WO2021003786A1 - 一种血小板功能检测系统及检测方法 - Google Patents

一种血小板功能检测系统及检测方法 Download PDF

Info

Publication number
WO2021003786A1
WO2021003786A1 PCT/CN2019/099172 CN2019099172W WO2021003786A1 WO 2021003786 A1 WO2021003786 A1 WO 2021003786A1 CN 2019099172 W CN2019099172 W CN 2019099172W WO 2021003786 A1 WO2021003786 A1 WO 2021003786A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
pool
card
sample
separation
Prior art date
Application number
PCT/CN2019/099172
Other languages
English (en)
French (fr)
Inventor
徐新
Original Assignee
江苏柯伦迪医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏柯伦迪医疗技术有限公司 filed Critical 江苏柯伦迪医疗技术有限公司
Priority to GB2118035.1A priority Critical patent/GB2598865B/en
Priority to US17/597,312 priority patent/US12044605B2/en
Publication of WO2021003786A1 publication Critical patent/WO2021003786A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5002Partitioning blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0092Monitoring flocculation or agglomeration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/018Platelets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes

Definitions

  • the invention relates to platelet function inspection technology, in particular to a platelet function detection system and detection method.
  • thrombootic diseases are currently the most serious diseases that endanger human health and life in the world. Controlling platelet function is currently the most common and commonly used method of thrombosis prevention and treatment.
  • the current “standardized” application of antiplatelet drugs to all patients presents obvious clinical problems: it may not be effective in preventing and treating thrombotic diseases. Or bleeding hazards in patients due to overdose.
  • studies have confirmed that individual differences in antiplatelet drugs are widespread. Therefore, the detection of platelet function in the prevention and treatment of thrombosis is very important, and it is an important measure to achieve accurate prevention and treatment of thrombosis and improve the level of thrombosis prevention and treatment.
  • the existing platelet function testing methods have obvious shortcomings: poor accuracy, slow speed, and high-speed and large-scale testing.
  • the optical method is the longest used method of platelet function detection. This method requires repeated centrifugation for sample detection, and requires manual operation to separate platelet-rich plasma and platelet-poor plasma. The operation is extremely cumbersome, and because there are too many operations before the sample detection, it is often As a result, platelets are activated before the test, and the test results are not consistent with the actual condition of the patient's platelet function.
  • the purpose of the present invention is to provide a platelet function detection system and detection method.
  • a platelet function detection system which is composed of a detector and a detection card
  • the detector includes a separation-detection disk, a drive motor, a detection unit, a control and analysis unit, and a display unit.
  • the separation-detection disk is located in the instrument working room and the instrument studio has a constant temperature function;
  • the separation-detection disc is provided with more than one detection card position, and the separation-detection disc is driven by a drive motor to make a rotating movement to mix, separate and detect the samples on the detection card position;
  • the detection unit includes a light source transmitter, a receiver
  • the control and analysis unit is used to control the separation-detection disc, the drive motor, and the detection unit, and calculate and analyze the detection signal to generate a platelet function detection result report.
  • the display unit is used to display the detection Results and human-computer interaction;
  • a test card is set on the test card position.
  • the test card is divided into two or more inner cavity pools, and each inner cavity pool is connected by a narrow channel with a cross-sectional area of less than 60% of the maximum cross-sectional area of each pool cavity.
  • the inner cavity pools are all connected in series with a single channel; at least one inner cavity of the detection card is made of transparent material, which can detect optical signals of samples in the inner cavity.
  • a method for detecting platelet function includes the following steps:
  • Step 1 After adding the sample and the aggregating agent to the reaction pool of the sample detection card A, place the sample detection card on the detection card position on the instrument separation-detection turntable; simultaneously add the same blood sample to the control test with the same structure In the card A pool, and add an equal amount of isotonic diluent or anticoagulant to the control test card A pool;
  • Step 2 Start the instrument, the separation-detection turntable starts to rotate back and forth repeatedly, the blood sample and the aggregating agent in the sample detection card A pool follow the separation-the detection turntable shakes and mixes and reacts for more than 3 minutes, and the working chamber of the instrument maintains a constant temperature ;
  • Step 3 Subsequent separation-the detection turntable rotates at the first speed in one direction at a high speed, so that the samples in the sample test card and the control test card A pool flow to the B and C pools under the drive of centrifugal force.
  • the specific gravity is different for separation: red blood cells and white blood cells enter the C pool, and the platelet complexes after aggregation also enter the C pool; the B pool is plasma and the monomer platelets distributed in it;
  • Step 4 Subsequently, the instrument is separated-the detection turntable rotates at a low speed, and the instrument detection unit performs the first detection of the absorbance of the sample detection card and the B pool of the control detection card one by one;
  • Step 5 After the first test is completed, the separation-test turntable continues to rotate at a high speed at the second speed, so that the original platelets in the plasma of the B pool are precipitated into the C pool due to the centrifugal force of the high-speed centrifugation, and then the instrument checks the sample card again And the B pool of the control test card is tested again to obtain the blank value of plasma in the B pool of each test card;
  • Step 6 Calculate the platelet aggregation rate results of the blood samples of each test card
  • the net platelet content value in pool B of the control test card the absorbance value obtained in the first test of pool B of the control test card-the blank absorbance value of pool B of the control test card;
  • the net platelet content of the blood sample in pool B of the sample test card the absorbance value obtained in the first test of pool B of the sample test card-the blank absorbance value of pool B of the sample test card;
  • the present invention has significant advantages as follows: (1) Convenient detection: whole blood is used directly, red blood cells and white blood cells in the blood sample are automatically separated and the platelets of the sample are detected, eliminating cell interference; (2) detection is possible Any platelet receptor function can fully meet clinical needs; (3) Rapid detection is suitable for bedside detection of small samples, and also suitable for rapid batch detection of large numbers of samples; (4) The detection scheme effectively eliminates the cause of the cell in the test card and the sample Differences can better ensure the quality of the test results; (5) This method does not require manual intervention.
  • the instrument automatically completes the mixing reaction of blood samples and reagents, separates plasma, and accurately detects and compares the platelet content in the sample card and the control card to obtain the aggregating agent
  • the change in the number of platelets after stimulus activation leads to platelet aggregation, which directly reflects the platelet function.
  • This detection method can also effectively monitor the quality of the sample, and can eliminate the error of the detection result caused by the activation and aggregation of the platelet function in the sample before the detection; (6) Reagent consumption Less, less waste.
  • FIG. 1 is a schematic diagram of the instrument structure.
  • 1 is the instrument control unit
  • 2 is the display unit
  • 3 is the drive motor
  • 4 is the separation-detection plate
  • 5 is the detection unit
  • 6 is the printer
  • 7 is the light source
  • 8 is the detector
  • 9 is the fixed separation- The test card on the test disk.
  • Figure 2-1 is a schematic top view of the instrument separation-detection plate with a horizontal plate structure.
  • Figure 2-2 is a schematic diagram of the position of the instrument separation-detection plate and detection card.
  • 10 is an adjustable fixing device for the test card
  • 11 is a fixing device for the test card.
  • Figure 3-1 is a schematic top view of a test card with three internal cavity pools.
  • A is the reaction tank, and the inlet O is connected to it
  • B is the detection tank
  • C is the sedimentation tank
  • D1 and D2 are the narrow connection channels connecting the A, B, and C tanks respectively.
  • Figure 3-2 is a longitudinal cross-sectional view of a test card with three internal cavity pools.
  • Figure 3-3 is a top perspective view of the test card with three cavities. The difference from Figure 3-1 is that the card has a small exhaust channel E from the C pool to the test card A near the pool. Communication opening F.
  • Figure 4 is a schematic top view of the structure of a triple test card composed of three single test cards.
  • Figure 5-1 is a longitudinal sectional view of a detection card with an open top.
  • Figure 5-2 is a side perspective view of Figure 5-1.
  • Figure 6-1 is a schematic diagram of the horizontal separation-detection plate structure and the combination of the detection card for performing transmitted light detection.
  • Figure 6-2 is a schematic diagram of the horizontal separation-detection disc structure for performing scattering detection.
