WO2021002662A1 - Extendable wearable robot system - Google Patents

Extendable wearable robot system Download PDF

Info

Publication number
WO2021002662A1
WO2021002662A1 PCT/KR2020/008565 KR2020008565W WO2021002662A1 WO 2021002662 A1 WO2021002662 A1 WO 2021002662A1 KR 2020008565 W KR2020008565 W KR 2020008565W WO 2021002662 A1 WO2021002662 A1 WO 2021002662A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
wearing
movement
motion
robot system
Prior art date
Application number
PCT/KR2020/008565
Other languages
French (fr)
Korean (ko)
Inventor
김호준
박정규
지영훈
조정호
박수현
최동은
안철웅
한창수
Original Assignee
주식회사 헥사휴먼케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 헥사휴먼케어 filed Critical 주식회사 헥사휴먼케어
Priority to CN202080007237.6A priority Critical patent/CN113226243B/en
Publication of WO2021002662A1 publication Critical patent/WO2021002662A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • A61H1/0262Walking movement; Appliances for aiding disabled persons to walk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • B25J19/0016Balancing devices using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/005Appliances for aiding patients or disabled persons to walk about with knee, leg or stump rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/007Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1659Free spatial automatic movement of interface within a working area, e.g. Robot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg

Definitions

  • the present invention relates to a wearable robot for walking training, and in particular, an expandable wearable that provides convenience to wear the robot through a front robot mounting method while solving instability of movement of the center of gravity and the weight burden of the robot by using a spring combination. It relates to a robot system.
  • a wearable robot enables walking with a reduced load burden on a walking trainer by generating walking motion with an actuator (or motor) as a power source.
  • the wearing robot is composed of a joint frame worn on the lower body of a walking trainer, and a motor or actuator that moves the joint portion of the joint frame for walking motion.
  • the wearing robot moves the knee area of the walking trainer with the power of an actuator to help the walking trainer practice the walking pattern in place.
  • the wearing robot can effectively obtain a bipedal walking posture experience that is helpful for walking training through brain plasticity by weakening the load burden that the walking trainer receives with the power of the actuator.
  • the wearing robot can only provide passive training with left and right movements using the power of an actuator, and furthermore, stabilization of the center of gravity movement is insufficient because it cannot generate an opposite reaction force that can assist the left and right movement.
  • the wearable robot lifts the worn robot together to perform a walking motion, so that the weight of the robot acts as a load. Furthermore, since the robot is worn by the rear robot mounting method, the robot wearability of the walking trainer who is inconvenient to move and move is inconvenient.
  • the wearable robot does not provide convenience in use, has a low walking training effect, and cannot but implement various walking training.
  • the present invention in consideration of the above points provides spontaneous training by left and right movement by stabilizing the center of gravity movement using the translational movement of the left and right springs, as well as the robot weight compensation using the counter-balancing effect of the upper and lower springs. It is possible to reduce the burden on vertical movement, and in particular, by implementing a front robot mounting method with a two-degree of freedom manual mechanism device implemented with a spring combination, it is used to provide an extended wearable robot system that provides user convenience for riding and wearing the robot. There is a purpose.
  • the extended wearable robot system of the present invention for achieving the above object includes: a wearable robot in which a walking motion is generated by actuator power;
  • the vertical movement associated with the wearing robot is a 1-axis motion, and the horizontal movement independent of the wearing robot is generated as a 2-axis motion, and the vertical movement direction for the 1-axis motion is followed and the left and right movement for the 2-axis motion
  • It is characterized in that it includes a two-degree of freedom manual mechanism device that implements direction tracking by changing the spring elastic force, respectively.
  • the two-degree of freedom manual mechanism device is RWS connected to the wearing robot to achieve the one-axis motion, and two axes separated from the wearing robot so as to achieve the two-axis motion and arranged in the inner space of the wearing robot. It consists of motion supporters.
  • the RWS is a vertical movement block connected to the wearing robot to adjust the height of the wearing robot and compensate the weight of the robot for the vertical movement for the walking motion of the wearing robot, and the vertical movement block A uniaxial elastic member for elastically supporting the lower portion of the vertical movement block so that the spring elastic force change occurs according to the vertical movement direction of the uniaxial elastic member, coupled with the vertical movement block to guide the vertical movement while fixing the position of the uniaxial elastic member
  • the main consists of a vertical guide rod.
  • the uniaxial elastic member is formed by combining a plurality of coil springs in series and parallel arrangements.
  • Each of the vertical guide rod and the uniaxial elastic member is composed of a pair of two.
  • the RWS is provided with a fixing bracket that forms an up-and-down space of the vertical movement block, and the fixing bracket is coupled to a one-axis mounting frame that covers the RWS.
  • the RWS is composed of a left RWS connected from the left to the wearing robot, and a right RWS connected from the right to the wearing robot.
  • the two-axis motion supporter is a body adjuster protruding into the inner space of the wearing robot while allowing the movement of left and right movement relative to the walking motion of the wearing robot, a horizontal guide for guiding the movement of the body adjuster A rod, a left and right movable block coupled to the horizontal guide rod at a distance from the body adjuster, and a biaxial elastic member coupled to the horizontal guide rod to generate a change in the spring elastic force according to the left and right movement direction of the body adjuster. Is composed.
  • the horizontal guide rod is separated into a movable rod and a support rod
  • the biaxial elastic member and the body adjuster are coupled to the movable rod
  • one of the left and right movable blocks is coupled to the movable rod. While the other part is coupled to the support rod.
  • the biaxial elastic member is made of a coil spring positioned between the left and right movable blocks and the body adjuster.
  • a two-axis mounting frame is coupled to the two-axis elastic member, and the two-axis mounting frame fixes both ends of the horizontal guide rod.
  • the two-axis motion supporter includes a left horizontal motion supporter positioned to the left in the inner space of the wearing robot, and a right horizontal motion supporter positioned to the right in the inner space of the wearing robot.
  • the two-degree-of-freedom manual mechanism device is coupled to a robot frame, and the robot frame includes a wire so that the harness is positioned in the inner space of the wearing robot.
  • the expandable wearing robot system of the present invention implements the following actions and effects in connection with the wearing robot.
  • a two-degree of freedom manual mechanism device is implemented with only a simple mechanical configuration.
  • walking training can provide diversity by excluding the robot load as the robot weight compensation of the worn robot.
  • FIG. 1 is an example in which an extended wearable robot system according to the present invention is applied to an automated walking robot system
  • FIG. 2 is a configuration diagram of a robot weight support (RWS) of a two-degree of freedom manual mechanism device constituting an extended wearable robot system according to the present invention.
  • 3 is an operation state of a robot weight support (RWS) that generates a counter-balancing effect according to the present invention
  • FIG. 4 is a two-degree of freedom manual constituting the extended wearable robot system according to the present invention.
  • It is a configuration diagram of the left and right motion supporter of the mechanism device
  • FIG. 5 is an operation state of the left and right motion supporter for stabilizing the movement of the center of gravity according to the present invention
  • FIG. 6 is a two-degree of freedom manual mechanism device according to the present invention. This is an example that is arranged in a front robot mounting method.
  • the wearing robot (1-1) and the 2-degree of freedom manual mechanism device 120 constitutes an expandable wearable robot system
  • the extended wearable robot system is a walking automation robot system (1) together with a walking training basic system. ).
  • the configuration of the wearing robot 1-1 and the two-degree of freedom manual mechanism device 120 is as follows.
  • the wearing robot 1-1 is located in front of the treadmill 1-5 (that is, the direction of entering and moving), and a pair of support links 2 located to the left and right of the treadmill 1-5 ) And a pair of support links (2) connected to each of the joint links (3).
  • the wearing robot 1-1 moves up and down to generate walking motion in a fixed position using the robot frame 110, and an actuator for generating the walking motion power is provided at the connection part of the joint link 3 do.
  • the wearing robot 1-1 has an arrangement of a front robot mounting method tailored to the position of the walking trainer, and this arrangement of the front robot mounting method eliminates the disadvantages of the rear robot mounting arrangement arrangement that is not aligned with the position of the existing walking trainer.
  • “forward” means the direction that the trainee 100 wearing the wearing robot 1-1 looks at.
  • the two-degree of freedom manual mechanism device 120 includes a robot weight support (RWS) 130 and a two-axis motion supporter 140.
  • RWS robot weight support
  • the RWS 130 is a robot weight using a counter-balancing effect while linking the walking motion of the wearing robot 1-1 connected via the support link 2 to the vertical movement provided as a 1-axis motion. As a compensation, the weight of the robot is not applied as a load.
  • the 2-axis motion supporter 140 generates a translational motion that assists the left and right movement of the walking motion in the opposite direction in the inner space of the wearing robot 1-1, thereby generating the center of gravity of the trainee caused by unstable left and right movement. It stabilizes the movement, and provides voluntary walking training and high walking training effect by stable center of gravity movement of the wearing robot (1-1).
  • the RWS 130 and the two-axis motion supporter 140 have a two-degree of freedom movement mechanism of up and down/left and right, in addition to the function of assisting the walking motion of the wearing robot 1-1 by a spring combination that generates a spring reaction force. It stabilizes the movement.
  • the two-degree of freedom manual mechanism device 120 is a combination of the RWS 130 and the two-axis motion supporter 140, thereby reducing the cost of the existing expensive actuator equipment for assisting the walking motion of the wearing robot 1-1. Reduction and simplification of the structure relieves it. Furthermore, the two-degree of freedom manual mechanism device 120 is a combination of the RWS 130 and the two-axis motion supporter 140, so that the uncomfortable robot wearability due to the rear robot mounting method of the conventional wearable robot 1-1 It is solved by a robot-mounted method. From this, the RWS 130 and the two-axis motion supporter 140 enable the existing wearable robot system as an extended wearable robot system.
  • the two-degree of freedom manual mechanism device 120 further includes a motion supporter frame 150 for integrating the RWS 130 and the two-axis motion supporter 140, and the motion supporter frame 150 is a one-axis mounting
  • the frame 150-1, the two-axis mounting frame 150-2, and the frame connecting member 150-3 may be used as components.
  • the single-axis mounting frame 150-1 is composed of a structure that wraps and couples the RWS 130 to prevent and protect the RWS 130 from being exposed to the outside
  • the two-axis mounting frame 150-2 Is composed of a structure that wraps and couples the two-axis motion supporter 140 to prevent exposure and protect the two-axis motion supporter 140 to the outside
  • the frame connecting member 150-3 is composed of a bolt, a nut, and a fixing bracket to connect the one-axis mounting frame 150-1 and the two-axis mounting frame 150-2.
  • the walking training basic system is a P-bar (1-2), a robot controller (1-3), a display (1-4), a treadmill (1-5), and a harness (Harness) ( 50), consisting of a robot frame 110, and these components are applied as essential devices for a walking automated robot system.
  • the gait training basic system is P-bar (1-2), robot controller (1-3), display (1-4), treadmill (1-5), harness (Harness) ( 50), the configuration of the robot frame 110 is as follows.
  • the P-bar 1-2 is positioned to the left and right of the treadmill 1-5 so that the trayy 100 (see FIG. 4) raised to the treadmill 1-5 can be held by hand.
  • the robot controller 1-3 is positioned on either side of the left and right side of the treadmill 1-5, the actuator for the joint of the wearing robot 1-1, the screen transmission of the display 1-4, and the treadmill 1-
  • An electric circuit is constructed for reproducing the walking speed of 5) and the wire 31 of the harness 50.
  • the display (1-4) is located in front of the treadmill (1-5) and reproduces the screen under the control of the robot controller (1-3).
  • the treadmill 1-5 reproduces the walking speed.
  • the P-bar (1-2) is composed of a “”-shaped bar and is composed of a pair installed on the left and right sides of the wearing robot (1-1) from the left and right of the treadmill (1-5), and a safety rod for walking motion.
  • the robot controller 1-3 is composed of a micro controller unit or a computer, and has logic or programs for adjusting wire tension and reproducing the difference in walking speed, controlling screen playback and controlling actuators, and A matching map may be provided.
  • the display 1-4 may be a monitor that reproduces a screen under the control of the robot controller 1-3 or a TV that independently reproduces the screen.
  • the treadmill 1-5 may be driven under the control of the robot controller 1-3 or may be independently driven.
  • the harness 50 has a seat on which the trayy 100 (see Fig. 4) is mounted, and the seat has a harness band connected to a harness plate connected to a wire 31 (see Fig. 4).
  • the robot frame 110 is coupled with the manual mechanism device 120 of 2 degrees of freedom, is positioned in front of the treadmill 1-5, and contains a wire 31 connected to the harness 50.
  • the robot frame 110 includes an electric winch for adjusting the length of the wire 31 and is driven and controlled by the robot controller 1-3, thereby adjusting the height of the harness 50 and the tension of the wire 31. It is possible to adjust the walking training intensity for the trainee 100 by adjustment.
