WO2021002508A1 - 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말 - Google Patents

무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말 Download PDF

Info

Publication number
WO2021002508A1
WO2021002508A1 PCT/KR2019/008149 KR2019008149W WO2021002508A1 WO 2021002508 A1 WO2021002508 A1 WO 2021002508A1 KR 2019008149 W KR2019008149 W KR 2019008149W WO 2021002508 A1 WO2021002508 A1 WO 2021002508A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoding
codewords
codeword
llr values
policy
Prior art date
Application number
PCT/KR2019/008149
Other languages
English (en)
French (fr)
Inventor
이상림
김병훈
전기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/008149 priority Critical patent/WO2021002508A1/ko
Priority to US17/619,408 priority patent/US11831437B2/en
Publication of WO2021002508A1 publication Critical patent/WO2021002508A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/002Algorithms with memory of the previous states, e.g. Markovian models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the present invention relates to a method of decoding a codeword in a wireless communication system and a terminal therefor, and in more detail, a method of decoding a plurality of codewords based on sequential interference cancellation (SIC), and a terminal therefor It is about.
  • SIC sequential interference cancellation
  • HARQ Hybrid Automatic Repeat and ReQuest
  • a HARQ reception method based on codeword successive interference cancellation may be used.
  • the codeword is a segmentation and cyclic redundancy check (CRC) inserted into a transport block (TB) from a medium access control (MAC) layer.
  • CRC segmentation and cyclic redundancy check
  • TB transport block
  • MAC medium access control
  • the transport block may be an information bit.
  • the receiving UE uses a CW SIC reception technique in a 4x4 MIMO (Multiple Input and Multiple Output) environment, and the transmitting UE transmits two CWs. Since CW-to-layer mapping, which is a relationship in which CW is mapped to the MIMO layer, is known to the same by the transmitting terminal and the receiving terminal, the CW level SIC receiving method can be described as follows.
  • the receiving terminal includes an equalization (Minimum Mean Square Error) (MMSE) and Zero Forcing (ZF) based on channel estimation information ( equalization).
  • MMSE Minimum Mean Square Error
  • ZF Zero Forcing
  • the receiving terminal calculates a CW Log Likelihood Ratio (LLR) value based on the equalized received signal.
  • LLR Log Likelihood Ratio
  • the channel decoder of the receiving terminal performs decoding based on the LLR value.
  • the receiving terminal can finally determine whether decoding is successful through CRC check.
  • the receiving terminal If successful, the receiving terminal re-encodes the first CW using information bits obtained based on modulation and the measured channel, and corresponds to the first CW in the received signal. Remove the received signal. After that, the receiving terminal decodes the second CW without interference of the received signal corresponding to the first CW.
  • the receiving terminal stores the LLR value obtained in the decoding process of the first CW in the HARQ buffer. In addition, the receiving terminal attempts to decode the second CW in the presence of a received signal corresponding to the first CW. If the decoding of the second CW also fails, the receiving terminal stores the acquired LLR value in the corresponding HARQ buffer and requests retransmission from the transmitting terminal. Thereafter, the receiving terminal performs decoding again through Incremental Redundancy (IR) or Chase Combining (CC) using the retransmitted signal and information stored in the HARQ buffer.
  • IR Incremental Redundancy
  • CC Chase Combining
  • the LLR value stored in the HARQ buffer may be a value including interference. Therefore, it is most advantageous in terms of performance to try decoding for all the number of cases.
  • a brute-force method has a problem that requires a high processing delay and a large number of buffers for storage.
  • the technical problem to be achieved in the present invention is to provide a method of decoding a plurality of codewords based on sequential interference cancellation (SIC).
  • SIC sequential interference cancellation
  • a method for decoding a codeword by a terminal in a wireless communication system is to receive a plurality of codewords, and the plurality of codewords based on sequential interference cancellation (SIC). May include decoding.
  • the SIC is performed based on a decoding policy for decoding the plurality of codewords, and the decoding policy is learned based on a state and a reward related to the plurality of codewords. It can be determined from a neural network.
  • the state may include a channel quality of each of the first codeword and the second codeword, and the reward may include whether or not decoding of the first codeword and the second codeword is successful.
  • the decoding policy is i) the order of decoding the plurality of codewords and ii) LLR (Log) calculated in the previous transmission of each codeword each codeword is stored in the HARQ (Hybrid Automatic Repeat and ReQuest) buffer. Likelihood Ratio), and the neural network may be learned based on the decoding result of the plurality of codewords based on the decoding policy.
  • the state may further include an interference relationship in a time domain and a frequency domain of the plurality of codewords, and the neural network may be further learned based on the interference relationship.
  • the method of decoding a codeword by the terminal further includes managing the HARQ buffer using LLR values calculated for each of the plurality of codewords when decoding of the plurality of codewords based on the decoding policy fails. can do.
  • managing the HARQ buffer includes i) adding the previous LLR values stored in the HARQ buffer and the LLR values calculated for each of the plurality of codewords, or ii) adding the previous LLR values stored in the HARQ buffer to the plurality of Substituting LLR values calculated for each codeword, or iii) dropping LLR values calculated for each of the plurality of codewords.
  • managing the HARQ buffer may include adding only LLR values having a threshold value or more among LLR values calculated for each of the plurality of codewords with previous LLR values stored in the HARQ buffer.
  • the decoding policy for sequential interference cancellation is efficiently determined using a neural network to which reinforcement learning is applied, i) allocating a large amount of memory for the buffer is prevented. It can, and ii) the processing time can be improved by reducing the complexity of the receiving terminal.
  • 1 is a diagram showing the structure of a radio frame.
  • FIG. 2 is a diagram showing a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • 4 is a diagram showing the structure of an uplink subframe.
  • FIG. 5 is a block diagram of a wireless communication system having multiple antennas.
  • FIG. 6 is a diagram showing a device configuration of a terminal decoding a codeword according to an example or implementation example of the present invention.
  • FIGS. 7 to 8 are diagrams illustrating that a method of decoding a codeword according to an example or implementation example of the present invention is applied to a codeword level SIC.
  • 9 to 10 are diagrams illustrating that a method of decoding a codeword according to an example or implementation example of the present invention is applied to a symbol level SIC.
  • 11 is a diagram illustrating an interference relationship between a plurality of codewords in a method of decoding a codeword according to an example or implementation example of the present invention.
  • FIG. 12 is a diagram illustrating management of a HARQ buffer included in a method of decoding a codeword according to an example or implementation example of the present invention.
  • FIG. 13 is a diagram illustrating a system for an example or implementation example of the present invention.
  • the base station has a meaning as a terminal node of a network that directly communicates with the terminal.
  • a specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • The'base station (BS)' can be replaced by terms such as fixed station, Node B, eNode B (eNB), gNodeB (gNB; next Generation NodeB), and access point (AP). have.
  • the repeater may be replaced by terms such as Relay Node (RN) and Relay Station (RS).
  • RN Relay Node
  • RS Relay Station
  • terminal' may be replaced with terms such as user equipment, mobile station (MS), mobile subscriber station (MSS), subscriber station (SS), and the like.
  • the cell names described below apply to transmission/reception points such as base stations (eNBs), sectors, remote radio heads (RRHs), and relays, and are also configured at specific transmission/reception points. It may be used as a generic term for classifying a component carrier.
  • eNBs base stations
  • RRHs remote radio heads
  • relays and are also configured at specific transmission/reception points. It may be used as a generic term for classifying a component carrier.
  • Examples or implementation examples of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system, and 3GPP2 system as radio access systems. That is, among the examples or implementation examples of the present invention, steps or parts not described in order to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) that uses E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following describes mainly the 3GPP LTE and 3GPP LTE-A systems, but the technical idea of the present invention is not limited thereto.
  • uplink/downlink data packet transmission is performed on a subframe basis, and one subframe is defined as a predetermined time period including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • a downlink radio frame consists of 10 subframes, and one subframe consists of 2 slots in a time domain.
  • the time taken for one subframe to be transmitted is referred to as a transmission time interval (TTI).
  • TTI transmission time interval
  • the length of one subframe may be 1ms
  • the length of one slot may be 0.5ms.
  • One slot includes a plurality of OFDM symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since the 3GPP LTE/LTE-A system uses OFDMA in downlink, an OFDM symbol represents one symbol interval. OFDM symbols may also be referred to as SC-FDMA symbols or symbol intervals.
  • a resource block (RB) is a resource allocation unit, and may include a plurality of consecutive subcarriers in one block.
  • the number of OFDM symbols included in one slot may vary according to a configuration of a cyclic prefix (CP).
  • CP includes an extended CP and a normal CP.
  • the number of OFDM symbols included in one slot may be seven.
  • the number of OFDM symbols included in one slot is smaller than that of a general CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce inter-symbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frame consists of two half frames, each half frame has 5 subframes, DwPTS (Downlink Pilot Time Slot), Guard Period (GP), UpPTS (Uplink Pilot Time Slot) Of which one subframe is composed of two slots.
  • DwPTS is used for initial cell search, synchronization, or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard interval is an interval for removing interference occurring in uplink due to multipath delay of a downlink signal between uplink and downlink.
  • one subframe consists of two slots regardless of the type of radio frame.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram showing a resource grid in a downlink slot.
  • One downlink slot is shown to include 7 OFDM symbols in the time domain, and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols, but in the case of an extended-CP (CP), one slot may include 6 OFDM symbols.
  • Each element on the resource grid is called a resource element.
  • One resource block contains 12 ⁇ 7 resource elements.
  • the number of resource blocks (NDL) included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • up to three OFDM symbols at the front of the first slot correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • the downlink control channels used in the 3GPP LTE/LTE-A system include, for example, a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH).
  • PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK/NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the DCI includes uplink or downlink scheduling information, or includes an uplink transmission power control command for an arbitrary terminal group.