  • Fig. 6-3 is a schematic diagram of an angular separation-detection disc for performing transmission detection.
  • Figure 6-4 is a schematic diagram of an angled separation-detection disc for performing scatter detection.
  • Platelet function has many functions, is an important factor to maintain the normal physiology and health of the body, and also plays an important role in the pathological process of many diseases.
  • the detection of platelet function has important scientific research and clinical value.
  • the existing methods of platelet function detection are insufficient, which limits the application of platelet function detection in scientific research and clinical practice.
  • the instrument can automatically complete the whole process of mixing reaction, separation and detection of whole blood samples and reagents when combined with a specially designed test card, and the instrument is also designed with a variety of quality control measures to ensure high accuracy of test results.
  • a platelet function testing system which consists of two parts: a tester and a test card;
  • the detector includes a separation-detection disc 4, a drive motor 3, a detection unit 5, a control and analysis unit 1 and a display unit 2.
  • the separation-detection disc is located in the instrument working room, and the instrument studio also has a constant temperature function.
  • the separation-detection disk is driven by a drive motor to rotate and reciprocate.
  • the blood samples in the detection card are mixed and separated by high-speed rotating centrifugation, and drive separation-detection
  • the rotating motion of the disk makes the detection cells of the test cards and control cards on the disk pass through the test unit one by one to obtain the test results;
  • the test unit 5 includes a light source transmitter 7 and a receiver 8 for performing the separation of the sample in the test card
  • the control and analysis unit is used to control the separation-detection disk and the drive motor, while recording the detection data, and generate a report of the platelet function test results.
  • the display unit is used to display the test results and human-computer interaction, and the test results are passed through the printer 6 Print; the testing instrument automatically completes the sample and reagent mixing, separation, testing, analysis and result report at one time.
  • a detection card 9 is arranged on the detection card position, and the detection card is firmly fixed on the separation-detection plate by using a fixed card device 11 and an adjustable fixing device 10, and the detection card is a closed structure as a whole to the tail except for the entrance opening;
  • the test card is divided into two or more inner chambers, and each inner chamber is connected by a narrow channel with a cross-sectional area of less than 60% of the maximum cross-sectional area of the inner chamber of each cell. All the inner chambers are in a single-channel series sequence. Connected.
  • At least one inner cavity of the detection card is made of a transparent material, which can perform light signal detection on samples in the inner cavity.
  • the separation-detection disc 4 is set in the instrument working room, which has a heating constant temperature function, and the temperature is controlled within the range of 28-38°C.
  • the reaction mixing, centrifugal separation and detection of the sample and reagents are all completed in the instrument working room .
  • the detection card 9 uses an angle rotor or a horizontal rotor.
  • the separation-detection disk of the instrument can be a horizontal disk-shaped structure, and the detection card is placed horizontally and fixed on the horizontal separation-detection disk when performing detection, and the detection card is also horizontally fixed.
  • the detection card is placed and fixed on the angle separation-detection plate at an angle of 5-45°, and is closely attached and fixed to the surface of the detection plate.
  • the detection light source axis of the detection unit is perpendicular to the detection card; the receiver is set at a position perpendicular to the detection card and corresponding to the light source to detect transmitted light; or the receiver forms an angle with the detection light to detect scattered light .
  • A is a reaction tank
  • B is a detection tank
  • C is a sedimentation tank
  • the upward opening perpendicular to the axis of the test card is used to add samples and reagents, and the sample and reagents are mixed and reacted in this cell
  • cell B is connected with cell A and cell C through a narrow channel, and the cross-sectional area of the narrow channel is the cavity of each cell
  • the maximum cross-sectional area is less than 60%, except that B cell has no other openings; there is a small exhaust channel at the end of C cell that leads to the outer opening of cell A, but this channel is not connected to cell A and is used to exclude the centrifugation of the sample
  • the original air in the B and C pools during separation facilitates the sample entry into the B and C pools and the separation of sample components.
  • the volume of pool A is greater than or equal to the sum of the volumes of pools B and C, while the volumes of pools B and C are similar, and the difference between the two volumes is not more than 30%.
  • the connecting channel between each pool is a narrow channel with a cross-sectional area smaller than the maximum cross-sectional area of each pool 60% of it.
  • the detection card is provided with two internal chambers that are separated and connected by a narrow channel.
  • the reaction tank and the detection tank of the detection card share one internal chamber, and the other internal chamber without external opening is used as a sedimentation tank. .
  • the present invention also provides a detection method based on the platelet function detection system, which includes the following steps:
  • Step 1 After adding the sample and the aggregating agent to the reaction pool of the test card A, put the test card on the test card position on the instrument separation-test turntable and fix it; simultaneously add the same blood sample to the control test with the same structure Add an equal amount of isotonic diluent or anticoagulant to the control card A pool; the difference can be ignored because the reagent is added to the test when the reagent is actively added, and the same amount can also not be added to the control card A pool The isotonic diluent or anticoagulant.
  • the control test card is also fixed on the test card position on the separation-test tray according to the placement of the sample test card;
  • Step 2 Start the instrument, the separation-detection turntable starts to reciprocate back and forth several times, the blood sample and the aggregating agent in the detection card A pool follow the shaking and mix and react for more than 3 minutes. Keep the working room of the instrument at a constant temperature, take 28-38 °C;
  • Step 3 After the blood sample and the reagent are mixed, the separation-detection turntable rotates at the first speed in one direction at a high speed, so that the samples in each test card and control card A pool are driven by centrifugal force to flow to the BC pool.
  • the blood sample The different components in the cell are separated by different proportions: the red blood cells and white blood cells with larger specific gravity enter the C pool, and the larger platelet complexes after aggregation also enter the C pool; the B pool is plasma and the monomeric platelets or low Highly aggregated small platelet complexes; this time the centrifugal speed is 1000-4000 rpm, centrifugation is 3-10 minutes.
  • Step 4 the instrument is separated-the detection turntable slows down the rotation speed, and the instrument detection unit performs the first detection of the absorbance of each test card B pool; at this time, the detected absorbance (turbidity) is related to the content of platelets in the plasma; Use multiple wavelengths, or add dyes, markers, etc. to the sample to increase the sensitivity to specific cell recognition.
  • the rotation speed of the separation-detection disc is lower than 1000 revolutions per minute when testing.
  • Step 5 After the first test is completed, the separation-test disc continues to rotate at the second speed at a high speed. At this time, due to the higher speed, the monomer platelets originally suspended in the B pool will also settle into the C pool due to the higher-speed centrifugal force. in. The speed of this centrifugation is greater than 4500 rpm, and the centrifugation is more than 5 minutes. Subsequently, the instrument re-tested the B pool of each test card and the control test card, and obtained the blank value of each test card and the B pool of the control card.
  • Step 6 Calculation of the platelet content and aggregation rate of the blood sample of each test card
  • the instrument calculates the more accurate platelet content of each sample by deducting the O.D value obtained from the first test of the B pool and subtracting the blank value of the B pool. The calculation method is as follows:
  • the value of net platelet content in pool B of the control test card the absorbance value obtained in the first test of pool B of the control test card-the blank absorbance value of pool B of the test card; the absorbance values are all represented by O.D values.
  • the net platelet content of the blood sample in pool B of the sample test card the absorbance value obtained in the first test of pool B of the sample test card-the blank absorbance value of pool B of the sample test card (the absorbance O.D. value detected after the second centrifugation);
  • the separation-inspection turntable is lowered.
  • the instrument can also dynamically monitor the change in absorbance in cell B during the first centrifugation. When the sample separation condition in cell B centrifuges meets the test, the instrument will automatically detect and record the absorbance value of cell B in each test card, and then the instrument will turn to the second speed The high-speed separation begins.
  • each test card and control card of the same blood sample are the same, and the same separation and detection conditions are used.
