WO2021000465A1 - 一种高压高速往复密封实验测试平台 - Google Patents

一种高压高速往复密封实验测试平台 Download PDF

Info

Publication number
WO2021000465A1
WO2021000465A1 PCT/CN2019/113496 CN2019113496W WO2021000465A1 WO 2021000465 A1 WO2021000465 A1 WO 2021000465A1 CN 2019113496 W CN2019113496 W CN 2019113496W WO 2021000465 A1 WO2021000465 A1 WO 2021000465A1
Authority
WO
WIPO (PCT)
Prior art keywords
end cover
cylinder
pressure
inner end
piston rod
Prior art date
Application number
PCT/CN2019/113496
Other languages
English (en)
French (fr)
Inventor
郭飞
项冲
王浩宇
黄毅杰
贾晓红
王玉明
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021000465A1 publication Critical patent/WO2021000465A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/005Sealing rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the invention belongs to the technical field of rubber-plastic reciprocating sealing, and particularly relates to a high-pressure and high-speed reciprocating sealing experimental test platform.
  • Reciprocating seal refers to the dynamic seal that reciprocates between the seal interfaces. It is the key core component to ensure the normal operation of hydraulic and pneumatic systems. Its performance affects the stability and safety of the equipment. In aerospace, mechanical , Automobiles and other modern industries play a very important role.
  • the research on reciprocating seals has a history of more than 80 years, and the theoretical models and experimental simulations of the technology are now relatively mature under low pressure and low speed conditions.
  • the research of reciprocating seals must also make breakthroughs in the direction of ensuring the sealing performance and seal life under high pressure and high speed. The severe working conditions of high pressure and high speed put forward higher requirements for reciprocating sealing technology. .
  • Reciprocating sealing technology is a comprehensive sealing technology involving multiple disciplines such as materials science, mechanics, mechanics, tribology, and heat transfer. It is difficult to measure physical quantities such as friction and leakage in the reciprocating sealing system. It is more difficult to measure under high-pressure and high-speed working conditions; not only that, if you want to control the high pressure in the system and allow the piston rod to have a relatively stable high-speed movement, it is also technically difficult to achieve; in addition, the difficult work of high-pressure and high-speed Conditions will bring a serious temperature rise to the sealing system. A large amount of frictional heat generated by the friction of the sealing interface can only be transported away by the oil in the piston rod and the experimental cylinder. Therefore, for such a high-pressure and high-temperature system, It is necessary to design a reasonable cooling system to control the temperature of the sealed interface and the experimental cylinder.
  • the purpose of the present invention is to provide a high pressure and high speed reciprocating seal test platform.
  • the entire set of experimental equipment is based on the experimental cylinder. , Supporting the provision of high-speed reciprocating drive device, cooling device for system cooling and auxiliary measuring device.
  • a high-pressure and high-speed reciprocating sealing experimental test platform including an experimental cylinder, a high-speed driving device, a cooling device, and an auxiliary measuring device, and is characterized in:
  • the experimental cylinder includes a cylinder block 6.
  • the left inner end cover 3 is fixed on the left side of the cylinder block 6, the left outer end cover 2 is fixed on the left side of the left inner end cover 3, and the side of the left inner end cover 3 is connected to the cylinder
  • the inner wall of the body 6 is matched and the left static seal 22 is installed between the contact surfaces.
  • the left reciprocating seal 23 that does not contact the inner wall of the cylinder 6 is installed between the left inner end cover 3 and the left outer end cover 2, and the right
  • the side inner end cover 9 is fixed on the right side of the cylinder 6, the right outer end cover 10 is fixed on the right side of the right inner end cover 9, and the side of the right inner end cover 9 is matched with the inner wall of the cylinder 6 and installed between the contact surfaces.
  • There is a right side static seal 12, and a right side reciprocating seal 11 that does not contact the inner wall of the cylinder 6 is installed between the right inner end cover 9 and the right outer end cover 10;
  • the high-speed driving device includes a piston rod 15, which penetrates horizontally into the cylinder 6, and penetrates the left outer end cover 2, the left reciprocating seal 23, the left inner end cover 3, the right inner end cover 9, and the right With the side reciprocating seal 11 and the right outer end cover 10, the motor 31 drives the piston rod 15 to perform high-speed reciprocating linear motion through the transmission system;
  • the cooling device is arranged on the outer wall of the cylinder 6 to cool the cylinder 6;
  • the auxiliary measuring device is connected to the tension and pressure sensor 24 between the piston rod 15 and the transmission system.
  • the central part of the right side of the left inner end cover 3 is convex
  • the left static seal 22 is installed between the convex side surface and the contact surface of the inner wall of the cylinder 6, and the left inner end cover 3 is in the central part of the left side.
  • the center part of the right side of the left outer end cover 2 is convex, and the left reciprocating seal 23 is installed between the concave end surface of the left inner end cover 3 and the convex end surface of the left outer end cover 2;
  • the central part of the left side of the end cover 9 is convex, the right static seal 12 is installed between the convex side and the contact surface of the inner wall of the cylinder 6, the right inner end cover 9 is concave in the central part of the right side, and the right outer end cover 10
  • the central part of the left side surface is convex, and the right reciprocating seal 11 is installed between the concave end surface of the right inner end cover 9 and the outer convex end surface of the right outer end cover 10.