  • PDCCH is the resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, and the PDSCH.
  • Resource allocation of upper layer control messages such as random access response transmitted through the network, transmission power control command set for individual terminals in a terminal group, transmission power control information, activation of VoIP (Voice over IP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may monitor a plurality of PDCCHs.
  • the PDCCH is transmitted as an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on a state of a radio channel.
  • CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCE.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is for a specific terminal, a cell-RNTI (C-RNTI) identifier of the terminal may be masked on the CRC.
  • C-RNTI cell-RNTI
  • P-RNTI paging indicator identifier
  • the PDCCH is for system information (more specifically, a system information block (SIB)
  • SI-RNTI system information identifier
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a Physical Uplink Shared Channel (PUSCH) including user data is allocated to the data area.
  • PUCCH for one terminal is allocated to a resource block pair (RB pair) in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for 2 slots. This is called that the resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the correct signal can be received only by knowing the channel conditions between each transmitting antenna and receiving antenna. Therefore, a separate reference signal must exist for each transmission antenna, and more specifically, for each antenna port.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal in the current LTE system As an uplink reference signal in the current LTE system,
  • a demodulation reference signal (DeModulation-Reference Signal, DM-RS) for channel estimation for coherent demodulation of information transmitted through PUSCH and PUCCH
  • the base station has a sounding reference signal (SRS) for measuring the quality of an uplink channel at a different frequency by the network.
  • SRS sounding reference signal
  • CRS Cell-specific reference signal
  • CSI-RS channel state information reference signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There are a reference signal for obtaining channel information and a reference signal for data demodulation.
  • the former is intended for the UE to acquire downlink channel information, so it must be transmitted over a wideband, and even a terminal that does not receive downlink data in a specific subframe must receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted to a corresponding resource when a base station transmits a downlink, and the terminal can demodulate data by measuring a channel by receiving the reference signal. This reference signal must be transmitted in an area where data is transmitted.
  • FIG. 5 is a block diagram of a wireless communication system having multiple antennas.
  • the transmission rate may theoretically increase by multiplying the maximum transmission rate (Ro) when using a single antenna by the rate increase rate (Ri).
  • a communication method in a multi-antenna system will be described in more detail using mathematical modeling. It is assumed that there are NT transmit antennas and NR receive antennas in the system.
  • Transmission information can be expressed as follows.
  • Each transmission information May have different transmit power.
  • Each transmit power If so, the transmission information in which the transmission power has been adjusted may be expressed as follows.
  • Is the diagonal matrix of the transmission power Can be expressed as:
  • Weight matrix Plays a role of properly distributing the transmission information to each antenna according to the transmission channel condition.
  • the vector Can be expressed as follows.
  • the received signal is the received signal of each antenna when there are Nr receiving antennas. Can be expressed as a vector as
  • the channel When a channel is modeled in a multi-antenna wireless communication system, the channel may be classified according to the transmit/receive antenna index.
  • the channel passing through the receiving antenna i from the transmitting antenna j I will mark it as. Note that in the order of the indexes, the receive antenna index is first, and the transmit antenna index is later.
  • FIG. 5(b) is a diagram showing a channel from NR transmit antennas to receive antenna i .
  • the channels can be grouped and displayed in the form of vectors and matrices.
  • a channel arriving from a total of NT transmit antennas to receive antenna i may be represented as follows.
  • White noise (AWGN; Additive White Gaussian Noise) is added after passing through.
  • White noise added to each of the NR receiving antennas Can be expressed as
  • the received signal can be expressed as follows.
  • a channel matrix indicating the channel state The number of rows and columns of is determined by the number of transmit/receive antennas.
  • Channel matrix In the number of rows is equal to the number of receive antennas NR, and the number of columns is equal to the number of transmit antennas NT. That is, the channel matrix The matrix becomes NR ⁇ NT.
  • the rank of the matrix is defined as the minimum number of rows or columns independent from each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
  • Channel matrix Rank of ( ) Is limited to:
  • rank can be defined as the number of eigenvalues other than zero when the matrix is decomposed by eigen value.
  • another definition of rank can be defined as the number of non-zero outliers when singular value decomposition is performed.
  • rank in the channel matrix The physical meaning of is the maximum number of different information that can be sent on a given channel.
  • the transceiver of the terminal receives signals including a plurality of CWs through multiple antennas.
  • the terminal may use the SIC reception method to secure performance.
  • the UE using the SIC reception method i) sequentially decodes each CW, ii) re-encodes the successfully decoded CW, and iii) removes the re-encoded CW from the received signal, thereby decoding performance of the next CW. Can increase.
  • the UE stores the LLR value corresponding to each CW in the HARQ buffer, requests retransmission, and then determines the combination of the newly received signal and the LLR value stored in the previous HAQR buffer. Try decoding by using.
  • the present invention proposes a method for receiving HARQ in a feed-forward method based on a decoding policy determined by a receiver through reinforcement learning.
  • FIG. 6 is a diagram illustrating a MIMO SIC receiver and an agent according to an example or implementation example of the present invention.
  • the proposed HARQ reception method performed by the MIMO SIC receiver and the agent is that the agent learns an action according to state and reward from training data, and through a previously learned agent. It can be configured by determining an action in the HARQ process. Meanwhile, the action may mean a decoding policy of a receiver. Meanwhile, the operations of the agent described below may be performed by the processor 21 of the UE 20 shown in FIG. 13.
  • a receiving terminal proposed according to an example or implementation example of the present invention may include a MIMO SIC receiver and an agent.
  • the MIMO SIC receiver delivers information on state and reward to the agent, and the agent determines an action based on the information.
  • State, reward, and action mentioned above may be information as follows.
  • the states are channel quality information for each CW, average signal to noise ratio (SNR) for each CW, the number of retransmissions for each CW, a code rate for each CW, and an MCS for each CW ( Modulation and Coding Scheme) index, layer mapping information for each CW, reception average SNR for each CW, reception average SNR for each layer, interference relationship information between CWs, and at least one of the total number of CWs.
  • SNR signal to noise ratio
  • MCS Modulation and Coding Scheme
  • Reward is the success of decoding for each CW (ACK, NACK), data throughput of successful decoding, It may include at least one or more of.
  • the action is at least one of the decoding order of the CW, the combination with the HARQ buffer (HARQ buffer) when decoding each CW, the demodulation order of each layer, the HARQ buffer update policy (add/replace/drop), and the size threshold of the LLR for each CW. It may include more than one.
  • the proposed HARQ receiving method may include performing reinforcement learning for determining an action according to a state and a reward through training data, and transmitting a decoding policy according to the state based on the learned information.
  • CW n Denotes CW n at the current reception point
  • CW n -1 denotes the LLR value calculated from previous transmissions of CWn stored in the HARQ buffer
  • CW n + CW n -1 means the sum of the currently received CWn and LLR information stored in the previous HARQ buffer.
  • states and rewards may be defined as shown in [Table 1].
  • State CW1 channel quality e.g., CQI
  • average SNR code rate
  • number of retransmissions CW2 channel quality e.g., CQI
  • average SNR code rate
  • code rate number of retransmissions Reward 0 for NACK, 1 for ACK or 0 for NACK, 1/retransmission number for ACK
  • the action or decoding policy may be defined as follows.
  • the agent may determine the decoding policy as follows. In this case, there may be one HARQ buffer storing LLR values for each CW.
  • the agent may determine the decoding policy as follows.
  • the receiving terminal Based on the defined states, rewards and actions, the receiving terminal performs reinforcement learning using training data. For example, when the transmitting terminal transmits two CWs, in order to learn the decoding policy of 1-1), the MIMO SIC receiver of the receiving terminal uses CQI (Channel Quality Indicator) for each CW through channel measurement, average SNR, and code rate. , transfer the number of retransmissions and rewards to the agent.
  • the agent delivers the decoding policy with the highest Q value among decoding policies #1-#4 to the MIMO SIC receiver based on its own Q-table.
  • the MIMO SIC receiver performs decoding based on the received decoding policy and delivers a reward '1' upon success and a reward '0' upon failure back to the agent along with the state.
  • the agent learns the Q-table through the above process.
  • the Q value can be defined as follows.
  • the agent may deliver a decoding policy maximizing the Q value to the MIMO SIC receiver based on the learned Q-table and state.
  • 7 is a flowchart showing the learning steps. Referring to FIG. 7, the agent delivers an action based on a state received from a MIMO SIC receiver (ie, environment) and receives a reward, so that the Q-function, that is, the neural network, is updated so that the Q-function is well learned. Learning proceeds by repeating this process.
  • FIG. 8 is a flowchart illustrating a method of determining an action based on a previously learned Q-function.
  • the agent receiving the current state transmits a decoding policy having the highest Q value among four actions, that is, a decoding policy, to a MIMO SIC receiver through a previously learned Q-function (ie, neural network). .
  • the MIMO SIC receiver performs decoding based on the transmitted decoding policy.
  • the agent may continuously perform a Q-function update by receiving a reward.
  • the flow charts illustrated in FIGS. 7 to 8 are described on the assumption that the Q-function is a neural network type Deep Q-learning (DQN), but another type of reinforcement learning method may be applied.
  • DQN Deep Q-learning
  • the receiver receives two CWs, but even when the number of CWs is more than two, states, rewards, and actions may be defined in the same manner.
  • the receiving terminal may demodulate a symbol without performing channel decoding to perform SIC. Accordingly, while the symbol level SIC has an advantage that recursive decoding is not required, there is a disadvantage in that there may be a reliability loss.
  • each CW may be received through two layers.
  • CW1 may be mapped to layers 1 and 2
  • CW2 may be mapped to layers 3 and 4, CW to layer mapping.
  • states, rewards, and actions may be defined as shown in [Table 2].
  • State CW1 channel quality e.g., CQI
  • code rate e.g., number of retransmissions
  • average SNR of layers 1 and 2 CW2 channel quality e.g., CQI
  • code rate e.g., number of retransmissions
  • average SNR of layers 3 and 4 Reward 0 for NACK, 1 for ACK or 0 for NACK, 1/retransmission number for ACK action
