WO 2021004110 A1 WO2021004110 A1 WO 2021004110A1 CN 2020085042 W CN2020085042 W CN 2020085042W WO 2021004110 A1 WO2021004110 A1 WO 2021004110A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
water
tail
medium
flying fish
Prior art date
Application number
PCT/CN2020/085042
Other languages
English (en)
French (fr)
Inventor
喻俊志
吴正兴
陈迪
谭民
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to US17/279,099 priority Critical patent/US11208186B2/en
Publication of WO2021004110A1 publication Critical patent/WO2021004110A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/005Flying-boats; Seaplanes with propellers, rudders or brakes acting in the water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/006Flying-boats; Seaplanes with lift generating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/008Amphibious sea planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/70Convertible aircraft, e.g. convertible into land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/40Modular UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/40Ornithopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the invention relates to the field of water and air amphibious trans-medium robots, in particular to a water and air amphibious trans-medium bionic robot flying fish.
  • the water-air amphibious trans-medium robot is a sea-air integrated robot that has the ability to survive in both air and water environments. It can transition between two different fluid media, water and air, and has movement in both media Capability, it combines the strong concealment of underwater vehicles and the high maneuverability of aerial vehicles, etc., in military fields such as maritime reconnaissance, surveillance, and communication relay, and civil fields such as marine disaster search and rescue, ecological environment monitoring, and marine resource exploration. It has a wide range of application prospects.
  • Flying fish is a kind of marine fish with fast, high mobility and swimming ability, jumping out of the water to perform gliding in the air, and possesses superb motor skills. Under water, the flying fish close the foldable pectoral fins to the sides of the body to reduce the resistance in the water, relying on the body tail and caudal fins for rapid propulsion, and can reach a speed of 10m/s (about 20-40 times the body length/sec) Jump out of the water.
  • the flying fish unfolds its pectoral fins and continues to flap the lower caudal fins in the water with a swing frequency of up to 35 Hz, and continues to accelerate and slide on the water surface, eventually reaching a speed of nearly 20m/s and completely jumping out of the water. Then, start gliding in the air, the distance can reach 50m.
  • the flying fish immersed the tail fin in the water again, performing rapid swings, and accelerated glide on the water surface to achieve continuous gliding flight movement.
  • the flying fish’s superb sports skills can effectively avoid predators and improve the efficiency of motion at the same time. Sports ability is something other fish cannot possess.
  • the flying fish’s excellent water and air amphibious trans-medium motion ability has attracted wide attention from researchers in the field of bionic robots. They tried to apply flying fish’s efficient trans-medium motion mechanism to the bionic robot and developed a water-air amphibious trans-medium with excellent motion performance. robot.
  • the bionic robotic flying fish Compared with the propeller-propelled trans-medium vehicle, the bionic robotic flying fish adopts the fish-swinging bionic propulsion method, which has the advantages of high efficiency, high maneuverability, low disturbance, etc., and has better underwater sports performance, thereby improving It is suitable for monitoring, search, rescue and other operations in a narrow and complex underwater environment; on the other hand, the bionic robotic flying fish jumps out of the water surface to glide by high-speed swimming, and has the ability to quickly realize the transition between water and air medium and save Features of energy and efficient navigation.
  • some domestic and foreign research institutions have carried out research on the bionic robotic flying fish, but they have not developed a bionic robotic flying fish prototype that can rely on tail propulsion to achieve water-air amphibious cross-medium movement.
  • the bionic robotic flying fish jumps out of the water using a swing-tail propulsion method to achieve water-air amphibious trans-medium movement.
  • This process requires a fast swimming speed, so a driving mechanism with large propulsion is required.
  • the bionic robotic flying fish has a lower water outlet speed.
  • Body length is closely related, and air gliding distance is related to mass. Therefore, it is necessary to design a new type of drive propulsion system with high power density (small size, light weight, and high power).
  • the bionic robotic flying fish needs to design a new variable structure pectoral fin mechanism to meet the structural compatibility requirements of different medium navigation. Specifically, it can tightly fit in the water.
  • the pectoral fins can be deployed in the air to provide lift to meet the requirements of long-distance gliding; and in the process of entering the water, it is necessary to meet the requirements of structural strength.
  • the present invention introduces flying fish's efficient trans-medium movement mechanism On the bionic robotic flying fish, it has the advantages of underwater high-speed, high-maneuverability swimming and air-gliding water-air amphibious trans-medium motion ability, which effectively solves the poor underwater motion performance, large disturbance, and propulsion efficiency in the prior art Low and long transition time across media.
  • the problems to be solved by the present invention are poor underwater motion performance, large disturbance, low propulsion efficiency and long water-to-air medium transition time of the water-air amphibious trans-medium robot.
  • the embodiment of the present invention provides a water Air amphibious cross-medium bionic robotic flying fish, including body, pitch pectoral fin, variable structure pectoral fin, tail propulsion module, detection sensor and controller. Among them,
  • pitching pectoral fins There are two pitching pectoral fins, the two pitching pectoral fins are symmetrically arranged on the left and right sides of the body, and the pitching pectoral fins are rotatably installed on the body around the axis in the left and right directions under the driving of the first power device ;
  • variable structure pectoral fins There are two variable structure pectoral fins, the two variable structure pectoral fins are symmetrically arranged on the left and right sides of the body, and the variable structure pectoral fins are foldably installed in a front-to-back direction under the drive of a second power device In the body;
  • the tail propulsion module is installed behind the water-air amphibious trans-medium bionic machine flying fish;
  • the detection sensor is installed on the main body and is configured to detect the posture of the main body, the rotation angle of the pitch pectoral fin, the depth of the bionic robotic flying fish in the water environment and the height of the air gliding, and the height of the variable structure pectoral fin At least one of the open/closed state, the swing frequency of the tail propulsion module, and the surrounding environment of the body, the signal output terminal of the detection sensor, the control terminal of the first power device, and the second power
  • the control terminal of the device and the control terminal of the third power device are both signally connected to the controller.
  • the first power device drives the pitch pectoral fin to rotate through a first transmission mechanism
  • the first transmission mechanism includes a driving gear, a driven gear, a bearing, and a first transmission shaft.
  • the power output end of the device is in transmission connection with the driving gear, the driving gear and the driven gear are both rotatably mounted on the body and meshed, and the first transmission shaft is coaxially fixed with the driven gear Connected, the first transmission shaft is rotatably installed on the body through the bearing, and two ends of the first transmission shaft are respectively fixedly connected with one of the pitch pectoral fins.
  • variable structure pectoral fin includes fin rays and a fin membrane, wherein each of the variable structure pectoral fins includes a front edge fin rays and a rear edge fin rays, and the rear edge fin rays are fixed to the body ,
  • the front edge fin is foldably mounted on the body in a front to back direction under the driving of the second power device, so as to fix the front edge fin and the rear edge fin.
  • the fin membrane is unfolded or folded to realize the air gliding movement and the splashing water movement of the water-air amphibious trans-medium bionic robotic flying fish.
  • variable structure pectoral fin further includes a second transmission shaft rotatably installed on the body, the second transmission shaft is in transmission connection with the second power device, and the front edge fin is fixed Connected to the second drive shaft;
  • the fin ray further includes a middle fin ray, the middle fin ray is provided with a D-shaped hole, the second transmission shaft is provided with a sliding and rotating part that is clearance fit with the D-shaped hole, and the sliding and rotating part includes an edge A planar area and a cylindrical area connected and closed by the second transmission shaft, the sliding and rotating part is provided with an action groove, and the action groove penetrates the planar area and the cylindrical area;
  • connection between the effective groove and the cylindrical surface area, and the connection between the effective groove and the planar area are sequentially arranged along the rotation direction of the second transmission shaft;
  • the angle of the action groove is equal to the angle between the leading edge fin ray and the middle fin ray in the fully expanded state of the fin membrane, and the connection point between the action groove and the plane area and the action groove
  • the line between the connection with the cylindrical surface area is a first line, and the angle of the action groove is the included angle between the first line and the plane area;
  • the two fin membranes are symmetrically arranged on the left and right sides of the body, and the fin membrane and the front edge fin, the middle fin and the The trailing edge fins are fixedly connected.
  • the water-air amphibious trans-medium bionic flying fish further includes a tail propulsion module, an eccentric wheel and a slide rail, wherein,
  • the tail propulsion module includes a tail drive module and a tail joint module, wherein,
  • the tail drive module includes a third power unit and a reduction box, the reduction box is fixedly connected to the output end of the third power unit, the eccentric wheel is fixedly connected to the output end of the reduction box, and the third The power device drives the reduction gearbox and the eccentric wheel to rotate;
  • the tail joint module includes a tail joint and a tail fin, the tail joint is hinged to the body, the slide rail is hinged to the tail joint, and is used to convert the unidirectional continuous rotation of the output shaft of the reduction box into The tail joint swings back and forth.
  • the tail fin is hinged to the tail joint, or the tail fin is fixed to the tail joint.
  • the eccentric wheel is rotatably installed in a plane perpendicular to the length direction of the water-air amphibious trans-medium bionic flying fish, and the action rod is fixed to the eccentric wheel and to The axis of rotation of the eccentric wheel is kept at a distance;
  • the slide rail includes two action parts, the two action parts are symmetrically arranged on the left and right sides of the main body, the distance from the free end of the action rod to the hinge axis of the slide rail>the action part faces The distance from the side of the eccentric wheel to the hinge axis of the sliding rail.
  • the tail joint includes two action parts, the two action parts are fixedly connected in a V-shape, and the two action parts of the tail joint are connected with a limit stopper.
  • the board is used to adjust the maximum swing angle of the tail fin.
  • the water-air amphibious cross-medium bionic flying fish further includes a communication module, which is connected to the outside in communication, and is used to send the motion state of the water-air amphibious cross-medium bionic flying fish or receive information sent by the outside world. Different travel mode commands.
  • the water and air amphibious trans-medium bionic robotic flying fish also includes a tail waterproof skin covering the tail of the body for use in the water and air amphibious trans-medium bionic robotic flying fish Waterproof seal.
  • the controller controls the rotation of the two pitch pectoral fins, the folding or unfolding of the variable structure pectoral fins, and the swing of the tail joint to perform the underwater amphibious trans-medium bionic robotic flying fish
  • the third power device acts as a tail propulsion mechanism to drive the tail joint to reciprocate left and right and drive the tail fin to reciprocate left and right to provide the power for the water and air amphibious trans-medium bionic robotic flying fish to move forward.
  • the first power device controls the movement of the pitching pectoral fin through the first transmission mechanism, and realizing floating up and down in the water by controlling the pitch angle of the pitching pectoral fin
  • the variable structure pectoral fins are gathered on both sides of the body;
  • the water-air amphibious trans-medium bionic robotic flying fish realizes the flying fish of the water-air amphibious trans-medium bionic machine by controlling the pitch angle of the pitch pectoral fin and cooperating with the rapid swing of the tail joint.
  • Out of the water surface after the variable structure pectoral fin leaves the water surface, quickly unfold the variable structure pectoral fin;
