WO2021002270A1 - Rotation transmission device - Google Patents

Rotation transmission device Download PDF

Info

Publication number
WO2021002270A1
WO2021002270A1 PCT/JP2020/025005 JP2020025005W WO2021002270A1 WO 2021002270 A1 WO2021002270 A1 WO 2021002270A1 JP 2020025005 W JP2020025005 W JP 2020025005W WO 2021002270 A1 WO2021002270 A1 WO 2021002270A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
input shaft
outer ring
cage
shaft
Prior art date
Application number
PCT/JP2020/025005
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 光司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021002270A1 publication Critical patent/WO2021002270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action

Definitions

  • the present invention relates to a rotation transmission device used for switching between rotation transmission and interruption.
  • the rotation transmission device described in Patent Document 1 is a two-way clutch, which is an outer ring provided at the shaft end of the output shaft and an inner ring provided at the shaft end of the input shaft and arranged inside the outer ring in the radial direction. It has a control cage and a rotation cage that are rotatably and axially movable on the input shaft, and between the inner circumference of the outer ring and the outer circumference of the inner ring, the pillar portion of the control cage and the rotation cage.
  • a pair of rollers (engagers) incorporated in pockets formed between adjacent pillars are urged by coil springs (elastic members) in a direction in which the pillars are alternately arranged in the circumferential direction.
  • the cylinder surface formed on the inner circumference of the outer ring and the cam surface formed on the outer circumference of the inner ring are put on standby at a position where they are engaged with each other.
  • one of the pair of rollers is placed on the cylindrical surface of the outer ring.
  • the one that transmits the rotation of the inner ring to the outer ring while engaged with the cam surface of the inner ring is adopted.
  • the coil spring presses the pillar portion of the control cage and the rotation cage via the roller, so that the control cage and the rotation cage have the circumferential width of the pocket. Rotates relative to each other in the direction of increasing, and the standby state in which the pair of rollers engages with the cylindrical surface and the cam surface is maintained.
  • the outer ring since the output shaft and the outer ring are integrally formed, the direction in which the input shaft and the output shaft approach each other due to troubles during use (hereinafter, also referred to as “compression direction").
  • compression direction the direction in which the input shaft and the output shaft approach each other due to troubles during use
  • the outer ring When an excessive axial load is applied to (referred to as), the outer ring may move relative to the input shaft side integrally with the output shaft, and may press and damage internal parts such as an electromagnetic clutch.
  • the present invention is to prevent damage to internal parts when an excessive axial load is applied in the compression direction in a rotation transmission device that transmits and shuts off rotation by using a two-way clutch and an electromagnetic clutch. Make it an issue.
  • the present invention presents an input shaft, an output shaft arranged coaxially with the input shaft, and a two-way clutch that transmits and shuts off rotation from the input shaft to the output shaft.
  • the two-way clutch has an electromagnetic clutch provided on the input shaft to control engagement and disengagement of the two-way clutch, and the two-way clutch has an outer ring provided at the shaft end of the output shaft and the input shaft.
  • the outer ring has an inner ring provided at the end of the shaft and arranged radially inside the outer ring, and a control cage and a rotation cage rotatably and axially movablely supported by the input shaft.
  • Pillars provided in each of the control cage and the rotary cage are alternately arranged in the circumferential direction between the inner circumference and the outer circumference of the inner ring, and in pockets formed between adjacent pillars.
  • a pair of engaging elements and an elastic member that urges the pair of engaging elements in a direction away from each other to stand by at a position where they engage with the inner circumference of the outer ring and the outer circumference of the inner ring are incorporated.
  • the clutch has an armature connected to the control cage, a rotor fixed to the input shaft and facing the armature in the axial direction, and an electromagnet arranged to face the rotor, and is controlled and held by energizing the electromagnet.
  • the device is moved in the axial direction, and the axial movement of the control cage is converted into the relative rotational motion of the control cage and the rotation cage in the direction in which the circumferential width of the pocket becomes smaller by the motion conversion mechanism, and the pair In the rotation transmission device that disengages the engaging element of the above, the output shaft and the outer ring are connected so as to be relatively non-rotatable and relatively movable in the axial direction, and the output shaft and the outer ring are regulated to move relative to the axial direction.
  • a stop mechanism is provided, and an axial hole through which the output shaft can enter is provided at the shaft end of the input shaft, and a shaft having a predetermined value or more in a direction in which the input shaft and the output shaft approach each other.
  • the output shaft and the outer ring are connected so as to be relatively non-rotatable and relatively movable in the axial direction so that the relative movement of the output shaft and the outer ring in the axial direction during normal use is regulated by the locking mechanism, and the compression direction.
  • the output shaft is released from the regulation by the locking mechanism and enters the axial hole at the shaft end of the input shaft, so that the outer ring moves relative to the input shaft side. It was suppressed and it was possible to prevent damage to internal parts due to pressing of the outer ring.
  • a flange provided on the outer periphery of the output shaft so as to face the inner side surface in the axial direction of the connecting portion with the output shaft of the outer ring, and the connecting portion of the connecting portion with the output shaft of the outer ring.
  • a retaining ring that is fitted into a retaining ring groove provided on the outer periphery of the output shaft at a position facing the outer surface in the axial direction can be adopted.
  • the output shaft and the outer ring are accurately centered, so that the rotation transmission operation during normal use is performed.
  • the output shaft smoothly enters the axial hole of the input shaft when an excessive axial load is applied, so that damage to internal parts can be prevented more reliably.
  • the output shaft moves relative to the outer ring in the axial direction and enters the axial hole of the input shaft.
  • the relative movement of the outer ring to the input shaft side is suppressed, so that damage to the internal parts due to the pressing of the outer ring can be prevented.
  • FIG. 7A A cross-sectional view showing an enlarged view of the main part of FIG. Enlarged sectional view of the fitting portion of the retaining ring of FIG. 8A A cross-sectional view showing a state when an excessive axial load is applied corresponding to FIG. 8A.
  • FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B.
  • FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B.
  • FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B.
  • the rotation transmission device of this embodiment has an input shaft 1, an output shaft 2 arranged coaxially with the input shaft 1, and a cylinder covering the shaft ends of both shafts 1 and 2.
  • the two-way clutch 10 has a cylindrical surface 12 formed on the inner circumference of the outer ring 11 provided at the shaft end of the output shaft 2, and is provided at the shaft end of the input shaft 1.
  • a plurality of cam surfaces 14 (inclined surfaces 14a and 14b) are formed on the outer periphery of the inner ring 13 at equal intervals in the circumferential direction, and a roller 15 as a pair of engagers is formed between each cam surface 14 and the cylindrical surface 12.
  • a coil spring 20 as an elastic member is incorporated, and a roller 15 thereof is held by a cage 16 (control cage 16A and rotation cage 16B).
  • the outer ring 11 is formed separately from the output shaft 2, and one end thereof is connected to the output shaft 2 by spline coupling so as to be relatively non-rotatable and relatively movable in the axial direction.
  • the relative movement of the outer ring 11 and the output shaft 2 in the axial direction is regulated by the locking mechanism 60 described later.
  • a small-diameter tubular portion 18 forming a part of the connecting portion of the outer ring 11 with the output shaft 2 (hereinafter, also simply referred to as “connecting portion of the outer ring 11”) is formed at one end of the housing 3 via the bearing 4. It is rotatably supported by a bearing cylinder 5 having a small diameter. Further, a sealing seal 6 that seals between the small diameter cylinder portion 18 and the housing 3 is press-fitted into the inner circumference of the bearing cylinder 5 on the outer side in the axial direction from the bearing 4.
  • an axial hole 7 through which the output shaft 2 can enter is provided at the shaft end of the input shaft 1, and an inner ring 13 is integrally formed with the input shaft 1.
  • the cam surface 14 of the inner ring 13 is composed of a pair of inclined surfaces 14a and 14b inclined in opposite directions, and one side or the other side in the circumferential direction between the inclined surfaces 14a and 14b and the cylindrical surface 12 of the outer ring 11. A wedge-shaped space that becomes narrow is formed.
  • a flat spring support surface 19 facing in the tangential direction of the inner ring 13 is provided between the pair of inclined surfaces 14a and 14b of the inner ring 13, and the coil spring 20 is supported by the spring support surface 19.
  • the coil spring 20 is arranged between the pair of rollers 15 and urges the rollers 15 in a direction in which they are separated from each other.
  • each roller 15 is arranged at a standby position (position shown in FIG. 3) that engages with the cylindrical surface 12 and the cam surface 14, and the engagement between the standby position and the cylindrical surface 12 and the cam surface 14 is released. It is possible to move in the circumferential direction from the disengagement position (position shown in FIG. 2). Then, the spring holding piece 47 formed on the outer peripheral side of the spring holder 45 fixed to the input shaft 1 is held between the pair of rollers 15 in a state where the movement to the outer peripheral side is restricted (FIGS. 4 and 4). 5).
  • the cage 16 includes a control cage 16A and a rotation cage 16B.
  • the control cage 16A is provided with the same number of pillars 22 as the cam surface 14 on one side of the annular disc 21 at equal intervals in the circumferential direction, and an arcuate elongated hole is provided between the adjacent pillars 22. 23 is formed (see FIG. 6), and a tubular portion 24 is provided on the outer periphery in the direction opposite to the pillar portion 22.
  • the rotation cage 16B has a configuration in which the same number of pillar portions 26 as the cam surface 14 are provided on one side of the annular disc portion 25 at equal intervals in the circumferential direction.
  • the control cage 16A and the rotation cage 16B have a combination in which the pillar portion 26 of the rotation cage 16B is inserted into the elongated hole 23 of the control cage 16A, and the pillar portions 22, 26 are arranged alternately in the circumferential direction. Has been done. Then, in the combined state, the tip portions of the pillar portions 22 and 26 are arranged between the outer ring 11 and the inner ring 13, and the disc portions 21 and 25 are fitted to the outer circumference of the input shaft 1. It is said to be built-in located between 28 and the outer ring 11.
  • the disc portions 21 and 25 of the cages 16A and 16B are slidably (moved in the axial direction) along the slide guide surface 29 formed on the outer circumference of the input shaft 1, and are supported by the rotary cage 16B.
  • a thrust bearing 30 is incorporated between the disk portion 25 and the support ring 28 fitted to the input shaft 1. The thrust bearing 30 rotatably supports the rotary cage 16B in a state of preventing the rotary cage 16B from moving to the electromagnetic clutch 50 side.
  • a torque cam 40 is provided as a motion conversion mechanism for converting the rotational motion into a vertical motion.
  • the torque cam 40 is deeply located at the central portion in the circumferential direction on the opposite surfaces of the disc portion 21 of the control cage 16A and the disc portion 25 of the rotation cage 16B.
  • a pair of facing cam grooves 41, 42 that gradually become shallower toward both ends are provided, and a ball 43 is incorporated between the pair of facing cam grooves 41, 42.
  • the cam grooves 41 and 42 show a substantially V-shaped groove here, they may be arc-shaped grooves.
  • the spring holder 45 cannot rotate relative to the holder fitting surface 44 formed on the other end side of the inner ring 13 and cannot move in the axial direction. It is fitted, and a plurality of detent pieces 46 arranged between the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B are formed on the outer periphery of the spring holder 45.
  • the plurality of detent pieces 46 hold the pillar portions 22 and 26 of the cages 16A and 16B.
  • the pair of rollers 15 are held in the neutral position by receiving them at both edges.
  • the electromagnetic clutch 50 includes an armature 51 axially facing the end surface of the tubular portion 24 of the control cage 16A, a rotor 52 axially facing the armature 51, and the rotor 52. Has an electromagnet 53 facing in the axial direction.
  • the armature 51 is rotatably and slidably fitted to the outer peripheral cylindrical surface 54 of the support ring 28, and the cylinder portion 24 of the control cage 16A is mounted on the inner circumference of the connecting cylinder 55 provided on one side of the outer peripheral portion thereof. It is press-fitted and connected and integrated with the control cage 16A.
  • the armature 51 is provided to be slidable at two positions in the axial direction of the outer peripheral cylindrical surface 54 of the support ring 28 and the outer peripheral slide guide surface 29 of the input shaft 1.
  • the support ring 28 is positioned in the axial direction by a step portion formed on the other side of the slide guide surface 29 of the input shaft 1 in the axial direction.
  • the rotor 52 is fitted on the outer circumference of the input shaft 1, is positioned in the axial direction by a shim 56 incorporated between the rotor 52 and the support ring 28, and is prevented from rotating with respect to the input shaft 1.
  • the electromagnet 53 includes an electromagnetic coil 53a and a yoke 53b that supports the electromagnetic coil 53a.
  • the yoke 53b is fitted to the inner circumference of the other end side (opening side) of the housing 3 and is held out by a retaining ring 9, and is made rotatable relative to the input shaft 1 via the bearing 57. ing.
  • the opening of the housing 3 is closed to prevent foreign matter from entering the housing 3.
  • the locking mechanism 60 that regulates the axial relative movement of the output shaft 2 and the outer ring 11 is provided on the outer periphery of the shaft end of the output shaft 2 with the axial inner surface of the connecting portion of the outer ring 11.
  • a round circlip (circular cross section) is provided in the retaining ring groove 62 having a semicircular cross section provided on the outer periphery of the output shaft 2 at a position facing the outer surface of the connecting portion of the outer ring 11 in the axial direction while providing the facing flange 61.
  • the inner peripheral half of the retaining ring 63 made of (circlip) is fitted.
  • in-row portions 64 and 65 that are fitted to each other are provided on the outer circumference of the output shaft 2 and the inner circumference of the outer ring 11.
  • the in-row portion 64 of the output shaft 2 is formed to be shorter in the axial direction than the in-row portion 65 of the outer ring 11 by the amount of the cut-up of the spline 8 of the output shaft 2. If an annular groove deeper than the spline 8 is provided at a position adjacent to one end side of the inlay portion 64, the spline 8 is not cut off, the inrow portion 64 is extended, and the inro portion 65 of the outer ring 11 is axially extended. Can be brought into contact.
  • This rotation transmission device has the above configuration, and when the energization of the electromagnetic clutch 50 to the electromagnetic coil 53a is cut off, as shown in FIG. 3, the roller 15 of the two-way clutch 10 has the cylindrical surface 12 of the outer ring 11. And is in a state of engaging with the cam surface 14 of the inner ring 13. Therefore, when the input shaft 1 rotates in one direction, the rotation is transmitted from the inner ring 13 to the outer ring 11 via one of the pair of rollers 15, and the output shaft 2 rotates in the same direction as the input shaft 1. Further, when the input shaft 1 rotates in the opposite direction, the rotation is transmitted from the inner ring 13 to the outer ring 11 and the output shaft 2 via the other roller 15.
  • the ball 43 of the torque cam 40 rolls and moves toward the deepest position of the groove depths of the cam grooves 41 and 42 (from the state of FIG. 7B).
  • the control cage 16A and the rotation cage 16B rotate relative to each other in the direction in which the circumferential width of the pocket 27 becomes smaller. Due to the relative rotation of the control cage 16A and the rotation cage 16B, the roller 15 of the two-way clutch 10 is pushed by the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B and moves in a direction approaching each other. To do.
  • the roller 15 is displaced to the neutral position where the roller 15 is disengaged from the cylindrical surface 12 and the cam surface 14, and the two-way clutch 10 is in the disengaged state.
  • the detent piece 46 formed on the spring holder 45 becomes the pillar portion 22 of the control cage 16A and the rotation cage 16B.
  • the control cage 16A and the rotation cage 16B rotate together with the input shaft 1.
  • the roller 15 of the two-way clutch 10 is held at the disengagement position, the rotation of the input shaft 1 and the inner ring 13 is not transmitted to the outer ring 11 and the output shaft 2, and the input shaft 1 rotates freely.
  • the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B are spring holders.
  • the relative rotation amount is regulated by abutting on both side edges of the detent piece 46 of 45. Therefore, the coil spring 20 does not contract more than necessary, and even if expansion and contraction are repeated, the coil spring 20 is not damaged by fatigue.
  • this rotation transmission device when an axial load of a predetermined value or more acts in the compression direction, as shown in FIG. 9, the locking mechanism 60 that regulates the axial relative movement between the output shaft 2 and the outer ring 11 is stopped.
  • the ring 63 is disengaged from the retaining ring groove 62 of the output shaft 2, and the output shaft 2 is released from the regulation by the locking mechanism 60 and enters the axial hole 7 of the input shaft 1.
  • in-row portions 64 and 65 are provided on the outer circumference of the output shaft 2 and the inner circumference of the outer ring 11, and since the output shaft 2 and the outer ring 11 are accurately centered, the axial hole 7 of the input shaft 1 is reached. The entry of the output shaft 2 is performed smoothly.
  • the retaining ring groove 62 of the output shaft 2 has a semicircular cross section, and a round circlip is used for the retaining ring 63.
  • the retaining ring groove 62 If the outer portion in the axial direction is a tapered surface 62a having a predetermined angle, the retaining ring 63 will be more smoothly disengaged from the retaining ring groove 62 when an axial load of a predetermined value or more is applied in the compression direction.
  • a retaining ring groove 66 having a rectangular cross section shallower than the spline 8 is provided on the outer circumference of the output shaft 2, and the inner circumference of the retaining ring 67 made of a circlip having a rectangular cross section is provided in the retaining ring groove 66.
  • the side portion may be fitted.
  • FIG. 10C by deforming the inner wall on the outer side in the axial direction of the retaining ring groove 66 into a tapered surface 66a having a predetermined angle, an axial load of a predetermined value or more acts in the compression direction. Occasionally, the retaining ring 67 can be more smoothly disengaged from the retaining ring groove 66.
  • the retaining ring groove 68 having a rectangular cross section provided on the outer periphery of the output shaft 2 has the internal teeth of a toothed washer 69 having an internal tooth shape instead of the retaining ring 67 of FIGS. 10B and 10C.
  • the portion 69a may be fitted.

