WO2021000962A1 - 静态混合器及车辆 - Google Patents

静态混合器及车辆 Download PDF

Info

Publication number
WO2021000962A1
WO2021000962A1 PCT/CN2020/100442 CN2020100442W WO2021000962A1 WO 2021000962 A1 WO2021000962 A1 WO 2021000962A1 CN 2020100442 W CN2020100442 W CN 2020100442W WO 2021000962 A1 WO2021000962 A1 WO 2021000962A1
Authority
WO
WIPO (PCT)
Prior art keywords
static mixer
guide
air outlet
cylinder
mixer according
Prior art date
Application number
PCT/CN2020/100442
Other languages
English (en)
French (fr)
Inventor
卡勒特伯恩哈德
张婷
沈彩琴
应潇轩
石秀真
厉虹
赵治国
Original Assignee
浙江银轮机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江银轮机械股份有限公司 filed Critical 浙江银轮机械股份有限公司
Publication of WO2021000962A1 publication Critical patent/WO2021000962A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • This application relates to the technical field of vehicle manufacturing, and in particular to a static mixer and a vehicle.
  • the static mixers in the prior art mostly use spiral blades to guide the reducing agent and exhaust gas entering the static mixer to form a vortex, and realize the mixing of the reducing agent and exhaust gas during the process of guiding the spiral blades, but the size of the spiral blades is limited , Which makes the reducing agent and exhaust gas can only be mixed in a small path, so that the uniformity of the reducing agent in the exhaust gas is lower.
  • the purpose of the present application includes providing a static mixer and a vehicle to avoid the problem of low uniformity of the reducing agent distribution in the exhaust gas by using the existing static mixer.
  • the embodiment of the present application provides a static mixer, including: a cylinder and a nozzle, and a guide member and an air outlet end plate installed in the cylinder, the nozzle is installed on the cylinder, and the air outlet An air outlet is formed on the board;
  • the guide member is located upstream of the air outlet end plate, and the guide member is installed on the air outlet end plate to guide the airflow carrying the material ejected by the nozzle to the cylinder in the circumferential direction
  • the air outlet, the guide member includes a guide plate so that both sides of the guide plate face the air outlet and the nozzle respectively.
  • the air outlet end plate may also be provided with a pressure reducing hole
  • the position of the pressure reducing hole and the air outlet are located on the same side of the guide plate.
  • the guide plate has a connecting end connected to the inner wall of the cylinder.
  • the connecting end and the inner wall of the cylinder are transitionally connected by an arc-shaped surface, so as to guide the airflow carrying the material ejected from the nozzle through the arc-shaped surface.
  • the nozzle is configured to inject materials in a first direction and form a material injection path, and the material injection path is separated from the guide.
  • the guide plate is arranged obliquely with respect to the first direction.
  • the material sprayed by the nozzle is mist.
  • the guide plate extends obliquely from the air outlet to a direction away from the nozzle with respect to the first direction.
  • the angle formed between the guide plate and the first direction is greater than or equal to 50 degrees and less than or equal to 70 degrees.
  • the included angle is 60 degrees.
  • the air outlet is eccentrically arranged with respect to the cylinder.
  • the nozzle is configured to inject materials and form a material injection path, the material injection path being separated from the axis of the cylinder.
  • the cross section of the cylinder is divided into a part with a larger area and a part with a smaller area through the material injection path, and the air outlet is arranged on the side with the larger area.
  • the guide includes a guide portion connected with the guide plate, the guide portion has an arc-shaped outer wall extending along an edge of the air outlet, and the arc-shaped outer wall is configured to guide the airflow.
  • the guide portion extends around an inner edge of the air outlet.
  • the guide plate is tangent to the arc-shaped outer wall.
  • the plate surface of the guide plate facing the air outlet is a first plate surface, and an opening communicating with the air outlet is formed on the guide portion, and the opening is located close to the first plate surface. s position.
  • the guide part is a cylindrical member.
  • the guide portion has a communicating end communicating with the air outlet, and a communicating section for air flow is formed between the communicating end and the opening in the axial direction of the guide portion.
  • two ends of the guide portion in the axial direction are respectively a sealing end and the communicating end, and the sealing end is configured to prevent airflow from entering and exiting the guide portion from the sealing end.
  • it includes an air inlet end plate installed in the cylinder and located upstream of the guide, an air inlet is formed on the air inlet end plate, and the air inlet is radially of the cylinder
  • the port and the nozzle are located on the same side of the guide plate.
  • the nozzle is configured to inject materials and form a material injection path, and the material injection path is separated from the air inlet in the circumferential direction of the cylinder.
  • the air inlet is divided into a first air inlet and a second air inlet, and the first air inlet and the second air inlet are respectively located on the circumference of the cylinder Both sides of the material injection path.
  • the air inlet end plate is in a sealed connection with the guide member.
  • the embodiment of the present application also provides a vehicle including the above-mentioned static mixer.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an implementation of a static mixer provided by an embodiment of the application;
  • FIG. 2 is a three-dimensional schematic diagram of a partial structure of an embodiment of a static mixer provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a guide provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an implementation manner of an intake end plate provided by an embodiment of the application.
  • Fig. 5 is a schematic diagram of an implementation manner of an air outlet end plate provided by an embodiment of the application.
  • 6 and 7 are schematic front views of part of the structure of an embodiment of the static mixer provided by the embodiment of the application.
  • 100-Reaction unit 200-Cylinder body; 300-Nozzle seat; 400-Inlet end plate; 410-First air inlet; 420-Second air inlet; 500-Exhaust end plate; 510-Decompression hole; 520-air outlet; 600-guide member; 610-guide plate; 611-second plate surface; 612-first plate surface; 613-connecting end; 613x-curved surface; 620-guide part; 621-opening; 622 -Connecting section; 623-connecting end; 624-arc-shaped outer wall.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • Diesel engine exhaust gas aftertreatment technology is an external exhaust gas purification technology that uses selective catalytic reduction chemistry to purify exhaust gas. It can effectively improve diesel engine NOx emissions and is not sensitive to diesel sulfur content.
  • This technology sprays a certain concentration of reductant into the exhaust pipe to make the reductant and exhaust gas evenly mixed and react in the reaction unit to achieve the effect of exhaust gas purification. If the reducing agent is unevenly distributed in the exhaust gas, the conversion efficiency of nitrogen oxides (NOx) will be too low.
  • the static mixer is the main device used to mix the exhaust gas and the reducing agent.
  • the existing static mixers mostly use spiral blades to guide the reducing agent and exhaust gas entering the static mixer to form a vortex, which is guided by the spiral blades. In the process, the reductant and the exhaust gas are mixed, but the size of the spiral blade is limited, which makes the reductant and the exhaust gas only mix in a small path, so that the uniformity of the reductant in the exhaust gas is low.
