WO2021002552A1 - Diverse molten core cooling method - Google Patents

Diverse molten core cooling method Download PDF

Info

Publication number
WO2021002552A1
WO2021002552A1 PCT/KR2020/000192 KR2020000192W WO2021002552A1 WO 2021002552 A1 WO2021002552 A1 WO 2021002552A1 KR 2020000192 W KR2020000192 W KR 2020000192W WO 2021002552 A1 WO2021002552 A1 WO 2021002552A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
reactor
core
temperature
furnace
Prior art date
Application number
PCT/KR2020/000192
Other languages
French (fr)
Korean (ko)
Inventor
배병환
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69156800&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021002552(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Publication of WO2021002552A1 publication Critical patent/WO2021002552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for cooling a core melt having a variety.
  • Core melt refers to a high-temperature melted material in which enriched uranium, which is the nuclear fuel of the reactor core installed inside the reactor core installed in the reactor core, and zirconium used as a covering material, and a number of substances inside the pressure container are mixed when a serious accident occurs.
  • a conventional core-melt external cooling device called a core catcher is complicated because it consists of a pre-catcher for collecting the core melt, a core melt transfer channel, and a space for spreading and cooling the core melt.
  • the flow path cross-sectional area is small and the flow path resistance is relatively large, and thus the time for cooling the high-temperature core melt is delayed, making it difficult to respond quickly.
  • an object of the present invention is to provide a method for cooling a core melt having a variety of improved cooling success probability.
  • the determination of the entry into the serious accident may include determining whether the core exit temperature is equal to or higher than the first temperature.
  • the determination of whether the reactor is damaged may include determining whether the core exit temperature is equal to or higher than the second temperature, the duration is maintained within a first hour, and the radiation level of the containment building is equal to or higher than the first level.
  • cooling outside the furnace may be performed.
  • the first temperature and the second temperature may be, independently of each other, 600°C to 700°C.
  • the first time may be 4 to 8 hours.
  • the first level may be 800,000mR/hr to 1,200,000mR/hr.
  • FIG. 2 is a flow chart showing a method of cooling a core melt according to an embodiment of the present invention
  • FIG. 3 shows the furnace cooling in an embodiment of the present invention
  • Figure 4 shows the outside cooling in an embodiment of the present invention.
  • the present invention includes external cooling in which the core melt is cooled in the reactor cavity by prioritizing the internal cooling by determining whether to relocate the core melt to the lower hemisphere of the reactor vessel at the entry stage of a serious accident.
  • the reactor cavity cooling water injection is performed to cool the outer wall of the reactor vessel (inner cooling method)
  • a static cooling system and a chemical and volume control system are used to implement the strategy.
  • the present invention proposes a method of effectively cooling the core melt even when the core melt, which is a case of a serious accident with a very low probability of occurrence, is ejected out of the reactor vessel at a time too quickly, or when the core melt slowly melts.
  • the core melt is safely confined and cooled in the reactor building, preventing damage to the reactor building, and allowing the public to It dramatically improves the safety of nuclear power plants by minimizing radiation exposure.
  • the core melt cooling employs only one of an in-furnace cooling method and an out-of-furnace cooling method, whereas the present invention allows a cooling method to be selected according to the state of the core melt, thereby effectively coping with a serious accident in various ways.
  • the phenomenon of serious accidents can be broadly divided into before and after reactor vessel damage.
  • Time zone 1 (Severe accident entry stage): Core exposure ⁇ Rapid hydrogen oxidation (core exit temperature exceeding 1,200 °F)
  • Time Zone 2 (Severe Accident Progress Stage): Rapid hydrogen oxidation (core exit temperature exceeding 1,200 °F) ⁇ Stable stationary state or reactor vessel damage
  • a stationary cooling system and a chemical and volume control system can be used to perform the strategy for cooling the outer wall of the reactor vessel (inner cooling method), and the reactor cavity immersion system can be used for the reactor cavity submersion as an external cooling method.
  • cooling water can be injected into the reactor cavity by using a water source outside the reactor building using the emergency reactor building sprinkling system.
  • 1 is an example, to provide a convenient means for determining whether to start and end serious accident management by evaluating whether a reactor vessel is damaged through radiation level information in a containment building measured by a containment radiation monitoring device.
  • the maximum core temperature is, for example, 2200°F or higher, it is defined as a core damage. In this case, the core cannot be sufficiently cooled and the core outlet temperature rises to 1200°F (649°C).
  • the core exceeds about 2,200 °F, it is regarded as damage to the core, and the nuclear fuel cladding is damaged, and fission products collected in the gap between the nuclear fuel element and the cladding are discharged to the RCS. Fission products are released to the top of the containment building.
  • the radiation caused by fission products emitted to the upper part of the containment can be measured through a radioactivity monitor on the upper part of the containment building, and is suitable as a monitoring variable to predict the failure of the nuclear reactor according to the measured radiation level. For this reason, the radiation level of the containment building can be used as a criterion for determining whether the reactor is damaged.
  • the furnace cooling method In the stage of a major accident, it is an important step to determine how to cool the melted core, and there are two methods: the furnace cooling method and the outside cooling method.
  • the damage of the reactor vessel is comprehensively examined in terms of rearrangement of the core melt and cooling at the outer wall of the reactor vessel.
  • the core and nuclear fuel structure composed of a low melting point iron (Fe) or zirconium (Zr) alloy are melted, and then the nuclear fuel pellets composed of uranium oxide with a high melting point are expected to melt.
  • This mixture of molten nuclear fuel and structures is called a core melt (Molten Core or Corium). Since the core melt has a higher density than cooling water or steam, it moves to the lower hemisphere of the reactor vessel and is relocated in a semicircular shape in the lower hemisphere of the reactor vessel.
  • the main components of the core melt disposed in the lower hemisphere of the reactor vessel are uranium (U), iron (Fe), and zirconium (Zr), and these metal atoms exist in a metallic state or in the form of an oxide bonded with oxygen.
  • Uranium was originally uranium oxide (UO 2 ), and iron and zirconium reacted with steam at a high temperature to be oxidized to become iron oxide (Fe2O3) or zirconium oxide (ZrO 2 ).
  • the core melt is composed of uranium oxide (UO 2 ), zirconium oxide (ZrO 2 ), zirconium (Zr), and iron (Fe).
  • the density of the oxide and the metal are different, it is highly likely to be separated into two layers. This is called rearrangement of a two-layer model reactor, and the upper metal layer contains zirconium (Zr) and iron (Fe), and the lower molten oxide layer contains uranium oxide (UO 2 ) and zirconium oxide (ZrO 2 ).
  • this analysis is to estimate the time after the reactor shutdown, which can have a sufficient chance of cooling the outer wall. This is to evaluate the probability of success and to derive the time after the minimum reactor shutdown, which is judged to have a sufficient probability of success for cooling the outer wall (success probability is 95% or more). For example, after the reactor is stopped, the time is set to 10 hours, and the probability of the maximum heat flux ratio (maximum heat flux/critical heat flux) not exceeding 1.0 is estimated by performing an analysis of the absence of study for this, and if the probability is 95% or more. In this case, it is possible to judge that cooling of the outer wall can be successful if 10 hours have passed since the reactor was stopped.
  • the heat flux ratio to the reactor vessel at the top of the oxide charge has sufficient margin for the elapsed time after all reactor shutdowns.
  • the heat flux ratio in the metal layer is based on the 95 percentile maximum, the heat flux ratio exceeds 1.0 in the case of 3 hours and 4 hours after the reactor is stopped. This means that the reliability that the maximum heat flux does not exceed the critical heat flux when the melt is completely rearranged when the elapsed time after the reactor is stopped is less than 4 hours is less than 95%.
  • the elapsed time after the reactor is stopped is 4 hours, the confidence that the outer wall cooling can succeed can be judged to be at the level of 90%.
  • the reliability of cooling the outer wall is about 95%, and in the case of 6 hours, the reliability is estimated to be about 99%.
  • the reliability of the success of cooling the outer wall 3 hours after the reactor was shut down was evaluated at about 75%. The shorter the elapsed time after the reactor is stopped, the higher the level of decay heat of the oxide layer. Therefore, the elapsed time after the reactor shutdown and the reliability of the outer wall cooling success have an inverse relationship.
  • the outer wall cooling can be successful if the point at which all core melts are relocated to the lower head of the reactor is 6 hours after the reactor is stopped. do.
  • the time point at which the core melt is relocated to the lower head of the reactor and the reactor is damaged is shorter than when the outer wall cooling is performed.
  • Figure 2 is a flow chart showing a method of cooling the melted core according to an embodiment of the present invention
  • Figure 3 is a furnace cooling in an embodiment of the present invention
  • Figure 4 is an outside furnace in an embodiment of the present invention It shows cooling.
  • the core exit temperature is greater than or equal to the first temperature in step S100 before entering the serious accident (S200).
  • the first temperature may be 600°C to 700°C, and specifically 649°C.
  • the furnace cooling is performed as shown in FIG. 3. In furnace cooling, a static cooling system and a chemical and volume control system can be used. If it is determined that the furnace cooling is not possible, the furnace cooling (S700) is performed as shown in FIG. 4.
  • Whether the reactor vessel is damaged or not is determined whether the core exit temperature is greater than or equal to the second temperature after the furnace cooling (S500), the duration is maintained within the first hour, and the radiation level of the containment building is greater than or equal to the first level (S600).
  • the second temperature may be different from or equal to the first temperature.
  • the first hour is 4 to 8 hours, and specifically, may be 6 hours.
  • the first level may be 800,000mR/hr to 1,200,000mR/hr, and specifically 1,000,000mR/hr.
  • the reactor vessel damage As a result of the determination (S600), if the requirements are met, it is regarded as the reactor vessel damage, and external cooling (S700) is performed. According to the requirement, the point at which all the core melts are relocated to the lower head of the reactor is regarded as a case where the core melt melts in the furnace and breaks the reactor in a short time after the reactor is stopped, and proceeds to the outside cooling method step.
  • the present invention relates to a method for coping with a serious accident using a diverse core melt cooling device, and it is possible to effectively cope with a serious accident by minimizing radiation exposure to the public by maintaining the integrity of a nuclear reactor building.
  • the present invention can effectively cope with all serious accidents in which nuclear fuel is melted, and thus has a significant economic benefit. Even in the event of a major accident in which nuclear fuel is melted, the core melt, which is a material in which nuclear fuel is melted, is trapped inside the reactor building and cooled to prevent damage to the containment building so that there is no radiation exposure to the public.

