WO2021000955A1 - 一种信号处理的方法、装置和设备 - Google Patents

一种信号处理的方法、装置和设备 Download PDF

Info

Publication number
WO2021000955A1
WO2021000955A1 PCT/CN2020/100248 CN2020100248W WO2021000955A1 WO 2021000955 A1 WO2021000955 A1 WO 2021000955A1 CN 2020100248 W CN2020100248 W CN 2020100248W WO 2021000955 A1 WO2021000955 A1 WO 2021000955A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
standard bandwidth
bandwidth signals
multiple sets
standard
Prior art date
Application number
PCT/CN2020/100248
Other languages
English (en)
French (fr)
Inventor
何海涛
韦兆碧
李小飞
李从伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20834640.3A priority Critical patent/EP3993334A4/en
Publication of WO2021000955A1 publication Critical patent/WO2021000955A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26414Filtering per subband or per resource block, e.g. universal filtered multicarrier [UFMC] or generalized frequency division multiplexing [GFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26538Filtering per subband or per resource block, e.g. universal filtered multicarrier [UFMC] or generalized frequency division multiplexing [GFDM]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0266Filter banks
    • H03H17/0267Filter banks comprising non-recursive filters

Definitions

  • the embodiments of the present invention relate to, but are not limited to, a signal processing method, device and equipment, and computer-readable storage medium.
  • the single-carrier bandwidth of the communication system ranges from 5M to 400MHz, or even wider; there are many types of bandwidth and a large number of carriers.
  • the current multi-rate filtering technology based on software radio and digital signal processing, processing one carrier alone, the system structure is relatively simple; but if processing multi-carrier multi-bandwidth signals, enumeration design is needed to cover all possible carrier bandwidths, resulting in digital intermediate frequency DUC (Digital Up Converter)/DDC (Digital Down Converter) implementation structure is complex, carrier configuration is not flexible, and design redundancy is serious. Moreover, in order to pursue a higher bandwidth occupancy rate, for single-carrier large-bandwidth signals, the OOB (Out Of Band, out-of-band data) bandwidth is very small compared to the time-domain sampling rate for single-carrier large-bandwidth signals.
  • DUC Digital Up Converter
  • DDC Digital Down Converter
  • the embodiment of the present invention provides a signal processing method, device and equipment, and computer-readable storage medium.
  • the embodiment of the present invention provides a signal processing method, which includes: processing multiple bandwidth signals to be sent into multiple sets of standard bandwidth signals; filtering the multiple sets of standard bandwidth signals separately; and filtering the multiple Group standard bandwidth signals are combined and transmitted out.
  • the embodiment of the present invention also provides a signal processing method, including: processing received radio frequency signals into multiple sets of standard bandwidth signals; filtering the multiple sets of standard bandwidth signals separately; and performing filtering on the multiple sets of bandwidth signals obtained by filtering. Demodulation; multiple groups of demodulated signals obtained by demodulation are scheduled and mapped.
  • An embodiment of the present invention also provides a signal processing device, including: a first processing unit configured to process multiple bandwidth signals to be sent into multiple sets of standard bandwidth signals; and a first filtering unit configured to perform processing on the multiple sets of The standard bandwidth signals are filtered separately; the sending unit is configured to combine and transmit the multiple groups of filtered standard bandwidth signals.
  • An embodiment of the present invention also provides a signal processing device, including: a second processing unit configured to process received radio frequency signals into multiple sets of standard bandwidth signals; and a second filtering unit configured to perform processing on the multiple sets of standard bandwidth signals; The signals are filtered separately; the demodulation unit is configured to demodulate multiple groups of bandwidth signals obtained by filtering; the scheduling and mapping unit is configured to perform scheduling and mapping on multiple groups of demodulated signals obtained by demodulation.
  • An embodiment of the present invention also provides a signal processing device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor implements the signal processing when the program is executed. method.
  • the embodiment of the present invention also provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the signal processing method.
  • the embodiment of the present invention includes: processing multiple bandwidth signals to be sent into multiple sets of standard bandwidth signals; filtering the multiple sets of standard bandwidth signals separately; and combining and transmitting the multiple sets of filtered standard bandwidth signals.
  • the embodiment of the present invention processes multiple bandwidth signals into multiple sets of standard bandwidth signals, so that DUC/DDC can adopt a unified processing architecture, with high architecture reusability, high flexibility and scalability, and reduces DUC/DDC processing complexity and design redundancy , The structure is simpler and more consistent, which reduces the cost and heat consumption of the digital intermediate frequency chip.
  • Fig. 1 is a flowchart of a signal processing method according to an embodiment of the present invention (applied to a downlink transmission link);
  • FIG. 2 is a flowchart of step 201 in an embodiment of the present invention.
  • Figure 3 is an overall processing flow chart of the transmission link data stream of the application example of the present invention.
  • Figure 4 is a system block diagram (transmission link) of the digital intermediate frequency processing architecture of the application example of the present invention.
  • Figure 5 is a 100MHz bandwidth carrier processing block diagram of an application example of the present invention.
  • Figure 6 is a flowchart of a signal processing method according to an embodiment of the present invention (applied to the uplink transmission link);
  • Fig. 7 is a flow chart of overall processing of receiving link data flow of an application example of the present invention.
  • Fig. 8 is a system block diagram (receiving link) of a digital intermediate frequency processing architecture of an application example of the present invention
  • FIG. 9 is a schematic diagram of the composition of a signal processing apparatus according to an embodiment of the present invention (applied to a downlink transmission link);
  • Fig. 10 is a schematic diagram of the composition of a signal processing apparatus according to an embodiment of the present invention (applied to an uplink transmission link).
  • the embodiment of the present invention adopts a filter bank (Filter Bank) to realize flexible configuration and replacement of OBW (Occupied Bandwidth) and the number of carriers/carrier bandwidth, so as to achieve high reusability of the solution architecture and high flexibility and scalability.
  • OBW Open Bandwidth
  • the NR (New Radio) and LTE (Long Term Evolution) signals in the OBW can all be cut and processed according to the same Filter Bank bandwidth, with a unified architecture and simple implementation. If it is compatible with multiple possible bandwidth divisions, a small bandwidth needs to be matched, and the small bandwidth only needs to be aligned to the standard bandwidth of the Filter Bank during processing, and the cost is small.
  • the embodiments of the present invention can be applied to all types of base stations in the field of wireless communication technology (and can also be extended to UE (User Equipment)), transmitters or receivers for OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) Use) modulated signal, physical layer FFT (Fast Fourier Transform, Fast Fourier Transform)/IFFT (Inverse Fast Fourier Transform, Inverse Fast Fourier Transform) and digital intermediate frequency processing DUC/DDC processing link simplified design method; Promote to WiFi (Wireless Fidelity, wireless fidelity), microwave and other systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • IFFT Inverse Fast Fourier Transform
  • DUC/DDC processing link simplified design method Promote to WiFi (Wireless Fidelity, wireless fidelity), microwave and other systems.
  • FIG. 1 it is a signal processing method according to an embodiment of the present invention, which is applied to a downlink transmission link, and includes:
  • Step 101 Process multiple bandwidth signals to be sent into multiple sets of standard bandwidth signals.
  • the standard bandwidth is a preset designated bandwidth, which can be selected according to actual conditions.
  • 20M can be set as the standard bandwidth.
  • the step 101 may include:
  • Step 201 Group the multiple bandwidth signals to be sent according to the standard bandwidth to obtain multiple groups of signals with a bandwidth less than or equal to the standard bandwidth.
  • RBs Resource Blocks
  • the obtained signal with a bandwidth smaller than the standard bandwidth may be a signal whose bandwidth is smaller than the standard bandwidth, or it may be a signal whose bandwidth is larger than the standard bandwidth after being grouped, and the remaining signal with a insufficient standard bandwidth.
  • Step 202 separately modulate the multiple groups of signals obtained by grouping.
  • OFDM modulation is performed on the multiple sets of signals.
  • the step 202 includes:
  • the number of IFFT points used for performing IFFT is 1024 points or 2048 points.
  • the number of IFFT points is uniform, and the number of IFFT points is reduced from the traditional large-point IFFT (for example, 4096) to multiple IFFTs with very few points (for example, 1024 or 2048), reducing the amount of FFT butterfly operations.
  • Step 203 Among the multiple sets of modulation signals obtained after modulation, the modulation signals smaller than the standard bandwidth are stretched and aligned, so that the modulation signals are all standard bandwidth signals.
  • the stretching and aligning the modulated signal smaller than the standard bandwidth includes:
  • Step 102 Filter the multiple sets of standard bandwidth signals respectively.
  • the filtering is the process of grouping and shaping, and this step realizes the shaping of multiple groups of signals and the speed of interpolation.
  • step 102 includes:
  • the multiple sets of standard bandwidth signals are respectively filtered by filter banks, wherein the first filter bank is used for the standard bandwidth signals located at the boundary of the frequency band, and the second filter bank is used for the standard bandwidth signals located in the middle of the frequency band.
  • the first filter bank and the second filter bank contain filters of the same type.
  • the filter bank may include FIR (Finite Impulse Response, finite-length unit impulse response) filter, half-band filter, CIC (Cascade Integrator Comb, cascade integrator comb) filter, fractional multiple filter, and the like.
  • FIR Finite Impulse Response, finite-length unit impulse response
  • CIC Cascade Integrator Comb, cascade integrator comb
  • the FIR filter may be an RCF (Raised Cosine Filter, raised cosine filter).
  • the coefficient (order) of the FIR filter can be reconfigured by software.
  • the first filter bank and the second filter bank can use the same filter in hardware, but are configured to have different coefficients through software, which simplifies the design and saves costs.
  • the order of the FIR filter in the first filter bank is higher than the order of the FIR filter in the second filter bank.
  • the order of the FIR filter in the first filter bank is 254, and the order of the FIR filter in the second filter bank is 80.
  • the standard bandwidth signal located in the middle of the frequency band is processed in a time domain windowing manner through the second filter bank.
  • time domain windowing is to multiply a raised cosine window or other commonly used window functions in FIR in the time domain to achieve smoothness between different symbols and effectively simulate out-of-band diffusion.
  • Step 102 completes the shaping and interpolation of multiple groups of signals.
  • the band boundary group adopts high-order filters to ensure the near-end radiation template requirements and ACPR requirements
  • the middle groups adopt low-order filters or Time-domain windowing processing ensures that multiple combinations are required for remote ACPR of large-bandwidth signals.
  • Step 103 Combine and transmit the multiple groups of filtered standard bandwidth signals.
  • step 103 before the step 103, it further includes:
  • the multiple groups of filtered standard bandwidth signals are arranged according to the air interface frequency point relationship to restore the positions of the multiple bandwidth signals to be sent in the frequency domain.
  • step 103 DAC (Digital to Analog Converter) and up-conversion, radio frequency, PA (Power Amplifier), and antenna can be used to transmit to the air interface to complete the entire RRU/AAU data stream processing process.
  • DAC Digital to Analog Converter
  • PA Power Amplifier
  • the embodiment of the present invention processes multiple bandwidth signals into multiple sets of standard bandwidth signals, so that DUC/DDC can adopt a unified processing architecture, with high architecture reusability, high flexibility and scalability, and reduces DUC/DDC processing complexity and design redundancy ,
  • the structure is simpler and more consistent, which reduces the cost and heat consumption of the digital intermediate frequency chip.
  • Step 301 RBs schedule packets.
  • the RBs scheduling and grouping module used is the PHY (physical) layer grouping preprocessing module.
  • the frequency domain large-bandwidth signals that exceed the standard bandwidth are configured for scheduling groups, and a group of large-bandwidth RBs are divided into multiple groups of RBs, corresponding to many Group Bank.
  • Step 302 OFDM modulation.
  • the number of IFFT points is uniform.
  • the number of IFFT points is reduced from the traditional large-point IFFT to multiple IFFTs with very few points, reducing the amount of FFT butterfly calculations. .
  • Step 303 the small bandwidth is aligned.
  • Step 304 group forming.
  • This step completes the shaping and interpolation of multiple banks (groups).
  • the bank at the frequency band boundary adopts high-order filters to ensure the near-end radiation template requirements and ACPR requirements. Filter or time-domain windowing processing to ensure the remote ACPR requirements of multi-bank synthesis of large bandwidth signals.
  • Step 305 Bank frequency shift.
  • the original large-bandwidth signal is restored in the frequency domain, and the RBs of multiple banks are arranged according to the air interface frequency point relationship.
  • Multiple banks restore the original requirements of large bandwidth, which are invisible to the UE, and transmit to the air interface through DAC and up-conversion, radio frequency, PA amplifier and antenna to complete the entire data stream processing process of RRU/AAU.
  • FIG. 4 it is a system block diagram of the digital intermediate frequency processing architecture corresponding to the process in FIG. 3. It can be seen from Figure 4 that although the system requires a very diverse bandwidth, the Filter Bank processing is simple and unified. In this example, take the standard bandwidth of 20MHz as an example. In other embodiments, other values of bandwidth can be used as the standard bandwidth. If the conventional method is adopted, 100MHz bandwidth 30KHz SCS (Subcarrier Spacing, subcarrier spacing), shaping on 153.6MSPS, the number of IFFT points is 5120, and the order of FIR filter shaping is 510.
  • SCS Subcarrier Spacing, subcarrier spacing
  • a single filter bank uses five 20MHz 30.72MSPS sampling rates, and the number of IFFT points is 1024.
  • the order of the FIR filter in the first filter bank is 254, and the order of the FIR filter in the second filter bank is 80 or time-domain windowing is used, which greatly reduces the amount of multiplication and addition operations.
  • the RBs scheduling grouping module 41 is a PHY layer grouping preprocessing module, which configures scheduling groups of baseband signals with a large bandwidth in the frequency domain (large bandwidth means exceeding the standard bandwidth), for example, divides 100MHz single carrier large bandwidth into 5 20MHz standard bank groups . Divide the 273 effective RBs into [54, 55, 55, 55, 54], corresponding to 5 filter banks (Filter Bank)
  • the OFDM modulation module 42 performs downlink IFFT and time domain plus CP on the grouped 20MHz standard signals.
  • the number of IFFT points is uniform, and the number of IFFT points is changed from the traditional 5120 points to 5 1024 points.
  • the small bandwidth align module 43 stretches and aligns the modulation signals smaller than the standard bandwidth, so that the modulation signals are all standard bandwidth signals. It can be bypassed here.
  • Group shaping module 44 two 20MHz banks (FB0 and FB4 in FIG. 5) on the left and right boundaries of the frequency domain, in order to ensure the near-end radiation template requirements and ACPR requirements, high-order filters are used.
  • the middle three 20MHz banks use low-order filters or time-domain windowing processing to ensure the remote ACPR requirements for multi-bank synthesis of large bandwidth signals.
  • the packet shaping module 44 includes RCF and DUC, where RCF is used for filtering, and DUC is used to implement interpolation operations. As shown in FIG. 4, DUC implements 2 times interpolation and 3 times interpolation.
  • the bank frequency shift module 45 arranges five 20MHz banks according to the frequency domain relationship shown in FIG. 4.
  • the Bank frequency shift module 45 can be implemented by a NCO (Numerically Controlled Oscillator).
  • Combined transmitter module 46, 5 20MHz Banks restore the original requirements of large bandwidth, which is invisible to the UE. It transmits to the air interface through DAC and up-conversion, radio frequency, PA amplifier and antenna to complete the entire data stream processing process of RRU/AAU. As shown in Figure 5, the three banks in the middle have no boundaries and are seamless; the two banks on both sides have boundaries, and the effective bandwidth is different from the occupied bandwidth.
  • the signal processing method of the embodiment of the present invention, applied to the uplink transmission link includes:
  • Step 601 Process the received radio frequency signals into multiple sets of standard bandwidth signals.
  • step 601 includes:
  • the radio frequency signal is sampled and digitized, and divided according to the standard bandwidth, to obtain the multiple sets of standard bandwidth signals.
  • the receiving part can include receiving radio frequency link, antenna, low noise amplifier, radio frequency link, down conversion and ADC (Analog-to-Digital Converter, analog-to-digital converter) to complete the sampling and digital processing of radio frequency signals.
  • ADC Analog-to-Digital Converter, analog-to-digital converter