  • the unfolded variable-structure pectoral fins provide lift for the gliding motion to realize the air gliding motion.
  • control The glide posture of the bionic robotic flying fish can realize rapid splashing and falling water movement when the variable structure pectoral fins are fully folded in the air.
  • the present invention has the advantages of both underwater high-speed motion and air gliding motion of water and air amphibious trans-medium movement, can realize the excellent water and air amphibious trans-medium movement ability of biological flying fish, and can switch between different navigation media
  • the bionic robotic flying fish swims fast and has strong maneuverability through the swing-tail bionic propulsion method, and is suitable for performing tasks in complex underwater environments.
  • the pitch pectoral fin is used as By controlling the wing surface, it can change the pitch angle when moving in an underwater environment to realize floating up and down diving.
  • This method has the advantages of fast adjustment speed, large adjustment range, and small space occupation; through the rapid advancement of the flying fish tail of the bionic machine and the cooperation of the pitch pectoral fins, it can jump out of the water to realize the transition of water to air medium and enter the air medium Perform tasks; in the air, the bionic robotic flying fish provides lift through the unfolded variable structure pectoral fins, performs gliding motion, improves motion efficiency, and is suitable for performing tasks in the air.
  • Fig. 1 is a schematic diagram of the overall structure of an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the structure of a pitch pectoral fin according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of a pectoral fin with a modified structure according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a fully folded structure of one side of the pectoral fin of a variant pectoral fin according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a fully expanded structure of one side of the pectoral fin of a variant pectoral fin according to an embodiment of the present invention.
  • Fig. 6 is a partial enlarged view of the action groove of the second transmission shaft according to an embodiment of the present invention.
  • Fig. 7 is a structural diagram of a control system module and a tail propulsion system according to an embodiment of the present invention.
  • the embodiment of the present invention discloses a water-air amphibious cross-medium bionic flying fish, which includes a body, a pitch pectoral fin, a variable structure pectoral fin, a tail propulsion module, a detection sensor and a controller, wherein:
  • the first power device provides power for the pitch pectoral fins, and adjusts the floating and submerging movement modes of the water-air amphibious trans-medium bionic robotic flying fish by adjusting the pitch angle of the pitch pectoral fins;
  • variable structure pectoral fins There are two variable structure pectoral fins, the two variable structure pectoral fins are symmetrically arranged on the left and right sides of the body, and the variable structure pectoral fins are foldably installed in a front-to-back direction under the drive of a second power device
  • the second power device provides power for the variable structure pectoral fins, and controls the expansion or folding of the variable structure pectoral fins according to the bionic robotic flying fish in different working modes, and matches the motion state of the bionic robotic flying fish , To achieve the best working state of the bionic robot flying fish.
  • the tail propulsion module includes a tail drive module and a tail joint module, wherein,
  • the tail drive module includes a third power unit and a reduction box, the reduction box is fixedly connected to the output end of the third power unit, the eccentric wheel is fixedly connected to the output end of the reduction box, and the third The power device drives the reduction gearbox and the eccentric wheel to rotate, that is, the present invention uses the motor and the reduction gearbox to cooperate to provide tail power, so as to realize the rapid underwater swimming of the bionic robotic flying fish;
  • the tail joint module includes a tail joint and a tail fin, the tail joint is hinged to the body, the slide rail is hinged to the tail joint, and is used to convert the unidirectional continuous rotation of the output shaft of the reduction box into The left and right reciprocating swing of the tail joint;
  • the tail fin is hinged to the tail joint, or the tail fin is fixed to the tail joint.
  • a third power device it is mounted on the rear side of the body so that it can swing from side to side.
  • the third power device provides power to the tail joint. Under the action of the third power device, the tail joint can cooperate with The different working modes of the robotic flying fish achieve different swing frequencies;
  • the tail fin is installed at the end of the tail joint through a rotating shaft, and under the interaction of the tail joint and the surrounding fluid, it passively swings around the shaft quickly and left and right to provide propulsion for the fast swimming of the bionic robotic flying fish.
  • the detection sensor is installed on the main body and is configured to detect the posture of the main body, the rotation angle of the pitch pectoral fin, the depth of the bionic robotic flying fish in the water environment and the height of the air gliding, and the height of the variable structure pectoral fin At least one of the open/closed state, the swing frequency of the tail joint, and the surrounding environment of the main body, the signal output terminal of the detection sensor, the control terminal of the first power device, and the second power device
  • the control terminal of the third power device and the control terminal of the third power device are both signal-connected to the controller, and the detection sensor can detect the motion state information of the robotic flying fish, and the motion state includes the pitch angle of the pitch pectoral fin of the bionic robotic flying fish,
  • the overall shape of the water-air amphibious cross-medium bionic flying fish of the present invention adopts the streamlined design of a biological flying fish, including the body compartment 1, the top cover 2, the switch 3, the pitch pectoral fin 4, the variable structure pectoral fin 5, and the groove 6. , Tail waterproof skin 7, tail stem joint 8, tail fin 9, wherein the body compartment 1 is a streamlined shell with the groove 6 for placing the mechanical structure and control system module of the bionic robotic flying fish , And the top cover 2 is connected with the top cover 2 through a bonding material.
  • the switch 3 is sealed and fixed by a bonding material, preferably silicone rubber in the embodiment of the present invention.
  • the bionic robotic flying fish can be powered on and off; there are two pitch pectoral fins 4, and the two pitch pectoral fins are symmetrically arranged on the left and right sides of the body, so The pitching pectoral fin is rotatably mounted on the body gear drive to achieve rotational movement about the axis in the left and right direction under the driving of the first power device.
  • the first power device refers to the pitching pectoral fin driving steering gear;
  • the variable structure pectoral fin 5 and the second power device are connected together by a transmission shaft, which can realize the expansion and folding functions of the variable structure pectoral fin 5.
  • the second power device refers to the variable structure pectoral fin Drive steering gear; the groove 6 is used to place the folded structure pectoral fin 5, which can reduce the resistance of the bionic robotic flying fish swimming in the water; the tail waterproof skin 7 is made of silicone rubber and the body cabin 1 are connected together to realize an overall waterproof seal; the tail fin 9 and the fish body are connected together by the tail mandrel joint 8 to realize the swing movement of the tail fin 9.
  • the body includes a fixed plate 10, a driving steering gear 11, a transmission gear set 12, a first transmission shaft 13, a first bearing 14, a movable sealing ring 15, a bearing fixing member 16, and a left pectoral fin 17.
  • the right pectoral fin 18 is composed of a pitch pectoral fin module.
  • the fixing plate 10 fixes the driving steering gear 11 in the body;
  • the first power device in an embodiment of the invention, is preferably the driving steering gear 11, through a first transmission mechanism, In the embodiment, it is preferably the first transmission shaft 13, which drives the pitch pectoral fin to rotate.
  • the first transmission mechanism preferably includes a transmission gear set 12, a first bearing 14 and a first transmission shaft 13.
  • the power output end of the driving steering gear 11 is in transmission connection with the driving gear of the transmission gear set 12, the driving gear and the driven gear are meshed, and can be rotatably mounted on the body, and the first transmission shaft 13 is connected to
  • the driven gear of the transmission gear set is coaxially fixedly connected, the first transmission shaft 13 and the first bearing 14 are rotatably mounted on the body, and two ends of the first transmission shaft 13 are respectively connected to a shaft.
  • the pitch pectoral fins are fixed, that is, the left end of the first transmission shaft 13 is connected with the left pectoral fin 17, and the right end of the first transmission shaft 13 is connected with the right pectoral fin 18; the left pectoral fin 17 and the right pectoral fin 18 pass through the driving servo 11 and the transmission
  • the gear set 12 and the first transmission shaft 13 realize the rotational movement, and cooperate with the rapid tail propulsion of the bionic robotic flying fish, which can realize the up and down diving movement in the water and the adjustment of the water outlet angle during the water-to-air medium transition process of the bionic robotic flying fish;
  • a bearing 14 is used to fix the first transmission shaft 13 and reduce the friction force during rotation; the movable seal ring 15 is used for waterproof sealing during the rotation of the transmission shaft; the bearing fixing member 16 is used to prevent The axial movement of the first bearing 14 is described.
  • variable structure pectoral fin module consists of a driving steering gear 19, a second transmission shaft 20, a second bearing 21, a dynamic sealing ring 22, a leading edge fin 23, a middle fin 24, a trailing fin 25, and a fin membrane 26 composition.
  • the variable structure pectoral fins are two symmetrical left and right sides of the body, and the two variable structure pectoral fins include two front edge fin rays, two middle fin rays, two rear edge fin rays, and two fin membranes; the rear edge
  • the fin 25 is fixed to the body, and the second transmission shaft is in transmission connection with the second power device.
  • the second power device refers to the driving steering gear 19, and the leading edge fin 23 is driven by the driving steering gear 19 to rotate synchronously with the second transmission shaft 20, so that the fin membrane 26 fixed to the leading edge fin and the trailing edge fin is opened or closed, that is, the drive
  • the steering gear 19 drives the leading edge fin rays 23 and the middle fin rays 24 to rotate through the second transmission shaft 20 to realize the expansion and folding functions of the variable structure pectoral fin 5;
  • the bearing 21 is used to fix the As for the second transmission shaft 20, the movable sealing ring 22 is used for waterproof sealing during the rotation of the second transmission shaft 20.
  • the front edge fin rays 23, the middle fin rays 24, and the rear edge fin rays 25 are supported by spring steel materials and have good strength and elastic deformation ability.
  • variable structure pectoral fins when the variable structure pectoral fins are completely folded and folded, the front edge fin rays 23, the middle fin rays 24, and the rear edge fin rays 25 are coaxially folded together, and are gathered in the groove of the body Inside.
  • variable structure pectoral fin when the variable structure pectoral fin is fully deployed, that is, the front edge fin rays 23, the middle fin rays 24, and the rear edge fin rays 25 move to the position shown in the figure where the fin membrane can be fully expanded.
  • the middle fin 24 is provided with a D-shaped hole
  • the second transmission shaft 20 is provided with a sliding and rotating part that is gap-fitted with the D-shaped hole
  • the sliding and rotating part includes a sliding part connected and closed along the second transmission shaft.
  • the sliding and rotating part is provided with an action groove, the action groove penetrates the plane area and the cylindrical surface area; the connection between the action groove and the cylindrical surface area, the The connection between the acting groove and the plane area is arranged in sequence along the rotation direction of the second transmission shaft, and arranged in order to determine the directionality, that is, the acting groove is arranged on the left side of the second transmission shaft as shown in the figure. .
  • the angle of the action groove is equal to the angle between the leading edge fin ray and the middle fin ray in the fully expanded state of the fin membrane, and the connection point between the action groove and the plane area and the action groove
  • the connecting line between the connection with the cylindrical surface area is a first connecting line
  • the angle of the action groove is the angle between the first connecting line and the plane area, that is, the middle fin
  • the second transmission shaft 20 rotates counterclockwise, and the leading edge fins 23 are synchronized with the second transmission shaft 20 to counterclockwise.
  • the trailing edge fin 25 is fixed to the body without rotating, and the middle fin 24 and the second transmission shaft rotate relative to each other until the straight surface of the D-shaped hole of the middle fin 24 and the