  • the transmission system includes a guide rod 25, a connecting rod 29, and a flywheel 30.
  • the left side of the piston rod 15 is connected to the right side of the tension pressure sensor 24, and the left side of the tension pressure sensor 24 is connected to the guide rod 25.
  • the guide rod 25 The left end is hinged with the left end of the connecting rod 29, the right end of the connecting rod 29 is hinged on the flywheel 30, and the flywheel 30 is fixed on the motor 31.
  • the outer wall of the guide rod 25 is matched with the inner wall of the guide rail 26, the guide rail 26 is fixed on the guide rail support base 27, the left end of the guide rod 25 is installed with a connecting piece 28, the connecting piece 28 is hinged to the left end of the connecting rod 29, the guide rail support base 27 and The motor 31 is fixed on the frame 1.
  • the cooling device is a water cooling device, comprising a left water jacket 4 and a right water jacket 8 fixed on the frame 1, and the outer wall of the cylinder 6 is matched and fixed with the inner walls of the left water jacket 4 and the right water jacket 8, and
  • the outer wall of the cylinder 6 is provided with a left water tank 5 and a right water tank 7, and the left water jacket 4 is provided with a left water inlet 21 and a left water outlet 20, which are respectively connected to the two ends of the left water tank 5, and the right water jacket 8 has a right inlet
  • the water inlet 14 and the right water outlet 13 are respectively connected to both ends of the right water tank 7, the left water inlet 21 is connected to a water pump, the left water outlet 20 and the right water inlet 14 are connected by a pipe, and the right water outlet 13 is connected to a water tank.
  • the cooling of the experimental cylinder is realized by a cooling water channel composed of a left water tank 5, a right water tank 7 and a left water jacket 4 and a right water jacket 8.
  • a pressure port 16, an overflow port 19, a pressure sensor port 17, and a temperature sensor port 18 are respectively opened in the middle of the cylinder block 6.
  • the booster pump is connected to the cylinder block 6 through the pressure port 16, and the relief valve It is connected to the cylinder 6 through the overflow port 19, the liquid pressure sensor is connected to the cylinder 6 through the pressure sensor interface 17, and the temperature sensor is connected to the cylinder 6 through the temperature sensor interface 18. It is connected through the booster pump and the overflow valve. The combination ensures that the pressure in the cylinder 6 is stable, and the state of the cavity is monitored through the liquid pressure sensor and the temperature sensor.
  • the auxiliary measurement device includes a pressure sensor installed on the pressure sensor interface 17 and a temperature sensor installed on the temperature sensor interface 18.
  • the present invention can measure the sum of the frictional force and the inertial force of the piston rod 15 through the tension and pressure sensor 24, calculate the acceleration of the piston rod 15 to obtain its inertial force, and then obtain the friction force of the seal ring against the piston rod 15.
  • the invention realizes the reciprocating high-speed movement of the piston rod through the motor driving the flywheel connecting rod and other transmission devices.
  • the inertial impact brought by the high-speed reciprocating movement is balanced; by setting a water jacket outside the cylinder , To achieve cooling and cooling of the entire cylinder part, to solve the temperature rise problem caused by the high-pressure and high-speed system; to ensure that the hydraulic pressure in the cylinder is always dynamic and stable through the pressure increase of the booster pump and the pressure relief valve;
  • the temperature sensor obtains the pressure and temperature information of the liquid in the cylinder in real time, and uses the tension pressure sensor and the inertial force calculation to realize the measurement of the friction force of the seal ring.
  • the present invention can provide stable high-pressure and high-speed working conditions and provide more extensive experimental conditions for the research of reciprocating sealing performance.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is an enlarged view of the cylinder structure.
  • Figure 3 is an enlarged view of the cross section of the sensor mounted on the cylinder.
  • a high-pressure and high-speed reciprocating sealing test platform includes an experimental cylinder, a high-speed drive device, a cooling device, and an auxiliary measurement device.
  • the experimental cylinder block includes cylinder block 6, the left inner end cover 3 is fixed on the left side of the cylinder block 6, the left outer end cover 2 is fixed on the left side of the left inner end cover 3, and the side of the left inner end cover 3
  • the inner wall of the body 6 is matched and the left static seal 22 is installed between the contact surfaces.
  • the left reciprocating seal 23 that does not contact the inner wall of the cylinder 6 is installed between the left inner end cover 3 and the left outer end cover 2, and the right
  • the side inner end cover 9 is fixed on the right side of the cylinder 6, the right outer end cover 10 is fixed on the right side of the right inner end cover 9, and the side of the right inner end cover 9 is matched with the inner wall of the cylinder 6 and installed between the contact surfaces.
  • There is a right static seal 12, and a right reciprocating seal 11 that does not contact the inner wall of the cylinder 6 is installed between the right inner end cover 9 and the right outer end cover 10.
  • the left inner end cover 3 has a convex central part on the right side, the left static seal 22 is installed between the convex side surface and the contact surface of the inner wall of the cylinder 6, and the left inner end cover 3 is in the center of the left side.
  • the center of the right side of the left outer end cover 2 is convex, and the left reciprocating seal 23 is installed between the concave end surface of the left inner end cover 3 and the convex end surface of the left outer end cover 2;