  • FIGS. 2 and 3 illustrate detailed configurations and operations of the RWS 130 and the 2-axis motion supporter 140.
  • the trainee 100 is illustrated in FIG. 6.
  • the RWS 130 includes a fixing bracket 131, a vertical guide rod 133, a single-axis elastic member 135, and a vertical movement block 137.
  • the fixing bracket 131 is coupled to the one-axis mounting frame 150-1, and provides a space in which the vertical guide rod 133, the one-axis elastic member 135, and the vertical movement block 137 are assembled.
  • the vertical guide rod 133 is vertically erected on the fixing bracket 131 and is coupled to the vertical movement block 137.
  • the uniaxial elastic member 135 surrounds the vertical guide rod 133 and elastically supports the lower end of the vertical movement block 137 to provide an elastic repulsion force according to the movement of the vertical movement block 137.
  • the up and down movement block 137 is connected to the support link 2 of the wearing robot 1-1, so that the wearing robot 1-1 in a fixed state enables a one-axis motion in which the height is adjusted by moving the vertical position. give.
  • the fixing bracket 131 has a “c” shape with one open so that the support link 2 of the wearing robot 1-1 is positioned.
  • the vertical guide rod 133 includes a pair of first rods ( 133a) and the second rod 133b, and are coupled with the vertical movement block 137 at spaced intervals to stably guide the vertical movement of the vertical movement block 137.
  • the uniaxial elastic member 135 is a pair of elastic members 135 Consisting of a first elastic member 135a and a second elastic member 135b, they are coupled to each of the first rod 133a and the second rod 133b
  • the vertical movement block 137 has a structure protruding from the block body.
  • connection flange (137a) is formed, and the connection flange (137a) provides a space for fastening bolts and nuts, thereby strengthening the connection state of the support link (2) of the wearing robot (1-1) and the vertical movement block (137). Keeps you going.
  • each of the first elastic member 135a and the second elastic member 135b arranges six coil springs in series and parallel structures.
  • the spring elastic modulus values of the first and second elastic members 135a and 135b allow additional force to be transmitted to the wearing robot 1-1 in the downward direction of the up and down movement block 137, and add a reverse direction. This is because the force generates a reaction to the wearing robot (1-1) that impairs the stability of the walking motion.
  • each of the first elastic member 135a and the second elastic member 135b consists of six series and parallel coil springs, the generation of reverse additional force is reduced to a lower elastic modulus compared to one integrated series coil spring. Minimize it.
  • the up and down movement block 137 is moved up and down to compensate for the weight of the robot for the vertical movement of the trainee 100 for the walking motion of the wearing robot (1-1) along with the height adjustment of the wearing robot (1-1) As a result, it performs the main function to prevent the walking training of the trainee 100 wearing the wearing robot 1-1 from being affected or disturbed by the robot's own weight.
  • the RWS 130 is placed on the left side of the treadmill (1-5) and is placed on the left RWS (130A) protected by the 1-axis mounting frame (150-1) and the right side of the treadmill (1-5). It consists of the right RWS (130B) protected by the shaft mounting frame (150-1).
  • the left RWS (130A) and the right RWS (130B) have the same components as the fixing bracket 131, the vertical guide rod 133, the one-axis elastic member 135, and the vertical movement block 137, respectively. .
  • the left RWS (130A) can adjust the height of the left portion of the wearing robot (1-1), and the right RWS (130B) can adjust the height of the right portion of the wearing robot (1-1), and further
  • the spring reaction force of the left RWS (130A) and the right RWS (130B) performs a counter-balancing against the robot weight of the wearing robot (1-1) so that the wearing robot (1-1) is stabilized. do.
  • the wearing robot 1-1 is linked with the left and right RWSs 130A and 130B, so that the training robot 1-1 has a counter-balancing effect and It enables the action of minimizing adverse force according to the movement of the walking pattern.
  • the counter balance action is implemented by the movement of the walking pattern of the wearing robot 1-1 by the vertical motion of the left and right RWS (130A, 130B). That is, the movement in the downward direction according to the walking pattern movement of the wearing robot 1-1 lowers the vertical movement block 137 of the left and right RWS (130A, 130B) in the downward direction, and the downward movement of the vertical movement block 137 Stabilizes the downward movement of the wearing robot (1-1).
  • the upward movement according to the movement of the walking pattern of the wearing robot (1-1) is by raising the vertical movement block 137 of the left and right RWS (130A, 130B) in the upward direction to prevent the upward movement of the wearing robot (1-1). Stabilizes it.
  • the action of minimizing the occurrence of reverse force is caused by the downward movement of the vertical movement block 137 in which the one-axis elastic member 135 of the left and right RWS (130A, 130B) is connected with the walking pattern movement of the wearing robot (1-1). It is implemented by buffering the reaction of walking motion with elastic compressive force and elastic restoring force by upward movement. That is, the vertical movement block 137 through which the first and second elastic members 135a and 135b in series and parallel arrangement of six coil springs constituting the one-axis elastic member 135 are transmitted to the wearing robot 1-1 It stabilizes the motion of the wearing robot (1-1) that implements the walking pattern movement by absorbing most of the additional force in the reverse direction caused by the vertical movement of the robot.
  • the adverse force generation minimization action compensates for the weight of the robot during the vertical movement of the wearing robot 1-1 according to the walking training of the trainee 100, and such compensation for the weight of the robot is performed by wearing the wearing robot 1-1.
  • the trainee 100 allows walking training in a state that is not affected by the robot's own weight.
  • FIG. 4 and 5 illustrate detailed configurations and operations of the 2-axis motion supporter 140.
  • the trainee 100 is illustrated in FIG. 6.
  • the two-axis motion supporter 140 includes a horizontal guide rod 141 and a two-axis elastic member 143, a left and right movement block 145, a body adjuster 147, a stopper 148 and an auxiliary It consists of a spring (149).
  • the horizontal guide rod 141 is coupled to the two-axis mounting frame 150-2, and the two-axis elastic member 143, the left and right movable blocks 145, and the body adjuster 147 are coupled.
  • the biaxial elastic member 143 is formed of a coil spring having a spring elastic modulus value and is coupled to the horizontal guide rod 141.
  • the left and right movement block 145 is coupled to the horizontal guide rod 141 while supporting one side of the biaxial elastic member 143 and moves to the left or right.
  • the body adjuster 147 is coupled to the horizontal guide rod 141 while supporting the other side of the biaxial elastic member 143 and moves to the left or right.
  • the stopper 148 is connected to the body adjuster 147 and, when moving to the left or right, contacts the support link 2 of the wearing robot 1-1 to limit the movement.
  • the auxiliary spring 149 provides a spring elastic force to the body adjuster 147.
  • the horizontal guide rod 141 is composed of a movable rod 141a and a support rod spaced therebetween 141b, and each of the movable rod 141a and the support rod 141b has a biaxial end portion.
  • the mounting frame 150-2 By being fixed to the mounting frame 150-2, it is arranged in the longitudinal direction of the two-axis mounting frame 150-2.
  • the biaxial elastic member 143 is coupled to the moving rod (141a).
  • the left and right movable blocks 145 are coupled to the movable rod 141a to support one side of the biaxial elastic member 143 and are also coupled to the support rod 141b.
  • the stopper 148 protrudes to a length outside the body adjuster 147 while being fixed to the coupling portion of the moving rod 141a of the body adjuster 147.
  • auxiliary spring 149 is formed of a torsion spring and is positioned between the body adjuster 147 and the stopper 148.
  • the two-axis motion supporter 140 is located independently of the wearing robot 1-1 in the inner space of the wearing robot 1-1, so that the trainee 100 wearing the wearing robot 1-1 ) Assists to maintain the center of gravity of the Trainee 100 stably by buffering and absorbing the left and right movements that cause posture instability when moving in a walking pattern.
  • the two-axis motion supporter 140 includes a left horizontal motion supporter 140A positioned to the left in the inner space of the wearing robot 1-1 and a right horizontal motion supporter 140A positioned to the right in the inner space of the wearing robot 1-1. It is composed of a motion supporter (140B).
  • the left horizontal motion supporter 140A and the right horizontal motion supporter 140B each have a horizontal guide rod 141 and a biaxial elastic member 143, a left and right movement block 145, a body adjuster 147, The stopper 148 and the auxiliary spring 149 are the same components.
  • the wearing robot 1-1 is connected with the left and right horizontal motion supporters 140A and 140B, so that the translation of the trainee 100 having a walking movement while wearing the action robot 1-1 It enables movement and stabilization of the center of gravity and size adjustment for the trainee 100.
  • the left and right horizontal motion supporters 140A and 140B holding the trainee 100 wearing the wearing robot 1-1 in a fixed state with the body adjuster 147 are trained according to the walking pattern movement. It is achieved by absorbing and buffering the movement of (100) left and right.
  • the left movement of the trainee 100 is a left movement force that presses the body adjuster 147 of the left horizontal motion supporter 140A while the body adjuster 147 of the right horizontal motion supporter 140B is fixed.
  • the left moving force is transferred along the moving rod 141a and the support rod 141b along with the body adjuster 147 by the left and right movement blocks 145 of the left horizontal motion supporter 140A.
  • the left horizontal motion supporter 140A stably maintains the left movement of the trainee 100, and at the same time, the left RWS 130A is independent of the wearing robot 1-1 in accordance with the left movement of the trainee 100. It appears as a translational exercise effect.
  • the right movement of the trainee 100 is implemented with the right horizontal motion supporter 140B while the body adjuster 147 of the left horizontal motion supporter 140A is fixed, and the final process is the left horizontal motion supporter 140A. ), the direction is the same, but only the opposite direction.
  • the stabilization of the movement of the center of gravity is implemented by maintaining the center of gravity of the trainee 100 made the same as the normal walking pattern.
  • the left horizontal motion supporter 140A and the right horizontal motion supporter 140B assist in posture instability due to the walking movement of the trainee 100 wearing the fixed wearing robot 1-1 with a spring reaction force
  • the spring reaction force assists acts to stabilize the center of gravity for each of the left and right movements of the trainee 100, thereby enabling stable walking movement even in the state where the trainee 100 is wearing the wearing robot 1-1.
  • the size adjustment is implemented by opening or narrowing the body adjusters 147 of the left and right horizontal motion supporters 140A and 140B. That is, the body adjuster 147 generates a width adjustment movement that opens or narrows according to the size of the trainee 100, and the width adjustment movement of the body adjuster 147 is the elasticity of the biaxial elastic member 143 It is transmitted to the left and right movement block 145 through deformation, and the left and right movement block 145 moves through the movement rod 141a and the support rod 141b together with the body adjuster 147 to move the left and right horizontal motion supporters 140A. ,140B) of “ ”It fits the size of the trainee 100 by opening or narrowing the shape.
  • the wearing robot 1-1 is arranged in a front robot mounting manner, thereby providing convenience of wearing the robot of the trainee 100 moved to the front of the treadmill 1-5 while providing the robot frame ( 110), the left and right RWS (130A, 130B) and the left and right horizontal motion supporters (140A, 140B) linked to the wearing robot (1-1) implement the following actions and effects.
  • the treadmill (1-5) shortens the line of movement reached to grab the P-bar (1-2) by moving the trainee (100) from the rear to the front.
  • the wearing robot (1-1) is located in front of the treadmill (1-5) to increase the accessibility of the trainee (100).
  • harness 50 is connected to the wire 31 that is adjusted in length in the robot frame 110 by the control of the robot controller (1-3) located to the left of the robot frame 110 for wearing the harness 50. It greatly reduces the operation of the trainee 100.
  • left and right RWS (130A, 130B) and left and right horizontal motion supporters (140A, 140B) to the walking automation robot system (1), it is possible to reduce the movement of the trainee 100 for wearing the wearing robot (1-1). Do.
  • the extended wearable robot system applied to the walking automation robot system 1 is capable of reducing the load of the robot and assisting the vertical movement with the counter-balancing effect of the one-axis motion by the vertical spring.
  • a wearable robot (1-1) by including a possible RWS (Robot Weight Support) 130, a 2-axis motion supporter 140 capable of voluntarily moving left and right through stabilization of the center of gravity movement through translational movement of 2-axis motion by left and right springs. It can provide the effect of counter-balancing/reverse force minimization/translational movement/gravity center stabilization/size adjustment during the walking motion of the RWS (130) and the two-axis motion supporter (140).
  • a spring that assists the left and right movement by changing the elastic modulus it is possible to reduce manufacturing cost and simplify the structure compared to existing actuator equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Tools (AREA)

Abstract

An extendable wearable robot system of the present invention, which is applied to a walking automation robot system (1), comprises a robot weight support (RWS) (130) capable of reducing robot's weight and assisting up and down movement, with a counter-balancing effect of 1-axis motion by a vertical spring, and a 2-axis motion supporter (140) capable of voluntarily moving left and right through stabilization of movement of center of gravity by translational motion of 2-axis motion by a horizontal spring, and thereby, during a walking motion of a wearable robot (1-1), providing effects of counter-balancing/reverse force minimization/translational motion/stabilization of center of gravity/size adjustment, in particular, reducing manufacturing costs and simplifying a structure, compared to existing actuator equipment by applying, to the effects of the RWS (130) and the 2-axis motion supporter (140), a spring for assisting the up and down/left and right movement through a change in an elastic modulus.

