WO2021002500A1 - Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site - Google Patents

Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site Download PDF

Info

Publication number
WO2021002500A1
WO2021002500A1 PCT/KR2019/008088 KR2019008088W WO2021002500A1 WO 2021002500 A1 WO2021002500 A1 WO 2021002500A1 KR 2019008088 W KR2019008088 W KR 2019008088W WO 2021002500 A1 WO2021002500 A1 WO 2021002500A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
equipment
risk
beacon
analyzes
Prior art date
Application number
PCT/KR2019/008088
Other languages
French (fr)
Korean (ko)
Inventor
양경옥
Original Assignee
양경옥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양경옥 filed Critical 양경옥
Priority to PCT/KR2019/008088 priority Critical patent/WO2021002500A1/en
Publication of WO2021002500A1 publication Critical patent/WO2021002500A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention is to determine whether sufficient fire extinguishing equipment and fire watchers are arranged when performing tasks such as welding, cutting, and chemical substances that have a risk of fire during construction work, and in more detail, equipment capable of generating fire It is to quantitatively calculate the fire risk by attaching beacon sensors to materials, chemicals, and equipment and personnel that extinguish fires, marking them on construction drawings, and analyzing their mutual influence.
  • fire extinguishers or fire extinguishing equipment are placed near fire-hazardous work.
  • fire watchers are placed in fire-hazardous work sites, and fire watchers manage fire extinguishers, etc. to prevent fires from occurring.
  • the safety managers of construction companies are arranged for each floor or tool (zone) to perform safety accident and fire prevention activities while going around the site.
  • fire extinguishing and evacuation facilities (detectors, alarms, broadcasting, sprinkler, smoke duct facilities, etc.) are provided in the event of a fire, but fire extinguishing facilities are not yet installed during construction and only simple equipment such as fire extinguishers can be used. City workers and construction sites suffer great damage.
  • the safety manager in charge of the safety of the construction company goes around the construction site and checks the safety, so it is not always located at the fire work location.
  • fire risk work is carried out at several locations on each floor at the same time, making it difficult to manage fire prevention.
  • Materials with high fire risk such as chemicals, must be moved and stored in a separate management place after completion of work, so a lot of time and manpower are spent to check them.
  • the conventional manpower-centered fire monitoring method has a work place and time in which no manpower is assigned, and there is a problem such as neglect or misunderstanding even when the manpower is disposed.
  • the present invention as a level at which experts can evaluate the fire risk at a specific work place all day, using the Internet of Things, the type and quantity of fire-generating equipment or chemical substances, the type and quantity of fire extinguishing equipment to extinguish a fire, and a fire watchdog, Together with the safety manager, we intend to analyze the number and distribution of workers in the vicinity who evaluate the degree of fire damage in real time for the entire area of the site. As a result, the situation room at the site can quantitatively know which workplace is the most dangerous and what is lacking, so that the risk of fire can be reduced through countermeasures and measures.
  • Fire-producing materials include oxygen cylinders, oxygen cutters, rotary saw cutters, electric welding machines, petroleum hot air fans, lignite stoves, flammable materials such as thinners and paints, explosive materials, combustible materials, insulation materials such as styrofoam, urea foam insulation, nonwoven fabrics, waterproof work materials, There are combustible materials, wood/plywood, electric heaters, electric short circuits, electric appliances, gas leaks, etc.
  • the method to achieve the purpose is to install beacons on equipment and chemical substances to determine location information, to specify whether it is a fire-causing or to extinguish a fire by specifying the properties of equipment and substances, and to prevent the fire suppression.
  • the risk of fire is assessed by grasping the lights and analyzing whether the equipment is in operation.
  • the safety instructions and action result report are composed of contents that deliver instructions from managers and requests from workers. Therefore, it is not possible to calculate even the fire risk because it is not known where and how much of the cutting machine, welding machine, and chemicals are.
  • the risk assessment device and method for chemical substances and the cited invention set the risk level according to the leakage of chemical substances, and the risk of accidents according to the temperature of the chemical process. It proceeds to evaluate.
  • a GPS receiving module capable of grasping the location information and an RF transmitting and receiving means using a Zigbee wireless network-based frequency It is provided so that the progress in a certain area such as a golf course can be grasped in real time.
  • a plurality of portable terminal modules including a GPS receiving module to generate a location signal indicating a location of itself and to display message information; And a management system module that receives the location signal using ZigBee wireless communication, displays the location of each portable terminal module, and generates message information according to a distance between the portable terminal modules.
  • a distance between the portable terminal modules is calculated by comparing and calculating the distance between each of the portable terminal modules to any one of a preset distance from 500m to 1000m If it is adjacent within, it generates and transmits the message information to be transmitted to the corresponding portable terminal module.
  • the direction to solve this problem is to use equipment and systems together from manpower-oriented monitoring in order to manage fire risk work of the entire construction site by a small number of personnel.
  • Fire-hazardous equipment or chemicals and fire extinguishers must be accurately identified in real time to ensure they are always attached.
  • the present invention was invented to solve the problems related to the prior art as described above, and after grasping the location and quantity of objects (materials), people, and walls at a specific location on a construction site through IoT Analyzes the risk of fire and the ability to contain the fire from the ability of the company to analyze the dangerous work place. Accordingly, fire management through quantitative analysis from fire management by manpower prevents fire from occurring.
  • a beacon is attached to work tools (equipment), chemicals, combustion materials, fire extinguishing equipment, and people in a specific work place, and after identifying the location and quantity through a scanner, it is displayed on the architectural drawing, and the ability to generate fire in the above situation And fire suppression capabilities are calculated by reflecting the site conditions, and the degree of fire risk is analyzed in real time for 24 hours.
  • beacons are installed on work tools such as welding machines, chemical substances such as thinners, and combustible materials such as insulation materials that cause fire in a specific place such as the electric room on the 5th basement level at the construction site, the location and quantity of the cause of the fire will be affected. You can comprehensively analyze the fire generating ability.
  • beacons can be attached.
  • the color of the beacon is dark red and the highest level 5 danger is indicated, attached to the welding machine, and additionally equipped with a temperature sensor and a vibration sensor. To be able to grasp. And let the beacon send out these signals. You can also attach a red grade 5 beacon to the thinner barrel.
  • the fire risk can be quantitatively calculated from the type and quantity of tools and materials that cause the fire, and whether they are in use. For example, if a welding machine is in use, thinner or paint is in close proximity, and burning materials are accumulated, the risk of fire is considered very high.
  • a blue beacon is installed on the fire extinguisher to indicate the grade according to the fire extinguishing performance, and additionally include the date of manufacture, inspection information, etc., send such a signal, and scan the signal.
  • the ability to extinguish a fire can be quantitatively calculated from the type and quantity of tools and substances to extinguish the fire, whether they are in use, and the number of people. For example, if one welding machine is in use, one fire watcher and two safety managers are nearby, and there are two fire extinguishers, the fire extinguishing capability can be calculated.
  • the scale of damage in case of fire can be calculated from the location of the workplace with high fire risk and the number of workers in the vicinity. It is possible to calculate the probability of a fire in the warehouse on the 6th basement level, and to determine the size of the damage by scanning the number of workers in each basement level.
  • the fire risk can be reduced by increasing the distance between the hazardous materials or by sequentially performing dangerous tasks by quantitatively calculating and comparing the fire generating ability according to the fire hazard tools and materials and the fire fighting ability according to the fire extinguisher and the person. have.
  • measures can be taken to increase fire suppression capabilities.
  • the site level By summing the fire-producing capability and suppression capability of a specific site from each site, you can calculate the value of the entire site, so you can determine which site is the most dangerous and if you need help.
  • the site level the site level, the construction company level, the municipality, the county, and the administrative unit level can be evaluated, enabling intensive support for vulnerable areas.
  • fire risk can be quantitatively identified in real time, 24 hours a day, for large-scale construction sites, dozens of construction sites, or construction sites in specific cities and counties, so that the fire does not occur by taking necessary measures.
  • FIG. 1 is an overall configuration diagram of a fire prevention apparatus using beacon information according to an embodiment of the present invention.
  • Figure 2 is a configuration diagram of a fire risk analysis device using beacon information according to an embodiment of the present invention.
  • 3 to 5 are overall flowcharts of a fire risk analysis method using beacon information according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a preparation step for collecting beacon information according to an embodiment of the present invention.
  • FIG. 7 is a flow chart illustrating a difference between a fire generating capability and a high-level extinguishing capability according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an indoor fire risk analysis according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of analysis of essential fire suppression equipment indoors according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of analyzing whether or not a fire-generating chemical substance is left after completion of work according to an embodiment of the present invention.
  • FIG. 11 is a flow chart of power-on analysis of fire generating equipment after work is completed according to an embodiment of the present invention.
  • 13 is a classification and capability table of fire suppression equipment and facilities according to an embodiment of the present invention.
  • FIGS. 12 and 13 are tables of beacon classification and sensor signal setting reference tables based on FIGS. 12 and 13 according to an embodiment of the present invention.
  • 15 is a table comparing the ability of the fire generating ability and the suppression ability in the electric room on the 6th floor basement according to an embodiment of the present invention.
  • Figure 16 is a table comparing the ability of the fire generating ability and suppression ability of the entire site according to an embodiment of the present invention.
  • 17 is a list of all construction companies and fire risk analysis table according to an embodiment of the present invention.
  • Figure 18 is a plan view of the sixth basement level in the construction of 25 basement levels and 6 basement levels for the application of an embodiment of the present invention.
  • 19 is a partial detailed view of the 6th basement floor according to an embodiment of the present invention.
  • 20 is a view of the capability and location of fire generating equipment/materials on the 6th basement level according to an embodiment of the present invention.
  • 21 is a capability and location diagram of fire suppression equipment on the 6th floor below the ground according to an embodiment of the present invention.
  • FIG. 22 is a location view of a fire manager on the 6th basement floor according to an embodiment of the present invention.
  • 23 is a location view of a worker on the 6th basement floor according to an embodiment of the present invention.
  • 24 is a general location diagram of the 6th basement floor according to an embodiment of the present invention.
  • 25 is a distance measurement diagram in consideration of a wall from a specific fire material on the 6th basement floor to a suppression equipment according to an embodiment of the present invention.
  • 26 is an example of analyzing the power on and neglect of the fire generating equipment after the end of work on the 6th floor basement according to an embodiment of the present invention.
  • 1 is a beacon sensor 10, a beacon signal scanner 20, a fire analysis server 30, a smart phone app or a PC terminal for analyzing a fire risk for analyzing beacon information according to an embodiment of the present invention. It is a block diagram showing the configuration of (40).
  • a beacon sensor 10 using beacon information is attached to fire generating equipment, substances, materials and suppression equipment, fire extinguishing equipment, and workers, and signals the equipment, substances, and workers' attributes and locations. Is sent.
  • the beacon transmits a signal including information about the ID or equipment related to the corresponding equipment (work type, company name, manager, manufacturing date), and the size and intensity of the fire generating capacity or extinguishing capacity according to the present invention.
  • the beacon signal scanner 20 is responsible for receiving signals transmitted from each floor or area of the construction site and transmitting them to the fire analysis server 30.
  • the fire analysis server 30 analyzes the fire risk by analyzing the state of the work place from the input beacon signal and comparing it with the fire risk standard.
  • the smartphone app or PC terminal 40 receives and displays fire risk-related information from the fire analysis server 30.
  • FIG. 2 shows the configuration of a fire risk analysis apparatus using beacon information according to an embodiment of the present invention.
  • the functional configuration of the fire analysis server 30 includes a control unit 31, a fire reference database 32, a beacon performance information database 33, a building drawing database 34, and a communication unit ( 35).
  • the control unit 31 determines the cause of fire (equipment, chemical substances, building materials) and fire suppression equipment, facilities, and the location and distance of personnel from the fire standard database 32 and the building drawing database 34. Compare.
  • Analyzes the fire risk according to the fire cause at a specific location and the distance to the extinguishing analyzes the existence of essential extinguishing equipment for the cause of the fire, analyzes whether chemical substances are left at the work place after work is completed, and time Analyzes power management of fire-generating equipment on the floor, fire risk for each floor, and fire risk for each construction site.
  • beacon location information and safety analysis performance information are stored in the database 33.
  • the fire standard database 32 stores criteria for analyzing risks according to distance, quantity, time, and location between the equipment, materials, materials, and personnel, as well as criteria for fire generating capability and suppression capability.
  • the equipment includes conditions such as that the power must be turned off after work is completed.
  • the beacon performance information database 33 stores signal information and risk analysis information on fire and fire extinguishing tools. It stores the ID for the beacon of a specific fire tool and information about the tool. Tool information includes work type, company name, manager, and manufacturing date.
  • the signal information of the beacon includes the location information of the tool sent by the beacon.
  • Fire risk analysis information stores the analysis information results analyzed from information between beacon information and location, distance, quantity, and ability.
  • the architectural drawing database 34 stores the drawings reflecting the construction performance according to the construction row along with the floor plans and cross-sectional views of the construction site.
  • the drawing reflecting the construction results is to modify the drawing when a specific wall is constructed, and when the wall is formed, it affects the analysis, so it is necessary for analysis.
  • the communication unit 35 is responsible for receiving a sensor signal from a beacon and transmitting an analysis result through wired or wireless communication.
  • 3 to 5 are overall flowcharts of a fire risk analysis method using beacon information according to an embodiment of the present invention.
  • the beacon is divided according to the classified criteria (S30).
  • Wireless communication networks for receiving signals transmitted from beacons attached to in-site tools are gradually installed for each floor according to the construction scale (S40).
  • beacons are attached to the tools according to the classification criteria after safety inspection (S50).
  • the beacons may further include sensors such as motion detection and temperature detection according to characteristics for determining whether a tool is used.
  • the tools move to the work place, generate a beacon signal, scan the signal through the scanner 20 (S70) and transmit it to the safety analysis server 30.
  • control unit 31 reads the drawings from the architectural drawing database 34 and displays the positions of the tools. Then, a list of fire generating tools in a location or area and fire generating capability are analyzed (S80).
  • FIG. 6 is a flowchart of a preparation step for collecting beacon information according to an embodiment of the present invention.
  • equipment (electric welding machine) is brought into the construction site and equipment safety is checked (T10).
  • beacon motion detection sensor
  • Beacon signal scan / send to server (T14).
  • FIG. 7 is a flow chart illustrating a difference between a fire generating capability and a high-level extinguishing capability according to an embodiment of the present invention.
  • a list of fire-generating equipment/materials and capabilities in the electric room (tool B6-1) on the 6th basement floor is calculated (T20).
  • FIG. 8 is a flowchart illustrating an indoor fire risk analysis according to an embodiment of the present invention.
  • a detailed tool (room) is selected (a storage tank on the 6th basement floor) (T30).
  • FIG. 9 is a flow chart illustrating an analysis of essential indoor fire suppression equipment according to an embodiment of the present invention.
  • a detailed tool (room) is selected (electric room on the 6th floor below) (T40).
  • FIG. 10 is a flow chart illustrating whether or not a fire-generating chemical substance is neglected after work is completed according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a power-on analysis of fire generating equipment after work is completed according to an embodiment of the present invention.
  • FIG. 12 is a table showing the classification and capability of equipment and materials causing fire according to an embodiment of the present invention.
  • FIG. 12 it is a standard table for classifying fire-causing equipment, chemical substances, building materials, electricity, and the like and fire generating ability.
  • 13 is a classification and capability table of fire suppression equipment and facilities according to an embodiment of the present invention.
  • FIG. 13 it is a standard table for classifying fire suppression equipment, facilities, personnel, etc. and fire suppression capabilities.
  • FIGS. 12 and 13 are tables of beacon classification and sensor signal setting based on FIGS. 12 and 13 according to an embodiment of the present invention.
  • FIG. 14 it is a standard for classifying beacons for attaching to fire generating tools. It is also a criterion for classifying beacons for attaching to fire suppression tools. After setting the beacon according to the above criteria, attach it to the tool.
  • 15 is a table comparing the ability of fire generation and suppression ability in the electric room on the 6th floor below the ground according to an embodiment of the present invention.
  • FIG. 15 a process of analyzing whether a fire risk is high by comparing a list of tools on the 6th basement level with a fire generating capability, a suppression capability, and an overall capability is shown.
  • 16 is a table comparing the ability of the fire generating ability and the suppression ability of the entire site according to an embodiment of the present invention.
  • FIG. 16 a table summarized by analyzing fire generation and suppression capabilities for each floor. The results below indicate a high risk of fire.
  • 17 is a list of all construction companies and a fire risk analysis table according to an embodiment of the present invention.
  • FIG. 17 it is a current state of analyzing the fire risk of each site by a construction company. Headquarters can look at this, identify dangerous sites, and take action to prevent fires.
  • 18 is a plan view of the 6th basement level in the 25th basement level and the 6th basement level construction for the application of an embodiment of the present invention. There is a parking lot, electric room, and machine room on the 6th basement floor.
  • FIG. 19 is a partial detailed view of the 6th basement floor according to an embodiment of the present invention.
  • Fig. 18 is a mechanical electrical room in the lower right corner.
  • equipments such as generator room, electric room, and water tank, and the drawings are shown after completion.
  • 20 is a view of the capability and location of fire generating equipment/materials on the 6th floor below the ground according to an embodiment of the present invention. Signals transmitted from beacon-attached tools on a specific date and at a specific time are displayed on the drawing. Risk can be analyzed from the location and beacon ID.
  • 21 is a capability and location diagram of fire suppression equipment on the 6th basement level according to an embodiment of the present invention.
  • the locations of fire extinguishers to extinguish fires are marked.
  • Fire suppression capabilities can be analyzed from the location and beacon ID.
  • 22 is a location diagram of a fire manager on the 6th basement floor according to an embodiment of the present invention.
  • FIG. 23 is a position diagram of a worker on the 6th basement floor according to an embodiment of the present invention. Electrical equipment workers are working in each room.
  • FIG. 24 is a general location diagram of the sixth basement floor according to an embodiment of the present invention. Fire occurrence and suppression and people from Figs. 20 to 24 are all displayed.
  • 25 is a distance measurement diagram in consideration of a wall from a specific fire material on the 6th basement floor to a suppression equipment according to an embodiment of the present invention. It indicates that there is a fire extinguisher that extinguishes urea foam, a dangerous substance in the reservoir on the lower left, and is analyzed as a very dangerous area in case of fire.
  • 26 is an example of analyzing power-on and neglect of fire generating equipment after work is completed on the 6th basement level according to an embodiment of the present invention. After 6 o'clock, the workers left the office without turning off the welding machine. It can overheat overnight and cause a fire in the surrounding material.
  • the power is turned off or the chemical substances are moved to the dangerous goods storage box on the first floor to prevent fire.
  • the analysis method and apparatus have been described for the fire that causes the greatest damage to the construction site. Meanwhile, it is possible to grasp the location and characteristics of the plane and space of workers, equipment and materials at the construction site by using beacons and IoT as described above.
  • configuring the system according to the present invention can be used immediately in the industry and the effect can be immediately grasped.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Alarm Systems (AREA)