  • the signals larger than the standard bandwidth are segmented in the frequency domain according to the standard bandwidth, and each group is frequency shifted to digital zero frequency.
  • Step 602 Filter the multiple sets of standard bandwidth signals respectively.
  • filtering is the process of grouping and shaping, and this step realizes the shaping and extraction of multiple groups of signals.
  • step 602 includes:
  • the multiple sets of standard bandwidth signals are respectively filtered by filter banks, wherein the first filter bank is used for the standard bandwidth signals located at the boundary of the frequency band, and the second filter bank is used for the standard bandwidth signals located in the middle of the frequency band.
  • the first filter bank and the second filter bank contain filters of the same type.
  • the filter bank may include FIR filters, half-band filters, CIC filters, fractional multiple filters, etc.
  • the FIR filter may be RCF.
  • the order of the FIR filter in the first filter bank is higher than the order of the FIR filter in the second filter bank.
  • the order of the FIR filter in the first filter bank is 254, and the order of the FIR filter in the second filter bank is 80.
  • the standard bandwidth signal located in the middle of the frequency band is processed in a time domain windowing manner through the second filter bank.
  • Step 602 completes the shaping and extraction of multiple groups of signals.
  • the band boundary group adopts high-order filters to ensure near-end blocking and ACS (Adjacent Channel Selectivity) requirements.
  • the group uses low-order filters or time-domain windowing processing to ensure remote blocking requirements.
  • Step 603 Demodulate multiple groups of bandwidth signals obtained by filtering.
  • step 603 may further include:
  • the bandwidth signals that have been stretched and aligned are subjected to decimation processing to obtain a signal smaller than the standard bandwidth.
  • step 603 includes:
  • the number of FFT points used for FFT is 1024 points or 2048 points.
  • the number of FFT points is uniform, and the number of FFT points is reduced from the traditional large-point FFT to multiple FFTs with very few points.
  • step 604 multiple groups of demodulated signals obtained by demodulation are scheduled and mapped.
  • the RBs of the multiple filter banks are mapped and merged into a set of effective RBs according to the correspondence between the protocol and the actual air interface.
  • the overall processing flow of the uplink receive link data stream of a base station is taken as an example for description, including the following steps:
  • Step 701 Receive a radio frequency signal.
  • the receiving radio frequency link may include an antenna, a low noise amplifier, a radio frequency link, a down-conversion, and ADC parts to complete the sampling and digital processing of the radio frequency signal.
  • Step 702 frequency shift bank separation.
  • the large-bandwidth signal received from the UE is segmented in the frequency domain according to the bank, and each bank is shifted to the digital zero frequency.
  • Step 703 group forming.
  • the bank at the frequency band boundary uses high-order filters to ensure near-end blocking and ACS requirements, and the middle multiple banks use low-order filters or time-domain windowing Processing to ensure remote blocking requirements.
  • Step 704 OFDM demodulation.
  • the number of FFT points is uniform, and the number of FFT points is reduced from the traditional large-point FFT to multiple FFTs with very few points.
  • Step 705 RBs scheduling mapping.
  • FIG. 8 it is a system block diagram of the digital intermediate frequency processing architecture corresponding to the process in FIG. 7.
  • the 100MHz bandwidth is 30KHz SCS, and the shaping is performed at 153.6MSPS, the number of FFT points is 5120, and the FIR filter shaping order is 510.
  • a single filter bank (Filter Bank) uses five 20MHz 30.72MSPS sampling rates, and the number of FFT points is 1024.
  • the order of the FIR filter in the first filter bank is 254, and the order of the FIR filter in the second filter bank is 80 or time-domain windowing is used, which greatly reduces the amount of multiplication and addition operations.
  • the receiving module 81, the air interface receives a 100MHz signal through an antenna, and completes the entire RRU/AAU data stream simulation processing process and analog-to-digital conversion after low noise amplifier, radio frequency, down conversion and ADC.
  • the bank frequency shift module 82 shifts the frequency of the five 20MHz banks to the digital zero frequency according to the air interface frequency domain relationship shown in FIG. 4.
  • the Bank frequency shift module 82 can be implemented by a NCO (Numerically Controlled Oscillator).
  • the two 20MHz banks (FB0 and FB4 in FIG. 5) on the left and right boundaries of the frequency domain adopt high-order filters to ensure the near-end ACS and in-band blocking requirements.
  • the three 20MHz banks in the middle adopt low-order filters or time-domain windowing processing to ensure remote in-band blocking requirements.
  • the packet shaping module 83 includes RCF and DDC, where RCF is used for filtering and DDC is used for decimation. As shown in FIG. 8, DDC implements 2x decimation and 3x decimation.
  • the small bandwidth processing module 84 extracts part of the bandwidth signal from the standard bandwidth signal obtained by the packet shaping module 83 to obtain a signal smaller than the standard bandwidth. It can be bypassed here.
  • the OFDM demodulation module 85 performs time-domain de-CP and uplink FFT on the grouped 20MHz standard signals.
  • the number of FFT points is uniform, and the number of FFT points is changed from the traditional 5120 points to 5 1024 points.
  • the RBs mapping and merging module 86 is a post-processing module for PHY layer grouping, which splices small bandwidth RBs in the frequency domain into baseband signals of large bandwidth single carrier RBs.
  • 5 filter banks (Filter Bank) RBs are respectively [54, 55, 55, 55, 54], corresponding to the downlink, the 100MHz single-carrier large bandwidth is divided into 5 20MHz standard bank groups and spliced into a 273RBs.
  • the smallest filter bank group can be realized, and the intermediate frequency processing architecture of different NR carrier bandwidths can be built through splitting and reorganization.
  • Filters can be classified and designed, and the frequency band boundary adopts high-order guaranteed ACPR and radiation modules.
  • Low-end or Window molding is used inside the frequency band to create inter-carrier interference and improve remote ACPR.
  • the number of FFT/IFFT points is reduced, and the processing pressure of the hard accelerator is reduced; the complexity of DUC/DDC processing is reduced, and the structure is simpler and more consistent; the scheme structure is unified.
  • an embodiment of the present invention also provides a signal processing device applied to a downlink transmission link, including:
  • the first processing unit 901 is configured to process multiple bandwidth signals to be sent into multiple sets of standard bandwidth signals
  • the first filtering unit 902 is configured to filter the multiple sets of standard bandwidth signals respectively;
  • the sending unit 903 is configured to combine and transmit the filtered multiple sets of standard bandwidth signals.
  • an embodiment of the present invention also provides a signal processing device applied to an uplink transmission link, including:
  • the second processing unit 1001 is configured to process the received radio frequency signals into multiple sets of standard bandwidth signals
  • the second filtering unit 1002 is configured to filter the multiple sets of standard bandwidth signals respectively;
  • a demodulation unit 1003, configured to demodulate the multiple groups of filtered standard bandwidth signals
  • the scheduling and mapping unit 1004 is configured to perform scheduling and mapping on multiple groups of demodulated signals obtained by demodulation.
  • An embodiment of the present invention also provides a signal processing device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor implements the signal processing when the program is executed. method.
  • the embodiment of the present invention also provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the signal processing method.
  • the embodiment of the present invention also provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the method for implementing the conference control.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • U disk Read-Only Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • mobile hard disk magnetic disk or optical disk, etc.
  • Such software may be distributed on a computer-readable medium
  • the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .
  • the signal processing method, device and device, and computer-readable storage medium provided by the embodiments of the present invention have the following beneficial effects: processing multiple bandwidth signals into multiple sets of standard bandwidth signals, so that DUC/DDC can be used Unified processing architecture, high reusability of the architecture, high flexibility and scalability, reduced DUC/DDC processing complexity and design redundancy, simpler and more consistent structure, and reduced cost and heat consumption of digital intermediate frequency chips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例中提供了一种信号处理的方法、装置和设备、计算机可读存储介质,其中,所述方法包括:将待发送的多种带宽信号处理为多组标准带宽信号;对所述多组标准带宽信号分别进行滤波;将经过滤波的所述多组标准带宽信号合路发射出去。本发明实施例将多种带宽信号处理为多组标准带宽信号,使得DUC/DDC可以采用统一的处理架构,架构重用性高,灵活扩展性高,减少了DUC/DDC处理复杂度和设计冗余,结构更简单一致,降低了数字中频芯片的成本和热耗。