Description

확장형 착용로봇 시스템Extended Wearable Robot System
본 발명은 보행 훈련용 착용로봇에 관한 것으로, 특히 스프링 조합을 이용하여 착용로봇의 무게중심(Center of Gravity) 이동 불안정 및 로봇 무게 부담을 해소하면서 전방 로봇 탑재 방식으로 로봇 착용 편리성도 제공하는 확장형 착용로봇 시스템에 관한 것이다.The present invention relates to a wearable robot for walking training, and in particular, an expandable wearable that provides convenience to wear the robot through a front robot mounting method while solving instability of movement of the center of gravity and the weight burden of the robot by using a spring combination. It relates to a robot system.
일반적으로 착용로봇은 동력원으로 액추에이터(또는 모터)로 보행 모션을 생성함으로써 보행 훈련자에게 하중 부담이 줄어든 보행을 가능하게 한다.In general, a wearable robot enables walking with a reduced load burden on a walking trainer by generating walking motion with an actuator (or motor) as a power source.
이를 위해 상기 착용로봇은 보행 훈련자의 하체에 착용하는 관절 프레임, 보행 모션을 위해 관절 프레임의 관절부위를 움직여주는 모터 또는 액추에이터로 구성된다.To this end, the wearing robot is composed of a joint frame worn on the lower body of a walking trainer, and a motor or actuator that moves the joint portion of the joint frame for walking motion.
그러므로 상기 착용로봇은 액추에이터의 동력으로 보행 훈련자의 무릎부위를 움직여줌으로써 보행 훈련자가 제자리에서 보행 패턴을 연습할 수 있도록 도음을 준다.Therefore, the wearing robot moves the knee area of the walking trainer with the power of an actuator to help the walking trainer practice the walking pattern in place.
이와 같이 상기 착용로봇은 액추에이터의 동력으로 보행 훈련자가 받는 하중 부담을 약화시킴으로써 뇌 가소성을 통한 보행 훈련에 도움이 되는 2족 보행 자세 경험을 효과적으로 얻을 수 있게 된다. In this way, the wearing robot can effectively obtain a bipedal walking posture experience that is helpful for walking training through brain plasticity by weakening the load burden that the walking trainer receives with the power of the actuator.
하지만, 상기 착용로봇은 액추에이터의 동력을 이용한 좌우 움직임으로 수동적인 훈련만 제공할 수 있고, 나아가 좌우 움직임을 보조할 수 있는 반대 방향 반력을 생성하지 못함으로써 무게중심 이동에 대한 안정화가 부족하다.However, the wearing robot can only provide passive training with left and right movements using the power of an actuator, and furthermore, stabilization of the center of gravity movement is insufficient because it cannot generate an opposite reaction force that can assist the left and right movement.
또한 상기 착용로봇은 착용된 로봇을 함께 들어 보행 모션이 이루어짐으로써 로봇무게가 하중부담으로 작용되고 있다. 나아가 상기 착용로봇은 후방 로봇 탑재 방식으로 로봇 착용이 이루어짐으로써 거동 및 이동이 불편한 보행 훈련자의 로봇 착용성을 불편하게 하고 있다.In addition, the wearable robot lifts the worn robot together to perform a walking motion, so that the weight of the robot acts as a load. Furthermore, since the robot is worn by the rear robot mounting method, the robot wearability of the walking trainer who is inconvenient to move and move is inconvenient.
이로 인하여 상기 착용로봇은 사용의 편리성이 제공되지 못하고, 보행 훈련 효과가 낮으며, 보행 훈련이 다양하게 구현되지 못할 수밖에 없다. For this reason, the wearable robot does not provide convenience in use, has a low walking training effect, and cannot but implement various walking training.
이에 상기와 같은 점을 감안한 본 발명은 좌우 스프링의 병진운동을 이용한 무게중심 이동 안정화로 좌우 움직임에 의한 자발적인 훈련을 제공함과 더불어 상하 스프링의 카운터 밸런스 효과(Counter-Balancing Effect)를 이용한 로봇무게보상으로 상하 움직임에 대한 부담을 경감할 수 있고, 특히 스프링 조합으로 구현된 2 자유도 수동 메커니즘 장치로 전방 로봇 탑재 방식을 구현함으로써 로봇 탑승 및 착용에 사용자 편리성을 제공하여 주는 확장형 착용로봇 시스템의 제공에 목적이 있다. Accordingly, the present invention in consideration of the above points provides spontaneous training by left and right movement by stabilizing the center of gravity movement using the translational movement of the left and right springs, as well as the robot weight compensation using the counter-balancing effect of the upper and lower springs. It is possible to reduce the burden on vertical movement, and in particular, by implementing a front robot mounting method with a two-degree of freedom manual mechanism device implemented with a spring combination, it is used to provide an extended wearable robot system that provides user convenience for riding and wearing the robot. There is a purpose.
상기와 같은 목적을 달성하기 위한 본 발명의 확장형 착용로봇 시스템은 액추에이터 동력으로 보행 모션이 발생되는 착용로봇; 상기 착용로봇과 연계된 상하이동을 1축 모션으로 하고 상기 착용로봇과 독립적인 좌우이동을 2축 모션으로 발생시켜주고, 상기 1축 모션을 위한 상하 이동방향 추종 및 상기 2축 모션을 위한 좌우 이동방향 추종을 각각 스프링 탄성력 변화로 구현해주는 2 자유도 수동 메커니즘 장치가 포함되는 것을 특징으로 한다.The extended wearable robot system of the present invention for achieving the above object includes: a wearable robot in which a walking motion is generated by actuator power; The vertical movement associated with the wearing robot is a 1-axis motion, and the horizontal movement independent of the wearing robot is generated as a 2-axis motion, and the vertical movement direction for the 1-axis motion is followed and the left and right movement for the 2-axis motion It is characterized in that it includes a two-degree of freedom manual mechanism device that implements direction tracking by changing the spring elastic force, respectively.
바람직한 실시예로서, 상기 2 자유도 수동 메커니즘 장치는 상기 1축 모션이 이루어지도록 상기 착용로봇과 연결된 RWS, 상기 2축 모션이 이루어지도록 상기 착용로봇과 분리되어 상기 착용로봇 안쪽 공간으로 배열된 2축 모션 서포터로 구성된다.In a preferred embodiment, the two-degree of freedom manual mechanism device is RWS connected to the wearing robot to achieve the one-axis motion, and two axes separated from the wearing robot so as to achieve the two-axis motion and arranged in the inner space of the wearing robot. It consists of motion supporters.
바람직한 실시예로서, 상기 RWS는 상기 착용로봇과 연결되어 상기 착용로봇의 높낮이 조절 및 상기 착용로봇의 보행 모션을 위한 상하 운동에 대해 로봇 무게를 보상하도록 상하로 이동되는 상하 이동 블록, 상기 상하 이동 블록의 상하 이동방향에 따라 상기 스프링 탄성력 변화가 발생되도록 상기 상하 이동 블록의 하부를 탄발 지지하는 1축 탄성부재, 상기 상하 이동 블록과 결합되어 상하이동을 안내하면서 상기 1축 탄성부재의 위치를 고정하여 주는 수직 가이드 로드로 구성된다.In a preferred embodiment, the RWS is a vertical movement block connected to the wearing robot to adjust the height of the wearing robot and compensate the weight of the robot for the vertical movement for the walking motion of the wearing robot, and the vertical movement block A uniaxial elastic member for elastically supporting the lower portion of the vertical movement block so that the spring elastic force change occurs according to the vertical movement direction of the uniaxial elastic member, coupled with the vertical movement block to guide the vertical movement while fixing the position of the uniaxial elastic member The main consists of a vertical guide rod.
바람직한 실시예로서, 상기 1축 탄성부재는 복수개의 코일 스프링을 직렬 및 병렬 배열로 조합하여 이루어진다. 상기 수직 가이드 로드는 와 상기 1축 탄성부재의 각각은 2개를 한 쌍으로 하여 구성된다. In a preferred embodiment, the uniaxial elastic member is formed by combining a plurality of coil springs in series and parallel arrangements. Each of the vertical guide rod and the uniaxial elastic member is composed of a pair of two.
바람직한 실시예로서, 상기 RWS에는 상기 상하 이동 블록의 상하이동 공간을 형성해 주는 고정 브래킷이 구비되고, 상기 고정 브래킷은 상기 RWS를 가려주는 1축 마운팅 프레임과 결합 된다.In a preferred embodiment, the RWS is provided with a fixing bracket that forms an up-and-down space of the vertical movement block, and the fixing bracket is coupled to a one-axis mounting frame that covers the RWS.
바람직한 실시예로서, 상기 RWS는 상기 착용로봇과 좌측에서 연결된 좌측 RWS, 상기 착용로봇과 우측에서 연결된 우측 RWS로 구성된다.In a preferred embodiment, the RWS is composed of a left RWS connected from the left to the wearing robot, and a right RWS connected from the right to the wearing robot.
바람직한 실시예로서, 상기 2축 모션 서포터는 상기 착용로봇의 보행모션에 대한 좌우 이동의 움직임을 허용하면서 상기 착용로봇의 안쪽 공간으로 돌출된 바디 어저스터, 상기 바디 어저스터의 이동을 안내하는 수평 가이드 로드, 상기 바디 어저스터와 간격을 두고 상기 수평 가이드 로드에 결합된 좌우 이동 블록, 상기 수평 가이드 로드에 결합되어 상기 바디 어저스터의 좌우이동방향에 따라 상기 스프링 탄성력 변화를 발생시키는 2축 탄성부재로 구성된다.In a preferred embodiment, the two-axis motion supporter is a body adjuster protruding into the inner space of the wearing robot while allowing the movement of left and right movement relative to the walking motion of the wearing robot, a horizontal guide for guiding the movement of the body adjuster A rod, a left and right movable block coupled to the horizontal guide rod at a distance from the body adjuster, and a biaxial elastic member coupled to the horizontal guide rod to generate a change in the spring elastic force according to the left and right movement direction of the body adjuster. Is composed.
바람직한 실시예로서, 상기 수평 가이드 로드는 이동 로드와 지지 로드로 분리되고, 상기 2축 탄성부재와 상기 바디 어저스터는 상기 이동 로드에 결합되며, 상기 좌우 이동 블록은 한쪽부위가 상기 이동 로드에 결합되면서 다른쪽 부위가 상기 지지 로드에 결합 된다.In a preferred embodiment, the horizontal guide rod is separated into a movable rod and a support rod, the biaxial elastic member and the body adjuster are coupled to the movable rod, and one of the left and right movable blocks is coupled to the movable rod. While the other part is coupled to the support rod.
바람직한 실시예로서, 상기 2축 탄성부재는 상기 좌우 이동 블록과 상기 바디 어저스터의 사이로 위치된 코일 스프링으로 이루어진다.In a preferred embodiment, the biaxial elastic member is made of a coil spring positioned between the left and right movable blocks and the body adjuster.
바람직한 실시예로서, 상기 2축 탄성부재에는 2축 마운팅 프레임이 결합되고, 상기 2축 마운팅 프레임은 상기 수평 가이드 로드의 양끝부위를 고정시켜준다.In a preferred embodiment, a two-axis mounting frame is coupled to the two-axis elastic member, and the two-axis mounting frame fixes both ends of the horizontal guide rod.
바람직한 실시예로서, 상기 2축 모션 서포터는 상기 착용로봇의 안쪽 공간에서 좌측으로 위치된 좌측 수평 모션 서포터, 상기 착용로봇의 안쪽 공간에서 우측으로 위치된 우측 수평 모션 서포터로 구성된다.In a preferred embodiment, the two-axis motion supporter includes a left horizontal motion supporter positioned to the left in the inner space of the wearing robot, and a right horizontal motion supporter positioned to the right in the inner space of the wearing robot.
바람직한 실시예로서, 상기 2 자유도 수동 메커니즘 장치는 로봇 프레임과 결합되고, 상기 로봇 프레임은 상기 착용로봇의 안쪽 공간으로 하네스가 위치되도록 와이어를 구비한다.In a preferred embodiment, the two-degree-of-freedom manual mechanism device is coupled to a robot frame, and the robot frame includes a wire so that the harness is positioned in the inner space of the wearing robot.
이러한 본 발명의 확장형 착용로봇 시스템은 착용로봇과 연계되어 하기와 같은 작용 및 효과를 구현한다.The expandable wearing robot system of the present invention implements the following actions and effects in connection with the wearing robot.
첫째, 스프링의 좌우/상하 조합을 이용함으로써 2 자유도 수동 메커니즘 장치가 에 의한 간단한 기구적 구성만으로도 구현된다. 둘째, 좌우 스프링의 병진운동 및 상하 스프링의 카운터 밸런스 효과(Counter-Balancing Effect)를 갖는 2 자유도 수동 메커니즘 장치로 착용로봇에서 무게중심 이동 안정화, 로봇 무게 보상 및 로봇 탑승/착용 편리성이 제공됨으로써 기존의 착용로봇 한계를 모두 극복 및 해소할 수 있다. 셋째, 착용로봇의 무게중심 이동 안정화가 이루어짐으로써 무게중심의 좌우 이동을 자발적인 보행 훈련 및 높은 보행 훈련 효과를 얻을 수 있다. 넷째, 착용로봇의 로봇 무게 보상으로 로봇 하중이 제외됨으로써 보행 훈련이 다양성을 제공할 수 있다. 다섯째, 착용로봇과 2 자유도 수동 메커니즘 장치의 레이아웃 조합으로 착용로봇을 전방 로봇 탑재 방식을 배열함으로써 로봇 탑승 및 착용에 사용자 편리성이 극대화될 수 있다.First, by using a combination of left and right/upper and lower springs, a two-degree of freedom manual mechanism device is implemented with only a simple mechanical configuration. Second, it is a two-degree of freedom manual mechanism device that has translational motion of the left and right springs and counter-balancing effect of the upper and lower springs, and stabilizes the movement of the center of gravity in the wearing robot, compensates for the weight of the robot, and provides convenience for riding and wearing the robot. It can overcome and solve all the limitations of existing wearable robots. Third, by stabilizing the movement of the center of gravity of the wearing robot, it is possible to obtain a voluntary gait training and high gait training effect for the left and right movement of the center of gravity. Fourth, walking training can provide diversity by excluding the robot load as the robot weight compensation of the worn robot. Fifth, by arranging the front robot mounting method of the wearing robot by a layout combination of the wearing robot and the 2-degree of freedom manual mechanism device, user convenience can be maximized for boarding and wearing the robot.
