WO2021000426A1 - 指纹识别组件和电子设备 - Google Patents

指纹识别组件和电子设备 Download PDF

Info

Publication number
WO2021000426A1
WO2021000426A1 PCT/CN2019/106231 CN2019106231W WO2021000426A1 WO 2021000426 A1 WO2021000426 A1 WO 2021000426A1 CN 2019106231 W CN2019106231 W CN 2019106231W WO 2021000426 A1 WO2021000426 A1 WO 2021000426A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint identification
layer
fingerprint
tft substrate
assembly
Prior art date
Application number
PCT/CN2019/106231
Other languages
English (en)
French (fr)
Inventor
刘宣宣
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Publication of WO2021000426A1 publication Critical patent/WO2021000426A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • This application belongs to the technical field of fingerprint identification, and in particular relates to a fingerprint identification component and an electronic device.
  • Ultrasonic fingerprint recognition as an emerging fingerprint recognition technology, together with optical fingerprint recognition has become the two main under-screen fingerprint recognition solutions.
  • the ultrasonic fingerprint recognition module emits ultrasonic waves, the ultrasonic waves pass through the display screen and the glass cover to detect the user's fingerprint, and the ultrasonic waves are reflected back to the ultrasonic fingerprint recognition module to be received and recognized.
  • the accuracy of the current ultrasonic fingerprint recognition is affected by the internal environment of the electronic device. After the ultrasonic wave is emitted, it will be emitted into the electronic device, and the ultrasonic wave reflected by the internal device of the electronic device will interfere with the ultrasonic fingerprint recognition module. Therefore, the ultrasonic fingerprint recognition module needs to be protected against electromagnetic interference.
  • the current technical means is to wrap a protective cover around the module. However, the protective cover needs to be separated from the module to form a space with an air layer, so that the ultrasonic wave Attenuate rapidly in the air layer.
  • the prior art solution for providing a protective cover makes the overall thickness of the fingerprint identification module and the protective cover very thick, generally reaching 645 ⁇ m, which is not conducive to the thinning of electronic equipment.
  • the purpose of this application is to provide a fingerprint identification component and an electronic device.
  • a protective layer is provided on the fingerprint identification component, which can shield electromagnetic interference without providing an air layer, and can reduce the thickness.
  • an embodiment of the present application provides a fingerprint recognition component, including a fingerprint sensor and a protective layer, the protective layer is disposed on the bottom of the fingerprint sensor opposite to the top, wherein the top surface is the fingerprint recognition sensing surface
  • the fingerprint sensor is used to transmit and identify ultrasonic waves
  • the protective layer is used to shield electromagnetic interference.
  • the protective layer By providing the protective layer, electromagnetic interference can be shielded, so that the fingerprint sensor can be reduced by the electrical signal interference of other devices inside the electronic device.
  • the protective layer can be made very thin. Compared with the existing technology of reducing the interference of ultrasonic and electrical signals, there is no need to provide an air layer, which can significantly reduce the overall thickness of the fingerprint identification component, making the electronic device The thickness can be made thinner.
  • the protective layer is conductive ink
  • components of the conductive ink include thermoplastic resin and carbon powder, and the thermoplastic resin and the carbon powder cooperate to match the acoustic impedance of the conductive ink with the fingerprint sensor, so that Ultrasonic waves can penetrate conductive ink.
  • the components of the conductive ink also include solvents, auxiliary agents and defoamers.
  • the role of the thermoplastic resin is to form a paint film.
  • the carbon powder acts as a conductive and electromagnetic shield.
  • Additives can increase certain aspects of conductive ink functions.
  • the defoamer can reduce the bubbles in the conductive ink, improve the leveling of the conductive ink, and prevent defects such as shrinkage or pinholes.
  • the proportion of the thermoplastic resin is 30%-45%; the proportion of the carbon powder is 40%-55%; the proportion of the solvent is 10%-15%; the proportion of the auxiliary agent is 2%-4%, so The proportion of the defoamer is 0.5%-1%.
  • the appropriate ratio of the above-mentioned components is set so that the conductive ink meets the performance requirements of electromagnetic shielding.
  • thermoplastic resin is 2,2'-[(1-methylethylene)bis(4,1-phenylene formaldehyde)] ethylene oxide polymer;
  • solvent is a dibasic acid ester
  • auxiliary agent is a leveling agent;
  • defoamer is a silicone oil.
  • the fingerprint sensor includes a TFT substrate, a piezoelectric layer, and an electrode layer that are stacked, and the protective layer is provided on a surface of the TFT substrate that faces away from the piezoelectric layer.
  • the TFT substrate and the electrode layer It is used to generate a voltage on the piezoelectric layer so that the piezoelectric layer emits ultrasonic waves, and the piezoelectric layer receives the ultrasonic waves to generate electrical signals and transmit them to the TFT substrate.
  • the TFT substrate and the electrode layer apply voltage to the electrode layer, so that the fingerprint identification component transmits and receives ultrasonic waves.
  • the fingerprint identification component further includes a circuit board and a driving chip, the circuit board is connected to the TFT substrate and the electrode layer, and the driving chip is connected to the circuit board.
  • the fingerprint sensor can emit ultrasonic waves under the action of the driving chip, and can process the electrical signals of the ultrasonic waves of the fingerprint sensor to identify the fingerprint.
  • the end of the electrode layer extends to the surface of the TFT substrate
  • the circuit board is connected to the end of the TFT substrate and the electrode layer
  • the circuit board is located on the TFT substrate facing the On one side of the piezoelectric layer
  • the driving chip is arranged on the surface of the circuit board facing away from the TFT substrate.
  • the fingerprint sensor further includes a DAF layer and a bonding layer laminated on the electrode layer; the bonding layer is used for bonding with the cover plate assembly; the DAF layer is used for elevating the fingerprint sensor Height to avoid interference between the driving chip and the cover assembly.