Abstract

The present invention relates to a diverse molten core cooling method comprising the steps of: determining whether or not a severe accident stage has been entered; if it is determined that a severe accident stage has been entered, determining whether or not in-core cooling is possible; if it is determined that in-core cooling is possible, performing in-core cooling; determining whether or not a nuclear reactor vessel is damaged after the in-core cooling; and, if the nuclear reactor vessel is determined to have been damaged, performing out-core cooling.

Description

다양성을 갖춘 노심용융물 냉각방법A variety of core melt cooling methods
본 발명은 다양성을 갖춘 노심용융물 냉각방법에 관한 것이다.The present invention relates to a method for cooling a core melt having a variety.
노심 용융물이란 중대사고 발생 시 원자로 압력용기 내부에 설치되어 있는 원자로노심의 핵연료인 농축우라늄과 피복재로 사용되는 지르코늄 및 압력용기 내부 다수의 물질이 혼합된 고온의 용융물질을 말한다. Core melt refers to a high-temperature melted material in which enriched uranium, which is the nuclear fuel of the reactor core installed inside the reactor core installed in the reactor core, and zirconium used as a covering material, and a number of substances inside the pressure container are mixed when a serious accident occurs.
종래의 코어캐처라 불리는 노심용융물 노외냉각장치는 노심용융물을 수집하는 프리 캐처, 노심용융물 이송채널, 노심용융물 퍼짐 및 냉각공간으로 구성되어 있어 복잡하다. 또한, 유로단면적이 작고 유로저항이 상대적으로 커서, 고온의 노심용융물을 냉각하기 위한 시간이 지연되어 신속하게 대처하기 어려운 단점이 있다. [0003] A conventional core-melt external cooling device called a core catcher is complicated because it consists of a pre-catcher for collecting the core melt, a core melt transfer channel, and a space for spreading and cooling the core melt. In addition, the flow path cross-sectional area is small and the flow path resistance is relatively large, and thus the time for cooling the high-temperature core melt is delayed, making it difficult to respond quickly.
다른 방법으로 노심물질이 용융하는 중대사고 발생 시 원자로용기 건전성을 확보하기 위하여 원자로용기 외벽냉각을 수행하여 노심용융물을 원자로용기 내에 가두어 두고 냉각하는 노심용융물 노내냉각 방법이 있다. 그러나 이 방법에서는 모든 노심용융물이 녹아 원자로 하부헤드로 재배치되는 시점에 노내냉각이 실패할 위험이 있다. As another method, in the event of a major accident in which the core material melts, there is a furnace cooling method for cooling the core melt by confining the core melt in the reactor vessel by performing cooling on the outer wall of the reactor vessel to ensure the integrity of the reactor vessel. However, in this method, there is a risk that the furnace cooling will fail when all the core melt is melted and relocated to the lower head of the reactor.
따라서 본 발명의 목적은 냉각성공 확률이 향상된 다양성을 갖춘 노심용융물 냉각방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for cooling a core melt having a variety of improved cooling success probability.
상기 본 발명의 목적은 다양성을 갖춘 노심용융물 냉각방법에 있어서, 중대사고 진입여부를 판단하는 단계; 중대사고 진입으로 판단되면 노내냉각이 가능한지 판단하는 단계; 노내냉각이 가능하다고 판단되면 노내냉각을 수행하는 단계; 노내냉각 이후 원자로 용기 파손 여부를 판단하는 단계; 원자로 용기 파손으로 판단되면 노외냉각을 수행하는 단계를 포함하는 것에 의해 달성된다.It is an object of the present invention to provide a method for cooling a core melt having a variety, including the steps of determining whether to enter a serious accident; Determining whether furnace cooling is possible when it is determined that a major accident is entered; If it is determined that the furnace cooling is possible, performing the furnace cooling; Determining whether the reactor vessel is damaged after cooling in the furnace; If it is determined that the reactor vessel is damaged, it is achieved by including the step of performing external cooling.
상기 중대사고 진입 판단은, 노심출구온도가 제1온도 이상인지 판단하는 단계를 포함할 수 있다.The determination of the entry into the serious accident may include determining whether the core exit temperature is equal to or higher than the first temperature.
상기 원자로 파손 여부 판단은, 상기 노심출구온도가 제2온도 이상이고 지속시간이 제1시간 이내로 지속되고 격납건물 방사선준위가 제1수준 이상인지 판단하는 단계를 포함할 수 있다.The determination of whether the reactor is damaged may include determining whether the core exit temperature is equal to or higher than the second temperature, the duration is maintained within a first hour, and the radiation level of the containment building is equal to or higher than the first level.
노내냉각이 가능하지 않은 것으로 판단되면 노외냉각을 수행할 수 있다.If it is determined that cooling in the furnace is not possible, cooling outside the furnace may be performed.
상기 제1온도와 상기 제2온도는, 서로 독립적으로, 600℃ 내지 700℃일 수 있다.The first temperature and the second temperature may be, independently of each other, 600°C to 700°C.
상기 제1시간은 4시간 내지 8시간일 수 있다.The first time may be 4 to 8 hours.
상기 제1수준은 800,000mR/hr 내지 1,200,000mR/hr일 수 있다.The first level may be 800,000mR/hr to 1,200,000mR/hr.
본 발명에 따르면 냉각성공 확률이 향상된 다양성을 갖춘 노심용융물 냉각방법이 제공된다.According to the present invention, there is provided a method for cooling a core melt having a variety of improved cooling success probability.
도 1은 격납건물 상부 방사선 준위에 따른 노심손상 가능성을 나타낸 그래프이고,1 is a graph showing the possibility of core damage according to the radiation level above the containment building,
도 2는 본 발명의 일 실시예에 따른 노심용융물의 냉각방법을 나타낸 순서도이고,2 is a flow chart showing a method of cooling a core melt according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에서의 노내냉각을 나타낸 것이고,Figure 3 shows the furnace cooling in an embodiment of the present invention,
도 4는 본 발명의 일 실시예에서의 노외냉각을 나타낸 것이다.Figure 4 shows the outside cooling in an embodiment of the present invention.
본 발명은 중대사고 진입단계에서 원자로용기 하반구로 노심용융물의 재배치여부를 판단하여 노내냉각을 우선적으로 수행하여 중대사고를 종료하거나, 그렇지 못 할 경우에는 원자로공동에서 노심용융물을 냉각하는 노외냉각을 포함하는 다양한 방법으로 노심용융물을 냉각하는 방법을 제안하여 원자로건물 건전성을 확보하여 원자로건물 밖으로 배출되는 방사선량을 최소화한다.The present invention includes external cooling in which the core melt is cooled in the reactor cavity by prioritizing the internal cooling by determining whether to relocate the core melt to the lower hemisphere of the reactor vessel at the entry stage of a serious accident. We propose a method of cooling the core melt in various ways to ensure the integrity of the nuclear reactor building and minimize the amount of radiation emitted outside the reactor building.
