WO2021000433A1 - 一种led精准定时开关灯及其精准定时的驱动电路 - Google Patents

一种led精准定时开关灯及其精准定时的驱动电路 Download PDF

Info

Publication number
WO2021000433A1
WO2021000433A1 PCT/CN2019/107407 CN2019107407W WO2021000433A1 WO 2021000433 A1 WO2021000433 A1 WO 2021000433A1 CN 2019107407 W CN2019107407 W CN 2019107407W WO 2021000433 A1 WO2021000433 A1 WO 2021000433A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
resistor
controller
control
Prior art date
Application number
PCT/CN2019/107407
Other languages
English (en)
French (fr)
Inventor
李阳
徐泉江
王继博
王焕良
布兰登亚伯特
Original Assignee
浙江阳光美加照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江阳光美加照明有限公司 filed Critical 浙江阳光美加照明有限公司
Publication of WO2021000433A1 publication Critical patent/WO2021000433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the technical field of timing circuit design, in particular to an LED precise timing switch lamp and a precise timing drive circuit.
  • the time switch lamp is a kind of lamp that can set the switch time in advance.
  • Traditional timing switch lights are usually based on crystal oscillator for timing. For example, the cheaper ones use the design of built-in crystal oscillator and single-chip microcomputer. For higher precision, the design of single-chip and external crystal oscillator is used. Some design schemes will use single-chip microcomputer. , Design of external crystal oscillator and clock chip.
  • the purpose of the present invention is to provide an LED precise timing switch lamp and a precise timing drive circuit to improve timing accuracy.
  • the present invention provides the following technical solutions:
  • a precise timing drive circuit includes:
  • the main power supply circuit used to receive AC input and supply power to the load when in working state
  • An AC signal detection circuit connected to the AC input and a controller for converting the AC input into a pulse wave; wherein the period of the pulse wave is equal to the period of the AC input;
  • the controller is configured to obtain the first working mode corresponding to the first timing signal after receiving the first timing signal, and determine the statistical duration by counting the number of pulse waves received, based on the statistical duration Send a control signal corresponding to the statistical duration to the control circuit, and control the working state of the main power supply circuit through the control circuit to comply with the first operating mode; wherein the statistical duration is the time when the control signal is sent The length of time elapsed since the moment when the first timing signal is received;
  • the control circuit respectively connected with the controller and the main power supply circuit.
  • the first working mode is: after the controller receives the first timing signal, the main power supply circuit continues to supply power to the load for a preset first time period, and after the first time period is reached Stop supplying power to the load after a long time;
  • the controller is specifically configured to: after receiving the first timing signal, obtain the first working mode corresponding to the first timing signal, and determine the statistical duration by counting the number of received pulse waves, when all When the statistical duration is not greater than the first duration, the control signal of the first level state is sent to the control circuit, and when the statistical duration is greater than the first duration, the second level is sent to the control circuit
  • the state control signal controls the working state of the main power supply circuit through the control circuit to conform to the first working mode.
  • the load includes N display devices;
  • the main power supply circuit includes:
  • Rectification filter circuit used to receive AC input, rectify and filter
  • a constant current circuit that is connected to the control circuit and the rectification filter circuit and is used for stabilizing the current and supplying power to the load when in the working state.
  • it further includes: a controller power supply circuit connected to the rectification filter circuit and the controller and used to supply power to the controller.
  • the AC signal detection circuit includes: a rectifier component, a second resistor, and a first switch circuit;
  • the input end of the rectification component is connected to the neutral or live wire of the AC input, and the output end of the rectification component is connected to the first end of the second resistor;
  • the first end of the second resistor is connected to the control end of the first switch circuit, and the second end of the second resistor is grounded;
  • the first terminal of the first switch circuit is connected to the pulse counting terminal of the controller, and the second terminal of the first switch circuit is grounded;
  • the rectifying component includes a first resistor and a first diode connected in series, and the first end of the first resistor serves as the input terminal of the rectifying component, or the anode of the first diode serves as the rectifying component.
  • the pulse counting terminal of the controller When the AC input is in a positive half cycle, the pulse counting terminal of the controller is grounded through the first switch circuit and is in a low level state; when the AC input is in a negative half cycle, the control The pulse counting terminal of the device is in a high level state.
  • the AC signal detection circuit further includes a first capacitor, and the first switch circuit is a first triode;
  • the first end of the first capacitor is connected to the first end of the second resistor, and the second end of the first capacitor is connected to the second end of the second resistor;
  • the base of the first triode serves as the control terminal of the first switch circuit
  • the collector of the first triode serves as the first terminal of the first switch circuit
  • the first triode The emitter of is used as the second end of the first switch circuit.
  • control circuit includes: a third resistor and a second switch circuit;
  • the first end of the third resistor is respectively connected to the control signal output end of the controller and the control end of the second switch circuit, and the second end of the third resistor is grounded;
  • the first terminal of the second switch circuit is connected to the enable terminal of the constant current chip in the constant current circuit, and the second terminal of the second switch circuit is grounded;
  • control signal output by the control signal output terminal When the control signal output by the control signal output terminal is in a high-level state, the first terminal of the second switch circuit and the second terminal of the second switch circuit are conducted, and the constant current The chip is in a non-working state so that the load is not powered.
  • control circuit further includes a fourth resistor, and the second switch circuit is a second MOS transistor;
  • the first end of the fourth resistor is connected to the first end of the third resistor and the control signal output end of the controller, and the second end of the fourth resistor is connected to the second MOS transistor. ⁇ Grid connection;
  • the gate of the second MOS transistor serves as the control terminal of the second switch circuit
  • the source of the second MOS transistor serves as the second terminal of the second switch circuit
  • the drain of the second MOS transistor As the first end of the second switch circuit.
  • the constant current circuit includes: a second diode, a constant current chip, a fifth resistor, a second capacitor, a first inductor, a sixth resistor, and a seventh resistor;
  • the enable terminal of the constant current chip is connected to the output terminal of the control circuit, the input terminal of the constant current chip is connected to the first output terminal of the rectifier filter circuit, and the first output terminal of the constant current chip And the second output terminal is connected to the anode of the second diode, and the third output terminal of the constant current chip is respectively connected to the first terminal of the sixth resistor and the first terminal of the seventh resistor ;
  • the second end of the sixth resistor and the second end of the seventh resistor are both grounded;
  • the cathode of the second diode is connected to the first output terminal of the rectifier filter circuit
  • the first end of the first inductor is connected to the anode of the second diode, and the second end of the first inductor is respectively connected to the second end of the second capacitor and the second end of the fifth resistor. End connection
  • the first terminal of the second capacitor is connected to the first output terminal of the rectifier filter circuit
  • the first terminal of the fifth resistor serves as the first output terminal of the constant current circuit, and the second terminal of the fifth resistor serves as the second output terminal of the constant current circuit.
  • An LED precise timing switch light comprising the precise timing driving circuit according to any one of the preceding claims.
  • the AC signal detection circuit is connected to the AC input and the controller to convert the AC input into pulse waves.
  • the controller can determine by counting the number of pulse waves received after receiving the first timing signal Count the length of time, that is, realize timing. Since the controller performs timing based on the frequency of the AC input, compared to the temperature, the frequency of the AC input is not easy to change, so it is helpful to improve the timing accuracy.
  • the timing results for example, when multiple timing switch lights need to be turned off at the same time, if they are controlled by one controller, it will naturally not happen that they cannot be turned off synchronously, and even if different The controllers are controlled separately.
  • the solution of the present application performs timing based on AC input, which is beneficial to improve timing accuracy.
  • FIG. 1 is a schematic diagram of the structure of a precise timing driving circuit in the present invention
  • FIG. 2 is a schematic structural diagram of a precisely timed drive circuit in a specific embodiment of the present invention.
  • the core of the present invention is to provide a precise timing drive circuit, which is beneficial to improve timing accuracy.
  • FIG. 1 is a schematic structural diagram of a precise timing driving circuit in the present invention.
  • the precise timing driving circuit may include:
  • the main power supply circuit 10 for receiving AC input and supplying power to the load when in working state.