  • an embodiment of the present application also provides an electronic device, which is characterized by comprising a cover assembly and the fingerprint identification assembly according to any one of the various embodiments of the first aspect, and the fingerprint identification assembly is arranged in The inner surface of the opposite outer surface of the cover assembly, the outer surface of the cover assembly is used for contact with the finger, the fingerprint identification assembly emits ultrasonic waves and passes through the cover assembly, and reflects at the fingerprint of the finger. Received by the fingerprint identification component.
  • FIG. 1 is a schematic cross-sectional structure diagram of a fingerprint identification component of an embodiment
  • Figure 2 is a pattern of fake finger fingerprints recognized by a fingerprint recognition component
  • Figure 3 is a pattern of a real finger fingerprint recognized by a fingerprint recognition component.
  • an embodiment of the present application provides an electronic device, such as a tablet computer, a personal digital assistant (PDA), or a smart phone.
  • the electronic device includes a fingerprint recognition assembly and a cover assembly 50.
  • the fingerprint identification component includes a fingerprint module and a protective layer 20.
  • the fingerprint module includes a fingerprint sensor 10, a circuit board 30 and a driving chip 40.
  • the cover plate assembly 50 includes a cover bottom ink 51, a cover plate 52 and a protective film 53 which are stacked.
  • the cover 52 may be a rigid material such as glass or a flexible material such as PET or PC. That is, the cover 52 may be rigid or flexible.
  • the cover ink 51 surrounds the peripheral edge of the cover 52 to cover the terminal area of the display screen.
  • the cover ink 51 can cover the entire cover plate 52.
  • the protective film 53 may be an ordinary plastic film, a tempered film, or an anti-fingerprint film (AF Coating).
  • the cover plate assembly 50 may further include a display screen, which is arranged on a side of the cover bottom ink 51 facing away from the cover plate 52.
  • the display screen is preferably an OLED screen that can transmit ultrasonic waves.
  • the cover plate assembly 50 may further include a touch layer, and the touch layer may be disposed between the display screen and the ink 51 under the cover.
  • the fingerprint identification component is arranged on the inner surface of the opposite outer surface of the cover assembly 50, the inner surface is the surface of the cover bottom ink 51 facing away from the cover 52, and the outer surface is used to contact the fingerprint of the user's finger.
  • the fingerprint recognition component emits ultrasonic waves and passes through the cover plate component 50, and the ultrasonic waves are reflected at the fingerprint of the user's finger and received by the fingerprint recognition component to obtain fingerprint information through the reflected ultrasonic waves.
  • the electronic device can realize ultrasonic fingerprint recognition on the outer surface of the cover plate assembly 50 by arranging a fingerprint recognition component on the inner surface of the cover plate assembly 50.
  • a fingerprint recognition component on the inner surface of the cover plate assembly 50.
  • the fingerprint identification component is arranged in a visible area of the cover assembly 50 relative to the non-visible area, the non-visible area is arranged on the outer periphery of the visible area, and the visible area is the display area of the display screen. That is, the fingerprint identification component is arranged under the display screen to realize the fingerprint identification function under the screen.
  • the visible area can be as large as possible, and the area of the non-visible area can be reduced as much as possible, thereby realizing a narrow frame.
  • the fingerprint recognition component is arranged at the edge of the cover component 50 and located in the non-display area.
  • the display and fingerprint identification components are arranged in a staggered manner without overlapping.
  • the ultrasonic waves emitted by the fingerprint identification component of this embodiment do not need to pass through the display screen, which can improve the identification speed and accuracy.
  • the disadvantage is that the area of the non-display area on one side is slightly larger, which can be applied to electronic devices with a "chin".
  • the fingerprint sensor 10 includes a TFT substrate 11, an electrode connection layer 12, a piezoelectric layer 13, and an electrode layer 14 which are stacked.
  • the protective layer 20 is disposed on the surface of the TFT substrate 11 facing away from the electrode connection layer 12.
  • the electrode connection layer 12 is used to connect the TFT substrate 11 and the piezoelectric layer 13.
  • the TFT substrate 11 and the electrode layer 14 are used to generate a voltage on the piezoelectric layer 13 so that the piezoelectric layer 13 emits ultrasonic waves.
  • the piezoelectric layer 13 receives ultrasonic waves to generate electrical signals and transmit them to the TFT substrate 11.
  • the TFT substrate 11 includes a substrate, a plurality of thin film transistors arranged on the substrate in an array manner, and a circuit provided on the substrate for connecting the thin film transistors.
  • the TFT substrate 11 can perform processing such as amplification of electrical signals.
  • a thin film is selected as the substrate for the TFT substrate 11, and the cover assembly 50 is also a flexible material, so as to meet the flexibility requirements of the entire electronic device.
  • the TFT substrate 11 uses glass as the substrate.
  • the function of the TFT substrate is to transmit electrical signals to the piezoelectric layer 13 and to receive electrical signals. The received electrical signals can be electrical signals at any position including the piezoelectric layer 13.
  • the piezoelectric layer 13 is composed of a piezoelectric material, for example, a ferroelectric polymer P (VDF-TrFE).
  • the piezoelectric layer 13 can convert electrical signals and mechanical signals to each other, that is, it can transmit and receive ultrasonic waves.
  • the electrode layer 14 is made of a conductive material, for example, silver paste.
  • the electrode layer 14 can form a voltage with the TFT substrate 11 to be applied to the surface of the piezoelectric layer 13 so that the piezoelectric layer 13 starts to emit or receive ultrasonic waves.
  • the TFT substrate 11 and the electrode layer 14 apply a voltage to the electrode layer 14, so that the fingerprint identification component transmits and receives ultrasonic waves.
  • the fingerprint identification component also includes a circuit board 30 and a driving chip 40.
  • the circuit board 30 is connected to the TFT substrate 11 and the electrode layer 14 through connection terminals 31, and the driving chip 40 is connected to the circuit board 30.