Description

一种信号处理的方法、装置和设备 技术领域
本发明实施例涉及但不限于一种信号处理的方法、装置和设备、计算机可读存储介质。
背景技术
目前通信系统的单载波带宽从5M到400MHz,甚至更宽;带宽种类多,载波数量多。
当前基于软件无线电和数字信号处理的多速率滤波技术,单独处理一个载波,系统结构比较简单;但是如果处理多载波多带宽信号,就需要采用枚举设计,覆盖所有可能的载波带宽,导致数字中频DUC(Digital Up Converter,数字上变频)/DDC(Digital Down Converter,数字下变频)实现结构复杂,载波配置不灵活,设计冗余严重。而且系统为了追求更高的带宽占用率,对于单载波大带宽信号,如果在时域统一处理,OOB(Out Of Band,带外数据)带宽相对于时域采样率非常小,为了保证下行的辐射模板和ACPR(Adjacent Channel Leakage Ratio,相邻频道泄漏比),导致滤波器阶数非常高(512阶)。如果采用Farrow架构,适应性和灵活性高,但是配置和使用复杂,设计复杂,实现资源大。
将当前需求硬化到ASIC(Application Specific Integrated Circuit,特殊应用集成电路)芯片,导致数字中频芯片规模庞大,成本和热耗都非常大,无疑增加了RRU(Radio Remote Unit,射频拉远单元)/AAU(Active Antenna Unit,有源天线单元)的成本和散热压力。
针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种信号处理的方法、装置和设备、计算机可读存储介质。
本发明实施例提供了一种信号处理的方法,包括:将待发送的多种带宽信号处理为多组标准带宽信号;对所述多组标准带宽信号分别进行滤波;将经过滤波的所述多组标准带宽信号合路发射出去。
本发明实施例还提供一种信号处理的方法,包括:将接收到的射频信号处理为多组标准带宽信号;对所述多组标准带宽信号分别进行滤波;对滤波得到的多组带宽信号进行解调;将解调得到多组解调信号进行调度和映射。
本发明实施例还提供一种信号处理的装置,包括:第一处理单元,设置为将待发送的多种带宽信号处理为多组标准带宽信号;第一滤波单元,设置为对所述多组标准带宽信号分别进行滤波;发送单元,设置为将经过滤波的所述多组标准带宽信号合路发射出去。
本发明实施例还提供一种信号处理的装置,包括:第二处理单元,设置为将接收到的射频信号处理为多组标准带宽信号;第二滤波单元,设置为对所述多组标准带宽信号分别进行滤波;解调单元,设置为对滤波得到的多组带宽信号进行解调;调度映射单元,设置为将解调得到多组解调信号进行调度和映射。
本发明实施例还提供一种信号处理的设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述信号处理的方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述信号处理的方法。
本发明实施例包括:将待发送的多种带宽信号处理为多组标准带宽信号;对所述多组标准带宽信号分别进行滤波;将经过滤波的所述多组标准带宽信号合路发射出去。本发明实施例将多种带宽信号处理为多组标准带宽信号,使得DUC/DDC可以采用统一的处理架构,架构重用性高,灵活扩展性高,减少了DUC/DDC处理复杂度和设计冗余,结构更简单一致,降低了数字中频芯片的成本和热耗。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是本发明实施例的信号处理的方法的流程图(应用于下行发射链路);
图2是本发明实施例的步骤201的流程图;
图3是本发明应用实例的发射链路数据流整体处理流程图;
图4是本发明应用实例的数字中频处理架构系统框图(发射链路);
图5是本发明应用实例的100MHz带宽载波处理框图;
图6是本发明实施例的信号处理的方法的流程图(应用于上行发射链路);
图7是本发明应用实例的接收链路数据流整体处理流程图;
图8是本发明应用实例的数字中频处理架构系统框图(接收链路);
图9是本发明实施例的信号处理的装置的组成示意图(应用于下行发射链路);
图10是本发明实施例的信号处理的装置的组成示意图(应用于上行发射链路)。
具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例采用滤波器组(Filter Bank)实现OBW(Occupied Bandwidth,工作占用带宽)和载波数/载波带宽的灵活配置和置换,做到方案架构重用性高,灵活扩展性高。可以将OBW内的NR(New Radio,新无线)和LTE(Long Term Evolution,长期演进)信号全部按照相同Filter Bank带宽切割处理,架构统一,实现简单。如果兼容多种可能带宽划分,需要配合小带宽,处理时只需要将小带宽拉齐到Filter Bank的标准带宽即可,代价小。
本发明实施例可以应用于无线通信技术领域中所有基站类型(也可以推广到UE(User Equipment,用户设备)中),发射机或者接收机中针对OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)调制信号,物理层FFT(Fast Fourier Transform,快速傅里叶变换)/IFFT(Inverse Fast Fourier  Transform,快速傅里叶逆变换)和数字中频处理DUC/DDC处理链路的简化设计方法;可以推广到WiFi(Wireless Fidelity,无线保真)、微波等系统中。
如图1所示,是根据本发明实施例的信号处理的方法,应用于下行发射链路,包括:
步骤101,将待发送的多种带宽信号处理为多组标准带宽信号。
其中,标准带宽是预设的指定带宽,可以根据实际情况选取,例如,可以将20M设置为标准带宽。
其中,如图2所示,所述步骤101可以包括:
步骤201,将所述待发送的多种带宽信号按照标准带宽分组,得到带宽小于等于标准带宽的多组信号。
本步骤中,可以将超过标准带宽的频域大带宽的RB(Resource Block,资源块)按照标准带宽配置调度分组。
得到的带宽小于标准带宽的信号,可能是本身带宽小于标准带宽的信号,也可能是大于标准带宽的信号经过分组后,剩余的不足标准带宽的信号。
步骤202,对分组得到所述多组信号分别进行调制。
本步骤中,对所述多组信号进行OFDM调制。
在一实施例中,所述步骤202包括:
对分组得到所述多组信号进行IFFT和添加CP(Cyclic Prefix,循环前缀)。
在一实施例中,所述进行IFFT采用的IFFT点数为1024点或者2048点。
本步骤中,IFFT点数统一一致,IFFT点数从传统的大点数IFFT(例如4096)成倍缩减为多个点数非常少的IFFT(例如1024或2048),减少FFT蝶形运算量。
步骤203,在调制后得到的多组调制信号中,对小于标准带宽的调制信号进行拉伸对齐,使得所述调制信号均为标准带宽信号。
