WO2021000331A1 - 一种数据传输方法及装置、通信设备 - Google Patents

一种数据传输方法及装置、通信设备 Download PDF

Info

Publication number
WO2021000331A1
WO2021000331A1 PCT/CN2019/094753 CN2019094753W WO2021000331A1 WO 2021000331 A1 WO2021000331 A1 WO 2021000331A1 CN 2019094753 W CN2019094753 W CN 2019094753W WO 2021000331 A1 WO2021000331 A1 WO 2021000331A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
packet data
context
small packet
Prior art date
Application number
PCT/CN2019/094753
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19936467.0A priority Critical patent/EP3979763A4/en
Priority to PCT/CN2019/094753 priority patent/WO2021000331A1/zh
Priority to CN201980092854.8A priority patent/CN113475160A/zh
Publication of WO2021000331A1 publication Critical patent/WO2021000331A1/zh
Priority to US17/646,679 priority patent/US20220124859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a data transmission method and device, and communication equipment.
  • the anchor base station generally needs to transfer the context of the terminal to the target base station side.
  • LTE Long Term Evolution
  • EDT Early data transmission
  • small data transmission or small data packet transmission or small packet data transmission In the case that the terminal has EDT data to be transmitted, the RRC connection recovery process will be initiated to realize the transmission of EDT data through the user plane.
  • the RRC connection recovery process triggered by EDT data transmission it is not clear whether the context of the terminal needs to be transferred, which results in low EDT data transmission efficiency.
  • the embodiments of the application provide a data transmission method and device, and communication equipment.
  • the target base station receives an RRC recovery request message sent by the terminal, where the RRC recovery request message carries small packets of data;
  • the target base station obtains the small packet data from the RRC recovery request message, and sends a terminal context request request message to the anchor base station, where the terminal context request request message carries first information, and the first information is used for the
  • the anchor base station determines whether to send the context of the terminal to the target base station.
  • the target base station receives the RRC recovery request message and the small packet data sent by the terminal, and the media access control service data unit (MAC SDU) corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data Used for transmission in the same media access control packet data unit ((Media Access Control Packet Data Unit, MAC PDU));
  • MAC SDU media access control service data unit
  • MAC PDU Media Access Control Packet Data Unit
  • the target base station sends a terminal context request request message to the anchor base station, where the terminal context request request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to the target Base station.
  • the terminal sends an RRC recovery request message to the target base station, where the RRC recovery request message carries small packets of data.
  • a receiving unit configured to receive an RRC recovery request message sent by a terminal, where the RRC recovery request message carries small packet data; and obtain the small packet data from the RRC recovery request message;
  • the sending unit is configured to send a terminal context request request message to the anchor base station, where the terminal context request request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to the target base station .
  • the receiving unit is configured to receive the RRC recovery request message and small packet data sent by the terminal, where the MAC SDU corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data are multiplexed and transmitted in the same MAC PDU;
  • the sending unit is configured to send a terminal context request message to the anchor base station, where the terminal context request request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to the target base station .
  • the sending unit is configured to send an RRC recovery request message to the target base station, where the RRC recovery request message carries small packet data.
  • the communication device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the aforementioned data transmission method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned data transmission method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned data transmission method.
  • the computer-readable storage medium provided by the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned data transmission method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned data transmission method.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the aforementioned data transmission method.
  • the terminal context request request message carries the first information for the anchor base station to determine whether to send the context of the terminal to the target base station, so that the context transfer of the terminal is more in line with communication requirements. If the anchor base station determines to send the context of the terminal to the target base station, the small packet data is sent to the core network through the target base station; if the anchor base station determines not to send the context of the terminal to all The target base station, the small packet data is sent to the core network through the anchor base station. In this way, the transmission behavior of the small packet data is clarified, so that the transmission of the small packet data is more efficient, and at the same time, the signaling interaction on the network side is saved.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG 2-1 is a flowchart of RNAU with context transfer provided in an embodiment of the application
  • Figure 2-2 is a flowchart of RNAU without context transfer provided in an embodiment of the application
  • FIG. 3 is a flow chart of transmitting EDT data on a user plane according to an embodiment of the present application
  • FIG. 4 is a first flowchart of a data transmission method provided by an embodiment of the present application.
  • Figure 5-1 is a first schematic diagram of small packet data transmission with context transfer provided by an embodiment of the present application
  • Figure 5-2 is a first schematic diagram of small packet data transmission without context transfer provided by an embodiment of the present application.
  • FIG. 6 is a second schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • Figure 7-1 is a second schematic diagram of small packet data transmission with context transfer provided by an embodiment of the present application.
  • Figure 7-2 is a second schematic diagram of small packet data transmission without context transfer provided by an embodiment of the present application.
  • FIG. 8 is a first structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 9 is a second structural diagram of the data transmission device provided by an embodiment of the present application.
  • FIG. 10 is a third structural diagram of the data transmission device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of this application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • RRC_INACTIVE the RRC inactive state. This state is different from the RRC idle (RRC_IDLE) state and the RRC connected (RRC_CONNECTED) state.
  • RRC_IDLE state (hereinafter referred to as idle state): mobility is UE-based cell selection and reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE AS context on the base station side. There is no RRC connection.
  • CN Core Network
  • RRC_CONNECTED state (hereinafter referred to as connected state): There is an RRC connection, and the base station and the UE have a UE AS context. The network side knows that the location of the UE is of a specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection and reselection, there is a connection between CN and RAN, UE AS context is stored on a certain base station, paging is triggered by RAN, and RAN-based The paging area is managed by the RAN, and the network side knows that the location of the UE is based on the paging area level of the RAN.
  • the following conditions trigger the UE to return to the idle state: 1) When the CN initial paging message is received; 2) When the RRC recovery request is initiated, the timer T319 is started, if the timer expires; 3) MSG4 When the integrity protection verification fails; 4) When the cell is reselected to another radio access technology (Radio Access Technology, RAT); 5) It enters the state of camping on any cell.
  • Radio Access Technology RAT
  • RAN Notification Area (RAN Notification Area, RNA)
  • the network side When the UE is in the inactive state, the network side will configure the configuration parameters of the inactive state for the UE through RRC dedicated signaling (such as RRC release message).
  • the main configuration parameters include: 1) Inactive Radio Network Temporary Identity (Inactive Radio) Network Temporary Identifier (I-RNTI), I-RNTI is used to identify the UE inactive state context of the UE at the base station side, and the I-RNTI is unique within the base station. 2) RNA, RNA is used to control the area where the UE performs cell selection and reselection in the inactive state, which is also the paging range area of the RAN initial paging.
  • I-RNTI Inactive Radio Network Temporary Identity
  • I-RNTI Inactive Radio) Network Temporary Identifier
  • RNA RNA is used to control the area where the UE performs cell selection and reselection in the inactive state, which is also the paging range area of the RAN initial paging.
  • RAN discontinuous reception cycle (RAN Discontinuous Reception cycle, RAN DRX cycle), RAN DRX cycle is used to calculate the paging occasion of RAN initial paging.
  • RAN notification area update cycle (RNA Update periodicity, RNAU periodicity), RNAU periodicity is used to control the period for the UE to perform periodic RAN location update.
  • NCC Next hop Chaining Counter
  • the UE When the UE moves in the RNA area, it does not need to notify the network side, and follows the mobility behavior in the idle state, that is, the cell selection and reselection principle.
  • the UE When the UE moves out of the paging area configured by the RAN, the UE will be triggered to resume the RRC connection and reacquire the paging area configured by the RAN.
  • the base station that maintains the connection between the RAN and the CN for the UE triggers all cells in the RAN paging area to send paging messages to the UE, so that the inactive UE can resume the RRC connection and receive data .
  • a UE in an inactive state is configured with a RAN paging area.
  • the UE in order to ensure the reachability of the UE, the UE needs to perform periodic location update according to the network configured period (based on the RNAU timer). Therefore, the scenarios that trigger the UE to execute RNAU include the RNAU timer timeout or the UE moving to an area outside the RNA.
  • the anchor base station decides whether to transfer the context of the UE to the target base station side. Therefore, in general, the target base station will carry the cause value carried in the RRC connection recovery request message initiated by the UE in the request UE context message and send it to the anchor base station, and the anchor base station determines whether the context of the UE needs to be transferred to the target base station side. The following describes the context transfer of the UE in conjunction with the RNAU process.
  • FIG. 2-1 is a flowchart of RNAU with context transfer, including the following steps:
  • the UE sends an RRC Resume Request (RRC Resume Request) message to the target base station.
  • RRC Resume Request RRC Resume Request
  • the RRC recovery request message carries the value of the reason for the RRC recovery, that is, RNAU.
  • the target base station sends a request for UE context (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station.
  • RETRIEVE UE CONTEXT REQUEST a request for UE context
  • the request message carries information: RNAU.
  • the anchor base station sends a request for UE context response (RETRIEVE UE CONTEXT RESPONSE) message to the target base station.
  • RETRIEVE UE CONTEXT RESPONSE request for UE context response
  • the target base station restores the UE context.
  • the target base station sends data forwarding address indication information (DATA FORWARDING ADDRESS INDICATION) to the anchor base station.
  • data forwarding address indication information DATA FORWARDING ADDRESS INDICATION
  • the target base station sends a path switch request (PATH SWITCH REQUEST) message to the access and mobility management function entity (AMF, Access and Mobility Management Function).
  • AMF Access and Mobility Management Function
  • the AMF sends a path switch request response (PATH SWITCH REQUEST RESPONSE) message to the target base station.
  • PATH SWITCH REQUEST RESPONSE path switch request response
  • the target base station sends an RRC release (RRC Release) message to the UE, and the RRC release message carries suspension indication information (Suspend Indication).
  • RRC Release RRC Release
  • suspension indication information Suspend Indication
  • the target base station sends a UE context release (UE CONTEXT RELEASE) message to the anchor base station.
  • UE CONTEXT RELEASE UE context release
  • FIG. 2-2 is a flowchart of RNAU without context transfer, including the following steps:
  • the UE sends an RRC Resume Request (RRC Resume Request) message to the target base station.
  • RRC Resume Request RRC Resume Request
  • the RRC recovery request message carries the value of the reason for the RRC recovery, that is, RNAU.
  • the target base station sends a request for UE context (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station.
  • RETRIEVE UE CONTEXT REQUEST a request for UE context
  • the request message carries information: RNAU.
  • the anchor base station sends a request for UE context failure (RETRIEVE UE CONTEXT FAILURE) message to the target base station.
  • RETRIEVE UE CONTEXT FAILURE request for UE context failure
  • the target base station sends an RRC release (RRC Release) message to the UE, and the RRC release message carries suspension indication information (Suspend Indication).
  • RRC Release RRC Release
  • suspension indication information Suspend Indication
  • the anchor base station in Figure 2-1 and Figure 2-2 refers to the base station that stores the UE context.
  • the anchor base station is the base station that served the UE last time.
  • EDT data transmission is introduced in LTE.
  • the UE may always remain in the idle state or suspended state or inactive state to complete the uplink and/or downlink EDT data transmission .
  • EDT data transmission can adopt a user plane transmission scheme, as shown in Figure 3, including the following steps:
  • the UE sends an RRC Connection Resume Request (RRCConnectionResumeRequest) message and uplink data (Uplink data) to the eNB.
