WO2020262765A1 - Polyimide film for graphite sheet and manufacturing method therefor - Google Patents

Polyimide film for graphite sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2020262765A1
WO2020262765A1 PCT/KR2019/014620 KR2019014620W WO2020262765A1 WO 2020262765 A1 WO2020262765 A1 WO 2020262765A1 KR 2019014620 W KR2019014620 W KR 2019014620W WO 2020262765 A1 WO2020262765 A1 WO 2020262765A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
graphite sheet
weight
polyamic acid
parts
Prior art date
Application number
PCT/KR2019/014620
Other languages
French (fr)
Korean (ko)
Inventor
민재호
원동영
최정열
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Publication of WO2020262765A1 publication Critical patent/WO2020262765A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film for a high-thickness graphite sheet and a method of manufacturing the polyimide film for a graphite sheet.
  • Graphite is a material with very excellent thermal conductivity and has been in the spotlight as a means of heat dissipation.
  • the artificial graphite manufactured in the form of a thin sheet has excellent thermal conductivity of about 2 to about 7 times as compared to copper or aluminum, and is therefore preferably used as a heat dissipation means applied to electronic devices.
  • the high-thickness graphite sheet is advantageous in terms of heat capacity compared to a conventional thin graphite sheet, for example, a graphite sheet having a thickness of 30 ⁇ m or less, so that even if the calorific value of an electronic device increases, heat can be efficiently dissipated. There is an advantage.
  • artificial graphite sheets are manufactured by carbonizing and graphitizing a polyimide film as a precursor.
  • a high-thickness polyimide film for example, a polyimide film having a thickness of 100 ⁇ m or more may be used depending on the desired thickness level.
  • One object of the present invention is to provide a polyimide film that has low brittleness when applied to a graphite sheet, has excellent surface quality, and can secure a high thickness at the same time, and a method of manufacturing the same.
  • Another object of the present invention is to provide a method of manufacturing a graphite sheet that has excellent surface quality and thermal conductivity, and is capable of securing a high thickness while having low brittleness.
  • One embodiment of the present invention is polyamic acid; And an imidation catalyst; formed from a composition for forming a polyimide film, having a thickness of about 100 ⁇ m to about 200 ⁇ m, and a first surface damage rate of 0% or about 0.001% to about 0.004 represented by Equation 1 below. %. It relates to a polyimide film for graphite sheets.
  • a 0 is a polyimide film specimen having a size of 200 mm X 25 mm by heat treatment from about 15° C. to about 1200° C. at a heating rate of about 1° C./min to about 5° C./min to carbonize, First graphitized by heat treatment from about 1200°C to about 2200°C at a temperature rising rate of about 1.5°C/min to about 5°C/min, and from about 2200°C at a temperature rising rate of about 0.4°C/min to about 1.3°C/min Secondary graphitization by heat treatment to about 2500°C, and heat treatment from about 2500°C to about 2800°C at a temperature increase rate of about 8.5°C/min to about 20°C/min to obtain a graphite sheet specimen obtained by tertiary graphitization at 10 magnification. It is the area measured by taking a picture (mm 2 ), and A 1 is the area (mm 2 ) of the damaged area measured by taking a picture of the graphite sheet
  • the molar ratio of the amic acid group of the polyamic acid: the imidation catalyst in the composition for forming the polyimide film may be about 1:0.15 to about 1:0.20.
  • the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of an imidation catalyst.
  • Another embodiment of the present invention is polyamic acid; And an imidation catalyst; after gelling the composition for forming a polyimide film at about 100° C. to about 200° C., primary imidization at about 200° C. to about 400° C. and secondary at about 300° C. to about 500° C.
  • It is a method for producing a polyimide film for a graphite sheet, comprising imidizing and forming a film to a thickness of about 100 ⁇ m to about 200 ⁇ m, and the polyimide film has a first surface damage rate represented by Equation 1 above. It relates to a method for producing a polyimide film for a graphite sheet having 0% or about 0.001% to about 0.004%.
  • Another embodiment of the present invention is a step of preparing a carbonized sheet by heat-treating the above-described polyimide film from about 15°C to about 1200°C; And graphitizing the carbonized sheet from about 1200° C. to about 2800° C. stepwise while changing the temperature increase rate to produce a graphite sheet having a thickness of about 50 ⁇ m to about 100 ⁇ m.