  • the central part of the left side of the side inner end cover 9 is convex, the right static seal 12 is installed between the convex side surface and the contact surface of the inner wall of the cylinder 6, the right inner end cover 9 is concave in the central part of the right side, and the right outer end
  • the central part of the left side of the cover 10 is convex, and the right reciprocating seal 11 is installed between the concave end surface of the right inner end cover 9 and the outer convex end surface of the right outer end cover 10.
  • the high-speed driving device includes a piston rod 15, which penetrates horizontally into the cylinder 6, and penetrates the left outer end cover 2, the left reciprocating seal 23, the left inner end cover 3, the right inner end cover 9, and the right reciprocating Seal 11 and the right outer end cover 10, the motor 31 drives the piston rod 15 to perform high-speed reciprocating linear motion through the transmission system; among them, a preferred structure of the transmission system includes a guide rod 25, a connecting rod 29 and a flywheel 30, and the piston rod 15
  • the left side is connected to the right side of the tension pressure sensor 24, the left side of the tension pressure sensor 24 is connected to the guide rod 25, the left end of the guide rod 25 is hinged to the left end of the connecting rod 29, the right end of the connecting rod 29 is hinged to the flywheel 30, and the flywheel 30 is fixed to the motor 31 on.
  • the outer wall of the guide rod 25 is matched with the inner wall of the guide rail 26, the guide rail 26 is fixed on the guide rail support base 27, the left end of the guide rod 25 is equipped with a connecting piece 28, the connecting piece 28 is hinged with the left end of the connecting rod 29, the guide rail support base 27 and The motor 31 is fixed on the frame 1.
  • the cooling device is arranged on the outer wall of the cylinder body 6 to cool the cylinder body 6, and a water-cooling circulation method can be preferably adopted.
  • it may include a left water jacket 4 and a right water jacket 8 fixed on the frame 1.
  • the outer wall of the cylinder 6 is matched and fixed with the inner walls of the left water jacket 4 and the right water jacket 8, and the outer wall of the cylinder 6 has a left water tank.
  • the left water jacket 4 has a left water inlet 21 and a left water outlet 20, which are respectively connected to the two ends of the left water tank 5, and the right water jacket 8 has a right water inlet 14 and a right water outlet 13,
  • the two ends of the right water tank 7 are respectively connected, the left water inlet 21 is connected to a water pump, the left water outlet 20 and the right water inlet 14 are connected by pipes, and the right water outlet 13 is connected to a water tank.
  • the cooling is realized by the cooling water channel composed of the left water tank 5, the right water tank 7, the left water jacket 4 and the right water jacket 8. Further preferably, referring to Fig.
  • a pressure port 16, an overflow port 19, a pressure sensor port 17 and a temperature sensor port 18 are respectively opened in the middle of the cylinder block 6, and the booster pump is connected to the cylinder block 6 through the pressure port 16.
  • the overflow valve is connected to the cylinder 6 through the overflow port 19, the liquid pressure sensor is connected to the cylinder 6 through the pressure sensor interface 17, and the temperature sensor is connected to the cylinder 6 through the temperature sensor interface 18. The combination of the flow valve ensures that the pressure in the cylinder 6 is stable, and the state of the cavity is monitored by the liquid pressure sensor and the temperature sensor.
  • the auxiliary measuring device is connected to the tension and pressure sensor 24 between the piston rod 15 and the transmission system. And preferably, the auxiliary measurement device may further include a pressure sensor installed at the pressure sensor interface 17 and a temperature sensor installed at the temperature sensor interface 18.
  • the working principle of the present invention is: in the experiment process, the booster pump is started first, the experiment cylinder is pressurized through the pressure port 16, and the hydraulic pressure in the cylinder is always stable through the overflow port 19 and the overflow valve.
  • the flow pressure maintains the required pressure in the cavity.
  • the liquid pressure sensor is stable, start the motor to drive the flywheel 30, the connecting rod 29, the guide rod 25, and the piston rod 15 to achieve high-speed reciprocating motion.
  • the friction force and the piston rod 15 can be measured by the pull pressure sensor 24.
  • the sum of the inertial force is calculated by theoretical calculation and after subtracting the influence of the inertial force, the friction force value of the sealing ring on the piston rod 15 is obtained.
  • the water pump is started, and the cooling water flows through the left water inlet 21, the left water tank 5, the left water outlet 20, the right water inlet 14, the right water tank 7 and the right water outlet 13, forming a cooling water channel to achieve cooling of the entire cylinder.
  • the experimental cylinder is fixed on the workbench by a water jacket, and the cooling of the experimental cylinder is also realized by the water jacket;
  • the driving device of the whole set of equipment is composed of electric motors, flywheels, connecting rods and guide rods.
  • the guide rod is restrained by the guide rail, so that the guide rod and the piston rod not only realize high-speed reciprocating movement, but also eliminate the inertial impact caused by the high-speed reciprocating movement;
  • the cylinder body is provided with several threaded holes of different sizes, which are respectively connected to the booster pump , Relief valve, temperature sensor, liquid pressure sensor, realize the pressure control and measurement of the cylinder, the guide rod and the piston rod are connected by the tension pressure sensor, after certain mathematical processing, the friction of the sealing ring can be obtained after the piston rod is received force.