  • the middle fin 24 rotates synchronously with the second transmission shaft 20, that is, in an embodiment of the present invention, the middle fin 24 and the second transmission shaft After the shaft relatively slides, it rotates at a fixed angle, and the front edge fin 23 completely rotates 90 degrees with the shaft.
  • FIG. 6 is a partial enlarged view of the effective groove of the right shaft of the second transmission shaft, in an embodiment of the invention, from top to bottom, the first groove (that is, the D-shaped groove) and the circlip are assembled,
  • the second transmission shaft part between the first groove and the second groove is an area that is fully matched with the front fins
  • an elastic retaining ring between the front edge fin and the middle fin is fixed below the front fin to prevent the front fin from sliding down and pressing the middle fin
  • the second groove It is the action groove for the middle fin to cooperate with the second transmission shaft, that is, the sliding rotating part, the D-shaped hole of the middle fin is in the action groove, and follows the second transmission shaft to slide relatively first Then fully cooperate with the rotation.
  • the sliding and rotating part is the second groove part opened in the figure, that is, the groove where the middle fin and the second transmission shaft act oppositely, and the acting groove penetrates the plane area.
  • the plane of the D-shaped hole and the cylindrical surface area (the curved surface of the D-shaped hole), the connection between the action groove and the cylindrical surface area (as shown in the figure, the projection line of the action groove on the horizontal plane and the The left junction of the cylindrical surface), the junction of the action groove and the plane area (as shown in the figure, the junction of the projection line of the action groove on the horizontal plane and the right junction of the plane area) along the second transmission
  • the rotation directions of the shafts are arranged in sequence, that is, when the second transmission shaft rotates counterclockwise, the action groove is arranged on the left side of the second transmission shaft as shown in the figure.
  • the action groove The position corresponds to the direction of rotation of the transmission shaft, so I won’t repeat them here;
  • the angle of the action groove is equal to the angle between the leading edge fin and the middle fin when the fin membrane is fully expanded, and the connection point between the action groove and the plane area (the intersection point of the right projection)
  • the line between the connection point (the intersection point of the projection on the left) between the action groove and the cylindrical surface area is a first line, and the angle of the action groove is between the first line and the plane area
  • the included angle that is, the included angle between the projection line of the action groove on the horizontal plane and the projection line of the plane area of the D-shaped hole on the horizontal plane
  • the trailing edge fin 25 is connected to the transmission shaft 20 by a circular hole and is a clearance fit, and does not rotate with the shaft, and is bonded on the plane of the groove of the body with an adhesive.
  • the fin membrane 26 is made of an elastic film, which is adhered to the front edge fin rays 23, the middle fin rays 24, and the rear edge fin rays 25 by an adhesive, as the structure of the pectoral fin
  • the fin surface provides lift for the bionic robotic flying fish to move in the air and achieve gliding motion.
  • the included angle between the leading edge fin 23 and the middle fin 24 can be designed according to needs, and is not limited to the angle described in the embodiment of the present invention; the fin and the transmission
  • the connection of the shaft is not limited to the manner adopted in the embodiment of the present invention, as long as it can meet the movement requirements in the embodiment of the present invention.
  • the tail propulsion module of the water-air amphibious trans-medium bionic flying fish includes a motor 32, a reduction box 33, a fixed frame 34, an eccentric wheel 35, a slide rail 36, a tail joint 37, a joint shaft 38, and a tail handle joint 8 and the tail fin 9, wherein the reduction box 33 is fixedly connected to the output end of the third power device.
  • the third power device refers to the motor 32, and the eccentric wheel 35 is fixedly connected At the output end of the reduction box 33, the motor 32 drives the reduction box 33 and the eccentric wheel 35 to rotate; the tail joint 37 is hinged to the body, and the slide rail 36 passes through the joint shaft 38 It is rotatably hinged to the tail joint 37, and is used to convert the unidirectional continuous rotation of the output shaft of the reduction box 33 into the left and right reciprocating swing of the tail joint 37; the tail fin is hinged to the tail joint, or , The tail fin is fixed to the tail joint.
  • the motor 32 is an aeromodelling motor, and its rotor is a motor housing.
  • the baffle 41 and the motor cover 42 are used to isolate the motor 32 to ensure the safety of the bionic robot flying fish during operation, that is, the motor 32 has high power
  • the high-density model airplane motor has a high output power under the premise of ensuring small size and light weight, which can meet the propulsion requirements of the bionic robotic flying fish to quickly swim out of water, as well as the needs of lightweight and miniaturization; because the motor 32 has a speed Fast and low output torque.
  • the output torque can be greatly increased to realize the rapid swing of the tail joint 37;
  • the reduction box 33 is fixed to the body by the fixing frame 34
  • the output shaft is assembled with the eccentric wheel 35; the eccentric wheel 35 and the slide rail 36 are connected to convert the rapid unidirectional continuous rotation of the output shaft of the reduction box 33 into the tail joint 37
  • the symmetrical rapid reciprocating swing greatly improves the rotation efficiency of the motor 32, thereby realizing the rapid advancement of the flying fish tail of the bionic machine.
  • the caudal mandibular joint 8 and the caudal joint 37 are connected by the joint shaft 38, and the caudal mandibular joint 8 and the caudal fin 9 are fixedly connected together.
  • the caudal fin 9 It can passively reciprocate left and right relative to the joint shaft 38, and the limit baffle 39 can limit the maximum swing angle of the passive tail fin.
  • the angle at which the tail fin can swing left and right is the body
  • the range of -40° to 40° on both sides of the axis of the tail fin, as known to those skilled in the art, is that the position of the limit baffle can be set according to actual needs to plan the left and right swing angle of the tail fin; when the tail fin When it is fixedly connected to the tail joint, that is, the tail stem joint 8 is fixed at the threaded hole 40 by screws, the bionic robotic flying fish can become a single-joint propulsion structure.
  • the bionic robotic flying fish propulsion can be obtained by adjusting the swing amplitude of the tail joint 37 and the swing angle of the tail joint 8 by changing the diameter of the eccentric wheel 35 and the position of the limit baffle 39, respectively.
  • the best bionic robotic flying fish propulsion performance; the water-air amphibious trans-medium bionic robotic flying fish also includes a tail waterproof skin, the tail waterproof skin covering the tail of the body, the tail waterproof skin is preferably latex rubber It is made of material and has good flexibility and waterproof performance.
  • the waterproof skin of the tail and the body of the fish are sealed and connected by sealant to realize the waterproof function of the tail of the bionic robotic flying fish and meet the requirements of underwater movement of the bionic robotic flying fish. demand.
  • the bionic robotic flying fish also includes an action rod, the eccentric wheel 36 is rotatably installed in a plane perpendicular to the length direction of the water-air amphibious trans-medium bionic robotic flying fish, and the action rod is fixed to the eccentric wheel and to The rotation axis of the eccentric wheel is kept at a distance; the slide rail includes two action parts, the two action parts are symmetrically arranged on the left and right sides of the main body, and the free end of the action rod is connected to the sliding rail
  • the length of the action rod must be ensured to be inside the slide rail, when the eccentric wheel rotates in the circumferential direction, the action rod rotates under the drive of the eccentric wheel, and the action rod is subjected to the sliding rail on the slide rail.
  • the two action parts of the slide rail move up and down within the slide rail, that is, the action end does both circumferential motion and linear motion, that is, the slide rail moves the output shaft of the reduction box
  • the rapid unidirectional continuous rotation is converted into the left and right rapid reciprocating swing of the tail joint.
  • the tail joint includes two acting parts, the two acting parts are fixedly connected in a V-shape, and the connecting ends of the two acting parts of the tail joint are provided with a limiting baffle, and the limiting baffle is used to limit the tail fin
  • the maximum swing angle of the tail joint is preferably as shown in Figure 6, which greatly reduces the resistance of the bionic robotic flying fish in the water, and is light in weight, saving materials and reducing costs.
  • the water-air amphibious cross-medium bionic flying fish also includes a control system module, the control system module includes a lithium battery 27, a gyroscope 28, a communication module 29, a motor drive module 30 and a control module 31; the control module 31 and the motor drive module 30 are powered by the lithium battery 27; the control module 31 communicates with the host computer through the communication module 29, that is, the communication module communicates with the outside world for sending the water
  • the movement state of the air amphibious cross-medium bionic machine flying fish can send the attitude information of the bionic machine flying fish acquired by the gyroscope 28, or receive different swimming mode commands sent by the outside world, and can also receive the control commands sent by the host computer.
  • the motor 32, the driving steering gear 11, and the driving steering gear 19 perform driving control, thereby realizing the corresponding swimming mode.
  • the controller controls the rotation of the two pitching pectoral fins, the folding or unfolding of the variable structure pectoral fins, and the swinging of the tail joints to perform the underwater high-speed and high-maneuvering movement of the water-air amphibious trans-medium bionic robotic flying fish.
  • the third power device acts as a tail propulsion mechanism to drive the tail fin to reciprocate left and right to provide the power for the water-air amphibious trans-medium bionic flying fish to move forward. It is controlled by controlling the frequency of the tail joint swing The advancing speed of the bionic robotic flying fish is controlled by the rotation of the pitch pectoral fins to realize the floating and submerging movement of the water-air amphibious trans-medium bionic robotic flying fish in the water, and the variable structure pectoral fins are folded on both sides of the body.
  • the water-air amphibious trans-medium bionic robotic flying fish realizes the flying fish of the water-air amphibious trans-medium bionic machine by controlling the pitch angle of the pitch pectoral fin and cooperating with the rapid swing of the tail joint.
  • the variable structure pectoral fin is quickly deployed.
  • the unfolded variable-structure pectoral fins provide lift for the gliding motion to realize the air gliding motion.
  • control The glide posture of the bionic robotic flying fish can realize rapid splashing and falling water movement when the variable structure pectoral fins are fully folded in the air.
  • the bionic robotic flying fish adopts lightweight and miniaturized design ideas, so as to achieve better swimming performance, reduce the difficulty of water-to-air transition, and have better air gliding motion capabilities.
  • the bionic robotic flying fish proposed by the present invention has the advantages of both underwater high-speed motion and air gliding motion of water and air amphibious trans-medium movement, and can realize the excellent water and air amphibious trans-medium movement ability of biological flying fish;
  • Different navigation media are adapted to different mission requirements: in a water environment, through a swing-tail bionic propulsion method, the bionic robotic flying fish swims fast and has strong mobility, and is suitable for performing tasks in complex underwater environments;
  • the pitch pectoral fin serves as a control wing surface to change the pitch angle during movement.
  • this method Compared with the existing method of attitude adjustment by moving the mass slider, this method has the advantages of fast adjustment speed, large adjustment range, and small space occupation; through the rapid advancement of the flying fish tail of the bionic machine and the coordination of the pitch pectoral fin, It can jump out of the water to realize the transition between water and air medium, and enter the air medium to perform tasks; in the air, the bionic robotic flying fish provides lift through the unfolded variable structure pectoral fins, so as to perform gliding motion and improve movement efficiency. It is suitable for airborne Perform tasks. In the overall design process, the design ideas of miniaturization and light weight are adopted, so that the bionic robotic flying fish can more easily realize the transition between water and air medium and achieve a longer glide distance.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate the direction or positional relationship The terminology is based on the direction or positional relationship shown in the drawings. This is only for ease of description, and does not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a reference to the original Limitations of the invention.
  • the terms “first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Transportation (AREA)
  • Toys (AREA)