  • the static mixer provided in the embodiments of the present application can effectively alleviate the problem of the low uniformity of the reducing agent distribution in the exhaust gas in the static mixer in the prior art.
  • the embodiment of the present application provides a static mixer, including: a cylinder 200 and a nozzle, and a guide 600 and an outlet end plate 500 installed in the cylinder 200, and the nozzle is installed in the cylinder.
  • a static mixer including: a cylinder 200 and a nozzle, and a guide 600 and an outlet end plate 500 installed in the cylinder 200, and the nozzle is installed in the cylinder.
  • an air outlet 520 is formed on the air outlet end plate 500;
  • the guide member 600 is located upstream of the air outlet end plate 500, and the guide member 600 is installed on the air outlet end plate 500 to guide the airflow carrying the material ejected from the nozzle to the air outlet 520 in the circumferential direction of the cylinder 200.
  • the guide member 600 includes a guide The plate 610 is such that the two sides of the guide plate 610 face the air outlet 520 and the nozzle respectively.
  • upstream refers to the direction of the source of exhaust gas of the static mixer, that is, the side of the vehicle powertrain direction.
  • the material in the embodiment of the present application may be a reducing agent of nitrogen oxides (NOx); optionally, the outlet end plate 500 is perpendicular to the axial direction of the cylinder 200; optionally, the guide plate 610 is perpendicular to the outlet end plate 500,
  • the guide plate 610 can also be arranged obliquely relative to the air outlet end plate 500; the air outlet 520 can have a variety of shapes, and the air outlet 520 in the embodiment of the present application is circular; the air outlet end plate 500 can also be based on the pressure loss of the post processor
  • a pressure-reducing hole 510 is added.
  • the position of the pressure-reducing hole 510 and the air outlet 520 are located on the same side of the guide plate 610.
  • the number of pressure-reducing holes 510 can be set to one or more according to actual needs. In this embodiment In the example, there are nine, and they are distributed on the end plate 500 in close proximity to each other. With this arrangement, the back pressure can be reduced, and the speed of the surface of the reaction unit 100 can be evenly distributed; the end of the cylinder 200 close to the gas outlet end plate 500 and The reaction unit 100 is connected; optionally, the nozzle is installed on the cylinder 200 through the nozzle holder 300, wherein in the height direction of the cylinder 200, the nozzle holder 300 is arranged on a side different from the air outlet 520.
  • the material sprayed by the nozzle into the cylinder 200 is driven by the exhaust gas and guided by the guide 600, and the exhaust gas forms an airflow flowing in the circumferential direction of the cylinder 200 And flow to the air outlet 520.
  • the material and the exhaust gas are mixed.
  • the air outlet end plate 500 and the guide plate 610 are set, and the guide plate 610 separates the air outlet 520 from the nozzle, so that the material ejected from the nozzle is not directly with the exhaust gas. It flows out in the axial direction of the cylinder 200, but due to the obstruction of the air outlet end plate 500 and the guide plate 610, it has to bypass the guide plate 610 and flow to the air outlet 520.
  • the material and the exhaust gas are mixed, and then the materials and the exhaust gas are further mixed by the guiding action of other parts of the guide member 600, which enables the guide member 600 to not only guide the materials and the exhaust gas in the circumferential direction of the cylinder 200
  • the exhaust gas is mixed, and the material and the exhaust gas can be mixed when they bypass the guide plate 610, which extends the mixing path of the material and the exhaust gas, thereby making the mixture of the material and the exhaust gas more uniform; moreover, due to the air outlet 520
  • the area is small, and the airflow has a high velocity and relatively high temperature when flowing out of the air outlet 520, which can reduce the material staying in contact with the cylinder 200, the guide plate 610 and/or the air outlet end plate 500 and the temperature of the contact surface is relatively high. Low chance of crystallization problems.
  • the guide plate 610 has a connecting end 613 connected to the inner wall of the cylinder 200. If there is a gap between the connecting end 613 and the inner wall of the cylinder 200, part of the airflow may circulate around the inner wall of the cylinder 200. Since the temperature of the cylinder 200 is relatively low, the material may be trapped in the cylinder 200. The problem of inner wall crystallization, which in turn leads to material consumption loss, affects the reaction efficiency and the effect of exhaust gas purification.
  • the connecting end 613 and the inner wall of the cylinder 200 are transitionally connected by an arc-shaped surface 613x, so that the arc-shaped surface 613x acts on the airflow of the material ejected from the carrying nozzle.
  • Conduct orientation If an included angle is formed between the connecting end 613 and the inner wall of the cylinder 200, since there is no transition between the two directly connected, there will be a larger airflow impact at the included angle, due to the temperature of the inner wall of the cylinder 200 Relatively low, the material is easy to stick to the position of the included angle and cause crystal accumulation.
  • the air flow carrying the material ejected from the nozzle will pass through the The smooth commutation of the arc-shaped surface 613x reduces the strength of the airflow impact, thereby reducing the risk of crystal formation at the position where the connecting end 613 is connected to the inner wall of the cylinder 200. Therefore, by providing the arc-shaped surface 613x, the risk of crystallization caused by the air flow ejected from the mixer and hitting the inner wall can be effectively solved.
  • the guide plate 610 can be designed as a corresponding arc-shaped surface as a whole according to actual needs, that is, the arc-shaped surface 613X is equivalent to the guide plate 610. .
  • the nozzle is configured to spray materials in a first direction and form a material injection path, and the material injection path is separated from the guide 600.
  • a nozzle in which the jet is divided into three jets is taken as an example for description, where, as shown in the figure, a, b, and c are the axial directions of the three jets, respectively. Therefore, it can be understood that the material ejection path is expressed as the range of the cone formed by the two lines a and b as the generatrix, and the first direction is indicated by the arrow c, that is, the material sprayed by the nozzle is represented by the two lines a and b as the generatrix.
  • the material injection path can also be in the range of cylindrical or truncated cone, or within the range of other shapes, and the material can be injected according to the needs.
  • the shape of the path range is used to specifically adjust the structure and setting of the nozzle to obtain different shapes, and the first direction can also be adjusted accordingly as needed, for example, the direction parallel to the guide plate 610 or other directions;
  • the material sprayed by the nozzle is mist.
  • the guide plate 610 is arranged obliquely with respect to the first direction. This makes the guide plate 610 extend as far away as possible from the material injection path, and further reduces the possibility of the material being directly sprayed on the guide plate 610.
  • the guide plate 610 can be optimally designed according to parameters such as the size of the cylinder 200 and the nozzle position.