  • Layer Demodulation Policy #1, Layer 1 -> Layer 2 -> Layer 3 -> Layer demodulation policy corresponding to the order of 4 factorial including Layer 4
  • FIGS. 9 to 10 Similar to the case of CW level SIC shown in FIGS. 7 to 8, even in the case of symbol level SIC, reinforcement learning of an agent and execution of a previously learned agent can be described as shown in FIGS. 9 to 10. That is, in FIGS. 7 to 8, the action determined by the agent and transmitted to the MIMO SIC receiver is a decoding policy for decoding the CW, whereas the actions determined by the agent and transmitted to the MIMO SIC receiver in FIGS. 9 to 10 are shown in Table 2 ], it may be a layer demodulation policy corresponding to the order of the layers in which CW is received.
  • an interference relationship between a plurality of CWs received by a MIMO SIC receiver may be further considered in a reinforcement learning process. For example, as illustrated in FIG. 11, a case in which CWs entirely overlap and a case in which they partially overlap may be considered separately.
  • an interference relationship between them may be different. More specifically, CW1, CW2, and CW3 entirely overlap in FIG. 11(a), but CW1 and CW3, and CW2 and CW3 partially overlap each other in FIG. 11(b).
  • the CW1, CW2, and CW3 reception performance may be higher in the same time and frequency domain than the case of (b) of FIG. 11. Therefore, the agent according to an example or implementation example of the present invention can learn to have better performance in determining a decoding policy by adding an interference relationship between CWs to a state and using the interference relationship when learning a Q-table. have.
  • a method of managing a HARQ buffer by using an LLR value obtained for decoding from a signal currently received by a receiving terminal when CW decoding fails is proposed.
  • the proposed method may be referred to as a buffer update policy determined by the agent of the receiving terminal.
  • the receiving terminal (i) sums the previous LLR value stored in the HARQ buffer and the LLR value obtained for decoding from the currently received signal (add), or (ii) the signal currently received the previous LLR value stored in the HARQ buffer It is possible to replace the LLR value obtained for decoding from (replace), or (iii) maintain the previous LLR value stored in the HARQ buffer, and drop the LLR value obtained for decoding from the currently received signal.
  • States, rewards, and actions according to an example or implementation example of the present invention may be defined as shown in [Table 3] below.
  • State CW1 channel quality e.g., CQI
  • code rate e.g., code rate
  • retransmission number e.g., CW2 channel quality
  • code rate e.g., retransmission number Reward 0 for NACK, 1 for ACK or 0 for NACK, 1/retransmission number for ACK action
  • the receiving terminal may add a previous LLR value stored in the HARQ buffer and an LLR value obtained for decoding from the currently received signal.
  • the agent can learn a threshold value that optimizes decoding performance and add it to the buffer update policy. State, reward, and action according to the fifth embodiment may be defined as shown in [Table 4].
  • State CW1 channel quality e.g., CQI
  • code rate e.g., code rate
  • retransmission number e.g., CW2 channel quality
  • code rate e.g., retransmission number Reward 0 for NACK, 1 for ACK or 0 for NACK, 1/retransmission number for ACK action Buffer update policy LLR size threshold when added for each CW
  • the LLR values of the currently received CW that is, LLR 1 (33), LLR 2 (0.234), LLR 3 (-11), LLR 4 (-2) to LLR N (-0.90) Is shown.
  • the LLR value may have a positive or negative value, and the closer the absolute value is to 0, the lower the reliability.
  • the threshold is set to 4
  • the LLR value after applying the threshold is LLR 1 (33), LLR 2 (0), LLR 3 (-11), LLR 4 (0) to LLR N (0). I can.
  • the LLR value after applying the threshold value may be added to the previous LLR value stored in the HARQ buffer. Examples or implementations of the present invention described above may be implemented independently or in combination.
  • a method of decoding a codeword by a terminal includes receiving a plurality of codewords, and decoding the plurality of codewords based on sequential interference cancellation (SIC). May include.
  • the SIC is performed based on a decoding policy for decoding the plurality of codewords, and the decoding policy is learned based on a state and a reward related to the plurality of codewords. It can be determined from a neural network.
  • the state may include a channel quality of each of the first codeword and the second codeword, and the reward may include whether or not decoding of the first codeword and the second codeword is successful.
  • the decoding policy is i) the order of decoding the plurality of codewords and ii) LLR (Log) calculated in the previous transmission of each codeword each codeword is stored in the HARQ (Hybrid Automatic Repeat and ReQuest) buffer. Likelihood Ratio), and the neural network may be learned based on the decoding result of the plurality of codewords based on the decoding policy.
  • the state may further include an interference relationship in a time domain and a frequency domain of the plurality of codewords, and the neural network may be further learned based on the interference relationship.
  • the method of decoding a codeword by the terminal further includes managing the HARQ buffer using LLR values calculated for each of the plurality of codewords when decoding of the plurality of codewords based on the decoding policy fails. can do.
  • managing the HARQ buffer includes i) adding the previous LLR values stored in the HARQ buffer and the LLR values calculated for each of the plurality of codewords, or ii) adding the previous LLR values stored in the HARQ buffer to the plurality of Substituting LLR values calculated for each codeword, or iii) dropping LLR values calculated for each of the plurality of codewords.
  • managing the HARQ buffer may include adding only LLR values having a threshold value or more among LLR values calculated for each of the plurality of codewords with previous LLR values stored in the HARQ buffer.
  • FIG. 13 is a diagram illustrating a system for an example or implementation example of the present invention.
  • a wireless communication system includes a base station (BS) 10 and one or more terminals (UE) 20.
  • the transmitter may be part of the BS 10 and the receiver may be part of the UE 20.
  • the BS 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the processor 11 may be configured to implement the proposed procedures and/or methods described in this application.
  • the memory 12 is coupled with the processor 11 to store various pieces of information for operating the processor 11.
  • the transceiver 13 is coupled with the processor 11 to transmit and/or receive radio signals.
  • the UE 20 may include a processor 21, a memory 22 and a transceiver 23.
  • the processor 21 may be configured to implement the proposed procedure and/or method described in this application.
  • the memory 22 is coupled with the processor 21 to store various pieces of information for operating the processor 21.
  • the transceiver 23 is coupled with the processor 21 to transmit and/or receive radio signals.
  • BS 10 and/or UE 20 may have a single antenna and multiple antennas. When at least one of the BS 10 and the UE 20 has multiple antennas, the wireless communication system may be referred to as a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the processor 21 of the terminal and the processor 11 of the base station process signals and data, excluding functions and storage functions for receiving or transmitting signals by the terminal 20 and the base station 10, respectively.
  • the processors 11 and 21 are not specifically mentioned below. Even if there is no particular mention of the processors 11 and 21, it can be said that a series of operations such as data processing are performed rather than a function of receiving or transmitting a signal.
  • the present invention proposes a new and diverse frame structure for a fifth generation (5G) communication system.
  • 5G fifth generation
  • scenarios can be classified into enhanced mobile broadband (eMBB), ultra-reliable machine-type communications (uMTC), and massive machine-type communications (mMTC).
  • eMBB enhanced mobile broadband
  • uMTC ultra-reliable machine-type communications
  • mMTC massive machine-type communications
  • I can.
  • the improved mobile broadband is a next-generation mobile communication scenario with features such as high spectrum efficiency, high user experience data rate, and high peak data rate.
  • High-reliability machine-type communication is a next-generation mobile communication scenario with characteristics such as ultra reliable, ultra low latency, and ultra high availability (e.g., V2X, Emergency Service, Remote Control), large-scale machine-type communication is a next-generation mobile communication scenario with characteristics of Low Cost, Low Energy, Short Packet, and Massive Connectivity (e.g., IoT ).
  • a terminal may include a transceiver and a processor.
  • the transceiver may receive a radio signal including a PDCCH and a PDSCH, and may transmit a radio signal including a PUCCH and a PUSCH. Meanwhile, the transceiver may include an RF (Radio Frequency) unit.
  • RF Radio Frequency
  • a terminal for decoding a codeword includes a transceiver for receiving a plurality of codewords and a processor for decoding the plurality of codewords based on sequential interference cancellation (SIC).
  • the processor performs the SIC based on a decoding policy for decoding the plurality of codewords, and is learned based on a state and a reward related to the plurality of codewords.
  • the decoding policy may be determined through a neural network.
  • the state may include a channel quality of each of the first codeword and the second codeword, and the reward may include whether or not decoding of the first codeword and the second codeword is successful.
  • the decoding policy is i) the order of decoding the plurality of codewords and ii) LLR (Log) calculated in the previous transmission of each codeword each codeword is stored in the HARQ (Hybrid Automatic Repeat and ReQuest) buffer. Likelihood Ratio) value and whether or not it is combined.
  • the processor may learn the neural network based on a result of decoding the plurality of codewords based on the decoding policy.
  • the state further includes an interference relationship in a time domain and a frequency domain of the plurality of codewords
  • the processor may learn the neural network further based on the interference relationship.
  • the processor may manage the HARQ buffer using LLR values calculated for each of the plurality of codewords.
  • the processor may i) add previous LLR values stored in the HARQ buffer and LLR values calculated for each of the plurality of codewords, or ii) add previous LLR values stored in the HARQ buffer to each of the plurality of codewords. It is possible to substitute the calculated LLR values for, or iii) drop the calculated LLR values for each of the plurality of codewords.
  • the processor may add only LLR values having a threshold value or more among LLR values calculated for each of the plurality of codewords with previous LLR values stored in the HARQ buffer.
  • examples or implementation examples of the present invention may be implemented through various means.
  • examples or implementation examples of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to an example or implementation example of the present invention includes one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). ), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an example of the present invention or a method according to implementation examples may be implemented in the form of an apparatus, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor through various known means.
  • the method for decoding a codeword in the wireless communication system as described above and a terminal for the same have been described centering on an example applied to a 3GPP LTE system, but can be applied to various wireless communication systems other than the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 단말이 코드워드를 디코딩하는 방법에 대해 개시한다. 구체적으로, 상기 방법은 복수의 코드워드를 수신하는 것, 그리고 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 것을 포함할 수 있다. 특히, 상기 SIC는 상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 수행될 수 있다. 특히, 상기 디코딩 정책은 상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)에 의해 결정될 수 있다.