在一实施例中,所述对小于标准带宽的调制信号进行拉伸对齐,包括:
对小于标准带宽的调制信号进行插值操作,统一到所述标准带宽的采样率。
步骤102,对所述多组标准带宽信号分别进行滤波。
其中,滤波即是分组成型的过程,本步骤实现多组信号成型和插值变速。
在一实施例中,步骤102包括:
对所述多组标准带宽信号分别采用滤波器组进行滤波,其中,对位于频段边界的标准带宽信号采用第一滤波器组,对位于频段中间的标准带宽信号采用第二滤波器组,所述第一滤波器组和第二滤波器组包含相同类型的滤波器。
所述滤波器组可以包括FIR(Finite Impulse Response,有限长单位冲激响应)滤波器,半带滤波器,CIC(Cascade Integrator Comb,级联积分梳状)滤波器,分数倍滤波器等。
所述FIR滤波器可以是RCF(Raised Cosine Filter,升余弦滤波器)。
FIR滤波器的系数(阶数)可以通过软件重配置。也就是说,所述第一滤波器组和第二滤波器组在硬件上可以采用相同的滤波器,只是通过软件配置成不同的系数,简化了设计,节约了成本。
在一实施例中,所述第一滤波器组中FIR滤波器的阶数高于所述第二滤波器组中FIR滤波器的阶数。
例如,第一滤波器组中FIR滤波器的阶数为254,第二滤波器组中FIR滤波器的阶数为80。
在一实施例中,通过所述第二滤波器组采用时域加窗的方式对位于频段中间的标准带宽信号进行处理。其中,时域加窗就是在时域上点乘一个升余弦窗或者其他FIR里的常用窗函数,实现不同符号之间的平滑,有效拟制带外扩散。
步骤102完成多组信号的成型和插值变速,同时为了保证射频指标,频段边界的组采用高阶滤波器,保证近端的辐射模板要求和ACPR要求,中间的多个组采用低阶滤波器或者时域加窗处理,保证多组合成大带宽信号的远端ACPR要求。
步骤103,将经过滤波的所述多组标准带宽信号合路发射出去。
在一实施例中,所述步骤103之前,还包括:
将经过滤波的所述多组标准带宽信号按照空口频点关系排列,以还原待发送的多种带宽信号在频域位置。
步骤103中,可以通过DAC(Digital to Analog Converter,数字模拟转换器)和上变频、射频、PA(功率放大器,PowerAmplifier)和天线发射到空口,完成RRU/AAU整个数据流处理过程。
本发明实施例将多种带宽信号处理为多组标准带宽信号,使得DUC/DDC可以采用统一的处理架构,架构重用性高,灵活扩展性高,减少了DUC/DDC处理复杂度和设计冗余,结构更简单一致,降低了数字中频芯片的成本和热耗。
如图3所示,以一个基站的发射链路数据流整体处理流程为例进行说明,包括如下步骤:
步骤301,RBs调度分组。
本步骤中,采用的RBs调度分组模块为PHY(物理)层分组预处理模块,将超过标准带宽的频域大带宽信号配置调度分组,将大带宽的一组RBs分为多组RBs,对应多组Bank。
步骤302,OFDM调制。
将分组后的小于等于标准带宽的信号做下行IFFT和时域加CP,IFFT点数统一一致,IFFT点数从传统的大点数IFFT成倍缩减为多个点数非常少的IFFT,减少FFT蝶形运算量。
步骤303,小带宽对齐。
为了解决大于标准带宽的信号可能无法成倍地切割成标准带宽信号,也为了解决不同运营商有小于标准需求,可以配置几个小带宽处理模块,将小带宽做插值倍数,统一到标准带宽的采样率,完成小带宽拉齐,送给后面的304对应的Filter Bank标准模块。
步骤304,分组成型。
本步骤完成多个Bank(组)的成型和插值变速,同时为了保证射频指标,频段边界的Bank采用高阶滤波器,保证近端的辐射模板要求和ACPR要求,中间的多个Bank采用低阶滤波器或者时域加窗处理,保证多Bank合成大带宽信号的远端ACPR要求。
步骤305,Bank移频。
本步骤还原原有大带宽信号在频域位置,多个Bank的RBs按照空口频点关系排列。
步骤306,合路发射。
多个Bank复原大带宽原始需求,对UE不可见,通过DAC和上变频、射频、PA放大器和天线发射到空口,完成RRU/AAU整个数据流处理过程。
如图4所示,为图3的流程对应的数字中频处理架构系统框图。从图4中可以看出,虽然系统需求带宽非常多样化,但是Filter Bank处理简单统一。本例中,以标准带宽为20MHz为例。在其他实施例中,可以采用其他数值的带宽作为标准带宽。如果采用常规方法,100MHz带宽30KHz SCS(Subcarrier Spacing,子载波间隔),在153.6MSPS上成型,IFFT点数为5120,FIR滤波器成型阶数为510。而采用本发明实施例的方法,其中单个滤波器组(Filter Bank),采用5个20MHz 30.72MSPS采样率,IFFT点数为1024。其中第一滤波器组中FIR滤波器阶数为254,第二滤波器组中FIR滤波器阶数为80或者采用时域加窗,大大减小乘加运算量。
RBs调度分组模块41,为PHY层分组预处理模块,将频域大带宽(大带宽是指超过标准带宽)的基带信号配置调度分组,例如,将100MHz单载波大带宽分成5个20MHz标准Bank组。将273个有效RB分为[54、55、55、55、54],对应5个滤波器组(Filter Bank)
OFDM调制模块42,将分组后的20MHz标准信号做下行IFFT和时域加CP,IFFT点数统一一致,IFFT点数从传统的5120点变为5个1024点。
小带宽拉齐模块43,将小于标准带宽的调制信号进行拉伸对齐,使得所述调制信号均为标准带宽信号。此处可旁路。
分组成型模块44,频域左右边界两个20MHz Bank(图5的FB0和FB4)为了保证近端的辐射模板要求和ACPR要求指标,采用高阶滤波器。中间的3个20MHz Bank采用低阶滤波器或者时域加窗处理,保证多Bank合成大带宽信号的远端ACPR要求。
本例中,分组成型模块44包括RCF和DUC,其中,RCF用于滤波,DUC用于实现进行插值操作,如图4所示,DUC实现了2倍插值和3倍插值。
Bank移频模块45,将5个20MHz Bank按照图4所示的频域关系排列。
本例中,Bank移频模块45可以通过NCO(Numerically Controlled Oscillator,数字控制振荡器)实现。
合路发射模块46,5个20MHz Bank复原大带宽原始需求,对UE不可见,通过DAC和上变频、射频、PA放大器和天线发射到空口,完成RRU/AAU整个数据流处理过程,频域如图5所示,中间3个bank是没有边界的,是无缝的;两边的2个bank是有边界的,有效带宽和占用带宽不同。
如图6所示,本发明实施例的信号处理的方法,应用于上行发射链路,包括:
步骤601,将接收到的射频信号处理为多组标准带宽信号。
在一实施例中,步骤601包括:
对所述射频信号进行采样和数字化处理,按照标准带宽进行切分,得到所述多组标准带宽信号。
其中,对于接收部分,可以包括接收射频链路,天线、低噪放、射频链路、下变频和ADC(Analog-to-Digital Converter,模数转换器),完成射频信号的采样和数字化处理。