Abstract

一种水空两栖跨介质仿生机器飞鱼,包括本体、俯仰胸鳍(4)、变结构胸鳍(5)、尾部推进模块、检测传感器和控制器。通过控制尾部推进模块实现身体/尾鳍式的水下仿鱼推进,通过调节变结构胸鳍(5)实现仿生机器飞鱼空中的滑翔运动以及快速溅落式入水运动,通过控制尾部推进模块与俯仰胸鳍(4)间的配合实现水空跨介质过渡的出水运动,通过检测传感器检测周围环境,通过控制器控制仿生飞鱼运动模式。

Description

一种水空两栖跨介质仿生机器飞鱼 技术领域
本发明涉及水空两栖跨介质机器人领域,具体涉及一种水空两栖跨介质仿生机器飞鱼。
背景技术
水空两栖跨介质机器人是在空气介质和水体环境中同时具备生存能力的海空一体化机器人,它能够在水和空气两种不同的流体介质间进行运动过渡,并且在两种介质中具备运动能力,它融合了水下航行器的强隐蔽性和空中飞行器的高机动性等优势,在海上侦察、监视、通信中继等军事领域和海洋灾难搜救、生态环境监测、海洋资源探索等民事领域具有广泛的应用前景。
国内外的科研人员积极开展了水空两栖跨介质机器人的探索和研究工作,目前水空两栖跨介质机器人还处于概念设计、关键技术和功能验证以及样机制作阶段,已有的水空两栖跨介质机器人样机较少,且大多采用螺旋桨推进的方式实现水空介质之间的过渡,具有水下运动性能差、扰动大、推进效率低以及跨介质过渡时间长等缺点,给水空跨介质任务的执行带来诸多不便,鉴于水空跨介质任务对过渡过程的较高要求,因此需要提出跨介质航行器快速、高效地实现水空介质过渡的新技术方案。
飞鱼是一种具有快速、高机动游动能力以及跃出水面在空中进行滑翔运动的海洋鱼类,拥有高超的运动技能。在水下,飞鱼将可折叠的胸鳍紧贴在身体两侧,减小水中的阻力,依靠身体尾部和尾鳍进行快速推进,能够以10m/s(约20~40倍体长/秒)的速度跃出水面。一旦身体出水,飞鱼展开胸鳍,并以高达35Hz的摆动频率继续拍动处于水中的尾鳍下叶,在水面继续加速滑行,最终达到将近20m/s的速度完全跃出水面。然后,开始在空中进行滑翔运动,距离可以达到50m。当滑翔至水面时,飞鱼将尾鳍再次浸入水中,进行快速摆动,在水面进行加速滑行,实现连续的滑翔飞行运 动,飞鱼高超的运动技巧能够有效地躲避捕食者并同时提高运动效率,这些高超的运动能力是其他鱼类所不能具备的。
飞鱼优异的水空两栖跨介质运动能力,吸引了仿生机器人领域研究人员的广泛关注,他们试图将飞鱼高效的跨介质运动机制应用到仿生机器人中,研制出具有出色运动性能的水空两栖跨介质机器人。一方面,与螺旋桨推进的跨介质航行器相比,仿生机器飞鱼采用鱼类摆尾式的仿生推进方式,具有高效、高机动、低扰动等优点,具备更好的水下运动性能,从而更适合在狭窄、复杂的水下环境中进行监测、搜索、救援等作业;另一方面,仿生机器飞鱼采用高速游动的方式跃出水面进行滑翔运动,具有快速实现水空介质过渡的能力以及节省能量、高效航行的特点。近年来,国内外的一些研究机构对仿生机器飞鱼开展了研究,但是并没有研制出能够依靠尾部推进实现水空两栖跨介质运动的仿生机器飞鱼样机。
仿生机器飞鱼采用摆尾式的推进方式跃出水面,实现水空两栖跨介质运动,该过程需要很快的游动速度,因此需要具有大推进力的驱动机构,同时,仿生机器飞鱼出水速度和体长密切相关,空中滑翔距离和质量相关,因此,需要设计一种新型的具有高功率密度(尺寸小、质量轻、功率高)的驱动推进系统。仿生机器飞鱼要实现水下的高速游动以及空中的滑翔运动,需要设计一种新的变结构胸鳍机构,以满足不同介质航行的结构兼容性要求,具体地,在水中能够紧紧贴合在身体两侧,减小水中运动的阻力,实现快速游动;在空中能够展开胸鳍,提供升力满足长距离滑翔运动的要求;而在入水过程中,需要满足结构强度的要求。
受生物飞鱼能够利用变结构胸鳍和摆尾式推进达到快速游动进而实现水空两栖跨介质运动以及利用变结构胸鳍实现空中滑翔运动节省能量的启发,本发明将飞鱼高效的跨介质运动机制引入到仿生机器飞鱼上,使之兼具水下高速、高机动性游动以及空中滑翔的水空两栖跨介质运动能力的优点,有效解决现有技术中水下运动性能差、扰动大、推进效率低以及跨介质过渡时间长的问题。
发明内容
本发明要解决的问题是水空两栖跨介质机器人水下运动性能 差、扰动大、推进效率低以及水空介质过渡时间长。
为了解决现有技术中的上述问题,即为了解决水空两栖跨介质机器人水下运动性能差、扰动大、推进效率低以及水空介质过渡时间长等问题,本发明实施例提供了一种水空两栖跨介质仿生机器飞鱼,包括本体、俯仰胸鳍、变结构胸鳍、尾部推进模块、检测传感器和控制器,其中,
所述俯仰胸鳍为两个,所述两个俯仰胸鳍对称布置在所述本体的左右两侧,所述俯仰胸鳍在第一动力装置的驱动下绕左右方向的轴线可转动地安装于所述本体;
所述变结构胸鳍为两个,所述两个变结构胸鳍对称布置在所述本体的左右两侧,所述变结构胸鳍在第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体;
所述尾部推进模块安装在所述水空两栖跨介质仿生机器飞鱼的后方;
所述检测传感器安装于所述本体,配置为检测所述本体的姿态、所述俯仰胸鳍的转动角度、所述仿生机器飞鱼在水体环境中的深度以及空中滑翔的高度、所述变结构胸鳍的打开/收拢状态、所述尾部推进模块的摆动频率和所述本体的周围环境中的至少一者,所述检测传感器的信号输出端、所述第一动力装置的控制端、所述第二动力装置的控制端和所述第三动力装置的控制端均与所述控制器信号连接。
在一些优选实例中,所述第一动力装置通过第一传动机构驱动所述俯仰胸鳍转动,所述第一传动机构包括主动齿轮、从动齿轮、轴承和第一传动轴,所述第一动力装置的动力输出端与所述主动齿轮传动连接,所述主动齿轮和所述从动齿轮均可转动地安装于所述本体并且啮合,所述第一传动轴与所述从动齿轮同轴固定连接,所述第一传动轴通过所述轴承可转动地安装于所述本体,所述第一传动轴的两端分别与一个所 述俯仰胸鳍固定连接。
在一些优选实例中,所述变结构胸鳍包括鳍条和鳍膜,其中,每个所述变结构胸鳍均包括前缘鳍条和后缘鳍条,所述后缘鳍条固定于所述本体,所述前缘鳍条在所述第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体,借以将固定于所述前缘鳍条和所述后缘鳍条的所述鳍膜展开或折叠,以实现所述水空两栖跨介质仿生机器飞鱼的空中滑翔运动以及溅落式入水运动。
在一些优选实例中,所述变结构胸鳍还包括可转动地安装于所述本体的第二传动轴,所述第二传动轴与所述第二动力装置传动连接,所述前缘鳍条固定连接于所述第二传动轴;
所述鳍条还包括中间鳍条,所述中间鳍条设置有D型孔,所述第二传动轴上设置有与所述D型孔间隙配合的滑动转动部,所述滑动转动部包括沿所述第二传动轴连接并封闭的平面区和圆柱面区,所述滑动转动部设置有作用槽,所述作用槽贯通所述平面区和所述圆柱面区;
所述作用槽与所述圆柱面区的连接处、所述作用槽与所述平面区的连接处沿着所述第二传动轴的转动方向依次布置;
所述作用槽的角度等于所述鳍膜完全展开状态下所述前缘鳍条与所述中间鳍条之间的夹角,所述作用槽与所述平面区的连接处和所述作用槽与所述圆柱面区的连接处之间的连线为第一连线,所述作用槽的角度为所述第一连线与所述平面区之间的夹角;
在一些优选实例中,所述鳍膜为两个,所述两个鳍膜对称布置在所述本体的左右两侧,所述鳍膜与所述前缘鳍条、所述中间鳍条和所述后缘鳍条固定连接。
在一些优选实例中,所述水空两栖跨介质仿生机器飞鱼还包括尾部推进模块、偏心轮和滑轨,其中,
所述尾部推进模块包括尾部驱动模块和尾部关节模块,其中,
所述尾部驱动模块包括第三动力装置和减速箱,所述减速箱固定连接于所述第三动力装置的输出端,所述偏心轮固定连接于所述减速箱的输出端,所述第三动力装置驱动所述减速箱、所述偏心轮转动;
所述尾部关节模块包括尾部关节和尾鳍,所述尾部关节铰接于所述本体,所述滑轨铰连接于所述尾部关节,并用于将所述减速箱的输出轴的单方向连续转动转化为所述尾部关节的左右往复摆动。
所述尾鳍铰接于所述尾部关节,或者,所述尾鳍固定于所述尾部关节。
在一些优选实例中,还包括作用杆,所述偏心轮在所述水空两栖跨介质仿生机器飞鱼的长度方向垂直的平面内可转动地安装,所述作用杆固定于所述偏心轮并且到所述偏心轮的转动轴线保持距离;
所述滑轨包括两个作用部,所述两个作用部对称布置在所述主体的左右两侧,所述作用杆的自由端到所述滑轨的铰接轴的距离>所述作用部朝向所述偏心轮的侧面到所述滑轨的铰接轴的距离。
在一些优选实例中,所述尾部关节包括两个作用部,所述两个作用部呈V字形固定连接,所述尾部关节的两个作用部连接端设置有限位挡板,所述限位挡板用来调整所述尾鳍的最大摆动角度。
在一些优选实例中,所述水空两栖跨介质仿生机器飞鱼还包括通信模块,所述通信模块与外界通讯连接,用于发送所述水空两栖跨介质仿生机器飞鱼运动状态或者接收外界发送的不同游动模式指令。
在一些优选实例中,所述水空两栖跨介质仿生机器飞鱼还包括尾部防水蒙皮,所述尾部防水蒙皮覆盖于所述本体的尾部,用于所述水空两栖跨介质仿生机器飞鱼的防水密封。
在一些优选实例中,所述控制器通过控制所述两个俯仰胸鳍转动、所述变结构胸鳍的收拢或展开以及所述尾部关节摆动以执行所述水空两栖跨介质仿生机器飞鱼的水下高速高机动运动、水空介质过渡运动 以及空中滑翔运动三种工作模式,其中,
在水下高速高机动运动模式下,所述第三动力装置作为尾部推进机构驱动所述尾部关节左右往复摆动并带动所述尾鳍左右往复摆动提供所述水空两栖跨介质仿生机器飞鱼前进的动力,通过控制所述尾部关节摆动的频率控制仿生机器飞鱼前进的速度,所述第一动力装置通过第一传动机构控制所述俯仰胸鳍运动,通过控制所述俯仰胸鳍的俯仰角实现水中的上浮下潜运动,所述变结构胸鳍收拢于所述本体两侧;