Description

무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말
본 발명은 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말에 관한 것으로서, 더욱 상세하게는 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 복수의 코드워드를 디코딩하는 방법 및 이를 위한 단말에 관한 것이다.
HARQ (Hybrid Automatic Repeat and reQuest)란 재전송을 통하여 데이터의 신뢰도를 높이는 방법 중의 하나이다. HARQ의 성능을 높이기 위한 방법으로, 버퍼를 위해 많은 메모리를 할당하는 것과 브루트-포스 디코딩 (brute-force decoding)을 적용하는 것을 고려할 수 있다. 하지만 이러한 방법들은 메모리 이슈와 디코딩 복잡도 (decoding complexity) 증가 및 디코딩 처리 지연 (decoding process delay)이라는 문제점을 유발한다. 따라서, HARQ 성능을 향상시킴과 동시에 상기 언급한 문제점을 해결할 수 있는 데이터 수신 방법이 필요하다.
일 예로, 코드워드 순차 간섭 제거 (Codeword Successive Interference Cancelation, CW SIC)을 기반으로 하는 HARQ 수신 방법이 이용될 수 있다. 여기서 코드워드 (Codeword, CW)는, 매체 접속 제어 (Medium Access Control, MAC) 계층으로부터의 전송 블록 (Transport Block, TB)에 세그멘테이션 (segmentation) 및 순환 중복 검사 (Cyclic Redundancy Check, CRC)를 삽입한 뒤 채널 인코딩 (channel encoding)을 적용한 비트 스트림 (bit stream)을 의미한다. 상기 전송 블록은 정보 비트 (information bit) 일 수 있다.
수신 단말 (receiving UE)은 4x4 MIMO (Multiple Input and Multiple Output) 환경에서 CW SIC 수신 기법을 사용하고, 송신 단말 (transmitting UE)은 2개의 CW를 전송하는 것을 가정하자. CW가 MIMO layer에 맵핑된 관계인 CW-to-layer mapping은 송신 단말과 수신 단말이 동일하게 알고 있기 때문에, CW level SIC의 수신 방법은 다음과 같이 설명할 수 있다.
먼저, 수신 단말은 수신한 2개의 CW 중 하나의 CW를 검출 (detection)하기 위해서, 채널 측정 (channel estimation) 정보를 기반으로 MMSE (Minimum Mean Square Error), ZF (Zero Forcing)을 포함하는 이퀄라이제이션 (equalization)을 수행한다. 수신 단말은 상기 이퀄라이즈된 (equalized) 수신 신호를 기반으로 CW의 LLR (Log Likelihood Ratio) 값을 계산한다. 다음으로 수신 단말의 채널 디코더 (channel decoder)는 LLR 값을 기반으로 디코딩을 수행한다. 수신 단말은 최종적으로 CRC 체크를 통해서 디코딩의 성공 여부를 판단할 수 있다.
만약 성공한다면, 수신 단말은 변조 (modulation)와 측정된 채널 (estimated channel)을 기반하여 얻어진 정보 비트들을 이용하여 첫 번째 CW를 재 인코딩 (re-encoding)하고, 수신 신호에서 첫 번째 CW에 상응하는 수신 신호를 제거한다. 이 후, 수신 단말은 첫 번째 CW에 상응하는 수신 신호의 간섭이 없는 상태에서 두 번째 CW를 디코딩한다.
만약 첫 번째 CW의 디코딩에 실패한다면, 수신 단말은 첫 번째 CW의 디코딩 과정에서 획득한 LLR 값을 HARQ buffer에 저장한다. 그리고 수신 단말은 첫 번째 CW에 상응하는 수신 신호가 존재하는 상태에서 두 번째 CW의 디코딩을 시도한다. 두 번째 CW의 디코딩 역시 실패한다면, 수신 단말은 상응하는 HARQ buffer에 획득한 LLR 값을 저장하고, 송신 단말에 재전송을 요구한다. 이 후 수신 단말은 재전송 받은 신호와 HARQ buffer에 저장된 정보를 이용하여 IR (Incremental Redundancy) 또는 CC (Chase Combining) 등을 통해서 다시 디코딩을 수행한다.
전술한 바와 같이 HARQ buffer에 저장된 LLR 값은 간섭을 포함하는 값일 수 있다. 따라서, 모든 경우의 수에 대해 디코딩을 시도해보는 것이 성능 측면에서 가장 유리하다. 다만, 이러한 브루트-포스 (brute force)한 방법은 높은 처리 지연과 저장을 위한 많은 버퍼를 요구하는 문제가 있다.
본 발명에서 이루고자 하는 기술적 과제는 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 복수의 코드워드를 디코딩하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한, 무선 통신 시스템에서 단말이 코드워드를 디코딩하는 방법은 복수의 코드워드를 수신하는 것, 그리고 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 것을 포함할 수 있다. 또한, 상기 SIC는 상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 수행되고, 상기 디코딩 정책은 상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)으로부터 결정될 수 있다.
한편, 상기 스테이트는 제 1 코드워드 및 제 2 코드워드 각각의 채널 품질 (channel quality)을 포함하고, 상기 리워드는 상기 제 1 코드워드 및 상기 제 2 코드워드 각각의 디코딩 성공 여부를 포함할 수 있다.
한편, 상기 디코딩 정책은 i) 상기 복수의 코드워드를 디코딩하는 순서 및 ii) 각각의 코드워드가 HARQ (Hybrid Automatic Repeat and reQuest) 버퍼에 저장된 상기 각각의 코드워드의 이전 전송에서 계산된 LLR (Log Likelihood Ratio) 값과 조합되는 지 여부를 포함하고, 상기 신경망은 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩 결과를 기반으로 학습될 수 있다.
한편, 상기 스테이트는 상기 복수의 코드워드의 시간 영역 및 주파수 영역에서의 간섭 관계를 더 포함하고, 상기 신경망은 상기 간섭 관계에 더 기반하여 학습될 수 있다.
한편, 단말이 코드워드를 디코딩하는 방법은 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩이 실패하면, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 이용하여 HARQ 버퍼를 관리하는 것을 더 포함할 수 있다.
한편, HARQ 버퍼를 관리하는 것은, i) 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 합하거나, ii) 상기 HARQ 버퍼에 저장된 이전 LLR 값들을 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들로 대체하거나, iii) 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 드랍하는 것을 포함할 수 있다.
한편, 상기 HARQ 버퍼를 관리하는 것은 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들 중 임계 값 이상을 갖는 LLR 값들만 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 합하는 것을 포함할 수 있다.
본 발명의 예 또는 구현 예에 따르면, 순차 간섭 제거의 디코딩 정책이 강화 학습 (reinforcement learning)이 적용된 신경망 (neural network)을 이용하여 효율적으로 결정되므로, i) 버퍼를 위해 많은 메모리를 할당하는 것을 방지할 수 있고, ii) 수신 단말의 복잡도를 줄임으로써 처리 시간 (processing time)을 개선할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 6은 본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 단말의 장치 구성을 나타낸 도면이다.
도 7 내지 도 8은 본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 방법이 코드워드 레벨 SIC에 적용된 것을 나타낸 도면이다.
도 9 내지 도 10은 본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 방법이 심볼 레벨 SIC에 적용된 것을 나타낸 도면이다.
도 11은 본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 방법에서 복수의 코드워드들의 간섭 관계를 나타낸 도면이다.
도 12는 본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 방법에 포함되는 HARQ 버퍼를 관리하는 것을 나타낸 도면이다.
도 13은 본 발명의 예 또는 구현 예를 위한 시스템을 예시한 도면이다.
이하의 예 또는 구현 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 예 또는 구현 예를 구성할 수도 있다. 본 발명의 예 또는 구현 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 예 또는 구현 예의 일부 구성이나 특징은 다른 예 또는 구현 예에 포함될 수 있고, 또는 다른 예 또는 구현 예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 예 또는 구현 예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal 노드)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper 노드)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network 노드s)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), gNodeB (gNB; next Generation NodeB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 단말(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 이하에서 기술되는 셀의 명칭은 기지국(base station, eNB), 섹트(sector), 리모트라디오헤드(remote radio head, RRH), 릴레이(relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파(component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 예 또는 구현 예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 예 또는 구현 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE / LTE -A 자원 구조/채널
도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12Х7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수(NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케듈링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용 가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
참조 신호 (Reference Signal; RS )
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(port)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
다중안테나(MIMO) 시스템의 모델링
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 5(a)에 도시된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(Ro)에 레이트 증가율(Ri)이 곱해진 만큼 증가할 수 있다.
Figure PCTKR2019008149-appb-img-000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO(Multiple Input and Multiple Output) 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 NT개의 송신 안테나와 NR개의 수신 안테나가 존재한다고 가정한다.
송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000002
각각의 전송 정보
Figure PCTKR2019008149-appb-img-000003
