WO2021003771A1 - 无煤柱留设无巷道掘进矿井设计方法 - Google Patents

无煤柱留设无巷道掘进矿井设计方法 Download PDF

Info

Publication number
WO2021003771A1
WO2021003771A1 PCT/CN2019/097065 CN2019097065W WO2021003771A1 WO 2021003771 A1 WO2021003771 A1 WO 2021003771A1 CN 2019097065 W CN2019097065 W CN 2019097065W WO 2021003771 A1 WO2021003771 A1 WO 2021003771A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
lane
well
face
coal
Prior art date
Application number
PCT/CN2019/097065
Other languages
English (en)
French (fr)
Inventor
何满潮
王亚军
杨军
Original Assignee
北京中矿创新联盟能源环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中矿创新联盟能源环境科学研究院 filed Critical 北京中矿创新联盟能源环境科学研究院
Priority to US17/597,480 priority Critical patent/US11578597B2/en
Priority to EP19937351.5A priority patent/EP3998395B1/en
Priority to AU2019456662A priority patent/AU2019456662B2/en
Publication of WO2021003771A1 publication Critical patent/WO2021003771A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Definitions

  • the invention relates to the field of mining technology, in particular, to a longwall mining method for shaft workers, in particular to a design method for a mine without coal pillars and without a roadway.
  • Coal mining usually requires digging a series of shafts from the ground to the ground, including main and auxiliary shafts, development roadways, preparation roadways, and mining roadways.
  • main and auxiliary shafts In order to protect the above-mentioned roadway, it is necessary to leave a large number of roadway protection coal pillars near the roadway during the mining process to avoid damage to the roadway due to mining and roof movement.
  • this mining method After decades of development in my country, this mining method has become the most widely used mining method and has made great contributions to my country's coal mining industry, but it also has many problems:
  • the existing coal mining technology has the problems of large amount of roadway excavation, long excavation time, high excavation cost, frequent roadway accidents, and large waste of coal resources caused by leaving coal pillars.
  • the present invention provides a design method for mines without coal pillars and no roadway, so as to solve the problem of coal mining caused by large excavation volume, long shaft construction time, high driving costs, frequent roadway accidents, and coal pillars in the prior art. Large waste of resources.
  • the present invention provides a longwall mining method for shaft workers, which includes the following steps: open the main shaft and the auxiliary shaft from the ground to the coal seam; develop the first connecting lane and the second connecting lane in the coal seam, so The first connecting lane is connected with the main well, the second connecting lane is connected with the auxiliary well; the first connecting lane is connected with the second connecting lane, and the first connecting lane is connected with the The part through the second connecting lane is taken as the first cut, and the direction of the first cut is parallel to the line connecting the main well and the auxiliary well; the first cut is far away from the main well and The direction of the auxiliary shaft line is taken as the first direction, and the coal mining machine is used to cut the coal wall in the first direction for mining to form the first mining face with the first direction as the mining travel direction; When the coal wall is cut at the first mining face, the first transportation lane and the first air return lane are cut at the same time, and the first transportation lane and the first air return lane are
  • the air lanes are connected; after the coal mining work of the first mining face is completed, the first transportation lane or the first air return lane of the first mining face is used as the cut hole of the second working face to keep away from the first transportation lane or the first airway.
  • the second working face is mined; until all the second working faces are mined.
  • the second working face starts mining from the first mining face on the side of the first transportation lane.
  • the second working face starts mining from the first mining face on the side of the first return airway.
  • the second direction is perpendicular to the first direction.
  • first transportation lane and the first air return lane are formed by a roof-cutting and pressure-relief self-forming technique.
  • first mining faces there are two first mining faces, and the arrangement of the two first mining faces is symmetrical with respect to the line connecting the main well and the auxiliary well.
  • cut holes are arranged at a position near the main well, and mining is performed in the second direction away from the main well.
  • cut holes are arranged near the auxiliary well, and mining is performed in the second direction away from the auxiliary well.
  • an open cut is arranged around the main well or the auxiliary well, and the main well, the auxiliary well, the first connecting lane and the The area enclosed by the second connecting lane.
  • the longwall mining method of the present invention is to lay out the mining pattern of the entire mining area from the early stage of the construction of the well. After the mine shaft is developed, the first connecting lane and the second connecting lane are directly developed through the shaft, and Connect two connecting lanes to form an open cut, and finally carry out mining activities.
  • This can eliminate a large number of roadway excavations, reduce the preparation time for coal production, and advance the coal mining time. At the same time, it reduces the cost of coal production, reduces the number of personnel required for tunneling, avoids safety accidents during the tunneling process, and saves a lot of time and money for the entire mine production.