在水空介质过渡运动模式下,所述水空两栖跨介质仿生机器飞鱼通过控制所述俯仰胸鳍的俯仰角并配合所述尾部关节的快速摆动,实现所述水空两栖跨介质仿生机器飞鱼跃出水面,在所述变结构胸鳍离开水面后,快速展开所述变结构胸鳍;
在空中滑翔运动模式下,所述水空两栖跨介质仿生机器飞鱼跃出水面后,展开的变结构胸鳍提供滑翔运动的升力,实现空中滑翔运动,通过控制所述变结构胸鳍展开的角度,控制所述仿生机器飞鱼的滑翔姿态,当在空中完全收拢变结构胸鳍时,能够实现快速的溅落式入水运动。
本发明的有益效果为:本发明兼具水下高速运动以及空中滑翔运动的水空两栖跨介质运动的优点,能够实现生物飞鱼出色的水空两栖跨介质运动能力,可以通过切换不同的航行介质适应不同的任务要求:在水体环境中,通过摆尾式仿生推进方式,所述仿生机器飞鱼游动速度快,机动性强,适用于复杂的水下环境中执行任务,将所述俯仰胸鳍作为控制翼面,可以改变在水下环境运动时的俯仰角,实现上浮下潜运动。该方式具有调节速度快,调节范围大,占用空间小的优点;通过所述仿生机器飞鱼尾部的快速推进和所述俯仰胸鳍配合,能够跃出水面实现水空介质的过渡,进入到空气介质中执行任务;在空气中,所述仿生机器飞鱼通过展开的所述变结构胸鳍提供升力,进行滑翔运动,提高运动效率,适用于空中执行任务。在整体设计过程中采用小型化和轻量化的设 计思想,使得仿生机器飞鱼能够更容易实现水空介质过渡以及达到更远的滑翔距离,有效解决了现有技术中水下运动性能差、扰动大、推进效率低以及跨介质过渡时间长的问题。
附图说明
图1是本发明一实施例整体结构示意图。
图2是本发明一实施例俯仰胸鳍结构示意图。
图3是本发明一实施例变结构胸鳍结构示意图。
图4是本发明一实施例变结构胸鳍的一侧胸鳍完全折叠结构示意图。
图5是本发明一实施例变结构胸鳍的一侧胸鳍完全展开结构示意图。
图6是本发明一实施例第二传动轴的作用槽的局部放大图。
图7是本发明一实施例控制系统模块与尾部推进系统结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明实施例公开了一种水空两栖跨介质仿生机器飞鱼,包括本体、俯仰胸鳍、变结构胸鳍、尾部推进模块、检测传感器和控制器,其中,
所述俯仰胸鳍为两个,所述两个俯仰胸鳍对称布置在所述本体的左右两侧,所述俯仰胸鳍在第一动力装置的驱动下绕左右方向的轴线可转动地安装于所述本体,所述第一动力装置为所述俯仰胸鳍提供动力, 并通过调节所述俯仰胸鳍的俯仰角度来实现对所述水空两栖跨介质仿生机器飞鱼的上浮下潜运动模式的调整;
所述变结构胸鳍为两个,所述两个变结构胸鳍对称布置在所述本体的左右两侧,所述变结构胸鳍在第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体,所述第二动力装置为所述变结构胸鳍提供动力,并根据仿生机器飞鱼在不同的工作模式下控制所述变结构胸鳍的展开或者收拢,与仿生机器飞鱼的运动状态配合,达到仿生机器飞鱼最好的工作状态。
所述尾部推进模块包括尾部驱动模块和尾部关节模块,其中,
所述尾部驱动模块包括第三动力装置和减速箱,所述减速箱固定连接于所述第三动力装置的输出端,所述偏心轮固定连接于所述减速箱的输出端,所述第三动力装置驱动所述减速箱、所述偏心轮转动,即本发明采用电机与减速箱配合提供尾部动力,实现所述仿生机器飞鱼的水下快速游动;
所述尾部关节模块包括尾部关节和尾鳍,所述尾部关节铰接于所述本体,所述滑轨铰连接于所述尾部关节,并用于将所述减速箱的输出轴的单方向连续转动转化为所述尾部关节的左右往复摆动;
所述尾鳍铰接于所述尾部关节,或者,所述尾鳍固定于所述尾部关节。在第三动力装置的驱动下左右可摆动地安装于所述本体的后方,所述第三动力装置为所述尾部关节提供动力,所述尾部关节在所述第三动力装置作用下,可配合机器飞鱼不同的工作模式实现不同的摆动频率;
所述尾鳍通过旋转轴安装于所述尾部关节的末端,在所述尾部关节和周围流体的相互作用下,被动的绕轴快速左右摆动,为仿生机器飞鱼的快速游动提供推进力。
所述检测传感器安装于所述本体,配置为检测所述本体的姿态、所述俯仰胸鳍的转动角度、所述仿生机器飞鱼在水体环境中的深度以及 空中滑翔的高度、所述变结构胸鳍的打开/收拢状态、所述尾部关节的摆动频率和所述本体的周围环境中的至少一者,所述检测传感器的信号输出端、所述第一动力装置的控制端、所述第二动力装置的控制端和所述第三动力装置的控制端均与所述控制器信号连接,所述检测传感器可检测机器飞鱼的运动状态信息,所述运动状态包括仿生机器飞鱼的俯仰胸鳍的俯仰角度、仿生机器飞鱼的变结构胸鳍的折叠/收拢状态、所述仿生机器飞鱼在水体环境中的深度以及空中滑翔的高度、仿生机器飞鱼的尾部关节的摆动频率以及仿生机器飞鱼外部环境状态,所述控制器基于检测到的仿生机器飞鱼当前的工作模式、仿生机器飞鱼的俯仰胸鳍的俯仰角度、仿生机器飞鱼的变结构胸鳍的折叠/收拢状态、所述仿生机器飞鱼在水体环境中的深度以及空中滑翔的高度、仿生机器飞鱼的尾部关节的摆动频率以及仿生机器飞鱼外部环境状态信息中的至少一者,发送工作模式指令至第一动力装置的控制端、所述第二动力装置的控制端和所述第三动力装置的控制端,控制所述仿生机器飞鱼实现模式指令。
下面结合附图进一步说明本发明一实施例的优选实施方式。参照附图1,本发明的水空两栖跨介质仿生机器飞鱼的整体外形采用生物飞鱼的流线型设计,包括躯体舱1、顶盖2、开关3、俯仰胸鳍4、变结构胸鳍5、凹槽6、尾部防水蒙皮7、尾柄关节8、尾鳍9,其中,所述躯体舱1为带有所述凹槽6的流线型壳体,用于放置所述仿生机器飞鱼的机械结构以及控制系统模块,并与所述顶盖2通过粘结材料,在本发明实施例中优选硅橡胶连接在一起,实现防水密封;所述开关3通过粘结材料,在本发明实施例中优选硅橡胶密封固定在所述顶盖2上,能够对所述仿生机器飞鱼进行上电和断电操作;所述俯仰胸鳍4为两个,所述两个俯仰胸鳍对称布置在所述本体的左右两侧,所述俯仰胸鳍在第一动力装置的驱动下绕左右方向的轴线可转动地安装于所述本体齿轮传动实现旋转运动,在发明实施例中第一动力装置指的是俯仰胸鳍驱动舵机;所 述变结构胸鳍5和所述第二动力装置通过传动轴连接在一起,能够实现所述变结构胸鳍5的展开与折叠功能,变结构胸鳍为两个,所述两个变结构胸鳍对称布置在所述本体的左右两侧,所述变结构胸鳍在第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体,在发明实施例中第二动力装置指的是变结构胸鳍驱动舵机;所述凹槽6用于放置折叠后的所述变结构胸鳍5,能够减小仿生机器飞鱼在水中游动的阻力;所述尾部防水蒙皮7通过硅橡胶和所述躯体舱1连接在一起,实现整体的防水密封;所述尾鳍9和鱼体通过所述尾柄关节8连接在一起,实现所述尾鳍9的摆动运动。
参照附图2,所述本体中包含了由固定板10、驱动舵机11、传动齿轮组12、第一传动轴13、第一轴承14、动密封圈15、轴承固定件16、左胸鳍17、右胸鳍18组成的俯仰胸鳍模块。所述固定板10将所述驱动舵机11固定于所述本体中;所述第一动力装置,在本发明一实施例中优选为驱动舵机11,通过第一传动机构,在本发明一实施例中优选为第一传动轴13,驱动所述俯仰胸鳍转动,所述第一传动机构,在本发明一实施例中优选为包括传动齿轮组12、第一轴承14和第一传动轴13,所述驱动舵机11的动力输出端与所述传动齿轮组12的主动齿轮传动连接,主动齿轮和从动齿轮啮合,均可转动地安装于所述本体,所述第一传动轴13与所述传动齿轮组的从动齿轮同轴固定连接,所述第一传动轴13与所述第一轴承14转动地安装于所述本体,所述第一传动轴13的两端分别与一个所述俯仰胸鳍固定,即第一传动轴13左端与左胸鳍17连接,第一传动轴13右端与右胸鳍18连接;所述左胸鳍17和右胸鳍18通过所述驱动舵机11、所述传动齿轮组12以及所述第一传动轴13实现旋转运动,配合仿生机器飞鱼快速的尾部推进,能够实现水中的上浮下潜运动以及仿生机器飞鱼水空介质过渡过程中出水角度的调整;所述第一轴承14用于固定所述第一传动轴13并减小转动过程中的摩擦力;所 述动密封圈15用于传动轴转动过程中的防水密封;所述轴承固定件16用于阻止所述第一轴承14的轴向运动。
参照附图3,变结构胸鳍模块由驱动舵机19、第二传动轴20、第二轴承21、动密封圈22、前缘鳍条23、中间鳍条24、后缘鳍条25、鳍膜26组成。变结构胸鳍为所述本体左右对称的两个,所述两个变结构胸鳍包括两个前缘鳍条、两个中间鳍条、两个后缘鳍条以及两个鳍膜;所述后缘鳍条25固定于所述本体,所述第二传动轴与所述第二动力装置传动连接,在本发明一实施例中第二动力装置指的是驱动舵机19,所述前缘鳍条23在驱动舵机19的驱动下随第二传动轴20同步转动,借以将固定于所述前缘鳍条和所述后缘鳍条的所述鳍膜26撑开或收拢,即所述驱动舵机19通过所述第二传动轴20带动所述前缘鳍条23和所述中间鳍条24进行转动,实现所述变结构胸鳍5的展开与折叠功能;所述轴承21用于固定所述第二传动轴20,所述动密封圈22用于所述第二传动轴20转动过程中的防水密封。
作为优选,所述前缘鳍条23、中间鳍条24、后缘鳍条25采用弹簧钢材料支撑,具备良好的强度以及弹性形变能力。
进一步地,以附图1中右侧变结构胸鳍为例,结合附图4和附图5详细说明本发明一实施例的胸鳍收拢、展开的过程。
如附图4所示,当所述变结构胸鳍完全收拢折叠时,所述前缘鳍条23、中间鳍条24、后缘鳍条25同轴折叠在一起,收拢于所述本体的凹槽内。