Abstract

The present invention relates to a method for analyzing the risk of fire for work by using Bluetooth during construction work, the method attaching a beacon to fire-causing devices, extinguishing devices, and fire management personnel so as to identify the locations and number of beacons through wireless communication, then marking the locations and number of beacons on a site map, and comparing the fire-causing devices with firefighting capability so as to analyze the risk of fire, thereby enabling the work and location having a high risk of fire to be known.

Description

건설현장 사물인터넷 비콘을 이용한 화재위험 평가 방법 및 장치Fire risk assessment method and device using Internet of Things beacons at construction sites
본 발명은 건설공사중 화재 발생 위험이 있는 용접, 절단, 화학물질과 같은 작업을 수행시, 충분한 소화장비와 화재감시원이 배치되어 있는지를 파악하기 위한 것으로, 더욱 상세하게는 화재를 발생시킬 수 있는 장비, 자재, 화학물질과 화재를 진압하는 장비 및 인력에 비콘센서를 부착하고 건축도면상에 표시한 후 상호간의 영향력을 분석하여 화재위험도를 정량적으로 산출하는 것이다.The present invention is to determine whether sufficient fire extinguishing equipment and fire watchers are arranged when performing tasks such as welding, cutting, and chemical substances that have a risk of fire during construction work, and in more detail, equipment capable of generating fire It is to quantitatively calculate the fire risk by attaching beacon sensors to materials, chemicals, and equipment and personnel that extinguish fires, marking them on construction drawings, and analyzing their mutual influence.
건설공사 중 다수의 안전사고가 발생하며 이중 화재로 인한 피해는 중대재해로 이어진다. A number of safety accidents occur during construction work, and the damage caused by a double fire leads to serious disasters.
이러한 화재의 원인은 불타는 재료나 화학물질 주변에서 불을 발생시키는 작업 중 발생한다. 예를 들어 지하 특정구역에서 설비 배관을 위한 파이프 절단 작업으로 인해 불꽃이 비산되고 주변에 있는 화학물질에 불이나고 이어서 천장의 단열재인 우레아 폼으로 번지고 여기서 유독가스가 발생한 후 지하 전체로 확산되어 인명피해가 발생한다.The cause of these fires occurs during operations that create fires around burning materials or chemicals. For example, flames are scattered due to pipe cutting work for facility piping in a specific underground area, and then the chemicals in the vicinity are ignited and then spread to urea foam, which is an insulation material for the ceiling, where toxic gas is generated and then spread to the entire basement. Damage occurs.
이러한 화재를 방어하기 위하여 화재 위험 작업 근처에는 소화기나 소화설비를 배치하도록 하고 있다. In order to prevent such fires, fire extinguishers or fire extinguishing equipment are placed near fire-hazardous work.
또한 화재 위험 작업위치에는 화재감시원을 배치하고 화재감시원은 화재가 발생하지 않도록 불꽃 화학물질 소화기 등을 관리한다. In addition, fire watchers are placed in fire-hazardous work sites, and fire watchers manage fire extinguishers, etc. to prevent fires from occurring.
건설사의 안전관리자들은 각 층 또는 공구(존)별로 배치되어 현장을 돌면서 안전사고 및 화재예방 활동을 하고 있다.The safety managers of construction companies are arranged for each floor or tool (zone) to perform safety accident and fire prevention activities while going around the site.
또한 안전사고 예방을 위한 일일 위험성평가 및 유해위험방지계획서, 안전관리를 건설사 및 협력회사 등이 실시하고 있다.In addition, daily risk assessments, hazardous risk prevention plans, and safety management to prevent safety accidents are carried out by construction companies and partners.
공사 준공 후에는 화재시 여러 가지 소화 및 피난시설(감지기, 알람, 방송, 스프링클러, 제연덕트 설비 등)이 제공되지만 공사중에는 아직 소화설비가 시공되지 않는 상태로서 소화기 등의 간단한 장비만 사용할 수 있으므로 화재시 작업자 및 공사장은 큰 피해를 보게 된다.After the construction is completed, various fire extinguishing and evacuation facilities (detectors, alarms, broadcasting, sprinkler, smoke duct facilities, etc.) are provided in the event of a fire, but fire extinguishing facilities are not yet installed during construction and only simple equipment such as fire extinguishers can be used. City workers and construction sites suffer great damage.
화재의 발생 원인과 건설현장이라는 특징에 따른 문제점은 다음과 같다.The causes of fire and problems according to the characteristics of the construction site are as follows.
작업자들은 공사중 작업 장소를 이동하면서 작업하므로 소화기도 같이 이동하여야 하므로 소화기 관리가 어렵다.Since workers work while moving the work place during construction, it is difficult to manage fire extinguishers because they must move together with the fire extinguisher.
화재 위험을 감시하는 작업자 그룹의 화기감시원이 자리를 비우거나 화재 위험작업에도 불구하고 소화기 없다는 것을 인식하지 못하거나 무시하거나 착각하는 경우가 있다.There are cases in which the fire extinguisher of the worker group monitoring the fire risk is not aware of, ignores, or misunderstands the absence of a fire extinguisher in spite of a fire hazard operation.
건설사의 안전을 담당하는 안전관리자는 공사현장을 돌아 다니며 안전 체크를 하므로 화재 작업 위치에 항상 위치하지 않는다.The safety manager in charge of the safety of the construction company goes around the construction site and checks the safety, so it is not always located at the fire work location.
공사기간을 맞추기 위하여 야간 및 심야 작업을 하는 경우, 안전관리자들의 주간처럼 근무하기 어려워 야간에는 더욱 위험해진다.When working at night and late at night to meet the construction period, it becomes more dangerous at night because it is difficult to work like the daytime of safety managers.
인테리어 공사와 같이 화재 위험작업을 하는 작업의 개수가 많은 기간에는 안전을 관리하는 인원의 수가 적어 일대일로 화재 감시를 못하는 경우가 있다.During periods when the number of fire-hazardous work, such as interior construction, is large, the number of personnel managing safety is small, and fire monitoring may not be possible on a one-to-one basis.
마감공사 및 인테리어 공사 기간중에는 화재 위험작업이 각 층 여러장소에서 동시에 진행되므로 화재 예방 관리가 어려운 실정이다.During the finishing and interior construction periods, fire risk work is carried out at several locations on each floor at the same time, making it difficult to manage fire prevention.
화학물질 등의 화재위험이 높은 물질은 별도의 관리장소에 작업종료 후 이동시켜 보관하여야 하므로 이를 확인하기 위해서는 많은 시간과 인력이 투입된다.Materials with high fire risk, such as chemicals, must be moved and stored in a separate management place after completion of work, so a lot of time and manpower are spent to check them.
많은 안전관리자를 배치하는 것은 인건비와 공사비가 증가하고 안전관리자 인력을 채용하지 못하는 구인난이 있다.Deploying a large number of safety managers increases labor and construction costs, and there is a difficulty in hiring safety managers.
소화기 성능체크나 제조기간이 오래되어 작동이 제대로 안되는 경우가 있다.Fire extinguisher performance checks or manufacturing periods are long, so it may not work properly.
종래의 인력 위주의 화재 감시 방법은 인력이 배치되지 않은 작업장소와 시간이 있고, 배치되는 경우에도 무시나 착각 등의 문제가 있다.The conventional manpower-centered fire monitoring method has a work place and time in which no manpower is assigned, and there is a problem such as neglect or misunderstanding even when the manpower is disposed.
따라서 위와 같은 과제와 특성을 해결하기 위한 방법중의 하나로서 최근 신기술로 도입되는 사물인터넷을 활용하여 화재 관리의 효율성을 높이는 방안이 필요하다.Therefore, as one of the methods to solve the above problems and characteristics, there is a need for a plan to increase the efficiency of fire management by utilizing the Internet of Things recently introduced as a new technology.
따라서 본 발명에서는 사물인터넷을 이용하여 전문가들이 특정작업 장소에서 하루종일 화재 위험성을 평가할 수 있는 수준으로서 화재발생 장비나 화확물질의 종류와 수량, 화재를 진압하는 소화장비의 종류와 수량 및 화재감시원, 안전관리자와 함께 화재 피해의 정도를 평가하는 주변의 작업자 수 및 분포를 현장의 전체 지역을 대상으로 실시간으로 분석하고자 한다. 그 결과 현장의 상황실에서는 어느 작업장소가 가장 위험한지, 무엇이 부족한지를 정량적으로 알 수 있어 대응 및 조치를 통해 화재위험을 줄일수 있다.Therefore, in the present invention, as a level at which experts can evaluate the fire risk at a specific work place all day, using the Internet of Things, the type and quantity of fire-generating equipment or chemical substances, the type and quantity of fire extinguishing equipment to extinguish a fire, and a fire watchdog, Together with the safety manager, we intend to analyze the number and distribution of workers in the vicinity who evaluate the degree of fire damage in real time for the entire area of the site. As a result, the situation room at the site can quantitatively know which workplace is the most dangerous and what is lacking, so that the risk of fire can be reduced through countermeasures and measures.
화재 발생 물질은 산소통과 산소절단기, 회전톱 절단기, 전기 용접기, 석유 열풍기, 갈탄 난로, 신나, 페인트 등의 인화성 물질, 폭발성 물질, 연소성 물질, 스치로폼 등 단열재, 우레아 폼 단열재, 부직포, 방수작업자재, 가연물질, 목재/합판, 전기히터, 전기누전 합선, 전동기구, 가스누출 등이 있다.Fire-producing materials include oxygen cylinders, oxygen cutters, rotary saw cutters, electric welding machines, petroleum hot air fans, lignite stoves, flammable materials such as thinners and paints, explosive materials, combustible materials, insulation materials such as styrofoam, urea foam insulation, nonwoven fabrics, waterproof work materials, There are combustible materials, wood/plywood, electric heaters, electric short circuits, electric appliances, gas leaks, etc.
목적 달성을 위한 방법은 장비 및 화학물질에 비콘을 설치하여 위치정보를 파악하며, 장비와 물질의 속성을 규정하여 화재 유발인지, 화재를 진압하는 물질인지를 규정하며, 화재 진압의 방해 항목으로서 벽체 등을 파악하며, 장비가 가동되는 상태인지 여부 등을 분석하여 화재위험도를 평가한다. The method to achieve the purpose is to install beacons on equipment and chemical substances to determine location information, to specify whether it is a fire-causing or to extinguish a fire by specifying the properties of equipment and substances, and to prevent the fire suppression. The risk of fire is assessed by grasping the lights and analyzing whether the equipment is in operation.
이러한 목적을 달성하는데 있어 기존의 특허 내용을 통해 달성이 가능한지 살펴보면 다음과 같다.Looking at whether it is possible to achieve this purpose through the contents of the existing patents, it is as follows.
출원번호 10-2013-0066108, 출원일자 2013년06월10일, 휴대용 단말기를 이용한 건축공사 안전관리 시스템 및 방법에서는 현장내에서 무선통신을 이용하여 단말의 사용자가 누구인지 단말의 위치를 파악한 후 안전정보와 작업정보를 전송한 후 확인버튼을 누르는지를 체크하는 것으로 진행된다.Application No. 10-2013-0066108, application date June 10, 2013, In the safety management system and method for building construction using a portable terminal, use wireless communication in the field to identify the user of the terminal and the location of the terminal After transmitting the information and job information, it proceeds to check whether the confirmation button is pressed.
상기 안전지시사항 및 조치결과 보고에는 관리자로 부터의 지시 및 작업자로부터의 요청사항을 전달하는 내용으로 구성되어 있다. 따라서 절단기, 용접기, 화학물질이 어디에 얼마만큼 있는지 알수 없어 화재위험도 조차 산출 할 수 없다.The safety instructions and action result report are composed of contents that deliver instructions from managers and requests from workers. Therefore, it is not possible to calculate even the fire risk because it is not known where and how much of the cutting machine, welding machine, and chemicals are.
출원번호 10-2016-0051916, 출원일자 2016년04월28일, 화학물질에 대한 위험성 평가 장치 및 방법과 인용발명에서는 화학물질의 유출에 따라 위험성 등급을 설정하고, 화학공정의 온도에 따라 사고위험을 평가하는 것으로 진행된다.In the application number 10-2016-0051916, application date April 28, 2016, the risk assessment device and method for chemical substances and the cited invention set the risk level according to the leakage of chemical substances, and the risk of accidents according to the temperature of the chemical process. It proceeds to evaluate.