  • RRCConnectionResumeRequest RRC Connection Resume Request
  • Uplink data Uplink data
  • RRCConnectionResumeRequest carries the following information: resumeID, resumeCause, shortResumeMAC-I.
  • the eNB sends a UE Context Resume Request (UE Context Resume Request) message to the MME.
  • UE Context Resume Request UE Context Resume Request
  • the MME sends a UE Context Resume Response (UE Context Resume Response) message to the eNB.
  • UE Context Resume Response UE Context Resume Response
  • the eNB sends uplink data (Uplink data) to the S-GW.
  • the S-GW sends downlink data (Downlink data) to the eNB.
  • Modify Bearer (Modify Bearer) between MME and S-GW, and execute S1 Suspend procedure (S1 Suspend procedure) between eNB and MME.
  • the eNB sends an RRC connection release (RRCConnectionRelease) message and downlink data (Downlink data) to the UE.
  • RRC connection release RRCConnectionRelease
  • Downlink data Downlink data
  • the RRCConnectionRelease message carries the following information: releaseCause, releaseID, and NCC.
  • FIG. 3 takes LTE as an example for illustration.
  • NR is the same as LTE. The difference is that for NR, eNB needs to be replaced with gNB, mobility management entity (MME, Mobility Management Entity) is replaced with AMF, and serving gateway (Serving Gateway, S-GW) is replaced by a user plane function entity (UPF, User Plane Function).
  • MME mobility management entity
  • AMF Access Management Entity
  • S-GW serving gateway
  • UPF User Plane Function
  • the RRC connection recovery request message is carried in the MSG3 of the random access process, and the uplink data belongs to user plane data.
  • the uplink data is transmitted in the dedicated transmission channel (Dedicated Transmission Channel, DTCH)
  • the RRC connection recovery request message is transmitted in the common control channel (CCCH)
  • the MAC SDU ie DTCH SDU
  • the MAC SDU ie CCCH SDU
  • the downlink is the same as the uplink.
  • the downlink data is transmitted in DTCH
  • the RRC connection release message is transmitted in CCCH
  • the MAC SDU (ie DTCH SDU) corresponding to the downlink data and the MAC SDU (ie CCCH SDU) corresponding to the RRC connection release message are in the MAC layer. Multiplexed in the same MAC PDU.
  • the uplink data or downlink data in FIG. 3 may be small packet data.
  • the small packet data is also referred to as small data or small data packet or EDT data.
  • the target base station For the RRC connection recovery process triggered by the transmission of the uplink small packet data, it is not clear whether the context of the UE needs to be transferred, which results in low packet data transmission efficiency.
  • the target base station After the target base station receives the MAC PDU corresponding to the small packet data, it needs to decode the CCCH from the MAC PDU to obtain the addressing information of the anchor base station. Since there is no bearer configuration information corresponding to the small packet data, the target base station needs to report to the anchor base station. Only after requesting the context of the terminal can the small packet data be decoded, which leads to increased data transmission delay. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 4 is a schematic diagram 1 of the flow of a data transmission method provided by an embodiment of the application. As shown in FIG. 4, the data transmission method includes the following steps:
  • Step 401 The terminal sends an RRC recovery request message to the target base station, and the target base station receives the RRC recovery request message sent by the terminal, where the RRC recovery request message carries small packet data.
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the terminal is a terminal in an inactive state.
  • the RRC recovery request message carries small packet data, which can be implemented in the following ways: 1) The RRC recovery request message includes a first container, and the first container is used to carry the small packet data; or , 2) The RRC recovery request message includes a first payload, and the first payload is used to carry the small packet data.
  • the RRC recovery request message also carries bearer configuration information corresponding to the small packet data.
  • the target base station can decode the small packet data through the bearer configuration information corresponding to the small packet data to obtain the small packet data.
  • the bearer configuration information includes at least one of the following: logical channel identifier (Logical Channel Identifier, LCID), data radio bearer identifier (Data Resource Bearer Identifier, DRB ID).
  • LCID Logical Channel Identifier
  • DRB ID Data Resource Bearer Identifier
  • the small packet data is also called small data or small data packet or EDT data.
  • Step 402 The target base station obtains the small packet data from the RRC recovery request message, and sends a request for terminal context request message to the anchor base station, where the request for terminal context request message carries first information, and the first information is used for Determining whether to send the context of the terminal to the target base station at the anchor base station.
  • the target base station obtains the first terminal identifier from the RRC recovery request message, addresses the anchor base station according to the first terminal identifier, and sends a request message for terminal context to the anchor base station.
  • the first terminal identifier may be I-RNTI.
  • the first information carried in the terminal context request request message is used as auxiliary information for the anchor base station to determine whether to send the context of the terminal to the target base station.
  • the first information carried in the terminal context request message can be realized in the following manner:
  • the first information carried in the terminal context request message includes at least one of the following: small packet data transmission instruction information, and bearer configuration information corresponding to the small packet data. or,
  • the first information carried in the terminal context request request message includes at least one of the following: small packet data and bearer configuration information corresponding to the small packet data. or,
  • the first information carried in the request message for requesting terminal context includes at least one of the following: indication information of whether to send the context of the terminal to the target base station.
  • the first information carried in the terminal context request message includes at least one of the following: small packet data transmission instruction information, bearer configuration information corresponding to the small packet data, and whether to send the terminal context to the target The indication information of the base station.
  • the first information carried in the terminal context request message includes at least one of the following: small packet data, bearer configuration information corresponding to the small packet data, and whether to send the context of the terminal to the target base station Instructions.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • the RRC recovery request message carries small packet data corresponding to multiple bearers, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the foregoing only gives the case of sending a small packet corresponding to a bearer.
  • Step 403 If the anchor base station determines to send the context of the terminal to the target base station, the small packet data is sent to the core network through the target base station; if the anchor base station determines not to send the terminal's When the context is sent to the target base station, the small packet data is sent to the core network through the anchor base station.
  • the anchor base station refers to a base station that stores the context of the terminal.
  • the anchor base station is the base station that served the terminal last time.
  • the target base station receives the terminal context request response message sent by the anchor base station, and the terminal context request response message carries the context of the terminal; 2) the target base station restores the context of the terminal, and according to the The bearer configuration information corresponding to the small packet data transmits the small data packet to the Packet Data Convergence Protocol (PDCP) layer for decryption and/or integrity verification; 3) The target base station triggers the core network control plane network element Perform path conversion, and after receiving a path conversion confirmation message from the core network control plane network element, establish a GPRS Tunnelling Protocol (GPT) tunnel with the core network user plane network element, and pass the GPT The tunnel sends the small packet data to the user plane network element of the core network.
  • GPS GPRS Tunnelling Protocol
  • control plane network element of the core network may be AMF
  • user plane network element of the core network may be UPF
  • the target base station receives a terminal context request failure message sent by the anchor base station, and the terminal context request failure message carries the GTP tunnel information configured by the anchor base station; 2) the target base station passes through based on the GTP tunnel information The GTP tunnel sends the small packet data to the anchor base station; wherein, 3) the anchor base station restores the context of the terminal, and transmits the small data packet to the PDCP layer according to the bearer configuration information corresponding to the small packet data Decryption and/or integrity verification, and then send the small data packet to the core network user plane network element.
  • control plane network element of the core network may be AMF
  • user plane network element of the core network may be UPF
  • the GTP tunnel information configured by the anchor base station includes at least one of the following: a tunnel endpoint ID (Tunnel Endpoint ID, TEID) corresponding to the GTP tunnel, and bearer configuration information associated with the GTP tunnel.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • the small packet data in the embodiment of the present application may be small packet data corresponding to one or more DRBs.
  • the GTP tunnel information configured by the anchor base station includes the GTP tunnel information corresponding to the one DRB; when the small packet data includes small packet data corresponding to multiple DRBs
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the multiple DRBs.
  • the terminal context requesting failure message also carries an RRC release message, and after receiving the terminal context requesting failure message sent by the anchor base station, the target base station obtains it from the terminal context requesting failure message The RRC release message and send the RRC release message to the terminal.
  • Figure 5-1 is a flow chart of small packet data transmission with context migration provided by an embodiment of this application, including the following steps:
  • the UE sends an RRC recovery request message to the target base station, and the RRC recovery request message carries small packets of data.
  • the purpose of the UE sending the RRC recovery request message to the target base station is to trigger the RRC connection recovery process.
  • the RRC recovery request message includes a container or payload.
  • the container or payload includes the small packet data that needs to be transmitted, and further includes the bearer configuration information corresponding to the small packet data.
  • the small packet data may be PDCP PDU
  • the bearer configuration information may be the LCID and/or DRB ID corresponding to the small packet data.
  • the target base station After the target base station receives the RRC recovery request message, it decodes the message (in specific implementation, after the target base station receives the MAC PDU corresponding to the RRC recovery request message, it decodes the MAC PDU), and obtains the UE identifier in the RRC recovery request message, that is, I -RNTI, and a container or payload containing small packets of data.
  • the target base station addresses the anchor base station according to the I-RNTI, and sends a request for UE context request (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station, and the request for UE context request message carries the UE's auxiliary information about the small packet data transmission (ie the first information) ), the content contained in the first information can be implemented in any one or more of the following ways:
  • Manner 1 Small packet data transmission instruction information (or EDT transmission instruction information), and/or DRB ID associated with small packet data, and/or LCID associated with small packet data;
  • Method 2 The PDCP PDU corresponding to the small packet data, and/or the DRB ID associated with the small packet data, and/or the LCID associated with the small packet data;
  • Manner 3 Indication information of whether to send the context of the terminal to the target base station, where the indication information may be determined based on the inclination or expectation of the target base station.
  • the small packet data corresponding to multiple bearers is carried, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the anchor base station decides whether to relocate the UE context. If it decides to relocate the UE context, the anchor base station replies to the target base station to request a UE context response (RETRIEVE UE CONTEXT RESPONSE) message, and the request UE context response carries the UE context.
  • RETRIEVE UE CONTEXT RESPONSE UE context response
  • the target base station After receiving the UE context sent by the anchor base station, the target base station restores the UE context, and transmits the small packet data to the corresponding PDCP layer for decryption and/or completion verification according to the indicated LCID and/or DRB ID.
  • the target base station sends a path switch request (PATH SWITCH REQUEST) message to the AMF to trigger the AMF to perform path switch.
  • PATH SWITCH REQUEST path switch request
  • restoring the UE context includes but is not limited to: restoring AS security, restoring DRB configuration, and restoring SRB configuration.
  • the target base station receives a path switch request confirmation (PATH SWITCH REQUEST ACKNOWLEDGE) message from the AMF.
  • PATH SWITCH REQUEST ACKNOWLEDGE path switch request confirmation
  • the target base station establishes a GPT tunnel with the core network, and sends the small packet data to the UPF.
  • the target base station sends an RRC release message to the UE.
  • Figure 5-2 is a flow chart of small packet data transmission without context migration provided in an embodiment of the application, including the following steps:
  • the UE sends an RRC recovery request message to the target base station, and the RRC recovery request message carries small packets of data.
  • the purpose of the UE sending the RRC recovery request message to the target base station is to trigger the RRC connection recovery process.