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure PCTKR2019008149-appb-img-000004
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000005
또한,
Figure PCTKR2019008149-appb-img-000006
는 전송 전력의 대각행렬
Figure PCTKR2019008149-appb-img-000007
를 이용해 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000008
전송전력이 조정된 정보 벡터
Figure PCTKR2019008149-appb-img-000009
에 가중치 행렬
Figure PCTKR2019008149-appb-img-000010
가 적용되어 실제 전송되는 Nt개의 송신신호
Figure PCTKR2019008149-appb-img-000011
가 구성되는 경우를 고려해 보자. 가중치 행렬
Figure PCTKR2019008149-appb-img-000012
는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다.
Figure PCTKR2019008149-appb-img-000013
는 벡터
Figure PCTKR2019008149-appb-img-000014
를 이용하여 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000015
여기에서,
Figure PCTKR2019008149-appb-img-000016
i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다.
Figure PCTKR2019008149-appb-img-000017
는 프리코딩 행렬이라고도 불린다.
수신신호는 Nr개의 수신 안테나가 있는 경우 각 안테나의 수신신호
Figure PCTKR2019008149-appb-img-000018
은 벡터로 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000019
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을
Figure PCTKR2019008149-appb-img-000020
로 표시하기로 한다.
Figure PCTKR2019008149-appb-img-000021
에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다.
한편, 도 5(b)은 NR개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 NT개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
Figure PCTKR2019008149-appb-img-000022
따라서, Nt개의 송신 안테나로부터 Nr개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000023
실제 채널에는 채널 행렬
Figure PCTKR2019008149-appb-img-000024
를 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. NR개의 수신 안테나 각각에 더해지는 백색잡음
Figure PCTKR2019008149-appb-img-000025
은 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000026
상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
Figure PCTKR2019008149-appb-img-000027
한편, 채널 상태를 나타내는 채널 행렬
Figure PCTKR2019008149-appb-img-000028
의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬
Figure PCTKR2019008149-appb-img-000029
에서 행의 수는 수신 안테나의 수 NR과 같고, 열의 수는 송신 안테나의 수 NT와 같다. 즉, 채널 행렬
Figure PCTKR2019008149-appb-img-000030
는 행렬이 NR×NT된다.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬
Figure PCTKR2019008149-appb-img-000031
의 랭크(
Figure PCTKR2019008149-appb-img-000032
)는 다음과 같이 제한된다.
Figure PCTKR2019008149-appb-img-000033
랭크의 다른 정의는 행렬을 고유치 분해(Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 랭크의 또 다른 정의는 특이치 분해(singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크. 의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
강화 학습을 이용한 효율적인 디코딩 방법의 제안
MIMO HARQ 시나리오에서 단말의 송수신기 (transceiver)는 복수의 CW들이 포함되는 신호들을 다중 안테나를 통해 수신한다. 이 때, 단말은 성능 확보를 위해 SIC 수신 방법을 이용할 수 있다. SIC 수신 방법을 이용하는 단말은 i) 각 CW를 순차적으로 디코딩하고, ii) 성공적으로 디코딩된 CW를 re-encoding하고, iii) 수신한 신호로부터 상기 re-encoding된 CW를 제거함으로써 다음 CW의 디코딩 성능을 높일 수 있다. 다만, 채널 환경 등으로 인해 CW의 디코딩에 실패하는 경우, 단말은 HARQ buffer에 각 CW에 상응하는 LLR 값을 저장하고 재전송을 요구한 뒤 새롭게 수신한 신호와 이전 HAQR buffer에 저장된 LLR 값의 조합을 이용하여 디코딩을 시도한다.
만약 수 많은 다중 안테나를 통한 다수의 CW를 보내는 경우 혹은 여러 번의 재전송이 발생하는 경우, 많은 개수의 HARQ buffer가 필요할 수 있다. 또한, 높은 성능의 디코더 설계를 위해서는 복수의 CW를 디코딩하는 순서들의 조합이 고려되어야 하므로 복잡도가 증가할 수 있다. 따라서, 복수의 CW를 효율적으로 디코딩하는 방법이 필요하다.
상기 기술적 과제를 달성하기 위해, 본 발명에서는 수신기가 강화 학습을 통한 결정된 디코딩 정책 (decoding policy) 기반 피드 포워드 (feed-forward) 방식의 HARQ 수신 방법이 제안된다.
도 6은 본 발명의 예 또는 구현 예에 따른 MIMO SIC 수신기와 에이전트를 나타낸 도면이다. 제안되는 MIMO SIC 수신기와 에이전트에 의해 수행되는 HARQ 수신 방법은 에이전트 (agent)가 훈련 데이터로부터 스테이트 (state)와 리워드 (reward)에 따른 액션 (action)을 학습하는 것, 그리고 기 학습된 에이전트를 통해서 HARQ process에서 액션을 결정하는 것으로 구성될 수 있다. 한편, 상기 액션은 수신기의 디코딩 정책 (decoding policy)을 의미할 수 있다. 한편, 이하에서 설명되는 에이전트의 동작들은 도 13에 나타난 UE (20)의 프로세서 (21)에 의해 수행될 수 있다.
도 6을 참조하면, 본 발명의 예 또는 구현 예에 따라 제안되는 수신 단말은 MIMO SIC 수신기와 에이전트를 포함할 수 있다.
MIMO SIC 수신기는 CW 디코딩에 실패하는 경우, 스테이트와 리워드에 관한 정보를 에이전트에 전달하고, 에이전트는 상기 정보를 바탕으로 액션을 결정한다. 상기 언급된 스테이트와 리워드 및 액션은 아래와 같이 정보일 수 있다.
스테이트는 각 CW별 채널 품질 정보 (channel quality information), 각 CW별 평균 SNR (Signal to Noise Ratio), 각 CW별 재전송 (retransmission) 횟수, 각 CW별 코드 레이트 (code rate), 각 CW별 MCS (Modulation and Coding Scheme) 인덱스, 각 CW별 레이어 맵핑 (layer mapping) 정보, 각 CW별 수신 평균 SNR, 각 레이어 별 수신 평균 SNR, CW간의 간섭 관계 (interference relationship) 정보 및 총 CW 개수 중 적어도 하나 이상을 포함할 수 있다.
리워드는 각 CW별 decoding 성공 여부 (ACK, NACK), Decoding을 성공한 data throughput,
Figure PCTKR2019008149-appb-img-000034
중 적어도 하나 이상을 포함할 수 있다.
액션은 CW의 decoding 순서, 각 CW의 decoding시 HARQ buffer (HARQ buffer)와의 조합 여부, Layer별 demodulation순서, HARQ buffer update policy (add/replace/drop), 각 CW 별 LLR의 크기 임계 값 중 적어도 하나 이상을 포함할 수 있다.
상기 제안된 HARQ 수신 방법은 훈련 데이터를 통해 스테이트, 리워드에 따른 액션을 결정하는 강화학습을 수행하는 것, 그리고 학습된 정보를 바탕으로 스테이트에 따른 디코딩 정책을 전달하는 것을 포함할 수 있다.
이하 설명의 편의를 위해, 다음과 같이 노테이션 (notation)을 정의한다. 우선, CW n 는 현 수신 시점의 CW n을 의미하고, CW n -1 는 HARQ buffer에 저장된 CWn의 이전 전송들에서 계산된 LLR 값을 의미하며, CW n + CW n -1 는 현재 수신한 CWn과 이전 HARQ buffer에 저장된 LLR정보의 합을 의미한다. 한편, 이하의 설명은 강화학습 중 Q-learning을 기반으로 설명된다. 다만, Q-learning 이외에도 다른 Deep Q-Network과 multi-armed bandit 기법 등 다양한 강화학습 기법에도 적용될 수 있음은 자명하다.
구현 예 1) CW level SIC의 경우
수신 단말이 4x4 MIMO 환경에서 CW SIC 수신 기법을 사용하고, 송신 단말이 2개의 CW를 전송하는 것을 가정하자. 먼저, 훈련 데이터를 통해서 에이전트를 학습하는 단계를 설명한다. 에이전트의 강화 학습을 위해서 스테이트, 리워드와 액션을 먼저 정의해야 한다. 본 발명의 일 예 또는 구현 예에 따르면 [표 1]과 같이 스테이트와 리워드가 정의될 수 있다.
스테이트 CW1의 channel quality(e.g., CQI), average SNR, code rate, retransmission 횟수CW2의 channel quality(e.g., CQI), average SNR, code rate, retransmission 횟수
리워드 0 for NACK, 1 for ACK또는0 for NACK, 1/retransmission 횟수 for ACK
액션 또는 디코딩 정책은 다음과 같이 정의될 수 있다.
1-1) 현 수신 시점의 CW 및 HARQ buffer의 LLR값을 개별적으로 또는 조합하여 고려하는 경우, 에이전트는 디코딩 정책을 다음과 같이 결정할 수 있다. 이 경우, CW 별 LLR 값을 저장한 HARQ buffer는 1개일 수 있다.
Policy #1: CW 1 -> CW 2
Policy #2: CW 2 -> CW 1
Policy #3: CW 1 + CW 1 -1 -> CW 2 + CW 2 -1
Policy #4: CW 2 + CW 2 -1 -> CW 1 + CW 1 -1
1-2) 현 수신 시점의 CW와 HARQ buffer의 LLR값을 항상 합하는 경우, 에이전트는 디코딩 정책을 다음과 같이 결정할 수 있다.
Policy #1: CW 1 + CW 1 -1 -> CW 2 + CW 2 -1
Policy #2: CW 2 + CW 2 -1 -> CW 1 + CW 1 -1
상기 정의된 스테이트, 리워드 및 액션을 기반으로 수신 단말은 훈련 데이터를 이용해서 강화 학습을 진행한다. 예를 들면, 송신 단말이 2개의 CW를 전송한 경우 1-1)의 디코딩 정책을 학습하기 위해 수신 단말의 MIMO SIC 수신기는 채널 측정을 통한 CW별 CQI (Channel Quality Indicator), average SNR, code rate, retransmission 횟수 및 리워드를 에이전트에게 전달한다. 에이전트는 자신이 가지고 있는 Q-table을 기반으로 디코딩 정책 #1-#4 중에 가장 Q값이 높은 디코딩 정책을 MIMO SIC 수신기에 전달한다. MIMO SIC 수신기는 전달받은 디코딩 정책에 기반하여 디코딩을 수행하고 성공 시 리워드 '1'을, 실패 시 리워드 '0'을 스테이트와 함께 다시 에이전트에게 전달한다. 에이전트는 상기 과정을 통해 Q-table을 학습한다. 상기 Q값은 아래와 같이 정의될 수 있다.
Figure PCTKR2019008149-appb-img-000035
에이전트는 학습된 Q-table 및 스테이트를 기반으로 Q값을 최대로 하는 디코딩 정책을 MIMO SIC 수신기에 전달할 수 있다. 도 7은 학습 단계를 순서도로 나타낸 것이다. 도 7을 참조하면, 에이전트는 MIMO SIC 수신기(즉 environment)로부터 받은 스테이트를 기반으로 액션을 전달하고 리워드를 받음으로써 Q-function 즉 neural network가 Q-function을 잘 학습하도록 update한다. 이런 과정을 반복해서 함으로써 학습을 진행한다.