Abstract

An output shaft (2) and an outer ring (11) of a two-way clutch (10) are linked together so as to be incapable of relative rotation and capable of relative axial movement, relative axial movement of the output shaft (2) and the outer ring (11) during normal use is restrained by an interlocking mechanism (60), and when an axial load of a prescribed value or greater acts in a compressing direction, the interlocking mechanism (60) ceases to restrain the output shaft (2), which enters an axial hole (7) provided to a shaft end portion of an input shaft (1), whereby relative movement of the outer ring (11) toward the input shaft (1) is prevented.

Description

回転伝達装置Rotation transmission device
 この発明は、回転の伝達と遮断の切り換えに用いられる回転伝達装置に関する。 The present invention relates to a rotation transmission device used for switching between rotation transmission and interruption.
 入力軸から出力軸への回転の伝達と遮断とを行う回転伝達装置として、2方向クラッチを有し、その2方向クラッチの係合および解除を電磁クラッチにより制御するようにしたものが従来から知られている(例えば、特許文献1参照。)。 As a rotation transmission device that transmits and shuts off rotation from the input shaft to the output shaft, it has been conventionally known that a two-way clutch is provided and the engagement and disengagement of the two-way clutch is controlled by an electromagnetic clutch. (See, for example, Patent Document 1).
 特許文献1に記載された回転伝達装置は、2方向クラッチとして、出力軸の軸端部に設けられた外輪と、入力軸の軸端部に設けられ、外輪の径方向内側に配置される内輪と、入力軸に回転自在かつ軸方向移動自在に支持される制御保持器および回転保持器を有し、外輪の内周と内輪の外周との間に、制御保持器の柱部と回転保持器の柱部を周方向で交互に配置し、隣接する柱部どうし間に形成されたポケットに組み込んだ一対のローラ(係合子)を、コイルばね(弾性部材)で互いに離反する方向に付勢して、外輪の内周に形成された円筒面と内輪の外周に形成されたカム面とに係合する位置にスタンバイさせ、内輪が一方向に回転すると、一対のローラの一方が外輪の円筒面と内輪のカム面に係合した状態で内輪の回転を外輪に伝達するものを採用している。 The rotation transmission device described in Patent Document 1 is a two-way clutch, which is an outer ring provided at the shaft end of the output shaft and an inner ring provided at the shaft end of the input shaft and arranged inside the outer ring in the radial direction. It has a control cage and a rotation cage that are rotatably and axially movable on the input shaft, and between the inner circumference of the outer ring and the outer circumference of the inner ring, the pillar portion of the control cage and the rotation cage. A pair of rollers (engagers) incorporated in pockets formed between adjacent pillars are urged by coil springs (elastic members) in a direction in which the pillars are alternately arranged in the circumferential direction. Then, the cylinder surface formed on the inner circumference of the outer ring and the cam surface formed on the outer circumference of the inner ring are put on standby at a position where they are engaged with each other. When the inner ring rotates in one direction, one of the pair of rollers is placed on the cylindrical surface of the outer ring. The one that transmits the rotation of the inner ring to the outer ring while engaged with the cam surface of the inner ring is adopted.
 そして、入力軸上に設けた電磁クラッチの電磁コイル(電磁石)に対する通電により、入力軸に固定されたロータと対向する位置で制御保持器に連結されたアーマチュアに磁気吸引力を付与して、アーマチュアおよび制御保持器を軸方向に移動させ、その制御保持器の円板部と回転保持器の円板部の対向面間に設けられたトルクカム(運動変換機構)の作用により、ポケットの周方向幅が小さくなる方向に制御保持器と回転保持器とを相対回転させて、各保持器の柱部で一対のローラを係合解除位置(係合が解除された中立位置)まで移動させ、内輪から外輪への回転伝達を遮断するようにしている。 Then, by energizing the electromagnetic coil (electromagnet) of the electromagnetic clutch provided on the input shaft, magnetic attraction is applied to the armature connected to the control cage at a position facing the rotor fixed to the input shaft, and the armature And, by moving the control cage in the axial direction and the action of the torque cam (motion conversion mechanism) provided between the disc portion of the control cage and the disc portion of the rotation cage, the width in the circumferential direction of the pocket. The control cage and the rotation cage are relatively rotated in the direction in which is smaller, and a pair of rollers are moved to the disengaged position (neutral position where the engagement is disengaged) at the pillar portion of each cage, and from the inner ring. The rotation transmission to the outer ring is cut off.
 また、電磁クラッチの電磁コイルに対する通電を解除すると、コイルばねがローラを介して制御保持器および回転保持器の柱部を押圧することにより、制御保持器と回転保持器とがポケットの周方向幅が大きくなる方向に相対回転して、一対のローラが円筒面およびカム面に係合するスタンバイ状態が保持される。 Further, when the energization of the electromagnetic coil of the electromagnetic clutch is released, the coil spring presses the pillar portion of the control cage and the rotation cage via the roller, so that the control cage and the rotation cage have the circumferential width of the pocket. Rotates relative to each other in the direction of increasing, and the standby state in which the pair of rollers engages with the cylindrical surface and the cam surface is maintained.
特開2014-25483号公報Japanese Unexamined Patent Publication No. 2014-25483
 ところで、上記のような回転伝達装置では、出力軸と外輪とが一体に形成されているため、使用中のトラブル等によって入力軸と出力軸とが互いに接近する方向(以下、「圧縮方向」とも称する。)に過剰な軸方向荷重が作用した場合に、外輪が出力軸と一体に入力軸側へ相対移動し、電磁クラッチ等の内部部品を押圧して破損させてしまうおそれがあった。 By the way, in the rotation transmission device as described above, since the output shaft and the outer ring are integrally formed, the direction in which the input shaft and the output shaft approach each other due to troubles during use (hereinafter, also referred to as "compression direction"). When an excessive axial load is applied to (referred to as), the outer ring may move relative to the input shaft side integrally with the output shaft, and may press and damage internal parts such as an electromagnetic clutch.
 そこで、この発明は、2方向クラッチと電磁クラッチを用いて回転の伝達と遮断とを行う回転伝達装置において、圧縮方向に過剰な軸方向荷重が作用したときの内部部品の破損を防止することを課題とする。 Therefore, the present invention is to prevent damage to internal parts when an excessive axial load is applied in the compression direction in a rotation transmission device that transmits and shuts off rotation by using a two-way clutch and an electromagnetic clutch. Make it an issue.
 上記の課題を解決するために、この発明は、入力軸と、その入力軸と同軸上に配置された出力軸と、前記入力軸から出力軸への回転の伝達と遮断とを行なう2方向クラッチと、前記入力軸上に設けられて2方向クラッチの係合および解除を制御する電磁クラッチを有し、前記2方向クラッチが、前記出力軸の軸端部に設けられた外輪と、前記入力軸の軸端部に設けられ、前記外輪の径方向内側に配置される内輪と、前記入力軸に回転自在かつ軸方向移動自在に支持される制御保持器および回転保持器を有し、前記外輪の内周と内輪の外周との間に、前記制御保持器および回転保持器のそれぞれに設けられた柱部を周方向に交互に配置し、隣接する柱部どうしの間に形成されたポケットに、一対の係合子と、その一対の係合子を互いに離反する方向に付勢して、前記外輪の内周および内輪の外周に係合する位置にスタンバイさせる弾性部材を組み込んだものであり、前記電磁クラッチが、前記制御保持器に連結されたアーマチュアと、前記入力軸に固定されてアーマチュアと軸方向で対向するロータと、前記ロータに対向配置された電磁石を有し、前記電磁石に対する通電により制御保持器を軸方向に移動させ、その制御保持器の軸方向移動を運動変換機構によって前記ポケットの周方向幅が小さくなる方向の制御保持器と回転保持器の相対回転運動に変換して、前記一対の係合子を係合解除させるものである回転伝達装置において、前記出力軸と外輪とが相対回転不能かつ軸方向相対移動可能に連結され、その出力軸と外輪の軸方向相対移動を規制する係止機構が設けられるとともに、前記入力軸の軸端部には前記出力軸が進入可能な軸方向孔が設けられており、前記入力軸と出力軸とが互いに接近する方向に所定値以上の軸方向荷重が作用したときに、前記出力軸が前記係止機構による規制を解除されて、前記入力軸の軸方向孔に入り込むようになっている構成を採用した。 In order to solve the above problems, the present invention presents an input shaft, an output shaft arranged coaxially with the input shaft, and a two-way clutch that transmits and shuts off rotation from the input shaft to the output shaft. The two-way clutch has an electromagnetic clutch provided on the input shaft to control engagement and disengagement of the two-way clutch, and the two-way clutch has an outer ring provided at the shaft end of the output shaft and the input shaft. The outer ring has an inner ring provided at the end of the shaft and arranged radially inside the outer ring, and a control cage and a rotation cage rotatably and axially movablely supported by the input shaft. Pillars provided in each of the control cage and the rotary cage are alternately arranged in the circumferential direction between the inner circumference and the outer circumference of the inner ring, and in pockets formed between adjacent pillars. A pair of engaging elements and an elastic member that urges the pair of engaging elements in a direction away from each other to stand by at a position where they engage with the inner circumference of the outer ring and the outer circumference of the inner ring are incorporated. The clutch has an armature connected to the control cage, a rotor fixed to the input shaft and facing the armature in the axial direction, and an electromagnet arranged to face the rotor, and is controlled and held by energizing the electromagnet. The device is moved in the axial direction, and the axial movement of the control cage is converted into the relative rotational motion of the control cage and the rotation cage in the direction in which the circumferential width of the pocket becomes smaller by the motion conversion mechanism, and the pair In the rotation transmission device that disengages the engaging element of the above, the output shaft and the outer ring are connected so as to be relatively non-rotatable and relatively movable in the axial direction, and the output shaft and the outer ring are regulated to move relative to the axial direction. A stop mechanism is provided, and an axial hole through which the output shaft can enter is provided at the shaft end of the input shaft, and a shaft having a predetermined value or more in a direction in which the input shaft and the output shaft approach each other. When a directional load is applied, the output shaft is released from the restriction by the locking mechanism and enters the axial hole of the input shaft.