  • the RRC recovery request message includes a container or payload.
  • the container or payload includes the small packet data that needs to be transmitted, and further includes the bearer configuration information corresponding to the small packet data.
  • the small packet data may be PDCP PDU
  • the bearer configuration information may be the LCID and/or DRB ID corresponding to the small packet data.
  • the target base station After the target base station receives the RRC recovery request message, it decodes the message (in specific implementation, after the target base station receives the MAC PDU corresponding to the RRC recovery request message, it decodes the MAC PDU), and obtains the UE identifier in the RRC recovery request message, that is, I -RNTI, and a container or payload containing small packets of data.
  • the target base station addresses the anchor base station according to the I-RNTI, and sends a request for UE context request (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station, and the request for UE context request message carries the UE's auxiliary information about small packet data transmission (ie the first information) ), the content contained in the first information can be implemented in any one or more of the following ways:
  • Manner 1 Small packet data transmission instruction information (or EDT transmission instruction information), and/or DRB ID associated with small packet data, and/or LCID associated with small packet data;
  • Method 2 The PDCP PDU corresponding to the small packet data, and/or the DRB ID associated with the small packet data, and/or the LCID associated with the small packet data;
  • Manner 3 Indication information of whether to send the context of the terminal to the target base station, where the indication information may be determined based on the inclination or expectation of the target base station.
  • the small packet data corresponding to multiple bearers is carried, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the anchor base station decides whether to relocate the UE context. If it decides not to relocate the UE context, the anchor base station replies to the target base station requesting UE context failure (RETRIEVE UE CONTEXT FAILURE) message.
  • RETRIEVE UE CONTEXT FAILURE target base station requesting UE context failure
  • the anchor base station establishes a GTP tunnel from the target base station to the anchor base station through a request for UE context failure message, and the target base station sends small packets of data to the anchor base station through the GTP tunnel. Further, if the small packet data corresponding to N DRBs are transmitted, N GTP tunnels are established, and the N GTP tunnels and N DRBs are in one-to-one correspondence, and N is a positive integer.
  • the request for UE context failure message carries an RRC release message.
  • the anchor base station restores the UE context, and passes the small packet data to the corresponding PDCP layer for decryption and/or completion verification, and finally sends the small packet data to the UPF.
  • the target base station After receiving the UE context request failure message sent by the anchor base station, the target base station obtains the RRC release message from the UE context request failure message and sends it to the UE.
  • FIG. 6 is a schematic diagram of the second flow of the data transmission method provided by the embodiment of the application. As shown in FIG. 6, the data transmission method includes the following steps:
  • Step 601 The target base station receives the RRC recovery request message and the small packet data sent by the terminal, and the MAC SDU corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data are multiplexed in the same MAC PDU for transmission.
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the terminal is a terminal in an inactive state.
  • the transmission of the RRC recovery request message and the small packet data adopts a user plane transmission scheme.
  • the RRC recovery request message is transmitted through CCCH
  • the small packet data is transmitted through DTCH.
  • the MAC SDU (ie DTCH SDU) corresponding to the small packet data and the MAC SDU (ie CCCH SDU) corresponding to the RRC connection recovery request message are multiplexed in the same MAC PDU at the MAC layer.
  • the RRC recovery request message further carries first indication information, and the first indication information is used to indicate that the purpose of the RRC recovery connection is to transmit the small packet data.
  • the small packet data is also called small data or small data packet or EDT data.
  • Step 602 The target base station sends a terminal context request message to the anchor base station.
  • the terminal context request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to The target base station.
  • the target base station obtains the first terminal identifier from the RRC recovery request message, addresses the anchor base station according to the first terminal identifier, and sends a request message for terminal context to the anchor base station.
  • the first terminal identifier may be I-RNTI.
  • the first information carried in the terminal context request request message is used as auxiliary information for the anchor base station to determine whether to send the context of the terminal to the target base station.
  • the first information carried in the terminal context request message can be realized in the following manner:
  • the first information carried in the terminal context request message includes at least one of the following: small packet data transmission instruction information, and bearer configuration information corresponding to the small packet data. or,
  • the first information carried in the terminal context request request message includes at least one of the following: small packet data and bearer configuration information corresponding to the small packet data. or,
  • the first information carried in the request message for requesting terminal context includes at least one of the following: indication information of whether to send the context of the terminal to the target base station.
  • the first information carried in the terminal context request message includes at least one of the following: small packet data transmission instruction information, bearer configuration information corresponding to the small packet data, and whether to send the terminal context to the target The indication information of the base station.
  • the first information carried in the terminal context request message includes at least one of the following: small packet data, bearer configuration information corresponding to the small packet data, and whether to send the context of the terminal to the target base station Instructions.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • the RRC recovery request message carries small packet data corresponding to multiple bearers, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the foregoing only gives the case of sending a small packet corresponding to a bearer.
  • Step 603 If the anchor base station determines to send the context of the terminal to the target base station, the small packet data is sent to the core network through the target base station; if the anchor base station determines not to send the context of the terminal When sent to the target base station, the small packet data is sent to the core network through the anchor base station.
  • the anchor base station refers to a base station that stores the context of the terminal.
  • the anchor base station is the base station that served the terminal last time.
  • the target base station receives the terminal context request response message sent by the anchor base station, and the terminal context request response message carries the context of the terminal; 2) the target base station restores the context of the terminal, and according to the The bearer configuration information corresponding to the small packet data passes the small data packet to the PDCP layer for decryption and/or integrity verification; 3) The target base station triggers the core network control plane network element to perform path conversion, and receives the data from the core network After the path conversion confirmation message of the control plane network element, a GPT tunnel with the core network user plane network element is established, and the small packet data is sent to the core network user plane network element through the GPT tunnel.
  • control plane network element of the core network may be AMF
  • user plane network element of the core network may be UPF
  • the target base station receives a terminal context request failure message sent by the anchor base station, and the terminal context request failure message carries the GTP tunnel information configured by the anchor base station; 2) the target base station passes through based on the GTP tunnel information The GTP tunnel sends the small packet data to the anchor base station; wherein, 3) the anchor base station restores the context of the terminal, and transmits the small data packet to the PDCP layer according to the bearer configuration information corresponding to the small packet data Decryption and/or integrity verification, and then send the small data packet to the core network user plane network element.
  • control plane network element of the core network may be AMF
  • user plane network element of the core network may be UPF
  • the GTP tunnel information configured by the anchor base station includes at least one of the following: TEID corresponding to the GTP tunnel, and bearer configuration information associated with the GTP tunnel. Further, the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • the small packet data in the embodiment of the present application may be small packet data corresponding to one or more DRBs.
  • the GTP tunnel information configured by the anchor base station includes the GTP tunnel information corresponding to the one DRB; when the small packet data includes small packet data corresponding to multiple DRBs
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the multiple DRBs.
  • the terminal context requesting failure message also carries an RRC release message, and after receiving the terminal context requesting failure message sent by the anchor base station, the target base station obtains it from the terminal context requesting failure message The RRC release message and send the RRC release message to the terminal.
  • Figure 7-1 is a flow chart of small packet data transmission with context migration provided by an embodiment of the application, including the following steps:
  • the UE sends an RRC recovery request message and small packet data to the target base station, and the MAC SDU corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data are multiplexed in the same MAC PDU.
  • the UE non-access stratum triggers RRC to initiate the RRC connection recovery process and at the same time send small packets of data.
  • the RRC recovery request message is transmitted through CCCH, and the small packet data is transmitted through DTCH.
  • the MAC SDU (ie DTCH SDU) corresponding to the small packet data and the MAC SDU (ie CCCH SDU) corresponding to the RRC connection recovery request message are multiplexed in the same MAC PDU at the MAC layer.
  • the CCCH SDU needs to be decoded first, so the CCCH SDU needs to be placed before the DTCH SDU in the MAC PDU.
  • the first indication information needs to be carried in the RRC recovery request message
  • the first indication information is used to indicate that the purpose of the RRC connection recovery is for the transmission of small packet data.
  • the target base station addresses the anchor base station according to the I-RNTI, and sends a request for UE context request (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station, and the request for UE context request message carries the UE's auxiliary information about small packet data transmission (ie the first information) ), the content contained in the first information can be implemented in any one or more of the following ways:
  • Manner 1 Small packet data transmission instruction information (or EDT transmission instruction information), and/or DRB ID associated with small packet data, and/or LCID associated with small packet data;
  • Method 2 The PDCP PDU corresponding to the small packet data, and/or the DRB ID associated with the small packet data, and/or the LCID associated with the small packet data;
  • Manner 3 Indication information of whether to send the context of the terminal to the target base station, where the indication information may be determined based on the inclination or expectation of the target base station.
  • the small packet data corresponding to multiple bearers is carried, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the anchor base station decides whether to relocate the UE context. If it decides to relocate the UE context, the anchor base station replies to the target base station to request a UE context response (RETRIEVE UE CONTEXT RESPONSE) message, and the request UE context response carries the UE context.
  • RETRIEVE UE CONTEXT RESPONSE UE context response
  • the target base station After receiving the UE context sent by the anchor base station, the target base station restores the UE context, and transmits the small packet data to the corresponding PDCP layer for decryption and/or completion verification according to the indicated LCID and/or DRB ID.
  • the target base station sends a path switch request (PATH SWITCH REQUEST) message to the AMF to trigger the AMF to perform path switch.
  • PATH SWITCH REQUEST path switch request
  • restoring the UE context includes but is not limited to: restoring security, restoring DRB configuration, and restoring SRB configuration.
  • the target base station receives a path switch request confirmation (PATH SWITCH REQUEST ACKNOWLEDGE) message from the AMF.
  • PATH SWITCH REQUEST ACKNOWLEDGE path switch request confirmation
  • the target base station establishes a GPT tunnel with the core network, and sends the small packet data to the UPF.
  • the target base station sends an RRC release message to the UE.
  • Figure 7-2 is a flow chart of small packet data transmission without context migration provided by an embodiment of the application, including the following steps:
  • the UE sends an RRC recovery request message and small packet data to the target base station, and the MAC SDU corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data are multiplexed in the same MAC PDU.
  • the UE non-access stratum triggers RRC to initiate the RRC connection recovery process and send small packets of data at the same time.
  • the RRC recovery request message is transmitted through CCCH, and the small packet data is transmitted through DTCH.
  • the MAC SDU (ie DTCH SDU) corresponding to the small packet data and the MAC SDU (ie CCCH SDU) corresponding to the RRC connection recovery request message are multiplexed in the same MAC PDU at the MAC layer.
  • the CCCH SDU needs to be decoded first, so the CCCH SDU needs to be placed before the DTCH SDU in the MAC PDU.
  • the first indication information needs to be carried in the RRC recovery request message
  • the first indication information is used to indicate that the purpose of the RRC connection recovery is for the transmission of small packet data.
  • the target base station addresses the anchor base station according to the I-RNTI, and sends a request for UE context request (RETRIEVE UE CONTEXT REQUEST) message to the anchor base station, and the request for UE context request message carries the UE's auxiliary information about small packet data transmission (ie the first information) ), the content contained in the first information can be implemented in any one or more of the following ways:
  • Manner 1 Small packet data transmission instruction information (or EDT transmission instruction information), and/or DRB ID associated with small packet data, and/or LCID associated with small packet data;
  • Method 2 The PDCP PDU corresponding to the small packet data, and/or the DRB ID associated with the small packet data, and/or the LCID associated with the small packet data;
  • Manner 3 Indication information of whether to send the context of the terminal to the target base station, where the indication information may be determined based on the inclination or expectation of the target base station.