如附图5所示,当所述变结构胸鳍完全展开时,即所述前缘鳍条23、中间鳍条24、后缘鳍条25运动到可完全撑开鳍膜的如图位置,所述中间鳍条24设置有D型孔,所述第二传动轴20上设置有与所述D型孔间隙配合的滑动转动部,所述滑动转动部包括沿所述第二传动轴连接并封闭的平面区和圆柱面区,所述滑动转动部设置有作用槽,所述作用槽贯通 所述平面区和所述圆柱面区;所述作用槽与所述圆柱面区的连接处、所述作用槽与所述平面区的连接处沿着所述第二传动轴的转动方向依次布置,依次布置为确定方向性,即所述作用槽如图所示设置在所述第二传动轴的左边。
所述作用槽的角度等于所述鳍膜完全展开状态下所述前缘鳍条与所述中间鳍条之间的夹角,所述作用槽与所述平面区的连接处和所述作用槽与所述圆柱面区的连接处之间的连线为第一连线,所述作用槽的角度为所述第一连线与所述平面区之间的夹角,即所述中间鳍条24与所述第二传动轴20配合转动时,在所述第二传动轴20上设置的所述作用槽的投影线与水平线的夹角(锐角)与胸鳍完全展开时所述前缘鳍条23与所述中间鳍条24在水平面内投影的夹角相一致,在本发明实施例中,所述夹角优选为45度。
当从完全折叠状态即附图4,变成完全展开的状态即附图5时,所述第二传动轴20逆时针转动,所述前缘鳍条23随所述第二传动轴20同步逆时针转动,所述后缘鳍条25固定于所述本体不转动,所述中间鳍条24与所述第二传动轴相对转动至所述中间鳍条24的D型孔的直线面与所述第二传动轴的作用槽完全配合时,所述中间鳍条24随着所述第二传动轴20同步转动,即在本发明一实施例中,所述中间鳍条24与所述第二传动轴相对滑动后,转动了一固定的角度,所述前缘鳍条23则完全随轴转动了90度。
进一步地,如附图6为第二传动轴右轴的作用槽的局部放大图,在发明一实施例中,从上到下,第一个槽(即D型凹槽)和卡簧装配,用以防止所述前缘鳍条在轴向脱离所述第二传动轴,在第一个槽与第二个槽之间的第二传动轴部分为和所述前缘鳍条完全配合的区域,所述前缘鳍条和所述中间鳍条之间优选弹性挡圈固定于所述前缘鳍条下方,防止所述前缘鳍条滑下压住所述中间鳍条,第二个槽为所述中间鳍条与所 述第二传动轴相配合的作用槽,即滑动转动部,所述中间鳍条的D型孔在所述作用槽内,跟随所述第二传动轴先相对滑动再完全配合转动。如图所示,所述滑动转动部即为图示中开设的第二个槽部,即所述中间鳍条和所述第二传动轴相对作用的槽,所述作用槽贯通所述平面区(D型孔的平面)和所述圆柱面区(D型孔的曲面),所述作用槽与所述圆柱面区的连接处(如图所示所述作用槽在水平面的投影线与所述圆柱面的左边交接处)、所述作用槽与所述平面区的连接处(如图所示作用槽在水平面的投影线与所述平面区的右边交接处)沿着所述第二传动轴的转动方向依次布置,即当所述第二传动轴逆时针转动时,所述作用槽设置在第二传动轴如图所示的左侧,作为本领域技术人员所知,所述作用槽的位置与所述传动轴的转动方向相对应,不在此一一赘述;
所述作用槽的角度等于所述鳍膜完全展开状态下所述前缘鳍条与所述中间鳍条之间的夹角,所述作用槽与所述平面区的连接处(右边投影交点)和所述作用槽与所述圆柱面区的连接处(左边投影交点)之间的连线为第一连线,所述作用槽的角度为所述第一连线与所述平面区之间的夹角(即所述作用槽在水平面的投影线与所述D型孔的平面区在水平面的投影线的夹角);
作为优选,所述后缘鳍条25采用圆形孔与所述传动轴20连接且为间隙配合,并不随轴转动,并且使用粘结剂粘结在所述本体的凹槽的平面上。
作为优选,所述鳍膜26采用弹性薄膜制成,通过粘结剂粘结在所述前缘鳍条23、所述中间鳍条24、所述后缘鳍条25上面,作为变结构胸鳍的鳍面,为仿生机器飞鱼在空中运动提供升力,实现滑翔运动。
为本领域技术人员所知的是,所述前缘鳍条23与所述中间鳍条24的夹角可根据需要自行设计,并不仅仅限于本发明实施例中所述角 度;鳍条与传动轴的连接也不仅仅限于本发明实施例中采用的方式,只要能满足本发明实施例中运动要求均可。
参照附图7,所述水空两栖跨介质仿生机器飞鱼的尾部推进模块包括电机32、减速箱33、固定架34、偏心轮35、滑轨36、尾部关节37、关节轴38、尾柄关节8和尾鳍9,其中,所述减速箱33固定连接于所述第三动力装置的输出端,在本发明实施例中所述第三动力装置指的是电机32,所述偏心轮35固定连接于所述减速箱33的输出端,所述电机32驱动所述减速箱33、所述偏心轮35转动;所述尾部关节37铰接于所述本体,所述滑轨36通过所述关节轴38可转动地铰接于所述尾部关节37,并用于将所述减速箱33的输出轴的单方向连续转动转化为所述尾部关节37的左右往复摆动;所述尾鳍铰接于所述尾部关节,或者,所述尾鳍固定于所述尾部关节。所述电机32为航模电机,其转子为电机外壳,采用挡板41和电机罩42对所述电机32进行隔离,保证仿生机器飞鱼在运行过程中的安全,即所述电机32采用具有高功率密度的航模电机,在保证尺寸小和质量轻的前提下,具有很高的输出功率,能够满足仿生机器飞鱼快速游动出水的推进能力要求以及轻量化、小型化的需求;由于电机32具有转速快、输出扭矩较小的特点,通过与所述减速箱33进行装配,能够大大增加输出的扭矩实现所述尾部关节37快速摆动;所述减速箱33通过所述固定架34固定在所述躯体舱1上,输出轴与所述偏心轮35进行装配;所述偏心轮35和所述滑轨36进行连接,将所述减速箱33输出轴快速单方向的连续转动转化为所述尾部关节37左右对称的快速往复摆动,大大地提高了所述电机32的转动效率,进而实现仿生机器飞鱼尾部的快速推进。所述尾柄关节8和所述尾部关节37通过所述关节轴38连接,所述尾柄关节8和所述尾鳍9固定连接在一起,在所述尾部关节37的带动下,所述尾鳍9能够相对于所述关节轴38进行被动地左右往复摆动,所述限位挡板39能够限制被动尾鳍的最大摆动角度,在本发 明实施例中,所述尾鳍可左右摆动的角度为所述本体的轴线两侧的-40°到40°范围,为本领域技术人员可知的是,可根据实际需要通过所述限位挡板的位置设置,规划所述尾鳍左右摆动的角度;当所述尾鳍与所述尾部关节固定连接时,即在所述螺纹孔40处通过螺丝将所述尾柄关节8固定,所述仿生机器飞鱼就可以变成单关节的推进结构。所述仿生机器飞鱼推进可以通过改变所述偏心轮35的直径以及所述限位挡板39的位置分别调整所述尾部关节37的摆动幅值和所述尾柄关节8的摆动角度,进而得到最好的仿生机器飞鱼推进性能;所述水空两栖跨介质仿生机器飞鱼还包括尾部防水蒙皮,所述尾部防水蒙皮覆盖于所述本体的尾部,所述尾部防水蒙皮优选采用乳橡胶材料制成,具有良好的柔性和防水性能,通过密封胶将所述尾部防水蒙皮和鱼体进行密封连接,实现所述仿生机器飞鱼尾部的防水功能,满足所述仿生机器飞鱼水下运动的需求。
所述仿生机器飞鱼还包括作用杆,所述偏心轮36在所述水空两栖跨介质仿生机器飞鱼的长度方向垂直的平面内可转动地安装,所述作用杆固定于所述偏心轮并且到所述偏心轮的转动轴线保持距离;所述滑轨包括两个作用部,所述两个作用部对称布置在所述主体的左右两侧,所述作用杆的自由端到所述滑轨的铰接轴的距离>所述作用部朝向所述偏心轮的侧面到所述滑轨的铰接轴的距离,即所述作用杆为用于所述偏心轮与所述滑轨的作用件,优选地,所述作用杆的长度要保证处于所述滑轨内部,当偏心轮周向转动时,所述作用杆在所述偏心轮的带动下转动,所述作用杆在所述滑轨受到所述滑轨两作用部的限制,在所述滑轨内做上下移动,即所述作用端既做周向运动,又做直线运动,也就是,所述滑轨将所述减速箱的输出轴的快速单方向的连续转动转化为所述尾部关节的左右快速往复摆动。
所述尾部关节包括两个作用部,所述两个作用部呈V字形固定连接,所述尾部关节的两作用部连接端设置有限位挡板,所述限位挡 板用来限制所述尾鳍的最大摆动角度,所述尾部关节优选如图6结构,极大地减少了所述仿生机器飞鱼在水中的阻力,而且重量轻,节约材料,降低成本。
进一步地,所述水空两栖跨介质仿生机器飞鱼还包括控制系统模块,所述控制系统模块包括锂电池27、陀螺仪28、通信模块29、电机驱动模块30和控制模块31;所述控制模块31和所述电机驱动模块30由所述锂电池27进行供电;所述控制模块31通过所述通信模块29和上位机进行通信,即所述通信模块与外界通讯连接,用于发送所述水空两栖跨介质仿生机器飞鱼运动状态即能够发送所述陀螺仪28获取到的仿生机器飞鱼的姿态信息,或者接收外界发送的不同游动模式指令,也能够接收上位机发送的控制指令,对所述电机32、驱动舵机11、驱动舵机19进行驱动控制,进而实现相应的游动模式。
所述控制器通过控制所述两个俯仰胸鳍转动、所述变结构胸鳍的收拢或展开以及所述尾部关节摆动以执行所述水空两栖跨介质仿生机器飞鱼的水下高速高机动运动、水空介质过渡运动和空中滑翔运动三种工作模式,其中,
在水下高速运动模式下,所述第三动力装置作为尾部推进机构驱动所述尾鳍左右往复摆动提供所述水空两栖跨介质仿生机器飞鱼前进的动力,通过控制所述尾部关节摆动的频率控制仿生机器飞鱼前进的速度,通过控制所述俯仰胸鳍的转动,实现所述水空两栖跨介质仿生机器飞鱼在水中的上浮下潜运动,所述变结构胸鳍收拢于所述本体两侧。
在水空介质过渡运动模式下,所述水空两栖跨介质仿生机器飞鱼通过控制所述俯仰胸鳍的俯仰角并配合所述尾部关节的快速摆动,实现所述水空两栖跨介质仿生机器飞鱼跃出水面,在所述变结构胸鳍离开水面后,快速展开所述变结构胸鳍。
在空中滑翔运动模式下,所述水空两栖跨介质仿生机器飞鱼跃出水面后,展开的变结构胸鳍提供滑翔运动的升力,实现空中滑翔运动,通过控制所述变结构胸鳍展开的角度,控制所述仿生机器飞鱼的滑翔姿态,当在空中完全收拢变结构胸鳍时,能够实现快速的溅落式入水运动。所述的仿生机器飞鱼采用轻量化和小型化的设计思想,以便实现更好的游动性能、降低水空过渡的难度和具备更好的空中滑翔运动能力。