 すなわち、出力軸と外輪とを相対回転不能かつ軸方向相対移動可能に連結して、通常使用時の出力軸と外輪の軸方向相対移動は係止機構で規制されるようにしておき、圧縮方向に所定値以上の軸方向荷重が作用したときには、出力軸が係止機構による規制を解除されて入力軸の軸端部の軸方向孔に入り込むことにより、外輪の入力軸側への相対移動が抑えられ、外輪の押圧による内部部品の破損を防止できるようにしたのである。 That is, the output shaft and the outer ring are connected so as to be relatively non-rotatable and relatively movable in the axial direction so that the relative movement of the output shaft and the outer ring in the axial direction during normal use is regulated by the locking mechanism, and the compression direction. When an axial load of a predetermined value or more is applied to, the output shaft is released from the regulation by the locking mechanism and enters the axial hole at the shaft end of the input shaft, so that the outer ring moves relative to the input shaft side. It was suppressed and it was possible to prevent damage to internal parts due to pressing of the outer ring.
 ここで、前記係止機構としては、前記外輪の出力軸との連結部の軸方向内側面と対向するように出力軸の外周に設けられたフランジと、前記外輪の出力軸との連結部の軸方向外側面と対向する位置で、前記出力軸の外周に設けられた止め輪溝に嵌め込まれる止め輪とからなるものを採用することができる。 Here, as the locking mechanism, a flange provided on the outer periphery of the output shaft so as to face the inner side surface in the axial direction of the connecting portion with the output shaft of the outer ring, and the connecting portion of the connecting portion with the output shaft of the outer ring. A retaining ring that is fitted into a retaining ring groove provided on the outer periphery of the output shaft at a position facing the outer surface in the axial direction can be adopted.
 また、前記出力軸の外周と外輪の内周に、互いに嵌合するインロー部が設けられている構成とすれば、出力軸と外輪が精度よく芯出しされるので、通常使用時の回転伝達動作の安定性が向上するとともに、過剰な軸方向荷重が作用したときに出力軸がスムーズに入力軸の軸方向孔に入り込み、より確実に内部部品の破損を防止できるようになる。 Further, if the outer circumference of the output shaft and the inner circumference of the outer ring are provided with in-row portions that are fitted to each other, the output shaft and the outer ring are accurately centered, so that the rotation transmission operation during normal use is performed. In addition to improving the stability of the device, the output shaft smoothly enters the axial hole of the input shaft when an excessive axial load is applied, so that damage to internal parts can be prevented more reliably.
 この発明の回転伝達装置は、上述したように、圧縮方向に所定値以上の過剰な軸方向荷重が作用しても、出力軸が外輪と軸方向相対移動して入力軸の軸方向孔に入り込むことにより、外輪の入力軸側への相対移動が抑えられるので、外輪の押圧による内部部品の破損を防止することができる。 In the rotation transmission device of the present invention, as described above, even if an excessive axial load of a predetermined value or more acts in the compression direction, the output shaft moves relative to the outer ring in the axial direction and enters the axial hole of the input shaft. As a result, the relative movement of the outer ring to the input shaft side is suppressed, so that damage to the internal parts due to the pressing of the outer ring can be prevented.
この発明の実施形態の回転伝達装置の正面断面図Front sectional view of the rotation transmission device according to the embodiment of the present invention. 図1のII-II線に沿った断面図Sectional view taken along line II-II of FIG. 図2に対応してローラの係合状態を示す断面図Cross-sectional view showing the engaged state of the rollers corresponding to FIG. 図1のIV-IV線に沿った断面図Sectional view taken along line IV-IV of FIG. 図4のV-V線に沿った断面図Sectional view taken along the line VV of FIG. 図1のVI-VI線に沿った断面図Sectional view along the VI-VI line of FIG. 図6のVII-VII線に沿った断面図Sectional view taken along the line VII-VII of FIG. 図7Aに対応してトルクカムの動作を説明する断面図A cross-sectional view illustrating the operation of the torque cam corresponding to FIG. 7A. 図1の要部を拡大して示す断面図A cross-sectional view showing an enlarged view of the main part of FIG. 図8Aの止め輪の嵌合部分の拡大断面図Enlarged sectional view of the fitting portion of the retaining ring of FIG. 8A 図8Aに対応して過剰な軸方向荷重が作用したときの状態を示す断面図A cross-sectional view showing a state when an excessive axial load is applied corresponding to FIG. 8A. 図8Bに対応して止め輪の嵌合部分の変形例を示す断面図FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B. 図8Bに対応して止め輪の嵌合部分の変形例を示す断面図FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B. 図8Bに対応して止め輪の嵌合部分の変形例を示す断面図FIG. 8B is a cross-sectional view showing a modified example of the fitting portion of the retaining ring corresponding to FIG. 8B. 図8Bに対応して歯付き座金を用いた変形例を示す断面図Cross-sectional view showing a modified example using a toothed washer corresponding to FIG. 8B. 図11AのXI-XI線に沿った断面図Sectional view taken along line XI-XI of FIG. 11A
 以下、図1乃至図11Bに基づき、この発明の実施形態を説明する。この実施形態の回転伝達装置は、図1に示すように、入力軸1と、その入力軸1と同軸上に配置された出力軸2と、その両軸1、2の軸端部を覆う円筒状のハウジング3と、そのハウジング3内に組み込まれて入力軸1から出力軸2への回転の伝達と遮断とを行なう2方向クラッチ10およびその2方向クラッチ10の係合、解除を制御する電磁クラッチ50とからなる。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 11B. As shown in FIG. 1, the rotation transmission device of this embodiment has an input shaft 1, an output shaft 2 arranged coaxially with the input shaft 1, and a cylinder covering the shaft ends of both shafts 1 and 2. Electromagnetic wave that controls the engagement and disengagement of the shaped housing 3, the two-way clutch 10 incorporated in the housing 3 and transmitting and blocking the rotation from the input shaft 1 to the output shaft 2, and the two-way clutch 10. It consists of a clutch 50.
 2方向クラッチ10は、図1および図2に示すように、出力軸2の軸端部に設けられた外輪11の内周に円筒面12を形成し、入力軸1の軸端部に設けられた内輪13の外周に複数のカム面14(傾斜面14a、14b)を周方向に等間隔に形成して、各カム面14と円筒面12との間に一対の係合子としてのローラ15と弾性部材としてのコイルばね20を組み込み、そのローラ15を保持器16(制御保持器16Aおよび回転保持器16B)で保持している。そして、その内輪13が一方向に回転すると、一対のローラ15の一方が円筒面12およびカム面14に係合した状態で内輪13の回転を外輪11に伝達し、内輪13の他方向への回転時には、他方のローラ15が円筒面12およびカム面14に係合した状態で内輪13の回転を外輪11に伝達するようにしている。その外輪11の一端側(閉塞端側)の内周には、入力軸1の軸端部を回転自在に支持する軸受17が組み込まれている。 As shown in FIGS. 1 and 2, the two-way clutch 10 has a cylindrical surface 12 formed on the inner circumference of the outer ring 11 provided at the shaft end of the output shaft 2, and is provided at the shaft end of the input shaft 1. A plurality of cam surfaces 14 ( inclined surfaces 14a and 14b) are formed on the outer periphery of the inner ring 13 at equal intervals in the circumferential direction, and a roller 15 as a pair of engagers is formed between each cam surface 14 and the cylindrical surface 12. A coil spring 20 as an elastic member is incorporated, and a roller 15 thereof is held by a cage 16 (control cage 16A and rotation cage 16B). Then, when the inner ring 13 rotates in one direction, the rotation of the inner ring 13 is transmitted to the outer ring 11 in a state where one of the pair of rollers 15 is engaged with the cylindrical surface 12 and the cam surface 14, and the inner ring 13 is rotated in the other direction. At the time of rotation, the rotation of the inner ring 13 is transmitted to the outer ring 11 in a state where the other roller 15 is engaged with the cylindrical surface 12 and the cam surface 14. A bearing 17 that rotatably supports the shaft end portion of the input shaft 1 is incorporated in the inner circumference of one end side (closed end side) of the outer ring 11.