  • the small packet data corresponding to multiple bearers is carried, the small packet data corresponding to each bearer and the bearer configuration information corresponding to the small packet data will be carried separately.
  • the anchor base station decides whether to relocate the UE context. If it decides not to relocate the UE context, the anchor base station replies to the target base station requesting UE context failure (RETRIEVE UE CONTEXT FAILURE) message.
  • RETRIEVE UE CONTEXT FAILURE target base station requesting UE context failure
  • the anchor base station establishes a GTP tunnel from the target base station to the anchor base station through a request for UE context failure message, and the target base station sends small packets of data to the anchor base station through the GTP tunnel. Further, if the small packet data corresponding to N DRBs are transmitted, N GTP tunnels are established, and the N GTP tunnels and N DRBs are in one-to-one correspondence, and N is a positive integer.
  • the request for UE context failure message carries an RRC release message.
  • the anchor base station restores the UE context, and passes the small packet data to the corresponding PDCP layer for decryption and/or completion verification, and finally sends the small packet data to the UPF.
  • the target base station After receiving the UE context request failure message sent by the anchor base station, the target base station obtains the RRC release message from the UE context request failure message and sends it to the UE.
  • FIG. 8 is a first structural diagram of a data transmission device provided by an embodiment of the application. As shown in FIG. 8, the data transmission device includes:
  • the receiving unit 801 is configured to receive an RRC recovery request message sent by a terminal, where the RRC recovery request message carries small packet data; and obtain the small packet data from the RRC recovery request message;
  • the sending unit 802 is configured to send a terminal context request message to the anchor base station, where the terminal context request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to the target Base station
  • the small packet data is sent to the core network through the target base station; if the anchor base station determines not to send the context of the terminal To the target base station, the small packet data is sent to the core network through the anchor base station.
  • the RRC recovery request message carries small packet data, including:
  • the RRC recovery request message includes a first container, and the first container is used to carry the small packet data;
  • the RRC recovery request message includes a first payload, and the first payload is used to carry the small packet data.
  • the RRC recovery request message also carries bearer configuration information corresponding to the small packet data.
  • the sending unit 802 is configured to obtain a first terminal identifier from the RRC recovery request message, address the anchor base station according to the first terminal identifier, and send a request for terminal context to the anchor base station Request message.
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the receiving unit 801 when the anchor base station determines to send the context of the terminal to the target base station, the receiving unit 801 is configured to receive the terminal context request response message sent by the anchor base station, and the The terminal context request response message carries the context of the terminal;
  • the device further includes: a processing unit 803, configured to restore the context of the terminal, and transfer the small data packet to the PDCP layer for decryption and/or integrity verification according to the bearer configuration information corresponding to the small packet data; trigger;
  • the core network control plane network element performs path conversion, and after receiving a path conversion confirmation message from the core network control plane network element, it establishes a GPT tunnel with the core network user plane network element, and connects all nodes through the GPT tunnel.
  • the small packet data is sent to the user plane network element of the core network.
  • the receiving unit 801 is configured to receive a failure requesting terminal context message sent by the anchor base station, so The failure requesting terminal context message carries the GTP tunnel information configured by the anchor base station;
  • the sending unit 802 is configured to send the small packet data to the anchor base station through the GTP tunnel based on the GTP tunnel information; wherein, the anchor base station restores the context of the terminal, and according to the bearer corresponding to the small packet data
  • the configuration information transfers the small data packet to the PDCP layer for decryption and/or integrity verification, and then sends the small data packet to the core network user plane network element.
  • the GTP tunnel information configured by the anchor base station includes at least one of the following: TEID corresponding to the GTP tunnel, and bearer configuration information associated with the GTP tunnel.
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the one DRB;
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the multiple DRBs.
  • the terminal context request failure message also carries an RRC release message
  • the sending unit 802 is configured to obtain the RRC release message from the terminal context request failure message, and send the RRC release message to the terminal.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • Fig. 9 is a second schematic diagram of the structure of the data transmission device provided by the embodiment of the application. As shown in Fig. 9, the data transmission device includes:
  • the receiving unit 901 is configured to receive an RRC recovery request message and small packet data sent by a terminal, where the MAC SDU corresponding to the RRC recovery request message and the MAC SDU corresponding to the small packet data are multiplexed in the same MAC PDU for transmission;
  • the sending unit 902 is configured to send a terminal context request request message to the anchor base station, where the terminal context request request message carries first information, and the first information is used by the anchor base station to determine whether to send the terminal context to the target.
  • Base station
  • the small packet data is sent to the core network through the target base station; if the anchor base station determines not to send the context of the terminal To the target base station, the small packet data is sent to the core network through the anchor base station.
  • the RRC recovery request message is transmitted through CCCH, and the small packet data is transmitted through DTCH.
  • the RRC recovery request message further carries first indication information, and the first indication information is used to indicate that the purpose of the RRC recovery connection is to transmit the small packet data.
  • the sending unit 902 is configured to obtain the first terminal identifier from the RRC recovery request message, address the anchor base station according to the first terminal identifier, and send the request terminal context to the anchor base station. Request message.
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the first information carried in the terminal context request request message includes at least one of the following:
  • the receiving unit 901 when the anchor base station determines to send the context of the terminal to the target base station, the receiving unit 901 is configured to receive the terminal context request response message sent by the anchor base station, and the The terminal context request response message carries the context of the terminal;
  • the device further includes: a processing unit 903, configured to restore the context of the terminal, and transfer the small data packet to the PDCP layer for decryption and/or integrity verification according to the bearer configuration information corresponding to the small packet data; trigger;
  • the core network control plane network element performs path conversion, and after receiving a path conversion confirmation message from the core network control plane network element, it establishes a GPT tunnel with the core network user plane network element, and connects all nodes through the GPT tunnel.
  • the small packet data is sent to the user plane network element of the core network.
  • the receiving unit 901 is configured to receive the failure requesting terminal context message sent by the anchor base station, so The failure requesting terminal context message carries the GTP tunnel information configured by the anchor base station;
  • the sending unit 902 is configured to send the small packet data to the anchor base station through the GTP tunnel based on the GTP tunnel information; wherein, the anchor base station restores the context of the terminal, and performs according to the bearer corresponding to the small packet data
  • the configuration information transfers the small data packet to the PDCP layer for decryption and/or integrity verification, and then sends the small data packet to the core network user plane network element.
  • the GTP tunnel information configured by the anchor base station includes at least one of the following: TEID corresponding to the GTP tunnel, and bearer configuration information associated with the GTP tunnel.
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the one DRB
  • the GTP tunnel information configured by the anchor base station includes GTP tunnel information corresponding to the multiple DRBs.
  • the terminal context request failure message also carries an RRC release message
  • the sending unit 902 is configured to obtain the RRC release message from the terminal context request failure message, and send the RRC release message to the terminal.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • Fig. 10 is a third structural diagram of the data transmission device provided by an embodiment of the application. As shown in Fig. 10, the data transmission device includes:
  • the sending unit 1001 is configured to send an RRC recovery request message to the target base station, where the RRC recovery request message carries small packet data.
  • the RRC recovery request message carries small packets of data, including:
  • the RRC recovery request message includes a first container, and the first container is used to carry the small packet data;
  • the RRC recovery request message includes a first payload, and the first payload is used to carry the small packet data.
  • the RRC recovery request message also carries bearer configuration information corresponding to the small packet data.
  • the bearer configuration information includes at least one of the following: LCID and DRB ID.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 1100 shown in FIG. 11 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or it may be integrated in the processor 1210.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1210 may control the transceiver 1130 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be a communication device of an embodiment of the application, and the communication device 1100 may implement the corresponding processes implemented by the communication device in each method of the embodiments of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 1100 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 1100 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or it may be integrated in the processor 1210.
  • the chip 1200 may further include an input interface 1230.
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may further include an output interface 1240.
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the communication device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the communication device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the communication device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 13 is a schematic block diagram of a communication system 1300 according to an embodiment of the present application. As shown in FIG. 13, the communication system 1300 includes a terminal 1310 and a network device 1320.