본 발명은 중대사고 대처방안으로 노심출구온도가 일정온도에 도달하면 중대사고 진입단계라고 판단하고, 노내냉각이 가능한지 판단하여 노내냉각이 가능하면 원자로공동 냉각수 주입은 원자로용기 외벽냉각(노내 냉각방식) 전략 수행을 위해서 정지냉각계통 및 화학 및 체적제어계통을 사용한다. In the present invention, as a countermeasure for a serious accident, when the core exit temperature reaches a certain temperature, it is determined that it is a step of entering a serious accident, and if cooling inside the furnace is possible by determining whether cooling inside the furnace is possible, the reactor cavity cooling water injection is performed to cool the outer wall of the reactor vessel (inner cooling method) A static cooling system and a chemical and volume control system are used to implement the strategy.
노내냉각을 위한 원자로공동 냉각수 주입을 할 수 없거나, 노심출구온도가 일정온도 이상에서 일정시간 동안 지속되고, 격납건물 내 방사선준위가 일정수준 이상으로 급격히 높아질 경우, 모든 노심 용융물이 원자로 하부헤드로 재배치되어 원자로 용기가 파손되는 경우로 간주하고 노외냉각 방식 단계로 판단하고 원자로공동 침수를 위해 원자로공동 침수계통(CFS)을 사용한다. 또한 비상원자로건물 살수보조계통 등을 이용하여 원자로건물 외부 수원을 이용하여 원자로공동에 냉각수를 주입 할 수 있어, 모든 중대사고에 대해서 다양한 방식으로 노심용융물을 냉각하는 방법을 제공한다.If the reactor joint coolant for cooling in the furnace cannot be injected, or if the core outlet temperature continues for a certain period of time at a certain temperature or higher, and the radiation level in the containment building rapidly rises above a certain level, all core melts are relocated to the lower head of the reactor. As a result, it is regarded as a case where the reactor vessel is damaged, and it is judged as an external cooling method step, and the reactor cavity immersion system (CFS) is used for the reactor cavity immersion. In addition, cooling water can be injected into the reactor cavity using a water source outside the reactor building using the emergency reactor building sprinkling system, etc., providing a method of cooling the core melt in various ways for all serious accidents.
본 발명은 발생확률이 매우 낮은 중대사고경우인 노심용융물이 너무 빠른 시간에 한꺼번에 원자로용기 밖으로 분출될 경우나, 노심용융물이 서서히 녹는 경우에도 노심용융물을 효과적으로 냉각하는 방안을 제안한다. The present invention proposes a method of effectively cooling the core melt even when the core melt, which is a case of a serious accident with a very low probability of occurrence, is ejected out of the reactor vessel at a time too quickly, or when the core melt slowly melts.
종래의 원자력발전소에서 중대사고 대처능력에 대한 기술적 한계를 극복하고, 다양한 방법으로 노심용융물 냉각방법을 제안함으로써, 노심용융물을 원자로건물 내에서 안전하게 가두어 냉각시켜, 원자로건물의 파손을 방지하고, 대중들이 받는 방사선 피폭을 극히 최소화하여 원자력발전소의 안전성을 획기적으로 개선한다.By overcoming the technical limitations of the ability to cope with serious accidents in conventional nuclear power plants, and by proposing a method for cooling the core melt in various ways, the core melt is safely confined and cooled in the reactor building, preventing damage to the reactor building, and allowing the public to It dramatically improves the safety of nuclear power plants by minimizing radiation exposure.
종래의 기술은 노심용융물냉각은 노내냉각 방식과 노외냉각 방식 중 한 가지 방식만 채택한 반면에, 본 발명은 노심용융물의 상태에 따라 냉각방법을 선택하도록 하여 다양한 방식으로 중대사고를 효과적으로 대처할 수 있다. In the prior art, the core melt cooling employs only one of an in-furnace cooling method and an out-of-furnace cooling method, whereas the present invention allows a cooling method to be selected according to the state of the core melt, thereby effectively coping with a serious accident in various ways.
중대사고 현상은 원자로용기 파손 전과 후로 크게 나눌 수 있다.The phenomenon of serious accidents can be broadly divided into before and after reactor vessel damage.
전반적인 사고관리 측면에서 원자로용기 파손 전을 중대사고 관리 진입 이전과 이후로 세분할 수 있으며 중대사고 관리 진입 이전을 원자로냉각재계통(RCS) 환경조건 측면에서 노심 노출 여부에 따라 다시 구분할 수 있다. 따라서 총 4개의 시간대 즉 사고 발생 후에서 노심 노출까지, 노심 노출에서 중대사고 진입까지, 중대사고 진입에서 원자로용기 파손까지 그리고 원자로용기 파손에서 원자로건물파손까지의 시간대로 구분할 수 있다.From the perspective of overall accident management, it is possible to subdivide before and after the breakdown of the reactor vessel, and before and after the entry into the management of a serious accident, and before entering into the management of a serious accident can be divided again according to the exposure of the core in terms of the environmental conditions of the reactor coolant system (RCS). Therefore, it can be classified into a total of four time periods: from the occurrence of the accident to the exposure of the core, from the exposure of the core to the entry of a serious accident, from the entry of a serious accident to the destruction of the reactor vessel, and from the destruction of the reactor vessel to the destruction of the reactor building.
즉, 중대사고 진행에 따른 시간대 정의는 다음과 같다.That is, the definition of the time zone according to the progress of a serious accident is as follows.
○ 시간대 0 : 사고시작 ∼ 노심노출○ Time zone 0: Accident start ∼ Core exposure
○ 시간대 1(중대사고 진입단계) : 노심노출 ∼ 급격한 수소산화(노심출구온도 1,200 ℉ 초과)○ Time zone 1 (Severe accident entry stage): Core exposure ∼ Rapid hydrogen oxidation (core exit temperature exceeding 1,200 ℉)
○ 시간대 2(중대사고 진행단계) : 급격한 수소산화(노심출구온도 1,200 ℉ 초과) ∼ 안정된 정지상태 혹은 원자로용기 파손○ Time Zone 2 (Severe Accident Progress Stage): Rapid hydrogen oxidation (core exit temperature exceeding 1,200 ℉) ∼ Stable stationary state or reactor vessel damage
원자로공동 냉각수 주입은 원자로용기 외벽냉각(노내냉각방식) 전략 수행을 위해서 정지냉각계통 및 화학 및 체적제어계통을 사용할 수 있고, 노외 냉각방식으로 원자로공동 침수를 위해 원자로공동 침수계통을 사용할 수 있다. 또한 비상원자로건물 살수보조계통 등을 이용하여 원자로건물 외부 수원을 이용하여 원자로공동에 냉각수를 주입할 수 있다.For the reactor cavity coolant injection, a stationary cooling system and a chemical and volume control system can be used to perform the strategy for cooling the outer wall of the reactor vessel (inner cooling method), and the reactor cavity immersion system can be used for the reactor cavity submersion as an external cooling method. In addition, cooling water can be injected into the reactor cavity by using a water source outside the reactor building using the emergency reactor building sprinkling system.