 ここで、外輪11は、出力軸2と別体に形成され、その一端部がスプライン結合によって出力軸2に相対回転不能かつ軸方向相対移動可能に連結されている。この外輪11と出力軸2との軸方向相対移動は、後述する係止機構60によって規制されている。そして、外輪11の出力軸2との連結部(以下、単に「外輪11の連結部」とも称する。)の一部をなす小径筒部18が、軸受4を介してハウジング3の一端に形成された小径の軸受筒5に回転自在に支持されている。また、その小径筒部18とハウジング3との間をシールする密封シール6が、軸受4よりも軸方向外側で軸受筒5の内周に圧入されている。 Here, the outer ring 11 is formed separately from the output shaft 2, and one end thereof is connected to the output shaft 2 by spline coupling so as to be relatively non-rotatable and relatively movable in the axial direction. The relative movement of the outer ring 11 and the output shaft 2 in the axial direction is regulated by the locking mechanism 60 described later. Then, a small-diameter tubular portion 18 forming a part of the connecting portion of the outer ring 11 with the output shaft 2 (hereinafter, also simply referred to as “connecting portion of the outer ring 11”) is formed at one end of the housing 3 via the bearing 4. It is rotatably supported by a bearing cylinder 5 having a small diameter. Further, a sealing seal 6 that seals between the small diameter cylinder portion 18 and the housing 3 is press-fitted into the inner circumference of the bearing cylinder 5 on the outer side in the axial direction from the bearing 4.
 一方、入力軸1の軸端部には出力軸2が進入可能な軸方向孔7が設けられており、この入力軸1に内輪13が一体に形成されている。その内輪13のカム面14は、相反する方向に傾斜する一対の傾斜面14a、14bからなり、各傾斜面14a、14bと外輪11の円筒面12との間に周方向の一側または他側で狭小となる楔形空間が形成されている。また、内輪13の一対の傾斜面14a、14bの間には内輪13の接線方向に向く平坦なばね支持面19が設けられ、そのばね支持面19によってコイルばね20が支持されている。 On the other hand, an axial hole 7 through which the output shaft 2 can enter is provided at the shaft end of the input shaft 1, and an inner ring 13 is integrally formed with the input shaft 1. The cam surface 14 of the inner ring 13 is composed of a pair of inclined surfaces 14a and 14b inclined in opposite directions, and one side or the other side in the circumferential direction between the inclined surfaces 14a and 14b and the cylindrical surface 12 of the outer ring 11. A wedge-shaped space that becomes narrow is formed. Further, a flat spring support surface 19 facing in the tangential direction of the inner ring 13 is provided between the pair of inclined surfaces 14a and 14b of the inner ring 13, and the coil spring 20 is supported by the spring support surface 19.
 コイルばね20は、一対のローラ15の間に配置されて、各ローラ15を互いに離反する方向に付勢している。これにより、各ローラ15は、円筒面12およびカム面14に係合するスタンバイ位置(図3に示す位置)に配置され、そのスタンバイ位置と円筒面12およびカム面14との係合が解除される係合解除位置(図2示す位置)との間で周方向に移動可能とされている。そして、入力軸1に固定されたばねホルダ45の外周側に形成されたばね保持片47によって、外周側への移動が規制された状態で一対のローラ15の間に保持されている(図4、図5参照)。 The coil spring 20 is arranged between the pair of rollers 15 and urges the rollers 15 in a direction in which they are separated from each other. As a result, each roller 15 is arranged at a standby position (position shown in FIG. 3) that engages with the cylindrical surface 12 and the cam surface 14, and the engagement between the standby position and the cylindrical surface 12 and the cam surface 14 is released. It is possible to move in the circumferential direction from the disengagement position (position shown in FIG. 2). Then, the spring holding piece 47 formed on the outer peripheral side of the spring holder 45 fixed to the input shaft 1 is held between the pair of rollers 15 in a state where the movement to the outer peripheral side is restricted (FIGS. 4 and 4). 5).
 保持器16は制御保持器16Aと回転保持器16Bとからなる。そのうちの制御保持器16Aは、環状の円板部21の片面にカム面14と同数の柱部22を周方向に等間隔に設けて、隣接する柱部22どうしの間に円弧状の長孔23を形成し(図6参照)、外周には柱部22と反対向きに筒部24を設けた構成とされている。一方、回転保持器16Bは、環状の円板部25の片面にカム面14と同数の柱部26を周方向に等間隔に設けた構成とされている。 The cage 16 includes a control cage 16A and a rotation cage 16B. Among them, the control cage 16A is provided with the same number of pillars 22 as the cam surface 14 on one side of the annular disc 21 at equal intervals in the circumferential direction, and an arcuate elongated hole is provided between the adjacent pillars 22. 23 is formed (see FIG. 6), and a tubular portion 24 is provided on the outer periphery in the direction opposite to the pillar portion 22. On the other hand, the rotation cage 16B has a configuration in which the same number of pillar portions 26 as the cam surface 14 are provided on one side of the annular disc portion 25 at equal intervals in the circumferential direction.
 制御保持器16Aと回転保持器16Bは、制御保持器16Aの長孔23内に回転保持器16Bの柱部26が挿入されて、それぞれの柱部22、26が周方向に交互に並ぶ組み合わせとされている。そして、その組み合わせ状態でそれぞれの柱部22、26の先端部が外輪11と内輪13との間に配置され、それぞれの円板部21、25が入力軸1の外周に嵌合された支持リング28と外輪11との間に位置する組込みとされている。 The control cage 16A and the rotation cage 16B have a combination in which the pillar portion 26 of the rotation cage 16B is inserted into the elongated hole 23 of the control cage 16A, and the pillar portions 22, 26 are arranged alternately in the circumferential direction. Has been done. Then, in the combined state, the tip portions of the pillar portions 22 and 26 are arranged between the outer ring 11 and the inner ring 13, and the disc portions 21 and 25 are fitted to the outer circumference of the input shaft 1. It is said to be built-in located between 28 and the outer ring 11.
 上記のような各保持器16A、16Bの組込みによって、図2に示すように、制御保持器16Aの柱部22と回転保持器16Bの柱部26との間に、内輪13のカム面14と径方向で対向するポケット27が形成され、各ポケット27に一対のローラ15およびコイルばね20が組み込まれている。 By incorporating the respective cages 16A and 16B as described above, as shown in FIG. 2, between the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B, the cam surface 14 of the inner ring 13 and the cam surface 14 The pockets 27 facing each other in the radial direction are formed, and a pair of rollers 15 and a coil spring 20 are incorporated in each pocket 27.
 また、各保持器16A、16Bの円板部21、25は入力軸1の外周に形成されたスライド案内面29に沿ってスライド(軸方向移動)自在に支持されており、回転保持器16Bの円板部25と入力軸1に嵌合された前記支持リング28との間にはスラスト軸受30が組み込まれている。スラスト軸受30は、回転保持器16Bが電磁クラッチ50側に移動するのを防止する状態で、その回転保持器16Bを回転自在に支持している。 Further, the disc portions 21 and 25 of the cages 16A and 16B are slidably (moved in the axial direction) along the slide guide surface 29 formed on the outer circumference of the input shaft 1, and are supported by the rotary cage 16B. A thrust bearing 30 is incorporated between the disk portion 25 and the support ring 28 fitted to the input shaft 1. The thrust bearing 30 rotatably supports the rotary cage 16B in a state of preventing the rotary cage 16B from moving to the electromagnetic clutch 50 side.
 そして、制御保持器16Aの円板部21と回転保持器16Bの円板部25との間には、制御保持器16Aの軸方向の移動を、その制御保持器16Aと回転保持器16Bの相対的な回転運動に変換する運動変換機構としてのトルクカム40が設けられている。 Then, between the disc portion 21 of the control cage 16A and the disc portion 25 of the rotation cage 16B, the axial movement of the control cage 16A is performed relative to the control cage 16A and the rotation cage 16B. A torque cam 40 is provided as a motion conversion mechanism for converting the rotational motion into a vertical motion.
 トルクカム40は、図6および図7A、図7Bに示すように、制御保持器16Aの円板部21と回転保持器16Bの円板部25の互いの対向面に、周方向の中央部で深く両端に至るに従って次第に浅くなる対向一対のカム溝41、42を設け、その対向一対のカム溝41、42の間にボール43を組み込んだ構成としている。カム溝41、42は、ここでは略V字状の溝を示したが、円弧状の溝であってもよい。 As shown in FIGS. 6 and 7A and 7B, the torque cam 40 is deeply located at the central portion in the circumferential direction on the opposite surfaces of the disc portion 21 of the control cage 16A and the disc portion 25 of the rotation cage 16B. A pair of facing cam grooves 41, 42 that gradually become shallower toward both ends are provided, and a ball 43 is incorporated between the pair of facing cam grooves 41, 42. Although the cam grooves 41 and 42 show a substantially V-shaped groove here, they may be arc-shaped grooves.
 そして、図7Bに示す状態から、制御保持器16Aの円板部21が回転保持器16Bの円板部25に接近する方向に制御保持器16Aが軸方向移動した際に、図7Aに示すように、ボール43がカム溝41、42の溝深さの最も深い位置に向けて転がり移動し、制御保持器16Aと回転保持器16Bがポケット27の周方向幅を小さくする方向に相対回転するようになっている。 Then, from the state shown in FIG. 7B, when the control cage 16A moves in the axial direction in the direction in which the disk portion 21 of the control cage 16A approaches the disk portion 25 of the rotation cage 16B, as shown in FIG. 7A. The ball 43 rolls and moves toward the deepest position of the groove depths of the cam grooves 41 and 42, and the control cage 16A and the rotation cage 16B rotate relative to each other in the direction of reducing the circumferential width of the pocket 27. It has become.