도 1은 본 발명에 따른 확장형 착용로봇 시스템이 보행 자동화 로봇 시스템에 적용된 예이고, 도 2는 본 발명에 따른 확장형 착용로봇 시스템을 구성하는 2자유도 수동 메커니즘 장치의 RWS(Robot Weight Support) 구성도이며, 도 3은 본 발명에 따른 카운터 밸런스 효과(Counter-Balancing Effect)를 발생하는 RWS(Robo Weight Support)의 동작 상태이고, 도 4는 본 발명에 따른 확장형 착용로봇 시스템을 구성하는 2 자유도 수동 메커니즘 장치의 좌우 모션 서포터의 구성도이며, 도 5는 본 발명에 따른 무게중심 이동 안정화를 발생하는 좌우 모션 서포터의 동작 상태이고, 도 6은 본 발명에 따른 2 자유도 수동 메커니즘 장치로 착용로봇이 전방 로봇 탑재 방식으로 배열된 예이다.1 is an example in which an extended wearable robot system according to the present invention is applied to an automated walking robot system, and FIG. 2 is a configuration diagram of a robot weight support (RWS) of a two-degree of freedom manual mechanism device constituting an extended wearable robot system according to the present invention. 3 is an operation state of a robot weight support (RWS) that generates a counter-balancing effect according to the present invention, and FIG. 4 is a two-degree of freedom manual constituting the extended wearable robot system according to the present invention. It is a configuration diagram of the left and right motion supporter of the mechanism device, FIG. 5 is an operation state of the left and right motion supporter for stabilizing the movement of the center of gravity according to the present invention, and FIG. 6 is a two-degree of freedom manual mechanism device according to the present invention. This is an example that is arranged in a front robot mounting method.
이하 본 발명의 실시 예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시 예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시 예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying illustrative drawings, and such embodiments are described herein as examples because those of ordinary skill in the art may be implemented in various different forms. It is not limited to this embodiment.
도 1을 참조하면, 착용로봇(1-1)과 2 자유도 수동 메커니즘 장치(120)는 확장형 착용로봇 시스템을 구성하고, 상기 확장형 착용로봇 시스템은 보행 훈련 기본 시스템과 함께 보행 자동화 로봇 시스템(1)으로 구성된다.Referring to Figure 1, the wearing robot (1-1) and the 2-degree of freedom manual mechanism device 120 constitutes an expandable wearable robot system, and the extended wearable robot system is a walking automation robot system (1) together with a walking training basic system. ).
구체적으로 상기 착용로봇(1-1) 및 상기 2 자유도 수동 메커니즘 장치(120)의 구성은 하기와 같다.Specifically, the configuration of the wearing robot 1-1 and the two-degree of freedom manual mechanism device 120 is as follows.
일례로 상기 착용로봇(1-1)은 트레드밀(1-5)의 앞쪽(즉, 진입하여 이동하는 방향)에 위치되고, 트레드밀(1-5)의 좌우로 위치된 한 쌍의 지지 링크(2)와 한 쌍의 지지 링크(2)의 각각에 연결된 관절 링크(3)로 이루어진다. 특히 상기 착용로봇(1-1)은 로봇 프레임(110)을 이용해 위치 고정된 상태에서 보행 모션 생성을 위해 상하로 움직이고, 관절 링크(3)의 연결부위에 보행모션의 동력 발생을 위한 액추에이터가 구비된다. For example, the wearing robot 1-1 is located in front of the treadmill 1-5 (that is, the direction of entering and moving), and a pair of support links 2 located to the left and right of the treadmill 1-5 ) And a pair of support links (2) connected to each of the joint links (3). In particular, the wearing robot 1-1 moves up and down to generate walking motion in a fixed position using the robot frame 110, and an actuator for generating the walking motion power is provided at the connection part of the joint link 3 do.
그러므로 상기 착용로봇(1-1)은 보행 훈련자 위치에 맞춰진 전방 로봇 탑재방식 배열을 갖고, 이러한 전방 로봇 탑재 방식 배열은 기존의 보행 훈련자 위치에 맞춰지지 않은 후방 로봇 탑재 방식 배열의 단점을 해소한다. 이 경우 “전방”은 착용로봇(1-1)을 착용한 트레이니(100)가 바라보는 방향을 의미한다.Therefore, the wearing robot 1-1 has an arrangement of a front robot mounting method tailored to the position of the walking trainer, and this arrangement of the front robot mounting method eliminates the disadvantages of the rear robot mounting arrangement arrangement that is not aligned with the position of the existing walking trainer. In this case, “forward” means the direction that the trainee 100 wearing the wearing robot 1-1 looks at.
일례로 상기 2 자유도 수동 메커니즘 장치(120)는 RWS(Robot Weight Support)(130) 및 2축 모션 서포터(140)로 구성된다.For example, the two-degree of freedom manual mechanism device 120 includes a robot weight support (RWS) 130 and a two-axis motion supporter 140.
상기 RWS(130)는 1축 모션으로 제공하는 상하 운동을 지지 링크(2)를 매개로 연결된 착용로봇(1-1)의 보행 모션과 연계하면서 카운터 밸런스 효과(Counter-Balancing Effect)를 이용한 로봇무게보상으로 로봇 무게가 하중으로 작용되지 않도록 한다. 반면 상기 2축 모션 서포터(140)는 착용로봇(1-1)의 안쪽 공간에서 보행모션의 좌우이동을 그 반대방향으로 보조하는 병진운동을 발생해줌으로써 불안정한 좌우이동으로 발생되는 트레이니의 무게중심이동을 안정화시켜주고, 착용로봇(1-1)의 안정적인 무게중심 이동으로 자발적인 보행 훈련 및 높은 보행 훈련 효과를 제공하여 준다. The RWS 130 is a robot weight using a counter-balancing effect while linking the walking motion of the wearing robot 1-1 connected via the support link 2 to the vertical movement provided as a 1-axis motion. As a compensation, the weight of the robot is not applied as a load. On the other hand, the 2-axis motion supporter 140 generates a translational motion that assists the left and right movement of the walking motion in the opposite direction in the inner space of the wearing robot 1-1, thereby generating the center of gravity of the trainee caused by unstable left and right movement. It stabilizes the movement, and provides voluntary walking training and high walking training effect by stable center of gravity movement of the wearing robot (1-1).
특히 상기 RWS(130) 및 상기 2축 모션 서포터(140)는 상하/좌우의 2자유도의 운동 메커니즘은 스프링 반력을 생성하는 스프링 조합으로 착용로봇(1-1)의 보행 모션을 보조하는 기능에 더해 움직임을 안정화시켜 준다.In particular, the RWS 130 and the two-axis motion supporter 140 have a two-degree of freedom movement mechanism of up and down/left and right, in addition to the function of assisting the walking motion of the wearing robot 1-1 by a spring combination that generates a spring reaction force. It stabilizes the movement.
그러므로 상기 2 자유도 수동 메커니즘 장치(120)는 RWS(130) 및 2축 모션 서포터(140)의 조합으로 착용로봇(1-1)의 보행 모션 보조를 위한 기존의 고가 액추에이터 장비가 갖는 단점을 비용 저감 및 구조 단순화가 해소하여 준다. 나아가 상기 2 자유도 수동 메커니즘 장치(120)는 RWS(130) 및 2축 모션 서포터(140)의 조합으로 기존의 착용로봇(1-1)이 갖던 후방 로봇 탑재 방식으로 인한 불편한 로봇 착용성을 전방 로봇 탑재 방식으로 해소하여 준다. 이로부터 상기 RWS(130) 및 상기 2축 모션 서포터(140)는 기존의 착용로봇 시스템을 확장형 착용로봇 시스템으로 가능하게 한다.Therefore, the two-degree of freedom manual mechanism device 120 is a combination of the RWS 130 and the two-axis motion supporter 140, thereby reducing the cost of the existing expensive actuator equipment for assisting the walking motion of the wearing robot 1-1. Reduction and simplification of the structure relieves it. Furthermore, the two-degree of freedom manual mechanism device 120 is a combination of the RWS 130 and the two-axis motion supporter 140, so that the uncomfortable robot wearability due to the rear robot mounting method of the conventional wearable robot 1-1 It is solved by a robot-mounted method. From this, the RWS 130 and the two-axis motion supporter 140 enable the existing wearable robot system as an extended wearable robot system.
나아가 상기 2 자유도 수동 메커니즘 장치(120)는 RWS(130)와 2축 모션 서포터(140)를 일체화 시켜 주는 모션 서포터 프레임(150)을 더 포함하고, 상기 모션 서포터 프레임(150)은 1축 마운팅 프레임(150-1), 2축 마운팅 프레임(150-2) 및 프레임 연결부재(150-3)를 구성요소로 할 수 있다.Furthermore, the two-degree of freedom manual mechanism device 120 further includes a motion supporter frame 150 for integrating the RWS 130 and the two-axis motion supporter 140, and the motion supporter frame 150 is a one-axis mounting The frame 150-1, the two-axis mounting frame 150-2, and the frame connecting member 150-3 may be used as components.
일례로 상기 1축 마운팅 프레임(150-1)은 RWS(130)을 감싸 결합시켜주는 구조물로 이루어져 외부에 대한 RWS(130)의 노출방지와 보호 기능을 하는 반면 상기 2축 마운팅 프레임(150-2)은 2축 모션 서포터(140)를 감싸 결합시켜주는 구조물로 이루어져 외부에 대한 2축 모션 서포터(140)의 노출방지와 보호 기능을 한다. 또한 상기 프레임 연결부재(150-3)는 볼트와 너트 및 고정 브래킷으로 구성되어 1축 마운팅 프레임(150-1)과 2축 마운팅 프레임(150-2)을 연결하여 준다.For example, the single-axis mounting frame 150-1 is composed of a structure that wraps and couples the RWS 130 to prevent and protect the RWS 130 from being exposed to the outside, while the two-axis mounting frame 150-2 ) Is composed of a structure that wraps and couples the two-axis motion supporter 140 to prevent exposure and protect the two-axis motion supporter 140 to the outside. In addition, the frame connecting member 150-3 is composed of a bolt, a nut, and a fixing bracket to connect the one-axis mounting frame 150-1 and the two-axis mounting frame 150-2.
한편 상기 보행 훈련 기본 시스템은 P-바(parallel bar)(1-2), 로봇 컨트롤러(1-3), 디스플레이(1-4), 트레드밀(Treadmill)(1-5), 하네스(Harness)(50), 로봇 프레임(110)으로 구성되고, 이들 구성요소는 보행 자동화 로봇 시스템을 위한 필수적인 장치로 적용된다.On the other hand, the walking training basic system is a P-bar (1-2), a robot controller (1-3), a display (1-4), a treadmill (1-5), and a harness (Harness) ( 50), consisting of a robot frame 110, and these components are applied as essential devices for a walking automated robot system.
그러므로 상기 보행 훈련 기본 시스템은 P-바(parallel bar)(1-2), 로봇 컨트롤러(1-3), 디스플레이(1-4), 트레드밀(Treadmill)(1-5), 하네스(Harness)(50), 로봇 프레임(110)에 대한 구성을 예시하면 하기와 같다.Therefore, the gait training basic system is P-bar (1-2), robot controller (1-3), display (1-4), treadmill (1-5), harness (Harness) ( 50), the configuration of the robot frame 110 is as follows.
일례로 상기 P-바(1-2)는 트레드밀(1-5)로 올라온 트레이니(100)(도 4 참조)가 손으로 잡을 수 있도록 트레드 밀(1-5)의 좌우로 위치된다. 상기 로봇 컨트롤러(1-3)는 트레드밀(1-5)의 좌우 중 어느 한쪽으로 위치되고, 착용로봇(1-1)의 관절용 액추에이터, 디스플레이(1-4)의 화면 송출, 트레드밀(1-5)의 보행 속도 재현, 하네스(50)의 와이어(31) 등을 위해 전기회로를 구성한다. 상기 디스플레이(1-4)는 트레드밀(1-5)의 앞쪽으로 위치되어 로봇 컨트롤러(1-3)의 제어로 화면을 재생한다. 상기 트레드밀(1-5)은 보행속도를 재현한다. For example, the P-bar 1-2 is positioned to the left and right of the treadmill 1-5 so that the trayy 100 (see FIG. 4) raised to the treadmill 1-5 can be held by hand. The robot controller 1-3 is positioned on either side of the left and right side of the treadmill 1-5, the actuator for the joint of the wearing robot 1-1, the screen transmission of the display 1-4, and the treadmill 1- An electric circuit is constructed for reproducing the walking speed of 5) and the wire 31 of the harness 50. The display (1-4) is located in front of the treadmill (1-5) and reproduces the screen under the control of the robot controller (1-3). The treadmill 1-5 reproduces the walking speed.
또한, 상기 P-바(1-2)는 “”형상의 바로 이루어져 트레드밀(1-5)의 좌우에서 착용로봇(1-1)의 좌우 양쪽에 설치된 한 쌍으로 구성되고, 보행 모션을 위한 안전봉으로 기능한다. 상기 로봇 컨트롤러(1-3)는 마이크로 제어 장치(Micro Controller Unit) 또는 컴퓨터로 구성되고, 와이어 장력 조정과 보행속도 차등 재현, 화면 재생 제어 및 액추에이터 제어 등을 위한 로직 또는 프로그램을 탑재하며, 제어 대상별 매칭 맵을 구비할 수 있다.In addition, the P-bar (1-2) is composed of a “”-shaped bar and is composed of a pair installed on the left and right sides of the wearing robot (1-1) from the left and right of the treadmill (1-5), and a safety rod for walking motion. Functions as. The robot controller 1-3 is composed of a micro controller unit or a computer, and has logic or programs for adjusting wire tension and reproducing the difference in walking speed, controlling screen playback and controlling actuators, and A matching map may be provided.
그리고 상기 디스플레이(1-4)는 로봇 컨트롤러(1-3)의 제어로 화면을 재생하는 모니터이거나 독자적으로 화면을 재생하는 TV일 수 있다. 상기 트레드밀(1-5)은 로봇 컨트롤러(1-3)의 제어로 구동되거나 독자적으로 구동될 수 있다.In addition, the display 1-4 may be a monitor that reproduces a screen under the control of the robot controller 1-3 or a TV that independently reproduces the screen. The treadmill 1-5 may be driven under the control of the robot controller 1-3 or may be independently driven.
일례로 상기 하네스(50)는 트레이니(100)(도 4 참조)를 탑재하는 시트를 갖추고, 상기 시트는 와이어(31)(도 4 참조)에 이어진 하네스 플레이트와 연결된 하네스 밴드를 구비한다.For example, the harness 50 has a seat on which the trayy 100 (see Fig. 4) is mounted, and the seat has a harness band connected to a harness plate connected to a wire 31 (see Fig. 4).
일례로 상기 로봇 프레임(110)은 2 자유도 수동 메커니즘 장치(120)와 결합되어 트레드밀(1-5)의 앞쪽으로 위치되고, 하네스(50)와 연결된 와이어(31)를 내장한다. 특히 상기 로봇 프레임(110)에는 와이어(31)의 길이 조절을 위한 전동식 윈치Wlinch)가 내장되어 로봇 컨트롤러(1-3)로 구동 제어됨으로써 하네스(50)의 높낮이 조절과 함께 와이어(31)의 장력 조절로 트레이니(100)에 대한 보행 훈련 강도 조절을 가능하게 한다.As an example, the robot frame 110 is coupled with the manual mechanism device 120 of 2 degrees of freedom, is positioned in front of the treadmill 1-5, and contains a wire 31 connected to the harness 50. In particular, the robot frame 110 includes an electric winch for adjusting the length of the wire 31 and is driven and controlled by the robot controller 1-3, thereby adjusting the height of the harness 50 and the tension of the wire 31. It is possible to adjust the walking training intensity for the trainee 100 by adjustment.
이하 도 2 내지 도 6은 RWS(130) 및 2축 모션 서포터(140)를 상세히 설명한다. 2 to 6 will be described in detail the RWS 130 and the two-axis motion supporter 140.
먼저 도 2 및 도 3은 RWS(130)와 2축 모션 서포터(140)에 대한 세부 구성 및 동작을 예시한다. 이 경우 트레이니(100)는 도 6에 예시된다.First, FIGS. 2 and 3 illustrate detailed configurations and operations of the RWS 130 and the 2-axis motion supporter 140. In this case, the trainee 100 is illustrated in FIG. 6.