  • the fingerprint sensor 10 can emit ultrasonic waves under the action of the drive chip 40, and can process the electrical signals of the ultrasonic waves of the fingerprint sensor 10 to identify fingerprints.
  • the circuit board 30 is preferably a flexible circuit board (FPC), which has a thin thickness and saves space.
  • the circuit board 30 may also be a printed circuit board (PCB).
  • the driving chip 40 is, for example, an ASIC (Application Specific Integrated Circuit) chip.
  • the driving chip 40 provides a control signal to the fingerprint sensor 10 (for example, sending a high-frequency electrical signal to the fingerprint sensor 10), so that the fingerprint sensor 10 emits ultrasonic waves.
  • the driving chip 40 sends a control signal to the TFT substrate 11 and the electrode layer 14 through the circuit board 30, so that the TFT substrate 11 and the electrode layer 14 generate a voltage and apply it to the piezoelectric layer 13, so that the piezoelectric layer 13 emits ultrasonic waves.
  • the driving chip 40 also receives the electrical signal obtained by converting the reflected ultrasonic wave by the fingerprint sensor 10 to identify the fingerprint.
  • the piezoelectric layer 13 receives the reflected ultrasonic wave and generates an electric signal, which is transmitted to the TFT substrate 11 and transmitted to the driving chip 40 via the circuit board 30.
  • the end of the electrode layer 14 extends to the surface of the TFT substrate 11, and the circuit board 30 is connected to the ends of the TFT substrate 11 and the electrode layer 14 through the connection terminal 31.
  • the circuit board 30 is located on the side of the TFT substrate 11 facing the piezoelectric layer 13, and the driving chip 40 is arranged on the surface of the circuit board 30 facing away from the TFT substrate 11.
  • the fingerprint sensor 10 further includes a DAF (Die Attach Film) layer 15 and an adhesive layer 16 laminated on the electrode layer 14.
  • the adhesive layer 16 is used for adhesive bonding with the cover plate assembly 50, and may be adhesively bonded with the cover bottom ink 51 or the cover plate 52 to fix the fingerprint sensor 10.
  • the DAF layer 15 is used to increase the height of the fingerprint sensor 10 to avoid interference between the driving chip 50 and the cover assembly 50.
  • the DAF layer 15 can increase the height of the fingerprint sensor 10 to ensure that no interference is generated and facilitate installation.
  • the DAF layer 15 can also protect the electrode layer 14 to prevent the electrode layer 14 from being oxidized.
  • the DAF layer can also adjust the frequency of the electrical signal of the electrode layer 14.
  • the adhesive layer 16 may be an optical adhesive for bonding the cover plate assembly 50 and the fingerprint sensor 10.
  • the Young's modulus of the adhesive layer 16 should be as large as possible to avoid weakening the ultrasonic waves.
  • the fingerprint identification component further includes a protective layer 20.
  • the protective layer 20 is arranged on the bottom of the fingerprint sensor 10 opposite to the top, and the surface of the top is the ultrasonic emitting surface and the fingerprint recognition sensing surface.
  • the protective layer 20 is used to shield electromagnetic interference.
  • electromagnetic interference can be shielded, so that the fingerprint sensor 10 is reduced from being interfered by electrical signals of other devices inside the electronic device.
  • the protective layer 20 can be made very thin, and the thickness can be, for example, 5 ⁇ m-20 ⁇ m, preferably 10 ⁇ m, so that the overall thickness of the fingerprint sensor 10 and the protective layer 20 can be 325 ⁇ m, which is relatively thin compared to the prior art.
  • the signal interference shielding cover there is no need to provide an air layer, which can significantly reduce the overall thickness of the fingerprint identification component, so that the thickness of the electronic device can be made thinner.
  • the protective layer 20 is a conductive ink
  • the components of the conductive ink include thermoplastic resin and carbon powder.
  • the thermoplastic resin and the carbon powder are matched to match the acoustic impedance of the conductive ink with the fingerprint sensor 10. Makes ultrasonic waves penetrate the conductive ink.
  • the components of the conductive ink are selected to be composed of thermoplastic resin, carbon powder, solvent, auxiliary agent and defoamer.
  • the role of the thermoplastic resin is a functional resin to form a paint film.
  • the carbon powder plays the role of conductive and electromagnetic shielding, and because the material is black, it can be used for shading.
  • the solvent is used as the solvent of the conductive ink, and the auxiliary agent can increase the function of some aspects of the conductive ink.
  • the defoamer can reduce bubbles in the conductive ink, improve the leveling of the conductive ink, and prevent defects such as shrinkage or pinholes.
  • the proportion of thermoplastic resin is 30%-45%, for example, it can be 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41% , 42%, 43%, 44%, 45%, the preferred ratio is 35%-40%.
  • the proportion of carbon powder is 40%-55%, for example, it can be 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52 %, 53%, 54%, 55%, the preferred ratio is 45%-50%.
  • the solvent ratio is 10%-15%, for example, it can be 10%, 11%, 12%, 13%, 14%, 15%, and the preferred ratio is 12%-15%.
  • the proportion of the auxiliary agent is 2% to 4%, for example, it can be 2%, 3%, 4%.
  • the ratio of defoamer is 0.5%-1%, for example, it can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%.
  • the appropriate ratio of the above-mentioned components is set so that the conductive ink meets the performance requirements of electromagnetic shielding.
  • the thermoplastic resin is 2,2'-[(1-methylethylene)bis(4,1-phenylene formaldehyde)]dioxirane polymer;
  • the solvent is a dibasic acid ester;
  • the auxiliary agent Leveling agent; defoaming agent is silicone oil.
  • the auxiliary agent can be 1-hydroxycyclohexyl phenyl ketone, which can increase the leveling of the ink and make the surface of the ink smooth.
  • Figures 2 and 3 where Figure 2 is the fake finger fingerprint pattern recognized by the fingerprint recognition component, and Figure 3 is the real finger fingerprint pattern recognized by the fingerprint recognition component.
  • the fingerprint identification assembly of the present application is used to test the fingerprints of real and fake fingers.
  • the outline of the fingerprint is clearly visible, and the fingerprint can be unlocked.
  • the fingerprint recognition algorithm can be optimized to realize the FRR (False Rejection Rate) of the fingerprints of the real fingers.
  • FRR False Rejection Rate
  • the popular understanding is "the fingerprints that should be successfully matched with each other are regarded as unmatched fingerprints.
  • “Probability) 0.97%