  • This mining method not only reduces the mine construction cycle, but also does not leave any coal pillars in the entire mining area as the mining activities progress, which can increase the mine’s recovery rate, save coal resources, increase the mine’s service life, and avoid causes The large deformation of the surrounding rock of the roadway caused by the stress concentration above the coal pillar, rock burst, coal (rock) burst, coal and gas outburst and other geological disasters are reserved.
  • FIG. 1 is a schematic diagram of forming a first cut in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of mining the first mining face in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of mining the second working face by the first transportation lane in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of mining the second working face from the first return air tunnel in an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of mining the second first face in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of mining after all the second working faces have been mined in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of mining in an unmined area in an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of mining in the area enclosed by the main well, auxiliary well and connecting lane in an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the mining of the first face in another embodiment of the invention.
  • a method for designing a mine without coal pillars and no roadway that is, a longwall mining method for mine workers, which includes the following steps:
  • Step 1 Open the main well 1 and auxiliary well 2 from the ground to the coal seam.
  • Step 2 Develop a first connecting lane 31 and a second connecting lane 32 in the coal seam, the first connecting lane 31 is connected with the main shaft 1, and the second connecting lane 32 is connected with the auxiliary shaft 2;
  • the length of the first connecting lane 31 and the second connecting lane 32 is preferably 50-100 m.
  • Step 3 As shown in FIG. 1, the first connecting lane 31 and the second connecting lane 32 are connected, and the part between the first connecting lane and the second connecting lane is taken as the first alley.
  • the direction of the first cut 4 is parallel to the line connecting the main well 1 and the auxiliary well 2.
  • Step 4 As shown in Fig. 2, the direction of the first cut 4 away from the connecting line of the main shaft 1 and the auxiliary shaft 2 is taken as the first direction, and the shearer cuts the coal wall in the first direction for mining , Forming the first mining face 5 with the first direction as the mining direction.
  • the end of the first mining face 5 is the end of the coal seam in the first direction, that is, the first mining face 5 can be mined to a position where there is no coal in the first direction or to the boundary of the mine field.
  • Step 5 When the shearer cuts the coal wall at the first mining face, it simultaneously cuts the first transportation lane and the first return airway, and connects the first transportation lane 61 and the A return air lane 62 is retained, that is, the first transport lane 61 and the first air return lane 62 are formed by retaining lanes during the mining operation of the shearer.
  • the first transport lane 61 and the An air return lane 62 is located on both sides of the first mining face 5, the first transportation lane 61 is at least connected to the main shaft 1, and the first air return lane 62 is at least connected to the auxiliary shaft 2. through.
  • Step 6 After the first mining face 5 is mined to the stop line 51, leave a reserved roadway at the end of the first mining face 5 (the reserved roadway coincides with the stop line 51 in the figure)
  • the reserved lanes of the first mining face 5 are respectively connected with the first transportation lane 61 and the first air return lane 62.
  • the coal mining machine is used to cut the roadway space during the coal mining process, and the roadway space is retained by roof slitting, constant resistance and large deformation anchor cable support technology, etc. to form the first transportation lane 61 and the first return air Lane 62 is connected.
  • Step 7 After the mining of the first mining face 5 is completed, use the first transportation lane 61 or the first air return lane 62 of the first mining face 5 as the cut hole of the second working face 7 to keep away from the first transportation lane 61 Or, in the second direction of the first air return lane 62, the second working face 7 is mined.
  • Step 8 When the shearer cuts the coal wall at the second working face 7, it cuts out the second transportation lane 81 and the second air return lane 82 at the same time, and the second transportation lane 81 And the second air return lane 82 are retained, that is, the second transportation lane 81 and the second air return lane 82 are formed by retaining lanes during the mining operation of the shearer, the second transportation lane 81
  • the second air return lane 82 and the second air return lane 82 are respectively located on both sides of the second working face 7, and the second transportation lane 81 is connected with the first transportation lane 61 until all the second working faces are fully mined.
  • Fig. 3 the figure shows the positional relationship between the first mining face 5 and the second working face 7. During the mining process, mining can be carried out according to the layout of Figure 3.