 ここで、図4および図5に示すように、入力軸1には、内輪13の他端側に形成されたホルダ嵌合面44に、前記ばねホルダ45が相対回転不能かつ軸方向移動不能に嵌合されており、そのばねホルダ45の外周に、制御保持器16Aの柱部22と回転保持器16Bの柱部26との間に配置される回り止め片46が複数形成されている。その複数の回り止め片46は、制御保持器16Aと回転保持器16Bとがポケット27の周方向幅を縮小する方向に相対回転した際に、各保持器16A、16Bの柱部22、26を両側縁で受け止めて一対のローラ15を中立位置に保持するようになっている。 Here, as shown in FIGS. 4 and 5, in the input shaft 1, the spring holder 45 cannot rotate relative to the holder fitting surface 44 formed on the other end side of the inner ring 13 and cannot move in the axial direction. It is fitted, and a plurality of detent pieces 46 arranged between the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B are formed on the outer periphery of the spring holder 45. When the control cage 16A and the rotation cage 16B rotate relative to each other in the direction of reducing the circumferential width of the pocket 27, the plurality of detent pieces 46 hold the pillar portions 22 and 26 of the cages 16A and 16B. The pair of rollers 15 are held in the neutral position by receiving them at both edges.
 一方、電磁クラッチ50は、図1に示すように、制御保持器16Aの筒部24の端面に軸方向で対向するアーマチュア51と、そのアーマチュア51と軸方向で対向するロータ52と、そのロータ52に軸方向で対向する電磁石53とを有している。 On the other hand, as shown in FIG. 1, the electromagnetic clutch 50 includes an armature 51 axially facing the end surface of the tubular portion 24 of the control cage 16A, a rotor 52 axially facing the armature 51, and the rotor 52. Has an electromagnet 53 facing in the axial direction.
 アーマチュア51は、支持リング28の外周円筒面54に回転自在かつスライド自在に嵌合されており、その外周部の片面に設けられた連結筒55の内周に制御保持器16Aの筒部24が圧入されて、制御保持器16Aと連結一体化されている。これにより、アーマチュア51は、支持リング28の外周円筒面54と入力軸1の外周のスライド案内面29の軸方向の2箇所でスライド自在の支持とされている。ここで、支持リング28は、入力軸1のスライド案内面29の軸方向他側に形成された段部によって軸方向に位置決めされている。 The armature 51 is rotatably and slidably fitted to the outer peripheral cylindrical surface 54 of the support ring 28, and the cylinder portion 24 of the control cage 16A is mounted on the inner circumference of the connecting cylinder 55 provided on one side of the outer peripheral portion thereof. It is press-fitted and connected and integrated with the control cage 16A. As a result, the armature 51 is provided to be slidable at two positions in the axial direction of the outer peripheral cylindrical surface 54 of the support ring 28 and the outer peripheral slide guide surface 29 of the input shaft 1. Here, the support ring 28 is positioned in the axial direction by a step portion formed on the other side of the slide guide surface 29 of the input shaft 1 in the axial direction.
 ロータ52は、入力軸1の外周に嵌合され、支持リング28との間に組み込まれたシム56によって軸方向に位置決めされ、かつ、入力軸1に対して回り止めされている。 The rotor 52 is fitted on the outer circumference of the input shaft 1, is positioned in the axial direction by a shim 56 incorporated between the rotor 52 and the support ring 28, and is prevented from rotating with respect to the input shaft 1.
 電磁石53は、電磁コイル53aと、電磁コイル53aを支持するヨーク53bとからなる。そのヨーク53bは、ハウジング3の他端側(開口側)の内周に嵌合されて、止め輪9によって抜止めされており、軸受57を介して入力軸1と相対的に回転自在とされている。なお、この電磁石53の組込みにより、ハウジング3の開口が閉塞され、ハウジング3内へ異物が侵入しないようになっている。 The electromagnet 53 includes an electromagnetic coil 53a and a yoke 53b that supports the electromagnetic coil 53a. The yoke 53b is fitted to the inner circumference of the other end side (opening side) of the housing 3 and is held out by a retaining ring 9, and is made rotatable relative to the input shaft 1 via the bearing 57. ing. By incorporating the electromagnet 53, the opening of the housing 3 is closed to prevent foreign matter from entering the housing 3.
 図8A、図8Bに示すように、出力軸2と外輪11の軸方向相対移動を規制する係止機構60は、出力軸2の軸端の外周に外輪11の連結部の軸方向内側面と対向するフランジ61を設けるとともに、外輪11の連結部の軸方向外側面と対向する位置で、出力軸2の外周に設けた断面半円状の止め輪溝62に、丸サークリップ(断面円形のサークリップ)からなる止め輪63の内周側半部を嵌め込んだものである。そして、圧縮方向(入力軸1と出力軸2とが互いに接近する方向)に所定値以上の軸方向荷重が作用すると、止め輪63が出力軸2の止め輪溝62から外れて、出力軸2と外輪11の軸方向相対移動を規制する機能が失われるようになっている。 As shown in FIGS. 8A and 8B, the locking mechanism 60 that regulates the axial relative movement of the output shaft 2 and the outer ring 11 is provided on the outer periphery of the shaft end of the output shaft 2 with the axial inner surface of the connecting portion of the outer ring 11. A round circlip (circular cross section) is provided in the retaining ring groove 62 having a semicircular cross section provided on the outer periphery of the output shaft 2 at a position facing the outer surface of the connecting portion of the outer ring 11 in the axial direction while providing the facing flange 61. The inner peripheral half of the retaining ring 63 made of (circlip) is fitted. Then, when an axial load of a predetermined value or more acts in the compression direction (the direction in which the input shaft 1 and the output shaft 2 approach each other), the retaining ring 63 is disengaged from the retaining ring groove 62 of the output shaft 2, and the output shaft 2 And the function of restricting the relative movement of the outer ring 11 in the axial direction is lost.
 また、出力軸2のフランジ61に隣接する位置には、出力軸2の外周と外輪11の内周に、互いに嵌合するインロー部64、65が設けられている。これにより、出力軸2と外輪11が精度よく芯出しされ、通常使用時の回転伝達動作が安定して行われるようになっている。 Further, at a position adjacent to the flange 61 of the output shaft 2, in- row portions 64 and 65 that are fitted to each other are provided on the outer circumference of the output shaft 2 and the inner circumference of the outer ring 11. As a result, the output shaft 2 and the outer ring 11 are centered with high accuracy, and the rotation transmission operation during normal use is stably performed.
 なお、この例では、出力軸2のインロー部64が、出力軸2のスプライン8の切れ上がりの分だけ、外輪11のインロー部65よりも軸方向に短く形成されているが、出力軸2のインロー部64の一端側に隣接する位置にスプライン8よりも深い環状溝を設けるようにすれば、スプライン8の切れ上がりをなくし、インロー部64を延長して軸方向で外輪11のインロー部65と当接させることができる。 In this example, the in-row portion 64 of the output shaft 2 is formed to be shorter in the axial direction than the in-row portion 65 of the outer ring 11 by the amount of the cut-up of the spline 8 of the output shaft 2. If an annular groove deeper than the spline 8 is provided at a position adjacent to one end side of the inlay portion 64, the spline 8 is not cut off, the inrow portion 64 is extended, and the inro portion 65 of the outer ring 11 is axially extended. Can be brought into contact.
 この回転伝達装置は上記の構成であり、電磁クラッチ50の電磁コイル53aに対する通電を遮断しているときは、図3に示したように、2方向クラッチ10のローラ15は外輪11の円筒面12および内輪13のカム面14に係合する状態にある。このため、入力軸1が一方向に回転すると、その回転は内輪13から一対のローラ15の一方を介して外輪11に伝達され、出力軸2が入力軸1と同方向に回転する。また、入力軸1が逆方向に回転すると、その回転は内輪13から他方のローラ15を介して外輪11および出力軸2に伝達される。 This rotation transmission device has the above configuration, and when the energization of the electromagnetic clutch 50 to the electromagnetic coil 53a is cut off, as shown in FIG. 3, the roller 15 of the two-way clutch 10 has the cylindrical surface 12 of the outer ring 11. And is in a state of engaging with the cam surface 14 of the inner ring 13. Therefore, when the input shaft 1 rotates in one direction, the rotation is transmitted from the inner ring 13 to the outer ring 11 via one of the pair of rollers 15, and the output shaft 2 rotates in the same direction as the input shaft 1. Further, when the input shaft 1 rotates in the opposite direction, the rotation is transmitted from the inner ring 13 to the outer ring 11 and the output shaft 2 via the other roller 15.
 一方、2方向クラッチ10の係合状態で電磁クラッチ50の電磁コイル53aに通電すると、アーマチュア51に吸引力が作用し、アーマチュア51が軸方向に移動してロータ52に吸着される。このとき、アーマチュア51と制御保持器16Aとは連結筒55と筒部24の嵌合によって連結一体化されているため、アーマチュア51の軸方向移動に伴って、制御保持器16Aは、その円板部21が回転保持器16Bの円板部25に接近する方向に移動する。 On the other hand, when the electromagnetic coil 53a of the electromagnetic clutch 50 is energized while the two-way clutch 10 is engaged, an attractive force acts on the armature 51, and the armature 51 moves in the axial direction and is attracted to the rotor 52. At this time, since the armature 51 and the control cage 16A are connected and integrated by fitting the connecting cylinder 55 and the cylinder portion 24, the control cage 16A is a disk thereof as the armature 51 moves in the axial direction. The portion 21 moves in a direction approaching the disk portion 25 of the rotation cage 16B.