  • the AC input can usually be 220V, 50Hz mains. Of course, it can be other forms of AC input on specific occasions, which does not affect the implementation of the present invention.
  • the controller 30 needs to determine the statistical duration based on the number of received pulse waves, and the period of the pulse wave is equal to the period of the AC input. Therefore, the solution of the present application needs to know the frequency of the AC input in advance.
  • the specific form of the main power supply circuit 10 can also be set as required.
  • the main power supply circuit 10 can be an AC-AC circuit.
  • the solution of the present application is usually applied to a DC load, then
  • the main power supply circuit 10 may be an AC-DC circuit.
  • the main power supply circuit 10 may also be provided with a protection function such as a filter circuit.
  • the load When the main power supply circuit 10 is in working state, the load can be powered. Correspondingly, when the main power supply circuit 10 is in a non-working state, the load cannot be powered. Therefore, by controlling the state of the main power supply circuit 10, the power supply state of the load can be controlled. For example, when the load is a lighting lamp, you can control it to turn on and off as needed.
  • the load described in this application may include a single electric device, or a load formed by multiple electric devices electrically connected, that is, a combination of multiple electric devices in series and/or parallel, without affecting the present invention Implementation.
  • the AC signal detection circuit 20 connected with the AC input and the controller 30 is used to convert the AC input into a pulse wave; wherein the period of the pulse wave is equal to the period of the AC input.
  • the AC signal detection circuit 20 can convert the AC input into a pulse wave, that is, realize the counting of the AC input. Each increase of the count value by 1, means that the elapsed time increases by one cycle of the AC input.
  • the specific structure of the AC signal detection circuit 20 can be set and adjusted as required, and does not affect the implementation of the present invention. It can realize the function of the present application, that is, it can output a pulse wave with a frequency equal to that of the AC input to the controller 30. .
  • the controller 30 is configured to obtain the first working mode corresponding to the first timing signal after receiving the first timing signal, and determine the statistical duration by counting the number of pulse waves received, and send to the control circuit 40 based on the statistical duration
  • the control signal corresponding to the statistical duration is controlled by the control circuit 40 to control the working state of the main power supply circuit 10 to conform to the first operating mode; wherein the statistical duration is the elapsed time between the time when the control signal is sent and the time when the first timing signal is received.
  • the control circuit 40 is connected to the controller 30 and the main power supply circuit 10 respectively.
  • the specific type and model of the controller 30 can be set and adjusted as required. For example, it can be selected as a low-cost single-chip microcomputer, or it can be selected as a related control chip with stronger functions to develop a more complex operating mode.
  • the controller 30 may receive the first timing signal through the relevant pins, and the first timing signal may be sent by an input device.
  • the input device may be a simpler multi-position switch, a key switch, etc., or it may be able to interact with the control Other types of input devices through which the device 30 communicates do not affect the implementation of the present invention.
  • the input device includes a three-speed switch S1 and an eighth resistor R8.
  • the controller 30 can receive different timing signals.
  • the received timing signals are different, the obtained working modes are usually different.
  • the correspondence between the timing signals and the working modes and the specific content of the working modes can be set in advance. Set and adjust.
  • the first timing signal is used to indicate that the controller 30 receives a certain timing signal.
  • the first working mode may be specifically: after the controller 30 receives the first timing signal, the main power supply circuit 10 continues to supply power to the load for a preset first time period, and when it reaches Stop supplying power to the load after the first time period.
  • the value of the first duration can also be set and adjusted as needed.
  • the controller 30 is specifically configured to: after receiving the first timing signal, obtain the first working mode corresponding to the first timing signal, and determine the statistical duration by counting the number of received pulse waves, When the statistical duration is not greater than the first duration, the control signal of the first level state is sent to the control circuit 40, and the load continues to work, and when the statistical duration is greater than the first duration, the control signal of the second level state is sent to the control circuit 40 , The load stops working, and the working state of the main power supply circuit 10 is controlled by the control circuit 40 to conform to the first working mode.
  • the control signal in the first level state may be a low level control signal
  • the control signal in the second level state may be a high level control signal.
  • the setting of the first working mode is a relatively common setting, that is, in practical applications, it is often necessary to set the first duration of the load to work, and then automatically control the load after the first duration is reached. shut down.
  • all three working modes can be set to such a mode, and the first duration is set to 1h, 2h, and 3h respectively.
  • the controller 30 in Fig. 2 is specifically a single-chip microcomputer U3.
  • the obtained working mode is: the main power supply circuit 10 provides continuous power supply for the load to 1 Hours, and stop supplying power to the load after 1 hour.
  • the obtained working mode is: the main power supply circuit 10 continues to supply power to the load for 2 hours, and after reaching 2 hours Stop supplying power to the load.
  • the controller 30 receives the first timing signal, the corresponding first working mode is obtained as follows: the main power supply circuit 10 continues to supply power to the load for 1 hour, stops supplying power to the load, and stops supplying power to the load for a period of time At 1 hour, continue to supply power for 1 hour, and so on.
  • the controller 30 After the controller 30 receives the first timing signal and acquires the first working mode, it will continue to calculate the statistical duration.
  • the statistical duration refers to the elapsed time between the time when the control signal is sent and the time when the first timing signal is received.
  • the controller 30 may send a control signal corresponding to the statistical time to the control circuit 40 based on the statistical time, so that the control circuit 40 controls the working state of the main power supply circuit 10 to conform to the first working mode.
  • the control signal will change accordingly. For example, within 1 hour after receiving the first timing signal and acquiring the first working mode, output a low-level electrical signal so that The load is powered, and the continuous output of a high-level signal after more than 1 hour makes the load unable to be powered.
  • the statistical duration is a continuously accumulated value.
  • the statistical duration is 0.
  • the statistical duration is increased by one unit duration, which is equal to the period of the AC input. duration.
  • the frequency of alternating current in our country is 50 Hz.
  • the statistical time is 0.2 seconds.
  • the count The duration is 1 second.
  • the frequency of alternating current in some countries is 60 Hz, and when the number of received pulse waves counted by the controller 30 is 60, the count time is 1 second.
  • the controller 30 controls the working state of the main power supply circuit 10 through the control circuit 40 to conform to the first working mode.
  • the specific form of the control circuit 40 can also be set and adjusted as required, and only needs to be able to complete the functions of the present application, that is, the working state of the main power supply circuit 10 can be adjusted according to different control signals sent by the controller 30.
  • the AC signal detection circuit is connected to the AC input and the controller to convert the AC input into pulse waves.
  • the controller can determine by counting the number of pulse waves received after receiving the first timing signal Count the length of time, that is, realize timing. Since the controller performs timing based on the frequency of the AC input, compared to the temperature, the frequency of the AC input is not easy to change, so it is helpful to improve the timing accuracy.
  • the timing results for example, when multiple timing switch lights need to be turned off at the same time, if they are controlled by one controller, it will naturally not happen that they cannot be turned off synchronously, and even if different The controllers are controlled separately.
  • the solution of the present application performs timing based on AC input, which is beneficial to improve timing accuracy.
  • the load includes N display devices
  • the main power supply circuit 10 includes:
  • Rectification filter circuit used to receive AC input, rectify and filter
  • control circuit 40 It is connected with the control circuit 40 and the rectifier filter circuit, and is used for a constant current circuit that stabilizes the current and supplies power to the load when it is in the working state.
  • the N display devices may specifically be N electrically connected LED lights and other display devices. Because the timing switch lights often need to be preset to turn on the lights, the solution of this application is widely used in such occasions .
  • the display device usually adopts DC power supply. Therefore, the main power supply circuit 10 in this embodiment includes a rectifier filter circuit and a constant current circuit.
  • the rectifier filter circuit is used for current preprocessing, that is, receiving AC input, rectifying and filtering.
  • the output of the rectifier filter circuit is connected to the input of the constant current circuit.
  • the control circuit 40 is also connected to the constant current circuit.
  • the control circuit 40 can control the working state of the constant current circuit, and the constant current circuit can also be used to stabilize current.