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

一种指纹识别组件和电子设备,指纹识别组件包括指纹传感器(10)和保护层(20),保护层(20)设置在指纹传感器(10)的与顶部相背的底部,其中顶部的表面为指纹识别感测面;指纹传感器(10)用于发射和识别超声波,保护层(20)屏蔽电磁干扰。通过设置保护层,能实现屏蔽电磁干扰;此外,保护层可以制作的很薄,不需设置空气层,可显著的降低指纹识别组件整体厚度,使得电子设备的厚度可以做的更薄。

Description

指纹识别组件和电子设备
本申请要求于2019年07月04日提交中国专利局、申请号为201910601088.5、申请名称为“指纹识别组件和电子设备”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请属于指纹识别技术领域,尤其涉及一种指纹识别组件和电子设备。
背景技术
超声波指纹识别作为一种新兴的指纹识别技术,与光学指纹识别一起成为目前主要的两种屏下指纹识别方案。超声波指纹识别模组发射超声波,超声波穿过显示屏和玻璃盖板而探测到用户指纹,超声波反射回超声波指纹识别模组被接收和识别。
目前的超声波指纹识别的准确度受到电子设备内部环境的影响,超声波发射出来后,会向电子设备内部发射,电子设备内部的器件反射回的超声波会干扰超声波指纹识别模组。因此,需要对超声波指纹识别模组进行防电磁干扰防护,目前的技术手段是在模组四周包裹防护罩,然而,防护罩需与模组具有间隔,以形成具有空气层的空间,使得超声波在空气层中迅速衰减。现有技术的设置防护罩的方案使得指纹识别模组和防护罩的整体厚度很厚,一般达到645μm,不利于电子设备的轻薄化。
发明内容
本申请的目的是提供一种指纹识别组件和电子设备,在指纹识别组件上设置保护层,既能屏蔽电磁干扰,又不需设置空气层,能减少厚度。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请实施例提供一种指纹识别组件,包括指纹传感器和保护层,所述保护层设置在所述指纹传感器的与顶部相背的底部,其中顶部的表面为指纹识别感测面;所述指纹传感器用于发射和识别超声波,所述保护层用于屏蔽电磁干扰。
通过设置保护层,能够屏蔽电磁干扰,使得指纹传感器减少被电子设备内部其他器件的电信号干扰。此外,保护层可以制作的很薄,相对于现有技术中的降低超声波和电信号干扰的屏蔽罩的方案而言,不需设置空气层,可显著的降低指纹识别组件整体厚度,使得电子设备的厚度可以做的更薄。
其中,所述保护层为导电油墨,所述导电油墨的成分包括热塑性树脂和碳粉,所述热塑性树脂和所述碳粉配合以使所述导电油墨的声阻抗与所述指纹传感器匹配,使得超声波可以透过导电油墨。
其中,所述导电油墨的成分还包括溶剂、助剂和消泡剂。热塑性树脂的作用为形成漆膜。碳粉起导电和电磁屏蔽的作用。助剂可增加导电油墨某些方面的功能。消泡剂可减少导电油墨中的气泡,改善导电油墨的流平性,防止产生缩孔或针孔等缺陷。
其中,所述热塑性树脂比例为30%-45%;所述碳粉比例为40%-55%;所述溶剂比例为10%-15%;所述助剂比例为2%~4%,所述消泡剂的比例为0.5%-1%。设置上述成分的合适比例,使得导电油墨满足电磁屏蔽的性能要求。
其中,所述热塑性树脂为2,2'-[(1-甲基亚乙基)双(4,1-亚苯基甲醛)]双环氧乙烷聚合物;所述溶剂为二价酸酯;所述助剂为流平剂;所述消泡剂为硅油。
其中,所述指纹传感器包括层叠设置的TFT基板、压电层和电极层,所述保护层设置在所述TFT基板之背向所述压电层的表面,所述TFT基板和所述电极层用于在所述压电层上产生电压,使得所述压电层发射超声波,所述压电层接收到超声波而产生电信号并传递至所述TFT基板。通过设置TFT基板、压电层和电极层,TFT基板和电极层对电极层施加电压,实现指纹识别组件发射超声波和接收超声波。
其中,所述指纹识别组件还包括电路板和驱动芯片,所述电路板与所述TFT基板和所述电极层连接,所述驱动芯片与所述电路板连接。通过设置电路板和驱动芯片,使得指纹传感器能够在驱动芯片的作用下发射超声波,并且能够处理指纹传感器的超声波的电信号而对指纹进行识别。
其中,所述电极层的端部延伸至所述TFT基板的表面,所述电路板与所述TFT基板和所述电极层的端部连接,且所述电路板位于所述TFT基板朝向所述压电层的一侧,所述驱动芯片设置在所述电路板背向所述TFT基板的表面。通过设置电路板和驱动芯片的连接关系和设置位置,使得指纹识别组件构成的整 体结构紧凑,便于安装。
其中,所述指纹传感器还包括层叠在所述电极层上的DAF层和胶接层;所述胶接层用于与盖板组件胶接;所述DAF层用于垫高所述指纹传感器的高度,以避免所述驱动芯片与所述盖板组件干涉。