도 2를 참조하면, 상기 RWS(130)는 고정 브래킷(131), 수직 가이드 로드(133), 1축 탄성부재(135) 및 상하 이동 블록(137)으로 구성된다.Referring to FIG. 2, the RWS 130 includes a fixing bracket 131, a vertical guide rod 133, a single-axis elastic member 135, and a vertical movement block 137.
일례로 상기 고정 브래킷(131)은 1축 마운팅 프레임(150-1)에 결합되고, 수직 가이드 로드(133)와 1축 탄성부재(135) 및 상하 이동 블록(137)이 조립되는 공간을 제공한다. 상기 수직 가이드 로드(133)는 고정 브래킷(131)에 수직하게 세워져 상하 이동 블록(137)과 결합된다. 상기 1축 탄성부재(135)는 수직 가이드 로드(133)를 감싸 상하 이동 블록(137)의 하단부를 탄발 지지함으로써 상하 이동 블록(137)의 이동에 따른 탄성 반발력을 제공하여 준다. 상기 상하 이동 블록(137)은 착용로봇(1-1)의 지지 링크(2)와 연결됨으로써 고정된 상태인 착용로봇(1-1)이 상하위치이동으로 높낮이 조절되는 1축 모션을 가능하게 하여 준다.For example, the fixing bracket 131 is coupled to the one-axis mounting frame 150-1, and provides a space in which the vertical guide rod 133, the one-axis elastic member 135, and the vertical movement block 137 are assembled. . The vertical guide rod 133 is vertically erected on the fixing bracket 131 and is coupled to the vertical movement block 137. The uniaxial elastic member 135 surrounds the vertical guide rod 133 and elastically supports the lower end of the vertical movement block 137 to provide an elastic repulsion force according to the movement of the vertical movement block 137. The up and down movement block 137 is connected to the support link 2 of the wearing robot 1-1, so that the wearing robot 1-1 in a fixed state enables a one-axis motion in which the height is adjusted by moving the vertical position. give.
특히 상기 고정 브래킷(131)은 착용로봇(1-1)의 지지 링크(2)가 위치되도록 한쪽이 터진 “ㄷ"자 형상으로 이루어진다. 상기 수직 가이드 로드(133)는 한 쌍의 제1 로드(133a)와 제2 로드(133b)로 이루어져 이격 간격으로 상하 이동 블록(137)과 결합됨으로써 상하 이동 블록(137)의 상하 이동을 안정적으로 가이드 한다. 상기 1축 탄성부재(135)는 한 쌍의 제1 탄성부재(135a)와 제2 탄성부재(135b)로 이루어져 제1 로드(133a)와 제2 로드(133b)의 각각에 결합된다. 상기 상하 이동 블록(137)은 블록 바디에 돌출 구조로 연결 플랜지(137a)를 형성하고, 상기 연결 플랜지(137a)는 볼트와 너트의 체결 공간을 제공함으로써 착용로봇(1-1)의 지지 링크(2)와 상하 이동 블록(137)의 연결 상태를 견고하게 유지시켜 준다.In particular, the fixing bracket 131 has a “c” shape with one open so that the support link 2 of the wearing robot 1-1 is positioned. The vertical guide rod 133 includes a pair of first rods ( 133a) and the second rod 133b, and are coupled with the vertical movement block 137 at spaced intervals to stably guide the vertical movement of the vertical movement block 137. The uniaxial elastic member 135 is a pair of elastic members 135 Consisting of a first elastic member 135a and a second elastic member 135b, they are coupled to each of the first rod 133a and the second rod 133b The vertical movement block 137 has a structure protruding from the block body. A connection flange (137a) is formed, and the connection flange (137a) provides a space for fastening bolts and nuts, thereby strengthening the connection state of the support link (2) of the wearing robot (1-1) and the vertical movement block (137). Keeps you going.
나아가 상기 제1 탄성부재(135a)와 상기 제2 탄성부재(135b)의 각각은 6개의 코일 스프링을 직렬 및 병렬 구조로 배열한다. 이러한 이유는 제1,2 탄성부재(135a,135b)의 스프링 탄성계수 값은 상하 이동 블록(137)의 아래 방향 이동 시 착용로봇(1-1)으로 추가적인 힘이 역으로 전달되도록 하고, 역방향 추가 힘은 착용로봇(1-1)에게 보행모션의 안정성을 해치는 반작용을 발생시키기 때문이다.Furthermore, each of the first elastic member 135a and the second elastic member 135b arranges six coil springs in series and parallel structures. For this reason, the spring elastic modulus values of the first and second elastic members 135a and 135b allow additional force to be transmitted to the wearing robot 1-1 in the downward direction of the up and down movement block 137, and add a reverse direction. This is because the force generates a reaction to the wearing robot (1-1) that impairs the stability of the walking motion.
그러므로 상기 제1 탄성부재(135a)와 상기 제2 탄성부재(135b)의 각각이 6개의 직렬 및 병렬 구조 코일 스프링으로 이루어짐으로써 역방향 추가 힘의 발생을 1개의 일체형 직렬 구조 코일 스프링 대비 낮은 탄성계수로 최소화하여 준다.Therefore, since each of the first elastic member 135a and the second elastic member 135b consists of six series and parallel coil springs, the generation of reverse additional force is reduced to a lower elastic modulus compared to one integrated series coil spring. Minimize it.
또한 상기 상하 이동 블록(137)은 착용로봇(1-1)의 높낮이 조절과 함께 착용로봇(1-1)의 보행 모션을 위한 트레이니(100)의 상하 운동에 대해 로봇 무게를 보상하도록 상하 이동됨으로써 착용로봇(1-1)을 착용한 트레이니(100)의 보행 훈련이 로봇 자중으로 영향을 받거나 방해 받지 않도록 하는데 주요 기능을 수행한다.In addition, the up and down movement block 137 is moved up and down to compensate for the weight of the robot for the vertical movement of the trainee 100 for the walking motion of the wearing robot (1-1) along with the height adjustment of the wearing robot (1-1) As a result, it performs the main function to prevent the walking training of the trainee 100 wearing the wearing robot 1-1 from being affected or disturbed by the robot's own weight.
한편 상기 RWS(130)는 트레드밀(1-5)의 좌측 위치에 놓여져 1축 마운팅 프레임(150-1)으로 보호되는 좌측 RWS(130A), 트레드밀(1-5)의 우측 위치에 놓여 별도의 1축 마운팅 프레임(150-1)으로 보호되는 우측 RWS(130B)로 구성된다. 이 경우 상기 좌측 RWS(130A)와 상기 우측 RWS(130B)는 각각 고정 브래킷(131), 수직 가이드 로드(133), 1축 탄성부재(135) 및 상하 이동 블록(137)을 동일한 구성요소로 한다.Meanwhile, the RWS 130 is placed on the left side of the treadmill (1-5) and is placed on the left RWS (130A) protected by the 1-axis mounting frame (150-1) and the right side of the treadmill (1-5). It consists of the right RWS (130B) protected by the shaft mounting frame (150-1). In this case, the left RWS (130A) and the right RWS (130B) have the same components as the fixing bracket 131, the vertical guide rod 133, the one-axis elastic member 135, and the vertical movement block 137, respectively. .
그러므로 상기 좌측 RWS(130A)은 착용로봇(1-1)의 좌측부위에 대한 높이조절을 상기 우측 RWS(130B)는 착용로봇(1-1)의 우측부위에 대한 높이조절 조절이 가능하고, 나아가 상기 좌측 RWS(130A)과 상기 우측 RWS(130B)의 스프링 반력은 착용로봇(1-1)이 갖는 로봇 무게에 대한 카운터 밸런스(Counter-Balancing)를 수행하여 착용로봇(1-1)이 안정화되도록 한다.Therefore, the left RWS (130A) can adjust the height of the left portion of the wearing robot (1-1), and the right RWS (130B) can adjust the height of the right portion of the wearing robot (1-1), and further The spring reaction force of the left RWS (130A) and the right RWS (130B) performs a counter-balancing against the robot weight of the wearing robot (1-1) so that the wearing robot (1-1) is stabilized. do.
도 3을 참조하면, 상기 착용로봇(1-1)은 좌우측 RWS(130A,130B)와 연계됨으로써 작용로봇(1-1)에 대한 카운터 밸런스(Counter-Balancing) 효과와 함께 트레이니(100)의 보행 패턴 움직임에 따른 역힘 최소화 작용을 가능하게 한다.Referring to FIG. 3, the wearing robot 1-1 is linked with the left and right RWSs 130A and 130B, so that the training robot 1-1 has a counter-balancing effect and It enables the action of minimizing adverse force according to the movement of the walking pattern.
일례로 상기 카운터 밸런스 작용은 착용로봇(1-1)의 보행 패턴 움직임을 좌우측 RWS(130A,130B)의 상하 모션으로 구현된다. 즉 착용로봇(1-1)의 보행 패턴 움직임에 따른 하방향 이동은 좌우측 RWS(130A,130B)의 상하 이동 블록(137)을 하방향으로 내려 주고, 상기 상하 이동 블록(137)의 하방향 이동은 착용로봇(1-1)의 하방향 이동을 안정화시켜 준다. 또한 착용로봇(1-1)의 보행 패턴 움직임에 따른 상방향 이동은 좌우측 RWS(130A,130B)의 상하 이동 블록(137)을 상방향으로 올려 줌으로써 착용로봇(1-1)의 상방향 이동을 안정화시켜 준다.For example, the counter balance action is implemented by the movement of the walking pattern of the wearing robot 1-1 by the vertical motion of the left and right RWS (130A, 130B). That is, the movement in the downward direction according to the walking pattern movement of the wearing robot 1-1 lowers the vertical movement block 137 of the left and right RWS (130A, 130B) in the downward direction, and the downward movement of the vertical movement block 137 Stabilizes the downward movement of the wearing robot (1-1). In addition, the upward movement according to the movement of the walking pattern of the wearing robot (1-1) is by raising the vertical movement block 137 of the left and right RWS (130A, 130B) in the upward direction to prevent the upward movement of the wearing robot (1-1). Stabilizes it.
일례로 상기 역힘 발생 최소화 작용은 좌우측 RWS(130A,130B)의 1축 탄성부재(135)가 착용로봇(1-1)의 보행 패턴 움직임과 연계된 상하 이동 블록(137)의 하방향 이동에 의한 탄성 압축력과 상방향 이동에 의한 탄성 복원력으로 보행모션의 반작용을 완충하여 구현한다. 즉 상기 1축 탄성부재(135)를 구성하는 6개의 코일 스프링 직렬 및 병렬 구조 배열의 제1,2 탄성부재(135a,135b)가 착용로봇(1-1)으로 전달되는 상하 이동 블록(137)의 상하방향 이동에 의한 역방향 추가 힘을 대부분 흡수함으로써 보행 패턴 움직임을 구현하는 착용로봇(1-1)의 모션을 안정화시켜 준다.For example, the action of minimizing the occurrence of reverse force is caused by the downward movement of the vertical movement block 137 in which the one-axis elastic member 135 of the left and right RWS (130A, 130B) is connected with the walking pattern movement of the wearing robot (1-1). It is implemented by buffering the reaction of walking motion with elastic compressive force and elastic restoring force by upward movement. That is, the vertical movement block 137 through which the first and second elastic members 135a and 135b in series and parallel arrangement of six coil springs constituting the one-axis elastic member 135 are transmitted to the wearing robot 1-1 It stabilizes the motion of the wearing robot (1-1) that implements the walking pattern movement by absorbing most of the additional force in the reverse direction caused by the vertical movement of the robot.
따라서 상기 역힘 발생 최소화 작용은 트레이니(100)의 보행 훈련에 맞춘 착용로봇(1-1)의 상하 운동 시 로봇 무게를 보상해 주고, 이러한 로봇 무게 보상은 착용로봇(1-1)을 착용한 트레이니(100)가 로봇 자중의 영향을 받지 않은 상태에서 보행 훈련이 가능하도록 한다.Therefore, the adverse force generation minimization action compensates for the weight of the robot during the vertical movement of the wearing robot 1-1 according to the walking training of the trainee 100, and such compensation for the weight of the robot is performed by wearing the wearing robot 1-1. The trainee 100 allows walking training in a state that is not affected by the robot's own weight.
이어 도 4 및 도 5는 2축 모션 서포터(140)에 대한 세부 구성 및 동작을 예시한다. 이 경우 트레이니(100)는 도 6에 예시된다.4 and 5 illustrate detailed configurations and operations of the 2-axis motion supporter 140. In this case, the trainee 100 is illustrated in FIG. 6.
도 4를 참조하면, 상기 2축 모션 서포터(140)는 수평 가이드 로드(141)와 2축 탄성부재(143), 좌우 이동 블록(145), 바디 어저스터(147), 스토퍼(148) 및 보조 스프링(149)으로 구성된다.4, the two-axis motion supporter 140 includes a horizontal guide rod 141 and a two-axis elastic member 143, a left and right movement block 145, a body adjuster 147, a stopper 148 and an auxiliary It consists of a spring (149).
일례로 상기 수평 가이드 로드(141)는 2축 마운팅 프레임(150-2)에 결합되고, 2축 탄성부재(143)와 좌우 이동 블록(145) 및 바디 어저스터(147)가 결합된다. 상기 2축 탄성부재(143)는 스프링 탄성계수 값을 갖는 코일 스프링으로 이루어져 수평 가이드 로드(141)와 결합된다. 상기 좌우 이동 블록(145)은 2축 탄성부재(143)의 한쪽을 지지하면서 수평 가이드 로드(141)와 결합되어 좌측이나 우측으로 이동한다. 상기 바디 어저스터(147)는 2축 탄성부재(143)의 다른 쪽을 지지하면서 수평 가이드 로드(141)와 결합되어 좌측이나 우측으로 이동한다. 상기 스토퍼(148)는 바디 어저스터(147)와 연결되어 좌측이나 우측으로 이동 시 착용로봇(1-1)의 지지 링크(2)와 접촉하여 이동을 제한시켜 준다. 상기 보조 스프링(149)은 바디 어저스터(147)에 스프링 탄성력을 제공한다.For example, the horizontal guide rod 141 is coupled to the two-axis mounting frame 150-2, and the two-axis elastic member 143, the left and right movable blocks 145, and the body adjuster 147 are coupled. The biaxial elastic member 143 is formed of a coil spring having a spring elastic modulus value and is coupled to the horizontal guide rod 141. The left and right movement block 145 is coupled to the horizontal guide rod 141 while supporting one side of the biaxial elastic member 143 and moves to the left or right. The body adjuster 147 is coupled to the horizontal guide rod 141 while supporting the other side of the biaxial elastic member 143 and moves to the left or right. The stopper 148 is connected to the body adjuster 147 and, when moving to the left or right, contacts the support link 2 of the wearing robot 1-1 to limit the movement. The auxiliary spring 149 provides a spring elastic force to the body adjuster 147.
특히 상기 수평 가이드 로드(141)는 이동 로드(141a)와 이에 간격을 둔 지지로드(141b)로 이루어지고, 상기 이동 로드(141a)와 상기 지지 로드(141b)의 각각은 그 끝부위가 2축 마운팅 프레임(150-2)에 고정됨으로써 2축 마운팅 프레임(150-2)의 길이 방향으로 배열된다.In particular, the horizontal guide rod 141 is composed of a movable rod 141a and a support rod spaced therebetween 141b, and each of the movable rod 141a and the support rod 141b has a biaxial end portion. By being fixed to the mounting frame 150-2, it is arranged in the longitudinal direction of the two-axis mounting frame 150-2.