상기 화학물질의 위치를 파악하는 것과 위험등급과 온도만으로는 건설현장의 작업장내에서 발생하게 하는 장비와 화학물질 등의 화재원인을 파악할 수 없고 소화능력도 평가할 수 없다. Only by identifying the location of the above chemicals and the risk level and temperature, the cause of fires such as equipment and chemicals that occur in the workplace at the construction site cannot be identified, and the fire extinguishing ability cannot be evaluated.
출원번호 10-2014-0165609, 출원일자 2014년11월25일, 스마트 안전 관리 서비스 시스템에서는 위험장소에 비콘을 설치하고 사용자 단말이 접근하면 관리자가 위험을 경고하는 메시지를 전송하는 과정으로 진행된다.Application No. 10-2014-0165609, filing date November 25, 2014 In the smart safety management service system, a beacon is installed in a dangerous place and when the user terminal approaches, the administrator transmits a message warning of danger.
상기 사용자가 특정 위치에 접근하면 위험하다는 위치 측정 방법만으로는 건설현장의 작업장내에서 발생하게 하는 장비와 화학물질 등의 화재원인을 파악할 수 없고 소화능력도 평가할 수 없다. With only the location measurement method that is dangerous when the user approaches a specific location, the cause of fire such as equipment and chemical substances that occur in the workplace of the construction site cannot be identified, and the fire extinguishing ability cannot be evaluated.
출원번호 10-2007-0010511, 출원일자 2007년02월01일, 위치 정보를 이용한 서비스 제공 시스템과 그 방법에서는 위치 정보를 파악할 수 있는 GPS 수신모듈과 지그비 무선 네트워크 기반의 주파수를 사용하는 RF 송수신 수단을 구비하여, 골프장 등과 같은 일정한 영역에서의 진행상황을 실시간으로 파악할 수 있도록 진행된다.Application No. 10-2007-0010511, filing date February 1, 2007, In the system and method for providing a service using location information, a GPS receiving module capable of grasping the location information and an RF transmitting and receiving means using a Zigbee wireless network-based frequency It is provided so that the progress in a certain area such as a golf course can be grasped in real time.
GPS 수신모듈을 구비하여 자신의 위치를 나타낸 위치신호를 생성하고 메시지 정보를 표시하는 다수의 휴대용 단말모듈과; 지그비(ZigBee) 무선통신을 이용하여 상기 위치신호를 공급받아서 상기 각 휴대용 단말모듈의 위치를 표시함과 아울러 상기 각 휴대용 단말모듈 간의 거리에 따라 메세지 정보를 발생하는 관리 시스템 모듈;을 포함하고 있다.A plurality of portable terminal modules including a GPS receiving module to generate a location signal indicating a location of itself and to display message information; And a management system module that receives the location signal using ZigBee wireless communication, displays the location of each portable terminal module, and generates message information according to a distance between the portable terminal modules.
상기 각 휴대용 단말모듈의 위치 신호에 따라 상기 각 휴대용 단말모듈의 위치를 표시함과 아울러 상기 각 휴대용 단말모듈 간의 거리를 비교 계산하여 상기 각 휴대용 단말모듈 간의 거리가 500m 내지 1000m 중 미리 설정된 어느 한 거리 이내로 인접할 경우 해당 휴대용 단말모듈로 전송될 상기 메세지 정보를 생성 및 전송한다.In addition to displaying the location of each of the portable terminal modules according to the position signal of each of the portable terminal modules, a distance between the portable terminal modules is calculated by comparing and calculating the distance between each of the portable terminal modules to any one of a preset distance from 500m to 1000m If it is adjacent within, it generates and transmits the message information to be transmitted to the corresponding portable terminal module.
상기 단말의 위치를 파악하고 단말간의 거리가 인접할 경우 메시지를 전송하는 방법만으로는 건설현장의 작업장내에서 발생하게 하는 장비와 화학물질 등의 화재원인을 파악할 수 없고 소화능력도 평가할 수 없다. By identifying the location of the terminal and transmitting a message when the distance between the terminals is close, the cause of fire such as equipment and chemicals that occur in the workplace of the construction site cannot be identified and the fire extinguishing capacity cannot be evaluated.
이러한 문제점을 해결하기 위한 방향은 소수 인력에 의한 공사현장 전체의 화재 위험작업을 관리하기 위해서는 인력위주의 감시로부터 장비와 시스템을 같이 사용하여야 한다.The direction to solve this problem is to use equipment and systems together from manpower-oriented monitoring in order to manage fire risk work of the entire construction site by a small number of personnel.
화재 위험 장비나 화학물질과 소화기가 항상 같이 붙어 있는지 실시간으로 정확하게 파악해야 한다.Fire-hazardous equipment or chemicals and fire extinguishers must be accurately identified in real time to ensure they are always attached.
아침 7부터 5시까지의 주간작업 뿐만 아니라 특히 취약한 야간 및 심야시간의 작업시간에도 효율적으로 화재를 감시할 수 있는 방법이 필요하다.There is a need for a method to efficiently monitor fires not only during the daytime work from 7 to 5 in the morning, but also during the particularly vulnerable night and late night work hours.
종래의 기술이 화재 이후의 소화기 찾기 및 탈출 방법에 집중되는 점으로부터 공사중 화재가 발생하지 않도록 사전에 예방능력을 높이는 것도 중요하다.It is also important to increase the prevention capability in advance so that a fire does not occur during construction from the point that the conventional technology is focused on finding and evacuating fire extinguishers after a fire.
본 발명은 상기와 같은 종래 기술에 따른 문제점을 해결하기 위하여 창안된 것으로서, 건설현장의 특정 위치에서의 물건(물질)과 사람, 벽 등의 현장여건을 사물인터넷을 통해 위치와 수량을 파악한 후 이들의 능력으로부터 화재 위험도와 억제능력을 분석하여 위험한 작업장소를 분석한다. 이에 따라 인력에 의한 화재관리로부터 정량적인 분석을 통한 화재 관리로 화재가 발생되지 않도록 한다.The present invention was invented to solve the problems related to the prior art as described above, and after grasping the location and quantity of objects (materials), people, and walls at a specific location on a construction site through IoT Analyzes the risk of fire and the ability to contain the fire from the ability of the company to analyze the dangerous work place. Accordingly, fire management through quantitative analysis from fire management by manpower prevents fire from occurring.
상기한 목적을 달성하고 상술한 종래기술의 문제점을 해결하기 위하여, 본 발명에 따른 건설현장 비콘을 이용한 화재위험 평가 방법 및 장치는In order to achieve the above object and solve the problems of the prior art described above, a fire risk evaluation method and apparatus using a construction site beacon according to the present invention
특정 작업장소내에 있는 작업도구(장비)와 화학물질, 연소자재, 소화장비, 사람에게 비콘을 부착하고 스캐너를 통해 상기 위치와 수량을 파악한 후 건축 도면상에 표시하고, 상기 상황에 있어서 화재 발생능력과 화재 억제능력을 현장 상태를 반영하여 산출하여 어느 정도의 화재 위험이 있는지를 24시간 실시간으로 분석한다.A beacon is attached to work tools (equipment), chemicals, combustion materials, fire extinguishing equipment, and people in a specific work place, and after identifying the location and quantity through a scanner, it is displayed on the architectural drawing, and the ability to generate fire in the above situation And fire suppression capabilities are calculated by reflecting the site conditions, and the degree of fire risk is analyzed in real time for 24 hours.
화재 원인의 종류와 수량, 영향력을 정량적으로 세분하여 파악하기 위하여 화재 원인 분류체계와 등급을 설정한 후 이에 해당하는 비콘의 종류를 다양화하며 일부 센서를 추가로 구비하여 화재원인의 능력을 자세히 파악할 수 있도록 한다.In order to quantitatively subdivide and understand the type, quantity, and influence of the fire cause, after setting the fire cause classification system and grade, diversify the types of corresponding beacons, and additionally equip some sensors to understand the capabilities of the fire cause in detail. Make it possible.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.
건설현장에서 지하 5층 전기실과 같은 특정 장소에 있어서 화재의 원인이 되는 용접기 등과 같은 작업도구와 신너와 같은 화학물질, 그리고 단열재와 같은 연소 가능한 자재에 비콘을 설치하면 화재원인의 위치와 수량 등에 따른 화재 발생능력을 종합적으로 분석할 수 있다. If beacons are installed on work tools such as welding machines, chemical substances such as thinners, and combustible materials such as insulation materials that cause fire in a specific place such as the electric room on the 5th basement level at the construction site, the location and quantity of the cause of the fire will be affected. You can comprehensively analyze the fire generating ability.
화재원인의 종류에 따라 비콘의 종류를 달리하여 부착할 수 있다. 예를 들어 화재위험이 가장 높은 전기 용접기나 산소절단기의 경우, 비콘의 색깔을 진한 붉은색으로 하고 가장 높은 5등급 위험을 표시하며, 용접기에 부착하며 온도 센서 및 진동센서를 추가로 구비하여 사용중인지 파악할 수 있도록 한다. 그리고 비콘이 이러한 신호를 발신하도록 한다. 신나통에도 붉은색 5등급 비콘을 부착할 수 있다.Depending on the type of fire cause, different types of beacons can be attached. For example, in the case of an electric welding machine or oxygen cutting machine with the highest fire risk, the color of the beacon is dark red and the highest level 5 danger is indicated, attached to the welding machine, and additionally equipped with a temperature sensor and a vibration sensor. To be able to grasp. And let the beacon send out these signals. You can also attach a red grade 5 beacon to the thinner barrel.
이에 따라 상기 화재 원인이 되는 도구 및 물질의 종류와 수량, 사용상태 여부로부터 화재위험도를 정량적으로 산출할 수 있다. 예를 들어 용접기가 사용중이고 근거리에 신나 또는 페인트 등이 있고 불에 타는 자재가 쌓여 있다면 화재위험이 매우 높다고 평가된다.Accordingly, the fire risk can be quantitatively calculated from the type and quantity of tools and materials that cause the fire, and whether they are in use. For example, if a welding machine is in use, thinner or paint is in close proximity, and burning materials are accumulated, the risk of fire is considered very high.
화재 발생시 화재를 진압하는 것으로서 소화기, 소화전, 방화수, 화재 감시원, 안전관리자에게 비콘을 설치하면 또한 위치와 수량 등을 종합적으로 파악할 수 있다. 소화기에는 파란색 비콘을 설치하여 소화성능에 따라 등급을 표시하고 부가적으로 제조년월 검사정보 등을 포함하며 이러한 신호를 발신하도록 하도록 하고 신호를 스캔한다.As a fire extinguisher, fire hydrant, fire extinguisher, fire hydrant, fire watcher, and safety manager installed beacons to extinguish fires in the event of a fire, the location and quantity can also be comprehensively identified. A blue beacon is installed on the fire extinguisher to indicate the grade according to the fire extinguishing performance, and additionally include the date of manufacture, inspection information, etc., send such a signal, and scan the signal.
그 결과 상기 화재를 진압하는 도구 및 물질의 종류와 수량, 사용상태 여부, 사람의 수로부터 화재를 진압하는 능력을 정량적으로 산출할 수 있다. 예를 들어 용접기가 1대 사용중이고 주변에 화재감시원 1명과 안전관리자가 2명이 있고 소화기가 2대가 있다면 화재 진화능력을 산출할 수 있다.As a result, the ability to extinguish a fire can be quantitatively calculated from the type and quantity of tools and substances to extinguish the fire, whether they are in use, and the number of people. For example, if one welding machine is in use, one fire watcher and two safety managers are nearby, and there are two fire extinguishers, the fire extinguishing capability can be calculated.
공사 진행중에는 골조와 벽체가 시간 경과에 따라 생성되고, 이를 CAD도면상에 표기하면 현장의 실제적인 구조 상태를 반영한 실질적인 화재진압 방법을 도출할 수 있다. During construction, frames and walls are created over time, and if they are marked on CAD drawings, a practical fire suppression method that reflects the actual structural condition of the site can be derived.