  • the graphite sheet relates to a method for producing a high-thickness graphite sheet having a second surface damage rate of 0% or about 0.001% to about 0.004% represented by the following Equation 2:
  • Second surface damage rate (%) ⁇ (B 1 / B 0 ) ⁇ 100 ⁇
  • Equation 2 B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
  • the step of preparing the carbonized sheet may include thermally decomposing the polyimide film while heating at a rate of about 1°C/min to about 5°C/min.
  • the carbonized sheet is first graphitized while raising the temperature from about 1200° C. to about 2200° C., followed by secondary graphitization while increasing the temperature from about 2200° C. to about 2500° C., and then from about 2500° C. to about 2800° C. To the tertiary graphitization.
  • the temperature increase rate of the primary graphitization is from about 1.5° C./min to about 5° C./min
  • the temperature increase rate of the secondary graphitization is from about 0.4° C./min to about 1.3° C./min
  • the heating rate may be about 8.5 °C/min to about 20 °C/min.
  • the molar ratio of the amic acid group of the polyamic acid: the imidation catalyst in the composition for forming the polyimide film may be about 1:0.15 to about 1:0.20.
  • the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of an imidation catalyst.
  • the composition for forming a polyimide film further comprises an inorganic filler of about 1,500 ppm to about 2,500 ppm based on 100 parts by weight of polyamic acid, and the inorganic filler is calcium carbonate, dicalcium phosphate, phosphoric acid. It may include one or more of calcium hydrogen, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride.
  • the present invention is a polyimide film that has low brittleness when applied to a graphite sheet, has excellent surface quality, and can secure a high thickness at the same time, a method for manufacturing the same, and excellent surface quality and thermal conductivity using the same, and low brittleness and high thickness. It provides a graphite sheet manufacturing method that can secure the degree.
  • Example 1 shows the results of evaluating the surface quality of Example 1 of the present invention.
  • FIG 4 is an exemplary illustration of a method of measuring an area when measuring the first surface damage rate of the present invention.
  • the polyimide film for a graphite sheet of the present invention includes polyamic acid; And an imidation catalyst; It is formed from a composition for forming a polyimide film comprising, and is a gelled and imidized product of the composition for forming a polyimide film.
  • the polyimide film for a graphite sheet of the present invention has a thickness of about 100 ⁇ m to about 200 ⁇ m (for example, about 100 ⁇ m, about 110 ⁇ m, about 120 ⁇ m, about 130 ⁇ m, about 140 ⁇ m, about 150 ⁇ m, about 160 ⁇ m ⁇ m, about 170 ⁇ m, about 180 ⁇ m, about 190 ⁇ m, or about 200 ⁇ m) is formed to have a thicker thickness than the conventional one, so that the thickness is about 50 ⁇ m to about 100 ⁇ m (for example, about 50 ⁇ m, after carbonization and graphitization).
  • a graphite sheet having a high thickness of about 60 ⁇ m, about 70 ⁇ m, about 80 ⁇ m, about 90 ⁇ m, or about 100 ⁇ m) is provided.
  • the polyimide film for a graphite sheet of the present invention has a thickness of about 50 ⁇ m to about 100 ⁇ m (e.g., about 50 ⁇ m, about 60 ⁇ m, about 70 ⁇ m, about 80 ⁇ m, about 90 ⁇ m) when applied as a graphite sheet. Or about 100 ⁇ m), and the first surface damage rate represented by the following equation 1 is 0% to about 0.004% (e.g., 0%, about 0.001%, about 0.002%, about 0.003% or about 0.004%, other For example, 0% or about 0.001% to about 0.004%) to achieve excellent surface quality.
  • the first surface damage rate represented by the following equation 1 is 0% to about 0.004% (e.g., 0%, about 0.001%, about 0.002%, about 0.003% or about 0.004%, other For example, 0% or about 0.001% to about 0.004%) to achieve excellent surface quality.
  • a 0 is a polyimide film specimen having a size of 200 mm ⁇ 25 mm from about 1°C/min to about 5°C/min (eg, about 1°C/min, about 2°C/min, about After heat treatment and carbonization from about 15° C. to about 1,200° C.
  • the first surface damage rate is a polyimide film specimen having a size of 200 mm X 25 mm and a thickness of about 100 ⁇ m to about 200 ⁇ m from about 1°C/min to about 5°C/min.