Abstract

一种高压高速往复密封实验测试平台,包括实验缸体、高速驱动装置、冷却装置、辅助测量装置。实验缸体通过水套(4,8)固定在工作台上,实验缸体的冷却降温也通过水套(4,8)来实现;高速驱动装置包括电动机(31)、飞轮(30)、连杆(29)以及导杆(25),通过导轨(26)约束导杆(25),使得导杆(25)和活塞杆(15)既实现高速往复运动,又消除了高速往复运动所带来的惯性冲击;实验缸体包括缸体(6),缸体(6)上设置大小不一几个螺纹孔,分别连接增压泵、溢流阀、温度传感器、液体压力传感器,实现缸体(6)的控压和测量,导杆(25)与活塞杆(15)之间通过拉压力传感器(24)相连,经过一定的数学处理之后可以得到活塞杆(15)受到的密封圈摩擦力。

Description

一种高压高速往复密封实验测试平台 技术领域
本发明属于橡塑往复密封技术领域,特别涉及一种高压高速往复密封实验测试平台。
背景技术
往复密封是指密封界面之间做往复运动的动密封,是保证液压、气压等系统正常工作的关键核心零部件,其性能好坏影响到设备的稳定性和安全性,在诸如航空航天、机械、汽车等现代工业中起着非常重要的作用。关于往复密封的研究距今已有了80多年的历史,现该技术的理论模型和实验仿真等在低压、低速工况下的研究已较为成熟。然而近几年随着主机装配性能的不断提高,往复密封的研究也要往保证高压高速下密封性能和密封寿命的方向突破,高压高速的严苛工况给往复密封技术提出了更高的要求。
往复密封技术是涉及材料学、机械学、力学、摩擦学及传热学等多个学科的综合性密封技术,对于往复密封系统中的摩擦力和泄漏量等物理量的测量本身就有一定难度,在高压高速的工况下测量的难度会更大;不仅如此,想要控制系统内的高压,并且让活塞杆有较稳定的高速运动,在实现上也有技术难度;另外,高压高速的艰难工况会给密封系统带来较为严重的温升,由密封界面的摩擦导致的大量摩擦生热,只能通过活塞杆和实验缸体内的油液运走,所以对于这样的高压高温系统,必须要设计合理的冷却系统控制密封界面和实验缸体内的温度。
发明内容
为了使实验装置能够成功模拟高压高速的恶劣工况,并解决在此工况下的测量难题,本发明的目的在于提供一种高压高速往复密封实验测试平台,整套实验设备以实验缸体为核心,配套提供高速往复运动的驱动装置、进行系统降 温的冷却装置以及辅助测量装置。
为了实现上述目的,本发明采用的技术方案是:
一种高压高速往复密封实验测试平台,包括实验缸体、高速驱动装置、冷却装置、辅助测量装置,其特征在于:
所述实验缸体包括缸体6,左侧内端盖3固定在缸体6左侧,左侧外端盖2固定在左侧内端盖3左侧,左侧内端盖3侧面与缸体6内壁配合且在接触面之间装有左侧静密封22,左侧内端盖3与左侧外端盖2之间装有与缸体6内壁无接触的左侧往复密封23,右侧内端盖9固定在缸体6右侧,右侧外端盖10固定在右侧内端盖9右侧,右侧内端盖9侧面与缸体6内壁配合且在接触面之间装有右侧静密封12,右侧内端盖9与右侧外端盖10之间装有与缸体6内壁无接触的右侧往复密封11;
所述高速驱动装置包括活塞杆15,活塞杆15水平穿入缸体6内,贯穿左侧外端盖2、左侧往复密封23、左侧内端盖3、右侧内端盖9、右侧往复密封11和右侧外端盖10,电动机31通过传动系统带动活塞杆15进行高速往复直线运动;
所述冷却装置设置在缸体6外壁,对缸体6进行冷却;
所述辅助测量装置连接在活塞杆15与传动系统之间的拉压力传感器24。