本步骤中,将大于标准带宽的信号按照标准带宽做频域的切分,将每个组移频到数字0频。
步骤602,对所述多组标准带宽信号分别进行滤波。
其中,滤波即是分组成型的过程,本步骤实现多组信号成型和抽取变速。
在一实施例中,步骤602包括:
对所述多组标准带宽信号分别采用滤波器组进行滤波,其中,对位于频段边界的标准带宽信号采用第一滤波器组,对位于频段中间的标准带宽信号采用第二滤波器组,所述第一滤波器组和第二滤波器组包含相同类型的滤波器。
所述滤波器组可以包括FIR滤波器,半带滤波器,CIC滤波器,分数倍滤波器等。
所述FIR滤波器可以是RCF。
在一实施例中,所述第一滤波器组中FIR滤波器的阶数高于所述第二滤波器组中FIR滤波器的阶数。
例如,第一滤波器组中FIR滤波器的阶数为254,第二滤波器组中FIR滤波器的阶数为80。
在一实施例中,通过所述第二滤波器组采用时域加窗的方式对位于频段中间的标准带宽信号进行处理。
步骤602完成多组信号的成型和抽取变速,同时为了保证射频指标,频段边界的组采用高阶滤波器,保证近端的阻塞和ACS(AdjacentChannel Selectivity,邻道选择性)要求,中间的多个组采用低阶滤波器或者时域加窗处理,保证远端阻塞要求。
步骤603,对滤波得到的多组带宽信号进行解调。
在一实施例中,步骤603之前,还可以包括:
对滤波得到的所述多组带宽信号中,将经过拉伸对齐处理过的带宽信号进行抽取处理,得到小于标准带宽的信号。
在一实施例中,步骤603包括:
对滤波得到的所述多组带宽信号去掉CP和进行FFT。
在一实施例中,所述进行FFT采用的FFT点数为1024点或者2048点。
本实施例中,FFT点数统一一致,FFT点数从传统的大点数FFT成倍缩减为多个点数非常少的FFT。
步骤604,将解调得到多组解调信号进行调度和映射。
本步骤中,将多组滤波器组(Filter Bank)的RBs按照协议和实际空口对应关系做映射合并为一组有效RBs。
如图7所示,以一个基站的上行接收链路数据流整体处理流程为例进行说明,包括如下步骤:
步骤701,接收射频信号。
其中,接收射频链路可包括天线、低噪放、射频链路、下变频和ADC部分,完成射频信号的采样和数字化处理。
步骤702,移频Bank分离。
将从UE接收到的大带宽信号按照Bank做频域的切分,将每个Bank移频到数字0频。
步骤703,分组成型。
完成多个Bank的成型和抽取变速,同时为了保证射频指标,频段边界的Bank采用高阶滤波器,保证近端的阻塞和ACS要求,中间的多个Bank采用低阶滤波器或者时域加窗处理,保证远端阻塞要求。
步骤704,OFDM解调。
将分组后的小带宽信号做去CP和FFT,FFT点数统一一致,FFT点数从传统的大点数FFT成倍缩减为多个点数非常少的FFT。
步骤705,RBs调度映射。
完成分离的Bank到大带宽的频域RBs的调度和频域位置映射功能。
如图8所示,为图7的流程对应的数字中频处理架构系统框图。以100MHz系统为例,如果采用常规方法,100MHz带宽30KHz SCS,在153.6MSPS上成型,FFT点数为5120,FIR滤波器成型阶数为510。如果采用本方法,其中单个滤波器组(Filter Bank),采用5个20MHz 30.72MSPS采样率,FFT点数为1024。其中第一滤波器组中FIR滤波器阶数为254,第二滤波器组中FIR滤波器阶数为80或者采用时域加窗,大大减小乘加运算量。
接收模块81,空口通过天线接收100MHz信号,经过低噪放,射频,下变频和ADC,完成RRU/AAU整个数据流模拟处理过程和模数转化。
Bank移频模块82,将5个20MHz Bank按照图4所示的空口频域关系排列都移频到数字0频。
本例中,Bank移频模块82可以通过NCO(Numerically Controlled Oscillator,数字控制振荡器)实现。
分组成型模块83,频域左右边界两个20MHz Bank(图5的FB0和FB4)为了保证近端的ACS和带内阻塞要求指标,采用高阶滤波器。中间的3个20MHz Bank采用低阶滤波器或者时域加窗处理,保证远端带内阻塞要求。
本例中,分组成型模块83包括RCF和DDC,其中,RCF用于滤波,DDC用于实现进行抽取操作,如图8所示,DDC实现了2倍抽取和3倍抽取。
小带宽处理模块84,将经分组成型模块83得到的标准带宽信号中部分带宽信号进行抽取处理,得到小于标准带宽的信号。此处可旁路。
OFDM解调模块85,将分组后的20MHz标准信号做时域去CP和上行FFT,FFT点数统一一致,FFT点数从传统的5120点变为5个1024点。
RBs映射和合并模块86,为PHY层分组后处理模块,将频域小带宽RBs拼接为大带宽单载波RBs的基带信号,例如,将5个滤波器组(Filter Bank)RBs分别为[54、55、55、55、54],对应下行将100MHz单载波大带宽分成5个20MHz标准Bank组,拼接为一个273RBs。
综上所述,本发明实施例中,由于采用了标准带宽,可以实现最小Filter Bank组,通过拆分重组搭建不同NR载波带宽中频处理架构。滤波器可以分类设计,频段边界采用高阶保证ACPR和辐射模块。频段内部采用低阶或者Window成型,拟制载波间干扰和提高远端ACPR。减少了FFT/IFFT点数,减少了硬加速器的处理压力;减少了DUC/DDC处理复杂度,结构更简单一致;方案架构统一。
如图9所示,本发明实施例还提供一种信号处理的装置,应用于下行发射链路,包括:
第一处理单元901,设置为将待发送的多种带宽信号处理为多组标准带宽信号;
第一滤波单元902,设置为对所述多组标准带宽信号分别进行滤波;
发送单元903,设置为将经过滤波的所述多组标准带宽信号合路发射出去。
如图10所示,本发明实施例还提供一种信号处理的装置,应用于上行发射链路,包括:
第二处理单元1001,设置为将接收到的射频信号处理为多组标准带宽信号;
第二滤波单元1002,设置为对所述多组标准带宽信号分别进行滤波;
解调单元1003,设置为对经过滤波的所述多组标准带宽信号进行解调;
调度映射单元1004,设置为将解调得到多组解调信号进行调度和映射。
本发明实施例还提供一种信号处理的设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述信号处理的方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述信号处理的方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述会议控制的实现方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
工业实用性
如上所述,本发明实施例提供的一种信号处理的方法、装置和设备、计算机可读存储介质具有以下有益效果:将多种带宽信号处理为多组标准带宽信号,使得DUC/DDC可以采用统一的处理架构,架构重用性高,灵活扩展性高,减少了DUC/DDC处理复杂度和设计冗余,结构更简单一致,降低了数字中频芯片的成本和热耗。