○ 시간대 3(중대사고 종료단계) : 원자로용기 파손 ∼ 발전소가 제어되고 안정된 안전정지 상태 ○ Time Zone 3 (Severe Accident End Stage): Reactor vessel damage ∼ Power plant controlled and stable safety shutdown
중대사고를 종료하기 위하여는 발전소가 제어되고 안정된 상태에 있다는 것은 다음과 같은 변수로 알 수 있다.In order to end a serious accident, it can be known by the following variables that the power plant is in a controlled and stable state.
① 노심 온도가 안정되어 더 이상의 노심의 이동이 없을 것이 예상됨.① As the core temperature is stable, it is expected that there will be no further movement of the core.
② 핵분열생성물 방출이 제어되어 심각하게 방출되고 있는 핵분열생성물이 없음.② The release of fission products is controlled and there are no fission products that are seriously released.
③ 원자로건물 압력이 제어되어 심각한 핵분열생성물 누설이 없을 것이 예상되고, 원자로건물 위협까지 여유도가 충분함.③ As the reactor building pressure is controlled, it is expected that there will be no significant leakage of fission products, and there is sufficient margin to the threat of the reactor building.
도 1은 일례로, 격납건물 방사능 감시기에 의해 측정된 격납건물 내 방사선 준위 정보를 통해 원자로 용기 파손 여부를 평가하여 중대사고관리의 시작 및 종료 시점 여부를 결정하기 위한 간편한 수단을 제공하는 것이다. 1 is an example, to provide a convenient means for determining whether to start and end serious accident management by evaluating whether a reactor vessel is damaged through radiation level information in a containment building measured by a containment radiation monitoring device.
전출력 운전 중에 노심이 손상되는 중대사고가 발생하면 노심출구온도를 통해 중대사고 발생을 인지하여 중대사고관리를 시작한다. If a serious accident occurs that damages the core during full-power operation, the occurrence of the serious accident is recognized through the core exit temperature, and the management of the serious accident starts.
노심최대온도가, 예를 들어, 2200℉ 이상이 되면 노심 손상으로 정의하며, 이 경우 노심을 충분히 냉각시킬 수 없어 노심출구온도가 1200℉(649℃)까지 상승한다.If the maximum core temperature is, for example, 2200°F or higher, it is defined as a core damage. In this case, the core cannot be sufficiently cooled and the core outlet temperature rises to 1200°F (649°C).
노심이 약 2,200 ℉를 초과하면 노심손상으로 간주하고, 핵연료피복재가 손상되고 핵연료소자와 피복재사이의 간극에 모인 핵분열생성물이 RCS로 방출되고, RCS의 개구부(원자로용기 헤드 개방부)를 통해 RCS 내의 핵분열생성물이 격납건물 상부로 방출된다. 격납건물 상부로 방출된 핵분열생성물에 의한 방사선은 격납건물 상부 방사능 감시기에 통해 측정이 가능하며, 측정된 방사선 준위에 따라 원자로 파손 여부를 예측하는 감시 변수로서 적합하다. 이러한 이유로 원자로 파손 여부를 판별하는 기준으로 격납건물 방사선 준위를 사용할 수 있다.If the core exceeds about 2,200 ℉, it is regarded as damage to the core, and the nuclear fuel cladding is damaged, and fission products collected in the gap between the nuclear fuel element and the cladding are discharged to the RCS. Fission products are released to the top of the containment building. The radiation caused by fission products emitted to the upper part of the containment can be measured through a radioactivity monitor on the upper part of the containment building, and is suitable as a monitoring variable to predict the failure of the nuclear reactor according to the measured radiation level. For this reason, the radiation level of the containment building can be used as a criterion for determining whether the reactor is damaged.
도 1에서는 일례로, 유효노심의 피복재가 100%가 손상되었을 때 방출되는 핵분열생성물의 양에 의한 격납건물 상부 방사선 준위 값을 기준으로 원자로 파손 발생 여부를 판별하도록 한다. In FIG. 1, as an example, when 100% of the covering material of the effective core is damaged, it is determined whether or not a nuclear reactor has been damaged based on a radiation level value at the top of a containment building by the amount of fission products emitted.
중대사고 진행단계에서는 노심용융물을 냉각하는 방법을 판단하는 중요한 단계이며, 노심용융물 노내냉각방법과 노외냉각방법이 있다. In the stage of a major accident, it is an important step to determine how to cool the melted core, and there are two methods: the furnace cooling method and the outside cooling method.
노심용융물 노내냉각방법인 원자로용기 외벽냉각 조건에서는 원자로용기의 손상을 노심용융물의 재배치와 원자로용기 외벽에서의 냉각 측면에서 종합적으로 검토 한다. In the reactor vessel outer wall cooling condition, which is a method of cooling the inside of the core melt, the damage of the reactor vessel is comprehensively examined in terms of rearrangement of the core melt and cooling at the outer wall of the reactor vessel.
노심의 온도가 상승하면, 용융점이 낮은 철(Fe)이나 지르코늄(Zr) 합금으로 구성된 노심 및 핵연료의 구조물이 용융이 되고, 이후 용융점이 높은 우라늄 산화물로 구성된 핵연료 펠렛이 용융될 것으로 예상된다. 이렇게 용융된 핵연료 및 구조물의 혼합물을 노심용융물(Molten Core 또는 Corium)이라고 부른다. 노심용융물은 냉각수나 증기보다는 밀도가 높으므로, 원자로용기 하반구로 이동하여, 원자로용기 하반구에 반원형으로 재배치 되게 된다.When the temperature of the core increases, the core and nuclear fuel structure composed of a low melting point iron (Fe) or zirconium (Zr) alloy are melted, and then the nuclear fuel pellets composed of uranium oxide with a high melting point are expected to melt. This mixture of molten nuclear fuel and structures is called a core melt (Molten Core or Corium). Since the core melt has a higher density than cooling water or steam, it moves to the lower hemisphere of the reactor vessel and is relocated in a semicircular shape in the lower hemisphere of the reactor vessel.