优选地,所述左侧内端盖3右侧面中央部分外凸,左侧静密封22装在外凸侧面与缸体6内壁接触面之间,左侧内端盖3左侧面中央部分内凹,左侧外端盖2右侧面中央部分外凸,左侧往复密封23装在左侧内端盖3的内凹端面与左侧外端盖2的外凸端面之间;右侧内端盖9左侧面中央部分外凸,右侧静密封12装在外凸侧面与缸体6内壁接触面之间,右侧内端盖9右侧面中央部分内凹,右侧外端盖10左侧面中央部分外凸,右侧往复密封11装在右侧内端盖9的内凹端面与右侧外端盖10的外凸端面之间。
优选地,所述传动系统包括导杆25、连杆29以及飞轮30,所述活塞杆15左侧与拉压力传感器24右侧相连,拉压力传感器24左侧与导杆25相连,导杆 25左端与连杆29左端铰接,连杆29右端铰接在飞轮30上,飞轮30固定在电动机31上。
优选地,所述导杆25外壁与导轨26内壁配合,导轨26固定在导轨支撑座27上,导杆25左端安装有连接件28,连接件28与连杆29左端铰接,导轨支撑座27和电动机31固定在机架1上。
优选地,所述冷却装置为水冷装置,包括固定在机架1上的左水套4和右水套8,缸体6的外壁与左水套4、右水套8的内壁配合并固定,缸体6外壁开有左水槽5和右水槽7,左水套4上开有左进水口21和左出水口20,分别接入左水槽5的两端,右水套8上开有右进水口14和右出水口13,分别接入右水槽7的两端,左进水口21连接水泵,左出水口20与右进水口14通过管道相连,右出水口13连接水箱。
优选地,所述实验缸体的冷却由左水槽5、右水槽7以及左水套4、右水套8组成的冷却水通道实现。
优选地,所述缸体6中间分别开有加压口16、溢流口19、压力传感器接口17和温度传感器接口18,增压泵通过加压口16与缸体6相连接,溢流阀通过溢流口19与缸体6相连接,液体压力传感器通过压力传感器接口17与缸体6相连接,温度传感器通过温度传感器接口18与缸体6相连接,通过增压泵和溢流阀的组合保证缸体6中的压力稳定,并通过液体压力传感器、温度传感器监测腔内状态。
优选地,所述辅助测量装置包括安装在压力传感器接口17的压力传感器和安装在温度传感器接口18的温度传感器。
本发明可通过所述拉压力传感器24测得活塞杆15所受的摩擦力与惯性力之和,通过计算活塞杆15的加速度得到其惯性力,进而得到密封圈对活塞杆15的摩擦力。
与现有技术相比,本发明的有益效果是:
本发明通过电动机带动飞轮连杆等传动装置的方式实现了活塞杆的往复高 速运动,同时由于飞轮的存在,平衡了高速往复运动所带来的惯性冲击;通过在缸体外设置水套的方式,实现对整个缸体部分的降温冷却,解决高压高速系统带来的温升问题;通过增压泵增压和溢流阀卸压来保证缸体内液压始终保持动态稳定;通过液体压力传感器与温度传感器实时获取缸内液体的压力、温度信息,并利用拉压力传感器结合惯性力计算实现了密封圈摩擦力的测量。
与以往的往复试验台相比,本发明能够提供稳定的高压高速工况,给往复密封性能研究提供更为广泛的实验条件。
附图说明
图1为本发明的整体结构示意图。
图2为缸体结构放大图。
图3为缸体搭载传感器截面的放大图。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
参照图1和图2,一种高压高速往复密封实验测试平台,包括实验缸体、高速驱动装置、冷却装置、辅助测量装置。
其中,实验缸体包括缸体6,左侧内端盖3固定在缸体6左侧,左侧外端盖2固定在左侧内端盖3左侧,左侧内端盖3侧面与缸体6内壁配合且在接触面之间装有左侧静密封22,左侧内端盖3与左侧外端盖2之间装有与缸体6内壁无接触的左侧往复密封23,右侧内端盖9固定在缸体6右侧,右侧外端盖10固定在右侧内端盖9右侧,右侧内端盖9侧面与缸体6内壁配合且在接触面之间装有右侧静密封12,右侧内端盖9与右侧外端盖10之间装有与缸体6内壁无接触的右侧往复密封11。