Claims (20)

  1. 一种信号处理的方法,包括:
    将待发送的多种带宽信号处理为多组标准带宽信号;
    对所述多组标准带宽信号分别进行滤波;
    将经过滤波的所述多组标准带宽信号合路发射出去。
  2. 如权利要求1所述的方法,其中,所述将待发送的多种带宽信号处理为多组标准带宽信号,包括:
    将所述待发送的多种带宽信号按照标准带宽分组,得到带宽小于等于标准带宽的多组信号;
    对分组得到所述多组信号分别进行调制;
    在调制后得到的多组调制信号中,对小于标准带宽的调制信号进行拉伸对齐,使得所述调制信号均为标准带宽信号。
  3. 如权利要求2所述的方法,其中,所述对分组得到所述多组信号分别进行调制,包括:
    对分组得到所述多组信号进行快速傅里叶逆变换IFFT和添加循环前缀CP。
  4. 如权利要求3所述的方法,其中,
    所述进行IFFT采用的IFFT点数为1024点或者2048点。
  5. 如权利要求2所述的方法,其中,所述对小于标准带宽的调制信号进行拉伸对齐,包括:
    对小于标准带宽的调制信号进行插值操作,统一到所述标准带宽的采样率。
  6. 如权利要求1所述的方法,其中,所述对所述多组标准带宽信号分别进行滤波,包括:
    对所述多组标准带宽信号分别采用滤波器组进行滤波,其中,对位于频段边界的标准带宽信号采用第一滤波器组,对位于频段中间的标准带宽信号采用第二滤波器组,所述第一滤波器组和第二滤波器组包含相同类型的滤波器。
  7. 如权利要求6所述的方法,其中,
    所述第一滤波器组中有限长单位冲激响应FIR滤波器的阶数高于所述第二 滤波器组中FIR滤波器的阶数。
  8. 如权利要求6所述的方法,其中,所述对所述多组标准带宽信号分别进行滤波,包括:
    通过所述第二滤波器组采用时域加窗的方式对位于频段中间的标准带宽信号进行处理。
  9. 如权利要求1所述的方法,其中,所述将经过滤波的所述多组标准带宽信号合路发射出去之前,所述方法还包括:
    将经过滤波的所述多组标准带宽信号按照空口频点关系排列。
  10. 一种信号处理的方法,包括:
    将接收到的射频信号处理为多组标准带宽信号;
    对所述多组标准带宽信号分别进行滤波;
    对滤波得到的多组带宽信号进行解调;
    将解调得到多组解调信号进行调度和映射。
  11. 如权利要求10所述的方法,其中,所述将接收到的射频信号处理为多组标准带宽信号,包括:
    对所述射频信号进行采样和数字化处理,按照标准带宽进行切分,得到所述多组标准带宽信号。
  12. 如权利要求10所述的方法,其中,所述对所述多组标准带宽信号分别进行滤波,包括:
    对所述多组标准带宽信号分别采用滤波器组进行滤波,其中,对位于频段边界的标准带宽信号采用第一滤波器组,对位于频段中间的标准带宽信号采用第二滤波器组,所述第一滤波器组和第二滤波器组包含相同类型的滤波器。
  13. 如权利要求12所述的方法,其中,
    所述第一滤波器组中FIR滤波器的阶数高于所述第二滤波器组中FIR滤波器的阶数。
  14. 如权利要求12所述的方法,其中,所述对所述多组标准带宽信号分别进行滤波,包括:
    通过所述第二滤波器组采用时域加窗的方式对位于频段中间的标准带宽信 号进行处理。
  15. 如权利要求10所述的方法,其中,所述对滤波得到的多组带宽信号进行解调,包括:
    对对滤波得到的所述多组带宽信号去掉CP和进行快速傅里叶变换FFT。
  16. 如权利要求15所述的方法,其中,
    所述进行FFT采用的FFT点数为1024点或者2048点。
  17. 一种信号处理的装置,包括:
    第一处理单元,设置为将待发送的多种带宽信号处理为多组标准带宽信号;
    第一滤波单元,设置为对所述多组标准带宽信号分别进行滤波;
    发送单元,设置为将经过滤波的所述多组标准带宽信号合路发射出去。
  18. 一种信号处理的装置,包括:
    第二处理单元,设置为将接收到的射频信号处理为多组标准带宽信号;
    第二滤波单元,设置为对所述多组标准带宽信号分别进行滤波;
    解调单元,设置为对滤波得到的多组带宽信号进行解调;
    调度映射单元,设置为将解调得到多组解调信号进行调度和映射。
  19. 一种信号处理的设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1~16中任意一项所述信号处理的方法。
  20. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~16中任意一项所述信号处理的方法。
PCT/CN2020/100248 2019-07-03 2020-07-03 一种信号处理的方法、装置和设备 WO2021000955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20834640.3A EP3993334A4 (en) 2019-07-03 2020-07-03 SIGNAL PROCESSING DEVICE, APPARATUS AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910592687.5 2019-07-03
CN201910592687.5A CN112187691B (zh) 2019-07-03 2019-07-03 一种信号处理的方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2021000955A1 true WO2021000955A1 (zh) 2021-01-07