  • the rectifier filter circuit is rectified by the bridge rectifier module BD1, and a second inductor L2, a fifth capacitor C5, and a resistor R0 connected in parallel with the second inductor L2 are also provided for filtering.
  • the first terminal of the fifth capacitor C5 serves as the first output terminal of the rectifying and filtering circuit, and the second terminal of the fifth capacitor C5 is grounded.
  • a fuse F1 is set in the rectifier filter circuit.
  • a controller power supply circuit connected to the rectifier filter circuit and the controller 30 for supplying power to the controller 30.
  • the controller 30 can be powered in a variety of ways, for example, an electrolytic capacitor, a disposable battery, etc., are used as a power source to power the controller 30.
  • the controller power supply circuit can be connected to the rectifier filter circuit and the controller 30 respectively.
  • the controller can be The input of the power supply circuit is connected to the output of the rectification filter circuit, and the voltage level is adjusted and then output to the relevant pins of the controller 30.
  • the specific circuit configuration of the controller power supply circuit can be set and selected according to actual needs.
  • the embodiment of FIG. 2 shows a controller power supply circuit in a specific scenario.
  • the controller power supply circuit includes a ninth resistor R9, a tenth resistor R10, a third capacitor C3, a first Zener diode ZD1, a voltage regulator chip U2, and a fourth capacitor C4.
  • the first end of the ninth resistor R9 is connected to the live wire, that is, to the first output end of the bridge rectifier module BD1 in FIG. 2, and the second end of the ninth resistor R9 is connected to the first end of the tenth resistor R10 ,
  • the second end of the tenth resistor R10 is respectively connected to the first end of the third capacitor C3, the cathode of the first Zener diode ZD1 and the input end of the voltage stabilizer chip U2;
  • the second end of the third capacitor C3 is connected to the first end
  • the anode of the voltage stabilizer ZD1 and the ground terminal of the voltage stabilizer chip U2 are both grounded;
  • the output end of the voltage stabilizer chip U2 is respectively connected to the first end of the fourth capacitor C4 and the No. 1 pin of the single chip microcomputer U3, and the second terminal of the fourth capacitor C4 The terminal is grounded.
  • the AC signal detection circuit 20 includes: a rectifier component, a second resistor R2 and a first switch circuit;
  • the input end of the rectification component is connected to the neutral or live wire of the AC input, and the output end of the rectification component is connected to the first end of the second resistor R2;
  • the first end of the second resistor R2 is connected to the control end of the first switch circuit, and the second end of the second resistor R2 is grounded;
  • the first terminal of the first switch circuit is connected to the pulse counting terminal of the controller 30, and the second terminal of the first switch circuit is grounded;
  • the rectifying component includes a first resistor R1 and a first diode D1 connected in series, the first end of the first resistor R1 is used as the input terminal of the rectifying component, or the anode of the first diode D1 is used as the input terminal of the rectifying component;
  • the pulse counting terminal of the controller 30 When the AC input is in the positive half cycle, the pulse counting terminal of the controller 30 is grounded through the first switch circuit and is in a low level state; when the AC input is in a negative half cycle, the pulse counting terminal of the controller 30 is in a high level state .
  • the first end of the first resistor R1 serves as the input terminal of the rectifying component
  • the cathode of the first diode D1 serves as the output terminal of the rectifying component.
  • the first switching circuit is the first transistor Q1, and the base of the first transistor Q1 is used as the first switching circuit.
  • the collector of the first transistor Q1 serves as the first terminal of the first switch circuit, and the emitter of the first transistor Q1 serves as the second terminal of the first switch circuit.
  • the first switch circuit may also be other types of transistors, such as MOS transistors.
  • the AC signal detection circuit 20 may also include a first capacitor C1, the first terminal of the first capacitor C1 is connected to the first terminal of the second resistor R2, and the second terminal of the first capacitor C1 is connected to the first terminal of the second resistor R2.
  • the second ends of the two resistors R2 are connected, and the voltage is clamped by the first capacitor C1, which is beneficial to avoid damaging the first switch circuit when the voltage is too high, and it is also beneficial to the counting error of the controller 30 caused by voltage fluctuations.
  • the collector of the first transistor Q1 is used as the first terminal of the first switch circuit to connect to the pulse counting terminal of the controller 30.
  • the pulse counting terminal of the controller 30 is the No. 3 pin of the single-chip microcomputer U3 in FIG.
  • the No. 1 pin of the single-chip microcomputer U3 is connected to the output terminal of the voltage regulator chip U2 and the second terminal of the eleventh resistor R11, and the first terminal of the eleventh resistor R11 is connected to the collector of the first triode Q1.
  • the No. 2 pin of the single-chip microcomputer U3 is connected to the control circuit 40 as a control signal output terminal.
  • control circuit 40 includes: a third resistor R3 and a second switch circuit;
  • the first end of the third resistor R3 is respectively connected to the control signal output end of the controller 30 and the control end of the second switch circuit, and the second end of the third resistor R3 is grounded;
  • the first terminal of the second switch circuit is connected to the enable terminal of the constant current chip in the constant current circuit, and the second terminal of the second switch circuit is grounded;
  • the first terminal of the second switch circuit is connected to the second terminal of the second switch circuit, and the constant current chip is in a non-working state so that the load is not obtained. powered by.
  • control circuit 40 is composed of a third resistor R3 and a second switch circuit, and the circuit structure is simple and easy to implement.
  • control circuit 40 controls the constant current chip to be in a non-working state.
  • the MOS tube is a voltage control device. Therefore, in specific implementation, the second switching circuit can usually be selected as the second MOS tube Q2 in FIG. 2. Specifically, the gate of the second MOS tube Q2 is used as the control of the second switching circuit The source of the second MOS transistor Q2 serves as the second terminal of the second switch circuit, and the drain of the second MOS transistor Q2 serves as the first terminal of the second switch circuit.
  • other forms of switching tubes may also be provided as the second switching circuit, which can realize the control of the constant current circuit, and does not affect the implementation of the present invention.
  • a fourth resistor R4 is also provided in the control circuit 40.
  • the first end of the fourth resistor R4 and the first end of the third resistor R3 are respectively output from the control signal of the controller 30.
  • the control signal output terminal of the controller 30 is the No. 2 pin of U3, and the second terminal of the fourth resistor R4 is connected to the gate of the second MOS transistor Q2. Since the fourth resistor R4 is provided, it is beneficial to protect the second MOS transistor Q2 when the second MOS transistor Q2 is turned on, and can also reduce the power consumption of the second MOS transistor Q2.
  • the constant current circuit includes: a second diode D2, a constant current chip U1, a fifth resistor R5, a second capacitor C2, a first inductor L1, a sixth resistor R6, and a seventh resistor R6. Resistance R7;
  • the enable terminal of the constant current chip U1 is connected to the output terminal of the control circuit 40, the input terminal of the constant current chip U1 is connected to the first output terminal of the rectifier filter circuit, and the first output terminal and the second output terminal of the constant current chip U1 are both Connected to the anode of the second diode D2, and the third output terminal of the constant current chip U1 is respectively connected to the first end of the sixth resistor R6 and the first end of the seventh resistor R7;
  • the second end of the sixth resistor R6 and the second end of the seventh resistor R7 are both grounded;
  • the cathode of the second diode D2 is connected to the first output terminal of the rectifier filter circuit
  • the first end of the first inductor L1 is connected to the anode of the second diode D2, and the second end of the first inductor L1 is respectively connected to the second end of the second capacitor C2 and the second end of the fifth resistor R5;
  • the first terminal of the second capacitor C2 is connected to the first output terminal of the rectifier filter circuit
  • the first terminal of the fifth resistor R5 serves as the first output terminal of the constant current circuit, and the second terminal of the fifth resistor R5 serves as the second output terminal of the constant current circuit.
  • the enable terminal of the constant current chip U1 refers to its No. 2 pin.
  • the first output terminal, the second output terminal and the third output terminal of the constant current chip U1 refer to Its No. 5 pin, No. 6 pin and No. 7 pin
  • the input end of the constant current chip U1 refers to its No. 4 pin.
  • the enable terminal of the constant current chip U1 is connected to the output terminal of the control circuit 40, so the control circuit 40 can change the working state of the constant current chip through the output level state.
  • the 4th pin, the 5th pin and the 6th pin of the constant current chip U1 are all turned on, so that the constant current circuit can supply power to the load.
  • the control circuit 40 controls the constant current chip to be in a non-working state in the embodiment of FIG. 2, the 4th, 5th and 6th pins of the constant current chip are all turned off, so that the constant current circuit Stop power supply to the load.
  • the embodiment of the present invention also provides an LED precise timing switch lamp, which may include the precise timing driving circuit in any of the above embodiments, which may be cross-referenced with the above, and will not be repeated here. Description.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electronic Switches (AREA)