  • the guide plate 610 is arranged on the same side of all the pressure reducing holes 510 in the radial direction of the cylinder 200. The reason for this arrangement is that the cross-sectional area of the air outlet 520 is much smaller than the cross-sectional area of the cylinder 200.
  • the pressure reduction hole 510 can divide a part of the airflow to reduce The pressure loss generated at the air outlet.
  • the airflow only flows out of the mixer through the air outlet 520, and the airflow is unevenly distributed on the cross section of the reaction unit 100.
  • the pressure drop holes 510 on the air outlet end plate 500 can also be uniformly distributed for the reaction. The air flow in the cross section of the unit 100 makes the reaction more uniform and efficient.
  • the guide plate 610 extends obliquely from the air outlet 520 to a direction away from the nozzle with respect to the first direction (that is, in a direction opposite to the first direction). This not only makes the guide plate 610 extend as far away from the material injection path as possible, but also leaves a space between the guide plate 610 and the nozzle for the exhaust gas to enter, and the exhaust gas is between the guide plate 610 and the material ejected from the nozzle A certain isolation effect is produced to reduce the risk of materials directly sprayed on the guide plate 610; and, by setting the extension direction of the guide plate 610, in addition to reducing the risk of materials directly spraying on the guide plate 610, it also makes the cylinder 200
  • the positions and sizes of various structures can be arranged more reasonably in the limited space inside.
  • the air outlet 520 can be as close as possible to the axis line of the cylinder 200, thereby providing sufficient space for the air outlet 520 to have a reasonable size. It can effectively increase the flow rate and temperature of the airflow to improve the uniformity of the material distribution in the tail gas, and it can also reduce the risk of excessive pressure in the static mixer due to too small size.
  • the extending direction of the guide plate 610 can also be parallel to the first direction, or the guide plate 610 can extend obliquely from the air outlet 520 toward the nozzle relative to the first direction.
  • the angle formed between the guide plate 610 and the first direction is greater than or equal to 50 degrees and less than or equal to 70 degrees.
  • the included angle is 60 degrees.
  • the air outlet 520 is eccentrically arranged with respect to the cylinder 200.
  • the position of the air outlet 520 is biased to a side away from the nozzle with respect to the center of the section.
  • the air outlet 520 can also be arranged coaxially with the cylinder 200. Such an arrangement is beneficial to simplify the processing of the air outlet 520 and reduce the production cost.
  • the nozzle is configured to spray materials and form a material injection path, and the material injection path is separated from the axis of the cylinder 200.
  • the material injection path does not pass through the center of the cross section, and the material injection path divides the cross section of the cylinder 200 into a larger area and a smaller area.
  • the air outlet 520 can have a reasonable size and position to ensure that the airflow has a higher speed and temperature, and while improving the uniformity of the distribution of materials in the exhaust gas, The risk of excessive pressure in the static mixer is reduced.
  • the material injection path can also intersect the axis of the cylinder 200.
  • the cross-section of the cylinder 200 is divided by the 610 guide plate.
  • the cross-sectional area of the cylinder 200 is gradually reduced.
  • the jetted airflow velocity Will gradually increase, correspondingly the energy of crushing materials will be higher, making the materials more complete (even if the atomization effect is better).
  • the cross-sectional area of the outlet side becomes larger and larger through the outlet side, which can reduce the pressure loss generated in the outlet section.
  • the guide member 600 includes a guide portion 620 connected to the guide plate 610, and the guide portion 620 has an arc-shaped outer wall 624 extending along the edge of the air outlet 520 (for example, The guide portion 620 extends around the inner edge of the air outlet 520), and the arc-shaped outer wall 624 is configured to guide the airflow.
  • the guide portion 620 guides the airflow through the arc-shaped outer wall 624, thereby causing the airflow to move in the circumferential direction of the cylinder 200.
  • the length of the arc-shaped outer wall 624 can be made as required, and the airflow can be adjusted to a corresponding length.
  • the arc-shaped outer wall 624 is simple to manufacture, and the production cost is low.
  • the entire guide member 600 may be coated with a coating made of PTFE (Teflon) material. Thanks to the characteristics of PTFE, after urea and other compounds hit the outer wall, it is not easy to produce wet wall phenomenon, which can greatly The risk of materials accumulating on the outer wall of the guide 600 due to low temperature is reduced.
  • PTFE Teflon
  • the guide portion 620 can also be a spiral blade, but the spiral blade needs to be produced by a mold, which increases the manufacturing cost, and the design of the number of blades of the spiral blade is relatively complicated, which increases the difficulty of production.
  • the guide plate 610 is tangent to the arc-shaped outer wall 624. This enables a smooth transition between the guide plate 610 and the arc-shaped outer wall 624, thereby reducing the possibility of material stagnation and crystallization at the position where the guide plate 610 and the guide portion 620 are connected.
  • the plate surface of the guide plate 610 facing the air outlet 520 is the first plate surface 612
  • the plate surface of the guide plate 610 facing the nozzle is the second plate surface 611
  • the guide portion An opening 621 communicating with the air outlet 520 is formed on the 620, and the opening 621 is located close to the first plate surface 612. This ensures that the material moves the maximum distance under the guidance of the arc-shaped outer wall 624 before being sent out from the opening 621, which increases the distance that the arc-shaped outer wall 624 guides the airflow, thereby increasing the mixing time of the exhaust gas and the material, so that the material is in the exhaust gas. The distribution is more even.
  • the shape of the opening 621 is rectangular, and other shapes can also be selected according to actual needs. The area of the opening 621 occupies almost most of the corresponding cross section of the guide portion 620, which helps to improve the circulation efficiency of the mixed gas.
  • the guide portion 620 is a cylindrical member.
  • the guide portion 620 is a cylindrical member and its inner cavity is a cylindrical cavity, the airflow can continue to spiral flow under the guidance of the inner wall of the cylindrical cavity. This further prolongs the mixing path between the material and the exhaust gas, so that the material and the exhaust gas are more evenly mixed;
  • the axial direction of the guide portion 620 can be parallel or inclined with the axial direction of the cylinder 200, or the guide portion 620 is arranged coaxially with the cylinder 200.
  • the guiding portion 620 can also be in other forms such as a rectangular box structure or a curved tubular structure, as long as the structure can meet the purpose of producing the above-mentioned effect.
  • the guide portion 620 has a communicating end 623 communicating with the air outlet 520, and an air supply is formed between the communicating end 623 and the opening 621 in the axial direction of the guide portion 620 The communicating section 622 of circulation.
  • the opening 621 and the communicating end 623 occupy a certain distance by the communicating section 622, that is, the opening 621 does not extend to the outlet end plate in the axial direction of the guide portion 620 500 position, so part of the airflow needs to move a distance in the upstream direction to flow out of the opening 621, which increases the distance between the airflow and the guide 620, and further extends the path for the mixing of materials and exhaust gas.