원자로용기 하반구에 배치된 노심용융물의 주요 성분은 우라늄(U), 철(Fe), 지르코늄(Zr)이며, 이들 금속 원자는 금속 상태 또는 산소와 결합된 산화물 형태로 존재하게 된다. 우라늄은 원래 산화우라늄(UO2)이었고, 철과 지르코늄은 고온 상태에서 증기와 반응하여 산화되어 산화철(Fe2O3)또는 산화지르코늄(ZrO2)이 된다. 이때 철보다는 지르코늄의 산화도가 높으므로, 노심용융물은 산화우라늄(UO2), 산화지르코늄 (ZrO2), 지르코늄(Zr) 및 철(Fe)로 구성된다. 이때 산화물과 금속은 밀도가 다르므로, 2개의 층으로 분리될 가능성이 높다. 이를 2-layer model 원자로 재배치라고 하며, 상부 금속층에는 지르코늄(Zr) 및 철(Fe)이 포함되며, 하부의 산화용융물층에는 산화우라늄(UO2)과 산화지르코늄 (ZrO2)이 포함된다. The main components of the core melt disposed in the lower hemisphere of the reactor vessel are uranium (U), iron (Fe), and zirconium (Zr), and these metal atoms exist in a metallic state or in the form of an oxide bonded with oxygen. Uranium was originally uranium oxide (UO 2 ), and iron and zirconium reacted with steam at a high temperature to be oxidized to become iron oxide (Fe2O3) or zirconium oxide (ZrO 2 ). At this time, since the oxidation degree of zirconium is higher than that of iron, the core melt is composed of uranium oxide (UO 2 ), zirconium oxide (ZrO 2 ), zirconium (Zr), and iron (Fe). At this time, since the density of the oxide and the metal are different, it is highly likely to be separated into two layers. This is called rearrangement of a two-layer model reactor, and the upper metal layer contains zirconium (Zr) and iron (Fe), and the lower molten oxide layer contains uranium oxide (UO 2 ) and zirconium oxide (ZrO 2 ).
최근에는 산화층에 내부에 형성된 무거운 금속층(heavy metal layer)의 존재를 확인하였으며, 이는 금속용융물의 함량이 높고 고온인 조건에서는 산화물에서 우라늄이 석출되어 금속의 형태로 존재하는 것이다. 우라늄은 산화우라늄과 산화지르코늄으로 구성된 산화용융물보다는 무거워서 산화용융물층 아래에 형성될 가능성이 높다. 이렇게 상부 금속층, 산화용융물층, 무거운 우라늄 용융물의 3층 형태로 구성되는 것을 3-layer model 원자로 재배치라고 한다. 그런데, 이렇게 산화우라늄(UO2)이 우라늄(U)으로 환원되면, 남은 산소(O2)가 지르코늄을 산화시켜, 산화용융물층에 포함되는 산화지르코늄의 양은 증가하고, 지르코늄의 무게와 상부 금속층의 두께는 더욱 감소하게 된다.Recently, it has been confirmed that there is a heavy metal layer formed inside the oxide layer, which is in the form of a metal due to precipitation of uranium from the oxide under high temperature conditions with a high content of the molten metal. Uranium is heavier than an oxide melt composed of uranium oxide and zirconium oxide, so it is highly likely to form under the oxide melt layer. This configuration of three layers of the upper metal layer, the oxide melt layer, and the heavy uranium melt is called a three-layer model reactor relocation. However, when uranium oxide (UO 2 ) is reduced to uranium (U), the remaining oxygen (O 2 ) oxidizes zirconium, and the amount of zirconium oxide contained in the oxide melt layer increases, and the weight of zirconium and the upper metal layer The thickness is further reduced.
원자로 외벽 열속의 결정에 원자로정지후 경과 시간이 결정적인 인자임을 고려하여, 본 분석은 충분한 외벽 냉각 성공 확률을 가질 수 있는 원자로 정지 후 시간을 추정하기 위함이며 몇 가지 원자로 정지 후 시간에 대해 외벽 냉각의 성공 확률을 평가하고 외벽 냉각 성공 확률이 충분하다고 판단되는(성공확률이 95% 이상) 최소 원자로 정지후 시간을 도출하고자 한다. 이를 테면, 원자로 정지 후 시간을 10시간으로 설정하고 이에 대한 불학실도 분석을 수행하여 최대 열속비(최대열속/임계열속)가 1.0을 초과하지 않을 확률을 추산하여 만약 그 확률이 95% 이상이면 원자로 정지 후 10시간이 경과한 경우 외벽냉각이 성공할 수 있다는 판단이 가능하다. Considering that the elapsed time after the reactor shutdown is a decisive factor in the determination of the outer wall heat flux of a nuclear reactor, this analysis is to estimate the time after the reactor shutdown, which can have a sufficient chance of cooling the outer wall. This is to evaluate the probability of success and to derive the time after the minimum reactor shutdown, which is judged to have a sufficient probability of success for cooling the outer wall (success probability is 95% or more). For example, after the reactor is stopped, the time is set to 10 hours, and the probability of the maximum heat flux ratio (maximum heat flux/critical heat flux) not exceeding 1.0 is estimated by performing an analysis of the absence of study for this, and if the probability is 95% or more. In this case, it is possible to judge that cooling of the outer wall can be successful if 10 hours have passed since the reactor was stopped.
각 원자로 정지 시간에 따른 열부하 분석 결과에 따르면 산화물충 최상단에서의 원자로 용기로의 열속과 임계열속에 대한 열속비, 금속층 최상단에서의 원자로 용기로의 열속과 임계열속에 대한 열속비의 네 가지 변수이다. 산화물층에서의 열속비는 모든 원자로 정지후 경과시간에 대해 충분한 여유를 가짐을 보인다. 반면 금속층에서의 열속비는 95 percentile 최대값을 기준으로 할 때 원자로 정지 후 3시간 및 4시간의 경우에는 열속비가 1.0을 초과한다. 이는 원자로 정지 후 경과 시간이 4시간보다 작은 시점에서 용융물이 완전 재배치되었을 때 최대 열속이 임계열속을 초과하지 않음에 대한 신뢰도가 95% 미만이 됨을 의미한다. 한편 원자로 정지 후 경과 시간이 4시간인 시점에서 외벽냉각이 성공할 수 있음에 대한 신뢰도는 90% 수준으로 판단할 수 있다. 원자로 정지 후 경과 시간 5시간의 경우에 대한 외벽 냉각 성공 신뢰도는 95% 정도가 되며 6시간의 경우에는 신뢰도가 99% 정도가 된다고 추정할 수 있다. 원자로 정지 후 3시간 경과 시점에서의 외벽냉각 성공에 대한 신뢰도는 약 75% 수준으로 평가되었다. 원자로 정지 후 경과시간이 짧을수록 산화물층의 붕괴열 수준이 높기 때문에 원자로 정지후 경과 시간과 외벽냉각 성공에 대한 신뢰도는 반비례적인 관계를 가진다.According to the results of the thermal load analysis according to the stopping time of each reactor, there are four variables: the heat flux ratio to the reactor vessel at the top of the oxide charge and the heat flux ratio to the reactor vessel at the top of the metal layer. . It is shown that the heat flux ratio in the oxide layer has sufficient margin for the elapsed time after all reactor shutdowns. On the other hand, when the heat flux ratio in the metal layer is based on the 95 percentile maximum, the heat flux ratio exceeds 1.0 in the case of 3 hours and 4 hours after the reactor is stopped. This means that the reliability that the maximum heat flux does not exceed the critical heat flux when the melt is completely rearranged when the elapsed time after the reactor is stopped is less than 4 hours is less than 95%. On the other hand, when the elapsed time after the reactor is stopped is 4 hours, the confidence that the outer wall cooling can succeed can be judged to be at the level of 90%. In the case of 5 hours elapsed time after stopping the reactor, the reliability of cooling the outer wall is about 95%, and in the case of 6 hours, the reliability is estimated to be about 99%. The reliability of the success of cooling the outer wall 3 hours after the reactor was shut down was evaluated at about 75%. The shorter the elapsed time after the reactor is stopped, the higher the level of decay heat of the oxide layer. Therefore, the elapsed time after the reactor shutdown and the reliability of the outer wall cooling success have an inverse relationship.