该结构的一种优选,左侧内端盖3右侧面中央部分外凸,左侧静密封22装在外凸侧面与缸体6内壁接触面之间,左侧内端盖3左侧面中央部分内凹,左侧外端盖2右侧面中央部分外凸,左侧往复密封23装在左侧内端盖3的内凹端面与左侧外端盖2的外凸端面之间;右侧内端盖9左侧面中央部分外凸,右侧 静密封12装在外凸侧面与缸体6内壁接触面之间,右侧内端盖9右侧面中央部分内凹,右侧外端盖10左侧面中央部分外凸,右侧往复密封11装在右侧内端盖9的内凹端面与右侧外端盖10的外凸端面之间。
高速驱动装置包括活塞杆15,活塞杆15水平穿入缸体6内,贯穿左侧外端盖2、左侧往复密封23、左侧内端盖3、右侧内端盖9、右侧往复密封11和右侧外端盖10,电动机31通过传动系统带动活塞杆15进行高速往复直线运动;其中,传动系统的一种优选结构,包括导杆25、连杆29以及飞轮30,活塞杆15左侧与拉压力传感器24右侧相连,拉压力传感器24左侧与导杆25相连,导杆25左端与连杆29左端铰接,连杆29右端铰接在飞轮30上,飞轮30固定在电动机31上。其进一步优选结构,导杆25外壁与导轨26内壁配合,导轨26固定在导轨支撑座27上,导杆25左端安装有连接件28,连接件28与连杆29左端铰接,导轨支撑座27和电动机31固定在机架1上。
冷却装置设置在缸体6外壁,对缸体6进行冷却,可优选地采用水冷循环方式。例如,可包括固定在机架1上的左水套4和右水套8,缸体6的外壁与左水套4、右水套8的内壁配合并固定,缸体6外壁开有左水槽5和右水槽7,左水套4上开有左进水口21和左出水口20,分别接入左水槽5的两端,右水套8上开有右进水口14和右出水口13,分别接入右水槽7的两端,左进水口21连接水泵,左出水口20与右进水口14通过管道相连,右出水口13连接水箱。冷却由左水槽5、右水槽7以及左水套4、右水套8组成的冷却水通道实现。进一步优选地,参照图3,缸体6中间分别开有加压口16、溢流口19、压力传感器接口17和温度传感器接口18,增压泵通过加压口16与缸体6相连接,溢流阀通过溢流口19与缸体6相连接,液体压力传感器通过压力传感器接口17与缸体6相连接,温度传感器通过温度传感器接口18与缸体6相连接,通过增压泵和溢流阀的组合保证缸体6中的压力稳定,并通过液体压力传感器、温度传感器监测腔内状态。
辅助测量装置连接在活塞杆15与传动系统之间的拉压力传感器24。并且优 选地,辅助测量装置还可包括安装在压力传感器接口17的压力传感器和安装在温度传感器接口18的温度传感器。
本发明的工作原理为:实验过程中,先启动增压泵,通过加压口16给实验缸内加压,通过溢流口19与溢流阀使得缸体内液压始终稳定,可通过调节溢流压力使腔体内保持所需的压力。当液体压力传感器示数稳定时,启动电动机,带动飞轮30、连杆29、导杆25、活塞杆15,实现高速往复运动,同时通过拉压力传感器24可以测得活塞杆15所受摩擦力与惯性力之和,通过理论计算减去惯性力影响后得到密封圈对活塞杆15的摩擦力数值。启动水泵,冷却水流经左进水口21、左水槽5、左出水口20、右进水口14、右水槽7和右出水口13,形成冷却水通道,以此实现整个缸体部分的冷却降温。
综上,本发明中,实验缸体通过水套固定在工作台上,实验缸体的冷却降温也通过水套来实现;整套设备的驱动装置由电动机、飞轮、连杆以及导杆等部件组成,并通过导轨约束导杆,使得导杆和活塞杆既实现高速往复运动,又消除了高速往复运动所带来的惯性冲击;缸体上设置大小不一几个螺纹孔,分别连接增压泵、溢流阀、温度传感器、液体压力传感器,实现缸体的控压和测量,导杆与活塞杆之间通过拉压力传感器相连,经过一定得数学处理之后可以得到活塞杆收到得密封圈摩擦力。