도 8은 기 학습된 Q-function을 기반으로 액션을 결정하는 방법을 순서도로 나타낸 것이다. 도 8을 참조하면, 현재 스테이트를 전달받은 에이전트는 기 학습된 Q-function(즉, neural network)를 통해서 4가지 액션 즉, 디코딩 정책 중에서 가장 높은 Q값을 가지는 디코딩 정책을 MIMO SIC 수신기에 전달한다. MIMO SIC 수신기는 상기 전달받은 디코딩 정책에 기반하여 디코딩을 수행을 한다.
본 발명의 일 예 또는 구현 예에 따르면, 기 학습된 Q-function을 기반으로 액션을 결정하는 단계에서도 에이전트는 리워드를 받음으로써 지속적으로 Q-function update를 수행할 수 있다. 한편, 도 7 내지 도 8에 도시된 순서도는 Q-function을 neural network 형태인 Deep Q-learning(DQN)으로 가정하고 설명한 것이지만, 다른 형태의 강화 학습 방식이 적용될 수도 있다. 또한, 설명의 편의를 위해 수신기가 2개의 CW를 수신하는 것을 가정하였지만, CW 개수가 2개 보다 많을 때에도 동일한 방법으로 스테이트, 리워드, 액션이 정의될 수 있다.
구현 예 2) symbol level SIC의 경우
채널 디코딩을 수행한 후 CRC 체크를 거쳐 re-encoding을 하는 CW level SIC와 달리, Symbol level SIC에서는 수신 단말은 채널 디코딩을 수행하지 않고 symbol을 복조하여 SIC를 수행할 수 있다. 따라서, Symbol level SIC는 반복되는 (recursive) 디코딩이 필요하지 않다는 장점이 있는 반면에 신뢰도 손실 (reliability loss)가 있을 수 있다는 단점이 있다.
4x4 MIMO 환경에서 수신 단말이 2개의 CW를 4개의 layer를 통해 수신한 경우를 가정하자. 즉, 각 CW가 2개의 layer를 통해 수신될 수 있다. 예를 들면, CW1이 layer 1 및 layer 2에, CW2가 layer 3 및 layer 4에 CW to layer mapping 될 수 있다. 본 발명의 일 예 또는 구현 예에 따르면, 스테이트, 리워드 및 액션이 [표 2]와 같이 정의될 수 있다.
스테이트 CW1의 channel quality(e.g., CQI), code rate, retransmission 횟수, layer 1과 2의 average SNRCW2의 channel quality(e.g., CQI), code rate, retransmission 횟수, layer 3과 4의 average SNR
리워드 0 for NACK, 1 for ACK또는 0 for NACK, 1/retransmission 횟수 for ACK
액션 Layer Demodulation Policy #1, Layer 1 -> Layer 2 -> Layer 3 -> Layer 4을 포함한 4 factorial의 순서에 대응하는 layer demodulation policy
도 7 내지 도 8에 도시된 CW level SIC의 경우와 유사하게, Symbol level SIC의 경우에도 에이전트의 강화 학습 및 기 학습된 에이전트의 실행이 도 9 내지 도 10에 도시된 것처럼 설명될 수 있다. 즉, 도 7 내지 도 8에서는 에이전트가 결정하고 MIMO SIC 수신기에게 전달하는 액션이 CW를 디코딩하는 디코딩 정책인 반면, 도 9 내지 도 10에서 에이전트가 결정하고 MIMO SIC 수신기에게 전달하는 액션은 [표 2]에 나타난 것과 같이 CW가 수신된 layer들의 순서에 대응하는 layer demodulation policy일 수 있다.
구현 예 3) CW 간의 간섭 관계 (interference relationship) 고려
본 발명의 일 예 또는 구현 예에 따르면, MIMO SIC 수신기가 수신하는 복수의 CW들의 간섭 관계가 강화 학습 과정에서 더 고려될 수 있다. 예를 들면, 도 11에 도시된 것과 같이 CW들이 전체적으로 오버랩되는 경우와 부분적으로 오버랩되는 되는 경우가 나뉘어 고려될 수 있다.
도 11의 (a)와 (b)에 도시된 것과 같이, 3개의 CW가 재전송되는 상황에서도 서로 간의 간섭 관계가 다를 수 있다. 보다 구체적으로, 도 11의 (a)에서는 CW1, CW2 및 CW3이 전체적으로 오버랩되지만, 도 11의 (b)에서는 CW1과 CW3, 그리고 CW2와 CW3이 서로 부분적으로 오버랩된다. 도 11의 (a)에 도시된 경우에 도 11의 (b)에 도시된 경우보다 동일한 시간 및 주파수 영역에서 CW1, CW2 및 CW3 수신 성능이 높을 수 있다. 따라서, 본 발명의 일 예 또는 구현 예에 따른 에이전트는 CW간 간섭 관계를 스테이트에 추가하고 Q-table 학습 시 상기 간섭 관계를 이용함으로써 디코딩 정책을 결정하는 데 있어 더 나은 성능을 가지도록 학습할 수 있다.
구현 예 4) HARQ buffer update policy
본 발명의 일 예 또는 구현 예에 따르면, CW 디코딩 실패 시 수신 단말이 현재 수신한 신호로부터 디코딩을 위해 구한 LLR 값을 이용하여 HARQ buffer를 관리하는 방법이 제안된다. 상기 제안하는 방법은 수신 단말의 에이전트가 결정하는 Buffer update policy라고 명명될 수 있다. 구체적으로, 수신 단말은 (i) HARQ buffer에 저장된 이전 LLR 값과 현재 수신한 신호로부터 디코딩을 위해 구한 LLR 값을 합하거나(add), (ii) HARQ buffer에 저장된 이전 LLR 값을 현재 수신한 신호로부터 디코딩을 위해 구한 LLR 값으로 대체하거나(replace), 또는 (iii) HARQ buffer에 저장된 이전 LLR 값을 유지하고, 현재 수신한 신호로부터 디코딩을 위해 구한 LLR 값을 드랍(drop)할 수 있다. 본 발명의 일 예 또는 구현 예에 따른 스테이트, 리워드 및 액션은 아래 [표 3]과 같이 정의될 수 있다.
스테이트 CW1의 channel quality(e.g., CQI), code rate, retransmission 횟수, CW2의 channel quality(e.g., CQI), code rate, retransmission 횟수
리워드 0 for NACK, 1 for ACK또는 0 for NACK, 1/retransmission 횟수 for ACK
액션 Buffer update policy 각 CW 별로 add/replace/drop policy들
구현 예 5) HARQ buffer update 시 임계 값을 적용
전술한 [표 3]에 따르면, 현재 수신한 신호로부터 decoding을 실패 시 수신 단말은 HARQ buffer에 저장된 이전 LLR 값과 현재 수신한 신호로부터 디코딩을 위해 구한 LLR 값을 합할 수 있다. 본 발명의 일 예 또는 구현 예에 따르면, 특정 임계 값 이상을 갖는 LLR 값만 HARQ buffer에 저장된 이전 LLR 값에 더해질 수 있다. 이 경우, 에이전트는 디코딩 성능을 최적화하는 임계 값을 학습하여 Buffer update policy에 추가할 수 있다. 실시 예 5에 따른 스테이트, 리워드 및 액션은 [표 4]와 같이 정의될 수 있다.
스테이트 CW1의 channel quality(e.g., CQI), code rate, retransmission 횟수, CW2의 channel quality(e.g., CQI), code rate, retransmission 횟수
리워드 0 for NACK, 1 for ACK또는 0 for NACK, 1/retransmission 횟수 for ACK
액션 Buffer update policy 각 CW 별로 add시 LLR 값의 크기 임계 값
도 12를 예로 들어 설명하면, 현재 수신한 CW의 LLR 값 즉, LLR 1 (33), LLR 2 (0.234), LLR 3 (-11), LLR 4 (-2) 내지 LLR N (-0.90)이 나타나 있다. 한편, LLR 값은 양수 또는 음수의 값을 가질 수 있으며, 절대 값이 0에 가까울수록 신뢰도가 낮음을 의미할 수 있다. 임계 값이 4로 설정된 것을 가정하면, 임계 값 적용 후의 LLR 값은 LLR 1 (33), LLR 2 (0), LLR 3 (-11), LLR 4 (0) 내지 LLR N (0)이 됨을 알 수 있다. 그에 따라, HARQ buffer에 저장된 이전 LLR 값에는 임계 값 적용 후의 LLR 값이 더해질 수 있다. 전술한 본 발명의 일 예 또는 구현 예들은 독립적 또는 조합적으로 실시될 수 있다.
본 발명의 일 예 또는 구현 예에 따른 단말이 코드워드를 디코딩하는 방법은 복수의 코드워드를 수신하는 것, 그리고 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 것을 포함할 수 있다. 또한, 상기 SIC는 상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 수행되고, 상기 디코딩 정책은 상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)으로부터 결정될 수 있다.
한편, 상기 스테이트는 제 1 코드워드 및 제 2 코드워드 각각의 채널 품질 (channel quality)을 포함하고, 상기 리워드는 상기 제 1 코드워드 및 상기 제 2 코드워드 각각의 디코딩 성공 여부를 포함할 수 있다.
한편, 상기 디코딩 정책은 i) 상기 복수의 코드워드를 디코딩하는 순서 및 ii) 각각의 코드워드가 HARQ (Hybrid Automatic Repeat and reQuest) 버퍼에 저장된 상기 각각의 코드워드의 이전 전송에서 계산된 LLR (Log Likelihood Ratio) 값과 조합되는 지 여부를 포함하고, 상기 신경망은 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩 결과를 기반으로 학습될 수 있다.
한편, 상기 스테이트는 상기 복수의 코드워드의 시간 영역 및 주파수 영역에서의 간섭 관계를 더 포함하고, 상기 신경망은 상기 간섭 관계에 더 기반하여 학습될 수 있다.
한편, 단말이 코드워드를 디코딩하는 방법은 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩이 실패하면, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 이용하여 HARQ 버퍼를 관리하는 것을 더 포함할 수 있다.
한편, HARQ 버퍼를 관리하는 것은, i) 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 합하거나, ii) 상기 HARQ 버퍼에 저장된 이전 LLR 값들을 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들로 대체하거나, iii) 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 드랍하는 것을 포함할 수 있다.
한편, 상기 HARQ 버퍼를 관리하는 것은 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들 중 임계 값 이상을 갖는 LLR 값들만 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 합하는 것을 포함할 수 있다.
도 13은 본 발명의 예 또는 구현 예를 위한 시스템을 예시한 도면이다.
도 13을 참조하면, 무선 통신 시스템은 기지국(BS) (10) 및 하나 이상의 단말(UE) (20)를 포함한다. 하향링크에서, 송신기는 BS (10)의 일부일 수 있고, 수신기는 UE (20)의 일부일 수 있다. 상향링크에서, BS (10)는 프로세서 (11), 메모리 (12), 및 송수신기 (13)를 포함 할 수 있다. 프로세서 (11)는 본 출원에 기재된 제안된 절차들 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리 (12)는 프로세서 (11)와 결합되어 프로세서 (11)를 동작시키기 위한 다양한 정보를 저장한다. 송수신기 (13)는 프로세서 (11)와 결합되어 무선 신호를 송신 및/또는 수신한다. UE (20)는 프로세서 (21), 메모리 (22) 및 송수신기 (23)를 포함 할 수 있다. 프로세서 (21)는 본 출원에서 설명된 제안된 절차 및/또는 방법을 구현하도록 구성 될 수 있다. 메모리 (22)는 프로세서 (21)와 결합되어 프로세서 (21)를 동작시키기 위한 다양한 정보를 저장한다. 송수신기 (23)는 프로세서 (21)와 결합되어 무선 신호를 송신 및/또는 수신한다. BS (10) 및/또는 UE (20)는 단일 안테나 및 다중 안테나를 가질 수 있다. BS (10) 및 UE (20) 중 적어도 하나가 다중 안테나를 갖는 경우, 무선 통신 시스템은 MIMO (multiple input multiple output) 시스템으로 불릴 수 있다.