  • the number of the second working face 7 is multiple, and a plurality of the second working face 7 are mined in sequence, starting from the second working face 7 being mined, and the second working face 7 of the previous second working face 7 is mined.
  • the second air return lane 82 is located on the side close to the next second working face 7, and the second return air lane 82 of the previous second working face 7 serves as the second of the next second working face 7.
  • the transportation lane 81, the transportation lane of the last second working face 7 becomes the goaf after the last second working face 7 is mined; starting from the mining of the second second working face, the second working face 7 No. 81 of the second transportation lane will be collected and discarded without reservation. Only the second transportation lane 81 of the first second working face 7 is reserved to connect with the first transportation lane 61. Referring to Fig. 4, according to the first direction, a plurality of second working surfaces 7 are arranged in sequence.
  • the second working face 7 starts mining from the first mining face 5 on the side of the first transportation lane 61.
  • the second direction is perpendicular to the first direction.
  • the second working face 7 can also start mining from the first mining face 5 on the side of the first return airway 62.
  • the second working face 7 of the present invention is first produced by Mining is carried out on one side of the first transportation lane 61, and after the mining is completed, the second working face 7 on the other side is mined from the first air return lane 62.
  • the second working face 7 can be mined at the same time from both sides of the first mining face 5 (the side of the first transportation lane 61 and the side of the first air return lane 62).
  • the mining efficiency is higher.
  • the two first mining faces 5 there may be two first mining faces 5 at the same time, and the arrangement of the two first mining faces 5 is symmetrical with respect to the line connecting the main well 1 and the auxiliary well 2.
  • the two first mining faces 5 can be mined sequentially or at the same time, which is specifically determined according to the actual coal seam situation.
  • the two first mining faces 5 are more efficient when mining at the same time.
  • the two first mining faces are mined sequentially, after all the second working faces 7 on the side of the first first mining face 5 are mined, the second first mining face 5 and the second first mining face 5 are mined. All the second working faces 7 on this side until all the second working faces 7 on both sides of the two first mining faces 5 are mined.
  • the first working face 5 and all the second working faces 7 are formed as shown in Fig. 6 after the mining is completed.
  • first mining face 5 there may be one first mining face 5, and the number and position of the first mining face are determined according to the coal seam and the positions of the main and auxiliary shafts, specifically according to actual conditions. As shown in FIG. 9, when the first mining face 5 is one, the mining direction of the first mining face is a direction away from the connection line of the main well 1 and the auxiliary well 2.
  • a working face reserved roadway is reserved at the end of the second working face 7, and the working face reserved roadway is respectively the same as the second transportation lane 81 It is connected to the second air return lane 82.
  • the mining method is further preferably, after all the second working face 7 is mined, the cut hole 91 is arranged at the position of the main well 1 or the auxiliary well 2 facing the unmined area 9, and is far away from the main well 1 or The second direction of the auxiliary shaft 2 is used for mining.
  • the specific layout and mining method are shown in FIG. 7. Through this layout mining method, the main shaft 1 and the auxiliary shaft 2 can be directed toward the unmined area 9 for coal mining.
  • an open cut is arranged around the main well 1 or the auxiliary well 2, and the main well 1, the auxiliary well 2, and the second well are mined.
  • the working face is arranged according to the initial cut hole near the shaft and mining is carried out in a traditional way. At this point, the mining of the working face of the entire mining area is completed, and the entire mining area has no coal pillars and no roadway excavation.
  • the longwall mining method of the shaft of the present invention is to lay out the mining pattern of the entire mining area from the early stage of the construction of the shaft.
  • the mine shaft After the mine shaft is developed, it directly passes through the shaft (main shaft 1 and auxiliary shaft) 2) Open up the first connecting lane 31 and the second connecting lane 32, connect the two connecting lanes to form an open cut, and finally carry out mining activities.
  • This can eliminate tunneling, reduce the preparation time for coal production, and advance the coal mining time. At the same time, it reduces the cost of coal production, reduces the number of personnel required for tunneling, avoids safety accidents during the tunneling process, and saves a lot of time and money for the entire mine production.
  • No roadway is excavated in the entire mining area, which can eliminate excavation, reduce the preparation time for coal production, and advance the coal mining time. At the same time, it reduces the cost of coal production, reduces the number of personnel required for tunneling, avoids safety accidents during the tunneling process, and saves a lot of time and money for the entire mine production.