통계학적인 관점에서 통상적으로 사용되는 95% 신뢰도를 외벽냉각 성공에 대한 판단 기준으로 고려하여 모든 노심 용융물이 원자로 하부헤드로 재배치되는 시점이 원자로 정지 후 6시간 이후인 경우 외벽냉각이 성공할 수 있는 것으로 판단한다. 외벽냉각이 수행하지 않을 경우는 외벽냉각이 수행하는 경우 보다 노심 용융물이 원자로 하부헤드로 재배치후 원자로파손되는 시점이 짧아진다.Considering the 95% reliability, which is commonly used from a statistical point of view, as a criterion for the success of outer wall cooling, it is judged that the outer wall cooling can be successful if the point at which all core melts are relocated to the lower head of the reactor is 6 hours after the reactor is stopped. do. When the outer wall cooling is not performed, the time point at which the core melt is relocated to the lower head of the reactor and the reactor is damaged is shorter than when the outer wall cooling is performed.
도 2 내지 도 4를 참조하여 본 발명의 일 실시예에 따른 노심용융물의 냉각방법을 설명한다.A method of cooling a core melt according to an embodiment of the present invention will be described with reference to FIGS. 2 to 4.
도 2는 본 발명의 일 실시예에 따른 노심용융물의 냉각방법을 나타낸 순서도이고, 도 3은 본 발명의 일 실시예에서의 노내냉각을 나타낸 것이고, 도 4는 본 발명의 일 실시예에서의 노외냉각을 나타낸 것이다.Figure 2 is a flow chart showing a method of cooling the melted core according to an embodiment of the present invention, Figure 3 is a furnace cooling in an embodiment of the present invention, Figure 4 is an outside furnace in an embodiment of the present invention It shows cooling.
중대사고 진입 전 단계(S100)에서 노심출구온도가 제1온도 이상인지를 판단한다(S200). 여기서 제1온도는 600℃ 내지 700℃이며, 구체적으로는 649℃일 수 있다.It is determined whether the core exit temperature is greater than or equal to the first temperature in step S100 before entering the serious accident (S200). Here, the first temperature may be 600°C to 700°C, and specifically 649°C.
노심출구온도가 제1온도 이상이면 중대사고 진입 단계(S300)로 판단한다. 노내냉각이 가능한지 판단(S400)하여 가능하다고 판단되면 도 3과 같이 노내냉각(IVR충수, S500)을 진행한다. 노내냉각에서 정지냉각계통 및 화학 및 체적제어계통을 사용할 수 있다. 노내냉각이 가능하지 않다고 판단되면 도 4와 같이 노외냉각(S700)을 진행한다.If the core exit temperature is greater than or equal to the first temperature, it is determined as a serious accident entry step (S300). If it is determined that the furnace cooling is possible (S400) and it is determined that it is possible, the furnace cooling (IVR filling water, S500) is performed as shown in FIG. 3. In furnace cooling, a static cooling system and a chemical and volume control system can be used. If it is determined that the furnace cooling is not possible, the furnace cooling (S700) is performed as shown in FIG. 4.
원자로 용기 파손여부는 노내냉각(S500) 이후에 노심출구온도가 제2온도 이상이고 지속시간이 제1시간 이내로 지속되고 격납건물 방사선 준위가 제1수준 이상인지를 판단한다(S600). 제2온도는 제1온도와 다르거나 같을 수 있다. 제1시간은 4시간 내지 8시간이며, 구체적으로는 6시간일 수 있다. 제1수준은 800,000mR/hr 내지 1,200,000mR/hr일 수 있으며, 구체적으로는 1,000,000mR/hr일 수 있다.Whether the reactor vessel is damaged or not is determined whether the core exit temperature is greater than or equal to the second temperature after the furnace cooling (S500), the duration is maintained within the first hour, and the radiation level of the containment building is greater than or equal to the first level (S600). The second temperature may be different from or equal to the first temperature. The first hour is 4 to 8 hours, and specifically, may be 6 hours. The first level may be 800,000mR/hr to 1,200,000mR/hr, and specifically 1,000,000mR/hr.
판단(S600) 결과 요건에 부합하면 원자로 용기 파손으로 간주하고, 노외냉각(S700)을 수행한다. 요건에 부합한다는 것은 모든 노심 용융물이 원자로 하부헤드로 재배치되는 시점이 원자로 정지 후 빠른 시간에 노심용융물이 노내에서 녹아 원자로 파손이 되는 경우로 간주하고 노외냉각 방식 단계로 진행된다는 것이다.As a result of the determination (S600), if the requirements are met, it is regarded as the reactor vessel damage, and external cooling (S700) is performed. According to the requirement, the point at which all the core melts are relocated to the lower head of the reactor is regarded as a case where the core melt melts in the furnace and breaks the reactor in a short time after the reactor is stopped, and proceeds to the outside cooling method step.
노외냉각(S700)에서는 CFS 충수 혹은 외부수원 충수가 수행될 수 있다. 노외냉각(S700) 이후에는 노심용융물이 냉각되어 고화되고 안정단계를 이루면 중대사고가 종료(S800)된다.In the outside cooling (S700), CFS filling or filling of an external water source may be performed. After the outside cooling (S700), the core melt is cooled and solidified, and when the stabilization stage is achieved, the serious accident is terminated (S800).
본 발명은 다양성을 갖춘 노심용융물 냉각장치를 사용한 중대사고 대처방법에 관한 것으로, 원자로건물의 건전성을 유지하여 대중에게로 가는 방사선 피폭을 최소화 하여 중대사고에 효과적으로 대처할 수 있다.The present invention relates to a method for coping with a serious accident using a diverse core melt cooling device, and it is possible to effectively cope with a serious accident by minimizing radiation exposure to the public by maintaining the integrity of a nuclear reactor building.
본 발명은 핵연료가 녹는 모든 중대사고에 효과적으로 대처할 수 있어 경제적 이득이 상당히 크다. 핵연료가 녹는 중대사고가 발생하더라도 핵연료가 녹은 물질인 노심용융물을 원자로건물내부에 가두어 두어 냉각시켜서 격납건물이 파손되는 것을 막아 대중으로 방사선 피폭되는 일이 없도록 한다. The present invention can effectively cope with all serious accidents in which nuclear fuel is melted, and thus has a significant economic benefit. Even in the event of a major accident in which nuclear fuel is melted, the core melt, which is a material in which nuclear fuel is melted, is trapped inside the reactor building and cooled to prevent damage to the containment building so that there is no radiation exposure to the public.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are examples for explaining the present invention, and the present invention is not limited thereto. Since those of ordinary skill in the art to which the present invention pertains will be able to implement the present invention by various modifications therefrom, the technical protection scope of the present invention should be determined by the appended claims.