Abstract

一种精准定时的驱动电路,包括:用于接收交流输入,在处于工作状态时对负载供电的主供电电路(10);与交流输入及控制器(30)连接,用于将交流输入转换为脉冲波的交流信号检测电路(20);控制器(30),用于在接收到第一定时信号之后,获取第一定时信号对应的第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,基于统计时长向控制电路(40)发出对应于统计时长的控制信号,通过控制电路(40)控制主供电电路(10)的工作状态符合第一工作模式;统计时长为发送控制信号的时刻距接收第一定时信号的时刻所经过的时长;分别与控制器(30)和主供电电路(10)连接的控制电路(40)。通过该驱动电路,提高了计时精度。

Description

一种LED精准定时开关灯及其精准定时的驱动电路
本申请要求于2019年07月04日提交至中国专利局、申请号为201910600187.1、发明名称为“一种LED精准定时开关灯及其精准定时的驱动电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及定时电路设计技术领域,特别是涉及一种LED精准定时开关灯及其精准定时的驱动电路。
背景技术
定时开关灯是一种可以提前设定开关时间的灯。传统的定时开关灯一般基于晶振进行定时,例如较为便宜的,采用内置晶振和单片机的设计,又如精度更高一些的,采用单片机和外置晶振的设计,还有的设计方案会采用单片机、外置晶振和时钟芯片的设计。
由于传统方案都是采用晶振作为主要的计时器件,而晶振的频率容易受外界环境温度的影响而出现偏移,导致晶振的计时出现偏差,例如原本要求开关灯在9点关闭,实际运行时可能会出现提早关灯或者延后关灯的情况。此外,实际场景中,可能会在不同位置布置不同的定时开关灯,每个开关灯由不同的单片机进行控制,当不同位置的温度不同时,如果需要同时关闭这些定时开关灯,由于各个开关灯各自的计时误差,更容易出现无法同步关灯的情况。
综上所述,如何提高计时精度,是目前本领域技术人员急需解决的技术问题。
发明内容
本发明的目的是提供一种LED精准定时开关灯及其精准定时的驱动电路,以提高计时精度。
为解决上述技术问题,本发明提供如下技术方案:
一种精准定时的驱动电路,包括:
用于接收交流输入,在处于工作状态时对负载进行供电的主供电电路;
与所述交流输入以及控制器连接,用于将所述交流输入转换为脉冲波的交流信号检测电路;其中,所述脉冲波的周期等于所述交流输入的周期;
所述控制器,用于在接收到第一定时信号之后,获取所述第一定时信号对应的第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,基于所述统计时长向控制电路发出对应于所述统计时长的控制信号,通过所述控制电路控制所述主供电电路的工作状态符合所述第一工作模式;其中,所述统计时长为发送所述控制信号的时刻距离接收所述第一定时信号的时刻所经过的时长;
分别与所述控制器和所述主供电电路连接的所述控制电路。
优选的,所述第一工作模式为:在所述控制器接收所述第一定时信号之后,所述主供电电路为所述负载持续供电达到预设的第一时长,并在达到所述第一时长之后停止为所述负载供电;
所述控制器具体用于:在接收到第一定时信号之后,获取所述第一定时信号对应的所述第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,当所述统计时长未大于所述第一时长时,向所述控制电路发出第一电平状态的控制信号,当所述统计时长大于所述第一时长时,向所述控制电路发出第二电平状态的控制信号,通过所述控制电路控制所述主供电电路的工作状态符合所述第一工作模式。
优选的,所述负载包括N个显示装置;
所述主供电电路包括:
用于接收交流输入,并进行整流以及滤波的整流滤波电路;
与所述控制电路以及所述整流滤波电路均连接,用于稳定电流,并在处于工作状态时对所述负载进行供电的恒流电路。
优选的,还包括:与所述整流滤波电路以及所述控制器连接,用于对所述控制器进行供电的控制器供电电路。
优选的,所述交流信号检测电路包括:整流部件,第二电阻以及第一开关电路;
所述整流部件的输入端与所述交流输入的零线或者火线连接,所述整流部件的输出端与所述第二电阻的第一端连接;
所述第二电阻的第一端与所述第一开关电路的控制端连接,所述第二电阻的第二端接地;
所述第一开关电路的第一端与所述控制器的脉冲计数端连接,所述第一开关电路的第二端接地;
所述整流部件包括串联连接的第一电阻以及第一二极管,所述第一电阻的第一端作为所述整流部件的输入端,或者所述第一二极管的阳极作为所述整流部件的输入端;
当所述交流输入处于正半周期时,所述控制器的所述脉冲计数端通过所述第一开关电路接地,为低电平状态;当所述交流输入处于负半周期时,所述控制器的所述脉冲计数端为高电平状态。
优选的,所述交流信号检测电路还包括第一电容,所述第一开关电路为第一三极管;
所述第一电容的第一端与所述第二电阻的第一端连接,所述第一电容的第二端与所述第二电阻的第二端连接;
所述第一三极管的基极作为所述第一开关电路的控制端,所述第一三极管的集电极作为所述第一开关电路的第一端,所述第一三极管的发射极作为所述第一开关电路的第二端。
优选的,所述控制电路包括:第三电阻和第二开关电路;
所述第三电阻的第一端分别与所述控制器的控制信号输出端以及所述第二开关电路的控制端连接,所述第三电阻的第二端接地;
所述第二开关电路的第一端与所述恒流电路中的恒流芯片的使能端连接,所述第二开关电路的第二端接地;
当所述控制信号输出端输出的所述控制信号为低电平状态时,所述第二开关电路的第一端与所述第二开关电路的第二端之间截止,所述恒流芯片处于工作状态以使所述负载得到供电;
当所述控制信号输出端输出的所述控制信号为高电平状态时,所述第二开关电路的第一端与所述第二开关电路的第二端之间导通,所述恒流芯 片处于非工作状态以使所述负载未得到供电。
优选的,所述控制电路还包括第四电阻,所述第二开关电路为第二MOS管;
所述第四电阻的第一端分别与所述第三电阻的第一端以及所述控制器的所述控制信号输出端连接,所述第四电阻的第二端与所述第二MOS管的栅极连接;
所述第二MOS管的栅极作为所述第二开关电路的控制端,所述第二MOS管的源极作为所述第二开关电路的第二端,所述第二MOS管的漏极作为所述第二开关电路的第一端。
优选的,所述恒流电路包括:第二二极管,恒流芯片,第五电阻,第二电容,第一电感,第六电阻以及第七电阻;
所述恒流芯片的使能端与所述控制电路的输出端连接,所述恒流芯片的输入端与所述整流滤波电路的第一输出端连接,所述恒流芯片的第一输出端以及第二输出端均与所述第二二极管的阳极连接,所述恒流芯片的第三输出端分别与所述第六电阻的第一端以及所述第七电阻的第一端连接;
所述第六电阻的第二端和所述第七电阻的第二端均接地;
所述第二二极管的阴极与所述整流滤波电路的第一输出端连接;
所述第一电感的第一端与所述第二二极管的阳极连接,所述第一电感的第二端分别与所述第二电容的第二端和所述第五电阻的第二端连接;
所述第二电容的第一端与所述整流滤波电路的第一输出端连接;
所述第五电阻的第一端作为所述恒流电路的第一输出端,所述第五电阻的第二端作为所述恒流电路的第二端输出端。
一种LED精准定时开关灯,包括如权利要求上述任一项所述的精准定时的驱动电路。