Abstract

一种无煤柱留设无巷道掘进矿井设计方法,包括以下步骤:从地面向煤层打通主井(1)和副井(2);在煤层开拓第一联络巷(31)和第二联络巷(32),第一联络巷(31)与主井(1)连通,第二联络巷(32)与副井(2)连通;将第一联络巷(31)和第二联络巷(32)贯通,并且第一联络巷(31)和第二联络巷(32)之间贯通的部分作为第一切眼(4);由第一切眼(4)开始远离主井(1)和副井(2)连线的方向作为第一方向,通过采煤机以第一方向进行截割煤壁的开采。

Description

无煤柱留设无巷道掘进矿井设计方法 技术领域
本发明涉及采矿技术领域,具体而言,涉及一种井工长壁开采方法,尤其是一种无煤柱留设无巷道掘进矿井设计方法。
背景技术
煤炭井工开采通常需要从地面向地下开掘一系列井巷,包括主副井、开拓巷道、准备巷道、回采巷道等。为了保护上述巷道,在采矿过程中又需要在巷道附近留设大量的护巷煤柱,以避免巷道因采动和顶板运动影响而破坏。这种采矿方法在我国经过了几十年的发展,目前已成为应用最为广泛的开采方式,为我国煤炭开采事业做出了巨大贡献,但同时也存在诸多问题:
(1)井底车场、开拓巷道、准备巷道以及回采巷道附近留设的护巷煤柱造成资源浪费严重,环境损伤严重。
(2)巷道掘进量大造成生产成本高。井工开采往往需要配套掘进大量的巷道工程,包括开拓巷道、准备巷道以及回采巷道等。
(3)巷道事故多发。据统计,煤矿事故中,巷道事故占91%,其中工作面回采巷道占巷道事故约90%。
(4)建井周期长、投资大,为了使每个回采工作面正常接续,每个煤矿需要布置多个掘进工作面,用人多,掘进量大,掘进时间长,掘进费用高,采煤和掘进交替紧张。巨大的掘进工作量导致煤炭生产前期准备时间过长,增加了煤炭生产的成本,浪费大量的时间和金钱。
综上所述,现有的煤矿开采技术存在巷道掘进量大、掘进时间长、掘进费用高、巷道事故多发、留设煤柱所造成煤炭资源浪费大的问题。
发明内容
本发明提供一种无煤柱留设无巷道掘进矿井设计方法,以解决现有技术中煤矿开采巷道掘进量大、建井时间长、掘进费用高、巷道事故多发、留设煤柱造成的煤炭资源浪费大的问题。
为解决上述技术问题,本发明提供了一种井工长壁开采方法,包括以下步骤:从地面向煤层打通主井和副井;在所述煤层开拓第一联络巷和第二联络巷,所述第一联络巷与所述主井连通,所述第二联络巷与所述副井连通;将所述第一联络巷和所述第二联络巷贯通,并且所述第一联络巷和所述第二联络巷之间贯通的部分作为第一切眼,所述第一切眼的方向平行于所述主井和所述副井的连线;以第一切眼远离所述主井和所述副井连线的方向作为第一方向,通过采煤机以第一方向进行截割煤壁进行开采,形成以所述第一方向为开采行进方向的首采面;所述采煤机在所述首采面截割煤壁时,同时割出第一运输巷和第一回风巷,并将所述第一运输巷和所述第一回风巷保留,所述第一运输巷和所述第一回风巷分别位于所述首采面的两侧,所述第一运输巷与所述主井相连通,所述第一回风巷与所述副井相连通;在所述首采面采到停采线后,在所述首采面的末端留出首采面预留巷道,所述首采面预留巷道分别与所述第一运输巷和所述第一回风巷连通;待所述首采面的采煤工作完成后,以首采面的第一运输巷或第一回风巷作为第二工作面的切眼,以远离第一运输巷或第一回风巷的第二方向进行第二工作面的开采;直至将所有所述第二工作面开采完。
进一步地,所述第二工作面由所述首采面位于所述第一运输巷的一侧开始开采。
进一步地,所述第二工作面由所述首采面位于所述第一回风巷的一侧开始开采。
进一步地,所述第二方向与所述第一方向垂直。
进一步地,所述第一运输巷和所述第一回风巷通过切顶卸压自成巷技术形成。
进一步地,所述首采面为两个,两个所述首采面的布置相对所述主井和所述副井的连线对称。
进一步地,待所有第二工作面开采完成后,在所述主井附近位置处布置切眼,并以远离所述主井的所述第二方向进行开采。
进一步地,待所有第二工作面开采完成后,在所述副井附近位置处布置切眼,并以远离所述副井的所述第二方向进行开采。
进一步地,待所有第二工作面开采完成后,在所述主井或者所述副井的周围布置切眼,并开采所述主井、所述副井、所述第一联络巷和所述第二联络巷围成的区域。