  • the terminal 1310 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 1320 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It’s concise and will not be repeated here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法及装置、通信设备,该方法包括:目标基站接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;所述目标基站从所述RRC恢复请求消息中获取所述小包数据,并向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。

Description

一种数据传输方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种数据传输方法及装置、通信设备。
背景技术
如果终端发起无线资源控制(Radio Resource Control,RRC)连接恢复过程的目标基站不是锚(anchor)基站,则锚基站一般需要转移终端的上下文到目标基站侧。在长期演进(Long Term Evolution,LTE)中,引入了早数据传输(Early Data Transmission,EDT),EDT数据传输也称为小数据传输或者小数据包传输或者小包数据传输。在终端有EDT数据需要传输的情况下,会发起RRC连接恢复过程,通过用户面实现EDT数据的传输。在由EDT数据传输触发的RRC连接恢复过程中,终端的上下文是否需要转移还未明确,导致EDT数据传输效率较低。
发明内容
本申请实施例提供一种数据传输方法及装置、通信设备。
本申请实施例提供的数据传输方法,包括:
目标基站接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;
所述目标基站从所述RRC恢复请求消息中获取所述小包数据,并向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
本申请实施例提供的数据传输方法,包括:
目标基站接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的媒体接入控制业务数据单元(Media Access Control Service Data Unit,MAC SDU)和所述小包数据对应的MAC SDU复用在同一媒体接入控制分组数据单元((Media Access Control Packet Data Unit,MAC PDU)中传输;
所述目标基站向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
本申请实施例提供的数据传输方法,包括:
终端向目标基站发送RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
本申请实施例提供的数据传输装置,包括:
接收单元,用于接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;从所述RRC恢复请求消息中获取所述小包数据;
发送单元,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站。
本申请实施例提供的数据传输装置,包括:
接收单元,用于接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的MAC SDU和所述小包数据对应的MAC SDU复用在同一MAC PDU中传输;
发送单元,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站。
本申请实施例提供的数据传输装置,包括:
发送单元,用于向目标基站发送RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的数据传输方法。
本申请实施例提供的芯片,用于实现上述的数据传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的数据传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的数据传输方法。
通过上述技术方案,在索要终端上下文请求消息中携带用于锚基站确定是否将终端的上下文发送给目标基站的第一信息,从而使得终端的上下文的转移更加符合通信的需求。如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。如此,明确了小包数据的传输行为,使得小包数据的传输更加高效,同时节省了网络侧的信令交互。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1是本申请实施例提供的有上下文转移的RNAU的流程图;
图2-2是本申请实施例提供的没有上下文转移的RNAU的流程图;
图3是本申请实施例提供的用户面传输EDT数据的流程图;
图4是本申请实施例提供的数据传输方法的流程示意图一;
图5-1是本申请实施例提供的有上下文转移的小包数据传输示意图一;
图5-2是本申请实施例提供的没有上下文转移的小包数据传输示意图一;
图6是本申请实施例提供的数据传输方法的流程示意图二;
图7-1是本申请实施例提供的有上下文转移的小包数据传输示意图二;
图7-2是本申请实施例提供的没有上下文转移的小包数据传输示意图二;
图8是本申请实施例提供的数据传输装置的结构组成示意图一;
图9是本申请实施例提供的数据传输装置的结构组成示意图二;
图10是本申请实施例提供的数据传输装置的结构组成示意图三;
图11是本申请实施例提供的一种通信设备示意性结构图;
图12是本申请实施例的芯片的示意性结构图;
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop, WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
Figure PCTCN2019094753-appb-000001
三种RRC状态
在5G网络环境中,为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义一个新的RRC状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC连接(RRC_CONNECTED)状态。
以下对5G网络环境中的三种RRC状态进行说明:
1)RRC_IDLE状态(以下简称空闲态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE AS上下文。不存在RRC连接。
2)RRC_CONNECTED状态(以下简称连接态):存在RRC连接,基站和UE存在UE AS上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(以下简称非激活态):移动性为基于UE的小区选择重选,存在CN和RAN之间的连接,UE AS上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
当UE处于非激活态时,如下情况触发UE回到空闲态:1)接收到CN初始的寻呼消息时;2)发起RRC恢复请求时,启动定时器T319,如果定时器超时;3)MSG4完整性保护验证失败时;4)小区重选到其他无线接入技术(Radio Access Technology,RAT)时;5)进入驻留到任意小区的状态。
Figure PCTCN2019094753-appb-000002
RAN通知区域(RAN Notification Area,RNA)
当UE处于非激活态时,网络侧会通过RRC专用信令(如RRC释放消息)给UE配置非激活态的配置参数,主要的配置参数包括:1)非激活态无线网络临时标识(Inactive Radio Network Temporary Identifier,I-RNTI),I-RNTI用于标识UE在基站侧的UE非激 活态上下文,I-RNTI在基站内唯一。2)RNA,RNA用于控制UE在非激活态下进行小区选择重选的区域,也是RAN初始的寻呼的寻呼范围区域。3)RAN非连续接收周期(RAN Discontinuous Reception cycle,RAN DRX cycle),RAN DRX cycle用于计算RAN初始寻呼的寻呼时机。4)RAN通知区域更新周期(RNA Update periodicity,RNAU periodicity),RNAU periodicity用于控制UE执行周期性RAN位置更新的周期。5)下一跳链计数(Next hop Chaining Counter,NCC),NCC用于RRC连接恢复过程中使用的秘钥。
当UE在RNA区域内移动时不用通知网络侧,遵循空闲态下移动性行为,即小区选择重选原则。当UE移动出RAN配置的寻呼区域时,会触发UE恢复RRC连接并重新获取RAN配置的寻呼区域。当UE有下行数据到达时,为UE保持RAN和CN之间连接的基站会触发RAN寻呼区域内的所有小区发送寻呼消息给UE,使得非激活态的UE能够恢复RRC连接,进行数据接收。另一方面,处于非激活态的UE被配置了RAN寻呼区域,在该区域内为了保证UE的可达性,UE需要按照网络配置的周期(基于RNAU定时器实现)进行周期性位置更新。所以触发UE执行RNAU的场景有RNAU定时器超时或者UE移动到RNA之外的区域。
当UE发起RRC连接恢复过程的目标基站不是锚基站,则锚基站判决是否需要转移UE的上下文到目标基站侧。所以一般目标基站会将UE发起RRC连接恢复请求消息中携带的原因值携带在索要UE上下文消息中发送给锚基站,锚基站判决是否需要转移UE的上下文到目标基站侧。以下结合RNAU过程对UE的上下文转移进行举例说明。
图2-1为有上下文转移的RNAU的流程图,包括以下步骤:
1、UE向目标基站发送RRC恢复请求(RRC Resume Request)消息。
这里,RRC恢复请求消息携带RRC恢复的原因值,即:RNAU。
2、目标基站向锚基站发送索要UE上下文请求(RETRIEVE UE CONTEXT REQUEST)消息。
这里,索要UE上下文请求消息携带信息:RNAU。
3、锚基站向目标基站发送索要UE上下文响应(RETRIEVE UE CONTEXT RESPONSE)消息。
4、目标基站恢复UE上下文。
5、目标基站向锚基站发送数据转发地址指示信息(DATA FORWARDING ADDRESS INDICATION)。
6、目标基站向接入和移动性管理功能实体(AMF,Access and Mobility Management Function)发送路径转换请求(PATH SWITCH REQUEST)消息。
7、AMF向目标基站发送路径转换请求响应(PATH SWITCH REQUEST RESPONSE)消息。
8、目标基站向UE发送RRC释放(RRC Release)消息,RRC释放消息携带悬挂指示信息(Suspend Indication)。
9、目标基站向锚基站发送UE上下文释放(UE CONTEXT RELEASE)消息。
图2-2为没有上下文转移的RNAU的流程图,包括以下步骤:
1、UE向目标基站发送RRC恢复请求(RRC Resume Request)消息。
这里,RRC恢复请求消息携带RRC恢复的原因值,即:RNAU。
2、目标基站向锚基站发送索要UE上下文请求(RETRIEVE UE CONTEXT REQUEST)消息。
这里,索要UE上下文请求消息携带信息:RNAU。
3、锚基站向目标基站发送索要UE上下文失败(RETRIEVE UE CONTEXT  FAILURE)消息。
4、目标基站向UE发送RRC释放(RRC Release)消息,RRC释放消息携带悬挂指示信息(Suspend Indication)。
需要说明的是,图2-1和图2-2中的锚基站是指存储UE上下文的基站,在一个例子中,锚基站为上一次服务UE的基站。
Figure PCTCN2019094753-appb-000003
EDT数据传输
在LTE中引入了EDT数据传输,在EDT数据传输过程中,UE可能始终保持在空闲(idle)状态或者悬挂(suspend)状态或者非激活(inactive)状态,完成上行和/或下行的EDT数据传输。
EDT数据传输可以采用用户面传输方案,如图3所示,包括如下步骤:
1、UE向eNB发送RRC连接恢复请求(RRCConnectionResumeRequest)消息以及上行数据(Uplink data)。
这里,RRCConnectionResumeRequest携带如下信息:resumeID、resumeCause、shortResumeMAC-I。
2、eNB向MME发送UE上下文恢复请求(UE Context Resume Request)消息。
3、MME与S-GW之间修改承载(Modify Bearer)。
4、MME向eNB发送UE上下文恢复响应(UE Context Resume Response)消息。
5、eNB向S-GW发送上行数据(Uplink data)。
6、S-GW向eNB发送下行数据(Downlink data)。
7、MME与S-GW之间修改承载(Modify Bearer),eNB和MME之间执行S1悬挂流程(S1 Suspend procedure)。
8、eNB向UE发送RRC连接释放(RRCConnectionRelease)消息和下行数据(Downlink data)。
这里,RRCConnectionRelease消息携带如下信息:releaseCause、releaseID、NCC。
需要说明的是,图3是以LTE为例进行说明,NR与LTE同理,区别在于,对于NR需要将eNB替换为gNB,移动管理功能实体(MME,Mobility Management Entity)替换为AMF,服务网关(Serving Gateway,S-GW)替换为用户平面功能实体(UPF,User Plane Function)。
在图3中,RRC连接恢复请求消息携带在随机接入过程的MSG3中,上行数据属于用户面数据。其中,上行数据在专用传输信道(Dedicated Transmission Channel,DTCH)中传输,RRC连接恢复请求消息在公共控制信道(Common Control Channel,CCCH)中传输,上行数据对应的MAC SDU(即DTCH SDU)和RRC连接恢复请求消息对应的MAC SDU(即CCCH SDU)在MAC层复用在同一MAC PDU中。下行与上行同理,下行数据在DTCH中传输,RRC连接释放消息在CCCH中传输,下行数据对应的MAC SDU(即DTCH SDU)和RRC连接释放消息对应的MAC SDU(即CCCH SDU)在MAC层复用在同一MAC PDU中。需要说明的是,图3中的上行数据或下行数据可以是小包数据,这里,小包数据也称为小数据或者小数据包或者EDT数据。
对于上行的小包数据的发送所触发的RRC连接恢复过程,UE的上下文是否需要转移还未明确,导致小包数据传输效率较低。此外,目标基站收到该小包数据对应的MAC PDU后,需要先从该MAC PDU中解码CCCH,以获取锚基站的寻址信息,由于没有小包数据对应的承载配置信息,目标基站需要向锚基站索要终端的上下文后,才能解码小包数据,导致数据传输延迟增加。为此,提出了本申请实施例的以下技术方案。
图4为本申请实施例提供的数据传输方法的流程示意图一,如图4所示,所述数据传输方法包括以下步骤:
步骤401:终端向目标基站发送RRC恢复请求消息,目标基站接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、穿戴式设备等任意能够与网络进行通信的设备。在一可选实施方式中,所述终端为处于非激活态的终端。
本申请实施例中,所述RRC恢复请求消息携带小包数据,可以通过以下方式来实现:1)所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;或者,2)所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
在本申请一些可选实施方式中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。如此,目标基站可以通过小包数据对应的承载配置信息对小包数据进行解码,从而获得小包数据。
这里,所述承载配置信息包括以下至少之一:逻辑信道标识(Logical Channel Identifier,LCID)、数据无线承载标识(Data Resource Bearer Identifier,DRB ID)。
本申请实施例中,所述小包数据也称为小数据或者小数据包或者EDT数据。
步骤402:所述目标基站从所述RRC恢复请求消息中获取所述小包数据,并向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
本申请实施例中,所述目标基站从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。这里,第一终端标识可以是I-RNTI。
本申请实施例中,所述索要终端上下文请求消息中携带的第一信息,所述第一信息作为辅助信息,用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。所述索要终端上下文请求消息中携带的第一信息,可以通过以下方式来实现:
1)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据传输指示信息、小包数据对应的承载配置信息。或者,
2)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据、小包数据对应的承载配置信息。或者,
3)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:是否将所述终端的上下文发送给所述目标基站的指示信息。
需要说明的是,上述1)、2)、3)可以单独实施,也可以结合起来实施。举个例子:所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据传输指示信息、小包数据对应的承载配置信息、是否将所述终端的上下文发送给所述目标基站的指示信息。再举个例子:所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据、小包数据对应的承载配置信息、是否将所述终端的上下文发送给所述目标基站的指示信息。
这里,所述承载配置信息包括以下至少之一:LCID、DRB ID。
需要说明的是,如果所述RRC恢复请求消息携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。上述仅给出一个承载对应的小包数据发送的情况。
步骤403:如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站被发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
本申请实施例中,所述锚基站是指存储终端的上下文的基站。在一个例子中,所 述锚基站是上一次服务终端的基站。
以下结合上下文转移的具体情况对小包数据的传输方式进行具体说明。
●所述锚基站确定将所述终端的上下文发送给所述目标基站的情况:
1)所述目标基站接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;2)所述目标基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层进行解密和/或完整性验证;3)所述目标基站触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPRS隧道协议(GPRS Tunnelling Protocol,GPT)隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
这里,所述核心网控制面网元可以是AMF,所述核心网用户面网元可以是UPF。
●所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况:
1)所述目标基站接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;2)所述目标基站基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,3)所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
这里,所述核心网控制面网元可以是AMF,所述核心网用户面网元可以是UPF。
这里,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的隧道端点标识(Tunnel Endpoint ID,TEID)、GTP隧道关联的承载配置信息。进一步,所述承载配置信息包括以下至少之一:LCID、DRB ID。
需要说明的是,本申请实施例中的小包数据可以是一个或多个DRB对应的小包数据。所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
在一可选实施方式中,所述索要终端上下文失败消息还携带RRC释放消息,所述目标基站收到所述锚基站发送的索要终端上下文失败消息后,从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
以下结合图5-1和图5-2对本申请实施例的技术方案进行举例说明。
图5-1为本申请实施例提供的有上下文迁移的小包数据传输的流程图,包括以下步骤:
1、UE发送RRC恢复请求消息给目标基站,RRC恢复请求消息携带小包数据。
这里,UE发送RRC恢复请求消息给目标基站的目的是触发RRC连接恢复过程。
RRC恢复请求消息包含一个容器(container)或负载(payload),该容器或负载中包含需要传输的小包数据,进一步,还包含该小包数据对应的承载配置信息。例如:小包数据可以是PDCP PDU,承载配置信息可以是该小包数据对应的LCID和/或DRB ID等。
目标基站接收到RRC恢复请求消息后,解码该消息(具体实现时,目标基站接收到RRC恢复请求消息对应的MAC PDU后,解码该MAC PDU),获取RRC恢复请求消息中的UE的标识即I-RNTI,以及包含小包数据的容器或负载。
2、目标基站根据I-RNTI寻址锚基站,并发送索要UE上下文请求(RETRIEVE UE  CONTEXT REQUEST)消息给锚基站,索要UE上下文请求消息中携带UE关于小包数据发送的辅助信息(即第一信息),所述第一信息包含的内容可以通过以下任意一种或多种方式来实现:
方式一:小包数据传输指示信息(或者EDT传输指示信息)、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式二:小包数据对应的PDCP PDU、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式三:是否将所述终端的上下文发送给所述目标基站的指示信息,这里的指示信息可以基于目标基站的倾向或期望来确定。
需要说明的是,如果携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。
3、锚基站决定是否迁移UE上下文,如果决定迁移UE上下文,锚基站回复目标基站索要UE上下文响应(RETRIEVE UE CONTEXT RESPONSE)消息,该索要UE上下文响应携带UE上下文。
4、目标基站收到锚基站发送的UE上下文后,恢复UE上下文,并按照指示的LCID和/或DRB ID将小包数据传递给对应的PDCP层进行解密和/或完成性验证。目标基站向AMF发送路径转换请求(PATH SWITCH REQUEST)消息,以触发AMF进行路径转换。
这里,恢复UE上下文包括但不局限于:恢复AS安全、恢复DRB配置、恢复SRB配置。
5、目标基站接收到来自AMF的路径转换请求确认(PATH SWITCH REQUEST ACKNOWLEDGE)消息。
6、目标基站建立和核心网的GPT隧道,并将小包数据发送给UPF。
7、目标基站向UE发送RRC释放消息。
图5-2为本申请实施例提供的没有上下文迁移的小包数据传输的流程图,包括以下步骤:
1、UE发送RRC恢复请求消息给目标基站,RRC恢复请求消息携带小包数据。
这里,UE发送RRC恢复请求消息给目标基站的目的是触发RRC连接恢复过程。
RRC恢复请求消息包含一个容器(container)或负载(payload),该容器或负载中包含需要传输的小包数据,进一步,还包含该小包数据对应的承载配置信息。例如:小包数据可以是PDCP PDU,承载配置信息可以是该小包数据对应的LCID和/或DRB ID等。
目标基站接收到RRC恢复请求消息后,解码该消息(具体实现时,目标基站接收到RRC恢复请求消息对应的MAC PDU后,解码该MAC PDU),获取RRC恢复请求消息中的UE的标识即I-RNTI,以及包含小包数据的容器或负载。
2、目标基站根据I-RNTI寻址锚基站,并发送索要UE上下文请求(RETRIEVE UE CONTEXT REQUEST)消息给锚基站,索要UE上下文请求消息中携带UE关于小包数据发送的辅助信息(即第一信息),所述第一信息包含的内容可以通过以下任意一种或多种方式来实现:
方式一:小包数据传输指示信息(或者EDT传输指示信息)、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式二:小包数据对应的PDCP PDU、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式三:是否将所述终端的上下文发送给所述目标基站的指示信息,这里的指示信 息可以基于目标基站的倾向或期望来确定。
需要说明的是,如果携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。
3、锚基站决定是否迁移UE上下文,如果决定不迁移UE上下文,锚基站回复目标基站索要UE上下文失败(RETRIEVE UE CONTEXT FAILURE)消息。
这里,如果步骤2中选择的是方式一或者方式三,则锚基站通过索要UE上下文失败消息建立目标基站通向锚基站的GTP隧道,目标基站通过该GTP隧道向锚基站发送小包数据。进一步,如果传输的是N个DRB对应的小包数据,则建立N个GTP隧道,N个GTP隧道和N个DRB一一对应,N为正整数。同时,索要UE上下文失败消息中携带RRC释放消息。
4、锚基站恢复UE上下文,并将小包数据传递给对应的PDCP层进行解密和/或完成性验证,最后将小包数据发送给UPF。
5、目标基站收到锚基站发送的索要UE上下文失败消息后,从索要UE上下文失败消息中获取RRC释放消息,并发送给UE。
图6为本申请实施例提供的数据传输方法的流程示意图二,如图6所示,所述数据传输方法包括以下步骤:
步骤601:目标基站接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的MAC SDU和所述小包数据对应的MAC SDU复用在同一MAC PDU中传输。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、穿戴式设备等任意能够与网络进行通信的设备。在一可选实施方式中,所述终端为处于非激活态的终端。
本申请实施例中,所述RRC恢复请求消息和小包数据的传输采用用户面传输方案。其中,所述RRC恢复请求消息通过CCCH传输,所述小包数据通过DTCH传输。小包数据对应的MAC SDU(即DTCH SDU)和RRC连接恢复请求消息对应的MAC SDU(即CCCH SDU)在MAC层复用在同一MAC PDU中。
在申请一些可选实施方式中,所述RRC恢复请求消息还携带第一指示信息,所述第一指示信息用于指示RRC恢复连接的目的是传输所述小包数据。
本申请实施例中,所述小包数据也称为小数据或者小数据包或者EDT数据。
步骤602:所述目标基站向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
本申请实施例中,所述目标基站从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。这里,第一终端标识可以是I-RNTI。
本申请实施例中,所述索要终端上下文请求消息中携带的第一信息,所述第一信息作为辅助信息,用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。所述索要终端上下文请求消息中携带的第一信息,可以通过以下方式来实现:
1)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据传输指示信息、小包数据对应的承载配置信息。或者,
2)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据、小包数据对应的承载配置信息。或者,
3)所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:是否将所述终端的上下文发送给所述目标基站的指示信息。
需要说明的是,上述1)、2)、3)可以单独实施,也可以结合起来实施。举个例子:所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据传输指示信息、小包数据对应的承载配置信息、是否将所述终端的上下文发送给所述目标基站的指示信息。再举个例子:所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:小包数据、小包数据对应的承载配置信息、是否将所述终端的上下文发送给所述目标基站的指示信息。
这里,所述承载配置信息包括以下至少之一:LCID、DRB ID。
需要说明的是,如果所述RRC恢复请求消息携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。上述仅给出一个承载对应的小包数据发送的情况。
步骤603:如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
本申请实施例中,所述锚基站是指存储终端的上下文的基站。在一个例子中,所述锚基站是上一次服务终端的基站。
以下结合上下文转移的具体情况对小包数据的传输方式进行具体说明。
●所述锚基站确定将所述终端的上下文发送给所述目标基站的情况:
1)所述目标基站接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;2)所述目标基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;3)所述目标基站触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
这里,所述核心网控制面网元可以是AMF,所述核心网用户面网元可以是UPF。
●所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况:
1)所述目标基站接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;2)所述目标基站基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,3)所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
这里,所述核心网控制面网元可以是AMF,所述核心网用户面网元可以是UPF。
这里,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。进一步,所述承载配置信息包括以下至少之一:LCID、DRB ID。
需要说明的是,本申请实施例中的小包数据可以是一个或多个DRB对应的小包数据。所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
在一可选实施方式中,所述索要终端上下文失败消息还携带RRC释放消息,所述目标基站收到所述锚基站发送的索要终端上下文失败消息后,从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
以下结合图7-1和图7-2对本申请实施例的技术方案进行举例说明。
图7-1为本申请实施例提供的有上下文迁移的小包数据传输的流程图,包括以下步骤:
1、UE发送RRC恢复请求消息和小包数据给目标基站,RRC恢复请求消息对应的MAC SDU和小包数据对应的MAC SDU复用在同一MAC PDU中。
这里,UE非接入层(NAS)触发RRC发起RRC连接恢复过程,同时发送小包数据。具体地,所述RRC恢复请求消息通过CCCH传输,所述小包数据通过DTCH传输。小包数据对应的MAC SDU(即DTCH SDU)和RRC连接恢复请求消息对应的MAC SDU(即CCCH SDU)在MAC层复用在同一MAC PDU中。
这种情况,CCCH SDU需要先解码,所以在MAC PDU中需要将CCCH SDU放在DTCH SDU的前面。
可选的,为了能够让目标基站明确小包数据对应的MAC SDU和RRC连接恢复请求消息对应的MAC SDU在MAC层复用在同一MAC PDU中传输,需要在RRC恢复请求消息中携带第一指示信息,该第一指示信息用于指示RRC连接恢复的目的是为了小包数据的传输。
2、目标基站根据I-RNTI寻址锚基站,并发送索要UE上下文请求(RETRIEVE UE CONTEXT REQUEST)消息给锚基站,索要UE上下文请求消息中携带UE关于小包数据发送的辅助信息(即第一信息),所述第一信息包含的内容可以通过以下任意一种或多种方式来实现:
方式一:小包数据传输指示信息(或者EDT传输指示信息)、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式二:小包数据对应的PDCP PDU、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式三:是否将所述终端的上下文发送给所述目标基站的指示信息,这里的指示信息可以基于目标基站的倾向或期望来确定。
需要说明的是,如果携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。
3、锚基站决定是否迁移UE上下文,如果决定迁移UE上下文,锚基站回复目标基站索要UE上下文响应(RETRIEVE UE CONTEXT RESPONSE)消息,该索要UE上下文响应携带UE上下文。
4、目标基站收到锚基站发送的UE上下文后,恢复UE上下文,并按照指示的LCID和/或DRB ID将小包数据传递给对应的PDCP层进行解密和/或完成性验证。目标基站向AMF发送路径转换请求(PATH SWITCH REQUEST)消息,以触发AMF进行路径转换。
这里,恢复UE上下文包括但不局限于:恢复安全、恢复DRB配置、恢复SRB配置。
5、目标基站接收到来自AMF的路径转换请求确认(PATH SWITCH REQUEST ACKNOWLEDGE)消息。
6、目标基站建立和核心网的GPT隧道,并将小包数据发送给UPF。
7、目标基站向UE发送RRC释放消息。
图7-2为本申请实施例提供的没有上下文迁移的小包数据传输的流程图,包括以下步骤:
1、UE发送RRC恢复请求消息和小包数据给目标基站,RRC恢复请求消息对应的MAC SDU和小包数据对应的MAC SDU复用在同一MAC PDU中。
这里,UE非接入层(NAS)触发RRC发起RRC连接恢复过程,同时发送小包数 据。具体地,所述RRC恢复请求消息通过CCCH传输,所述小包数据通过DTCH传输。小包数据对应的MAC SDU(即DTCH SDU)和RRC连接恢复请求消息对应的MAC SDU(即CCCH SDU)在MAC层复用在同一MAC PDU中。
这种情况,CCCH SDU需要先解码,所以在MAC PDU中需要将CCCH SDU放在DTCH SDU的前面。
可选的,为了能够让目标基站明确小包数据对应的MAC SDU和RRC连接恢复请求消息对应的MAC SDU在MAC层复用在同一MAC PDU中传输,需要在RRC恢复请求消息中携带第一指示信息,该第一指示信息用于指示RRC连接恢复的目的是为了小包数据的传输。
2、目标基站根据I-RNTI寻址锚基站,并发送索要UE上下文请求(RETRIEVE UE CONTEXT REQUEST)消息给锚基站,索要UE上下文请求消息中携带UE关于小包数据发送的辅助信息(即第一信息),所述第一信息包含的内容可以通过以下任意一种或多种方式来实现:
方式一:小包数据传输指示信息(或者EDT传输指示信息)、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式二:小包数据对应的PDCP PDU、和/或小包数据关联的DRB ID、和/或小包数据关联的LCID;
方式三:是否将所述终端的上下文发送给所述目标基站的指示信息,这里的指示信息可以基于目标基站的倾向或期望来确定。
需要说明的是,如果携带多个承载对应的小包数据,则每个承载对应的小包数据以及该小包数据对应的承载配置信息都会分别携带。
3、锚基站决定是否迁移UE上下文,如果决定不迁移UE上下文,锚基站回复目标基站索要UE上下文失败(RETRIEVE UE CONTEXT FAILURE)消息。
这里,如果步骤2中选择的是方式一或者方式三,则锚基站通过索要UE上下文失败消息建立目标基站通向锚基站的GTP隧道,目标基站通过该GTP隧道向锚基站发送小包数据。进一步,如果传输的是N个DRB对应的小包数据,则建立N个GTP隧道,N个GTP隧道和N个DRB一一对应,N为正整数。同时,索要UE上下文失败消息中携带RRC释放消息。
4、锚基站恢复UE上下文,并将小包数据传递给对应的PDCP层进行解密和/或完成性验证,最后将小包数据发送给UPF。
5、目标基站收到锚基站发送的索要UE上下文失败消息后,从索要UE上下文失败消息中获取RRC释放消息,并发送给UE。
图8为本申请实施例提供的数据传输装置的结构组成示意图一,如图8所示,所述数据传输装置包括:
接收单元801,用于接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;从所述RRC恢复请求消息中获取所述小包数据;
发送单元802,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站;
其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
在一实施方式中,所述RRC恢复请求消息携带小包数据,包括:
所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;
或者,