本申请的方案中,交流信号检测电路与交流输入以及控制器连接,用于将交流输入转换为脉冲波,控制器便可以通过统计在接收第一定时信号之后接收到的脉冲波的数量确定出统计时长,即实现计时。由于控制器是依据交流输入的频率进行计时,相较于温度,交流输入的频率不容易出现变化,因此有利于提高计时精度。并且,当有多个负载需要通过计时结果 进行控制时,例如需要同时关闭多个定时开关灯时,如果统一由一个控制器进行控制,自然不会出现无法同步关闭的情况,而即使由不同的控制器分别控制,由于均是采用相同频率的交流输入,因此也不会出现无法同步关闭的情况,即,交流输入的频率并不会像温度一样,容易在不同位置有不同的温度值,导致对不同负载的控制的不同步。因此,本申请的方案基于交流输入进行计时,有利于提高计时精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中一种精准定时的驱动电路的结构示意图;
图2为本发明一种具体实施方式中精准定时的驱动电路的结构示意图。
具体实施方式
本发明的核心是提供一种精准定时的驱动电路,有利于提高计时精度。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明中一种精准定时的驱动电路的结构示意图,该精准定时的驱动电路可以包括:
用于接收交流输入,在处于工作状态时对负载进行供电的主供电电路10。
交流输入通常可以为220V,50Hz的市电,当然,在具体场合中可以是 其他形式的交流输入,并不影响本发明的实施。但需要说明的是,由于控制器30需要基于接收到的脉冲波的数量来确定出统计时长,脉冲波的周期又等于交流输入的周期,因此,本申请的方案需要预先获知交流输入的频率。
主供电电路10的具体形式也可以根据需要进行设定,例如当负载需要接收交流供电时,主供电电路10可以为AC-AC电路,又如,本申请的方案通常应用于直流负载中,则主供电电路10可以为AC-DC电路,此外,还可以在主供电电路10上设置滤波电路等保护功能。
当主供电电路10处于工作状态时,负载可以得到供电,相应的,当主供电电路10处于非工作状态时,负载无法得到供电,因此,通过控制主供电电路10的状态,便可以控制负载的供电状态,例如负载为照明灯时,可以根据需要控制其亮灭。本申请描述的负载,可以包括单个用电装置,也可以是多个用电装置电性连接所构成的负载,即可以是多个用电装置串联和/或并联的组合,均不影响本发明的实施。
与交流输入以及控制器30连接,用于将交流输入转换为脉冲波的交流信号检测电路20;其中,脉冲波的周期等于交流输入的周期。
交流信号检测电路20可以将交流输入转换为脉冲波,也即实现了针对交流输入的计数,计数值每增加1,便表示经过的时长增加了交流输入一个周期的时长。交流信号检测电路20的具体构成可以根据需要进行设定和调整,并不影响本发明的实施,能够实现本申请的功能,即能够向控制器30输出频率等于交流输入的频率的脉冲波即可。
控制器30,用于在接收到第一定时信号之后,获取第一定时信号对应的第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,基于统计时长向控制电路40发出对应于统计时长的控制信号,通过控制电路40控制主供电电路10的工作状态符合第一工作模式;其中,统计时长为发送控制信号的时刻距离接收第一定时信号的时刻所经过的时长。
分别与控制器30和主供电电路10连接的控制电路40。
控制器30的具体类型以及型号可以根据需要进行设定和调整,例如可以选取为成本较低的单片机,又如可以选取为功能更强的相关控制芯片, 以制定出更复杂的工作模式。
控制器30可以通过相关引脚接收到第一定时信号,第一定时信号可以由输入装置进行发送,该输入装置可以是结构较为简单的多档位开关,按键开关等,还可以是能够与控制器30进行通信的其他类型的输入装置,均不影响本发明的实施,例如图2的具体实施方式中,输入装置包括一个三挡开关S1以及第八电阻R8。
控制器30可以接收不同的定时信号,当接收到的定时信号不同时,获取到的工作模式通常不同,当然,定时信号与工作模式之间的对应关系以及工作模式的具体内容均可以预先进行设定和调整。本申请中用第一定时信号来表示控制器30接收到某一个定时信号。
例如在本发明的一种具体实施方式中,第一工作模式可以具体为:在控制器30接收第一定时信号之后,主供电电路10为负载持续供电达到预设的第一时长,并在达到第一时长之后停止为负载供电。第一时长的取值也可以根据需要进行设定和调整。
在该种工作模式下,控制器30具体用于:在接收到第一定时信号之后,获取第一定时信号对应的第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,当统计时长未大于第一时长时,向控制电路40发出第一电平状态的控制信号,负载继续工作,当统计时长大于第一时长时,向控制电路40发出第二电平状态的控制信号,负载停止工作,通过控制电路40控制主供电电路10的工作状态符合第一工作模式。例如,第一电平状态的控制信号可以是低电平的控制信号,第二电平状态的控制信号可以是高电平的控制信号。
该种实施方式中对于第一工作模式的设定是一种较为常用的设定,即实际应用中,经常需要让负载工作设定的第一时长,在达到第一时长之后再自动控制负载的关闭。例如图2的实施方式中,可以将3种工作模式均设置为这样的模式,第一时长分别设定为1h,2h,3h。图2中控制器30具体为单片机U3,将三挡开关S1拨动至与图2中的单片机U3的5号引脚连接时,获取的工作模式为:主供电电路10为负载持续供电达到1小时,并在达到1小时之后停止为负载供电。相应的,将三挡开关S1拨动至与图2中的单片机 U3的6号引脚连接时,获取的工作模式为:主供电电路10为负载持续供电达到2小时,并在达到2小时之后停止为负载供电。
当然,除了前述实施例中的常用的工作模式,在实际应用中还可以有其他更为复杂的工作模式,均不影响本发明的实施。例如,控制器30在接收到第一定时信号之后,获取到对应的第一工作模式为:主供电电路10为负载持续供电达到1小时,停止为负载供电,并且在停止为负载供电的时长达到1小时时,继续供电1小时,如此循环。
控制器30在接收第一定时信号,获取第一工作模式之后,会不断地进行统计时长的计算,统计时长指的是发送控制信号的时刻距离接收第一定时信号的时刻所经过的时长。控制器30可以基于统计时长向控制电路40发出对应于统计时长的控制信号,从而通过控制电路40控制主供电电路10的工作状态符合第一工作模式。
也就是说,当计算出的统计时长的数值不同时,控制信号会相应的变化,例如,在接收第一定时信号,获取第一工作模式之后的1小时内,输出低电平的电信号使得负载得到供电,而超过1小时后持续输出高电平信号使得负载无法得到供电。
统计时长是一个不断累加的数值,在接收第一定时信号时统计时长为0,此后每当控制器30接收到一个脉冲,统计时长便增加一个单位时长,该单位时长即等于交流输入的周期的时长。例如,我国交流电的频率为50Hz,当控制器30统计的接收到的脉冲波的数量为10时,统计时长为0.2秒,当控制器30统计的接收到的脉冲波的数量为50时,统计时长为1秒。又如,部分国家的交流电频率为60Hz,则当控制器30统计的接收到的脉冲波的数量为60时,统计时长为1秒。
控制器30通过控制电路40控制主供电电路10的工作状态符合第一工作模式。控制电路40的具体形式也可以根据需要进行设定和调整,能够完成本申请的功能即可,即能够根据控制器30发送的控制信号的不同,相适应地调整主供电电路10的工作状态。
本申请的方案中,交流信号检测电路与交流输入以及控制器连接,用于将交流输入转换为脉冲波,控制器便可以通过统计在接收第一定时信号 之后接收到的脉冲波的数量确定出统计时长,即实现计时。由于控制器是依据交流输入的频率进行计时,相较于温度,交流输入的频率不容易出现变化,因此有利于提高计时精度。并且,当有多个负载需要通过计时结果进行控制时,例如需要同时关闭多个定时开关灯时,如果统一由一个控制器进行控制,自然不会出现无法同步关闭的情况,而即使由不同的控制器分别控制,由于均是采用相同频率的交流输入,因此也不会出现无法同步关闭的情况,即,交流输入的频率并不会像温度一样,容易在不同位置有不同的温度值,导致对不同负载的控制的不同步。因此,本申请的方案基于交流输入进行计时,有利于提高计时精度。