应用本发明的技术方案,本发明的井工长壁开采方法是从建井初期着手布设整个矿区开采格局,矿井井筒开拓完毕后,直接通过井筒开拓出第一联络巷和第二联络巷,并将两个联络巷贯通形成开切眼,最后进行采矿活动。这样可以消除大量巷道掘进,减少煤炭生产前期准备时间,提前煤炭开采时间。同时减少了煤炭生产成本,减少了掘进所需要的人员,避免了巷道掘进过程中所带来的安全事故,为整个矿井生产节约了大量的时间和金钱。该开采方法不仅能够减少了矿井建设周期,而且随着采矿活动进行,在整个矿区内不留设任何煤柱,可以提高矿井的采出率,节约煤炭资源,增加矿井的服务年限,避免了因留设煤柱上方应力集中引起的巷道围岩大变形、冲击地压、煤(岩)爆以及煤与瓦斯突出等地质灾害。
附图说明
图1是本发明一个实施例中形成第一切眼的示意图。
图2是本发明一个实施例中开采第一个首采面的开采示意图。
图3是本发明一个实施例中由第一运输巷开采第二工作面的开采示意图。
图4是本发明一个实施例中由第一回风巷开采第二工作面的开采示意图。
图5是本发明一个实施例中开采第二个首采面的开采示意图。
图6是本发明一个实施例中所有的第二工作面已开采完后的开采示意图。
图7是本发明一个实施例中未开采区域的开采示意图。
图8是本发明一个实施例中主井、副井及联络巷所围区域的开采示意图。
图9是发明另一个实施例的首采面的开采示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
参见图1至图5所示,根据本发明的实施例,提供了一种无煤柱留设无巷道掘进矿井设计方法,即一种井工长壁开采方法,该方法包括以下步骤:
步骤1:从地面向煤层打通主井1和副井2。
步骤2:在所述煤层开拓第一联络巷31和第二联络巷32,所述第一联络巷31与所述主井1连通,所述第二联络巷32与所述副井2连通;第一联络巷31和第二联络巷32的长度优选为50~100m。
步骤3:如图1所示,将所述第一联络巷31和所述第二联络巷32贯通,并且所述第一联络巷和所述第二联络巷之间贯通的部分作为第一切眼4,优选的,所述第一切眼4的方向平行于所述主井1和所述副井2的连线。
步骤4:如图2所示,以第一切眼4远离所述主井1和所述副井2连线的方向作为第一方向,采煤机在第一方向上截割煤壁进行开采,形成以所述第一方向为开采方向的首采面5。参见图2所示,首采面5的末端为第一方向上煤层的末端,即首采面5可以开采到第一方向没有煤炭的位置或井田边界。
步骤5:所述采煤机在所述首采面截割煤壁时,同时割出第一运输巷和第一回风巷,并通过留巷将所述第一运输巷61和所述第一回风巷62保留,即所述第一运输巷61和所述第一回风巷62是在采煤机开采作业的过程中通过留巷形成,所述第一运输巷61和所述第一回风巷62分别位于所述首采面5的两侧,所述第一运输巷61至少与所述主井1相连通,所述第一回风巷62至少与所述副井2相连通。
步骤6:在所述首采面5采到停采线51后,在所述首采面5的末端留出首采面5预留巷道(预留巷道与图中停采线51位置重合),所述首采面5预留巷道分别与所述第一运输巷61和所述第一回风巷62连通。利用采煤机在采煤过程中割出巷道空间,并利用顶板切缝、恒 阻大变形锚索支护技术等将巷道空间保留下来形成所述第一运输巷61和所述第一回风巷62连通。
步骤7:在所述首采面5的开采完成后,以首采面5的第一运输巷61或第一回风巷62作为第二工作面7的切眼,以远离第一运输巷61或第一回风巷62的第二方向进行第二工作面7的开采。
步骤8:所述采煤机在所述第二工作面7截割煤壁时,同时割出第二运输巷81和第二回风巷82,并通过留巷将所述第二运输巷81和所述第二回风巷82保留,即所述第二运输巷81和所述第二回风巷82是在采煤机开采作业的过程中通过留巷形成,所述第二运输巷81和所述第二回风巷82分别位于所述第二工作面7的两侧,所述第二运输巷81与所述第一运输巷61连通,直至把所有第二工作面全部开采完。参见图3,图中示出了首采面5和第二工作面7的位置关系,在开采过程可以按照图3的布局进行开采。
所述第二工作面7的数量为多个,依次开采多个所述第二工作面7,从开采第二个所述第二工作面7开始,上一个所述第二工作面7的第二回风巷82位于靠近下一个所述第二工作面7的一侧,并且上一个所述第二工作面7的第二回风巷82作为下一个所述第二工作面7的第二运输巷81,上一个所述第二工作面7的运输巷在上一个所述第二工作面7开采后成为采空区;从第二个第二工作面的开采开始,第二工作面7的第二运输巷81随采随废不做保留。只保留第一个第二工作面7的第二运输巷81以连通第一运输巷61。参见图4,按照第一方向,依次排列多个第二工作面7。