第二方面,本申请实施例还提供了一种电子设备,其特征在于,包括盖板组件和第一方面各种实施例中任一项所述的指纹识别组件,所述指纹识别组件设置在所述盖板组件之相对外表面的内表面,所述盖板组件的外表面用于与手指接触,所述指纹识别组件发射超声波并透过所述盖板组件,并在手指指纹处反射而被所述指纹识别组件接收。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种实施例的指纹识别组件的剖视结构示意图;
图2是指纹识别组件识别的假手指指纹的图案;
图3是指纹识别组件识别的真实手指指纹的图案。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参考图1,本申请实施例提供一种电子设备,该电子设备例如为平板电脑、个人数字助理(PDA)、智能手机等。电子设备包括指纹识别组件和盖板组件50。指纹识别组件包括指纹模组和保护层20。指纹模组包括指纹传感器10、电路板30和驱动芯片40。
本实施例中,盖板组件50包括层叠设置的盖底油墨51、盖板52和保护膜53。其中,盖板52可以为玻璃等刚性材料,也可以为PET或PC等柔性材料,即盖板52可以为刚性亦可以为柔性。当指纹识别组件设置在电子设备的显示面一侧时,盖底油墨51环绕在盖板52的四周边缘,以遮挡显示屏的端子区。当指纹识别组件设置在电子设备的背向显示面的一侧时(即后盖),盖底油墨51可以覆盖整个盖板52。保护膜53可以为普通的塑料薄膜、钢化膜,也可以为防指纹膜(AF Coating)。其他实施例中,盖板组件50还可以包括显示屏,显示屏设置在盖底油墨51背向盖板52的一侧,显示屏优选为OLED屏,能够透过超声波。进一步的,盖板组件50还可以包括触控层,触控层可设置在显示屏和盖底油墨51之间。
指纹识别组件设置在盖板组件50之相对外表面的内表面,内表面即盖底油墨51背向盖板52的表面,外表面用于与用户手指的指纹接触。指纹识别组件发射超声波并透过盖板组件50,该超声波在用户手指指纹处反射而被指纹识别组件接收以通过反射的超声波获取指纹信息。
该电子设备通过在盖板组件50内表面设置指纹识别组件,能在盖板组件50外表面实现超声波指纹识别。相对现有的挖孔按压或擦划式电容指纹识别,不需要改变盖板组件50的结构,结构简单,易于实现,成本低。
一种实施例中,指纹识别组件设置在盖板组件50的相对非可视区的可视区,非可视区设置在可视区的外周,可视区为显示屏的显示区域。即指纹识别组件设置在显示屏下方,从而实现屏下指纹识别功能。此实施例可以使得可视区尽可能的大,可以尽可能的缩小非可视区的面积,进而实现窄边框。
另一种实施例中,指纹识别组件设置在盖板组件50的边缘位置,并位于非显示区。显示屏与指纹识别组件交错设置而不重叠。此实施例的指纹识别组件发射的超声波不需要透过显示屏,可以提升识别速度和准确度。劣势是其中一侧的非显示区的面积稍大,可以适用于具有“下巴”的电子设备中。
指纹传感器10包括层叠设置的TFT基板11、电极连接层12、压电层13和电极层14。保护层20设置在TFT基板11之背向电极连接层12的表面。电极连接层12用于将TFT基板11和压电层13连接。TFT基板11和电极层14用于在压电层13上产生电压,使得压电层13发射超声波。压电层13接收到超声波而产生电信号并传递至TFT基板11。
其中,TFT基板11包括基板及设于基板上的若干按照阵列方式排布的薄膜晶体管及设于基板上的用于连接各薄膜晶体管的线路。并且,TFT基板11可以对电信号进行放大等处理。一种实施例中,TFT基板11选用薄膜作为基板,且盖板组件50亦为柔性材料,从而满足整个电子设备的柔性需求。另一种实施例中,TFT基板11选用玻璃作为基板。TFT基板的作用为发射电信号到压电层13上,并且可接收电信号,接收的电信号可以为包括压电层13在内的任意位置的电信号。
压电层13由压电材料构成,压电材料例如为铁电高分子聚合物P(VDF-TrFE)。压电层13能够将电信号和机械信号互相转换,即可以发射超声波和接收超声波。
电极层14由导电材料构成,导电材料例如为银浆。电极层14能够与TFT基板11形成电压施加在压电层13表面,使得压电层13启动发射超声波或接收超声波。
通过设置TFT基板11、压电层13和电极层14,TFT基板11和电极层14对电极层14施加电压,实现指纹识别组件发射超声波和接收超声波。
指纹识别组件还包括电路板30和驱动芯片40。电路板30与TFT基板11和电极层14通过连接端子31连接,驱动芯片40与电路板30连接。通过设置电路板30和驱动芯片40,使得指纹传感器10能够在驱动芯片40的作用下发射超声波,并且能够处理指纹传感器10的超声波的电信号而对指纹进行识别。
其中,电路板30优选为柔性电路板(FPC),厚度薄,节省空间。可选的,电路板30也可以为印刷电路板(PCB)。