在本发明的一种具体实施方式中,负载包括N个显示装置;
主供电电路10包括:
用于接收交流输入,并进行整流以及滤波的整流滤波电路;
与控制电路40以及整流滤波电路均连接,用于稳定电流,并在处于工作状态时对负载进行供电的恒流电路。
N个显示装置具体可以为N个电性连接的LED灯等显示装置,由于定时开关灯经常需要预先设定开关灯的开启时长,因此本申请的方案在该种场合中被广泛的应用。显示装置通常采用直流供电,因此,该种实施方式中的主供电电路10包括整流滤波电路以及恒流电路。
整流滤波电路用于进行电流的预处理,即接收交流输入,并进行整流以及滤波。整流滤波电路的输出与恒流电路的输入连接,同时,控制电路40也与恒流电路连接,控制电路40可以控制恒流电路的工作状态,恒流电路还可以用于稳定电流。
在图2的实施方式中,整流滤波电路通过桥式整流模块BD1进行整流,并且还设置了第二电感L2,第五电容C5以及与第二电感L2并联的电阻R0实现滤波。第五电容C5的第一端作为整流滤波电路的第一输出端,第五电容C5的第二端接地。此外,还在整流滤波电路中设置了保险丝F1。
在本发明的一种具体实施方式中,还包括:与整流滤波电路以及控制器30连接,用于对控制器30进行供电的控制器供电电路。
在具体实施时,可以采用多种方式对控制器30进行供电,例如通过电 解电容、一次性电池等作为电源为控制器30供电。又如该种实施方式中,考虑到控制器30通常需要接收5V或者3.3V的直流电作为电源,因此可以将控制器供电电路分别与整流滤波电路以及控制器30连接,具体的,可以将控制器供电电路的输入与整流滤波电路的输出连接,调整电压等级之后再输出至控制器30的相关引脚。
控制器供电电路的具体电路构成可以根据实际需要进行设定和选取,例如图2的实施方式中示出了一种具体场景中的控制器供电电路。在图2中,控制器供电电路包括第九电阻R9,第十电阻R10,第三电容C3,第一稳压二极管ZD1,稳压芯片U2以及第四电容C4。
具体的,第九电阻R9的第一端与火线连接,即与图2中桥式整流模块BD1的第一输出端连接,第九电阻R9的第二端与第十电阻R10的第一端连接,第十电阻R10的第二端分别与第三电容C3的第一端,第一稳压二极管ZD1的阴极以及稳压芯片U2的输入端连接;第三电容C3的第二端,第一稳压二极管ZD1的阳极以及稳压芯片U2的接地端均接地;稳压芯片U2的输出端分别与第四电容C4的第一端以及单片机U3的1号引脚连接,第四电容C4的第二端接地。
在本发明的一种具体实施方式中,交流信号检测电路20包括:整流部件,第二电阻R2以及第一开关电路;
整流部件的输入端与交流输入的零线或者火线连接,整流部件的输出端与第二电阻R2的第一端连接;
第二电阻R2的第一端与第一开关电路的控制端连接,第二电阻R2的第二端接地;
第一开关电路的第一端与控制器30的脉冲计数端连接,第一开关电路的第二端接地;
整流部件包括串联连接的第一电阻R1以及第一二极管D1,第一电阻R1的第一端作为整流部件的输入端,或者第一二极管D1的阳极作为整流部件的输入端;
当交流输入处于正半周期时,控制器30的脉冲计数端通过第一开关电路接地,为低电平状态;当交流输入处于负半周期时,控制器30的脉冲计 数端为高电平状态。
在图2的实施方式中,第一电阻R1的第一端作为整流部件的输入端,第一二极管D1的阴极作为整流部件的输出端。可以看出,当交流输入处于正半周期时,第一开关电路的控制端与第一开关电路的第二端之间的电压差即为第二电阻R2的电压,第一开关电路的第一端与第一开关电路的第二端之间导通,控制器30的脉冲计数端便通过第一开关电路接地,此时为低电平状态。相应的,当交流输入处于负半周期时,此时第一开关电路的第一端为高电平状态,即第一开关电路的第一端与第一开关电路的第二端之间未导通。
第一开关电路的具体形式可以根据需要进行设定和调整,例如图2的实施方式中,第一开关电路为第一三极管Q1,第一三极管Q1的基极作为第一开关电路的控制端,第一三极管Q1的集电极作为第一开关电路的第一端,第一三极管Q1的发射极作为第一开关电路的第二端。此外,第一开关电路也可以是其他类型的晶体管,例如MOS管等。
进一步的,在具体实施时,交流信号检测电路20还可以包括第一电容C1,第一电容C1的第一端与第二电阻R2的第一端连接,第一电容C1的第二端与第二电阻R2的第二端连接,通过第一电容C1对电压进行钳位,有利于避免电压过高时损坏第一开关电路,同时也有利于电压波动导致控制器30的计数错误情况。
第一三极管Q1的集电极作为第一开关电路的第一端与控制器30的脉冲计数端连接,控制器30的脉冲计数端即为图2中的单片机U3的3号引脚,而单片机U3的1号引脚分别与稳压芯片U2的输出端以及第十一电阻R11的第二端连接,第十一电阻R11的第一端与第一三极管Q1的集电极连接。单片机U3的2号引脚作为控制信号输出端与控制电路40连接。
在本发明的一种具体实施方式中,控制电路40包括:第三电阻R3和第二开关电路;
第三电阻R3的第一端分别与控制器30的控制信号输出端以及第二开关电路的控制端连接,第三电阻R3的第二端接地;
第二开关电路的第一端与恒流电路中的恒流芯片的使能端连接,第二 开关电路的第二端接地;
当控制信号输出端输出的控制信号为低电平状态时,第二开关电路的第一端与第二开关电路的第二端之间截止,恒流芯片处于工作状态以使负载得到供电;
当控制信号输出端输出的控制信号为高电平状态时,第二开关电路的第一端与第二开关电路的第二端之间导通,恒流芯片处于非工作状态以使负载未得到供电。
该种实施方式中,控制电路40由第三电阻R3和第二开关电路构成,电路结构简单,便于实施。当然,在其他实施方式中,完全可以有其他形式的控制电路40,例如可以是当控制信号输出端输出的控制信号为低电平状态时,控制电路40控制恒流芯片处于非工作状态。
MOS管是电压控制性器件,因此在具体实施时,第二开关电路通常可以选取为图2中的第二MOS管Q2,具体的,第二MOS管Q2的栅极作为第二开关电路的控制端,第二MOS管Q2的源极作为第二开关电路的第二端,第二MOS管Q2的漏极作为第二开关电路的第一端。当然,在其他实施方式中,也可以设置其他形式的开关管作为第二开关电路,能够实现对恒流电路的控制即可,并不影响本发明的实施。
此外,图2的实施方式中,控制电路40中还设置了第四电阻R4,具体的,第四电阻R4的第一端分别与第三电阻R3的第一端以及控制器30的控制信号输出端连接,控制器30的控制信号输出端即为U3的2号引脚,第四电阻R4的第二端与第二MOS管Q2的栅极连接。由于设置了第四电阻R4,有利于在第二MOS管Q2导通时对第二MOS管Q2进行保护,也可以降低第二MOS管Q2的功耗。
在本发明的一种具体实施方式中,恒流电路包括:第二二极管D2,恒流芯片U1,第五电阻R5,第二电容C2,第一电感L1,第六电阻R6以及第七电阻R7;
恒流芯片U1的使能端与控制电路40的输出端连接,恒流芯片U1的输入端与整流滤波电路的第一输出端连接,恒流芯片U1的第一输出端以及第二输出端均与第二二极管D2的阳极连接,恒流芯片U1的第三输出端分别与第 六电阻R6的第一端以及第七电阻R7的第一端连接;
第六电阻R6的第二端和第七电阻R7的第二端均接地;
第二二极管D2的阴极与整流滤波电路的第一输出端连接;
第一电感L1的第一端与第二二极管D2的阳极连接,第一电感L1的第二端分别与第二电容C2的第二端和第五电阻R5的第二端连接;