 上記の制御保持器16Aと回転保持器16Bの軸方向相対移動により、トルクカム40のボール43がカム溝41、42の溝深さの最も深い位置に向けて転がり移動し(図7Bの状態から図7Aの状態となり)、制御保持器16Aと回転保持器16Bはポケット27の周方向幅が小さくなる方向に相対回転する。この制御保持器16Aと回転保持器16Bの相対回転により、2方向クラッチ10のローラ15は制御保持器16Aの柱部22と回転保持器16Bの柱部26で押されて互いに接近する方向に移動する。 Due to the axial relative movement of the control cage 16A and the rotation cage 16B, the ball 43 of the torque cam 40 rolls and moves toward the deepest position of the groove depths of the cam grooves 41 and 42 (from the state of FIG. 7B). The control cage 16A and the rotation cage 16B rotate relative to each other in the direction in which the circumferential width of the pocket 27 becomes smaller. Due to the relative rotation of the control cage 16A and the rotation cage 16B, the roller 15 of the two-way clutch 10 is pushed by the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B and moves in a direction approaching each other. To do.
 これにより、図2に示したように、ローラ15が円筒面12およびカム面14に対して係合解除する中立位置に変位し、2方向クラッチ10が係合解除状態とされる。 As a result, as shown in FIG. 2, the roller 15 is displaced to the neutral position where the roller 15 is disengaged from the cylindrical surface 12 and the cam surface 14, and the two-way clutch 10 is in the disengaged state.
 そして、2方向クラッチ10の係合解除状態において、入力軸1を一方向に回転させると、ばねホルダ45に形成された回り止め片46が制御保持器16Aの柱部22と回転保持器16Bの柱部26の一方を押圧するため、入力軸1とともに制御保持器16Aおよび回転保持器16Bが回転する。このとき、2方向クラッチ10のローラ15は係合解除位置に保持されているため、入力軸1および内輪13の回転は外輪11および出力軸2に伝達されず、入力軸1はフリー回転する。 Then, when the input shaft 1 is rotated in one direction in the disengaged state of the two-way clutch 10, the detent piece 46 formed on the spring holder 45 becomes the pillar portion 22 of the control cage 16A and the rotation cage 16B. In order to press one of the column portions 26, the control cage 16A and the rotation cage 16B rotate together with the input shaft 1. At this time, since the roller 15 of the two-way clutch 10 is held at the disengagement position, the rotation of the input shaft 1 and the inner ring 13 is not transmitted to the outer ring 11 and the output shaft 2, and the input shaft 1 rotates freely.
 ここで、制御保持器16Aと回転保持器16Bがポケット27の周方向幅を小さくする方向に相対回転するときは、制御保持器16Aの柱部22と回転保持器16Bの柱部26がばねホルダ45の回り止め片46の両側縁に当接して相対回転量が規制される。このため、コイルばね20は必要以上に収縮することはなく、伸長と収縮が繰り返し行われても疲労によって破損するようなことはない。 Here, when the control cage 16A and the rotation cage 16B rotate relative to each other in the direction of reducing the circumferential width of the pocket 27, the pillar portion 22 of the control cage 16A and the pillar portion 26 of the rotation cage 16B are spring holders. The relative rotation amount is regulated by abutting on both side edges of the detent piece 46 of 45. Therefore, the coil spring 20 does not contract more than necessary, and even if expansion and contraction are repeated, the coil spring 20 is not damaged by fatigue.
 上記のように入力軸1がフリー回転する状態において、電磁コイル53aに対する通電を解除すると、アーマチュア51は吸着が解除されて回転自在となり、制御保持器16Aと回転保持器16Bがコイルばね20の押圧によってポケット27の周方向幅が大きくなる方向に相対回転して、各ローラ15が円筒面12およびカム面14に係合するスタンバイ状態(図3の状態)に戻り、一方のローラ15を介して入力軸1の回転が出力軸2に伝達されるようになる。そして、この状態で入力軸1を一旦停止させてその回転方向を切り換えると、他方のローラ15を介して入力軸1の回転が出力軸2に伝達される。 When the energization of the electromagnetic coil 53a is released in the state where the input shaft 1 is freely rotating as described above, the armature 51 is released from adsorption and becomes rotatable, and the control cage 16A and the rotation cage 16B press the coil spring 20. The pockets 27 rotate relative to each other in a direction in which the circumferential width increases, and each roller 15 returns to a standby state (state in FIG. 3) in which the cylindrical surface 12 and the cam surface 14 are engaged with each other, and the roller 15 is passed through one of the rollers 15. The rotation of the input shaft 1 is transmitted to the output shaft 2. Then, when the input shaft 1 is temporarily stopped in this state and the rotation direction thereof is switched, the rotation of the input shaft 1 is transmitted to the output shaft 2 via the other roller 15.
 また、この回転伝達装置では、圧縮方向に所定値以上の軸方向荷重が作用すると、図9に示すように、出力軸2と外輪11との軸方向相対移動を規制する係止機構60の止め輪63が出力軸2の止め輪溝62から外れ、出力軸2が係止機構60による規制を解除されて入力軸1の軸方向孔7に入り込む。ここで、出力軸2の外周と外輪11の内周にはインロー部64、65が設けられ、出力軸2と外輪11が精度よく芯出しされているので、入力軸1の軸方向孔7への出力軸2の進入はスムーズに行われる。 Further, in this rotation transmission device, when an axial load of a predetermined value or more acts in the compression direction, as shown in FIG. 9, the locking mechanism 60 that regulates the axial relative movement between the output shaft 2 and the outer ring 11 is stopped. The ring 63 is disengaged from the retaining ring groove 62 of the output shaft 2, and the output shaft 2 is released from the regulation by the locking mechanism 60 and enters the axial hole 7 of the input shaft 1. Here, in- row portions 64 and 65 are provided on the outer circumference of the output shaft 2 and the inner circumference of the outer ring 11, and since the output shaft 2 and the outer ring 11 are accurately centered, the axial hole 7 of the input shaft 1 is reached. The entry of the output shaft 2 is performed smoothly.
 したがって、使用中のトラブル等によって圧縮方向に過剰な軸方向荷重が作用しても、外輪11の入力軸1側への相対移動が抑えられ、外輪11の押圧による内部部品の破損を防止することができる。 Therefore, even if an excessive axial load acts in the compression direction due to a trouble during use or the like, the relative movement of the outer ring 11 to the input shaft 1 side is suppressed, and damage to the internal parts due to the pressing of the outer ring 11 is prevented. Can be done.
 上述した実施形態の係止機構60では、出力軸2の止め輪溝62を断面半円状とし、止め輪63に丸サークリップを用いたが、図10Aに示すように、止め輪溝62の軸方向外側部分を所定角度のテーパ面62aとすれば、圧縮方向に所定値以上の軸方向荷重が作用したときに、よりスムーズに止め輪63が止め輪溝62から外れるようになる。 In the locking mechanism 60 of the above-described embodiment, the retaining ring groove 62 of the output shaft 2 has a semicircular cross section, and a round circlip is used for the retaining ring 63. However, as shown in FIG. 10A, the retaining ring groove 62 If the outer portion in the axial direction is a tapered surface 62a having a predetermined angle, the retaining ring 63 will be more smoothly disengaged from the retaining ring groove 62 when an axial load of a predetermined value or more is applied in the compression direction.
 また、図10Bに示すように、出力軸2の外周にそのスプライン8よりも浅い断面矩形の止め輪溝66を設け、この止め輪溝66に断面矩形のサークリップからなる止め輪67の内周側部分を嵌め込むようにしてもよい。そして、この場合にも、図10Cに示すように、止め輪溝66の軸方向外側の内壁を所定角度のテーパ面66aに変形することにより、圧縮方向に所定値以上の軸方向荷重が作用したときに、よりスムーズに止め輪67が止め輪溝66から外れるようにすることができる。 Further, as shown in FIG. 10B, a retaining ring groove 66 having a rectangular cross section shallower than the spline 8 is provided on the outer circumference of the output shaft 2, and the inner circumference of the retaining ring 67 made of a circlip having a rectangular cross section is provided in the retaining ring groove 66. The side portion may be fitted. Also in this case, as shown in FIG. 10C, by deforming the inner wall on the outer side in the axial direction of the retaining ring groove 66 into a tapered surface 66a having a predetermined angle, an axial load of a predetermined value or more acts in the compression direction. Occasionally, the retaining ring 67 can be more smoothly disengaged from the retaining ring groove 66.
 また、図11A、図11Bに示すように、出力軸2の外周に設けた断面矩形の止め輪溝68に、図10B、図10Cの止め輪67に代わる内歯形の歯付き座金69の内歯部分69aを嵌め込むようにしてもよい。 Further, as shown in FIGS. 11A and 11B, the retaining ring groove 68 having a rectangular cross section provided on the outer periphery of the output shaft 2 has the internal teeth of a toothed washer 69 having an internal tooth shape instead of the retaining ring 67 of FIGS. 10B and 10C. The portion 69a may be fitted.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1 入力軸
2 出力軸
3 ハウジング
7 軸方向孔
10 2方向クラッチ
11 外輪
12 円筒面
13 内輪
14 カム面
15 ローラ(係合子)
16A 制御保持器
16B 回転保持器
20 コイルばね(弾性部材)
22 柱部(制御保持器側)
26 柱部(回転保持器側)
27 ポケット
40 トルクカム(運動変換機構)
50 電磁クラッチ
51 アーマチュア
52 ロータ
53 電磁石
60 係止機構
61 フランジ
62、66、68 止め輪溝
63、67 止め輪
64 インロー部(出力軸側)
65 インロー部(外輪側)
69 歯付き座金
1 Input shaft 2 Output shaft 3 Housing 7 Axial hole 10 2-way clutch 11 Outer ring 12 Cylindrical surface 13 Inner ring 14 Cam surface 15 Roller (engager)
16A Control cage 16B Rotation cage 20 Coil spring (elastic member)
22 Pillar part (control cage side)
26 Pillar part (rotary cage side)
27 Pocket 40 Torque cam (motion conversion mechanism)
50 Electromagnetic clutch 51 Armature 52 Rotor 53 Electromagnet 60 Locking mechanism 61 Flange 62, 66, 68 Retaining ring groove 63, 67 Retaining ring 64 Inro part (output shaft side)
65 Inro part (outer ring side)
69 Toothed washer