화재 위험을 평가하는 기준으로서 작업시간 개념을 도입함에 따라, 야간이나 심야에 작업이 없는 시간에 화재 발생 도구인 용접기의 전원이 켜져 있는지 파악할 수 있다. 또한 작업이 완료된 후에는 1층 위험물 저장소로 이동되어야 하는 화학물질이 12층 작업장소에 그대로 남아있고 주변에 작업자들이 없고 퇴근했다면 위험물질이 12층에 홀로 방치되고 있다고 판단할 수 있다.By introducing the concept of working hours as a criterion for evaluating the risk of fire, it is possible to determine whether the power of the welding machine, which is a fire generating tool, is turned on at night or when there is no work at night. In addition, after the work is completed, if the chemical substances that must be moved to the first floor dangerous goods storage remain in the work place on the 12th floor, and there are no workers around and leave work, it can be judged that the dangerous substances are left alone on the 12th floor.
종래의 인력위주의 화재관리, 사람들이 작업장소를 계속 감시하지 못하는 여건, 착각 무시 오류 등에 따른 위험도구와 물질의 방치, 소화기 미배치 또는 수량부족 등의 문제를 예방할 수 있다.It is possible to prevent problems such as the conventional manpower-centered fire management, conditions in which people cannot continuously monitor the work place, neglect of dangerous tools and materials, non-displacement of fire extinguishers, or insufficient quantity of fire extinguishers due to misunderstandings and errors.
화재 위험이 높은 작업장소의 위치와 그 주변에 있는 작업자 수로부터 화재시 피해규모를 산출할 수 있다. 지하 6층 창고에서의 화재 발생 가능성을 산출할 수 있고 지하 각층에 있는 작업자수를 스캔하여 피해 규모를 판단할 수 있다.The scale of damage in case of fire can be calculated from the location of the workplace with high fire risk and the number of workers in the vicinity. It is possible to calculate the probability of a fire in the warehouse on the 6th basement level, and to determine the size of the damage by scanning the number of workers in each basement level.
상기 화재위험 도구 및 물질에 따른 화재 발생능력과 소화기와 사람에 따른 소화진압능력을 정량적으로 산출한 후 비교하여 화재 위험이 높으면 위험물질간의 거리를 멀게 하거나 위험 작업을 순차적으로 하여 화재 리스크를 줄일 수 있다. 또한 화재 진압능력을 증가시키는 조치를 할 수 있다. If the fire risk is high, the fire risk can be reduced by increasing the distance between the hazardous materials or by sequentially performing dangerous tasks by quantitatively calculating and comparing the fire generating ability according to the fire hazard tools and materials and the fire fighting ability according to the fire extinguisher and the person. have. In addition, measures can be taken to increase fire suppression capabilities.
특정 현장의 화재발생능력과 진압능력을 각각의 장소로부터 합산하여 현장 전체의 값을 계산할 수 있어 어떤 현장이 가장 위험한지 도움이 필요한지 파악할 수 있다. 장소레벨에서 현장레벨 건설사레벨 시구군 행정단위레벨의 평가를 할 수 있어 취약지역을 집중 지원할 수 있다.By summing the fire-producing capability and suppression capability of a specific site from each site, you can calculate the value of the entire site, so you can determine which site is the most dangerous and if you need help. At the site level, the site level, the construction company level, the municipality, the county, and the administrative unit level can be evaluated, enabling intensive support for vulnerable areas.
위와 같이 대규모 공사현장과 건설사의 수십개 현장 또는 특정 시 및 군에 있어서의 건설 사업장에 대하여 작업장소별로 화재위험도를 정량적으로 24시간 실시간으로 정량적으로 파악할 수 있어 필요한 조치를 함으로써 화재가 발생하지 않게 된다. As above, fire risk can be quantitatively identified in real time, 24 hours a day, for large-scale construction sites, dozens of construction sites, or construction sites in specific cities and counties, so that the fire does not occur by taking necessary measures.
도 1은 본 발명의 일실시예에 따른 비콘 정보를 이용한 화재 예방 장치의 전체 구성도.1 is an overall configuration diagram of a fire prevention apparatus using beacon information according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 비콘 정보를 이용한 화재 위험 분석 장치의 구성도.Figure 2 is a configuration diagram of a fire risk analysis device using beacon information according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 일실시예에 따른 비콘 정보를 이용한 화재 위험 분석 방법의 전체 흐름도.3 to 5 are overall flowcharts of a fire risk analysis method using beacon information according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 비콘 정보를 수집하는 준비단계의 흐름도.6 is a flowchart of a preparation step for collecting beacon information according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 화재 발생 능력과 진압 능력의 상위 레벨의 차이 분석 흐름도.7 is a flow chart illustrating a difference between a fire generating capability and a high-level extinguishing capability according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 실내의 화재 발생 위험 분석 흐름도.8 is a flowchart illustrating an indoor fire risk analysis according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 실내의 필수 화재 진압 장비 분석 흐름도.9 is a flow chart of analysis of essential fire suppression equipment indoors according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 작업종료 후 화재 발생 화학물질의 방치 여부 분석 흐름도.10 is a flow chart of analyzing whether or not a fire-generating chemical substance is left after completion of work according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 작업종료 후 화재 발생 장비의 전원 켜짐 분석 흐름도.11 is a flow chart of power-on analysis of fire generating equipment after work is completed according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 화재 발생 원인 장비 및 물질 분류 및 능력표.12 is a classification and capability table of equipment and materials causing fire according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 화재 진압 장비 및 설비 분류 및 능력표.13 is a classification and capability table of fire suppression equipment and facilities according to an embodiment of the present invention.
도 14는 본 발명의 일실시예에 따른 도 12, 도 13에 기준한 비콘 분류 및 센서 신호 설정 기준표.14 is a table of beacon classification and sensor signal setting reference tables based on FIGS. 12 and 13 according to an embodiment of the present invention.
도 15는 본 발명의 일실시예에 따른 지하 6층 전기실에서의 화재 발생 능력과 진압 능력과의 능력 비교표.15 is a table comparing the ability of the fire generating ability and the suppression ability in the electric room on the 6th floor basement according to an embodiment of the present invention.
도 16은 본 발명의 일실시예에 따른 현장 전체의 화재 발생 능력과 진압 능력과의 능력 비교표.Figure 16 is a table comparing the ability of the fire generating ability and suppression ability of the entire site according to an embodiment of the present invention.
도 17은 본 발명의 일실시예에 따른 건설사의 전체 현장리스트 및 화재 위험 분석표.17 is a list of all construction companies and fire risk analysis table according to an embodiment of the present invention.
도 18은 본 발명의 일실시예의 적용을 위한 지하 25층, 지하 6층 공사에서의 지하 6층 평면도.Figure 18 is a plan view of the sixth basement level in the construction of 25 basement levels and 6 basement levels for the application of an embodiment of the present invention.
도 19는 본 발명의 일실시예에 따른 지하 6층의 부분 상세도.19 is a partial detailed view of the 6th basement floor according to an embodiment of the present invention.
도 20은 본 발명의 일실시예에 따른 지하 6층의 화재 발생 장비/물질의 능력 및 위치도.20 is a view of the capability and location of fire generating equipment/materials on the 6th basement level according to an embodiment of the present invention.
도 21은 본 발명의 일실시예에 따른 지하 6층의 화재 진압 장비의 능력 및 위치도.21 is a capability and location diagram of fire suppression equipment on the 6th floor below the ground according to an embodiment of the present invention.
도 22는 본 발명의 일실시예에 따른 지하 6층의 화재 관리자 위치도.22 is a location view of a fire manager on the 6th basement floor according to an embodiment of the present invention.
도 23은 본 발명의 일실시예에 따른 지하 6층의 작업자의 위치도.23 is a location view of a worker on the 6th basement floor according to an embodiment of the present invention.
도 24는 본 발명의 일실시예에 따른 지하 6층의 종합 위치도.24 is a general location diagram of the 6th basement floor according to an embodiment of the present invention.
도 25는 본 발명의 일실시예에 따른 지하 6층 특정 화재 물질로 부터의 진압 장비 까지의 벽체를 고려한 거리 측정도.25 is a distance measurement diagram in consideration of a wall from a specific fire material on the 6th basement floor to a suppression equipment according to an embodiment of the present invention.
도 26은 본 발명의 일실시예에 따른 지하 6층에서의 작업종료 후 화재 발생 장비의 전원 켜짐과 방치를 분석하는 예시.26 is an example of analyzing the power on and neglect of the fire generating equipment after the end of work on the 6th floor basement according to an embodiment of the present invention.
이하, 본 발명에 따른 비콘 정보를 이용한 화재 분석 장치 및 방법을 상세히 설명한다.Hereinafter, a fire analysis apparatus and method using beacon information according to the present invention will be described in detail.
도 1은 도 1은 본 발명의 일실시예에 따른 비콘 정보를 분석하는 화재 위험을 분석하는 비콘센서(10), 비콘신호 스캐너(20), 화재분석 서버(30), 스마트폰 앱 또는 PC 단말(40)의 구성을 나타내는 블록도이다.1 is a beacon sensor 10, a beacon signal scanner 20, a fire analysis server 30, a smart phone app or a PC terminal for analyzing a fire risk for analyzing beacon information according to an embodiment of the present invention. It is a block diagram showing the configuration of (40).
도 1을 참조하면, 본 실시예에 따른 비콘 정보를 이용한 비콘센서(10)는 화재 발생 장비, 물질, 자재와 진압 장비, 소화 설비 및 작업자에게 부착되고 상기 장비, 물질, 작업자의 속성 및 위치 신호를 발신한다. Referring to FIG. 1, a beacon sensor 10 using beacon information according to this embodiment is attached to fire generating equipment, substances, materials and suppression equipment, fire extinguishing equipment, and workers, and signals the equipment, substances, and workers' attributes and locations. Is sent.
상기 비콘은 아이디 또는 해당 장비 등에 관한 장비에 관한 정보(작업공종, 회사명, 관리자, 제조년월)과 본 발명에 따른 화재 발생 능력 또는 진화 능력의 크기, 강도를 포함한 신호를 발신한다.The beacon transmits a signal including information about the ID or equipment related to the corresponding equipment (work type, company name, manager, manufacturing date), and the size and intensity of the fire generating capacity or extinguishing capacity according to the present invention.
비콘신호 스캐너(20)는 공사현장의 각 층 또는 구역에서 발신되는 신호를 받아 화재분석 서버(30)로 전송하는 기능을 담당한다.The beacon signal scanner 20 is responsible for receiving signals transmitted from each floor or area of the construction site and transmitting them to the fire analysis server 30.
화재분석 서버(30)는 입력된 비콘 신호로 부터 작업장소의 상태를 분석과 화재 위험 기준과의 비교를 통해 화재 위험을 분석한다.The fire analysis server 30 analyzes the fire risk by analyzing the state of the work place from the input beacon signal and comparing it with the fire risk standard.
스마트폰 앱 또는 PC 단말(40)은 화재분석 서버(30)로 부터 화재 위험 관련 정보를 받아 표시한다.The smartphone app or PC terminal 40 receives and displays fire risk-related information from the fire analysis server 30.
도 2는 본 발명의 일실시예에 따른 비콘 정보를 이용한 화재 위험 분석 장치의 구성을 나타낸 것이다.2 shows the configuration of a fire risk analysis apparatus using beacon information according to an embodiment of the present invention.
도 2를 참조하면, 본 실시예에 따른 화재분석 서버(30)의 기능 구성은 제어부(31), 화재 기준 데이터베이스(32), 비콘 실적정보 데이터베이스(33), 건축도면 데이터베이스(34) 및 통신부(35)를 포함한다.Referring to FIG. 2, the functional configuration of the fire analysis server 30 according to the present embodiment includes a control unit 31, a fire reference database 32, a beacon performance information database 33, a building drawing database 34, and a communication unit ( 35).