그리고 상기 2축 탄성부재(143)는 이동 로드(141a)에 결합된다. 상기 좌우 이동 블록(145)은 2축 탄성부재(143)의 한쪽을 지지하도록 이동 로드(141a)에 결합되면서 지지 로드(141b)에도 결합된다. 상기 바디 어저스터(147)는 2축 탄성부재(143)의 다른쪽을 지지하도록 이동 로드(141a)에 결합된 상태에서 “
Figure PCTKR2020008565-appb-I000001
”형상으로 착용로봇(1-1)의 안쪽 공간으로 돌출된다. 상기 스토퍼(148)는 바디 어저스터(147)의 이동 로드(141a)의 결합부위에 고정된 상태에서 바디 어저스터(147)를 벗어난 길이로 돌출된다.
And the biaxial elastic member 143 is coupled to the moving rod (141a). The left and right movable blocks 145 are coupled to the movable rod 141a to support one side of the biaxial elastic member 143 and are also coupled to the support rod 141b. When the body adjuster 147 is coupled to the moving rod 141a to support the other side of the biaxial elastic member 143, “
Figure PCTKR2020008565-appb-I000001
It protrudes into the inner space of the wearing robot (1-1) in shape. The stopper 148 protrudes to a length outside the body adjuster 147 while being fixed to the coupling portion of the moving rod 141a of the body adjuster 147.
또한 상기 보조 스프링(149)은 토션 스프링으로 이루어져 바디 어저스터(147)와 스토퍼(148)의 사이로 위치된다. In addition, the auxiliary spring 149 is formed of a torsion spring and is positioned between the body adjuster 147 and the stopper 148.
그러므로 상기 2축 모션 서포터(140)는 착용로봇(1-1)의 안쪽공간에서 착용로봇(1-1)과 연계되지 않고 독립적으로 위치됨으로써 착용로봇(1-1)을 착용한 트레이니(100)가 보행 패턴으로 움직일 때 자세 불안정을 가져오는 좌우 움직임을 완충 및 흡수함으로써 트레이니(100)의 무게중심이 안정적으로 유지되도록 보조하여 준다. Therefore, the two-axis motion supporter 140 is located independently of the wearing robot 1-1 in the inner space of the wearing robot 1-1, so that the trainee 100 wearing the wearing robot 1-1 ) Assists to maintain the center of gravity of the Trainee 100 stably by buffering and absorbing the left and right movements that cause posture instability when moving in a walking pattern.
한편 상기 2축 모션 서포터(140)는 착용로봇(1-1)의 안쪽 공간에서 좌측으로 위치된 좌측 수평 모션 서포터(140A)와 착용로봇(1-1)의 안쪽 공간에서 우측으로 위치된 우측 수평 모션 서포터(140B)로 구성된다. 이 경우 상기 좌측 수평 모션서포터(140A)와 상기 우측 수평 모션 서포터(140B)는 각각 수평 가이드 로드(141)와 2축 탄성부재(143), 좌우 이동 블록(145), 바디 어저스터(147), 스토퍼(148) 및 보조 스프링(149)을 동일한 구성요소로 한다.Meanwhile, the two-axis motion supporter 140 includes a left horizontal motion supporter 140A positioned to the left in the inner space of the wearing robot 1-1 and a right horizontal motion supporter 140A positioned to the right in the inner space of the wearing robot 1-1. It is composed of a motion supporter (140B). In this case, the left horizontal motion supporter 140A and the right horizontal motion supporter 140B each have a horizontal guide rod 141 and a biaxial elastic member 143, a left and right movement block 145, a body adjuster 147, The stopper 148 and the auxiliary spring 149 are the same components.
그러므로 상기 좌측 수평 모션 서포터(140A)의 “
Figure PCTKR2020008565-appb-I000002
”형상 바디 어저스터(147)와 상기 우측 수평 모션 서포터(140B)의 “
Figure PCTKR2020008565-appb-I000003
”형상 바디 어저스터(147)는 서로 대향됨으로써 “
Figure PCTKR2020008565-appb-I000004
”형상으로 착용로봇(1-1)의 안쪽 공간을 점유한다. 따라서 상기 좌우측 수평 모션 서포터(140A,140B)의 반대방향 이격이동이나 동일방향 접근이동은 좌우 위치에 대한 2축 모션을 구현한다. 그 결과 상기 좌우측 수평 모션 서포터(140A,140B)는 착용로봇(1-1)의 안쪽 공간에서 트레이니(100)의 사이즈 차이와 관계없이 트레이니(100)의 안정적인 보행 훈련 자세를 가능하게 한다.
Therefore, the "" of the left horizontal motion supporter 140A
Figure PCTKR2020008565-appb-I000002
“The shape of the body adjuster 147 and the right horizontal motion supporter 140B”
Figure PCTKR2020008565-appb-I000003
“The shape body adjusters 147 face each other so that “
Figure PCTKR2020008565-appb-I000004
It occupies the inner space of the wearing robot (1-1) by shape. Accordingly, the movement of the horizontal motion supporters 140A and 140B in the opposite direction or the approach movement in the same direction implements a two-axis motion for the left and right positions. As a result, the left and right horizontal motion supporters 140A and 140B enable a stable walking training posture of the Trainee 100 regardless of the size difference of the Trainee 100 in the inner space of the wearing robot 1-1.
도 5를 참조하면, 상기 착용로봇(1-1)은 좌우측 수평 모션 서포터(140A,140B)와 연계됨으로써 작용로봇(1-1)을 착용한 상태에서 보행 움직임을 갖는 트레이니(100)의 병진 운동과 무게중심 안정화 및 트레이니(100)에 대한 사이즈 조정을 가능하게 한다.Referring to FIG. 5, the wearing robot 1-1 is connected with the left and right horizontal motion supporters 140A and 140B, so that the translation of the trainee 100 having a walking movement while wearing the action robot 1-1 It enables movement and stabilization of the center of gravity and size adjustment for the trainee 100.
일례로 상기 병진 운동은 고정 상태인 착용로봇(1-1)을 착용한 트레이니(100)를 바디 어저스터(147)로 잡아준 좌우측 수평 모션 서포터(140A,140B)가 보행 패턴 움직임에 따른 트레이니(100)의 좌우이동을 흡수 및 완충하여 이루어진다.For example, in the translational movement, the left and right horizontal motion supporters 140A and 140B holding the trainee 100 wearing the wearing robot 1-1 in a fixed state with the body adjuster 147 are trained according to the walking pattern movement. It is achieved by absorbing and buffering the movement of (100) left and right.
즉 트레이니(100)의 좌측이동은 우측 수평 모션 서포터(140B)의 바디 어저스터(147)가 고정된 상태에서 좌측 수평 모션 서포터(140A)의 바디 어저스터(147)를 가압하는 좌측 이동 힘으로 전달되고, 상기 좌측 이동 힘은 좌측 수평 모션 서포터(140A)의 좌우 이동 블록(145)이 바디 어저스터(147)와 함께 이동 로드(141a)와 지지 로드(141b)를 따라 이동된다. 이와 같이 상기 좌측 수평 모션 서포터(140A)는 트레이니(100)의 좌측이동을 안정적으로 유지하고 동시에 좌측 RWS(130A)는 트레이니(100)의 좌측이동에 맞춰 착용로봇(1-1)과 무관한 병진 운동 효과로 나타난다.That is, the left movement of the trainee 100 is a left movement force that presses the body adjuster 147 of the left horizontal motion supporter 140A while the body adjuster 147 of the right horizontal motion supporter 140B is fixed. The left moving force is transferred along the moving rod 141a and the support rod 141b along with the body adjuster 147 by the left and right movement blocks 145 of the left horizontal motion supporter 140A. In this way, the left horizontal motion supporter 140A stably maintains the left movement of the trainee 100, and at the same time, the left RWS 130A is independent of the wearing robot 1-1 in accordance with the left movement of the trainee 100. It appears as a translational exercise effect.
반면 트레이니(100)의 우측이동은 좌측 수평 모션 서포터(140A)의 바디 어저스터(147)가 고정된 상태에서 우측 수평 모션 서포터(140B)로 구현되고, 그 종작 과정은 좌측 수평 모션 서포터(140A)의 경우와 방향 만 반대일 뿐 동일하다. On the other hand, the right movement of the trainee 100 is implemented with the right horizontal motion supporter 140B while the body adjuster 147 of the left horizontal motion supporter 140A is fixed, and the final process is the left horizontal motion supporter 140A. ), the direction is the same, but only the opposite direction.
일례로 상기 무게 중심 이동 안정화 작용은 정상적인 보행패턴과 동일하게 이루어지는 트레이니(100)의 무게중심 유지로 구현된다.For example, the stabilization of the movement of the center of gravity is implemented by maintaining the center of gravity of the trainee 100 made the same as the normal walking pattern.
즉 상기 좌측 수평 모션 서포터(140A)와 상기 우측 수평 모션 서포터(140B)가 고정된 착용로봇(1-1)을 착용한 트레이니(100)의 보행 움직임에 따른 자세 불안정을 스프링 반력으로 보조하고, 상기 스프링 반력 보조는 트레이니(100)의 좌우 움직임의 각각에 대해 무게중심이 안정화되도록 작용함으로써 트레이니(100)가 착용로봇(1-1)을 착용한 상태에서도 안정적인 보행 움직임을 가능하게 한다.That is, the left horizontal motion supporter 140A and the right horizontal motion supporter 140B assist in posture instability due to the walking movement of the trainee 100 wearing the fixed wearing robot 1-1 with a spring reaction force, The spring reaction force assist acts to stabilize the center of gravity for each of the left and right movements of the trainee 100, thereby enabling stable walking movement even in the state where the trainee 100 is wearing the wearing robot 1-1.
일례로 상기 사이즈 조정은 좌우측 수평 모션 서포터(140A,140B)의 바디 어저스터(147)가 벌어지거나 좁혀져 구현된다. 즉 상기 바디 어저스터(147)는 트레이니(100)의 사이즈에 맞춰 벌어지거나 좁혀지는 폭 조절 움직임을 발생하고, 상기 바디 어저스터(147)의 폭 조절 움직임은 2축 탄성부재(143)의 탄성변형을 통해 좌우 이동 블록(145)에 전달되며, 상기 좌우 이동 블록(145)이 상기 바디 어저스터(147)와 함께 이동 로드(141a)와 지지 로드(141b)를 통해 움직여 좌우측 수평 모션 서포터(140A,140B)의 “
Figure PCTKR2020008565-appb-I000005
”형상이 벌어지거나 좁혀줌으로써 트레이니(100)의 사이즈에 맞춰진다.
For example, the size adjustment is implemented by opening or narrowing the body adjusters 147 of the left and right horizontal motion supporters 140A and 140B. That is, the body adjuster 147 generates a width adjustment movement that opens or narrows according to the size of the trainee 100, and the width adjustment movement of the body adjuster 147 is the elasticity of the biaxial elastic member 143 It is transmitted to the left and right movement block 145 through deformation, and the left and right movement block 145 moves through the movement rod 141a and the support rod 141b together with the body adjuster 147 to move the left and right horizontal motion supporters 140A. ,140B) of “
Figure PCTKR2020008565-appb-I000005
”It fits the size of the trainee 100 by opening or narrowing the shape.
도 6을 참조하면, 착용로봇(1-1)은 전방 로봇 탑재 방식으로 배치됨으로써 트레드 밀(1-5)의 앞쪽으로 이동된 트레이니(100)의 로봇 착용의 편리성을 제공하면서도 로봇 프레임(110)을 기준으로 착용로봇(1-1)과 연계된 좌우측 RWS(130A,130B) 및 좌우측 수평 모션 서포터(140A,140B)는 하기와 같은 작용 및 효과를 구현한다.Referring to FIG. 6, the wearing robot 1-1 is arranged in a front robot mounting manner, thereby providing convenience of wearing the robot of the trainee 100 moved to the front of the treadmill 1-5 while providing the robot frame ( 110), the left and right RWS (130A, 130B) and the left and right horizontal motion supporters (140A, 140B) linked to the wearing robot (1-1) implement the following actions and effects.
일례로 트레드밀(1-5)은 뒤쪽에서 앞쪽으로 트레이니(100)를 이동하도록 함으로써 P-바(1-2)를 잡기 위해 도달되는 동선을 짧게 하여 준다. 또한 착용로봇(1-1)은 트레드 밀(1-5)의 앞쪽에 위치됨으로써 트레이니(100)의 접근성을 높여 준다. For example, the treadmill (1-5) shortens the line of movement reached to grab the P-bar (1-2) by moving the trainee (100) from the rear to the front. In addition, the wearing robot (1-1) is located in front of the treadmill (1-5) to increase the accessibility of the trainee (100).
그리고 하네스(50)는 로봇 프레임(110)의 좌측으로 위치된 로봇 컨트롤러(1-3)의 제어로 로봇 프레임(110)에서 길이 조절되는 와이어(31)와 연결됨으로써 하네스(50)의 착용을 위한 트레이니(100)의 동작을 크게 줄여 준다.And the harness 50 is connected to the wire 31 that is adjusted in length in the robot frame 110 by the control of the robot controller (1-3) located to the left of the robot frame 110 for wearing the harness 50. It greatly reduces the operation of the trainee 100.
그러므로 보행 자동화 로봇 시스템(1)에 좌우측 RWS(130A,130B) 및 좌우측 수평 모션 서포터(140A,140B)가 적용됨으로써 착용로봇(1-1)을 착용하기 위한 트레이니(100)의 동선 축소가 가능하다.Therefore, by applying the left and right RWS (130A, 130B) and left and right horizontal motion supporters (140A, 140B) to the walking automation robot system (1), it is possible to reduce the movement of the trainee 100 for wearing the wearing robot (1-1). Do.
전술된 바와 같이, 본 실시예에 따른 보행 자동화 로봇 시스템(1)에 적용된 확장형 착용로봇 시스템은 상하 스프링에 의한 1축 모션의 카운터 밸런스 효과(Counter-Balancing Effect)로 로봇 하중 경감 및 상하 움직임 보조가 가능한 RWS(Robot Weight Support)(130), 좌우 스프링에 의한 2축 모션의 병진운동으로 무게중심 이동 안정화를 통한 자발적인 좌우 움직임이 가능한 2축 모션 서포터(140)를 포함함으로써 착용로봇(1-1)의 보행 모션 시 카운터 밸런스(Counter-Balancing)/역힘 최소화/병진 운동/무게중심 안정화/사이즈 조정의 효과를 제공할 수 있고, 특히 RWS(130)과 2축 모션 서포터(140)의 효과에 상하/좌우 움직임을 탄성 계수 변화로 보조하는 스프링을 적용함으로써 기존의 액추에이터 장비 대비 제조비용 절감 및 구조 단순화도 가능하다.As described above, the extended wearable robot system applied to the walking automation robot system 1 according to the present embodiment is capable of reducing the load of the robot and assisting the vertical movement with the counter-balancing effect of the one-axis motion by the vertical spring. A wearable robot (1-1) by including a possible RWS (Robot Weight Support) 130, a 2-axis motion supporter 140 capable of voluntarily moving left and right through stabilization of the center of gravity movement through translational movement of 2-axis motion by left and right springs. It can provide the effect of counter-balancing/reverse force minimization/translational movement/gravity center stabilization/size adjustment during the walking motion of the RWS (130) and the two-axis motion supporter (140). By applying a spring that assists the left and right movement by changing the elastic modulus, it is possible to reduce manufacturing cost and simplify the structure compared to existing actuator equipment.