  • the instrument When the net platelet content of the test control test card B pool is too low, lower than normal plasma, or the platelet plasma content of the sample, the instrument will automatically prompt the sample quality problem or the platelet aggregation in the sample has occurred to a high degree before the test.
  • the platelet function test results obtained under this condition have low reliability. Therefore, detection errors due to sample quality can be avoided.
  • the specific principle is that the method and instrument obtain the original platelet concentration in the sample by detecting the control card, that is, the platelet concentration before or without the aggregating agent in the sample, to determine whether the platelet content in the control card is lower than normal Concentration range, or lower than the actual platelet concentration range of the sample (also can be judged by referring to the blood analyzer report), if the platelet count of the control test card (ie the original blood sample) is lower than the normal range, or lower than the range of the sample.
  • the instrument automatically prompts that the sample is likely to have aggregated before the test, resulting in an excessive decrease in the number of platelets, and the authenticity of the platelet function test results obtained by the sample condition test is low.
  • this function of the instrument and method of the present invention can eliminate platelet function changes caused by platelet function activation and aggregation before the sample is tested, resulting in test results and actual platelets in the patient. Error results with too large functional differences can avoid error reports caused by sample quality.
  • the instrument obtains the platelet concentration (content) in the blood sample by detecting the control card B pool.
  • the specific detection and result calculation methods are: (the absorbance value obtained after the first centrifugation of the control card B pool-after the second centrifugation The absorbance value obtained by the detection of the detection card B pool) * K value.
  • the K value is the correlation coefficient between the content of platelets and the net absorbance value of platelets in the plasma.
  • the range of the K value is: 100-3000, and the unit is: ten thousand pieces/ml, which can also be expressed in other units.
  • the K value of each instrument needs to be calibrated and confirmed.
  • the instrument has the function of automatically analyzing the separation status of blood samples online.
  • the instrument uses multi-wavelength (260-700nm range) to analyze the sedimentation and content of red blood cells, white blood cells, platelets and other cell components in the sample.
  • multi-wavelength 260-700nm range
  • the instrument starts to detect the detection areas of the cards in the same group of samples Perform a turbidity scan for platelet content; samples that are separated early will yield results earlier, and samples that have been separated later will extend the separation time to ensure that testing is done after separation.
  • the detector has the function of determining the height of the upper and lower interface of the supernatant after the sample in the test card is separated and scanning the whole process.
  • the detector uses multiple different wavelengths. Due to the difference in the transmission and scattering of different wavelengths due to particle size, by using the difference in absorbance of different wavelengths, it has the function of analyzing the ratio of different size particles in the supernatant turbidity of the sample in the test card. .
  • a platelet function testing system is composed of two parts: a tester and a test card; the tester includes a separation-test disc 4, a drive motor 3, a test unit 5, a control and analysis unit 1 and a display Unit 2; Separate-There are more than one detection card positions on the detection plate, which are used to place the detection card and the control card.
  • the structure of the test card and the control card are exactly the same, only whether the reagent is put in the test (the control card does not add the inducing agent), and the role played in the test is different.
  • the separation-detection disc is driven by the drive motor to first reciprocate rotation, so that the sample and reagent in each card A pool are mixed, and then centrifuged at the first speed to rotate the sample on the detection card position;
  • the detection unit 5 includes The light source transmitter 7 and the receiver 8 are used to detect the sample.
  • the control and analysis unit 1 is used to control the separation-detection disc and the drive motor, and at the same time analyze and process the detection data to generate a platelet function detection result report,
  • the display unit is used to display the test results and human-computer interaction, the test results are printed by the printer 6; the test instrument automatically completes the sample-reagent mixing, separation, testing, analysis and structure report at one time.
  • the separation-inspection disk is a horizontal disk structure, and the detection card 9 is fixed on the separation-inspection disk through the detection card fixing device 11 and the adjustable fixing device 10.
  • test card 9 and a control card are loaded on the test card position.
  • the test card 9 is equipped with three tank cavities: the A pool reaction tank, the B pool detection pool, and the C pool sedimentation tank.
  • Each inner cavity pool is connected by a narrow channel whose cross-sectional area is less than 60% of the maximum cross-sectional area of the inner cavity of each pool, and all the inner cavity pools are connected in series by a single channel.
  • Figure 3-1 shows a test card, where A, B, and C are three internal cavity pools, D1, D2 are respectively narrow channels connecting the three internal cavity pools, and O is the opening of the test card, located at A pool.
  • the cavity A has an opening perpendicular to the axis of the detection card.
  • the bottom edges of the narrow channels D1 and D2 connecting the cells (lumens) of A, B, and C are higher than the top of the two cavities of B and C. This design can avoid backflow of the sample after the centrifugation is completed.
  • the platelet function detection method is:
  • the instrument turntable is centrifuged at a medium speed, so that the blood sample flows into the corresponding B and C pools from each A pool, and the white blood cells, red blood cells and platelet aggregates after aggregation are centrifuged into the C pool, and the platelets and plasma are concentrated in the B pool;
  • the instrument detects the absorbance of each pool B pool to determine the remaining platelet concentration/content in the plasma after each blood sample interacts with the aggregating agent, and compares the pool to determine the blood sample body platelet concentration/content;
  • the test found that some of the sample pools B pool still have RBC or WBC, the instrument will continue to centrifuge again and then test the original B pool after the original centrifugation, the B pools of the same blood sample are compared with each other; this test is classified For the first test;
  • the instrument is then rotated and centrifuged at a high speed, so that the platelets in the B pool are also centrifuged and settled in the C pool or the channel between B-C;
  • the instrument calculates and reports the aggregation function of each blood sample under the action of different aggregation inducers.
  • the difference between this embodiment and embodiment 1 is that the last cavity C of the test card has a fine exhaust channel E to the opening F near the entrance for venting the gas/air pressure in the end cavity.
  • the test card is a conjoined test card composed of three identical single test cards arranged in a fan shape.
  • each independent card contains the same inner cavity and channel, and the independent monomers of the connected card are not connected to each other.
  • the entrance of each single card is opened at an angle perpendicular to the axial direction of the cup, and the opening is upward.
  • the conjoined test card can be a composite structure of 2-10 independent test cards with the same structure but not connected to each other.
  • this embodiment is a detection card with an opening at the top.
  • Three cavities are provided in the card.
  • the openings are at the top of the detection card and the direction is consistent with the axial direction of the detection card.
  • the detection card with the top opening can be combined to form a composite multi-linked detection card composed of 2-8 monomers, and its structure is matched with the separation-detection plate to facilitate fixing and detection.
  • the light source 7 and the detector 8 are corresponding positions, and the device can perform transmitted light detection on the detection card.
  • the light source illuminates the detection card vertically, and the light signal detection and the light source illuminate the direction at an angle of 20-45 degrees; the device can perform scattering detection on the detection card .
  • the separation-detection disc 4 and the horizontal plane Z form an angle of 5-45 degrees.
  • the detection light source 7 is perpendicular to the detection card 9, and the detector 8 and the detection card 9 are also perpendicular and accurately corresponding to the light source.
  • the device can perform transmission detection;
  • the separation-detection disc 4 and the horizontal plane Z are at an angle of 5-45 degrees.
  • the detection light source 7 illuminates the detection card vertically
  • the light detector 8 is at the corresponding position of the light source
  • the receiving surface and the detection card are arranged correspondingly at an angle of 15-45 degrees.
  • the device can perform scattering detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种血小板功能检测系统及检测方法,系统由检测仪和检测卡(9)构成;检测仪包括分离-检测盘(4)、驱动电机(3)、检测单元(5)、控制及分析单元(1)和显示单元(2);分离-检测盘(4)上设有一个以上检测卡位,分离-检测盘(4)由驱动电机(3)带动做旋转运动,对检测卡位内的样本进行混匀、分离、检测;检测卡位上装载检测卡(9),检测卡(9)内分隔为两个以上的内腔池,各内腔池间分别由横截面积为各池内腔最大处横截面积60%以下的狭窄通道连接,各内腔池均为单向串联连通。检测卡(9)为透明材料,可进行光信号检测。检测仪与专门配套设计的检测卡(9)配合下,可自动完成对全血血样与试剂混合反应、分离和检测全过程,而且仪器还设计有多种质控措施,确保检测结果高精度。