상기 제어부(31)는 화재 기준 데이터베이스(32)와 건축도면 데이터베이스(34) 로 부터 현장의 화재 발생 원인(장비, 화학물질, 건축자재)과 화재 진압 장비, 설비, 인원의 위치 및 거리, 능력을 비교한다. The control unit 31 determines the cause of fire (equipment, chemical substances, building materials) and fire suppression equipment, facilities, and the location and distance of personnel from the fire standard database 32 and the building drawing database 34. Compare.
특정 위치에서의 화재원인과 진압까지의 거리를 에 따른 화재위험을 분석하고, 화재원인에 대한 필수 진압장비의 존재여부를 분석하고, 작업종료 후 화학물질이 작업장소에 방치되고 있는지 분석하고, 시간상에서 화재발생 장비의 전원관리를 분석하고, 각 층별 화재위험을 분석하고, 건설사의 각 현장별 화재위험을 분석한다.Analyzes the fire risk according to the fire cause at a specific location and the distance to the extinguishing, analyzes the existence of essential extinguishing equipment for the cause of the fire, analyzes whether chemical substances are left at the work place after work is completed, and time Analyzes power management of fire-generating equipment on the floor, fire risk for each floor, and fire risk for each construction site.
또한 비콘 위치정보와 안전분석 실적정보를 데이터베이스(33)에 저장한다.In addition, beacon location information and safety analysis performance information are stored in the database 33.
화재 기준 데이터베이스(32)는 장비, 물질, 자재, 인원에 대한 화재발생 능력과 진압능력에 관한 기준과 함께 상기 장비 등 간의 거리, 수량, 시간, 위치에 따른 위험을 분석하는 기준을 저장한다.The fire standard database 32 stores criteria for analyzing risks according to distance, quantity, time, and location between the equipment, materials, materials, and personnel, as well as criteria for fire generating capability and suppression capability.
화재도구(장비, 물질, 자재 등)와 소화도구에 관한 명칭, 규격, 능력(강도)에 관한 기준 및 정보를 저장한다. 특정화재 도구에 대응하는 필수 소화도구에 관한 정보를 포함한다. 화재도구에 따른 작업시간에 따른 위치 조건을 포함하며, 화학물질은 작업종료 후 위험물 보관소로 이동되어야 하는 조건 등을 포함한다. It stores standards and information on the name, standard, and ability (strength) of fire tools (equipment, materials, materials, etc.) and fire fighting tools. Contains information on essential fire extinguishing tools corresponding to specific fire tools. It includes the location conditions according to the working time according to the fire tool, and the conditions in which chemical substances must be moved to the dangerous goods storage after the work is completed.
화재도구 중 장비는 작업종료 후 전원은 오프되어야 하는 등의 조건을 포함한다.Among the fire tools, the equipment includes conditions such as that the power must be turned off after work is completed.
비콘 실적정보 데이터베이스(33)는 화재 및 소화도구에 관한 신호 정보와 위험분석 정보를 저장한다. 특정 화재도구의 비콘에 대한 아이디와 해당 도구에 관한 정보를 저장한다. 도구정보는 작업공종, 회사명, 관리자, 제조년월을 포함한다.The beacon performance information database 33 stores signal information and risk analysis information on fire and fire extinguishing tools. It stores the ID for the beacon of a specific fire tool and information about the tool. Tool information includes work type, company name, manager, and manufacturing date.
비콘의 신호정보는 비콘이 발신한 도구의 위치정보를 포함한다. The signal information of the beacon includes the location information of the tool sent by the beacon.
화재 위험 분석 정보는 비콘정보와 위치, 거리, 수량, 능력간의 정보로 부터 분석된 분석 정보 결과를 저장한다.Fire risk analysis information stores the analysis information results analyzed from information between beacon information and location, distance, quantity, and ability.
건축도면 데이터베이스(34)는 공산현장의 각 층 평면도, 단면도와 함께 공사진행에 따른 시공실적을 반영한 도면을 저장한다. 시공실적 반영 도면은 특정 벽체가 시공되면 도면을 수정하는 것이며, 벽체가 형성되면 분석에 영향을 미치므로 분석시 필요하다.The architectural drawing database 34 stores the drawings reflecting the construction performance according to the construction row along with the floor plans and cross-sectional views of the construction site. The drawing reflecting the construction results is to modify the drawing when a specific wall is constructed, and when the wall is formed, it affects the analysis, so it is necessary for analysis.
통신부(35)는 비콘으로부터의 센서신호를 수신하고, 분석결과를 유무선 통신을 통해 송출하는 기능을 담당한다.The communication unit 35 is responsible for receiving a sensor signal from a beacon and transmitting an analysis result through wired or wireless communication.
도 3 내지 도 5는 본 발명의 일실시예에 따른 비콘 정보를 이용한 화재 위험 분석 방법의 전체 흐름도이다.3 to 5 are overall flowcharts of a fire risk analysis method using beacon information according to an embodiment of the present invention.
먼저 일 실시예에 따른 도 3을 참조하면, 공사현장에서 화재를 일으키는 장비, 화학물질, 자재 등을 분류하고 각각의 화재 성능을 등급 또는 능력으로 분류한다. 이에 따라 특정 도구가 화재에 어떠한 영향력을 가지는지 알 수 있다(S10).First, referring to FIG. 3 according to an embodiment, equipment, chemical substances, materials, etc. that cause fire at a construction site are classified, and each fire performance is classified by grade or capability. Accordingly, it is possible to know what kind of influence a specific tool has on the fire (S10).
화재발생시 화재를 진압하는 장비, 도구, 설비, 사람에 관한 분류 및 성능을 분류한다(S20).Classification and performance of equipment, tools, facilities, and people to extinguish fire in case of fire are classified (S20).
상기 도구들에 대응하여 비콘을 부착하기 위하여 비콘을 상기 분류한 기준에 따라 나눈다(S30).In order to attach a beacon corresponding to the tools, the beacon is divided according to the classified criteria (S30).
현장내 도구에 부착된 비콘으로 부터 발신되는 신호를 수신하기 위한 무선통신 네트워크를 공사진척에 따라 층별로 점진적으로 설치한다(S40).Wireless communication networks for receiving signals transmitted from beacons attached to in-site tools are gradually installed for each floor according to the construction scale (S40).
공사진척에 따라 현장으로 각종 도구들이 반입되면, 안전 검사를 거친 후 상기 분류 기준에 따라 비콘을 도구들에 부착한다(S50). 상기 비콘들은 도구가 사용되는 지를 파악하기 위한 특성에 따라 동작감지, 온도감지 등의 센서를 추가로 포함할 수 있다.When various tools are brought into the site according to the construction chuck, beacons are attached to the tools according to the classification criteria after safety inspection (S50). The beacons may further include sensors such as motion detection and temperature detection according to characteristics for determining whether a tool is used.
공사가 시작되면(S60), 도구들이 작업장소로 이동하고 비콘 신호를 발생하게되고 스캐너(20)를 통해 신호를 스캔한 후(S70) 안전분석 서버(30)으로 전송한다.When the construction starts (S60), the tools move to the work place, generate a beacon signal, scan the signal through the scanner 20 (S70) and transmit it to the safety analysis server 30.
그러면 제어부(31)가 건축도면 데이터베이스(34)로 부터 도면을 읽고 도구들의 위치를 표시한다. 그리고 위치 또는 구역내의 화재 발생 도구들의 리스트 및 화재 발생 능력을 분석한다(S80). Then, the control unit 31 reads the drawings from the architectural drawing database 34 and displays the positions of the tools. Then, a list of fire generating tools in a location or area and fire generating capability are analyzed (S80).
그리고 화재 진압능력을 분석한다(S90). 그리고 발생능력과 진압능력을 비교한 후(S100) 발생능력이 높으면 화재위험이 높다고 판단한다(S110). 이에 따라 위험이 높은 위치 및 대응방안을 분석한다(S120).And the fire suppression ability is analyzed (S90). And after comparing the generation capability and the suppression capability (S100), it is determined that the fire risk is high if the generation capability is high (S110). Accordingly, the high-risk location and countermeasures are analyzed (S120).
그리고 각 층별 분석 등을 통해 현장전체의 위험을 분석한다(S130). 그리고 건설사의 현장별 위험을 분석한다(S140). 이러한 자료는 시군구 단위에서 현장별로 산출하여 어느 현장이 어느 지역이 위험한지 산출한다(S150). 그 결과 위험이 높은 현장을 파악한 후(S160) 필요한 조치를 취하게 된다(S170).And the risk of the entire site is analyzed through analysis of each floor, etc. (S130). And analyzes the risk of each site of the construction company (S140). These data are calculated for each site in the city, county and district units, and which site and which area are dangerous (S150). As a result, the high-risk site is identified (S160) and necessary measures are taken (S170).
도 6은 본 발명의 일실시예에 따른 비콘 정보를 수집하는 준비단계의 흐름도이다.6 is a flowchart of a preparation step for collecting beacon information according to an embodiment of the present invention.
도 6을 참조하면, 공사현장에 장비(전기용접기) 반입 및 장비 안전 점검한다(T10). Referring to FIG. 6, equipment (electric welding machine) is brought into the construction site and equipment safety is checked (T10).
장비 종류에 따라 비콘에 정보 입력 및 장비에 비콘(동작감지센서) 부착한다(T11). Depending on the type of equipment, input information to the beacon and attach a beacon (motion detection sensor) to the equipment (T11).
작업장소 (지하 6층 전기실)로 장비(용접기) 이동한다(T12). Move the equipment (welding machine) to the work place (electric room on the 6th floor basement) (T12).
작업시작 및 비콘 센서에서 신호 발생한다(T13). Start work and generate a signal from the beacon sensor (T13).
비콘 신호 스캔 / 서버로 전송한다(T14). Beacon signal scan / send to server (T14).
건축도면 D/B로 부터 도면 로딩한다(T15). Load drawing from architectural drawing D/B (T15).
건축 평면상에 비콘 종류 및 위치를 표시한다(T16).Indicate the beacon type and location on the construction plan (T16).
도 7은 본 발명의 일실시예에 따른 화재 발생 능력과 진압 능력의 상위 레벨의 차이 분석 흐름도이다. 7 is a flow chart illustrating a difference between a fire generating capability and a high-level extinguishing capability according to an embodiment of the present invention.
도 7을 참조하면, 지하 6층 전기실(B6-1 공구)내 화재발생 장비/물질 리스트 및 능력 산출한다(T20).Referring to FIG. 7, a list of fire-generating equipment/materials and capabilities in the electric room (tool B6-1) on the 6th basement floor is calculated (T20).
화재 진압 장비/인원 리스트 및 진압 능력 산출한다(T21).Calculate fire suppression equipment/person list and suppression capacity (T21).
능력 합계 및 차이를 산출하며 화재 발생 능력 대비 진압 능력을 산출(T22)한다.Calculate the sum and difference of the capacity and calculate the extinguishing capacity compared to the fire generating capacity (T22).
능력차이가 위험범위를 벗어 나는지를 판단한다(T23).It is judged whether the capacity difference is out of the risk range (T23).
정밀 분석 착수한다(T24).Initiate precise analysis (T24).
도 8은 본 발명의 일실시예에 따른 실내의 화재 발생 위험 분석 흐름도이다.8 is a flowchart illustrating an indoor fire risk analysis according to an embodiment of the present invention.
도 8을 참조하면, 세부 공구(실) 선택(지하 6층 저수조)한다(T30).Referring to FIG. 8, a detailed tool (room) is selected (a storage tank on the 6th basement floor) (T30).
특정 화재 발생물질(우레아폼) 선택한다(T31).Select specific fire-producing material (urea foam) (T31).
같은 실내(구역)내에 있는 화재 진압 장비/설비 분석한다(T32).Analyze fire suppression equipment/equipment within the same room (area) (T32).
화재발생물질(우레아폼)으로 부터 가장 가까운 화재 진압 장비(소화기) 까지의 벽체를 반영한 이동거리 산출한다(T33).Calculate the moving distance reflecting the wall from the fire-producing material (urea foam) to the nearest fire suppression equipment (fire extinguisher) (T33).
빠른 소화 진압이 가능한지 분석한다(T34).Analyze whether rapid digestive suppression is possible (T34).
화재 위험도 분석한다(T35).Fire risk is also analyzed (T35).
도 9는 본 발명의 일실시예에 따른 실내의 필수 화재 진압 장비 분석 흐름도이다.9 is a flow chart illustrating an analysis of essential indoor fire suppression equipment according to an embodiment of the present invention.
도 9를 참조하면, 세부 공구(실) 선택 (지하 6층 전기실)한다(T40).Referring to FIG. 9, a detailed tool (room) is selected (electric room on the 6th floor below) (T40).
특정 화재발생 장비(산소 절단기) 선택한다(T41).Select specific fire generating equipment (oxygen cutter) (T41).