  • the mixing of the material and the exhaust gas is more uniform.
  • the length of the inner cavity of the guide part 620 in its axial direction is correspondingly increased, thereby extending the mixing path of the material and the exhaust gas, so that the material is The exhaust gas is more evenly distributed.
  • the two ends of the guide portion 620 in the axial direction are the communicating end 623 and the sealing end respectively, and the sealing end is configured to prevent airflow from entering and exiting the guide portion from the sealing end.
  • This can prevent the exhaust gas from directly penetrating through the guide portion 620 in the axial direction of the cylinder 200, which increases the amount of exhaust gas used to carry materials, thereby making the materials more evenly distributed in the exhaust gas;
  • the amount of the airflow moving in the circumferential direction increases the speed of the airflow, reduces the possibility of material staying on the cylinder 200, the guide plate 610 and/or the air outlet end plate 500, thereby reducing the possibility of material crystallization.
  • the static mixer provided in the embodiment of the present application includes an intake end plate 400 installed in the cylinder 200 and located upstream of the guide 600 An air inlet is formed on the air inlet end plate 400.
  • the air inlet and the nozzle are located on the same side of the guide plate 610 in the radial direction of the cylinder 200.
  • the air inlet can also be specifically set according to needs, for example, it can also be located at other positions between the guide 600 and the inner wall of the cylinder 200; optionally, the shape and area of the inlet end plate 400, and the shape and area of the outlet end plate 500.
  • the area corresponds to the shape and area of the cross section of the cylinder 200.
  • the nozzle is configured to inject materials and form a material injection path, and the material injection path is separated from the air inlet in the circumferential direction of the cylinder 200.
  • This can reduce the amount of exhaust gas that enters between the inlet end plate 400 and the outlet end plate 500 and directly acts on the material, thereby reducing the material that adheres to the outlet end plate 500 under the impact of the exhaust gas and cannot be taken away by the airflow. It is possible and reduces the possibility of the material forming crystals on the gas outlet end plate 500.
  • the air inlet is divided into a first air inlet 410 and a second air inlet 420, and the first air inlet 410 and the second air inlet 420 are respectively located in the circumferential direction of the cylinder. Both sides of the material injection path. This allows the exhaust gas to flow in through the first air inlet 410 and the second air inlet 420 when it enters between the inlet end plate 400 and the outlet end plate 500, and the material injected by the nozzle is connected to the guide plate 610 and the cylinder 200 respectively. The inner wall of the tube is separated, thereby reducing the risk of the material being directly sprayed on the guide plate 610 and the inner wall of the cylinder 200.
  • the number of first air inlets 410 is less than the number of second air inlets 420.
  • the first air inlet 410 and the second air inlet 420 are both located on the same side of the guide plate 610, and the pressure reducing holes 510 are both located on the other side of the guide plate 610.
  • the significance of this arrangement is that by making the first air inlet 410 and the second air inlet 420 avoid the injection area, first of all, this can form a vortex in the inner cavity of the cylinder 200, so that the airflow can better drive the urea, etc.
  • the air inlet end plate 400 and the guide member 600 are in a sealed connection, for example, welded connection or formed as an integral piece. This avoids the gap between the intake end plate 400 and the guide 600 in the axial direction of the cylinder 200, and enables the airflow to move around the guide plate 610 in the circumferential direction of the cylinder 200 without flowing from the gap.
  • the length of the guide member 600, especially the guide plate 610, in the axial direction of the cylinder 200 is generally greater than the length in the radial direction of the cylinder 200, the airflow is prevented from flowing through the above-mentioned gaps, which can ensure that the airflow has a longer length.
  • the circulation path further extends the path through which the material and the exhaust gas are mixed, so that the material is more evenly distributed in the exhaust gas.
  • the static mixer provided in the embodiments of the present application is mainly applied to a post processor.
  • the post processor is used in conjunction with an engine (such as a diesel engine, etc.) to be installed on various vehicles, including road vehicles and off-road vehicles.
  • Used vehicles construction machinery, agricultural machinery, military vehicles, etc.
  • Another aspect of the present application provides a vehicle including the static mixer provided in the foregoing embodiment of the present application.
  • the vehicle provided in the embodiment of the application adopts the static mixer provided in the embodiment of the application, which can improve the purification effect of exhaust gas and help reduce the risk of exhaust pipe blockage caused by crystal accumulation in the static mixer .
  • the material sprayed by the nozzle into the cylinder 200 is driven by the exhaust gas and guided by the guide member 600 to form an airflow that flows in the circumferential direction of the cylinder 200 and flows to the air outlet 520.
  • the material and the exhaust gas For mixing, the air outlet end plate 500 and the guide plate 610 are set, and the guide plate 610 separates the air outlet 520 from the nozzle (that is, the two sides of the guide plate face the air outlet and the nozzle structure layout), so that the nozzle
  • the ejected material does not flow out directly in the axial direction of the cylinder 200 with the exhaust gas, but due to the blocking of the outlet end plate 500 and the guide plate 610, it has to bypass the guide plate 610 and flow to the outlet 520, and pass through in the process
  • the guide on both sides of the guide plate 610 first mixes the material and the exhaust gas, and then further mixes the material and the exhaust gas through the guiding action of other parts of the guide member 600, which makes the guide member 600 not only able to control the material and the exhaust gas in the cylinder 200
  • the material and exhaust gas are mixed when guiding in the circumferential direction (that is, the secondary mixing achieves a more significant effect of mixing uniformity), and the material and exhaust gas can be mixed when they
  • the path of mixing effect is generated, and the material and the exhaust gas are mixed more evenly. Moreover, because the area of the air outlet 520 is small, the airflow flows out from the air outlet 520 at a relatively high speed and relatively high temperature, which can reduce the material and cylinder
  • the crystallization problem may occur due to the low temperature of the contact surface, which can improve the purification effect of the exhaust gas and help reduce the crystallization caused by the static mixer. Risk of clogging of exhaust pipes caused by accumulation.
  • the present application provides a static mixer and a vehicle, which can avoid the problem of low uniformity of the reducing agent distribution in the exhaust gas by using the existing static mixer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种静态混合器及车辆,静态混合器包括:筒体(200),以及安装在筒体(200)内的导向件(600)和出气端板(500),喷嘴安装在筒体(200)上,在出气端板(500)上形成有出气口(520);导向件(600)位于出气端板(500)的上游,且导向件(600)安装在出气端板(500)上以将携带喷嘴喷射出的物料的气流在筒体(200)的周向上导向至出气口(520),导向件(600)包括导向板(610)以使导向板(610)的两侧板面分别面向出气口(520)和喷嘴。