Claims (16)

  1. 액추에이터 동력으로 보행 모션이 발생되는 착용로봇;A wearable robot that generates a walking motion with actuator power;
    상기 착용로봇과 연계된 상하이동을 1축 모션으로 하고 상기 착용로봇과 독립적인 좌우이동을 2축 모션으로 발생시켜주고, 상기 1축 모션을 위한 상하 이동방향 추종 및 상기 2축 모션을 위한 좌우 이동방향 추종을 각각 스프링 탄성력 변화로 구현해주는 2 자유도 수동 메커니즘 장치;The vertical movement associated with the wearing robot is a 1-axis motion, and the horizontal movement independent of the wearing robot is generated as a 2-axis motion, and the vertical movement direction for the 1-axis motion is followed and the left and right movement for the 2-axis motion A two-degree of freedom manual mechanism device that implements directional follow-up with each spring elastic force change;
    가 포함되는 것을 특징으로 하는 착용로봇 시스템.Wearing robot system, characterized in that it includes.
  2. 청구항 1에 있어서, 상기 2 자유도 수동 메커니즘 장치는 상기 1축 모션으로 상기 착용로봇에 대한 카운터 밸런스 효과(Counter-Balancing Effect)를 발생하는 RWS(Robot Weight Support), 상기 2축 모션으로 상기 착용로봇의 안쪽 공간에서 좌우이동에 따른 무게중심 이동을 안정시켜주는 2축 모션 서포터로 구성되는 것을 특징으로 하는 착용로봇 시스템.The method according to claim 1, wherein the two-degree of freedom manual mechanism device is RWS (Robot Weight Support) generating a counter-balancing effect for the wearing robot by the 1-axis motion, the wearing robot by the 2-axis motion Wearing robot system, characterized in that consisting of a two-axis motion supporter that stabilizes the movement of the center of gravity according to the horizontal movement in the inner space of the.
  3. 청구항 2에 있어서, 상기 RWS는 상기 착용로봇의 높낮이 조절 및 상기 착용로봇의 보행 모션을 위한 상하 운동에 대해 로봇 무게를 보상하도록 상하로 이동되는 상하 이동 블록, 상기 상하 이동 블록의 상하이동방향에 따라 상기 스프링 탄성력 변화가 발생되도록 상기 상하 이동 블록의 하부를 탄발 지지하는 1축 탄성부재, 상기 상하 이동 블록과 결합되어 상하이동을 안내하면서 상기 1축 탄성부재의 위치를 고정하여 주는 수직 가이드 로드로 구성되는 것을 특징으로 하는 착용로봇 시스템.The method according to claim 2, wherein the RWS is a vertical movement block that is moved up and down to compensate for the weight of the robot for height adjustment of the wearing robot and the vertical movement for the walking motion of the wearing robot, according to the vertical movement direction of the vertical movement block. Consist of a uniaxial elastic member for elastically supporting the lower portion of the up-and-down movement block so that the spring elastic force change occurs, and a vertical guide rod that is coupled with the up-and-down movement block to guide the vertical movement while fixing the position of the uniaxial elastic member Wearing robot system, characterized in that the.
  4. 청구항 3에 있어서, 상기 1축 탄성부재는 복수개의 코일 스프링을 스프링 조합해 구성되는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 3, wherein the uniaxial elastic member is formed by combining a plurality of coil springs with springs.
  5. 청구항 4에 있어서, 상기 스프링 조합은 상기 코일 스프링의 직렬 및 병렬 배열인 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 4, wherein the spring combination is a series and parallel arrangement of the coil springs.
  6. 청구항 3에 있어서, 상기 수직 가이드 로드는 와 상기 1축 탄성부재의 각각은 2개를 한 쌍으로 구성되는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 3, wherein each of the vertical guide rod and the uniaxial elastic member is configured as a pair of two.
  7. 청구항 3에 있어서, 상기 RWS에는 상기 상하 이동 블록의 상하이동 공간을 형성해 주는 고정 브래킷이 구비되고, 상기 고정 브래킷은 상기 RWS를 가려주는 1축 마운팅 프레임과 결합되는 것을 특징으로 하는 착용로봇 시스템. The wearable robot system according to claim 3, wherein the RWS is provided with a fixing bracket that forms an up-and-down space of the vertical movement block, and the fixing bracket is coupled to a one-axis mounting frame that covers the RWS.
  8. 청구항 2에 있어서, 상기 RWS는 상기 착용로봇과 좌측에서 연결된 좌측 RWS, 상기 착용로봇과 우측에서 연결된 우측 RWS로 구성되는 것을 특징으로 하는 착용로봇 시스템.The wearing robot system according to claim 2, wherein the RWS is composed of a left RWS connected to the wearing robot from a left and a right RWS connected to the wearing robot from a right.
  9. 청구항 2에 있어서, 상기 2축 모션 서포터는 상기 착용로봇의 보행모션에 대한 좌우 이동의 움직임을 허용하는 바디 어저스터, 상기 바디 어저스터의 이동을 안내하는 수평 가이드 로드, 상기 바디 어저스터와 간격을 두고 상기 수평 가이드 로드에 결합된 좌우 이동 블록, 상기 수평 가이드 로드에 결합되어 상기 바디 어저스터의 좌우이동방향에 따라 상기 스프링 탄성력 변화를 발생시키는 2축 탄성부재로 구성되는 것을 특징으로 하는 착용로봇 시스템.The method according to claim 2, wherein the two-axis motion supporter is a body adjuster that allows the movement of left and right movement relative to the walking motion of the wearing robot, a horizontal guide rod guiding the movement of the body adjuster, and a distance between the body adjuster and A wearable robot system comprising: a left and right movable block coupled to the horizontal guide rod, and a biaxial elastic member coupled to the horizontal guide rod to generate a change in the spring elastic force according to the left and right movement direction of the body adjuster. .
  10. 청구항 9에 있어서, 상기 수평 가이드 로드는 이동 로드와 지지 로드로 분리되고, 상기 2축 탄성부재와 상기 바디 어저스터는 상기 이동 로드에 결합되며, 상기 좌우 이동 블록은 한쪽부위가 상기 이동 로드에 결합되면서 다른쪽 부위가 상기 지지 로드에 결합되는 것을 특징으로 하는 착용로봇 시스템.The method according to claim 9, wherein the horizontal guide rod is separated into a movable rod and a support rod, the biaxial elastic member and the body adjuster are coupled to the movable rod, and one part of the left and right movable block is coupled to the movable rod. Wearing robot system, characterized in that while the other part is coupled to the support rod.
  11. 청구항 9에 있어서, 상기 2축 탄성부재는 상기 좌우 이동 블록과 상기 바디 어저스터의 사이로 위치되는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 9, wherein the biaxial elastic member is positioned between the left and right movable block and the body adjuster.
  12. 청구항 11에 있어서, 상기 2축 탄성부재는 코일 스프링으로 이루어지는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 11, wherein the biaxial elastic member comprises a coil spring.
  13. 청구항 9에 있어서, 상기 바디 어저스터는 상기 착용로봇의 안쪽 공간으로 돌출되는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 9, wherein the body adjuster protrudes into the inner space of the wearable robot.
  14. 청구항 9에 있어서, 상기 2축 모션 서포터에는 2축 마운팅 프레임이 결합되고, 상기 2축 마운팅 프레임은 상기 수평 가이드 로드의 양끝부위를 고정시켜 주는 것을 특징으로 하는 착용로봇 시스템. The wearable robot system of claim 9, wherein a two-axis mounting frame is coupled to the two-axis motion supporter, and the two-axis mounting frame fixes both ends of the horizontal guide rod.
  15. 청구항 2에 있어서, 상기 2축 모션 서포터는 상기 착용로봇의 안쪽 공간에서 좌측으로 위치된 좌측 수평 모션 서포터, 상기 착용로봇의 안쪽 공간에서 우측으로 위치된 우측 수평 모션 서포터로 구성되는 것을 특징으로 하는 착용로봇 시스템.The wearing according to claim 2, wherein the two-axis motion supporter comprises a left horizontal motion supporter positioned to the left in the inner space of the wearing robot, and a right horizontal motion supporter positioned to the right in the inner space of the wearing robot. Robot system.
  16. 청구항 1에 있어서, 상기 2 자유도 수동 메커니즘 장치는 로봇 프레임과 결합되고, 상기 로봇 프레임은 상기 착용로봇의 안쪽 공간으로 하네스(Harness)가 위치되도록 와이어를 구비하는 것을 특징으로 하는 착용로봇 시스템.The wearable robot system of claim 1, wherein the two-degree of freedom manual mechanism device is coupled to a robot frame, and the robot frame includes a wire so that a harness is positioned in an inner space of the wearable robot.
PCT/KR2020/008565 2019-07-01 2020-07-01 Extendable wearable robot system WO2021002662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080007237.6A CN113226243B (en) 2019-07-01 2020-07-01 Extension type wearable robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190078995A KR102162455B1 (en) 2019-07-01 2019-07-01 Widen Walk Robot System
KR10-2019-0078995 2019-07-01