같은 공구(실)내에 있어야 할 필수 소화 진압 장비(소화기, 방지포) 로딩한다(T42).Load essential fire extinguishing equipment (fire extinguisher, anti-cannon) to be in the same tool (room) (T42).
필수 진압 장비가 근처에 있는가를 분석한다(T43).Analyze whether essential suppression equipment is nearby (T43).
화재 위험도 분석한다(T44).Fire risk is also analyzed (T44).
도 10은 본 발명의 일실시예에 따른 작업종료 후 화재 발생 화학물질의 방치 여부 분석 흐름도이다.10 is a flow chart illustrating whether or not a fire-generating chemical substance is neglected after work is completed according to an embodiment of the present invention.
도 10을 참조하면, 주간작업시간 종료되었는지(오후 6시)를 판단한다(T50).Referring to FIG. 10, it is determined whether the weekly working time has ended (6 PM) (T50).
지하 6층에 화재발생 화학물질이 있는가를 판단한다(T51).It is determined whether there are fire-causing chemicals on the 6th basement level (T51).
작업자/관리자가 부근에 있는가를 판단한다(T52).It is determined whether an operator/manager is nearby (T52).
화학물질(MSDS, 신나통) 관리자 연락 및 위치에 물질/안전 관리자 도착한다(T53).Contact the chemical (MSDS, thinner) manager and arrive at the location of the material/safety manager (T53).
화학물질(신나통)을 위험물 저장소(1층)로 이동 보관한다(T54).Move and store chemicals (thinner barrel) to the dangerous goods storage (1st floor) (T54).
도 11은 본 발명의 일실시예에 따른 작업종료 후 화재 발생 장비의 전원 켜짐 분석 흐름도이다.11 is a flowchart illustrating a power-on analysis of fire generating equipment after work is completed according to an embodiment of the present invention.
도 11을 참조하면, 주간작업시간 종료(오후 6시)되었는지 판단한다(T60).Referring to FIG. 11, it is determined whether the weekly working time has ended (6 PM) (T60).
지하 6층에 화재발생 장비(전기 용접기)가 켜져 있는가를 판단한다(T61). 전기 용접기, 절단기, 열풍기 등의 장비의 스위치가 켜져 있는지를 판단은 스위치의 온 오프를 파악할 수 있는 비콘을 제작하여 부착한다.It is determined whether the fire-generating equipment (electric welding machine) is turned on on the 6th basement floor (T61). To determine whether the switch of equipment such as electric welding machine, cutting machine, and hot air blower is turned on, a beacon that can detect the switch on/off is produced and attached.
작업자/관리자가 부근에 있는가를 판단한다(T62).It is determined whether an operator/manager is nearby (T62).
화재발생장비(전기용접기) 관리자 연락하고 장비의 위치에 장비/안전 관리자 도착한다(T63).Contact the fire-generating equipment (electric welding machine) manager and arrive at the location of the equipment/safety manager (T63).
장비(전기 용접기) 전원을 끈다(T64).Turn off the equipment (electric welding machine) (T64).
도 12는 본 발명의 일실시예에 따른 화재 발생 원인 장비 및 물질 분류 및 능력표이다.12 is a table showing the classification and capability of equipment and materials causing fire according to an embodiment of the present invention.
도 12를 참조하면, 화재를 유발하는 장비, 화학물질, 건축자재, 전기 등의 분류 및 화재 발생 능력을 분류한 기준표이다.Referring to FIG. 12, it is a standard table for classifying fire-causing equipment, chemical substances, building materials, electricity, and the like and fire generating ability.
도 13은 본 발명의 일실시예에 따른 화재 진압 장비 및 설비 분류 및 능력표이다.13 is a classification and capability table of fire suppression equipment and facilities according to an embodiment of the present invention.
도 13을 참조하면, 화재를 진압하는 장비, 설비, 인원 등의 분류 및 화재 진압 능력을 분류한 기준표이다.Referring to FIG. 13, it is a standard table for classifying fire suppression equipment, facilities, personnel, etc. and fire suppression capabilities.
도 14는 본 발명의 일실시예에 따른 도 12, 도 13에 기준한 비콘 분류 및 센서 신호 설정 기준표이다.14 is a table of beacon classification and sensor signal setting based on FIGS. 12 and 13 according to an embodiment of the present invention.
도 14를 참조하면, 화재 발생 도구에 부착하기 위한 비콘을 분류하는 기준이다. 또한 화재 진압 도구에 부착하기 위한 비콘을 분류하는 기준이다. 상기 기준에 따라 비콘을 설정한 후 도구에 부착한다.Referring to FIG. 14, it is a standard for classifying beacons for attaching to fire generating tools. It is also a criterion for classifying beacons for attaching to fire suppression tools. After setting the beacon according to the above criteria, attach it to the tool.
도 15는 본 발명의 일실시예에 따른 지하 6층 전기실에서의 화재 발생 능력과 진압 능력과의 능력 비교표이다.15 is a table comparing the ability of fire generation and suppression ability in the electric room on the 6th floor below the ground according to an embodiment of the present invention.
도 15를 참조하면, 지하 6층에 있는 도구의 리스트와 화재 발생 능력, 진압 능력과 전체 능력을 비교하여 화재위험이 높은 지를 분석하는 과정을 나타낸 것이다.Referring to FIG. 15, a process of analyzing whether a fire risk is high by comparing a list of tools on the 6th basement level with a fire generating capability, a suppression capability, and an overall capability is shown.
도 16은 본 발명의 일실시예에 따른 현장 전체의 화재 발생 능력과 진압 능력과의 능력 비교표이다.16 is a table comparing the ability of the fire generating ability and the suppression ability of the entire site according to an embodiment of the present invention.
도 16을 참조하면, 각 층별 화재 발생 능력과 진압능력을 분석하여 정리한 표이다. 아래 결과를 보면 화재발생 위험이 높음을 나타낸다.Referring to FIG. 16, a table summarized by analyzing fire generation and suppression capabilities for each floor. The results below indicate a high risk of fire.
도 17은 본 발명의 일실시예에 따른 건설사의 전체 현장리스트 및 화재 위험 분석표이다.17 is a list of all construction companies and a fire risk analysis table according to an embodiment of the present invention.
도 17을 참조하면, 건설사의 지역별 현장별 화재위험을 분석한 현황이다. 본사에서는 이를 보고 위험한 현장을 파악한 후 조치를 취하여 화재를 예방할 수 있다.Referring to FIG. 17, it is a current state of analyzing the fire risk of each site by a construction company. Headquarters can look at this, identify dangerous sites, and take action to prevent fires.
도 18은 본 발명의 일실시예 적용을 위한 지하 25층, 지하 6층 공사에서의 지하 6층 평면도이다. 지하 6층에 주차장과 전기실, 기계실이 나타나 있다.18 is a plan view of the 6th basement level in the 25th basement level and the 6th basement level construction for the application of an embodiment of the present invention. There is a parking lot, electric room, and machine room on the 6th basement floor.
도 19는 본 발명의 일실시예에 따른 지하 6층의 부분 상세도이다. 도 18 우측 하단의 기계 전기실이다. 발전기실, 전기실, 저수조 등의 다수의 장비가 있으며 준공 후 도면을 나타내고 있다. 19 is a partial detailed view of the 6th basement floor according to an embodiment of the present invention. Fig. 18 is a mechanical electrical room in the lower right corner. There are a number of equipments such as generator room, electric room, and water tank, and the drawings are shown after completion.
도 20은 본 발명의 일실시예에 따른 지하 6층의 화재 발생 장비/물질의 능력 및 위치도이다. 특정 일자 특정 시간에 비콘을 부착한 도구들로 부터 발신되는 신호를 도면상에 표시한 것이다. 상기 위치와 비콘 아이디로 부터 위험을 분석할 수 있다.20 is a view of the capability and location of fire generating equipment/materials on the 6th floor below the ground according to an embodiment of the present invention. Signals transmitted from beacon-attached tools on a specific date and at a specific time are displayed on the drawing. Risk can be analyzed from the location and beacon ID.
도 21은 본 발명의 일실시예에 따른 지하 6층의 화재 진압 장비의 능력 및 위치도이다. 화재를 진압하기 위한 소화기 등의 위치가 표시되어 있다. 상기 위치와 비콘 아이디로 부터 화재 진압 능력을 분석할 수 있다.21 is a capability and location diagram of fire suppression equipment on the 6th basement level according to an embodiment of the present invention. The locations of fire extinguishers to extinguish fires are marked. Fire suppression capabilities can be analyzed from the location and beacon ID.
도 22는 본 발명의 일실시예에 따른 지하 6층의 화재 관리자 위치도이다.22 is a location diagram of a fire manager on the 6th basement floor according to an embodiment of the present invention.
화기 감시자와 안전 관리자 2명을 표시하고 있다.Shows fire watchers and two safety managers.
도 23은 본 발명의 일실시예에 따른 지하 6층의 작업자의 위치도이다. 전기 설비 작업자들이 각 실에서 작업을 하고 있다.23 is a position diagram of a worker on the 6th basement floor according to an embodiment of the present invention. Electrical equipment workers are working in each room.
도 24는 본 발명의 일실시예에 따른 지하 6층의 종합 위치도이다. 도 20부터 24까지의 화재 발생 및 진압 그리고 사람을 모두 표시하고 있다.24 is a general location diagram of the sixth basement floor according to an embodiment of the present invention. Fire occurrence and suppression and people from Figs. 20 to 24 are all displayed.
도 25는 본 발명의 일실시예에 따른 지하 6층 특정 화재 물질로 부터의 진압 장비 까지의 벽체를 고려한 거리 측정도이다. 좌측 하단의 저수조의 위험물질인 우레아폼을 진압하는 소화기가 멀리 있음을 나타내고 있으며, 화재 발생시 매우 위험한 구역으로 분석된다.25 is a distance measurement diagram in consideration of a wall from a specific fire material on the 6th basement floor to a suppression equipment according to an embodiment of the present invention. It indicates that there is a fire extinguisher that extinguishes urea foam, a dangerous substance in the reservoir on the lower left, and is analyzed as a very dangerous area in case of fire.
도 26은 본 발명의 일실시예에 따른 지하 6층에서의 작업종료 후 화재 발생 장비의 전원 켜짐과 방치를 분석하는 예시이다. 6시 작업종료 후 작업자들이 용접기의 전원을 끄지 않고 퇴근했다. 밤새 과열되어 주변에 있는 물질에 화재가 발생할 수 있다. 26 is an example of analyzing power-on and neglect of fire generating equipment after work is completed on the 6th basement level according to an embodiment of the present invention. After 6 o'clock, the workers left the office without turning off the welding machine. It can overheat overnight and cause a fire in the surrounding material.
본 발명에 따르면 위와 같이 방치되는 장비, 화학물질 등을 실시간으로 분석한 후 전원을 끄거나 화학물질을 1층의 위험물 보관함으로 이동하여 화재를 예방한다.According to the present invention, after analyzing in real time the equipment, chemical substances, etc. left as above, the power is turned off or the chemical substances are moved to the dangerous goods storage box on the first floor to prevent fire.
본 발명의 실시예에서는 공사현장에 가장 큰 피해를 미치는 화재를 대상으로 분석방법과 장치를 설명하였다. 한편 상기와 같이 비콘 및 사물인터넷을 이용하여 건설현장의 작업자와 장비 및 자재의 평면 및 공간의 위치와 특성을 파악할 수 있다. In the embodiment of the present invention, the analysis method and apparatus have been described for the fire that causes the greatest damage to the construction site. Meanwhile, it is possible to grasp the location and characteristics of the plane and space of workers, equipment and materials at the construction site by using beacons and IoT as described above.
이에 따라 현장내에 존재하는 사람과 사물들간의 상호간에 미치는 영향을 분석하여 화재 뿐만 아니라 다른 유형의 안전사고를 분석하는 분야로 응용하거나 변형하여 안전사고를 예방할 수 있을 것임을 건설에 종사하는 기술자들은 명백히 알 수 있을 것이다.Accordingly, engineers engaged in construction clearly know that it will be possible to prevent safety accidents by analyzing the impact between people and objects existing in the field and applying or transforming it into a field that analyzes not only fires but other types of safety accidents. I will be able to.
건설현장에서 장비, 자재, 인원에 따른 비콘을 자재 반입시 부터 부착하고 스캐너를 설치한 후, 본 발명에 따른 시스템을 구성하면 산업상 바로 이용가능하며 효과를 바로 파악할 수 있다. After attaching the beacon according to the equipment, materials, and personnel at the construction site from the time the material is brought in, and after installing the scanner, configuring the system according to the present invention can be used immediately in the industry and the effect can be immediately grasped.
..