进一步地,如图3所示,所述第二工作面7由所述首采面5位于所述第一运输巷61的一侧开始开采。所述第二方向与所述第一方向垂直。通过首采面5的第一方向以及第二方向的配合,可以将矿区绝大部分的煤矿都开采出来,最大程度地避免了煤矿开采不完全的情况,提升了出煤量。另外,所述第二工作面7也可以由所述首采面5位于所述第一回风巷62的一侧开始开采,如图4所示,本发明的第二工作面7是先由第一运输巷61的一侧开采,开采完成后再从第一回风巷62开始开采另外一侧的第二工作面7。当然,参见图4所示的开采示意图,第二工作面7可以从首采面5的两侧(第一运输巷61的一侧以及第一 回风巷62的一侧)同时进行开采,这样开采效率更高。
如图5所示,首采面5也可以同时为两个,所述两个首采面5的布置相对所述主井1和所述副井2的连线对称。两个首采面5可以依次开采也可以同时进行开采,具体根据实际煤层的情况进行确定,两个首采面5同时开采时效率更高。当两个首采面依次开采时,在第一个首采面5这一侧所有的第二工作面7开采完成后,再开采第二个首采面5,以及第二个首采面5这一侧所有的第二工作面7,直至将两个首采面5两侧的所有第二工作面7开采完毕。或者也可以同时进行两个首采面5的开采,以及同时开采两个首采面5的第二工作面7,首采面5和所有的第二工作面7开采完毕后形成为图6所示的开采示意图。
当然在其他实施例中,首采面5也可以为一个,首采面的数量位置是根据煤层以及主副井位置决定的,具体根据实际情况确定。如图9所示,首采面5为一个时,首采面的开采方向为远离所述主井1和所述副井2连线的方向。
在所述第二工作面7采到停采线后,在所述述第二工作面7的末端留出工作面预留巷道,所述工作面预留巷道分别与所述第二运输巷81和所述第二回风巷82连通。
本采矿方法进一步优选地,待所有第二工作面7开采完成后,在所述主井1或副井2朝向未开采区域9的位置处布置切眼91,并以远离所述主井1或副井2的所述第二方向进行开采,具体的布局和采矿方式参见图7所示,通过这种布局采矿方式,可以将主井1和副井2朝向未开采区域9的煤矿采矿完成。
参见图8,待所有第二工作面7开采完成后,在所述主井1或者所述副井2的周围布置切眼,并开采所述主井1、所述副井2、所述第一联络巷31和所述第二联络巷32围成的区域10。根据井筒附近最初的切眼布置工作面,并采用传统方式进进行开采,至此完成整个矿区的工作面采矿,实现全矿区的无煤柱留设和无巷道掘进。
本发明的井工长壁开采方法,即全矿区无煤柱留设及无巷道掘进是从建井初期着手布设整个矿区开采格局,矿井井筒开拓完毕后,直接通过井筒(主井1和副井2)开拓出第一联络巷31和第二联络巷32,并将两个联络巷贯通形成开切眼,最后进行采矿活动。这样可以消除 掘进,减少煤炭生产前期准备时间,提前煤炭开采时间。同时减少了煤炭生产成本,减少了掘进所需要的人员,避免了巷道掘进过程中所带来的安全事故,为整个矿井生产节约了大量的时间和金钱。不仅能够减少了矿井建设周期,而且随着采矿活动进行,在整个矿区内不留设任何煤柱,可以提高矿井的采出率,节约煤炭资源,增加矿井的服务年限,避免了因留设煤柱上方应力集中引起的巷道围岩大变形、冲击地压、煤(岩)爆以及煤与瓦斯突出等地质灾害。与现有技术相比,本发明具有如下的有益效果:
(1)在整个矿区内不掘进任何巷道,可以消除掘进,减少煤炭生产前期准备时间,提前煤炭开采时间。同时减少了煤炭生产成本,减少了掘进所需要的人员,避免了巷道掘进过程中所带来的安全事故,为整个矿井生产节约了大量的时间和金钱。
(2)在整个矿区内不留设任何煤柱,可以提高矿井的采出率,节约煤炭资源,增加矿井的服务年限,避免了因留设煤柱上方应力集中引起的巷道围岩大变形、冲击地压、煤(岩)爆以及煤与瓦斯突出等地质灾害,为国家节约煤炭资源做出了巨大贡献。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
当然,以上是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