Claims (3)

  1.  入力軸と、その入力軸と同軸上に配置された出力軸と、前記入力軸から出力軸への回転の伝達と遮断とを行なう2方向クラッチと、前記入力軸上に設けられて2方向クラッチの係合および解除を制御する電磁クラッチを有し、
     前記2方向クラッチが、前記出力軸の軸端部に設けられた外輪と、前記入力軸の軸端部に設けられ、前記外輪の径方向内側に配置される内輪と、前記入力軸に回転自在かつ軸方向移動自在に支持される制御保持器および回転保持器を有し、前記外輪の内周と内輪の外周との間に、前記制御保持器および回転保持器のそれぞれに設けられた柱部を周方向に交互に配置し、隣接する柱部どうしの間に形成されたポケットに、一対の係合子と、その一対の係合子を互いに離反する方向に付勢して、前記外輪の内周および内輪の外周に係合する位置にスタンバイさせる弾性部材を組み込んだものであり、
     前記電磁クラッチが、前記制御保持器に連結されたアーマチュアと、前記入力軸に固定されてアーマチュアと軸方向で対向するロータと、前記ロータに対向配置された電磁石を有し、前記電磁石に対する通電により制御保持器を軸方向に移動させ、その制御保持器の軸方向移動を運動変換機構によって前記ポケットの周方向幅が小さくなる方向の制御保持器と回転保持器の相対回転運動に変換して、前記一対の係合子を係合解除させるものである回転伝達装置において、
     前記出力軸と外輪とが相対回転不能かつ軸方向相対移動可能に連結され、その出力軸と外輪の軸方向相対移動を規制する係止機構が設けられるとともに、前記入力軸の軸端部には前記出力軸が進入可能な軸方向孔が設けられており、
     前記入力軸と出力軸とが互いに接近する方向に所定値以上の軸方向荷重が作用したときに、前記出力軸が前記係止機構による規制を解除されて、前記入力軸の軸方向孔に入り込むようになっていることを特徴とする回転伝達装置。
    An input shaft, an output shaft arranged coaxially with the input shaft, a two-way clutch for transmitting and blocking rotation from the input shaft to the output shaft, and a two-way clutch provided on the input shaft. Has an electromagnetic clutch that controls the engagement and disengagement of
    The two-way clutch is rotatable around the outer ring provided at the shaft end of the output shaft, the inner ring provided at the shaft end of the input shaft and arranged radially inside the outer ring, and the input shaft. It also has a control cage and a rotation cage that are supported so as to be movable in the axial direction, and a pillar portion provided in each of the control cage and the rotation cage between the inner circumference of the outer ring and the outer circumference of the inner ring. Are alternately arranged in the circumferential direction, and a pair of engaging elements and the pair of engaging elements are urged in a direction separated from each other in a pocket formed between adjacent pillars, and the inner circumference of the outer ring is formed. It also incorporates an elastic member that stands by at a position where it engages with the outer circumference of the inner ring.
    The electromagnetic clutch has an armature connected to the control cage, a rotor fixed to the input shaft and axially facing the armature, and an electromagnet arranged to face the rotor, and by energizing the electromagnet. The control cage is moved in the axial direction, and the axial movement of the control cage is converted into the relative rotational motion of the control cage and the rotation cage in the direction in which the circumferential width of the pocket becomes smaller by the motion conversion mechanism. In a rotation transmission device that disengages the pair of engagers.
    The output shaft and the outer ring are connected so as to be relatively non-rotatable and relatively movable in the axial direction, a locking mechanism for restricting the relative movement of the output shaft and the outer ring in the axial direction is provided, and the shaft end of the input shaft is provided. An axial hole through which the output shaft can enter is provided.
    When an axial load of a predetermined value or more acts in the direction in which the input shaft and the output shaft approach each other, the output shaft is released from the regulation by the locking mechanism and enters the axial hole of the input shaft. A rotation transmission device characterized in that it is designed to be.
  2.  前記係止機構が、前記外輪の出力軸との連結部の軸方向内側面と対向するように出力軸の外周に設けられたフランジと、前記外輪の出力軸との連結部の軸方向外側面と対向する位置で、前記出力軸の外周に設けられた止め輪溝に嵌め込まれる止め輪とからなることを特徴とする請求項1に記載の回転伝達装置。 A flange provided on the outer periphery of the output shaft so that the locking mechanism faces the axial inner surface of the connecting portion with the output shaft of the outer ring, and the axial outer surface of the connecting portion with the output shaft of the outer ring. The rotation transmission device according to claim 1, further comprising a retaining ring fitted in a retaining ring groove provided on the outer periphery of the output shaft at a position facing the output shaft.
  3.  前記出力軸の外周と外輪の内周に、互いに嵌合するインロー部が設けられていることを特徴とする請求項1または2に記載の回転伝達装置。 The rotation transmission device according to claim 1 or 2, wherein an in-row portion that fits with each other is provided on the outer circumference of the output shaft and the inner circumference of the outer ring.
PCT/JP2020/025005 2019-07-02 2020-06-25 Rotation transmission device WO2021002270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-123827 2019-07-02
JP2019123827A JP2021008939A (en) 2019-07-02 2019-07-02 Rotation transmission device