Claims (3)

  1. 건설현장의 화재예방을 위한 화재위험분석 장치로서As a fire risk analysis device for fire prevention at construction sites
    화재 발생 장비, 물질, 자재와 진압 장비, 소화 설비 및 작업자에게 부착되고 상기 장비, 물질, 작업자의 속성 및 위치 신호를 발신하는 비콘센서 ;Beacon sensors attached to fire generating equipment, substances, materials and suppression equipment, fire extinguishing equipment and workers, and transmitting signals of properties and locations of the equipment, substances, and workers;
    건설공사 현장의 각 층 또는 구역에서 발신되는 신호를 받아 화재위험분석 서버로 전송하는 비콘 신호 스캐너 ;Beacon signal scanner that receives signals transmitted from each floor or area of a construction site and transmits them to a fire risk analysis server;
    비콘 신호로 부터 입력된 작업장소의 화재 발생 위험 상태를 분석하고 화재 위험 기준과의 비교를 통해 화재 위험을 분석하는 화재위험분석 서버 ; 및 Fire risk analysis server that analyzes the fire risk condition of the work place input from the beacon signal and analyzes the fire risk by comparing it with the fire risk standard; And
    화재위험분석 서버로 부터 화재 위험 관련 정보를 받아 표시하는 단말기로 구성된 것을 특징으로 하는 건설현장 화재위험 분석 장치.Construction site fire risk analysis device, characterized in that consisting of a terminal that receives and displays fire risk related information from the fire risk analysis server.
  2. 건설현장의 화재예방을 위한 화재위험분석 장치로서As a fire risk analysis device for fire prevention at construction sites
    화재 기준 데이터베이스와 건축도면 데이터베이스로 부터 현장의 화재 발생 원인(장비, 화학물질, 건축자재)과 화재 진압 장비, 설비, 인원의 위치 및 거리, 능력을 비교하고 특정 위치에서의 화재원인과 진압까지의 거리를 에 따른 화재위험을 분석하고, 화재원인에 대한 필수 진압장비의 존재여부를 분석하고, 작업종료 후 화학물질이 작업장소에 방치되고 있는지 분석하고, 시간상에서 화재발생 장비의 전원관리를 분석하고, 각 층별 화재위험을 분석하고, 건설사의 각 현장별 화재위험을 분석하는 제어부 ;From the fire standard database and the building drawing database, the cause of fire (equipment, chemicals, building materials) and the location and distance of fire suppression equipment, facilities, and personnel are compared, and the fire cause and suppression at a specific location. Analyzes the fire risk along the distance, analyzes the existence of essential extinguishing equipment for the cause of the fire, analyzes whether chemical substances are left at the work place after work is completed, and analyzes the power management of fire-generating equipment in time. , A control unit that analyzes the fire risk of each floor and analyzes the fire risk of each construction site;
    장비, 물질, 자재, 인원에 대한 화재발생 능력과 진압능력에 관한 기준과 함께 상기 장비 등 간의 거리, 수량, 시간, 위치에 따른 위험을 분석하는 기준을 저장하는 화재 기준 데이터베이스 ; A fire standard database storing criteria for analyzing risks according to distance, quantity, time, and location between the equipment, along with criteria for fire-producing capability and suppression capability for equipment, substances, materials, and personnel;
    화재 및 소화도구에 관한 장비 제원 정보와 비콘 신호 정보를 저장하는 비콘 실적정보 데이터베이스 ; 및Beacon performance information database storing equipment specification information and beacon signal information about fire and fire extinguishing tools; And
    건축물의 평면도, 단면도, 입체도와 함께 공사진행에 따른 시공실적을 반영한 도면을 저장하는 건축도면 데이터베이스를 포함하는 것을 특징으로 하는 건설현장 화재위험 분석 장치.A construction site fire risk analysis device, comprising: an architectural drawing database storing drawings reflecting the construction performance according to the construction row along with the plan, cross-sectional view, and three-dimensional view of the building.
  3. 건설현장의 화재예방을 위한 화재위험분석 방법으로서As a fire risk analysis method for fire prevention at construction sites
    관리자가 건설장비, 자재, 물질에 관한 화재발행 위험정보를 작성하는 단계 ;A step in which the manager prepares fire risk information on construction equipment, materials, and substances;
    관리자가 화재발생시 화재를 진압하는 장비, 도구, 설비, 사람에 관한 화재진압 정보를 작성하는 단계 ;The step of creating fire suppression information about equipment, tools, facilities, and people to extinguish a fire by a manager in the event of a fire;
    관리자가 비콘을 화재위험분석 기준에 따라 분류하고 화재발생 물체에 부착하는 단계 ; 및The step of the manager classifying the beacon according to the fire risk analysis criteria and attaching it to the fire-producing object; And
    제어부가 건축도면 데이터베이스로 부터 도면을 읽고 도구들의 위치를 표시하고 위치 또는 구역내의 화재 발생 도구들의 리스트 및 화재 발생 능력과 화재 진압능력을 분석한 후 발생능력과 진압능력을 비교하고, 발생능력이 높으면 화재위험이 높다고 판단하고 위험이 높은 위치, 작업장소 및 대응방안을 분석한 후 표시하는 단계로 이루어진 것을 특징으로 하는 화재위험분석 방법.The control unit reads the drawing from the architectural drawing database, displays the location of the tools, analyzes the list of fire-producing tools in the location or area, and analyzes the fire-producing ability and the fire suppression ability, and then compares the occurrence and suppression capacity. A fire risk analysis method comprising the steps of determining that the fire risk is high and analyzing the location, work place, and response plan with high risk, and then displaying it.
PCT/KR2019/008088 2019-07-02 2019-07-02 Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site WO2021002500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/008088 WO2021002500A1 (en) 2019-07-02 2019-07-02 Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/008088 WO2021002500A1 (en) 2019-07-02 2019-07-02 Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site