  1. 一种井工长壁开采方法,其特征在于,包括以下步骤:
    从地面向煤层打通主井和副井;
    在所述煤层开拓第一联络巷和第二联络巷,所述第一联络巷与所述主井连通,所述第二联络巷与所述副井连通;
    将所述第一联络巷和所述第二联络巷贯通,并且所述第一联络巷和所述第二联络巷之间贯通的部分作为第一切眼,所述第一切眼的方向平行于所述主井和所述副井的连线;
    以第一切眼远离所述主井和所述副井连线的方向作为第一方向,通过采煤机以第一方向进行截割煤壁进行开采,形成以所述第一方向为开采行进方向的首采面;
    所述采煤机在所述首采面截割煤壁时,同时割出第一运输巷和第一回风巷,并将所述第一运输巷和所述第一回风巷保留,所述第一运输巷和所述第一回风巷分别位于所述首采面的两侧,所述第一运输巷与所述主井相连通,所述第一回风巷与所述副井相连通;
    在所述首采面采到停采线后,在所述首采面的末端留出首采面预留巷道,所述首采面预留巷道分别与所述第一运输巷和所述第一回风巷连通;
    待所述首采面的采煤工作完成后,以首采面的第一运输巷或第一回风巷作为第二工作面的切眼,以远离第一运输巷或第一回风巷的第二方向进行第二工作面的开采;
    直至将所有所述第二工作面开采完。
  2. 根据权利要求1所述的井工长壁开采方法,其特征在于,所述第二工作面由所述首采面位于所述第一运输巷的一侧开始开采。
  3. 根据权利要求1所述的井工长壁开采方法,其特征在于,所述第二工作面由所述首采面位于所述第一回风巷的一侧开始开采。
  4. 根据权利要求1所述的井工长壁开采方法,其特征在于,所述第二方向与所述第一方向垂直。
  5. 根据权利要求1所述的井工长壁开采方法,其特征在于,
    所述第一运输巷和所述第一回风巷通过切顶卸压自成巷技术形成。
  6. 根据权利要求1所述的井工长壁开采方法,其特征在于,所述首采面为两个,两个所述首采面的布置相对所述主井和所述副井的连线对称。
  7. 根据权利要求6所述的井工长壁开采方法,其特征在于,待所有第二工作面开采完成后,在所述主井附近位置处布置切眼,并以远离所述主井的所述第二方向进行开采。
  8. 根据权利要求6所述的井工长壁开采方法,其特征在于,待所有第二工作面开采完成后,在所述副井附近位置处布置切眼,并以远离所述副井的所述第二方向进行开采。
  9. 根据权利要求6所述的井工长壁开采方法,其特征在于,待所有第二工作面开采完成后,在所述主井或者所述副井的周围布置切眼,并开采所述主井、所述副井、所述第一联络巷和所述第二联络巷围成的区域。
PCT/CN2019/097065 2019-07-09 2019-07-22 无煤柱留设无巷道掘进矿井设计方法 WO2021003771A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/597,480 US11578597B2 (en) 2019-07-09 2019-07-22 Underground longwall mining method
EP19937351.5A EP3998395B1 (en) 2019-07-09 2019-07-22 Design method for mine without leaving coal pillar and without roadway tunneling
AU2019456662A AU2019456662B2 (en) 2019-07-09 2019-07-22 Design method for mine without leaving coal pillar and without roadway tunneling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910616045.4A CN110130898B (zh) 2019-07-09 2019-07-09 无煤柱留设无巷道掘进矿井设计方法
CN201910616045.4 2019-07-09