驱动芯片40例如为ASIC(Application SpecificIntegrated Circuit)芯片。驱动芯片40向指纹传感器10提供控制信号(例如向指纹传感器10发送高频电信号),以使得指纹传感器10发射超声波。具体的,驱动芯片40通过电路板30向TFT基板11和电极层14发送控制信号,使得TFT基板11和电极层14产生电压并施加在压电层13上,使得压电层13发射超声波。并且,驱动芯片40还接收指纹传感器10将反射的超声波转换得到的电信号,以对指纹进行识别。具体的,压电层13接收到反射的超声波并产生电信号,电信号传递至TFT基板11并经电路板30传递至驱动芯片40。
电极层14的端部延伸至TFT基板11的表面,电路板30通过连接端子31 与TFT基板11和电极层14的端部连接。电路板30位于TFT基板11朝向压电层13的一侧,驱动芯片40设置在电路板30背向TFT基板11的表面。通过设置电路板30和驱动芯片40的连接关系和设置位置,使得指纹识别组件构成的整体结构紧凑,便于安装。
指纹传感器10还包括层叠在电极层14上的DAF(Die Attach Film,芯片粘贴膜)层15和胶接层16。胶接层16用于与盖板组件50胶接,可以与盖底油墨51或盖板52胶接,以固定指纹传感器10。DAF层15用于垫高指纹传感器10的高度,以避免驱动芯片50与盖板组件50干涉。
其中,如不设DAF层15,电极层14直接通过胶接层16与盖板组件50连接时,指纹传感器10的整体高度不足,可能导致电路板30上的驱动芯片40与盖板组件50干涉,无法安装。因此,DAF层15可以垫高指纹传感器10的高度,以确保不产生干涉,便于安装。此外,DAF层15还可以保护电极层14,避免电极层14被氧化。另外,DAF层还可以调节电极层14的电信号的频率。
胶接层16可以为光学胶,用于粘结盖板组件50与指纹传感器10。胶接层16的杨氏模量应尽量大,避免对超声波产生减弱作用。
进一步的,指纹识别组件还包括保护层20。保护层20设置在指纹传感器10的与顶部相背的底部,其中顶部的表面为超声波发射面和指纹识别感测面。保护层20用于屏蔽电磁干扰。
通过设置保护层20,能够屏蔽电磁干扰,使得指纹传感器10减少被电子设备内部其他器件的电信号干扰。
此外,保护层20可以制作的很薄,厚度例如可以为5μm-20μm,优选为10μm,使得指纹传感器10和保护层20的整体厚度可以做到325μm,相对于现有技术中的降低超声波和电信号干扰的屏蔽罩的方案而言,不需设置空气层,可显著的降低指纹识别组件整体厚度,使得电子设备的厚度可以做的更薄。
其中,保护层20为导电油墨,导电油墨的成分包括热塑性树脂和碳粉,热塑性树脂和碳粉配合以使导电油墨的声阻抗与指纹传感器10匹配。使得超声波可以透过导电油墨。
为了实现上述功能,选择导电油墨的成分由热塑性树脂、碳粉、溶剂、助剂和消泡剂组成。热塑性树脂的作用为功能性树脂,以形成漆膜。碳粉起导电和电磁屏蔽的作用,同时由于材质为黑色,可作遮光用。溶剂用作导电油墨的 溶剂,助剂可增加导电油墨某些方面的功能。消泡剂可减少导电油墨中的气泡,改善导电油墨的流平性,防止产生缩孔或针孔等缺陷。
其中,热塑性树脂比例为30%-45%,例如可以为30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%,优选的比例为35%-40%。碳粉比例为40%-55%,例如可以为40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%,优选的比例为45%-50%。。溶剂比例为10%-15%,例如可以为10%、11%、12%、13%、14%、15%,优选的比例为12%-15%。助剂比例为2%~4%,例如可以为2%、3%、4%、。消泡剂的比例为0.5%-1%,例如可以为0.5%、0.6%、0.7%、0.8%、0.9%、1%。设置上述成分的合适比例,使得导电油墨满足电磁屏蔽的性能要求。
优选的,热塑性树脂为2,2'-[(1-甲基亚乙基)双(4,1-亚苯基甲醛)]双环氧乙烷聚合物;溶剂为二价酸酯;助剂为流平剂;消泡剂为硅油。其中,助剂可以为1-羟基环己基苯基甲酮,可增加油墨流平性,使油墨表面平整光滑。
应用时,请参考图2和图3,其中图2为指纹识别组件识别的假手指指纹图案,图3为指纹识别组件识别的真实手指指纹图案。以在盖板组件50为玻璃盖板为例,采用本申请的指纹识别组件对真实手指和假手指的指纹进行测试,根据图2和图3,可以看到指纹轮廓清晰可见,可实现指纹解锁功能。同时为了避免假手指指纹的干扰,可通过指纹识别算法的优化,实现真实手指的指纹的FRR(False Rejection Rate,拒真率,通俗的理解为“把应该相互匹配成功的指纹当成不能匹配的指纹”的概率)=0.97%,FAR(False Acceptance Rate,认假率,通俗的理解为“把不应该匹配的指纹当成匹配的指纹”的概率。)=0.0002%。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (10)