Description

一种血小板功能检测系统及检测方法 技术领域
本发明涉及血小板功能检查技术,具体涉及一种血小板功能检测系统及检测方法。
背景技术
血栓性疾病是目前全球对人类健康及生命危害最严重的疾病。控制血小板功能是目前最普遍和常用的血栓防治方法。然而,由于各患者个体差异及对药物反应的差异性,目前现行的给所有患者都“标准化”应用抗血小板药物的方式在临床上显现出明显的问题:或不能有效预防及治疗血栓性疾病,或由于过量导致患者发生出血危害。而近10余年研究确认抗血小板药物的个体差异普遍存在。因此在血栓防治中进行血小板功能检测十分重要,是实现血栓精准防治和提高血栓防治水平的重要措施。
尽管血小板功能检测已有五十余年历史,但现有的血小板功能检测方法存在明显的不足:准确性差、速度慢、无法高速大批量检测。比如光学法是使用历史最长的血小板功能检测方法,该方法对样本检测需要反复离心,并需要人工操作分离富血小板血浆和贫血小板血浆,操作极为繁琐,而且由于样本检测前操作环节过多常常导致血小板在检测前发生活化,而导致检测结果与患者体内血小板功能实际状况不符合。近年来市场上也出现了一些直接对全血进行血小板功能检测的仪器,但这些仪器往往没有有效排除红细胞等成份的干扰,由于在一般正常血样中红细胞数量远远多于血小板,而且红细胞的体积也远远大于血小板体积,因此在对血小板功能检测时如果不能排除红细胞对检测信号的干扰,对血小板直接检测的信号弱,往往无法获得准确的血小板功能检测结果。近年来国内外公布的多个不同方法完成的临床试验绝大多数以失败告终。
发明内容
本发明的目的在于提供一种血小板功能检测系统及检测方法。
实现本发明目的的技术解决方案为:一种血小板功能检测系统,该检测系统由检测仪和检测卡两部分构成;
检测仪包括分离-检测盘、驱动电机、检测单元、控制及分析单元、显示单元,分离-检测盘位于仪器工作室内且仪器工作室具有恒温功能;
分离-检测盘上设有一个以上检测卡位,分离-检测盘由驱动电机带动做旋转运动,对检测卡位上的样本进行混匀、分离和检测;所述检测单元包括光源发射器、接收器,用于对样品进行检测,所述控制及分析单元用于对分离-检测盘、驱动电机、检测单元进行控制,并根据检测信号计算分析生成血小板功能检测结果报告,显示单元用于显示 检测结果以及人机交互;
检测卡位上设置检测卡,所述检测卡内分隔为两个以上的内腔池,各内腔池间分别由横截面积为各池内腔最大横截面积60%以下的狭窄通道连接,所有内腔池均单通道串联顺序连通;检测卡的至少一个内腔为透明材料构成,可对内腔内样品进行光信号检测。
一种血小板功能检测方法,包括以下步骤:
步骤1、将样本、诱聚剂加入样本检测卡A反应池后,将样本检测卡放在仪器分离-检测转盘上的检测卡位上固定住;同步将相同血样等量加入结构相同的对照检测卡A池中,并向该对照检测卡A池中加入等量的等渗稀释液或抗凝剂;
步骤2、启动仪器,分离-检测转盘开始来-回反复多次转动,样本检测卡A池中血样与诱聚剂跟随分离-检测转盘晃动混匀并反应3分钟以上,仪器的工作室保持恒温;
步骤3、随后分离-检测转盘以第一速度单向高速旋转,使得样本检测卡及对照检测卡A池中样本在离心力驱动下向B、C池流动,在离心过程中,由于血样中不同成份比重不同而得到分离:红细胞、白细胞进入C池,发生聚集后的血小板复合体也进入C池;B池中为血浆及分布于其中的单体血小板;
步骤4、随后仪器分离-检测转盘低速旋转,仪器检测单元对样本检测卡及对照检测卡的B池的吸光度逐一进行第一次检测;
步骤5、完成第一次检测后,分离-检测转盘继续以第二速度高速旋转,使得在B池血浆中原有的血小板由于高速离心在离心力作用沉淀到C池中,随后仪器再次对样本检测卡及对照检测卡的B池再次进行检测,获得各检测卡B池中血浆的空白值;
步骤6、各检测卡血样的血小板聚集率结果计算
对照检测卡B池中净血小板含量值=对照检测卡B池第一次检测获得的吸光度值—该对照检测卡B池空白吸光度值;
样本检测卡B池中血样血小板净含量=样本检测卡B池第一次检测获得的吸光度值—该样本检测卡B池空白吸光度值;
根据上述结果进行血小板聚集率计算式如下:
Figure PCTCN2019099172-appb-000001
本发明与现有技术相比,其显著优点为:(1)检测方便:直接使用全血,自动分离血样中的红细胞、白细胞后对样本血小板进行检测,免除了细胞干扰;(2)可检测任何 血小板受体功能,充分满足临床需要;(3)检测快速即可适合少量样本床旁检测,也可适合大量样本批量快速检测;(4)检测方案有效排除检测卡及样本中细胞原因导致的差异,可以更好确保检测结果质量;(5)本方法无需人工参与,仪器自动完成血样与试剂的混匀反应、分离血浆,准确检测比较样本卡中及对照卡中血小板含量,获得诱聚剂刺激活化导致血小板聚集后数量的变化,直接反映血小板功能,该检测方法还可以有效监控样本质量,可排除由于样本中血小板功能在检测前活化聚集导致的检测结果错误;(6)试剂耗材消耗量少,废弃物少。
附图说明
图1为仪器构成示意图。图中1为仪器控制单元、2为显示单元、3、为驱动电机、4为分离-检测盘、5为检测单元、6为打印机、7为光源、8为检测器、9为固定于分离-检测盘上的检测卡。
图2-1为水平盘结构的仪器分离-检测盘的俯视示意图。
图2-2为仪器分离-检测盘及检测卡位置示意图。图中10为检测卡可调节固定装置、11为检测卡固定装置。
图3-1为具有三个内腔池的检测卡俯视示意图。图中A为反应池,且有入口O与之相连,B为检测池,C为沉淀池,D1、D2分别为连接A、B、C池间的狭窄连接通道。
图3-2为具有三个内腔池的检测卡纵向剖视图。
图3-3为具有三个内腔的检测卡的俯视透视图,与图3-1不同的是该卡有一个细小排气通道E由C池通至检测卡A池附近设有一个与外部相通开口F。
图4为一种三个单体检测卡组合而成的三联检测卡结构俯视示意图。
图5-1为一种顶端开口的检测卡的纵向剖视图。
图5-2为图5-1的侧视透视图。
图6-1为执行透射光检测的水平分离-检测盘结构及检测卡组合示意图。
图6-2为执行散射检测的水平分离-检测盘结构示意图。
图6-3为执行透射检测的呈角度的分离-检测盘示意图。
图6-4为执行散射检测的呈角度的分离-检测盘示意图。
具体实施方式