Publications (1)

Publication Number Publication Date
WO2021002500A1 true WO2021002500A1 (en) 2021-01-07

Family

ID=74100504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008088 WO2021002500A1 (en) 2019-07-02 2019-07-02 Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site

Country Status (1)

Country Link
WO (1) WO2021002500A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112862273A (en) * 2021-01-21 2021-05-28 福州水务平潭引水开发有限公司 Tunnel construction site risk assessment method and system based on Internet of things
CN116654567A (en) * 2023-07-18 2023-08-29 济南福深兴安科技有限公司 Fire prevention and extinguishment monitoring system for belt conveyor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117363A (en) * 2000-10-11 2002-04-19 Tokio Marine & Fire Insurance Co Ltd Fire risk evaluation system, fire risk evaluation method and recording medium
JP2002149965A (en) * 2000-11-16 2002-05-24 Toshiba Corp Method and device for evaluating building fire risk and storage medium
KR20160064417A (en) * 2014-11-28 2016-06-08 (주)인프라칩 System for Preventing a Calamity based on Beacon and Controlling Meathod for the Same
KR20170107121A (en) * 2016-03-14 2017-09-25 (주)다울 Safety supervision system for large scale facilities and safety supervision method thereof
KR101893563B1 (en) * 2017-09-07 2018-10-04 (주)심플랫폼 Black-box System and operating method thereof based on Internet Of Things
KR20190079449A (en) * 2017-12-27 2019-07-05 양경옥 Apparatus and methods of evaluating fire risk by using IoT(internet of things) in a construction site

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117363A (en) * 2000-10-11 2002-04-19 Tokio Marine & Fire Insurance Co Ltd Fire risk evaluation system, fire risk evaluation method and recording medium
JP2002149965A (en) * 2000-11-16 2002-05-24 Toshiba Corp Method and device for evaluating building fire risk and storage medium
KR20160064417A (en) * 2014-11-28 2016-06-08 (주)인프라칩 System for Preventing a Calamity based on Beacon and Controlling Meathod for the Same
KR20170107121A (en) * 2016-03-14 2017-09-25 (주)다울 Safety supervision system for large scale facilities and safety supervision method thereof
KR101893563B1 (en) * 2017-09-07 2018-10-04 (주)심플랫폼 Black-box System and operating method thereof based on Internet Of Things
KR20190079449A (en) * 2017-12-27 2019-07-05 양경옥 Apparatus and methods of evaluating fire risk by using IoT(internet of things) in a construction site

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112862273A (en) * 2021-01-21 2021-05-28 福州水务平潭引水开发有限公司 Tunnel construction site risk assessment method and system based on Internet of things
CN116654567A (en) * 2023-07-18 2023-08-29 济南福深兴安科技有限公司 Fire prevention and extinguishment monitoring system for belt conveyor
CN116654567B (en) * 2023-07-18 2023-12-05 济南福深兴安科技有限公司 Fire prevention and extinguishment monitoring system for belt conveyor

Similar Documents

Publication Publication Date Title
WO2021002500A1 (en) Method and apparatus for evaluating risk of fire by using internet of things beacon at construction site
JP6351224B2 (en) On-site support system for fire
KR102275989B1 (en) Fire prediction system that can predict the fire and the expected direction of fire
KR102126281B1 (en) System for detecting fire using smart fire detector based on IoT and the smart fire detector
KR101017273B1 (en) Server, system and method for disaster management
KR101936244B1 (en) Wireless gas detection system
KR20190062871A (en) The switchboard fire prevention disaster prevention and diagnosis cloud system for IOT based system
CN111596637A (en) Intelligent fire fighting management system and method
WO2024071607A1 (en) Smart platform for explosion-proof inspection in industrial site
WO2020209400A1 (en) Method and apparatus for generating safety information by using daily operation report
CN212282621U (en) Fireproof electrical control cabinet
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
KR102441268B1 (en) Firefighting inspection system using drone
KR20190079449A (en) Apparatus and methods of evaluating fire risk by using IoT(internet of things) in a construction site
KR101651894B1 (en) Fire Managing Method in Network, Intelligent Fire Extinguisher, and Managing Server Used Therein
CN112015134B (en) Personal safety protection safety system of storage cabinet and safety control method thereof
KR102255211B1 (en) Fire detection system with automatic recovery of communication loop
US20210213316A1 (en) Fire extinguishing system with immediate fire extinguisher and method using the same
WO2024071608A1 (en) Safety inspection solution for explosion proof diagnosis
KR101260352B1 (en) A system for monitoring the deterioration and fire of distribution panel, and a method thereof
KR102119039B1 (en) Combination fire detection system based on arc detection
JP7158940B2 (en) location information system
El-Sherif et al. Improving safety culture among non-electrical workers
JP2020140451A (en) Sensor maintenance and inspection support method
CN112589811A (en) Fire rescue robot and working method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936302

Country of ref document: EP

Kind code of ref document: A1