Publications (1)

Publication Number Publication Date
WO2021002662A1 true WO2021002662A1 (en) 2021-01-07

Family

ID=72897427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008565 WO2021002662A1 (en) 2019-07-01 2020-07-01 Extendable wearable robot system

Country Status (3)

Country Link
KR (1) KR102162455B1 (en)
CN (1) CN113226243B (en)
WO (1) WO2021002662A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041707A (en) * 2007-05-28 2010-04-22 푼다시온 파트로닉 Device for balance and body orientation support
US20130137553A1 (en) * 2011-11-24 2013-05-30 P&S Mechanics Co., Ltd. Walking training apparatus
KR20140086263A (en) * 2012-12-28 2014-07-08 한양대학교 에리카산학협력단 Supporting apparatus for wearable robot assisting muscular strength
KR101735214B1 (en) * 2015-12-29 2017-05-12 서강대학교산학협력단 Lower-Body Assistance Robot
KR20180135366A (en) * 2017-06-12 2018-12-20 에이치엠에이치 주식회사 Robot for assisting user to walk

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200414471Y1 (en) * 2005-11-29 2006-04-20 남용호 Massage equipment
CN101536955B (en) * 2009-04-21 2011-01-05 清华大学 Vertical follow-up type lightened walking rehabilitation training robot
KR101234139B1 (en) * 2011-08-23 2013-02-18 박훈근 Weight adjustable treadmill
KR101289005B1 (en) * 2012-02-08 2013-07-23 주식회사 피앤에스미캐닉스 Walking training apparatus
CN202590240U (en) * 2012-03-21 2012-12-12 国家康复辅具研究中心 Body weight-supported treadmill training robot
KR101584341B1 (en) * 2014-07-07 2016-01-13 주식회사 피앤에스미캐닉스 Load Compensation System of Walking Assistant Robot and Walking Practice Apparatus having the same
KR101602728B1 (en) * 2014-08-25 2016-03-11 주식회사 바로텍시너지 Legs rehabilitation robot capable of movable gait training and stationary gait training
CN104906752B (en) * 2015-06-08 2018-02-23 洛阳理工学院 A kind of treadmill moves buffer unit
JP6554996B2 (en) 2015-08-17 2019-08-07 トヨタ自動車株式会社 Walking training apparatus and walking training method thereof
JP6749016B2 (en) * 2016-09-28 2020-09-02 国立大学法人 大分大学 Lower limb orthosis
CN207886415U (en) * 2017-08-17 2018-09-21 四川汇智众创科技有限公司 A kind of wearable exoskeleton lower limb rehabilitation robot
CN107854281A (en) * 2017-11-30 2018-03-30 湖南妙手机器人有限公司 Lower limb rehabilitation robot
CN208573973U (en) * 2017-11-30 2019-03-05 湖南妙手机器人有限公司 Lower limb rehabilitation robot
KR101981403B1 (en) * 2017-12-06 2019-08-28 한양대학교 에리카산학협력단 Walking assistance apparatus and operation method of the same
CN108606907B (en) * 2018-05-02 2020-02-18 中国石油大学(华东) Movable parallel flexible cable driven lower limb rehabilitation robot and implementation method thereof
CN109223434B (en) * 2018-08-06 2020-01-07 北京航空航天大学 Exoskeleton rehabilitation robot
CN109260661B (en) * 2018-10-27 2020-12-08 浙江智柔科技有限公司 Device is tempered to interesting infant's health coordination balance ability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041707A (en) * 2007-05-28 2010-04-22 푼다시온 파트로닉 Device for balance and body orientation support
US20130137553A1 (en) * 2011-11-24 2013-05-30 P&S Mechanics Co., Ltd. Walking training apparatus
KR20140086263A (en) * 2012-12-28 2014-07-08 한양대학교 에리카산학협력단 Supporting apparatus for wearable robot assisting muscular strength
KR101735214B1 (en) * 2015-12-29 2017-05-12 서강대학교산학협력단 Lower-Body Assistance Robot
KR20180135366A (en) * 2017-06-12 2018-12-20 에이치엠에이치 주식회사 Robot for assisting user to walk

Also Published As

Publication number Publication date
CN113226243B (en) 2023-09-22
CN113226243A (en) 2021-08-06
KR102162455B1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US4208028A (en) Support apparatus
WO2019039853A1 (en) Motion assistance apparatus
US20200000670A1 (en) Gravity balancing device for rehabilitation robot arm
US4394075A (en) Support apparatus
US9095981B2 (en) Load and torque resistant caliper exoskeleton
WO2016163780A1 (en) Joint actuator, and joint structure of leg-supporting robot comprising same
KR102243377B1 (en) Walking Auto Robot System
WO2014129697A1 (en) Motion simulator
KR101508552B1 (en) Weight-supporting apparatus of a wearable robot for lower-limb rehabilitation
CN111823217B (en) Variable-rigidity lower limb exoskeleton robot based on shape memory alloy
WO2021002662A1 (en) Extendable wearable robot system
KR102660352B1 (en) Wearable apparatus for assisting muscular strength
WO2019074296A1 (en) Robot hand
GB2029347A (en) Independent suspension system for magnetically supported travelling body
KR102174370B1 (en) A wearable active neck brace and neck load reduction method using thereof
WO2017047874A1 (en) Finger exercise device
CN111759659A (en) Portable wearable upper limb rehabilitation robot
WO2020159021A1 (en) Positioning arm
US20240122778A1 (en) Device for upper limb rehabilitation
WO2016006761A1 (en) Walking assistance robot load compensation system and walking training apparatus having same
WO2022250319A1 (en) Robotic exoskeleton and manual muscle strength support device therefor
WO2021075654A1 (en) Baby strap
WO2010082777A1 (en) Display tilting apparatus
WO2014137028A1 (en) Apparatus for docking bicycle and wheelchair
WO2023027226A1 (en) Muscular strength assisting module and auxiliary force supporting wearable suit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834410

Country of ref document: EP

Kind code of ref document: A1