血小板功能具有多方面功能,是维护机体正常生理及健康的重要因子,也在多种疾病的病理过程中发挥重要作用。对血小板功能的检测具有重要的科研及临床价值,而现 有的血小板功能检测方法存在不足,因此限制了血小板功能检测在科研及临床应用。为此我们设计了一种简便、快速、样本用量少、具有自动校准排除检测误差的血小板功能检测方法和仪器。该仪器在与专门配套设计的检测卡配合下,可自动完成对全血血样与试剂混合反应、分离和检测全过程,而且仪器还设计有多种质控措施,确保检测结果高精度。
如图1所示,一种血小板功能检测系统,该检测系统由检测仪和检测卡两部分构成;
检测仪包括分离-检测盘4、驱动电机3、检测单元5、控制及分析单元1和显示单元2;分离-检测盘位于仪器工作室内、仪器工作室还具有恒温功能。
分离-检测盘上设有1个以上检测卡位,分离-检测盘由驱动电机带动做旋转及往复旋转运动,通过高速旋转离心对检测卡中的血样进行混匀、分离,并带动分离-检测盘旋转运动使得盘上各检测卡、对照卡的检测池逐一经过检测单元,获得检测结果;所述检测单元5包括光源发射器7和接收器8,用于对检测卡中分离后的样品进行检测,所述控制及分析单元用于对分离-检测盘、驱动电机进行控制,同时记录检测数据,生成血小板功能检测结果报告,显示单元用于显示检测结果以及人机交互,检测结果通过打印机6打印;检测仪器一次自动完成对样本及试剂混匀、分离、检测、分析和结果报告。
检测卡位上设置检测卡9,并通过采用固定卡装置11和可调节固定装置10将检测卡牢固固定在分离-检测盘上,检测卡除入口开口外,整体至尾部为密闭结构;所述检测卡内分隔为两个以上的内腔池,各内腔池间分别由横截面积为各池内腔最大处横截面积60%以下的狭窄通道连接,所有内腔池均为单通道串联顺序连通。检测卡的至少一个内腔为透明材料构成,可对内腔内样品进行光信号检测。
进一步的,分离-检测盘4设置在仪器工作室内,仪器工作室内具有加热恒温功,温度控制在28-38℃范围内,样本与试剂的反应混匀、离心分离及检测均在仪器工作室内完成。
进一步的,各检测卡水平放置时,其内腔池间的狭窄通道的底边高于相邻内腔池顶部。
进一步的,检测卡9使用角度转头或水平转头。
该仪器的分离-检测盘可以为水平盘状结构,执行检测时检测卡水平摆放固定在该水平分离-检测盘上,且检测卡也为水平放置固定。
进一步的,检测卡呈5-45°角度摆放固定在角度分离-检测盘上,与检测盘面紧贴 并固定。
检测单元的检测光源轴线与检测卡垂直;接收器设在与检测卡垂直、且与光源相对应的位置,用以检测透射光;或者接收器与检测光成一定夹角,用以检测散射光。
进一步的,检测卡内设三个相互串联连通的内腔池,依次为A池、B池、C池,A池为反应池,B池为检测池,C池为沉淀池;A池设有与检测卡轴向垂直的向上开口,用于加入样品、试剂,且样本与试剂在此池混合反应;B池与A、C池分别通过狭窄通道连接,该狭窄通道横截面积为各池内腔最大处横截面积60%以下,除此之外B池无其它开口;C池尾部有一细小排气通道通至A池区域对外开口,但该通道不与A池相通,用于排除对样本离心分离时B、C池内原有空气,便于样本进入B、C池和样本成份的分离。
A池的容积大于等于B、C池容积总和,而B、C池容积接近,两者容积相差不大于30%,各池间连接通道为狭窄通道其横截面面积小于各池最大处横截面面积的60%。
另一实施例中,检测卡内设有两个内腔池由狭窄通道区分并连通,该检测卡的反应池和检测池共用一个内腔池,无对外开口的另一个内腔池作为沉淀池。
本发明还提供一种基于血小板功能检测系统的检测方法,包括以下步骤:
步骤1、将样本、诱聚剂分别加入检测卡A反应池后,将检测卡放在仪器分离-检测转盘上的检测卡位上并固定住;同步将相同血样等量加入结构相同的对照检测卡A池中,并向该对照检测卡A池中加入等量的等渗稀释液或抗凝剂;由于检测加入试剂体积极小时可以忽略该差异,也可不向对照卡A池中加入等量的等渗稀释液或抗凝剂。对照检测卡也按照样品检测卡的摆放方式固定在分离-检测盘上的检测卡位上;
步骤2、启动仪器,分离-检测转盘开始来-回多次往复转动,检测卡A池中血样与诱聚剂跟随晃动混匀并反应3分钟以上,仪器的工作室保持恒温,取28-38℃;
步骤3、血样与试剂混匀后,分离-检测转盘以第一速度单向高速旋转,使得各检测卡及对照卡A池中样本在离心力驱动下向B-C池流动,在离心过程中,由于血样中不同成份比重不同而得到分离:比重较大的红细胞、白细胞进入C池,发生聚集后的血小板较大的复合体也进入C池;B池中为血浆及分布于其中的单体血小板或低程度聚集的小的血小板复合体;此次离心转速在1000-4000转/分,离心3-10分钟。
步骤4、随后仪器分离-检测转盘减缓转速,仪器检测单元逐一对各检测卡B池的吸光度进行第一次检测;此时检测的吸光度(浊度)与血浆中的血小板含量相关;仪器检测可采用多波长,或在样本中加入染料、标志物等增加对特异性细胞识别敏感度。分离 完成后在检测时,分离-检测盘转速低于1000转/分钟。
步骤5、完成第一次检测后,分离-检测盘继续以第二速度高速旋转,此时由于转速更高,使得在B池中原有悬浮的单体血小板由于更高速离心力作用也沉淀到C池中。此次离心转速大于4500转/分,离心5分钟以上。随后仪器再次对各检测卡及对照检测卡的B池再次进行检测,获得各检测卡及对照卡B池的空白值。
步骤6、各检测卡血样的血小板含量及聚集率结果计算
由于血样分离后血浆中血小板的含量与检测的吸光度(O.D值)存在相关性。仪器通过检测B池第一次检测获得的O.D值扣除B池的空白值计算获得各样本更准确的血小板含量。计算方式如下:
对照检测卡B池中净血小板含量值=对照检测卡B池第一次检测获得的吸光度值—该检测卡B池空白吸光度值;吸光度值均使用O.D值代表。
样本检测卡B池中血样血小板净含量=样本检测卡B池第一次检测获得的吸光度值—样本检测卡B池空白吸光度值(第二次离心后检测的吸光度O.D.值);
根据上述结果进行血小板聚集率计算式如下:
Figure PCTCN2019099172-appb-000002
两次检测时分离-检测转盘均降低。仪器也可以对第一次离心过程中B池中吸光度变化进行动态监控,当B池离心中样本分离状况满足检测则仪器自动检测记录各检测卡的B池吸光度值,随后仪器转入第二转速即开始高速分离。
相同血样的各检测卡、对照卡结构、固定均相同,并采用相同的分离、检测条件。
当检测对照检测卡B池净血小板含量过低,低于正常血浆,或该样本的血小板血浆含量时,仪器将自动提示该样本质量问题或该样本中血小板在检测前已发生较高程度聚集,在此条件下获得的血小板功能检测结果可信度低。因此可避免由于样本质量原因导致的检测错误。