  • heat treatment from about 1,200°C to about 2,200°C at any one of about 1.5°C/min to about 5°C/min
  • secondary graphitization by heat treatment from about 2,200° C. to about 2,500° C. at a temperature rising rate of about 0.4° C./min to about 1.3° C./min, and about 8.5° C./min to about 20° C./min. It may mean the rate of surface damage occurring to the graphite sheet when the graphite sheet specimen is manufactured by third graphitization by heat treatment from about 2,500°C to about 2,800°C at one heating rate.
  • the first surface damage rate is a polyimide film specimen having a size of 200 mm ⁇ 25 mm and a thickness of 125 ⁇ m is carbonized by heat treatment from 15° C. to 1,200° C. at a heating rate of 1° C./min, Heat treatment from 1,200°C to 2,200°C at a rate of 1.5°C/min for primary graphitization, heat treatment at a rate of 0.4°C/min from 2,200°C to 2,500°C for secondary graphitization, and a temperature increase of 8.5°C/min
  • it may mean the rate of surface damage occurring to the graphite sheet.
  • a 0 is the area of the graphite sheet specimen in mm 2 measured after photographing the graphite sheet specimen at 10 magnification using a digital camera
  • a 1 is the graphite sheet specimen using a digital camera. It is the area of the damaged area in mm 2 measured after taking a picture at 10 magnification.
  • each area is measured by applying a filter with a grid drawn at intervals of 1 mm in width and 1 mm in height to a digital image photograph taken at 10 magnification and visually checking the number of squares (mm 2 ) included in the area. It can be done by counting and measuring.
  • FIG. 4 illustrates a method of measuring an area when measuring the first surface damage rate represented by Equation 1.
  • a digital image photograph taken at 10 magnification was prepared for the graphite sheet prepared as in (a), and 1 mm in width and 1 mm in length. Apply a filter with a grid drawn at intervals of. At this time, the area of one space formed by the grid is 1 mm 2 .
  • a 0 is measured by counting the case where the graphite sheet occupies 50% or more of the area of one space formed by the grid as in (b). Since A 0 measured in FIG. 4B is a total of 200, it can be measured as 200 mm 2 .
  • a 1 is measured by counting the cases where the visually visible damage occupies 50% or more of the portion occupied by the graphite sheet in the area of one space formed by the grid as in (c). Since A 1 measured in FIG. 4C is 159 in total, it may be measured as 159 mm 2 . Substituting the A 0 value and A 1 in this example for the surface damage rate of Equation 1, the damage rate in the exemplary 20 mm x 10 mm sized graphite specimen of FIG. 4 is 79.5%.
  • the polyimide film of the present invention is applied to a graphite sheet. It has low brittleness, has excellent surface quality, and can secure a high thickness at the same time.
  • composition for forming a polyimide film includes a polyamic acid and an imidization catalyst as follows.
  • polyamic acid serves as a precursor to be converted to polyimide by an imidization catalyst.
  • the polyamic acid is not particularly limited as long as it is obtained by polymerizing a dianhydride monomer and a diamine monomer.
  • diamines that can be used as a raw material for the polyamic acid are 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 4 ,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether (4,4'-oxy Cydianiline), 3,3'-diaminodiphenyl ether (3,3'-oxydianiline), 3,4'-diaminodiphenyl ether (3,4'-oxydianiline), 1,5- Diaminonaphthalene, 4,4'-diaminodiphenyl diethyl silane, 4,4'-diaminodiphenyl silane, 4,4'-diamin
  • the dianhydride monomer and diamine monomer that can be used as raw materials for the polyamic acid are about 1:0.9 to about 1:1.1 (e.g., about 1:0.9, about 1:1, or about 1:1.1 ) Can be used in the polymerization of polyamic acid.
  • a polyamic acid having excellent imidization efficiency and improved uniformity.