基于上述技术方案可知,本发明提出的仿生机器飞鱼兼具水下高速运动以及空中滑翔运动的水空两栖跨介质运动的优点,能够实现生物飞鱼出色的水空两栖跨介质运动能力;可以通过切换不同的航行介质适应不同的任务要求:在水体环境中,通过摆尾式仿生推进方式,所述仿生机器飞鱼游动速度快,机动性强,适用于复杂的水下环境中执行任务;可以将所述俯仰胸鳍作为控制翼面,改变运动时的俯仰角。与现有通过移动质量滑块进行姿态调节的方式相比,该方式具有调节速度快,调节范围大,占用空间小的优点;通过所述仿生机器飞鱼尾部的快速推进和所述俯仰胸鳍配合,能够跃出水面实现水空介质的过渡,进入到空气介质中执行任务;在空气中,所述仿生机器飞鱼通过展开的所述变结构胸鳍提供升力,进行滑翔运动,提高运动效率,适用于空中执行任务。在整体设计过程中采用小型化和轻量化的设计思想,使得仿生机器飞鱼能够更容易实现水空介质过渡以及达到更远的滑翔距离。
在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
术语“包括”或者任何其它类似用语旨在涵盖非排他性的包含,从而使得包括一系列要素的过程、物品或者设备/装置不仅包括那些要素,而且还包括没有明确列出的其它要素,或者还包括这些过程、物品或者设备/装置所固有的要素。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种水空两栖跨介质仿生机器飞鱼,其特征在于,包括本体、俯仰胸鳍、变结构胸鳍、尾部推进模块、检测传感器和控制器,其中,
    所述俯仰胸鳍为两个,所述两个俯仰胸鳍对称布置在所述本体的左右两侧,所述俯仰胸鳍在第一动力装置的驱动下绕左右方向的轴线可转动地安装于所述本体;
    所述变结构胸鳍为两个,所述两个变结构胸鳍对称布置在所述本体的左右两侧,所述变结构胸鳍在第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体;
    所述尾部推进模块安装在所述水空两栖跨介质仿生机器飞鱼的后方;
    所述检测传感器安装于所述本体,配置为检测所述本体的姿态、所述俯仰胸鳍的转动角度、所述仿生机器飞鱼在水体环境中的深度以及空中滑翔的高度、所述变结构胸鳍的打开/收拢状态、所述尾部推进模块的摆动频率和所述本体的周围环境中的至少一者,所述检测传感器的信号输出端、所述第一动力装置的控制端、所述第二动力装置的控制端和所述第三动力装置的控制端均与所述控制器信号连接。
  2. 根据权利要求1所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述第一动力装置通过第一传动机构驱动所述俯仰胸鳍转动,所述第一传动机构包括主动齿轮、从动齿轮、轴承和第一传动轴,所述第一动力装置的动力输出端与所述主动齿轮传动连接,所述主动齿轮和所述从动齿轮均可转动地安装于所述本体并且啮合,所述第一传动轴与所述从动齿轮同轴固定连接,所述第一传动轴通过所述轴承可转动地安装于所述本体,所述第一传动轴的两端分别与一个所述俯仰胸鳍固定连接。
  3. 根据权利要求1所述的一种水空两栖跨介质仿生机器飞鱼,其特 征在于,所述变结构胸鳍包括鳍条和鳍膜,其中,
    每个所述变结构胸鳍均包括前缘鳍条和后缘鳍条,所述后缘鳍条固定于所述本体,所述前缘鳍条在所述第二动力装置的驱动下沿从前向后的方向可收拢地安装于所述本体,借以将固定于所述前缘鳍条和所述后缘鳍条的所述鳍膜展开或折叠,以实现所述水空两栖跨介质仿生机器飞鱼的空中滑翔运动以及溅落式入水运动。
  4. 根据权利要求3所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述变结构胸鳍还包括可转动地安装于所述本体的第二传动轴,所述第二传动轴与所述第二动力装置传动连接,所述前缘鳍条固定于所述第二传动轴;
    所述鳍条还包括中间鳍条,所述中间鳍条设置有D型孔,所述第二传动轴上设置有与所述D型孔间隙配合的滑动转动部,所述滑动转动部包括沿所述第二传动轴连接并封闭的平面区和圆柱面区,所述滑动转动部设置有作用槽,所述作用槽贯通所述平面区和所述圆柱面区,
    所述作用槽与所述圆柱面区的连接处、所述作用槽与所述平面区的连接处沿着所述第二传动轴的转动方向依次布置;
    所述作用槽的角度等于所述鳍膜完全展开状态下所述前缘鳍条与所述中间鳍条之间的夹角,所述作用槽与所述平面区的连接处和所述作用槽与所述圆柱面区的连接处之间的连线为第一连线,所述作用槽的角度为所述第一连线与所述平面区之间的夹角;
    所述鳍膜为两个,所述两个鳍膜对称布置在所述本体的左右两侧,所述鳍膜与所述前缘鳍条、所述中间鳍条和所述后缘鳍条固定连接。
  5. 根据权利要求1所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述水空两栖跨介质仿生机器飞鱼还包括尾部推进模块、偏心 轮和滑轨,其中,
    所述尾部推进模块包括尾部驱动模块和尾部关节模块,其中,
    所述尾部驱动模块包括第三动力装置和减速箱,所述减速箱固定连接于所述第三动力装置的输出端,所述偏心轮固定连接于所述减速箱的输出端,所述第三动力装置驱动所述减速箱、所述偏心轮转动;
    所述尾部关节模块包括尾部关节和尾鳍,所述尾部关节铰接于所述本体,所述滑轨铰连接于所述尾部关节,并用于将所述减速箱的输出轴的单方向连续转动转化为所述尾部关节的左右往复摆动;所述尾鳍铰接于所述尾部关节,或者,所述尾鳍固定于所述尾部关节。
  6. 根据权利要求5所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,还包括作用杆,所述偏心轮在所述水空两栖跨介质仿生机器飞鱼的长度方向垂直的平面内可转动地安装,所述作用杆固定于所述偏心轮并且到所述偏心轮的转动轴线保持距离;
    所述滑轨包括两个作用部,所述两个作用部对称布置在所述主体的左右两侧,所述作用杆的自由端到所述滑轨的铰接轴的距离>所述作用部朝向所述偏心轮的侧面到所述滑轨的铰接轴的距离。
  7. 根据权利要求5所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述尾部关节包括两个作用部,所述两个作用部呈V字形固定连接,所述尾部关节的两作用部连接端末端设置有限位挡板,所述限位挡板用来调整所述尾鳍的最大摆动角度,以实现和尾部关节摆动角度的配合,达到最优的游动性能。
  8. 根据权利要求1所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述水空两栖跨介质仿生机器飞鱼还包括通信模块,所述通信 模块与外界通讯连接,用于发送所述水空两栖跨介质仿生机器飞鱼运动姿态信息以及接收外部发送的控制指令。
  9. 根据权利要求1所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述水空两栖跨介质仿生机器飞鱼还包括尾部防水蒙皮,所述尾部防水蒙皮覆盖于所述本体的尾部,用于所述水空两栖跨介质仿生机器飞鱼的防水密封。
  10. 根据权利要求1至9中任一项所述的一种水空两栖跨介质仿生机器飞鱼,其特征在于,所述控制器通过控制所述两个俯仰胸鳍转动、所述变结构胸鳍的收拢或展开以及所述尾部关节的摆动以执行所述水空两栖跨介质仿生机器飞鱼的水下高速高机动运动、水空介质过渡运动和空中滑翔运动三种工作模式,其中,
    在水下高速高机动运动模式下,所述第三动力装置作为尾部推进机构驱动所述尾部关节左右往复摆动并带动所述尾鳍左右往复摆动提供所述水空两栖跨介质仿生机器飞鱼前进的动力,通过控制所述尾部关节摆动的频率控制仿生机器飞鱼前进的速度,所述第一动力装置通过第一传动机构控制所述俯仰胸鳍运动,通过控制所述俯仰胸鳍的俯仰角实现水中的上浮下潜运动,所述变结构胸鳍收拢于所述本体两侧;
    在水空介质过渡运动模式下,所述水空两栖跨介质仿生机器飞鱼通过控制所述俯仰胸鳍的俯仰角并配合所述尾部关节的快速摆动,实现所述水空两栖跨介质仿生机器飞鱼跃出水面,在所述变结构胸鳍离开水面后,快速展开所述变结构胸鳍;
    在空中滑翔运动模式下,所述水空两栖跨介质仿生机器飞鱼跃出水面后,展开的变结构胸鳍提供滑翔运动的升力,实现空中滑翔运动,通过控制所述变结构胸鳍展开的角度,控制所述仿生机器飞鱼的滑翔姿态, 当在空中完全收拢变结构胸鳍时,能够实现快速的溅落式入水运动。
PCT/CN2020/085042 2019-07-10 2020-04-16 一种水空两栖跨介质仿生机器飞鱼 WO2021004110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/279,099 US11208186B2 (en) 2019-07-10 2020-04-16 Water-air amphibious cross-medium bio-robotic flying fish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910617884.8 2019-07-10
CN201910617884.8A CN110239712B (zh) 2019-07-10 2019-07-10 一种水空两栖跨介质仿生机器飞鱼