  1. 一种指纹识别组件,其特征在于,包括指纹传感器和保护层,所述保护层设置在所述指纹传感器的与顶部相背的底部,其中顶部的表面为指纹识别感测面;所述指纹传感器用于发射和识别超声波,所述保护层用于屏蔽电磁干扰。
  2. 如权利要求1所述的指纹识别组件,其特征在于,所述保护层为导电油墨,所述导电油墨的成分包括热塑性树脂和碳粉,所述热塑性树脂和所述碳粉配合以使所述导电油墨的声阻抗与所述指纹传感器匹配。
  3. 如权利要求2所述的指纹识别组件,其特征在于,所述导电油墨的成分还包括溶剂、助剂和消泡剂。
  4. 如权利要求3所述的指纹识别组件,其特征在于,所述热塑性树脂比例为30%-45%;所述碳粉比例为40%-55%;所述溶剂比例为10%-15%;所述助剂比例为2%~4%,所述消泡剂的比例为0.5%-1%。
  5. 如权利要求4所述的指纹识别组件,其特征在于,所述热塑性树脂为2,2'-[(1-甲基亚乙基)双(4,1-亚苯基甲醛)]双环氧乙烷聚合物;所述溶剂为二价酸酯;所述助剂为流平剂;所述消泡剂为硅油。
  6. 如权利要求1所述的指纹识别组件,其特征在于,所述指纹传感器包括层叠设置的TFT基板、压电层和电极层,所述保护层设置在所述TFT基板之背向所述压电层的表面,所述TFT基板和所述电极层用于在所述压电层上产生电压,使得所述压电层发射超声波,所述压电层接收到超声波而产生电信号并传递至所述TFT基板。
  7. 如权利要求6所述的指纹识别组件,其特征在于,所述指纹识别组件还包括电路板和驱动芯片,所述电路板与所述TFT基板和所述电极层连接,所述驱动芯片与所述电路板连接。
  8. 如权利要求7所述的指纹识别组件,其特征在于,所述电极层的端部延伸至所述TFT基板的表面,所述电路板与所述TFT基板和所述电极层的端部连接,且所述电路板位于所述TFT基板朝向所述压电层的一侧,所述驱动芯片设置在所述电路板背向所述TFT基板的表面。
  9. 如权利要求8所述的指纹识别组件,其特征在于,所述指纹传感器还包括层叠在所述电极层上的DAF层和胶接层;所述胶接层用于与盖板组件胶接;所述DAF层用于垫高所述指纹传感器的高度,以避免所述驱动芯片与所述盖板 组件干涉。
  10. 一种电子设备,其特征在于,包括盖板组件和如权利要求1至9任一项所述的指纹识别组件,所述指纹识别组件设置在所述盖板组件之相对外表面的内表面,所述盖板组件的外表面用于与手指接触,所述指纹识别组件发射超声波并透过所述盖板组件,并在手指指纹处反射而被所述指纹识别组件接收。
PCT/CN2019/106231 2019-07-04 2019-09-17 指纹识别组件和电子设备 WO2021000426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910601088.5A CN112183168A (zh) 2019-07-04 2019-07-04 指纹识别组件和电子设备
CN201910601088.5 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021000426A1 true WO2021000426A1 (zh) 2021-01-07