Family

ID=73915861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100248 WO2021000955A1 (zh) 2019-07-03 2020-07-03 一种信号处理的方法、装置和设备

Country Status (3)

Country Link
EP (1) EP3993334A4 (zh)
CN (1) CN112187691B (zh)
WO (1) WO2021000955A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154907A (zh) * 2016-03-03 2017-09-12 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机
WO2018125686A2 (en) * 2016-12-30 2018-07-05 Intel Corporation Methods and devices for radio communications
CN109905343A (zh) * 2017-12-08 2019-06-18 中国移动通信集团公司 一种综合调制多载波的方法及发送端和接收端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361283A (zh) * 2006-01-24 2009-02-04 St微电子有限公司 多频带ofdm系统中的高数据速率传输
CN101267415B (zh) * 2007-03-12 2012-05-30 中国科学院上海微系统与信息技术研究所 基于滤波器组的上行多址传输装置及其方法
US8619845B2 (en) * 2010-12-03 2013-12-31 Qualcomm Incorporated Optimizing data rate of multi-band multi-carrier communication systems
EP2913953A1 (en) * 2014-02-26 2015-09-02 Alcatel Lucent Filtered Multicarrier system for fragmented spectrum
CN106936755B (zh) * 2015-12-31 2019-12-17 华为技术有限公司 一种信号处理方法及设备
US10433283B2 (en) * 2016-01-26 2019-10-01 Huawei Technologies Co., Ltd. System and method for bandwidth division and resource block allocation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154907A (zh) * 2016-03-03 2017-09-12 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机
WO2018125686A2 (en) * 2016-12-30 2018-07-05 Intel Corporation Methods and devices for radio communications
CN109905343A (zh) * 2017-12-08 2019-06-18 中国移动通信集团公司 一种综合调制多载波的方法及发送端和接收端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, JIALING ET AL.: "Resource block Filtered-OFDM for future spectrally agile and power efficient systems", PHYSICAL COMMUNICATION, 31 December 2013 (2013-12-31), XP055335785, ISSN: 1874-4907, DOI: 20200918153720 *
See also references of EP3993334A4 *

Also Published As

Publication number Publication date
EP3993334A1 (en) 2022-05-04
CN112187691B (zh) 2024-04-30
EP3993334A4 (en) 2022-08-10
CN112187691A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
JP7102417B2 (ja) 基準信号を伝送するための方法およびデバイス
Michailow et al. Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems
JPH10336139A (ja) マルチキャリア伝送方法及びデータ送信装置並びに移動局装置及び基地局装置
Nagul A review on 5G modulation schemes and their comparisons for future wireless communications
US20210051050A1 (en) Method and system for multi-carrier time division multiplexing modulation/demodulation
WO2013144897A2 (en) Hybrid Multicarrier Technique
CN102098258B (zh) 一种去除窄带干扰的方法和自适应滤波器
Gökceli et al. PAPR reduction with mixed-numerology OFDM
CN1913508B (zh) 基于正交频分复用的信号调制方法及其调制装置
Cuteanu et al. PAPR Reduction of OFDM Signals using Active Constellation Extension and Tone Reservation Hybrid Scheme
CN103297379A (zh) 时变正交频分复用多载波调制系统及调制方法
Cuteanu et al. Papr reduction of OFDM signals using partial transmit sequence and clipping hybrid scheme
WO2021000955A1 (zh) 一种信号处理的方法、装置和设备
Jošilo et al. Multicarrier waveforms with I/Q staggering: uniform and nonuniform FBMC formats
WO2023284752A1 (zh) 数据传输、数据调制方法、装置、电子设备和存储介质
US20190349157A1 (en) Receiver, transmitter, communication system for subband communication and methods for subband communication
CN106488579B (zh) 一种信号处理方法及装置
CN107204952A (zh) 一种滤波ofdm系统的子带滤波处理方法
CN109905343B (zh) 一种综合调制多载波的方法及发送端和接收端
Jang et al. Study on the latency efficient IFFT design method for low latency communication systems
Wang et al. Nonuniform subband superposed OFDM with variable granularity spectrum allocation for 5G
EP3136200B1 (en) Method of and apparatus for providing a sample vector representing at least a portion of a multi-carrier modulated signal
Li et al. Simulation and analysis of GFDM system performance
WO2018186079A1 (en) Sub-band based composite digital time domain signal processing
Speidel et al. Multicarrier Modulation and OFDM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834640

Country of ref document: EP

Effective date: 20220127