Claims (10)

  1. 一种高压高速往复密封实验测试平台,包括实验缸体、高速驱动装置、冷却装置、辅助测量装置,其特征在于:
    所述实验缸体包括缸体(6),左侧内端盖(3)固定在缸体(6)左侧,左侧外端盖(2)固定在左侧内端盖(3)左侧,左侧内端盖(3)侧面与缸体(6)内壁配合且在接触面之间装有左侧静密封(22),左侧内端盖(3)与左侧外端盖(2)之间装有与缸体(6)内壁无接触的左侧往复密封(23),右侧内端盖(9)固定在缸体(6)右侧,右侧外端盖(10)固定在右侧内端盖(9)右侧,右侧内端盖(9)侧面与缸体(6)内壁配合且在接触面之间装有右侧静密封(12),右侧内端盖(9)与右侧外端盖(10)之间装有与缸体(6)内壁无接触的右侧往复密封(11);
    所述高速驱动装置包括活塞杆(15),活塞杆(15)水平穿入缸体(6)内,贯穿左侧外端盖(2)、左侧往复密封(23)、左侧内端盖(3)、右侧内端盖(9)、右侧往复密封(11)和右侧外端盖(10),电动机(31)通过传动系统带动活塞杆(15)进行高速往复直线运动;
    所述冷却装置设置在缸体(6)外壁,对缸体(6)进行冷却;
    所述辅助测量装置连接在活塞杆(15)与传动系统之间的拉压力传感器(24)。
  2. 根据权利要求1所述高压高速往复密封实验测试平台,其特征在于,所述左侧内端盖(3)右侧面中央部分外凸,左侧静密封(22)装在外凸侧面与缸体(6)内壁接触面之间,左侧内端盖(3)左侧面中央部分内凹,左侧外端盖(2)右侧面中央部分外凸,左侧往复密封(23)装在左侧内端盖(3)的内凹端面与左侧外端盖(2)的外凸端面之间;右侧内端盖(9)左侧面中央部分外凸,右侧静密封(12)装在外凸侧面与缸体(6)内壁接触面之间,右侧内端盖(9)右侧面中央部分内凹,右侧外端盖(10)左侧面中央部分外凸,右侧往复 密封(11)装在右侧内端盖(9)的内凹端面与右侧外端盖(10)的外凸端面之间。
  3. 根据权利要求1所述高压高速往复密封实验测试平台,其特征在于,所述传动系统包括导杆(25)、连杆(29)以及飞轮(30),所述活塞杆(15)左侧与拉压力传感器(24)右侧相连,拉压力传感器(24)左侧与导杆(25)相连,导杆(25)左端与连杆(29)左端铰接,连杆(29)右端铰接在飞轮(30)上,飞轮(30)固定在电动机(31)上。
  4. 根据权利要求3所述高压高速往复密封实验测试平台,其特征在于,所述导杆(25)外壁与导轨(26)内壁配合,导轨(26)固定在导轨支撑座(27)上,导杆(25)左端安装有连接件(28),连接件(28)与连杆(29)左端铰接,导轨支撑座(27)和电动机(31)固定在机架(1)上。
  5. 根据权利要求1所述高压高速往复密封实验测试平台,其特征在于,所述冷却装置为水冷装置。
  6. 根据权利要求1所述高压高速往复密封实验测试平台,其特征在于,所述冷却装置包括固定在机架(1)上的左水套(4)和右水套(8),缸体(6)的外壁与左水套(4)、右水套(8)的内壁配合并固定,缸体(6)外壁开有左水槽(5)和右水槽(7),左水套(4)上开有左进水口(21)和左出水口(20),分别接入左水槽(5)的两端,右水套(8)上开有右进水口(14)和右出水口(13),分别接入右水槽(7)的两端,左进水口(21)连接水泵,左出水口(20)与右进水口(14)通过管道相连,右出水口(13)连接水箱。
  7. 根据权利要求6所述高压高速往复密封实验测试平台,其特征在于,所述实验缸体的冷却由左水槽(5)、右水槽(7)以及左水套(4)、右水套(8)组成的冷却水通道实现。
  8. 根据权利要求1或6或7所述高压高速往复密封实验测试平台,其特征在于,所述缸体(6)中间分别开有加压口(16)、溢流口(19)、压力传感器接口(17)和温度传感器接口(18),增压泵通过加压口(16)与缸体(6)相 连接,溢流阀通过溢流口(19)与缸体(6)相连接,液体压力传感器通过压力传感器接口(17)与缸体(6)相连接,温度传感器通过温度传感器接口(18)与缸体(6)相连接,通过增压泵和溢流阀的组合保证缸体(6)中的压力稳定,并通过液体压力传感器、温度传感器监测腔内状态。
  9. 根据权利要求8所述高压高速往复密封实验测试平台,其特征在于,所述辅助测量装置包括安装在压力传感器接口(17)的压力传感器和安装在温度传感器接口(18)的温度传感器。
  10. 根据权利要求1所述高压高速往复密封实验测试平台,其特征在于,通过所述拉压力传感器(24)测得活塞杆(15)所受的摩擦力与惯性力之和,通过计算活塞杆(15)的加速度得到其惯性力,进而得到密封圈对活塞杆(15)的摩擦力。
PCT/CN2019/113496 2019-07-03 2019-10-26 一种高压高速往复密封实验测试平台 WO2021000465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910592468.7 2019-07-03
CN201910592468.7A CN110296829A (zh) 2019-07-03 2019-07-03 一种高压高速往复密封实验测试平台

Publications (1)

Publication Number Publication Date
WO2021000465A1 true WO2021000465A1 (zh) 2021-01-07

Family

ID=68029918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113496 WO2021000465A1 (zh) 2019-07-03 2019-10-26 一种高压高速往复密封实验测试平台

Country Status (2)