Publications (1)

Publication Number Publication Date
WO2021003771A1 true WO2021003771A1 (zh) 2021-01-14

Family

ID=67566868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097065 WO2021003771A1 (zh) 2019-07-09 2019-07-22 无煤柱留设无巷道掘进矿井设计方法

Country Status (5)

Country Link
US (1) US11578597B2 (zh)
EP (1) EP3998395B1 (zh)
CN (1) CN110130898B (zh)
AU (1) AU2019456662B2 (zh)
WO (1) WO2021003771A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111255455B (zh) * 2020-01-21 2021-07-02 山东科技大学 一种煤矿井田不划分采区无掘巷无煤柱开采及施工方法
CN113530539B (zh) * 2021-08-02 2024-02-20 北京中矿创新联盟能源环境科学研究院 智能化n00矿井煤气同采方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801697A1 (en) * 2012-01-06 2014-11-12 He, Manchao Longwall working face, non-pillared mining method
CN104405437A (zh) * 2014-10-08 2015-03-11 中国矿业大学 一种固体充填与综采混合式工作面开采方法
CN105240013A (zh) * 2015-06-24 2016-01-13 何满潮 长壁开采n00工法
CN109779686A (zh) * 2019-01-28 2019-05-21 北京大学 一种无氧矿山开采系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999804A (en) * 1976-03-08 1976-12-28 Atlantic Richfield Company Longwall mining with chain pillar recovery
US4174135A (en) * 1978-04-10 1979-11-13 Bechtel International Corporation Underground formed wall single-entry mining method
CN102182460A (zh) * 2011-04-14 2011-09-14 山西晋城无烟煤矿业集团有限责任公司 高瓦斯多巷无煤柱开采法
CN105089668A (zh) * 2014-05-19 2015-11-25 梁捷 一种长壁工作面无煤柱开采方法
AU2016200784B1 (en) * 2015-05-28 2016-06-16 Commonwealth Scientific And Industrial Research Organisation System and method for controlling a mining machine
CN106168138B (zh) * 2015-09-30 2018-07-06 北京中矿创新联盟能源环境科学研究院 一种无巷道无煤柱自留巷开采工法的过渡支架及装备系统
CN106761750B (zh) * 2016-12-26 2018-11-13 高红波 急倾斜煤层纵向长壁刨铣建槽式开采方法
CN109882175B (zh) * 2019-04-04 2022-04-01 中国矿业大学(北京) 实现一巷三用的工作面回采与停采设备回撤的协同作业方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801697A1 (en) * 2012-01-06 2014-11-12 He, Manchao Longwall working face, non-pillared mining method
CN104405437A (zh) * 2014-10-08 2015-03-11 中国矿业大学 一种固体充填与综采混合式工作面开采方法
CN105240013A (zh) * 2015-06-24 2016-01-13 何满潮 长壁开采n00工法
CN109779686A (zh) * 2019-01-28 2019-05-21 北京大学 一种无氧矿山开采系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998395A4 *

Also Published As

Publication number Publication date
EP3998395A4 (en) 2022-07-27
US11578597B2 (en) 2023-02-14
AU2019456662A1 (en) 2022-02-24
US20220251952A1 (en) 2022-08-11
CN110130898B (zh) 2019-09-17
AU2019456662B2 (en) 2022-06-09
EP3998395B1 (en) 2023-05-10
EP3998395A1 (en) 2022-05-18
CN110130898A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
EP3998394B1 (en) Method for coal mining without reserving coal pillar and tunneling roadway in whole mining area
CN111828083B (zh) 单一煤层的瓦斯抽采方法
CN103953345B (zh) 一种沿空小断面留巷开采方法
CN103485786B (zh) 一种急倾斜煤层走向长壁机械化开采方法
CN110905507A (zh) 高瓦斯大采高高效开采工作面超前切顶卸压沿空留巷工艺
CN102536229A (zh) 掘、护、锚平行作业系统与施工工艺
WO2021003771A1 (zh) 无煤柱留设无巷道掘进矿井设计方法
CN103061771A (zh) 复采矿井综采面切眼掘进及其支护方法
WO2021031561A1 (zh) 一种煤矿井田不划分采区无掘巷无煤柱开采及施工方法
CN105275487B (zh) 长臂开采n00工法通风系统
CN106812532A (zh) 一种高瓦斯突出矿井薄煤层半煤岩切顶巷道快速掘进系统
CN109505606A (zh) 一种预控顶机械化分段空场嗣后充填采矿方法
CN108505999A (zh) 一种高突煤层工作面多巷布置方法
CN109098713B (zh) 一种过空巷的方法
CN102787845B (zh) 特长隧道采用掘进机先施工斜井和导坑的分段修建方法
CN103982184B (zh) 地下矿山无底柱崩落采矿法落下矿石定向滑落控制方法
CN105401976A (zh) 煤层底板绳锯切缝区域防突措施
CN112761713B (zh) 一种高瓦斯矿井回采工作面采空区瓦斯安全长效抽采方法
RU2775028C1 (ru) Способ добычи остаточного угля радиальной разработкой продольного уклона карьера
SU1761953A1 (ru) Способ разработки крутого угольного пласта
CN106812551A (zh) 一种山区新建高瓦斯突出矿井穿层预抽及快速掘进系统
PRASANNA STUDY AND REVIEW OF ADVANCE DEPILLARING METHODS USED IN CONTINUOUS MINER PANELS IN UNDERGROUND MINES
Robbins Vehicular Tunnels in Rock—Direction for Development
CN203978457U (zh) 一种安拆简便的隧道支护支架
CN114753844A (zh) 一种基于阶段空场采矿法的水力压裂-机械切割协同开采方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019937351

Country of ref document: EP

Effective date: 20220209

ENP Entry into the national phase

Ref document number: 2019456662

Country of ref document: AU

Date of ref document: 20190722

Kind code of ref document: A