  • the weight average molecular weight of the polyamic acid is not particularly limited, but about 150,000 g/mole or more to about 1,000,000 g/mole or less (e.g., about 150,000 g/mole, about 200,000 g/mole, about 250,000 g/mole, about 300,000 g/mole, about 350,000 g/mole, about 400,000 g/mole, about 450,000 g/mole, about 500,000 g/mole, about 550,000 g/mole, about 600,000 g/mole, about 650,000 g/mole, about 700,000 g /mole, about 750,000 g/mole, about 800,000 g/mole, about 850,000 g/mole, about 900,000 g/mole, about 950,000 g/mole or about 1,000,000 g/mole), specifically about 170,000 g/mole or more to about It may be 700,000 g/mole or less, more specifically about 190,000 g/mole
  • the viscosity of the polyamic acid is not particularly limited, but about 90,000 cP or more and about 500,000 cP or less (e.g., about 90,000 cP, about 100,000 cP, about 110,000 cP, about 120,000 cP, about 130,000 cP, about 140,000 cP, about 150,000 cP, about 160,000 cP, about 170,000 cP, about 180,000 cP, about 190,000 cP, about 200,000 cP, about 210,000 cP, about 220,000 cP, about 230,000 cP, about 240,000 cP, about 250,000 cP, about 260,000 cP, about 270,000 cP , About 280,000 cP, about 290,000 cP, about 300,000 cP, about 310,000 cP, about 320,000 cP, about 330,000 cP, about 340,000 cP, about 350,000 cP, about 360,000 cP, about 370,000 cP, about 380,000
  • the polyamic acid may be dissolved in an organic solvent and used as a polyamic acid solution.
  • the polyamic acid solution can further improve processability and ease of operation when manufacturing a polyimide film.
  • the organic solvent is not particularly limited as long as it is a solvent in which polyamic acid can be dissolved, but may be specifically an aprotic polar solvent.
  • the aprotic polar solvent is an amide solvent such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chlorophenol Phenolic solvents such as N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme.
  • amide solvent such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chlorophenol Phenolic solvents such as N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme.
  • the organic solvent may further use an auxiliary solvent as necessary to adjust the solubility of the polyamic acid.
  • the auxiliary solvent may be, for example, toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, water, and the like.
  • the polyamic acid solution contains about 15% by weight to about 20% by weight (e.g., about 15% by weight, about 16% by weight, About 17% by weight, about 18% by weight, about 19% by weight, or about 20% by weight), and about 80% by weight to about 85% by weight of an organic solvent (e.g., about 80% by weight, about 81% by weight) Weight percent, about 82 weight percent, about 83 weight percent, about 84 weight percent, or about 85 weight percent).
  • it is advantageous to control the weight average molecular weight and viscosity of the total polyamic acid solution and may be more advantageous in the film formation process.
  • the imidation catalyst serves to promote the conversion of polyamic acid to polyimide.
  • the imidation catalyst may be an imine-based component such as an aliphatic tertiary amine, an aromatic tertiary amine, and a heterocyclic tertiary amine.
  • a heterocyclic tertiary amine may be preferable from the viewpoint of reactivity as a catalyst.
  • Non-limiting examples of the heterocyclic tertiary amine include quinoline, isoquinoline, ⁇ -picoline (BP), pyridine, and the like, and these may be used alone or in combination of two or more.
  • the content of the imidation catalyst in the precursor composition for a polyimide film is about 0.15 mol to about 0.2 mol, for example about 0.15 mol, about 0.16 mol, based on 1 mol of the amic acid functional group of the polyamic acid. About 0.17 moles, about 0.18 moles, about 0.19 moles, or about 0.20 moles.
  • the imidation catalyst can further improve crystallinity while allowing the matrix structure of the polyimide film of the present invention to be arranged more regularly than before.
  • the content of the imidation catalyst in the precursor composition for the polyimide film is from about 17 parts by weight to about 36 parts by weight based on 100 parts by weight of the amic acid of the polyamic acid (for example, about 17 parts by weight, About 18 parts by weight, about 19 parts by weight, about 20 parts by weight, about 21 parts by weight, about 22 parts by weight, about 23 parts by weight, about 24 parts by weight, about 25 parts by weight, about 26 parts by weight, about 27 parts by weight, About 28 parts by weight, about 29 parts by weight, about 30 parts by weight, about 31 parts by weight, about 32 parts by weight, about 33 parts by weight, about 34 parts by weight, about 35 parts by weight, or about 36 parts by weight).
  • the imidation catalyst can further improve crystallinity while allowing the matrix structure of the polyimide film of the present invention to be arranged more regularly than before.
  • the composition for forming a polyimide film may further include an inorganic filler.