Claims (7)

  1. 다양성을 갖춘 노심용융물 냉각방법에 있어서,In the method of cooling a core melt with a variety,
    중대사고 진입여부를 판단하는 단계;Determining whether to enter a serious accident;
    중대사고 진입으로 판단되면 노내냉각이 가능한지 판단하는 단계;Determining whether furnace cooling is possible when it is determined that a major accident is entered;
    노내냉각이 가능하다고 판단되면 노내냉각을 수행하는 단계;If it is determined that the furnace cooling is possible, performing the furnace cooling;
    노내냉각 이후 원자로 용기 파손 여부를 판단하는 단계;Determining whether the reactor vessel is damaged after cooling in the furnace;
    원자로 용기 파손으로 판단되면 노외냉각을 수행하는 단계를 포함하는 냉각방법.A cooling method comprising the step of performing external cooling when it is determined that the reactor vessel is damaged.
  2. 제1항에 있어서,The method of claim 1,
    상기 중대사고 진입 판단은,The decision to enter the serious accident,
    노심출구온도가 제1온도 이상인지 판단하는 단계를 포함하는 냉각방법.A cooling method comprising the step of determining whether the core outlet temperature is greater than or equal to the first temperature.
  3. 제1항에 있어서,The method of claim 1,
    상기 원자로 파손 여부 판단은,The determination of whether the reactor is damaged,
    상기 노심출구온도가 제2온도 이상이고 지속시간이 제1시간 이내로 지속되고 격납건물 방사선준위가 제1수준 이상인지 판단하는 단계를 포함하는 냉각방법.And determining whether the core exit temperature is greater than or equal to the second temperature, the duration lasts within a first hour, and the radiation level of the containment building is greater than or equal to the first level.
  4. 제2항에 있어서,The method of claim 2,
    노내냉각이 가능하지 않은 것으로 판단되면 노외냉각을 수행하는 냉각방법.A cooling method that performs external cooling when it is determined that cooling in the furnace is not possible.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1온도와 상기 제2온도는, 서로 독립적으로, 600℃ 내지 700℃인 냉각방법.The first temperature and the second temperature are, independently of each other, 600 ℃ to 700 ℃ cooling method.
  6. 제3항에 있어서,The method of claim 3,
    상기 제1시간은 4시간 내지 8시간인 것을 냉각방법.The first time is a cooling method that is 4 to 8 hours.
  7. 제3항에 있어서,The method of claim 3,
    상기 제1수준은 800,000mR/hr 내지 1,200,000mR/hr인 냉각방법.The first level is 800,000mR/hr to 1,200,000mR/hr cooling method.
PCT/KR2020/000192 2019-07-03 2020-01-06 Diverse molten core cooling method WO2021002552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190079942A KR102066813B1 (en) 2019-07-03 2019-07-03 Method for corium cooling in nuclear power plant with diversity
KR10-2019-0079942 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002552A1 true WO2021002552A1 (en) 2021-01-07