具体原理为,本方法及仪器通过对对照卡检测获得样本中的原始血小板浓度,即样本加入诱聚剂前或不加诱聚剂条件下的血小板浓度,判断对照卡中血小板含量是否低于正常浓度范围,或低于该样本实际的血小板浓度范围(也可以通过参考血液分析仪报告判断),如果对照检测卡(即原始血样)的血小板数低于正常范围,或低于该样本的范围则仪器自动做出提示该样本很可能在检测前已发生聚集而导致血小板数量降低过多, 对此样本条件检测获得的血小板功能检测结果的真实性可信度较低。由于血小板十分容易在采集或在保存过程中发生功能活化改变,本发明仪器及方法的这一功能可以排除样本在检测前血小板功能活化、聚集导致的血小板功能改变而造成检测结果与患者体内实际血小板功能差异过大的错误结果,避免样本质量原因导致的错误报告。
该仪器通过对对照检测卡B池检测获得血样中血小板浓度(含量),其具体检测和结果计算方式为:(对照检测卡B池第一次离心后检测获得的吸光度值—第二次离心后该检测卡B池检测获得的吸光度值)*K值。该K值为血小板含量与血浆中血小板净吸光度值相关系数,K值的范围为:100-3000,单位为:万个/ml,也可换算成其它单位表示。各仪器K值需要经过校正确认。
仪器具有自动对血样分离状况在线分析功能。仪器使用多波长(260-700nm范围)对样本中红细胞、白细胞、血小板等细胞成份沉降及含量情况进行分析,当检测区域RBC、WBC已充分沉降分离,则仪器开始对同组样本各卡检测区进行血小板含量比浊扫描;即早完成分离的样本早出结果,晚完成分离的样本延长分离时间确保完成分离后进行检测。
仪器对血样是否完成WBC/RBC与PLT分离,可用在样本中加入吖啶染料,由于WBC含丰富DNA能着染,在B池的分离血浆中有“吖啶染色”提示WRC存在及红细胞存在,也可以使用血红蛋白特异吸收波长检测,当检测时RBC吸收过多说明RBC没有很好分离。这些措施可以更好的确保对血小板功能检测结果准确。
检测器具有对检测卡内样本分离后的上清上、下界面高度确定及全程扫描功能。
检测器使用多个不同波长,由于颗粒大小对不同波长的透射、散射存在差异,通过使用不同波长吸光度差异,具有对检测卡内样本分离后的上清浊度中不同大小颗粒比例进行分析的功能。
下面结合附图和实施例对本发明进行详细说明。
实施例1
如图1所示,一种血小板功能检测系统,该检测系统由检测仪和检测卡两部分构成;检测仪包括分离-检测盘4、驱动电机3、检测单元5、控制及分析单元1和显示单元2;分离-检测盘上设有1个以上检测卡位,用于放置检测卡及对照卡。检测卡与对照卡结构完全相同仅仅是在检测时是否放入试剂(对照卡不加入诱聚剂),以及在检测中所扮演的角色不同。分离-检测盘由驱动电机带动先做往复旋转,使得各卡A池中样本与试 剂混匀,随后以第一速度离心旋转运动,对检测卡位上的样本进行分离;所述检测单元5包括光源发射器7、接收器8,用于对样品进行检测,所述控制及分析单元1用于对分离-检测盘、驱动电机进行控制,同时对检测数据进行分析处理生成血小板功能检测结果报告,显示单元用于显示检测结果以及人机交互,检测结果通过打印机6打印;检测仪器一次自动完成对样本-试剂混匀、分离、检测、分析和结构报告。
如图2-1、图2-2,分离-检测盘为水平盘结构,检测卡9通过检测卡固定装置11和可调节固定装置10固定在分离-检测盘上。
检测卡位上装载检测卡9及对照卡,检测卡9内设三个池腔:依次为A池反应池,B池检测池、C池沉淀池。各内腔池间分别由横截面积为各池内腔最大处横截面积60%以下的狭窄通道连接,所有内腔池均单通道串联顺序连通。
如图3-1所示为一种检测卡,其中A,B,C分别为三个内腔池,D1,D2分别为连接三个内腔池的狭窄通道,O为该检测卡开口,位于A池。如图3-2所示,A内腔有与检测卡轴向垂直的开口。且连接A、B、C各池(内腔)的各狭窄通道D1、D2的底边均高于B、C二内腔的上顶,该设计可避免样本在离心完成后的反流。
利用上述检测仪,血小板功能检测方法为:
①样品、试剂分别加入检测卡A池中,如图4,其中一个卡仅加入样本不加入试剂作为对照,或在对照卡A池内也加入试剂等量的等渗生理盐水,或抗凝剂;
②启动仪器,载样卡盘多次左右来回转动混匀各池A池中试剂、血样;
③仪器转盘中速离心,使血样由各A池分别流入相应B、C池,并使白细胞、红细胞及聚集后血小板聚集体离心进入C池,血小板及血浆集中于B池;
④仪器对各池B池检测吸光度,以判断各血样与诱聚剂作用后血浆中剩余的血小板浓度/含量,对照池检测判断血样本身血小板浓度/含量;
⑤如此时检测发现部分样品池中B池还存留有RBC或WBC,仪器则继续再次离心后对原来离心不好B池再测检测,相同血样的各B池相互比较;该次检测都归类为第一次检测;
⑥完成第一次检测后仪器随后高速旋转离心,使B池中的血小板也离心沉淀到C池或B-C间通道中;
⑦仪器再次对各B池检测,该次为第二次检测获得各B池的空白值;
⑧仪器计算报告各血样在不同诱聚剂作用下的聚集功能。
实施例2
如图3-3,本实施例与实施例1的区别为,检测卡最末一个内腔C带有微细排气通道E至入口附近开口F,用于排除末端内腔中气体/气压。
实施例3
如图4所示,本实施例中,检测卡为3个相同单体检测卡成扇形排布构成的联体检测卡。在该连联体卡中各独立卡内均含有相同的内腔及通道,联卡的各独立单体互不相通。各单体卡入口均为与该杯轴向垂直的角度开口,开口向上。联体检测卡可以是2-10个结构相同但相互不连通的独立检测卡的复合体结构。
实施例4
如图5-1、图5-2所示,本实施例中为顶端开口的检测卡,卡内设有三个内腔,开口在检测卡顶端,方向与检测卡轴向一致。该顶端开口的检测卡可组合构成2-8个单体构成的复合多联体检测卡,其结构与分离-检测盘相配合,便于固定和检测。
实施例5
如图6-1所示,水平设置的分离-检测盘上,光源7与检测器8为对应位置,该装置可对检测卡执行透射光检测。
实施例6
如图6-2所示,水平设置的分离-检测盘上,光源垂直照射检测卡,而光信号检测与光源照射光方向呈20-45度的夹角;该装置可对检测卡执行散射检测。
实施例7
如图6-3所示,分离-检测盘4与水平面Z之间形成5-45度夹角。在该装置上检测光源7与检测卡9垂直,检测器8与检测卡9也成垂直并与光源准确对应设置,该装置可执行透射检测;
实施例8
如图6-4所示,分离-检测盘4与水平面Z呈5-45度夹角。在该装置上检测光源7垂直照射检测卡,光检测器8在光源相对应位置,接受面与检测卡呈15-45度夹角成对应设置,该装置可执行散射检测。