Description

静态混合器及车辆
相关申请交叉引用
本申要求于2019年7月4日提交中国国家知识产权局的申请号为CN201910597941.0,名称为“静态混合器及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆制造技术领域,尤其涉及一种静态混合器及一种车辆。
背景技术
现有技术中的静态混合器多采用螺旋叶片对进入静态混合器中的还原剂和尾气进行导向,形成涡流,并在螺旋叶片导向的过程中实现还原剂和尾气的混合,但螺旋叶片大小有限,这使得还原剂和尾气仅能在较小路径内进行混合,使还原剂在尾气内分布的均匀性较低。
发明内容
本申请的目的包括提供一种静态混合器及车辆,以避免采用现有静态混合器使还原剂在尾气内分布的均匀性较低的问题。
为了至少部分实现上述目的,本申请采用以下技术方案:
本申请实施例提供了一种静态混合器,包括:筒体和喷嘴,以及安装在所述筒体内的导向件和出气端板,所述喷嘴安装在所述筒体上,在所述出气端板上形成有出气口;
所述导向件位于所述出气端板的上游,且所述导向件安装在所述出气端板上以将携带所述喷嘴喷射出的物料的气流在所述筒体的周 向上导向至所述出气口,所述导向件包括导向板以使所述导向板的两侧板面分别面向所述出气口和所述喷嘴。
可选地,所述出气端板上还可设有降压孔;
可选地,所述降压孔的位置与所述出气口位于所述导向板的同一侧。
可选地,所述导向板具有连接于所述筒体的内壁的连接端。
可选地,所述连接端与所述筒体的内壁之间通过弧形面过渡连接,以通过该弧形面对携带所述喷嘴喷射出的物料的气流进行导向。
可选地,所述喷嘴配置为在第一方向上喷射物料并形成物料喷射路径,所述物料喷射路径与所述导向件相分离。
可选地,所述导向板相对于所述第一方向倾斜设置。
可选地,所述喷嘴喷射出的所述物料为雾状。
可选地,所述导向板相对于所述第一方向从所述出气口处向远离所述喷嘴的方向倾斜延伸。
可选地,所述导向板与所述第一方向之间形成的夹角大于等于50度且小于等于70度。
可选地,所述夹角为60度。
可选地,所述出气口相对于所述筒体偏心设置。
可选地,所述喷嘴配置为喷射物料并形成物料喷射路径,所述物料喷射路径与所述筒体的轴心线相分离。
可选地,通过所述物料喷射路径将所述筒体的横截面分割为面积较大的部分和面积较小的部分,且所述出气口布置在面积较大一侧。
可选地,所述导向件包括与所述导向板连接的导向部,所述导向 部具有沿所述出气口的边缘延伸的弧形外壁,所述弧形外壁配置为对气流进行导向。
可选地,所述导向部环绕所述出气口内侧的边沿处延伸设置。
可选地,所述导向板与所述弧形外壁相切。
可选地,所述导向板面向所述出气口设置的板面为第一板面,所述导向部上形成有与所述出气口连通的开口,所述开口位于靠近所述第一板面的位置。
可选地,所述导向部为筒状件。
可选地,所述导向部具有与所述出气口连通的连通端,在所述导向部的轴向上所述连通端与所述开口之间形成供气流流通的连通段。
可选地,所述导向部轴向上的两端分别为密封端和所述连通端,所述密封端配置为避免气流从所述密封端进出所述导向部。
可选地,包括安装在所述筒体内并位于所述导向件上游的进气端板,在所述进气端板上形成有进气口,在所述筒体的径向上所述进气口与所述喷嘴位于所述导向板的同一侧。
可选地,所述喷嘴配置为喷射物料并形成物料喷射路径,在所述筒体的周向上所述物料喷射路径与所述进气口相分离。
可选地,所述进气口分为第一进气口和第二进气口,在所述筒体的周向上所述第一进气口与所述第二进气口分别位于所述物料喷射路径的两侧。
可选地,所述进气端板与所述导向件之间密封连接。
本申请的实施例还提供了一种车辆,包括上述的静态混合器。
本申请的附加技术特征及其优点将在下面的描述内容中阐述地更加明显,或通过本申请的具体实践可以了解到。
附图说明
为了更清楚地说明本申请具体实施方式的技术方案,下面将对具体实施方式描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的静态混合器的一种实施方式的立体结构示意图;
图2为本申请实施例提供的静态混合器的一种实施方式的部分结构的立体结构示意图;
图3为本申请实施例提供的导向件的立体结构示意图;
图4为本申请实施例所提供的进气端板的一种实施方式的示意图;
图5为本申请实施例所提供的出气端板的一种实施方式的示意图;
图6和图7为本申请实施例所提供的静态混合器的一种实施方式的部分结构的主视示意图。
附图标记:
100-反应单元;200-筒体;300-喷嘴座;400-进气端板;410-第一进气口;420-第二进气口;500-出气端板;510-降压孔;520-出气口;600-导向件;610-导向板;611-第二板面;612-第一板面;613-连接端;613x-弧形面;620-导向部;621-开口;622-连通段;623-连通端;624-弧形外壁。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显 然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
柴油发动机尾气后处理技术是运用选择性催化还原化学原理来达到净化尾气的一种机外尾气净化技术,可以有效改善柴油机NOx的排放,并对柴油含硫量不敏感。
该技术通过在排气管中喷入一定浓度的还原剂,使还原剂与尾气混合均匀后在反应单元中进行反应,从而实现尾气净化的效果。如果还原剂在尾气内分布不均匀会导致氮氧化合物(NOx)转化效率过低。 目前,静态混合器是用于混合尾气与还原剂的主要装置,现有的静态混合器多采用螺旋叶片对进入静态混合器中的还原剂和尾气进行导向,形成涡流,并在螺旋叶片导向的过程中实现还原剂和尾气的混合,但螺旋叶片大小有限,这使得还原剂和尾气仅能在较小路径内进行混合,使还原剂在尾气内分布的均匀性较低。
本申请实施例提供的静态混合器可以有效地缓解现有技术中的静态混合器存在的还原剂在尾气内分布的均匀性较低的问题,下面结合附图,对本公开的一些实施方式作详细说明。
如图1-7所示,本申请的实施例提供了一种静态混合器,包括:筒体200和喷嘴,以及安装在筒体200内的导向件600和出气端板500,喷嘴安装在筒体200上,在出气端板500上形成有出气口520;
导向件600位于出气端板500的上游,且导向件600安装在出气端板500上以将携带喷嘴喷射出的物料的气流在筒体200的周向上导向至出气口520,导向件600包括导向板610以使导向板610的两侧板面分别面向出气口520和喷嘴。在本申请中,“上游”指的是针对静态混合器,其尾气来源方向,即车辆动力总成方向的一侧。
本申请实施例中的物料可为氮氧化合物(NOx)的还原剂;可选地,出气端板500与筒体200的轴向垂直;可选地,导向板610与出气端板500垂直,导向板610也可相对出气端板500倾斜设置;出气口520可以有多种形状,本申请实施例中出气口520为圆形;在出气端板500上还可根据后处理器的压力损失情况增设降压孔510,可选地,该降压孔510的位置与出气口520位于导向板610的同一侧,降压孔510的数量可以根据实际需要设置为为一个或多个,在本实施例中为9个,并且以互相紧邻的方式分布在端板500上,采用这样的设置可以降低背压,同时可均布反应单元100表面的速度;筒体200靠近出气端板500的一端与反应单元100连接;可选地,喷嘴通过喷 嘴座300安装在筒体200上,其中在筒体200高度方向上,喷嘴座300设置在与出气口520不同的一侧。