Family

ID=69156800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000192 WO2021002552A1 (en) 2019-07-03 2020-01-06 Diverse molten core cooling method

Country Status (2)

Country Link
KR (1) KR102066813B1 (en)
WO (1) WO2021002552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219395A1 (en) * 2007-03-06 2008-09-11 Areva Np Nuclear power plant using nanoparticles in emergency situations and related method
JP2009257918A (en) * 2008-04-16 2009-11-05 Toshiba Corp Cooling device for molten corium
KR20110055072A (en) * 2009-11-19 2011-05-25 한국원자력연구원 Prevention system and method of nuclear fuel release out of containment using nano fluids
KR20160025088A (en) * 2014-08-25 2016-03-08 주식회사 우진 Multipoints thermocouple in In-Core Instrument assembly, system and method for post severe accident reactor internal status monitoring using the same
KR101923801B1 (en) * 2017-01-02 2018-11-29 한국수력원자력 주식회사 Cooling device for external wall of reactor vessel and method of cooling external wall of reactor vessel using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827567B1 (en) * 2006-10-31 2008-05-07 한국전력공사 Core monitoring methodology for nuclear power plant without reactor vessel level indication system
KR100893598B1 (en) 2007-06-22 2009-04-20 경희대학교 산학협력단 Ex-Vessel Cooling System for In-Vessel Retention of Pressurized Water Reactor
KR102352245B1 (en) * 2014-11-13 2022-01-18 삼성전자주식회사 Manufacturing method of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219395A1 (en) * 2007-03-06 2008-09-11 Areva Np Nuclear power plant using nanoparticles in emergency situations and related method
JP2009257918A (en) * 2008-04-16 2009-11-05 Toshiba Corp Cooling device for molten corium
KR20110055072A (en) * 2009-11-19 2011-05-25 한국원자력연구원 Prevention system and method of nuclear fuel release out of containment using nano fluids
KR20160025088A (en) * 2014-08-25 2016-03-08 주식회사 우진 Multipoints thermocouple in In-Core Instrument assembly, system and method for post severe accident reactor internal status monitoring using the same
KR101923801B1 (en) * 2017-01-02 2018-11-29 한국수력원자력 주식회사 Cooling device for external wall of reactor vessel and method of cooling external wall of reactor vessel using the same

Also Published As

Publication number Publication date
KR102066813B1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
Henry et al. External cooling of a reactor vessel under severe accident conditions
Andreeva et al. Overview of plant specific severe accident management strategies for Kozloduy nuclear power plant, WWER-1000/320
WO2021002552A1 (en) Diverse molten core cooling method
WO2017026557A1 (en) Nuclear reactor insulator having molten core collecting function
EP0390486A2 (en) Nuclear reactor containment safety cooling system
US4113560A (en) Core catcher for nuclear reactor core meltdown containment
WO2021002551A1 (en) Nuclear power plant having improved steam explosion mitigation performance
WO2020009310A1 (en) Cooling system comprising insulator for cooling outer walls of nuclear reactor
WO2021241961A1 (en) Modular system for severe accident analysis for nuclear power plant
WO2023177154A1 (en) Cooling device and cooling method for small modular reactor
Huber et al. Investigation of sodium area conflagrations and testing of a protective system
Fischer The core melt stabilization concept of the EPR and its experimental validation
WO2020009308A1 (en) Out-of-reactor cooling apparatus for corium
JPS6330783A (en) Container for nuclear reactor
Frano et al. Innovative engineering safeguards to cope with corium relocation: identification of loads and failure modes
WO2023146153A1 (en) Method for analyzing severe accident at nuclear power plant by using modular analysis code
Bittermann et al. Effects of mechanical design measures for the EPR melt retention concept
Fischer Application of IVR in AREVA’s Gen-3 Advanced BWR (KERENA)
Hering et al. Status of experimental and analytical investigations on degraded core reflood
RU35463U1 (en) The device for localization and cooling of the corium of an emergency nuclear water-type reactor
Pingting et al. Research on Severe Accident Management Guidelines for HPR1000 NPP
Frid Containment severe accident thermohydraulic phenomena
JP3125596B2 (en) Emergency core cooling equipment for nuclear reactors
Kayser et al. Potential lessons from Scarabee for the transition phase
Prior et al. Severe accident analysis of a 1300 MWe PWR to address the hydrogen issue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835086

Country of ref document: EP

Kind code of ref document: A1