Claims (10)

  1. 一种血小板功能检测系统,其特征在于,该检测系统由检测仪和检测卡两部分构成;
    检测仪包括分离-检测盘、驱动电机、检测单元、控制及分析单元、显示单元,分离-检测盘位于仪器工作室内且仪器工作室具有恒温功能;
    分离-检测盘上设有一个以上检测卡位,分离-检测盘由驱动电机带动做旋转运动,对检测卡位上的样本进行混匀、分离和检测;所述检测单元包括光源发射器、接收器,用于对样品进行检测,所述控制及分析单元用于对分离-检测盘、驱动电机、检测单元进行控制,并根据检测信号计算分析生成血小板功能检测结果报告,显示单元用于显示检测结果以及人机交互;
    检测卡位上设置检测卡,所述检测卡内分隔为两个以上的内腔池,各内腔池间分别由横截面积为各池内腔最大横截面积60%以下的狭窄通道连接,所有内腔池均单通道串联顺序连通;检测卡的至少一个内腔为透明材料构成,可对内腔内样品进行光信号检测。
  2. 根据权利要求1所述的血小板功能检测系统,其特征在于,各检测卡水平放置时,其内腔池间的狭窄通道的底边高于相邻内腔池顶部。
  3. 根据权利要求2所述的血小板功能检测系统,其特征在于,检测卡内设三个相互串联连通的内腔池,依次为A池、B池、C池,A池为反应池,B池为检测池,C池为沉淀池;A池设有与检测卡轴向垂直的向上开口,用于加入样品、试剂,且样本与试剂在此池混合反应;B池与A、C池通过狭窄通道连接,通道横截面积为各池内腔最大横截面积60%以下,除此连接之外B池无直接对外开口;C池连通有一细小排气通道,该细小排气通道连通至A池区域对外开口,用于排除离心分离时B、C池内原有空气。
  4. 根据权利要求3所述的血小板功能检测系统,其特征在于,A池的容积大于等于B、C池容积总和,B、C池容积差异不大于30%。
  5. 根据权利要求2所述的血小板功能检测系统,其特征在于,检测卡内设有两个由狭窄通道相互连通的内腔池,反应池和检测池共用一个内腔池,另一个内腔池作为沉淀池。
  6. 根据权利要求1-5任意一项所述的血小板功能检测系统,其特征在于,检测卡使用角度转头或水平转头。
  7. 根据权利要求1-5任意一项所述的血小板功能检测系统,其特征在于,检测卡与水平面呈0-45°角度摆放固定在分离-检测盘上。
  8. 根据权利要求1-5任意一项所述的血小板功能检测系统,其特征在于,分离-检测盘设置在仪器工作室内,仪器工作室内具有加热恒温功能;
    检测单元的检测光源轴线与检测卡垂直;接收器设在与光源相对应并与检测卡垂直的位置,用以检测透射光;或者接收器与检测光成一定夹角,用以检测散射光。
  9. 一种基于权利要求3所述血小板功能检测系统的检测方法,其特征在于,包括以下步骤:
    步骤1、将样本、诱聚剂加入样本检测卡A反应池后,将样本检测卡放在仪器分离-检测转盘上的检测卡位上固定住;同步将相同血样等量加入结构相同的对照检测卡A池中,并向该对照检测卡A池中加入等量的等渗稀释液或抗凝剂;
    步骤2、启动仪器,分离-检测转盘开始来-回反复多次转动,样本检测卡A池中血样与诱聚剂跟随分离-检测转盘晃动混匀并反应3分钟以上,仪器的工作室保持恒温;
    步骤3、随后分离-检测转盘以第一速度单向高速旋转,使得样本检测卡及对照检测卡A池中样本在离心力驱动下向B、C池流动,在离心过程中,由于血样中不同成份比重不同而得到分离:红细胞、白细胞进入C池,发生聚集后的血小板复合体也进入C池;B池中为血浆及分布于其中的单体血小板;
    步骤4、随后仪器分离-检测转盘低速旋转,仪器检测单元对样本检测卡及对照检测卡的B池的吸光度逐一进行第一次检测;
    步骤5、完成第一次检测后,分离-检测转盘继续以第二速度高速旋转,使得在B池血浆中原有的血小板由于高速离心在离心力作用沉淀到C池中,随后仪器再次对样本检测卡及对照检测卡的B池再次进行检测,获得各检测卡B池中血浆的空白值;
    步骤6、各检测卡血样的血小板聚集率结果计算
    对照检测卡B池中净血小板含量值=对照检测卡B池第一次检测获得的吸光度值—该对照检测卡B池空白吸光度值;
    样本检测卡B池中血样血小板净含量=样本检测卡B池第一次检测获得的吸光度值—该样本检测卡B池空白吸光度值;
    根据上述结果进行血小板聚集率计算式如下:
    Figure PCTCN2019099172-appb-100001
  10. 根据权利要求9所述的血小板功能检测方法,其特征在于,该方法通过对对照 检测卡检测获得样本中的净血小板浓度值判断对照卡中血小板含量是否低于正常浓度范围,或低于该样本相应的血小板浓度范围,如果该对照卡血小板浓度低于正常范围,或低于该样本的血小板浓度范围则仪器自动做出提示该样本在检测前已发生聚集而导致血小板数量降低的提示;
    该仪器通过对对照检测卡B池检测获得血样中血小板含量,其具体检测和结果计算方式为:(对照检测卡B池第一次离心后检测获得的吸光度值—第二次离心后对照检测卡B池检测获得的吸光度值)*K值;该K值为血小板含量与血浆中血小板净吸光度值相关系数,K值的范围为:1000-3000,单位为:万个/ml。
PCT/CN2019/099172 2019-07-10 2019-08-05 一种血小板功能检测系统及检测方法 WO2021003786A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2118035.1A GB2598865B (en) 2019-07-10 2019-08-05 Platelet function detection system and detection method
US17/597,312 US12044605B2 (en) 2019-07-10 2019-08-05 Platelet function detection system and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910619683.1A CN110308271B (zh) 2019-07-10 2019-07-10 一种血小板功能检测系统及检测方法
CN201910619683.1 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021003786A1 true WO2021003786A1 (zh) 2021-01-14