本申请实施例所提供的静态混合器在使用时,喷嘴向筒体200内喷射的物料在尾气的带动下及导向件600的导向作用下,与尾气形成在筒体200的周向上流动的气流并流向出气口520,在此过程中物料与尾气进行混合,通过设置出气端板500及导向板610,并使导向板610将出气口520与喷嘴分离,使得喷嘴喷射出的物料不是随尾气直接在筒体200的轴向上流出,而是由于出气端板500和导向板610的阻挡不得不绕过导向板610向出气口520流动,并在此过程中通过导向板610两侧的导向首先进行物料与尾气的混合,然后再通过导向件600的其他部分的导向作用对物料与尾气进一步混合,这使得导向件600不但能够对物料和尾气在筒体200的周向上进行导向时对物料和尾气进行混合,而且在物料和尾气绕过导向板610时也能对二者进行混合,延长了物料与尾气产生混合作用的路径,进而使物料与尾气混合更加均匀;而且,由于出气口520的面积较小,气流在从出气口520流出时速度较大且温度相对较高,这样能够减小物料与筒体200、导向板610和/或出气端板500接触时滞留并由于接触面温度较低出现的结晶问题的可能。
如图2、3和7所示,在本申请的一种实施方式中,导向板610具有连接于筒体200的内壁的连接端613。如果连接端613与筒体200的内壁之间留有间隙,则可能出现部分气流绕筒体200的内壁循环流动的情况,而由于筒体200温度相对较低,进而可能出现物料在筒体200内壁结晶的问题,进而导致物料的消耗损失,影响反应效率和尾气净化的效果。研究发现,对于现有技术中常用的还原剂物料,一般在250℃以下容易出现结晶的现象,而通过使连接端613连接于筒体200的内壁,则能够通过导向板610有效的将流动至出气口520相应 一侧的气流阻挡,或者导向至出气口520,减少了物料与筒体200接触的时间,降低了物料结晶的可能。
本申请的一种实施方式中,如图7所示,连接端613与筒体200的内壁之间通过弧形面613x过渡连接,以通过该弧形面613x对携带喷嘴喷射出的物料的气流进行导向。如果在连接端613与筒体200的内壁之间形成一个夹角,由于二者间直接相连接没有过渡,则在该夹角处会产生较大的气流撞击,由于筒体200的内壁的温度相对较低,物料容易粘滞在该夹角的位置并产生结晶堆积,当连接端613与筒体200的内壁之间采用弧形面613x过渡连接时,携带喷嘴喷射出的物料的气流会通过该弧形面613x平滑的换向,降低了气流撞击的强度,进而降低了在连接端613与筒体200的内壁连接的位置形成结晶的风险。因此,通过设置弧形面613x,能够有效地解决从混合器出去喷射出去气流撞击内壁造成结晶的风险。可选地,除了使得连接端613具有弧形面613X的过渡方式外,还可以根据实际需要,将导向板610整体设计为相应的弧形面,即相当于弧形面613X与导向板610等同。
如图6和7所示,在本申请的一种实施方式中,喷嘴配置为在第一方向上喷射物料并形成物料喷射路径,物料喷射路径与导向件600相分离。可选地,在本申请的一种实施方式中,以喷射流分为三束的喷嘴为例进行说明,其中,如图所示,a,b,c分别为三束喷射流的轴线方向。因此可以理解,物料喷射路径表示为以a和b两条线为母线形成的锥形的范围,第一方向以箭头c表示,即,由喷嘴喷射的物料在以a和b两条线为母线的锥形路径范围内向由箭头c表示的第一方向运动,当然,根据需要,物料喷射路径也可以为位于圆柱形或圆台形的范围内,或其他形状的范围内,可以根据需要的物料喷射路径 范围的形状来对喷嘴的结构和设置进行针对性地调整从而得到不同的形状,而第一方向也可根据需要做相应的调整,例如可为与导向板610相平行的方向或其他方向;可选地,喷嘴喷射出的物料为雾状。通过使导向件600与物料喷射路径相分离,降低了物料直接喷射在导向件600上的可能,进而降低了因物料直接喷射在导向件600并粘滞在导向件600上而在导向件600形成结晶的风险。
在本申请的一种实施方式中,如图6和图7所示,导向板610相对于第一方向倾斜设置。这使得导向板610尽可能向远离物料喷射路径的方向延伸,进一步降低了物料被直接喷射到导向板610上的可能。可以根据筒体200的尺寸和喷嘴位置等参数对导向板610的进行优化设计,可选地,导向板610在筒体200的径向上设置在所有降压孔510的同一侧。采用此种设置的原因在于,出气口的520截面积远小于筒体200的截面积,气流通过出气口520时,会产生较大的压力损失,通过降压孔510,能够分流一部分气流,降低在出气口处产生的压力损失,另外,气流仅通过出气口520流出混合器,气流在反应单元100的截面上分布不均匀,在出气端板500上设开降压孔510还可以均布反应单元100截面的气流,从而使反应更加均匀有效地进行。
在本申请的一种实施方式中,导向板610相对于第一方向(即在第一方向的相反方向上)从出气口520处向远离喷嘴的方向倾斜延伸。这不但使得导向板610尽可能向远离物料喷射路径的方向延伸,而且,使导向板610与喷嘴之间留有供尾气进入的空间,并通过尾气在导向板610与喷嘴喷射出的物料之间产生一定隔离作用,降低物料直接喷射到导向板610上的风险;并且,通过导向板610延伸方向的设置,除为实现降低物料直接喷射到导向板610上的风险外,还使得 在筒体200内有限的空间中能够更加合理的布置各种结构的位置及尺寸,例如,使得出气口520能够尽量靠近筒体200的轴心线,进而为出气口520能够具有一个合理大小提供足够的空间,既能够有效提升气流的流速及温度提高物料在尾气内分布的均匀程度,又能够降低由于尺寸过小导致静态混合器内压力过高的风险。当然,也可以使导向板610的延伸方向与第一方向平行,或使导向板610相对于第一方向从出气口520处向靠近喷嘴的方向倾斜延伸。
在本申请的一种实施方式中,导向板610与第一方向之间形成的夹角大于等于50度且小于等于70度。
在本申请的一种实施方式中,夹角为60度。
通过对上述夹角的角度设计,使降低物料直接喷射在导向板610上的风险并为出气口520等结构提供合理的尺寸空间等技术效果更加理想。
在本申请的一种实施方式中,如图6和图7所示,出气口520相对于筒体200偏心设置。可选地,在筒体200的径向上,出气口520的位置相对于截面中心偏向远离喷嘴的一侧。通过使出气口520偏心设置,使在静态混合器内为导向板610、喷嘴及相应的物料喷射路径留出足够的空间,进而使喷嘴合理布置降低物料直接喷射到导向件600上的风险。当然,也可使出气口520与筒体200同轴设置,这样的设置有利于简化出气口520的加工,降低生产成本。
在本申请的一种实施方式中,喷嘴配置为喷射物料并形成物料喷射路径,物料喷射路径与筒体200的轴心线相分离。这使得在筒体200的横截面内,物料喷射路径不会经过该横截面的圆心,进而通过物料喷射路径将筒体200的横截面分割为面积较大的部分和面积较小的部分,可通过将出气口520布置在面积较大一侧,进而使出气口 520能够具有合理的尺寸及位置,以保证气流具有较高的速度及温度,提高了物料在尾气内分布的均匀程度的同时,降低了静态混合器内压力过大的风险。当然,也可使物料喷射路径与筒体200的轴心线相交。此外,通过610导向板将筒体200的截面进行分割,这样,从图中可以看出从喷射一侧来看,筒体200的截面积是逐渐减小的,相应地,喷射出的气流速度会逐渐增大,相应地破碎物料的能量也会更高,使得物料破碎地更加完全(即使雾化效果更好)。物料与尾气混合好之后,通过出气侧,出气侧的截面积越来越大,由此可以减小出气段产生的压力损失。
在本申请的一种实施方式中,参见图3并结合图7,导向件600包括与导向板610连接的导向部620,导向部620具有沿出气口520的边缘延伸的弧形外壁624(例如导向部620环绕出气口520内侧的边沿处延伸设置),弧形外壁624配置为对气流进行导向。导向部620通过该弧形外壁624实现对气流进行导向,进而使气流产生在筒体200的周向上的运动,该弧形外壁624的长度可根据需要进行制作,并实现对气流进行相应长度的导向及混合作用,该弧形外壁624制作简单,且生产成本较低。可选地,导向件600整体可以涂敷有PTFE(特氟龙)材料制成的涂层,得益于PTFE的特性,尿素等化合物碰到外壁后,不易产生湿壁现象,从而可以大幅度降低物料因温度过低堆积在导向件600的外壁上的风险。此外,当作为整体加工导向件600时,是通过拼接工艺完成的,在导向板610和导向部620之间连接处需要对焊缝进行打磨,使壁面光滑并消除毛刺、焊渣、焊瘤等现象。否则,尿素等物料接触这些不平整处后,会附着在其上面,久而久之就会产生结晶的堆积现象。当然,也可以使导向部620为螺旋叶片,但螺旋叶片需采用模具进行生产,增加了制造成本,而且螺旋叶片的叶片数量设计相对复杂,增加了生产难度。