  • the inorganic filler may be present in a dispersed state in a matrix in the polyimide film, and then sublimated during carbonization and/or graphitization to induce a predetermined foaming phenomenon.
  • the polyimide film may form a polyimide spacing with high regularity due to a structure in which inorganic fillers are uniformly dispersed in the polyimide matrix.
  • the predetermined voids formed by such foaming can improve the bending resistance of the graphite sheet, and the inorganic filler is sublimated during carbonization and/or graphitization, and the polyimide is converted into graphite, so that the graphite sheet has excellent regularity and alignment. Can be manufactured.
  • the inorganic filler is sublimated, it can itself serve as a passage for gas discharge, thereby preventing surface defects and damage due to foaming.
  • the inorganic filler is not particularly limited as long as it has sublimability at a temperature of about 1000°C or higher, but specifically, among calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride. It may contain one or more.
  • the polyimide film can obtain a graphite sheet having further improved bending resistance and structural uniformity.
  • the inorganic filler of the above example may be used alone or in combination of two or more.
  • the content of the inorganic filler in the precursor composition for a polyimide film is about 1,500 ppm to about 2,500 ppm (e.g., about 1,500 ppm, about 1,600 ppm, about 1,700 ppm, about 1,800 ppm, about 100 parts by weight of polyamic acid). 1,900 ppm, about 2,000 ppm, about 2,100 ppm, about 2,200 ppm, about 2,300 ppm, about 2,400 ppm, or about 2,500 ppm).
  • sublimation gas generated inside the film is smoothly discharged to the outside of the film, further improving the surface quality, and converting the polyimide structure to an artificial graphite structure. It can further improve the efficiency.
  • the average particle diameter of the inorganic filler is not particularly limited, but about 1.5 ⁇ m to about 4.5 ⁇ m (eg, about 1.5 ⁇ m, about 2 ⁇ m, about 2.5 ⁇ m, about 3 ⁇ m, about 3.5 ⁇ m, about 4 ⁇ m, or about 4.5 ⁇ m).
  • the inorganic filler may further reduce the formation of bright spots due to excessive foaming, while preventing the polyimide film surface from being excessively low in roughness, thereby further improving the surface quality.
  • composition for forming a polyimide film may further include additives including a dehydrating agent, in addition to the above-described components.
  • the dehydrating agent promotes a ring closure reaction through a dehydration action on polyamic acid, specifically aliphatic acid anhydride, aromatic acid anhydride, N,N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphos It may be a fondane dihalide, a thionyl halide, or a mixture of two or more of these.
  • the addition amount of the dehydrating agent in the composition for forming a polyimide film is about 0.5 mol to about 5 mol (e.g., about 0.5 mol, about 1 mol, about 1.5 mol, about 2 mol, about 1 mol of the amic acid group in the polyamic acid). 2.5 moles, about 3 moles, about 3.5 moles, about 4 moles, about 4.5 moles or about 5 moles).
  • the composition for forming a polyimide film may further improve imidization efficiency due to dehydration.
  • a composition for forming a polyimide film comprising a polyimide film of about 100 °C to about 200 °C (for example, about 100 °C, about 110 °C, about 120 °C, about 130 °C, about 140 °C, about 150 °C, about 160 °C, After gelation at about 170°C, about 180°C, about 190°C, or about 200°C), about 200°C to about 400°C (eg, about 200°C, about 210°C, about 220°C, about 230°C, about 240°C, about 250°C, about 260°C, about 270°C, about 280°C, about 290°C, about 300°C, about 310°C, about 320°C, about 330°C, about 340°C, about 350°C, about 360°C , At about 370°C, about 380°C, about 390°C or about 400
  • the polyimide film prepared by the method for producing a polyimide film for a graphite sheet has a surface damage rate of 0% to about 0.004% (e.g., 0%, about 0.001%, about 0.002) represented by the above formula 1 %, about 0.003% or about 0.004%, for example 0% or about 0.001% to about 0.004%).
  • the description of Equation 1 is as described above.
  • composition for forming the polyimide film and the respective components contained therein specific examples, and descriptions of the content are as described above.
  • the molar ratio of the amic acid group of the polyamic acid: the imidization catalyst in the composition for forming the polyimide film is about 1:0.15 to about 1:0.20 (eg, about 1:0.15, about 1:0.16, about 1: 0.17, about 1:0.18, about 1:0.19 or about 1:0.20).