Family

ID=73915493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106231 WO2021000426A1 (zh) 2019-07-04 2019-09-17 指纹识别组件和电子设备

Country Status (2)

Country Link
CN (1) CN112183168A (zh)
WO (1) WO2021000426A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492480A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN113483750A (zh) * 2021-07-06 2021-10-08 中铁十九局集团第五工程有限公司 一种研制施工现场巡检用具有定位功能的数据记录仪

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113011264B (zh) * 2021-02-22 2024-02-02 业泓科技(成都)有限公司 辨识传感结构、指纹识别组件及终端
WO2024055165A1 (zh) * 2022-09-13 2024-03-21 深圳市汇顶科技股份有限公司 超声指纹装置和电子设备
WO2024055157A1 (zh) * 2022-09-13 2024-03-21 深圳市汇顶科技股份有限公司 超声指纹装置和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492494A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 电子设备
CN109492471A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 电子设备
CN109492479A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置及其制备方法和电子设备
CN109492478A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN109492480A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN109492504A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置及其制备方法和电子设备
CN109492475A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN110058718A (zh) * 2017-12-27 2019-07-26 乐金显示有限公司 指纹感测显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492494A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 电子设备
CN109492471A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 电子设备
CN109492479A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置及其制备方法和电子设备
CN109492478A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN109492480A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN109492504A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置及其制备方法和电子设备
CN109492475A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN110058718A (zh) * 2017-12-27 2019-07-26 乐金显示有限公司 指纹感测显示设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492480A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN113483750A (zh) * 2021-07-06 2021-10-08 中铁十九局集团第五工程有限公司 一种研制施工现场巡检用具有定位功能的数据记录仪

Also Published As

Publication number Publication date
CN112183168A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2021000426A1 (zh) 指纹识别组件和电子设备
CN106778691B (zh) 声波式指纹识别装置及其制作方法以及应用其的电子装置
CN109240550B (zh) 触控显示模组以及应用该触控显示模组的电子装置
KR20160114595A (ko) 생물 특징 인식 장치와 전자 기기
CN207182316U (zh) 电子设备
US10445549B2 (en) Fingerprint identification device and electronic device using same
US10877585B2 (en) Display device
CN109492494A (zh) 电子设备
WO2023206916A1 (zh) 超声波指纹识别装置和电子设备
TWI621982B (zh) 指紋識別裝置、其製造方法、顯示裝置
CN104704458A (zh) 输入装置、显示装置以及电子设备
WO2017031634A1 (zh) 终端设备
TW202242496A (zh) 觸控顯示模組及其屏下指紋辨識模組
US20220164564A1 (en) Biometric sensor device with in-glass fingerprint sensor
CN111410871A (zh) 导电油墨、显示模组和电子设备
CN108810208B (zh) 显示屏组件及电子设备
CN217690135U (zh) 超声指纹识别装置和电子设备
CN112183169A (zh) 超声波指纹识别组件和电子设备
CN115641619A (zh) 超声波指纹识别装置和电子设备
CN111240513B (zh) 显示器反折部保护结构
WO2021081777A1 (zh) 超声波指纹模组及其制作方法和电子设备
CN210323941U (zh) 显示面板以及电子设备
CN211506526U (zh) 超声波指纹模组、显示屏组件和电子设备
CN111158523B (zh) 一种触控面板及显示装置
CN113095245A (zh) 触控显示模组及其屏幕下指纹辨识模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936140

Country of ref document: EP

Kind code of ref document: A1