본 명세서에서 단말의 프로세서(21)와 기지국의 프로세서(11)는 각각 단말(20) 및 기지국(10)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(11, 21)를 언급하지 않는다. 특별히 프로세서(11, 21)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명에서는 5세대(5G) 통신 시스템을 위한 새롭고 다양한 프레임 구조를 제안한다. 차세대 5G 시스템에서는 향상된 모바일 브로드밴드 (Enhanced Mobile BroadBand, eMBB), 고 신뢰도 기계 타입 통신 (Ultra-reliable Machine-Type Communications, uMTC), 대규모 기계 타입 통신 (Massive Machine-Type Communications, mMTC) 등으로 시나리오를 구분할 수 있다. 향상된 모바일 브로드밴드는 높은 스펙트럼 효율 (High Spectrum Efficiency), 높은 사용자 경험의 데이터 전송률 (High User Experienced Data Rate), 높은 피크 데이터 속도 (High Peak Data Rate) 등의 특성을 갖는 차세대 이동통신 시나리오다. 고 신뢰도 기계 타입 통신은 고 신뢰도 (Ultra Reliable), 초 저 지연 (Ultra Low Latency), 초 고 가용성 (Ultra High Availability) 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), 대규모 기계 타입 통신은 저 비용 (Low Cost), 저 에너지 (Low Energy), 짧은 패킷 (Short Packet), 대규모 연결성 (Massive Connectivity) 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).
본 발명의 예 또는 구현 예에 따른 단말은 송수신기 (Transceiver) 및 프로세서를 포함할 수 있다. 상기 송수신기는 PDCCH 및 PDSCH를 포함하는 무선 신호를 수신하고, PUCCH 및 PUSCH를 포함하는 무선신호를 전송할 수 있다. 한편, 상기 송수신기는 RF (Radio Frequency) 유닛을 포함할 수 있다.
본 발명의 예 또는 구현 예에 따른 코드워드를 디코딩하는 단말은 복수의 코드워드를 수신하는 송수신기 및 순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 프로세서를 포함할 수 있다. 또한, 상기 프로세서는 상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 상기 SIC를 수행하고, 상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)을 통해 상기 디코딩 정책을 결정할 수 있다.
한편, 상기 스테이트는 제 1 코드워드 및 제 2 코드워드 각각의 채널 품질 (channel quality)을 포함하고, 상기 리워드는 상기 제 1 코드워드 및 상기 제 2 코드워드 각각의 디코딩 성공 여부를 포함할 수 있다.
한편, 상기 디코딩 정책은 i) 상기 복수의 코드워드를 디코딩하는 순서 및 ii) 각각의 코드워드가 HARQ (Hybrid Automatic Repeat and reQuest) 버퍼에 저장된 상기 각각의 코드워드의 이전 전송에서 계산된 LLR (Log Likelihood Ratio) 값과 조합되는 지 여부를 포함할 수 있다. 또한, 상기 프로세서는 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩 결과를 기반으로 상기 신경망을 학습할 수 있다.
한편, 상기 스테이트는 상기 복수의 코드워드의 시간 영역 및 주파수 영역에서의 간섭 관계를 더 포함하고, 상기 프로세서는 상기 간섭 관계에 더 기반하여 상기 신경망을 학습할 수 있다.
한편, 상기 프로세서는 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩이 실패하면, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 이용하여 HARQ 버퍼를 관리할 수 있다.
한편, 상기 프로세서는, i) 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 합하거나, ii) 상기 HARQ 버퍼에 저장된 이전 LLR 값들을 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들로 대체하거나, iii) 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 드랍할 수 있다.
한편, 상기 프로세서는, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들 중 임계 값 이상을 갖는 LLR 값들만 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 합할 수 있다.
상술한 본 발명의 예 또는 구현 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 예 또는 구현 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 예 또는 구현 예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 예 또는 구현 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 예 또는 구현 예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 예 또는 구현 예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 예 또는 구현 예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 예 또는 구현 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말은 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 코드워드를 디코딩하는 방법에 있어서,
    복수의 코드워드를 수신하는 것; 및
    순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 것;을 포함하고,
    상기 SIC는 상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 수행되고,
    상기 디코딩 정책은 상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)에 의해 결정되는, 단말이 코드워드를 디코딩하는 방법.
  2. 제 1 항에 있어서,
    상기 스테이트는 제 1 코드워드 및 제 2 코드워드 각각의 채널 품질 (channel quality)을 포함하고, 상기 리워드는 상기 제 1 코드워드 및 상기 제 2 코드워드 각각의 디코딩 성공 여부를 포함하는, 단말이 코드워드를 디코딩하는 방법.
  3. 제 1 항에 있어서,
    상기 디코딩 정책은 i) 상기 복수의 코드워드를 디코딩하는 순서 및 ii) 각각의 코드워드가 HARQ (Hybrid Automatic Repeat and reQuest) 버퍼에 저장된 상기 각각의 코드워드의 이전 전송에서 계산된 LLR (Log Likelihood Ratio) 값과 조합(combine)되는 지 여부를 포함하고,
    상기 신경망은 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩 결과를 기반으로 학습되는, 단말이 코드워드를 디코딩하는 방법.
  4. 제 1 항에 있어서,
    상기 스테이트는 상기 복수의 코드워드의 시간 영역(domain) 및 주파수 영역에서의 간섭 관계를 더 포함하고, 상기 신경망은 상기 간섭 관계에 더 기반하여 학습되는, 단말이 코드워드를 디코딩하는 방법.
  5. 제 1 항에 있어서, 상기 방법은,
    상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩이 실패하면, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 이용하여 HARQ 버퍼를 관리하는 것을 더 포함하는, 단말이 코드워드를 디코딩하는 방법.
  6. 제 5 항에 있어서,
    상기 HARQ 버퍼를 관리하는 것은, i) 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 합(add)하거나, ii) 상기 HARQ 버퍼에 저장된 이전 LLR 값들을 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들로 대체하거나, iii) 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 드랍하는 것을 포함하는, 단말이 코드워드를 디코딩하는 방법.
  7. 제 6 항에 있어서,
    상기 HARQ 버퍼를 관리하는 것은 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들 중 임계 값 이상을 갖는 LLR 값들만 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 합하는 것을 포함하는, 단말이 코드워드를 디코딩하는 방법.
  8. 무선 통신 시스템에서 코드워드를 디코딩하는 단말에 있어서,
    복수의 코드워드를 수신하는 송수신기 (transceiver); 및
    순차 간섭 제거 (Successive Interference Cancelation, SIC)를 기반으로 상기 복수의 코드워드를 디코딩하는 프로세서;를 포함하고,
    상기 프로세서는,
    상기 복수의 코드워드를 디코딩하기 위한 디코딩 정책 (decoding policy)에 기반하여 상기 SIC를 수행하고,
    상기 복수의 코드워드와 관련된 스테이트 (state) 및 리워드 (reward)에 기반하여 학습되는 신경망 (neural network)을 통해 상기 디코딩 정책을 결정하는, 단말.
  9. 제 8 항에 있어서,
    상기 스테이트는 제 1 코드워드 및 제 2 코드워드 각각의 채널 품질 (channel quality)을 포함하고, 상기 리워드는 상기 제 1 코드워드 및 상기 제 2 코드워드 각각의 디코딩 성공 여부를 포함하는, 단말.
  10. 제 8 항에 있어서,
    상기 디코딩 정책은 i) 상기 복수의 코드워드를 디코딩하는 순서 및 ii) 각각의 코드워드가 HARQ (Hybrid Automatic Repeat and reQuest) 버퍼에 저장된 상기 각각의 코드워드의 이전 전송에서 계산된 LLR (Log Likelihood Ratio) 값과 조합되는 지 여부를 포함하고,
    상기 프로세서는 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩 결과를 기반으로 상기 신경망을 학습하는, 단말.
  11. 제 8 항에 있어서,
    상기 스테이트는 상기 복수의 코드워드의 시간 영역 및 주파수 영역에서의 간섭 관계를 더 포함하고, 상기 프로세서는 상기 간섭 관계에 더 기반하여 상기 신경망을 학습하는, 단말.
  12. 제 8 항에 있어서,
    상기 프로세서는 상기 디코딩 정책에 기반한 상기 복수의 코드워드의 디코딩이 실패하면, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 이용하여 HARQ 버퍼를 관리하는, 단말.
  13. 제 12 항에 있어서,
    상기 프로세서는, i) 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 합하거나, ii) 상기 HARQ 버퍼에 저장된 이전 LLR 값들을 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들로 대체하거나, iii) 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들을 드랍하는, 단말.
  14. 제 13 항에 있어서,
    상기 프로세서는, 상기 복수의 코드워드 각각에 대하여 계산된 LLR 값들 중 임계 값 이상을 갖는 LLR 값들만 상기 HARQ 버퍼에 저장된 이전 LLR 값들과 합하는, 단말.
PCT/KR2019/008149 2019-07-03 2019-07-03 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말 WO2021002508A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/008149 WO2021002508A1 (ko) 2019-07-03 2019-07-03 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말
US17/619,408 US11831437B2 (en) 2019-07-03 2019-07-03 Method for decoding codeword in wireless communication system and terminal therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/008149 WO2021002508A1 (ko) 2019-07-03 2019-07-03 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말