在本申请的一种实施方式中,参见图7,导向板610与弧形外壁624相切。这使导向板610与弧形外壁624之间能够光滑过渡,进而减小了在导向板610与导向部620连接的位置出现物料滞留并产生结晶的可能。
在本申请的一种实施方式中,参见图3,导向板610面向出气口520设置的板面为第一板面612,导向板610面向喷嘴设置的板面为第二板面611,导向部620上形成有与出气口520连通的开口621,开口621位于靠近第一板面612的位置。这样保证了物料在弧形外壁624的导向下移动了最大距离才从开口621处被送出,增加了弧形外壁624对气流导向的距离,进而增加了尾气与物料混合的时间,使物料在尾气中分布的更加均匀。可选地,开口621的形状为矩形,也可根据实际需要选用其他形状。开口621的面积占导向部620相应截面的几乎绝大部分,这有助于提高混合气体的流通效率。
在本申请的一种实施方式中,导向部620为筒状件。这样,当气流流入导向部620的内腔中时,由于导向部620为筒状件,其内腔为圆柱形腔体,气流能够在该圆柱形腔体的内壁的导向下继续进行螺旋流动,进而进一步延长了物料与尾气产生混合作用的路径,使物料与尾气混合更加均匀;可选地,可使导向部620的轴向与筒体200的轴向相平行或相倾斜,或者使导向部620与筒体200同轴设置。当然,也可以使导向部620为长方形盒体结构或者弯管状结构等其他形式,只要该结构能满足产生上述作用的目的即可。
在本申请的一种实施方式中,参见图2和图3,导向部620具有与出气口520连通的连通端623,在导向部620的轴向上连通端623与开口621之间形成供气流流通的连通段622。当气流流动至第一板面612面向的一侧时,由于开口621与连通端623之间由连通段622占据一定距离,即开口621并未在导向部620的轴向上延伸至出气端 板500的位置,所以部分气流需向上游方向移动一段距离才能从开口621流出,这就增加了气流与导向部620之间产生作用的距离,进而进一步延长了物料与尾气产生混合作用的路径,使物料与尾气混合更加均匀,同时,由于存在该连通端623,也相应的增加了导向部620的内腔在其轴向上的长度,进而延长了物料与尾气产生混合作用的路径,使物料在尾气内分布的更加均匀。
在本申请的一种实施方式中,导向部620轴向上的两端分别为连通端623和密封端,密封端配置为避免气流从密封端进出导向部。这能够避免尾气直接在筒体200的轴向上从导向部620贯穿,增加了用于携带物料的尾气的量,进而使物料在尾气中能分布的更加均匀;且,增加了在筒体200的周向上运动的气流的量,进而增加了气流流动的速度,减小物料在筒体200、导向板610和/或出气端板500上滞留的可能,进而减小物料结晶的可能。
如图1、2和6所示,在本申请的一种实施方式中,本申请实施例所提供的静态混合器,包括安装在筒体200内并位于导向件600上游的进气端板400,在进气端板400上形成有进气口,可选地,进气口设置为多个且在筒体200的径向上进气口与喷嘴位于导向板610的同一侧。这样,使全部尾气和全部物料均能够在导向板610的同一侧进行混合,并一同运动至导向板610的另一侧,进而使物料能够在尾气中更加均匀的分布;当然,进气口的位置也可根据需要具体设置,例如还可以位于导向件600与筒体200内壁之间的其他位置;可选地,上述进气端板400的形状和面积,以及上述出气端板500的形状和面积,均与筒体200的横截面的形状和面积相对应。
如图6所示,在本申请的一种实施方式中,喷嘴配置为喷射物料并形成物料喷射路径,在筒体200的周向上物料喷射路径与进气口相分离。这能够减小进入进气端板400和出气端板500件之间并直接作 用在物料上的尾气的量,进而降低物料在尾气的冲击下附着到出气端板500上无法被气流带走的可能,并减小物料在出气端板500上形成结晶的可能。
在本申请的一种实施方式中,进气口分为第一进气口410和第二进气口420,在筒体的周向上第一进气口410与第二进气口420分别位于物料喷射路径的两侧。这使得尾气在进入进气端板400和出气端板500之间时,通过第一进气口410和第二进气口420流入,并分别将喷嘴喷射的物料与导向板610和筒体200的内壁隔离开,进而降低了物料直接喷射在导向板610和筒体200的内壁上的风险。可选地,第一进气口410的数量小于第二进气口420的数量。在筒体200的径向上,第一进气口410和第二进气口420均位于导向板610的相同一侧,而降压孔510均位于导向板610的另一侧。这样设置的意义在于,通过使第一进气口410和第二进气口420避开喷射区域,首先,这样可以在筒体200的内腔形成漩涡,从而使气流能更好的带动尿素等物料,同时增加混合距离;其次,如果在喷射区域内开孔,气流则会直接冲击尿素等物料,很有可能尿素会被气流带到出气端板500上,在靠近喷嘴处,尿素颗粒的尺寸相对较大,而较大的尿素颗粒在接触出气端板500后,容易形成湿壁现象,增加了结晶风险。
在本申请的一种实施方式中,进气端板400与导向件600之间密封连接,例如采用焊接连接或成形为一体件。这避免了在筒体200的轴向上进气端板400与导向件600之间存在的缝隙,并使得气流能够在筒体200的周向上绕导向板610运动,而不会从上述缝隙流过,由于导向件600,特别是导向板610在筒体200轴向上的长度一般比在筒体200径向上的长度要大,因此避免气流从上述缝隙流过,能够保证气流具有较长的流通路径,进而延长了物料与尾气产生混合作用的路径,使物料在尾气内分布的更加均匀。
本申请实施例所提供的静态混合器,主要应用在后处理器上,后处理器与发动机(例如柴油发动机等)配合使用,安装在各种车辆上,包括道路上行驶的车,以及非道路用的车(工程机械,农机,军用车辆等),此外也可用于其他使用燃机并具有废气排放要求的交通工具上,例如船舶等。
本申请的另一个方面提供一种车辆,包括上述本申请实施例所提供的静态混合器。
本申请实施例所提供的车辆,采用了本申请实施例所提供的静态混合器,能够提高对尾气的净化效果,并有助于降低由于静态混合器内结晶堆积导致的排气管堵塞的风险。使用时,喷嘴向筒体200内喷射的物料在尾气的带动下及导向件600的导向作用下,形成在筒体200的周向上流动的气流并流向出气口520,在此过程中物料与尾气进行混合,通过设置出气端板500及导向板610,并使导向板610将出气口520与喷嘴分离(即通过导向板的两侧板面分别面向出气口和喷嘴的结构布局实现),使得喷嘴喷射出的物料不是随尾气直接在筒体200的轴向上流出,而是由于出气端板500和导向板610的阻挡不得不绕过导向板610向出气口520流动,并在此过程中通过导向板610两侧的导向首先进行物料与尾气的混合,然后再通过导向件600的其他部分的导向作用对物料与尾气进一步混合,这使得导向件600不但能够对物料和尾气在筒体200的周向上进行导向时对物料和尾气进行混合(即二次混合实现混合均匀性更显著的作用),而且在物料和尾气绕过导向板610时也能对二者进行混合,延长了物料与尾气产生混合作用的路径,进而使物料与尾气混合更加均匀;而且,由于出气口520的面积较小,气流在从出气口520流出时速度较大且温度相对较高,这样能够减小物料与筒体200、导向板610和/或出气端板500接触时滞留并由于接触面温度较低出现的结晶问题的可能,从而 能够提高对尾气的净化效果,并有助于降低由于静态混合器内结晶堆积导致的排气管堵塞的风险。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管上述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。另外,公开于该背景技术部分的信息仅仅旨在加深对本申请的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
工业实用性
本申请提供了一种静态混合器及车辆,能够避免采用现有静态混合器使还原剂在尾气内分布的均匀性较低的问题。