Family

ID=68081035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099172 WO2021003786A1 (zh) 2019-07-10 2019-08-05 一种血小板功能检测系统及检测方法

Country Status (4)

Country Link
US (1) US12044605B2 (zh)
CN (1) CN110308271B (zh)
GB (1) GB2598865B (zh)
WO (1) WO2021003786A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852770U (zh) * 2010-09-30 2011-06-01 天津药物研究院 一种血小板计数的装置
CN103558152A (zh) * 2013-11-14 2014-02-05 江苏英诺华医疗技术有限公司 一种快速全血血小板聚集功能检测装置及方法
CN204028091U (zh) * 2014-08-01 2014-12-17 江苏英诺华医疗技术有限公司 一种新型快速的多参数血小板功能分析仪
CN104977259A (zh) * 2014-04-04 2015-10-14 天津药物研究院 一种基于高通量检测的血小板聚集测定方法及在药物筛选中的应用
CN204758612U (zh) * 2015-05-13 2015-11-11 刘军 抗凝血药药效检测仪
WO2017196798A1 (en) * 2016-05-09 2017-11-16 Chang Jae-Hyung Robert Accelerated method for preparing platelet rich plasma

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170032450A1 (en) * 2015-07-29 2017-02-02 Trusper, Inc. Virtual marketplace
CN107398307B (zh) * 2016-05-18 2023-07-25 博奥生物集团有限公司 一种集成化微流控芯片
CN110809495A (zh) * 2017-04-26 2020-02-18 伯克利之光生命科技公司 使用具有优化电润湿表面的微流体装置的生物处理系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852770U (zh) * 2010-09-30 2011-06-01 天津药物研究院 一种血小板计数的装置
CN103558152A (zh) * 2013-11-14 2014-02-05 江苏英诺华医疗技术有限公司 一种快速全血血小板聚集功能检测装置及方法
CN104977259A (zh) * 2014-04-04 2015-10-14 天津药物研究院 一种基于高通量检测的血小板聚集测定方法及在药物筛选中的应用
CN204028091U (zh) * 2014-08-01 2014-12-17 江苏英诺华医疗技术有限公司 一种新型快速的多参数血小板功能分析仪
CN204758612U (zh) * 2015-05-13 2015-11-11 刘军 抗凝血药药效检测仪
WO2017196798A1 (en) * 2016-05-09 2017-11-16 Chang Jae-Hyung Robert Accelerated method for preparing platelet rich plasma

Also Published As

Publication number Publication date
GB202118035D0 (en) 2022-01-26
US20220317011A1 (en) 2022-10-06
CN110308271B (zh) 2021-03-30
GB2598865A (en) 2022-03-16
CN110308271A (zh) 2019-10-08
US12044605B2 (en) 2024-07-23
GB2598865B (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US5827746A (en) Method to determine the sedimentation of blood and relative device
US8900514B2 (en) Device for determining the erythrocyte sedimentation rate in a blood sample
US8158439B2 (en) Multiple operating mode sample analyzer, analyzing method, and computer program product
JP5010443B2 (ja) 血球分析装置および血球分析方法
RU2122212C1 (ru) Способ определения системного воспаления
CA2537500C (en) Integrated apparatus for hematological analyses and related method
JPWO2006038682A1 (ja) 固液分離・測定構造体及び固液分離・測定方法
JP2008542753A (ja) 自動化臨床分析機において少量の液体試料中の妨害因子を確認するための方法
CN112119293B (zh) 测定红细胞沉降率及其他相关参数的设备和方法
CN108362615A (zh) 一种分析检测用装置及细胞或颗粒检测方法
WO2021003786A1 (zh) 一种血小板功能检测系统及检测方法
WO2024212334A1 (zh) 一种微流控血型抗原鉴定芯片
JP4055802B2 (ja) 自動分析装置用反応ディスク
JP6828088B2 (ja) 生化学検査と血液検査を同時に行うマルチシステム、及びこれに用いられるマルチディスク
CN210376377U (zh) 一种血小板功能检测装置
WO2021145461A1 (ja) 血液凝固測定装置、血液凝固時間の測定方法、血液凝固反応の完了判定方法、および血液自動遠心分離装置
CN111886489B (zh) 样本分析仪及样本分析方法
EP3742174A1 (en) Multi-system for simultaneously performing biochemical test and blood test, and multi-disc used therefor
CN220473302U (zh) 可测定红细胞渗透脆性的细胞分析仪
EP4187228B1 (en) System, apparatus, and method for measuring erythrocyte sedimentation rate
US20180353950A1 (en) Separator for Spectrophotometric Analysis of Body Fluids
RU2289133C1 (ru) Способ определения гемоглобина, количества эритроцитов, лейкоцитов, тромбоцитов, гематокрита и скорости оседания эритроцитов в цельной крови
WO2019127958A1 (zh) 一种医用快速生化检测系统及检测方法
CN116165108A (zh) 血沉测量系统、设备及血沉测量方法
Froom et al. Sensitivity of the high power field method in detecting red blood cells in the urinary sediment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202118035

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190805

122 Ep: pct application non-entry in european phase

Ref document number: 19937211

Country of ref document: EP

Kind code of ref document: A1