Publications (1)

Publication Number Publication Date
WO2021004110A1 true WO2021004110A1 (zh) 2021-01-14

Family

ID=67891661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085042 WO2021004110A1 (zh) 2019-07-10 2020-04-16 一种水空两栖跨介质仿生机器飞鱼

Country Status (3)

Country Link
US (1) US11208186B2 (zh)
CN (1) CN110239712B (zh)
WO (1) WO2021004110A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135077A (zh) * 2021-04-19 2021-07-20 江汉大学 一种智能两栖双体深海工程勘探潜航器
CN113305850A (zh) * 2021-06-15 2021-08-27 西南科技大学 一种柔性机器人及其设计方法
CN113771566A (zh) * 2021-10-11 2021-12-10 燕山大学 水陆两栖仿生机器人
CN113879052A (zh) * 2021-10-22 2022-01-04 哈尔滨工程大学 跨介质水冲压动力系统及航行器
CN115042940A (zh) * 2022-03-24 2022-09-13 中国舰船研究设计中心 一种人工肌肉驱动的拍动式水下机器人
CN115195978A (zh) * 2022-07-06 2022-10-18 深圳职业技术学院 一种智能仿生机器鱼
CN115503911A (zh) * 2022-09-30 2022-12-23 哈尔滨工程大学 仿生鱼式水下滑翔机
CN116495142A (zh) * 2022-09-13 2023-07-28 广东海洋大学 一种多航态复合驱动水下机器人

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239712B (zh) 2019-07-10 2021-01-12 中国科学院自动化研究所 一种水空两栖跨介质仿生机器飞鱼
CN110758689A (zh) * 2019-11-22 2020-02-07 中国科学院自动化研究所 仿生机器鱼
CN111003128B (zh) * 2019-12-26 2022-05-13 四川九强通信科技有限公司 一种无人机避障的雷达和单目视觉传感器融合及悬挂机构
CN112078766B (zh) * 2020-08-17 2023-06-02 河北汉光重工有限责任公司 一种水下航行器
CN111976938B (zh) * 2020-08-19 2022-03-18 天津大学 一种仿海狮前鳍推进装置
CN112224368B (zh) * 2020-10-29 2022-02-22 西湖大学 用于水下航行器的重心调节机构及应用该机构的航行器
CN112660365B (zh) * 2020-12-30 2022-11-01 中国特种飞行器研究所 一种跨介质变体机翼水密装置及跨介质变体飞行器
CN112937820B (zh) * 2021-04-27 2021-09-28 中国科学院自动化研究所 仿生机器金枪鱼
CN113311705B (zh) * 2021-05-19 2022-03-25 广州大学 针对机器鱼的高阶迭代自学习控制方法、装置及存储介质
US20230121727A1 (en) * 2021-10-14 2023-04-20 Daniel Aukes Buckling beams for underwater and terrestrial autonomous vehicles
CN114044138B (zh) * 2021-11-01 2023-11-07 上海智能制造功能平台有限公司 一种仿生鲸鱼的悬浮飞行器及其控制方法
CN114394219A (zh) * 2022-01-14 2022-04-26 中国科学院深圳先进技术研究院 基于头部及多鱼鳍协同运动的智能仿生机器鱼
CN114620211B (zh) * 2022-01-21 2024-03-08 北京航天发射技术研究所 稳定性增强的仿生无人潜航器及应用
CN114655408B (zh) * 2022-03-03 2023-07-21 江苏科技大学 仿生蝠鲼装置及工作方法
CN115285347B (zh) * 2022-07-01 2023-06-23 哈尔滨工程大学 一种高速斜入水的仿生降载结构构型及入水方法
CN115610625B (zh) * 2022-10-09 2023-04-21 桂林电子科技大学 一种水中翻转式潜浮机器人
CN115593653B (zh) * 2022-10-28 2024-04-16 中国工程物理研究院总体工程研究所 高速空-水介质跨越测试回收试验装置及试验方法
CN117148727B (zh) * 2023-10-31 2024-01-30 西北工业大学 基于尾鳍与变浮力系统的仿蝠鲼航行器底栖下潜控制方法
CN117284460B (zh) * 2023-11-22 2024-04-05 太原理工大学 一种用于无人潜航器的波动式推进装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1776700A (en) * 1928-08-22 1930-09-23 Anonima Piaggio & C Soc Fin system for hydroaeroplanes and/or water aircraft
CN2868840Y (zh) * 2005-09-26 2007-02-14 中国科学院自动化研究所 一种仿生机器鱼
CN104589938A (zh) * 2014-03-20 2015-05-06 中国特种飞行器研究所 一种仿飞鱼可变构型跨介质飞行器
CN104627342A (zh) * 2014-12-08 2015-05-20 中国科学院自动化研究所 一种滑翔机器海豚
CN106005323A (zh) * 2016-06-30 2016-10-12 深圳乐智机器人有限公司 一种仿生水下滑翔机及其推进方法
CN109733601A (zh) * 2019-01-25 2019-05-10 浙江大学 仿飞鱼跨介质无人飞行器及其控制方法
CN110239712A (zh) * 2019-07-10 2019-09-17 中国科学院自动化研究所 一种水空两栖跨介质仿生机器飞鱼

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920792A (en) * 1908-01-02 1909-05-04 Julius Uherkovich De Uherkocz Winged propelling and guiding mechanism for air-ships.
US1031807A (en) * 1910-12-27 1912-07-09 Ernest Molnar Air-navigating machine.
US2021627A (en) * 1935-05-13 1935-11-19 Alvin T Gilpin Aircraft
US3806277A (en) * 1972-10-26 1974-04-23 A Hill Propulsion device having at least one flexible blade
DE4303619C2 (de) * 1993-02-02 1998-02-05 Aleksandr Bosak In ein Land- oder Luftfahrzeug verwandelbares Fahrzeug
US10017248B2 (en) * 2014-04-28 2018-07-10 University Of Maryland, College Park Flapping wing aerial vehicles
CN105922831B (zh) * 2016-05-23 2017-12-22 吉林大学 水空两栖航行器的仿生变形机翼及其入水控制方法
CN106005337B (zh) * 2016-07-29 2018-01-16 中国科学院自动化研究所 一种单电机驱动的两关节机器鱼
US11124281B2 (en) * 2018-10-16 2021-09-21 Arizona Board Of Regents On Behalf Of Arizona State University Mechanisms for steering robotic fish
CN110304223B (zh) * 2019-07-04 2020-09-29 中国科学院自动化研究所 仿生机器蝠鲼
US10935986B1 (en) * 2019-11-28 2021-03-02 Institute Of Automation, Chinese Academy Of Sciences Gliding depth control method, system and device for biomimetic gliding robotic dolphin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1776700A (en) * 1928-08-22 1930-09-23 Anonima Piaggio & C Soc Fin system for hydroaeroplanes and/or water aircraft
CN2868840Y (zh) * 2005-09-26 2007-02-14 中国科学院自动化研究所 一种仿生机器鱼
CN104589938A (zh) * 2014-03-20 2015-05-06 中国特种飞行器研究所 一种仿飞鱼可变构型跨介质飞行器
CN104627342A (zh) * 2014-12-08 2015-05-20 中国科学院自动化研究所 一种滑翔机器海豚
CN106005323A (zh) * 2016-06-30 2016-10-12 深圳乐智机器人有限公司 一种仿生水下滑翔机及其推进方法
CN109733601A (zh) * 2019-01-25 2019-05-10 浙江大学 仿飞鱼跨介质无人飞行器及其控制方法
CN110239712A (zh) * 2019-07-10 2019-09-17 中国科学院自动化研究所 一种水空两栖跨介质仿生机器飞鱼

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135077A (zh) * 2021-04-19 2021-07-20 江汉大学 一种智能两栖双体深海工程勘探潜航器
CN113135077B (zh) * 2021-04-19 2023-12-05 江汉大学 一种智能两栖双体深海工程勘探潜航器
CN113305850A (zh) * 2021-06-15 2021-08-27 西南科技大学 一种柔性机器人及其设计方法
CN113305850B (zh) * 2021-06-15 2022-03-08 西南科技大学 一种柔性机器人及其设计方法
CN113771566B (zh) * 2021-10-11 2023-08-01 燕山大学 水陆两栖仿生机器人
CN113771566A (zh) * 2021-10-11 2021-12-10 燕山大学 水陆两栖仿生机器人
CN113879052A (zh) * 2021-10-22 2022-01-04 哈尔滨工程大学 跨介质水冲压动力系统及航行器
CN115042940A (zh) * 2022-03-24 2022-09-13 中国舰船研究设计中心 一种人工肌肉驱动的拍动式水下机器人
CN115195978A (zh) * 2022-07-06 2022-10-18 深圳职业技术学院 一种智能仿生机器鱼
CN116495142A (zh) * 2022-09-13 2023-07-28 广东海洋大学 一种多航态复合驱动水下机器人
CN116495142B (zh) * 2022-09-13 2024-01-30 广东海洋大学 一种多航态复合驱动水下机器人
CN115503911A (zh) * 2022-09-30 2022-12-23 哈尔滨工程大学 仿生鱼式水下滑翔机
CN115503911B (zh) * 2022-09-30 2023-09-12 哈尔滨工程大学 仿生鱼式水下滑翔机

Also Published As

Publication number Publication date
US20210354800A1 (en) 2021-11-18
CN110239712A (zh) 2019-09-17
US11208186B2 (en) 2021-12-28
CN110239712B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2021004110A1 (zh) 一种水空两栖跨介质仿生机器飞鱼
CN110304223B (zh) 仿生机器蝠鲼
CN102963514B (zh) 便携式水下海洋环境监测滑翔机
CN109204812B (zh) 一种固定翼与滑翔机结合的海空两栖航行器
CN104589938B (zh) 一种仿飞鱼可变构型跨介质飞行器
CN104627342A (zh) 一种滑翔机器海豚
CN104589939B (zh) 一种仿旗鱼可变构型跨介质飞行器
CN112977776B (zh) 多段组合式及翼展折叠式水下机器人的运动方式
CN107600370B (zh) 一种折叠式水下滑翔机太阳能翼板展开机构
CN112124489B (zh) 一种基于折叠翼的无人地效翼船
CN113060262A (zh) 扑翼发电驱动一体的海洋机器人及工作方法
CN109866903B (zh) 一种仿生可折叠胸鳍的机器鱼
CN112009189B (zh) 一种鲸尾轮水陆推进一体化两栖航行器
CN113086136A (zh) 一种复合推进仿生水母机器人
CN108638773A (zh) 一种三旋翼轮式水陆空三栖机器人
CN113998083B (zh) 基于波浪自供能的两自由度变翼装置及水下滑翔机
CN209814271U (zh) 一种四自由度扑翼飞行器装置
CN212738470U (zh) 一种串联式柔性驱动的仿生机器鱼
KR20160126500A (ko) 하이브리드 자율 무인 잠수정
RU2680678C1 (ru) Система управления движением подводного планера
CN116604985A (zh) 一种机翼可折展的水空跨介质飞行器
CN115056953A (zh) 一种可控变刚度仿生鳍式推进机构
CN110775262B (zh) 基于四旋翼驱动方式的尾座式海空跨域飞行器装置
CN114889821B (zh) 一种四翼扑翼微型水面飞行器及飞行方法
CN212046751U (zh) 一种火箭助推式跨介质自适应潜水无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836983

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836983

Country of ref document: EP

Kind code of ref document: A1