所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
在一实施方式中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。
在一实施方式中,所述发送单元802,用于从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
小包数据传输指示信息、小包数据对应的承载配置信息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
小包数据、小包数据对应的承载配置信息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
是否将所述终端的上下文发送给所述目标基站的指示信息。
在一实施方式中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述接收单元801,用于接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
所述装置还包括:处理单元803,用于恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
在一实施方式中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述接收单元801,用于接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;
所述发送单元802,用于基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
在一实施方式中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
在一实施方式中,所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
在一实施方式中,所述索要终端上下文失败消息还携带RRC释放消息;
所述发送单元802,用于从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
在一实施方式中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图9为本申请实施例提供的数据传输装置的结构组成示意图二,如图9所示,所述 数据传输装置包括:
接收单元901,用于接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的MAC SDU和所述小包数据对应的MAC SDU复用在同一MAC PDU中传输;
发送单元902,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站;
其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
在一实施方式中,所述RRC恢复请求消息通过CCCH传输,所述小包数据通过DTCH传输。
在一实施方式中,所述RRC恢复请求消息还携带第一指示信息,所述第一指示信息用于指示RRC恢复连接的目的是传输所述小包数据。
在一实施方式中,所述发送单元902,用于从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
小包数据传输指示信息、小包数据对应的承载配置信息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
小包数据、小包数据对应的承载配置信息。
在一实施方式中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
是否将所述终端的上下文发送给所述目标基站的指示信息。
在一实施方式中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述接收单元901,用于接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
所述装置还包括:处理单元903,用于恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
在一实施方式中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述接收单元901,用于接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;
所述发送单元902,用于基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
在一实施方式中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
在一实施方式中,所述小包数据包括一个DRB对应的小包数据的情况下,所述 锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
在一实施方式中,所述索要终端上下文失败消息还携带RRC释放消息;
所述发送单元902,用于从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
在一实施方式中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图10为本申请实施例提供的数据传输装置的结构组成示意图三,如图10所示,所述数据传输装置包括:
发送单元1001,用于向目标基站发送RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
在一实施方式中,述RRC恢复请求消息携带小包数据,包括:
所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;
或者,
所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
在一实施方式中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。
在一实施方式中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备1100示意性结构图。该通信设备可以是终端,也可以是网络设备,图11所示的通信设备1100包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1210可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的通信设备,并且该通信设备1100可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1100具体可为本申请实施例的移动终端/终端,并且该通信设备1100可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可 以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的通信设备,并且该芯片可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端1310和网络设备1320。
其中,该终端1310可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包 括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示 的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (69)

  1. 一种数据传输方法,所述方法包括:
    目标基站接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;
    所述目标基站从所述RRC恢复请求消息中获取所述小包数据,并向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
  2. 根据权利要求1所述的方法,其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
  3. 根据权利要求1或2所述的方法,其中,所述RRC恢复请求消息携带小包数据,包括:
    所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;或者,
    所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述向锚基站发送索要终端上下文请求消息,包括:
    所述目标基站从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据传输指示信息、小包数据对应的承载配置信息。
  7. 根据权利要求1至5中任一项所述的方法,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据、小包数据对应的承载配置信息。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    是否将所述终端的上下文发送给所述目标基站的指示信息。
  9. 根据权利要求6至8中任一项所述的方法,其中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述方法还包括:
    所述目标基站接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
    所述目标基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;
    所述目标基站触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
  10. 根据权利要求6或8所述的方法,其中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述方法还包括:
    所述目标基站接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;
    所述目标基站基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
  11. 根据权利要求10所述的方法,其中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
  12. 根据权利要求11所述的方法,其中,
    所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
    所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
  13. 根据权利要求10至12中任一项所述的方法,其中,所述索要终端上下文失败消息还携带RRC释放消息,所述方法还包括:
    所述目标基站收到所述锚基站发送的索要终端上下文失败消息后,从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
  14. 根据权利要求4、6、7、9至11中任一项所述的方法,其中,所述承载配置信息包括以下至少之一:逻辑信道标识LCID、数据无线承载标识DRB ID。
  15. 一种数据传输方法,所述方法包括:
    目标基站接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的MAC SDU和所述小包数据对应的MAC SDU复用在同一MAC PDU中传输;
    所述目标基站向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给所述目标基站。
  16. 根据权利要求15所述的方法,其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
  17. 根据权利要求15或16所述的方法,其中,所述RRC恢复请求消息通过公共控制信道CCCH传输,所述小包数据通过专用传输信道DTCH传输。
  18. 根据权利要求15至17中任一项所述的方法,其中,所述RRC恢复请求消息还携带第一指示信息,所述第一指示信息用于指示RRC恢复连接的目的是传输所述小包数据。
  19. 根据权利要求15至18中任一项所述的方法,其中,所述向锚基站发送索要终端上下文请求消息,包括:
    所述目标基站从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
  20. 根据权利要求15至19中任一项所述的方法,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据传输指示信息、小包数据对应的承载配置信息。
  21. 根据权利要求15至19中任一项所述的方法,其中,所述索要终端上下文请 求消息中携带的第一信息,包括以下至少之一:
    小包数据、小包数据对应的承载配置信息。
  22. 根据权利要求15至21中任一项所述的方法,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    是否将所述终端的上下文发送给所述目标基站的指示信息。
  23. 根据权利要求20至22中任一项所述的方法,其中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述方法还包括:
    所述目标基站接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
    所述目标基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;
    所述目标基站触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
  24. 根据权利要求20或22所述的方法,其中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述方法还包括:
    所述目标基站接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;
    所述目标基站基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
  25. 根据权利要求24所述的方法,其中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
  26. 根据权利要求25所述的方法,其中,
    所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
    所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
  27. 根据权利要求24至26中任一项所述的方法,其中,所述索要终端上下文失败消息还携带RRC释放消息,所述方法还包括:
    所述目标基站收到所述锚基站发送的索要终端上下文失败消息后,从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
  28. 根据权利要求20、21、23至25中任一项所述的方法,其中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
  29. 一种数据传输方法,所述方法包括:
    终端向目标基站发送RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
  30. 根据权利要求29所述的方法,其中,所述RRC恢复请求消息携带小包数据,包括:
    所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;或者,
    所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
  31. 根据权利要求29或30所述的方法,其中,所述RRC恢复请求消息还携带 所述小包数据对应的承载配置信息。
  32. 根据权利要求31所述的方法,其中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
  33. 一种数据传输装置,所述装置包括:
    接收单元,用于接收终端发送的RRC恢复请求消息,所述RRC恢复请求消息携带小包数据;从所述RRC恢复请求消息中获取所述小包数据;
    发送单元,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站。
  34. 根据权利要求33所述的装置,其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
  35. 根据权利要求33或34所述的装置,其中,所述RRC恢复请求消息携带小包数据,包括:
    所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;或者,
    所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
  36. 根据权利要求33至35中任一项所述的装置,其中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。
  37. 根据权利要求33至36中任一项所述的装置,其中,所述发送单元,用于从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
  38. 根据权利要求33至37中任一项所述的装置,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据传输指示信息、小包数据对应的承载配置信息。
  39. 根据权利要求33至37中任一项所述的装置,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据、小包数据对应的承载配置信息。
  40. 根据权利要求33至39中任一项所述的装置,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    是否将所述终端的上下文发送给所述目标基站的指示信息。
  41. 根据权利要求38至40中任一项所述的装置,其中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述接收单元,用于接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
    所述装置还包括:处理单元,用于恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
  42. 根据权利要求38或40所述的装置,其中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述接收单元,用于接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP 隧道信息;