Claims (25)

  1. 静态混合器,其特征在于,包括:筒体和喷嘴,以及安装在所述筒体内的导向件和出气端板,所述喷嘴安装在所述筒体上,在所述出气端板上形成有出气口;
    所述导向件位于所述出气端板的上游,且所述导向件安装在所述出气端板上以将携带所述喷嘴喷射出的物料的气流在所述筒体的周向上导向至所述出气口,所述导向件包括导向板以使所述导向板的两侧板面分别面向所述出气口和所述喷嘴。
  2. 根据权利要求1所述的静态混合器,其特征在于,所述出气端板上还可设有降压孔;优选的,所述降压孔的位置与所述出气口位于所述导向板的同一侧。
  3. 根据权利要求1或2所述的静态混合器,其特征在于,所述导向板具有连接于所述筒体的内壁的连接端。
  4. 根据权利要求3所述的静态混合器,其特征在于,所述连接端与所述筒体的内壁之间通过弧形面过渡连接,以通过该弧形面对携带所述喷嘴喷射出的物料的气流进行导向。
  5. 根据权利要求1至4中任一项所述的静态混合器,其特征在于,所述喷嘴配置为在第一方向上喷射物料并形成物料喷射路径,所述物料喷射路径与所述导向件相分离。
  6. 根据权利要求5所述的静态混合器,其特征在于,所述导向板相对于所述第一方向倾斜设置。
  7. 根据权利要求5或6所述的静态混合器,其特征在于,所述喷嘴喷射出的所述物料为雾状。
  8. 根据权利要求6或7所述的静态混合器,其特征在于,所述 导向板相对于所述第一方向从所述出气口处向远离所述喷嘴的方向倾斜延伸。
  9. 根据权利要求8所述的静态混合器,其特征在于,所述导向板与所述第一方向之间形成的夹角大于等于50度且小于等于70度。
  10. 根据权利要求9所述的静态混合器,其特征在于,所述夹角为60度。
  11. 根据权利要求1至10中任一项所述的静态混合器,其特征在于,所述出气口相对于所述筒体偏心设置。
  12. 根据权利要求1至11中任一项所述的静态混合器,其特征在于,所述喷嘴配置为喷射物料并形成物料喷射路径,所述物料喷射路径与所述筒体的轴心线相分离。
  13. 根据权利要求12所述的静态混合器,其特征在于,通过所述物料喷射路径将所述筒体的横截面分割为面积较大的部分和面积较小的部分,且所述出气口布置在面积较大一侧。
  14. 根据权利要求1至13中任一项所述的静态混合器,其特征在于,所述导向件包括与所述导向板连接的导向部,所述导向部具有沿所述出气口的边缘延伸的弧形外壁,所述弧形外壁配置为对气流进行导向。
  15. 根据权利要求14所述的静态混合器,其特征在于,所述导向部环绕所述出气口内侧的边沿处延伸设置。
  16. 根据权利要求14或15所述的静态混合器,其特征在于,所述导向板与所述弧形外壁相切。
  17. 根据权利要求14至16中任一项所述的静态混合器,其特征在于,所述导向板面向所述出气口设置的板面为第一板面,所述导向 部上形成有与所述出气口连通的开口,所述开口位于靠近所述第一板面的位置。
  18. 根据权利要求17所述的静态混合器,其特征在于,所述导向部为筒状件。
  19. 根据权利要求18所述的静态混合器,其特征在于,所述导向部具有与所述出气口连通的连通端,在所述导向部的轴向上所述连通端与所述开口之间形成供气流流通的连通段。
  20. 根据权利要求19所述的静态混合器,其特征在于,所述导向部轴向上的两端分别为密封端和所述连通端,所述密封端配置为避免气流从所述密封端进出所述导向部。
  21. 根据权利要求1-20中任意一项所述的静态混合器,其特征在于,包括安装在所述筒体内并位于所述导向件上游的进气端板,在所述进气端板上形成有进气口,在所述筒体的径向上所述进气口与所述喷嘴位于所述导向板的同一侧。
  22. 根据权利要求21所述的静态混合器,其特征在于,所述喷嘴配置为喷射物料并形成物料喷射路径,在所述筒体的周向上所述物料喷射路径与所述进气口相分离。
  23. 根据权利要求22所述的静态混合器,其特征在于,所述进气口分为第一进气口和第二进气口,在所述筒体的周向上所述第一进气口与所述第二进气口分别位于所述物料喷射路径的两侧。
  24. 根据权利要求21至23中任一项所述的静态混合器,其特征在于,所述进气端板与所述导向件之间密封连接。
  25. 车辆,其特征在于,包括如权利要求1-24中任意一项所述的静态混合器。
PCT/CN2020/100442 2019-07-04 2020-07-06 静态混合器及车辆 WO2021000962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910597941.0A CN110173330B (zh) 2019-07-04 2019-07-04 静态混合器及车辆
CN201910597941.0 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021000962A1 true WO2021000962A1 (zh) 2021-01-07

Family

ID=67699661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100442 WO2021000962A1 (zh) 2019-07-04 2020-07-06 静态混合器及车辆

Country Status (2)

Country Link
CN (1) CN110173330B (zh)
WO (1) WO2021000962A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173330B (zh) * 2019-07-04 2020-09-18 浙江银轮机械股份有限公司 静态混合器及车辆
CN113586211A (zh) * 2021-09-13 2021-11-02 浙江银轮机械股份有限公司 翅片管及混合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607641A1 (de) * 2011-12-19 2013-06-26 Mtu Friedrichshafen Gmbh Mischeinrichtung zum Einbringen eines Reduktionsmittels in einen Abgasstrom mit schaufelförmigen Mitteln
CN104033218A (zh) * 2013-03-08 2014-09-10 埃贝施佩歇尔排气技术有限及两合公司 用于排气净化系统的催化器的入流室
CN107120162A (zh) * 2017-06-29 2017-09-01 杭州银轮科技有限公司 用于发动机尾气后处理系统的混合装置
CN109356693A (zh) * 2018-11-13 2019-02-19 浙江银轮机械股份有限公司 一种紧凑式混合器组件
CN208982145U (zh) * 2018-08-20 2019-06-14 佛吉亚排气控制技术开发(上海)有限公司 用于车辆排气系统的混合器
CN110173330A (zh) * 2019-07-04 2019-08-27 浙江银轮机械股份有限公司 静态混合器及车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251518B1 (ko) * 2010-12-09 2013-04-05 기아자동차주식회사 차량의 배기가스 후처리 시스템용 도징 모듈
CN109184867B (zh) * 2018-08-24 2019-11-15 无锡威孚力达催化净化器有限责任公司 内嵌旋转叶片的筒式尿素混合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607641A1 (de) * 2011-12-19 2013-06-26 Mtu Friedrichshafen Gmbh Mischeinrichtung zum Einbringen eines Reduktionsmittels in einen Abgasstrom mit schaufelförmigen Mitteln
CN104033218A (zh) * 2013-03-08 2014-09-10 埃贝施佩歇尔排气技术有限及两合公司 用于排气净化系统的催化器的入流室
CN107120162A (zh) * 2017-06-29 2017-09-01 杭州银轮科技有限公司 用于发动机尾气后处理系统的混合装置
CN208982145U (zh) * 2018-08-20 2019-06-14 佛吉亚排气控制技术开发(上海)有限公司 用于车辆排气系统的混合器
CN109356693A (zh) * 2018-11-13 2019-02-19 浙江银轮机械股份有限公司 一种紧凑式混合器组件
CN110173330A (zh) * 2019-07-04 2019-08-27 浙江银轮机械股份有限公司 静态混合器及车辆

Also Published As

Publication number Publication date
CN110173330A (zh) 2019-08-27
CN110173330B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021000962A1 (zh) 静态混合器及车辆
JP2011111927A (ja) 内燃機関の排気浄化装置
CN108457727A (zh) Scr尿素混合器
CN104066943A (zh) 还原剂水溶液混合装置及具备它的废气后处理装置
CN105201604A (zh) 一种scr系统尿素混合器
CN109654533B (zh) 一种适应来流畸变的尾缘吹气式稳定器
CN108194178B (zh) 一种用于混合排气和还原剂流体的径向喷射混合器
CN102022165A (zh) 一种车用尿素scr系统的混合装置
CN111185315B (zh) 旋流喷射模式还原剂喷嘴
CN102094699A (zh) 一种用于柴油机尿素选择性催化还原装置的静态混合器
WO2023138342A1 (zh) Scr系统和发动机
CN105822396A (zh) 一种尿素混合装置及scr系统
US11534728B2 (en) Reductant nozzle with helical channel design
US10894237B2 (en) Reductant nozzle with concave impinging surface
CN202028346U (zh) 一种用于柴油机尿素选择性催化还原装置的静态混合器
CN109707491A (zh) 喷射系统的混合器
CN103711552B (zh) 箱式scr催化消声器及其进气管装置
CN108678843A (zh) 一种柴油机scr催化排气装置
CN210317450U (zh) 尾气后处理装置
CN208816207U (zh) 一种柴油机scr催化排气装置
US9416703B2 (en) Mixer configuration for reducing agent preparation and motor vehicle having a mixer configuration
US10953373B2 (en) Reductant nozzle with radial air injection
CN111963281B (zh) 一种柴油机后处理高效混合器
WO2019011035A1 (zh) 尾气后处理混合装置及其封装
CN207018067U (zh) 发动机排气scr系统的反应剂排气混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834851

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20834851

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 21.09.2022

122 Ep: pct application non-entry in european phase

Ref document number: 20834851

Country of ref document: EP

Kind code of ref document: A1