Publications (1)

Publication Number Publication Date
WO2021002270A1 true WO2021002270A1 (en) 2021-01-07

Family

ID=74101070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025005 WO2021002270A1 (en) 2019-07-02 2020-06-25 Rotation transmission device

Country Status (2)

Country Link
JP (1) JP2021008939A (en)
WO (1) WO2021002270A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326478U (en) * 1986-08-07 1988-02-20
JP2006044534A (en) * 2004-08-06 2006-02-16 Toyoda Mach Works Ltd Steering device equipped with transmitting ratio varying mechanism
JP2018021630A (en) * 2016-08-05 2018-02-08 Ntn株式会社 Rotation transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326478U (en) * 1986-08-07 1988-02-20
JP2006044534A (en) * 2004-08-06 2006-02-16 Toyoda Mach Works Ltd Steering device equipped with transmitting ratio varying mechanism
JP2018021630A (en) * 2016-08-05 2018-02-08 Ntn株式会社 Rotation transmission device

Also Published As

Publication number Publication date
JP2021008939A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
EP2792897A1 (en) Rotation transmission device
JP6121119B2 (en) Rotation transmission device
EP3104033B1 (en) Rotation transmission device
EP3124816B1 (en) Rotation transmission device
US20210071722A1 (en) Rotation transmission device
JP2005155834A (en) Power transmitting device
EP3088762A1 (en) Rotation transmission device
JP6086735B2 (en) Rotation transmission device
JP5981244B2 (en) Rotation transmission device
JP5902527B2 (en) Rotation transmission device
WO2021002270A1 (en) Rotation transmission device
JP6486089B2 (en) Rotation transmission device
JP6103905B2 (en) Rotation transmission device
JP2006112524A (en) Reverse input intercepting clutch
EP3051162B1 (en) Rotation transmitting device
JP2021021417A (en) Rotation transmission device
JP2013087811A (en) Rotation transmission device
JP6218465B2 (en) Rotation transmission device
WO2015025739A1 (en) Rotation transmission device
WO2017130979A1 (en) Reverse-input prevention clutch
JP2015194194A (en) Rotation transmission device
JP2016061325A (en) Rotation transmission device
JP2018063002A (en) Reverse input cutoff clutch
JP2016061326A (en) Rotation transmission device
JP2017048856A (en) Rotation transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835381

Country of ref document: EP

Kind code of ref document: A1