Publications (1)

Publication Number Publication Date
WO2021002508A1 true WO2021002508A1 (ko) 2021-01-07

Family

ID=74100515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008149 WO2021002508A1 (ko) 2019-07-03 2019-07-03 무선 통신 시스템에서 코드워드를 디코딩하는 방법 및 이를 위한 단말

Country Status (2)

Country Link
US (1) US11831437B2 (ko)
WO (1) WO2021002508A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101315A1 (en) * 2019-11-22 2021-05-27 Samsung Electronics Co., Ltd. Method and apparatus to decode packets to compute log likelihood ratio in wireless network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080110536A (ko) * 2007-06-14 2008-12-18 한국전자통신연구원 다중사용자 다중안테나 송수신 시스템 제어를 위한송신기/수신기 및 그 제어 방법
US20090046786A1 (en) * 2004-10-23 2009-02-19 Koninklijke Philips Electronics, N.V. System and method of operating a mimo system
US20120069757A1 (en) * 2010-09-16 2012-03-22 Nec Laboratories America, Inc. Low Complexity Link Adaptatation for LTE/LTE-A Uplink with a Turbo Receiver
KR20120062834A (ko) * 2009-08-26 2012-06-14 콸콤 인코포레이티드 연속하는 간섭 소거를 이용하여 mimo 시스템에서 디코딩 순서를 결정하기 위한 방법들
EP3016307A1 (en) * 2013-06-28 2016-05-04 NTT DoCoMo, Inc. Wireless base station, user terminal, wireless communication method, and wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10771122B1 (en) * 2019-05-04 2020-09-08 Marvell World Trade Ltd. Methods and apparatus for discovering codeword decoding order in a serial interference cancellation (SIC) receiver using reinforcement learning
US11528092B2 (en) * 2020-09-02 2022-12-13 Qualcomm Incorporated Latency minimization for retransmissions in communications systems with multi-level coding and multi-level sequential demodulation and decoding and code block grouping from different component codes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046786A1 (en) * 2004-10-23 2009-02-19 Koninklijke Philips Electronics, N.V. System and method of operating a mimo system
KR20080110536A (ko) * 2007-06-14 2008-12-18 한국전자통신연구원 다중사용자 다중안테나 송수신 시스템 제어를 위한송신기/수신기 및 그 제어 방법
KR20120062834A (ko) * 2009-08-26 2012-06-14 콸콤 인코포레이티드 연속하는 간섭 소거를 이용하여 mimo 시스템에서 디코딩 순서를 결정하기 위한 방법들
US20120069757A1 (en) * 2010-09-16 2012-03-22 Nec Laboratories America, Inc. Low Complexity Link Adaptatation for LTE/LTE-A Uplink with a Turbo Receiver
EP3016307A1 (en) * 2013-06-28 2016-05-04 NTT DoCoMo, Inc. Wireless base station, user terminal, wireless communication method, and wireless communication system

Also Published As

Publication number Publication date
US20220385406A1 (en) 2022-12-01
US11831437B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2016171494A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2014171742A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2016072687A1 (ko) Noma 방식의 데이터 수신 방법 및 사용자 장치
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2014116039A1 (ko) 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치
WO2016010399A1 (ko) 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치
WO2016163807A1 (ko) 무선 통신 시스템에서 간섭 하향링크 제어 정보를 수신하기 위한 방법 및 이를 위한 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2012157987A2 (ko) 무선통신 시스템에서 제어 정보를 전송 및 수신하는 방법과 이를 위한 장치
WO2012141513A2 (ko) 무선통신시스템에서 제어정보 전송 방법 및 장치
WO2016182294A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 디스커버리 신호 송수신 방법 및 장치
WO2016093547A1 (ko) 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치
WO2013009043A2 (ko) 무선 통신 시스템에서 하향링크 harq 송수신 방법 및 장치
WO2013055126A1 (ko) 복수의 네트워크 노드로 구성된 셀을 포함하는 무선통신 시스템에서 채널품질상태를 측정하는 방법 및 이를 위한 장치
WO2013141582A1 (ko) Harq 수행 방법 및 무선기기
WO2016159738A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2017171350A1 (ko) 무선 통신 시스템에서 상향링크 신호의 전송 또는 수신 방법 및 이를 위한 장치
WO2014142571A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2017217584A1 (ko) Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
WO2016175535A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2013105821A1 (ko) 무선 통신 시스템에서 신호 수신 방법 및 장치
WO2015064924A1 (ko) 하향링크 데이터를 포함하는 pdsch를 mtc 기기로 전송하는 방법 및 그 기지국
WO2016190620A1 (ko) 하향링크 제어 채널 수신 방법 및 무선 기기
WO2016072819A1 (ko) 무선 통신 시스템에서 복수의 안테나를 가진 장치의 신호 전송 방법 및 장치
WO2015147558A1 (en) Method and apparatus for receiving downlink data in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935859

Country of ref document: EP

Kind code of ref document: A1