    所述发送单元,用于基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
  43. 根据权利要求42所述的装置,其中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
  44. 根据权利要求43所述的装置,其中,
    所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
    所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
  45. 根据权利要求42至44中任一项所述的装置,其中,所述索要终端上下文失败消息还携带RRC释放消息;
    所述发送单元,用于从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
  46. 根据权利要求36、38、39、41至43中任一项所述的装置,其中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
  47. 一种数据传输装置,所述装置包括:
    接收单元,用于接收终端发送的RRC恢复请求消息和小包数据,所述RRC恢复请求消息对应的MAC SDU和所述小包数据对应的MAC SDU复用在同一MAC PDU中传输;
    发送单元,用于向锚基站发送索要终端上下文请求消息,所述索要终端上下文请求消息携带第一信息,所述第一信息用于所述锚基站确定是否将所述终端的上下文发送给目标基站。
  48. 根据权利要求47所述的装置,其中,如果所述锚基站确定将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述目标基站发送至核心网;如果所述锚基站确定不将所述终端的上下文发送给所述目标基站,则所述小包数据通过所述锚基站发送至核心网。
  49. 根据权利要求47或48所述的装置,其中,所述RRC恢复请求消息通过CCCH传输,所述小包数据通过DTCH传输。
  50. 根据权利要求47至49中任一项所述的装置,其中,所述RRC恢复请求消息还携带第一指示信息,所述第一指示信息用于指示RRC恢复连接的目的是传输所述小包数据。
  51. 根据权利要求47至50中任一项所述的装置,其中,所述发送单元,用于从所述RRC恢复请求消息中获取第一终端标识,根据所述第一终端标识寻址锚基站,并向所述锚基站发送索要终端上下文请求消息。
  52. 根据权利要求47至51中任一项所述的装置,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据传输指示信息、小包数据对应的承载配置信息。
  53. 根据权利要求47至51中任一项所述的装置,其中,所述索要终端上下文请求消息中携带的第一信息,包括以下至少之一:
    小包数据、小包数据对应的承载配置信息。
  54. 根据权利要求47至53中任一项所述的装置,其中,所述索要终端上下文请 求消息中携带的第一信息,包括以下至少之一:
    是否将所述终端的上下文发送给所述目标基站的指示信息。
  55. 根据权利要求52至54中任一项所述的装置,其中,所述锚基站确定将所述终端的上下文发送给所述目标基站的情况下,所述接收单元,用于接收所述锚基站发送的索要终端上下文响应消息,所述索要终端上下文响应消息携带所述终端的上下文;
    所述装置还包括:处理单元,用于恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证;触发核心网控制面网元进行路径转换,接收到来自所述核心网控制面网元的路径转换确认消息后,建立与核心网用户面网元之间的GPT隧道,并通过所述GPT隧道将所述小包数据发送给所述核心网用户面网元。
  56. 根据权利要求52或54所述的装置,其中,所述锚基站确定不将所述终端的上下文发送给所述目标基站的情况下,所述接收单元,用于接收所述锚基站发送的索要终端上下文失败消息,所述索要终端上下文失败消息携带所述锚基站配置的GTP隧道信息;
    所述发送单元,用于基于所述GTP隧道信息通过GTP隧道向所述锚基站发送所述小包数据;其中,所述锚基站恢复所述终端的上下文,并按照所述小包数据对应的承载配置信息将所述小数据包传递给PDCP层进行解密和/或完整性验证,然后将所述小数据包发送给核心网用户面网元。
  57. 根据权利要求56所述的装置,其中,所述锚基站配置的GTP隧道信息,包括以下至少之一:GTP隧道对应的TEID、GTP隧道关联的承载配置信息。
  58. 根据权利要求57所述的装置,其中,
    所述小包数据包括一个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述一个DRB对应的GTP隧道信息;
    所述小包数据包括多个DRB对应的小包数据的情况下,所述锚基站配置的GTP隧道信息包括所述多个DRB分别对应的GTP隧道信息。
  59. 根据权利要求56至58中任一项所述的装置,其中,所述索要终端上下文失败消息还携带RRC释放消息;
    所述发送单元,用于从所述索要终端上下文失败消息中获取所述RRC释放消息,并将所述RRC释放消息发送给所述终端。
  60. 根据权利要求52、53、55至57中任一项所述的装置,其中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
  61. 一种数据传输装置,所述装置包括:
    发送单元,用于向目标基站发送RRC恢复请求消息,所述RRC恢复请求消息携带小包数据。
  62. 根据权利要求61所述的装置,其中,述RRC恢复请求消息携带小包数据,包括:
    所述RRC恢复请求消息包括第一容器,所述第一容器用于承载所述小包数据;或者,
    所述RRC恢复请求消息包括第一载荷,所述第一载荷用于承载所述小包数据。
  63. 根据权利要求61或62所述的装置,其中,所述RRC恢复请求消息还携带所述小包数据对应的承载配置信息。
  64. 根据权利要求63所述的装置,其中,所述承载配置信息包括以下至少之一:LCID、DRB ID。
  65. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法,或者权利要求15至28中任一项所述的方法,或者权利要求29至32中任一项所述的方法。
  66. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法,或者权利要求15至28中任一项所述的方法,或者权利要求29至32中任一项所述的方法。
  67. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法,或者权利要求15至28中任一项所述的方法,或者权利要求29至32中任一项所述的方法。
  68. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法,或者权利要求15至28中任一项所述的方法,或者权利要求29至32中任一项所述的方法。
  69. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法,或者权利要求15至28中任一项所述的方法,或者权利要求29至32中任一项所述的方法。
PCT/CN2019/094753 2019-07-04 2019-07-04 一种数据传输方法及装置、通信设备 WO2021000331A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19936467.0A EP3979763A4 (en) 2019-07-04 2019-07-04 Data transmission method and apparatus, and communication device
PCT/CN2019/094753 WO2021000331A1 (zh) 2019-07-04 2019-07-04 一种数据传输方法及装置、通信设备
CN201980092854.8A CN113475160A (zh) 2019-07-04 2019-07-04 一种数据传输方法及装置、通信设备
US17/646,679 US20220124859A1 (en) 2019-07-04 2021-12-30 Data transmission method and apparatus, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094753 WO2021000331A1 (zh) 2019-07-04 2019-07-04 一种数据传输方法及装置、通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/646,679 Continuation US20220124859A1 (en) 2019-07-04 2021-12-30 Data transmission method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2021000331A1 true WO2021000331A1 (zh) 2021-01-07

Family

ID=74100494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094753 WO2021000331A1 (zh) 2019-07-04 2019-07-04 一种数据传输方法及装置、通信设备

Country Status (4)

Country Link
US (1) US20220124859A1 (zh)
EP (1) EP3979763A4 (zh)
CN (1) CN113475160A (zh)
WO (1) WO2021000331A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206393A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 通信方法及装置
WO2023226647A1 (zh) * 2022-05-24 2023-11-30 荣耀终端有限公司 数据传输方法、网络设备及计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006805A1 (en) * 2019-07-10 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Network-based interface setup assistance
EP4000323A4 (en) * 2019-07-19 2022-08-31 Telefonaktiebolaget Lm Ericsson (Publ) UNBLOCKING, SUSPENSION AND RECONFIGURATION IN RADIOMESSAGE
CN115244979A (zh) * 2020-03-24 2022-10-25 Oppo广东移动通信有限公司 一种数据传输方法及装置、通信设备
EP4333540A3 (en) * 2020-05-14 2024-06-05 Koninklijke Philips N.V. Small data transmission
WO2023184492A1 (en) * 2022-04-01 2023-10-05 Huawei Technologies Co.,Ltd. User equipment context fetch for small data transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734542A (zh) * 2016-08-11 2018-02-23 电信科学技术研究院 一种服务小区更新方法及装置
CN107889274A (zh) * 2016-09-29 2018-04-06 宏碁股份有限公司 状态转换方法及用户设备
CN108347726A (zh) * 2017-01-25 2018-07-31 中兴通讯股份有限公司 移动网络小数据的安全传输方法及装置
US20180220486A1 (en) * 2017-01-30 2018-08-02 Yung-Lan TSENG Radio resource control connection resume method of wireless communication system
US20180227851A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Data transmission in inactive state
CN109952747A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 用于管理来自用户设备的小数据传输的方法、计算机程序、载体、计算机程序产品和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316521B (zh) * 2011-09-15 2014-04-16 电信科学技术研究院 数据传输方法、系统和设备
CN107241764B (zh) * 2016-03-29 2020-11-06 电信科学技术研究院 一种上行、下行小数据传输方法及装置
CN116684994A (zh) * 2016-05-12 2023-09-01 三星电子株式会社 用在无线通信系统中的轻连接方法和设备
EP3704883B1 (en) * 2017-11-13 2023-04-05 LG Electronics Inc. Method for managing ue context and device supporting the same
CN111757556B (zh) * 2019-03-29 2022-12-27 华为技术有限公司 一种数据传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734542A (zh) * 2016-08-11 2018-02-23 电信科学技术研究院 一种服务小区更新方法及装置
CN107889274A (zh) * 2016-09-29 2018-04-06 宏碁股份有限公司 状态转换方法及用户设备
CN109952747A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 用于管理来自用户设备的小数据传输的方法、计算机程序、载体、计算机程序产品和装置
CN108347726A (zh) * 2017-01-25 2018-07-31 中兴通讯股份有限公司 移动网络小数据的安全传输方法及装置
US20180220486A1 (en) * 2017-01-30 2018-08-02 Yung-Lan TSENG Radio resource control connection resume method of wireless communication system
US20180227851A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Data transmission in inactive state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979763A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206393A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 通信方法及装置
WO2023226647A1 (zh) * 2022-05-24 2023-11-30 荣耀终端有限公司 数据传输方法、网络设备及计算机可读存储介质

Also Published As

Publication number Publication date
US20220124859A1 (en) 2022-04-21
EP3979763A1 (en) 2022-04-06
CN113475160A (zh) 2021-10-01
EP3979763A4 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US11304054B2 (en) Communication method and device
WO2021000331A1 (zh) 一种数据传输方法及装置、通信设备
WO2021203310A1 (zh) 一种数据传输方法及装置、终端设备
WO2020034229A1 (zh) 一种信息传输方法及装置、通信设备
US20220124839A1 (en) Data transmission method and apparatus, and terminal
US20220061075A1 (en) Information transmission method and apparatus, and network device
WO2020258191A1 (zh) 一种接入控制方法及装置、终端
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2021000320A1 (zh) 一种数据传输方法及装置、网络设备、终端
CN112715038B (zh) 一种参数配置方法及装置、网络设备
WO2021026717A1 (zh) 一种资源协调方法及装置、终端设备
WO2020252795A1 (zh) 无线通信的方法、终端设备,接入网设备和核心网设备
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
WO2022036601A1 (zh) 一种上报终端能力的方法及装置、终端、网络设备
WO2022052004A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2022021413A1 (zh) 一种密钥生成方法及装置、终端设备、网络设备
WO2022011519A1 (zh) 数据传输的方法和终端设备
EP3833099B1 (en) Method and terminal for recovering rrc connection
JP7431219B2 (ja) データ伝送方法、端末装置及びネットワーク装置
WO2022126412A1 (zh) 一种重置配置方法及装置、终端设备
WO2022067470A1 (zh) 一种位置更新的方法及装置、终端设备
WO2022027638A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2022082409A1 (zh) 一种通信方法及装置、网络设备、终端设备
WO2021203400A1 (zh) 一种传输策略的配置方法及装置、网络设备、终端设备
WO2020223898A1 (zh) 一种信息传输方法及装置、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019936467

Country of ref document: EP

Effective date: 20211230