第二电容C2的第一端与整流滤波电路的第一输出端连接;
第五电阻R5的第一端作为恒流电路的第一输出端,第五电阻R5的第二端作为恒流电路的第二端输出端。
图2的实施方式中,恒流芯片U1的使能端指的是其2号引脚,相应的,恒流芯片U1的第一输出端,第二输出端以及第三输出端依次指的是其5号引脚,6号引脚以及7号引脚,恒流芯片U1的输入端指的是其4号引脚。可以看出,该种实施方式中,恒流芯片U1的使能端与控制电路40的输出端连接,因此控制电路40通过输出的电平状态可以改变恒流芯片的工作状态。当恒流芯片处于工作状态时,图2的实施方式中,恒流芯片U1的4号引脚与5号引脚以及6号引脚均导通,使得恒流电路能够对负载供电。相应的,当控制电路40控制恒流芯片处于非工作状态时,图2的实施方式中,恒流芯片的4号引脚与5号引脚以及6号引脚均关断,使得恒流电路停止对负载的供电。
相应于上面的方法实施例,本发明实施例还提供了一种LED精准定时开关灯,可以包括上述任一实施例中的精准定时的驱动电路,可与上文相互参照,此处不重复说明。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备 中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种精准定时的驱动电路,其特征在于,包括:
    用于接收交流输入,在处于工作状态时对负载进行供电的主供电电路;
    与所述交流输入以及控制器连接,用于将所述交流输入转换为脉冲波的交流信号检测电路;其中,所述脉冲波的周期等于所述交流输入的周期;
    所述控制器,用于在接收到第一定时信号之后,获取所述第一定时信号对应的第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,基于所述统计时长向控制电路发出对应于所述统计时长的控制信号,通过所述控制电路控制所述主供电电路的工作状态符合所述第一工作模式;其中,所述统计时长为发送所述控制信号的时刻距离接收所述第一定时信号的时刻所经过的时长;
    分别与所述控制器和所述主供电电路连接的所述控制电路。
  2. 根据权利要求1所述的精准定时的驱动电路,其特征在于,所述第一工作模式为:在所述控制器接收所述第一定时信号之后,所述主供电电路为所述负载持续供电达到预设的第一时长,并在达到所述第一时长之后停止为所述负载供电;
    所述控制器具体用于:在接收到第一定时信号之后,获取所述第一定时信号对应的所述第一工作模式,并且通过统计接收到的脉冲波的数量确定出统计时长,当所述统计时长未大于所述第一时长时,向所述控制电路发出第一电平状态的控制信号,当所述统计时长大于所述第一时长时,向所述控制电路发出第二电平状态的控制信号,通过所述控制电路控制所述主供电电路的工作状态符合所述第一工作模式。
  3. 根据权利要求1所述的精准定时的驱动电路,其特征在于,所述负载包括N个显示装置;
    所述主供电电路包括:
    用于接收交流输入,并进行整流以及滤波的整流滤波电路;
    与所述控制电路以及所述整流滤波电路均连接,用于稳定电流,并在处于工作状态时对所述负载进行供电的恒流电路。
  4. 根据权利要求3所述的精准定时的驱动电路,其特征在于,还包括: 与所述整流滤波电路以及所述控制器连接,用于对所述控制器进行供电的控制器供电电路。
  5. 根据权利要求1所述的精准定时的驱动电路,其特征在于,所述交流信号检测电路包括:整流部件,第二电阻以及第一开关电路;
    所述整流部件的输入端与所述交流输入的零线或者火线连接,所述整流部件的输出端与所述第二电阻的第一端连接;
    所述第二电阻的第一端与所述第一开关电路的控制端连接,所述第二电阻的第二端接地;
    所述第一开关电路的第一端与所述控制器的脉冲计数端连接,所述第一开关电路的第二端接地;
    所述整流部件包括串联连接的第一电阻以及第一二极管,所述第一电阻的第一端作为所述整流部件的输入端,或者所述第一二极管的阳极作为所述整流部件的输入端;
    当所述交流输入处于正半周期时,所述控制器的所述脉冲计数端通过所述第一开关电路接地,为低电平状态;当所述交流输入处于负半周期时,所述控制器的所述脉冲计数端为高电平状态。
  6. 根据权利要求5所述的精准定时的驱动电路,其特征在于,所述交流信号检测电路还包括第一电容,所述第一开关电路为第一三极管;
    所述第一电容的第一端与所述第二电阻的第一端连接,所述第一电容的第二端与所述第二电阻的第二端连接;
    所述第一三极管的基极作为所述第一开关电路的控制端,所述第一三极管的集电极作为所述第一开关电路的第一端,所述第一三极管的发射极作为所述第一开关电路的第二端。
  7. 根据权利要求3所述的精准定时的驱动电路,其特征在于,所述控制电路包括:第三电阻和第二开关电路;
    所述第三电阻的第一端分别与所述控制器的控制信号输出端以及所述第二开关电路的控制端连接,所述第三电阻的第二端接地;
    所述第二开关电路的第一端与所述恒流电路中的恒流芯片的使能端连接,所述第二开关电路的第二端接地;
    当所述控制信号输出端输出的所述控制信号为低电平状态时,所述第二开关电路的第一端与所述第二开关电路的第二端之间截止,所述恒流芯片处于工作状态以使所述负载得到供电;
    当所述控制信号输出端输出的所述控制信号为高电平状态时,所述第二开关电路的第一端与所述第二开关电路的第二端之间导通,所述恒流芯片处于非工作状态以使所述负载未得到供电。
  8. 根据权利要求7所述的精准定时的驱动电路,其特征在于,所述控制电路还包括第四电阻,所述第二开关电路为第二MOS管;
    所述第四电阻的第一端分别与所述第三电阻的第一端以及所述控制器的所述控制信号输出端连接,所述第四电阻的第二端与所述第二MOS管的栅极连接;
    所述第二MOS管的栅极作为所述第二开关电路的控制端,所述第二MOS管的源极作为所述第二开关电路的第二端,所述第二MOS管的漏极作为所述第二开关电路的第一端。
  9. 根据权利要求3所述的精准定时的驱动电路,其特征在于,所述恒流电路包括:第二二极管,恒流芯片,第五电阻,第二电容,第一电感,第六电阻以及第七电阻;
    所述恒流芯片的使能端与所述控制电路的输出端连接,所述恒流芯片的输入端与所述整流滤波电路的第一输出端连接,所述恒流芯片的第一输出端以及第二输出端均与所述第二二极管的阳极连接,所述恒流芯片的第三输出端分别与所述第六电阻的第一端以及所述第七电阻的第一端连接;
    所述第六电阻的第二端和所述第七电阻的第二端均接地;
    所述第二二极管的阴极与所述整流滤波电路的第一输出端连接;
    所述第一电感的第一端与所述第二二极管的阳极连接,所述第一电感的第二端分别与所述第二电容的第二端和所述第五电阻的第二端连接;
    所述第二电容的第一端与所述整流滤波电路的第一输出端连接;
    所述第五电阻的第一端作为所述恒流电路的第一输出端,所述第五电阻的第二端作为所述恒流电路的第二端输出端。
  10. 一种LED精准定时开关灯,其特征在于,包括如权利要求1至9 任一项所述的精准定时的驱动电路。
PCT/CN2019/107407 2019-07-04 2019-09-24 一种led精准定时开关灯及其精准定时的驱动电路 WO2021000433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910600187.1 2019-07-04
CN201910600187.1A CN110191549B (zh) 2019-07-04 2019-07-04 一种led精准定时开关灯及其精准定时的驱动电路