Country Link
CN (1) CN110296829A (zh)
WO (1) WO2021000465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199552A (zh) * 2021-12-14 2022-03-18 浙江大学 一种密封圈往复运动摩擦力及装配力的测试装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296829A (zh) * 2019-07-03 2019-10-01 清华大学 一种高压高速往复密封实验测试平台
CN111157046A (zh) * 2020-01-07 2020-05-15 东北大学 一种海底油气管道检测设备的试验装置
CN111929056A (zh) * 2020-09-03 2020-11-13 中国铁道科学研究院集团有限公司 密封件运动阻力测试装置
CN112683522A (zh) * 2020-11-18 2021-04-20 南京航空航天大学 一种给定压力下密封圈摩擦力的测量装置及方法
CN113340588A (zh) * 2021-04-25 2021-09-03 上海新力动力设备研究所 一种压强作用下密封圈动摩擦力的测量装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201607322U (zh) * 2010-01-08 2010-10-13 深圳市富洋密封件有限公司 一种往复运动液压聚氨酯密封圈试验台
CN103512743A (zh) * 2013-09-28 2014-01-15 天津耐博特密封科技有限公司 一种干气密封试验腔体的双腔室结构
CN104132805A (zh) * 2014-08-01 2014-11-05 清华大学 一种多功能气动往复密封性能试验台
CN104535243A (zh) * 2015-01-08 2015-04-22 清华大学 一种测量单个密封圈摩擦力特性的往复密封实验台
CN105673621A (zh) * 2016-03-01 2016-06-15 浙江大学 一种航空作动器往复密封多工况综合模拟试验系统
CN107741318A (zh) * 2017-10-10 2018-02-27 青岛科技大学 一种往复式油封性能测试试验台
CN108869457A (zh) * 2018-08-28 2018-11-23 浙江工业大学 一种研究活塞杆偏心对密封件性能影响的往复密封装置
CN109357960A (zh) * 2018-11-02 2019-02-19 武汉理工大学 液压往复密封件的服役疲劳性能测试方法及试验装置
WO2019076623A1 (de) * 2017-10-19 2019-04-25 Christian Maier GmbH & Co. KG GLEITRINGDICHTUNG ZUR ABDICHTUNG EINES EIN FLUID FÜHRENDEN KANALS UND/ODER RAUMES UND VERFAHREN ZUM ÜBERWACHEN DES VERSCHLEIßES EINER GLEITRINDICHTUNG
CN110296829A (zh) * 2019-07-03 2019-10-01 清华大学 一种高压高速往复密封实验测试平台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO127042B1 (ro) * 2010-01-19 2016-09-30 Inoe 2000 - Filiala Institutul De Cercetări Pentru Hidraulică Şi Pneumatică Stand cu recirculare de putere pentru anduranţa cilindrilor hidraulici
CN203404164U (zh) * 2013-08-13 2014-01-22 湖南特力液压有限公司 用于测试液压缸密封件耐久性的试验设备
CN103603842B (zh) * 2013-12-02 2015-12-30 北京乐冶液压气动设备技术有限公司 一种用于振动试验的复合作动缸及其加载方法
EP3096047B1 (en) * 2015-05-22 2019-04-03 Goodrich Actuation Systems SAS Method for monitoring health of a seal
CN106246617B (zh) * 2016-08-24 2018-05-04 浙江工业大学 往复机械的高性能组合密封圈性能测试系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201607322U (zh) * 2010-01-08 2010-10-13 深圳市富洋密封件有限公司 一种往复运动液压聚氨酯密封圈试验台
CN103512743A (zh) * 2013-09-28 2014-01-15 天津耐博特密封科技有限公司 一种干气密封试验腔体的双腔室结构
CN104132805A (zh) * 2014-08-01 2014-11-05 清华大学 一种多功能气动往复密封性能试验台
CN104535243A (zh) * 2015-01-08 2015-04-22 清华大学 一种测量单个密封圈摩擦力特性的往复密封实验台
CN105673621A (zh) * 2016-03-01 2016-06-15 浙江大学 一种航空作动器往复密封多工况综合模拟试验系统
CN107741318A (zh) * 2017-10-10 2018-02-27 青岛科技大学 一种往复式油封性能测试试验台
WO2019076623A1 (de) * 2017-10-19 2019-04-25 Christian Maier GmbH & Co. KG GLEITRINGDICHTUNG ZUR ABDICHTUNG EINES EIN FLUID FÜHRENDEN KANALS UND/ODER RAUMES UND VERFAHREN ZUM ÜBERWACHEN DES VERSCHLEIßES EINER GLEITRINDICHTUNG
CN108869457A (zh) * 2018-08-28 2018-11-23 浙江工业大学 一种研究活塞杆偏心对密封件性能影响的往复密封装置
CN109357960A (zh) * 2018-11-02 2019-02-19 武汉理工大学 液压往复密封件的服役疲劳性能测试方法及试验装置
CN110296829A (zh) * 2019-07-03 2019-10-01 清华大学 一种高压高速往复密封实验测试平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199552A (zh) * 2021-12-14 2022-03-18 浙江大学 一种密封圈往复运动摩擦力及装配力的测试装置及方法

Also Published As

Publication number Publication date
CN110296829A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2021000465A1 (zh) 一种高压高速往复密封实验测试平台
WO2021042461A1 (zh) 一种缸体浮动的高压高速往复密封实验测试平台
CN201265573Y (zh) 一种液压缸试验台
CN110044532B (zh) 一种可测量单个密封圈摩擦力的往复密封实验缸体结构
CN203184463U (zh) 橡胶胀接机
CN102680176A (zh) 一种管材实物应力腐蚀试验机
CN108709743B (zh) 水润滑轴承综合性能实验台
CN102269675B (zh) 一种流体压力提供第三向应力的双向拉伸试验装置及其应用
CN112431752B (zh) 一种高压大尺度间隙动密封性能测试装置及系统
CN206270190U (zh) 往复机械活塞环摩擦磨损试验装置
CN105372142A (zh) 一种高温真空微动腐蚀磨损试验台
CN103698072A (zh) 摩擦力测量系统及其摩擦力测量装置
CN102175537A (zh) 一种热介质胀形试验机
CN211805030U (zh) 一种航空航天器件用快速定位装置
CN202582844U (zh) 一种管材实物应力腐蚀试验机
Liao et al. Fluid-solid strong-interaction model of mechanical seals in reactor coolant pumps
CN104198371A (zh) 一种流体压力提供厚向应力作用的板材摩擦性能试验装置及其应用
CN108869259B (zh) 一种节能无油除噪压缩机
CN112161769B (zh) 一种水平两自由度液压泵振动加速寿命试验台
CN111707433B (zh) 高温高压下的690合金管微动损伤试验装置及其实施方法
CN111336113B (zh) 一种高速密封内流体静动态特性测量系统
KR20090017741A (ko) 리크 테스트용 실링 패드 장치 및 이를 이용한 실링방법
CN112903276A (zh) 一种开放式涡轮叶片试验设备
KR20210105578A (ko) 군용기용 에어론 실린더 성능테스트 점검장치
Wang et al. Research of novel water cooling jacket for explosion-proof motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936427

Country of ref document: EP

Kind code of ref document: A1