Publications (1)

Publication Number Publication Date
WO2021000433A1 true WO2021000433A1 (zh) 2021-01-07

Family

ID=67725030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107407 WO2021000433A1 (zh) 2019-07-04 2019-09-24 一种led精准定时开关灯及其精准定时的驱动电路

Country Status (2)

Country Link
CN (1) CN110191549B (zh)
WO (1) WO2021000433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038660A (zh) * 2021-04-21 2021-06-25 嘉兴市光泰照明有限公司 一种led转向辅助照明灯控制电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191549B (zh) * 2019-07-04 2021-03-09 浙江阳光美加照明有限公司 一种led精准定时开关灯及其精准定时的驱动电路
CN112738947B (zh) * 2019-10-15 2023-08-22 松下知识产权经营株式会社 照明电路及其同步方法
CN110740552A (zh) * 2019-10-20 2020-01-31 北京芯思电子有限公司 定时电子开关电路及定时控制方法
CN113365387A (zh) * 2020-03-02 2021-09-07 科斯莫灯饰公司 具多种发光模式的灯串的发光控制器及控制方法、灯串组件
CN112752376B (zh) * 2021-02-06 2023-10-13 漳州立达信光电子科技有限公司 一种多控开关电路
CN113899062A (zh) * 2021-10-14 2022-01-07 熊先辉 一种学校卫生间led照明换气控制电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359255A (zh) * 2000-12-18 2002-07-17 刘英彰 数字式调光电路
CN2634785Y (zh) * 2003-06-07 2004-08-18 金以城 智能调光器
CN1588247A (zh) * 2004-09-01 2005-03-02 庞浩 一种具有定时功能的电功率调控方法及其系统
US20080203936A1 (en) * 2007-02-28 2008-08-28 Mitsuru Mariyama Led drive circuit and led light-emitting device
CN109287032A (zh) * 2018-10-15 2019-01-29 深圳市力生美半导体股份有限公司 基于电网频率定时控制的圣诞灯
CN110191549A (zh) * 2019-07-04 2019-08-30 浙江阳光美加照明有限公司 一种led精准定时开关灯及其精准定时的驱动电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062929A (zh) * 2013-03-22 2014-09-24 鸿富锦精密工业(武汉)有限公司 定时通断电控制系统
JP6471687B2 (ja) * 2015-12-25 2019-02-20 オムロン株式会社 タイマ装置
CN105682295B (zh) * 2016-03-21 2017-07-28 上海东软载波微电子有限公司 Led控制电路
CN206075043U (zh) * 2016-06-08 2017-04-05 王安 一种具有定时通断功能的电源
CN207869446U (zh) * 2017-12-29 2018-09-14 江阴旺达电子有限公司 一种大功率led智能驱动器
CN109039305B (zh) * 2018-08-02 2021-11-09 黄琦 一种基于交流电产生时钟脉冲信号的电路
CN208739458U (zh) * 2018-08-16 2019-04-12 宁波亚达电器有限公司 一种采用工频作为时钟源的定时电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359255A (zh) * 2000-12-18 2002-07-17 刘英彰 数字式调光电路
CN2634785Y (zh) * 2003-06-07 2004-08-18 金以城 智能调光器
CN1588247A (zh) * 2004-09-01 2005-03-02 庞浩 一种具有定时功能的电功率调控方法及其系统
US20080203936A1 (en) * 2007-02-28 2008-08-28 Mitsuru Mariyama Led drive circuit and led light-emitting device
CN109287032A (zh) * 2018-10-15 2019-01-29 深圳市力生美半导体股份有限公司 基于电网频率定时控制的圣诞灯
CN110191549A (zh) * 2019-07-04 2019-08-30 浙江阳光美加照明有限公司 一种led精准定时开关灯及其精准定时的驱动电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038660A (zh) * 2021-04-21 2021-06-25 嘉兴市光泰照明有限公司 一种led转向辅助照明灯控制电路
CN113038660B (zh) * 2021-04-21 2023-08-29 嘉兴市光泰照明有限公司 一种led转向辅助照明灯控制电路

Also Published As

Publication number Publication date
CN110191549B (zh) 2021-03-09
CN110191549A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2021000433A1 (zh) 一种led精准定时开关灯及其精准定时的驱动电路
CN101765274B (zh) 一种led灯具及其驱动电路
CN101841950B (zh) 一种led驱动电源及led光源
WO2020224303A1 (zh) 空调器过压检测电路、空调器电控装置和空调器
CN103079316B (zh) 一种基于功率因数校正和原边反馈控制的led照明电源控制器
US9723666B2 (en) Lighting device and lighting fixture using same
CN103582257A (zh) Led驱动装置及方法
WO2012100406A1 (zh) 一种低压控制电源电路及其产生方法
CN103716952B (zh) 一种led开关电源及其控制方法
CN102026453B (zh) 一种led电源调光控制装置
US11871488B1 (en) Six-in-one dimming circuit
WO2016050084A1 (zh) Led驱动电路和电子设备
WO2018024035A1 (zh) 一种开关电源用指示电路及其使用方法
WO2018058298A1 (zh) 调光开关系统及方法
EP2547172A2 (en) Dimmer
CN203504839U (zh) 一种采用初级检测和调控的led灯驱动电源
CN204539556U (zh) 宽电压led灯的开关调光驱动电路及led灯调光控制系统
CN106160559A (zh) 具有高频斩波电流采样输入隔离功能的纯正弦波逆变器
US10805996B1 (en) Dial segmented dimming circuit
CN208739458U (zh) 一种采用工频作为时钟源的定时电路
CN202014393U (zh) 一种led电源调光控制装置
CN206640839U (zh) 一种led驱动电路
EP3614037A1 (en) Light for decorative lighting, light string, and light string display state control method
CN211352509U (zh) 一种无线控制led智能电源
CN209400885U (zh) 一种时间校准电路和电机的驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936481

Country of ref document: EP

Kind code of ref document: A1