  • the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of the imidation catalyst (e.g., about 17 parts by weight, about 18 parts by weight, about 19 parts by weight, about 20 parts by weight, about 21 parts by weight, about 22 parts by weight, about 23 parts by weight) Parts by weight, about 24 parts by weight, about 25 parts by weight, about 26 parts by weight, about 27 parts by weight, about 28 parts by weight, about 29 parts by weight, about 30 parts by weight, about 31 parts by weight, about 32 parts by weight, about 33 Parts by weight, about 34 parts by weight, about 35 parts by weight, or about 36 parts by weight); may be included.
  • the imidation catalyst e.g., about 17 parts by weight, about 18 parts by weight, about 19 parts by weight, about 20 parts by weight, about 21 parts by weight, about 22 parts by weight, about 23 parts by weight
  • Parts by weight e.g., about 24 parts by weight, about 25 parts by weight
  • the composition for forming a polyimide film is about 1,500 ppm to about 2,500 ppm (e.g., about 1,500 ppm, about 1,600 ppm, about 1,700 ppm, about 1,800 ppm, about 1,900 ppm, based on 100 parts by weight of polyamic acid, About 2,000 ppm, about 2,100 ppm, about 2,200 ppm, about 2,300 ppm, about 2,400 ppm or about 2,500 ppm) of an inorganic filler, wherein the inorganic filler is calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, It may contain at least one of barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride.
  • inorganic filler is calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, It may contain at least one of barium sulfate, silica, titanium oxide, alumina, silicon nitrid
  • a step of preparing a polyamic acid may be additionally performed prior to gelling the composition for forming a polyimide film.
  • the step of preparing such a polyamic acid is not particularly limited, and an appropriate method may be employed among methods such as emulsion polymerization, solution polymerization, bulk polymerization, and suspension polymerization.
  • the composition for forming a polyimide film may be prepared as a solution, applied to a support, and dried to form a sheet-shaped gel.
  • the support may be a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum, but is not limited thereto.
  • the application method is not particularly limited, and may be, for example, a casting method.
  • the sheet-shaped gel may be dried and gelled for about 10 minutes to about 20 minutes in the range of the gelling temperature to be prepared as a sheet-shaped gel having self-support.
  • the sheet-shaped gel prepared in the sheet shape is then peeled off from the support and then from about 200°C to about 400°C (eg, about 200°C, about 210°C, about 220°C, about 230°C, about 240°C , About 250°C, about 260°C, about 270°C, about 280°C, about 290°C, about 300°C, about 310°C, about 320°C, about 330°C, about 340°C, about 350°C, about 360°C, about Primary imidization at 370°C, about 380°C, about 390°C or about 400°C and about 300°C to about 500°C (e.g., about 300°C, about 310°C, about 320°C, about 330°C, about 340°C, about 350°C, about 360°C, about 370°C, about 380°C, about 390°C, about 400°C, about 410°C, about 420°C, about 430°
  • amic acid remaining without reaction may be additionally imidized, and the quality of the polyimide film may be further uniformly improved.
  • the efficiency of converting the polyamic acid to polyimide may be further improved.
  • the polyimide film filmed as described above has a thickness of about 100 ⁇ m to about 200 ⁇ m (for example, about 100 ⁇ m, about 110 ⁇ m, about 120 ⁇ m, about 130 ⁇ m, about 140 ⁇ m, about 150 ⁇ m, about 160 ⁇ m, about 170 ⁇ m, about 180 ⁇ m, about 190 ⁇ m or about 200 ⁇ m).
  • the thickness of the polyimide film is less than about 100 ⁇ m, it is difficult to apply it as a high-thick graphite sheet.
  • the thickness of the polyimide film exceeds about 200 ⁇ m, brittleness is excessively high.
  • Another embodiment of the present invention relates to a method of manufacturing a high-thickness graphite sheet having a second surface damage rate of 0% or about 0.001% to about 0.004% represented by Equation 2 below.
  • the second surface damage rate may be 0%, about 0.001%, about 0.002%, about 0.003%, or about 0.004%.
  • it may be 0% or from about 0.001% to about 0.004%.
  • the high-thickness graphite sheet manufacturing method includes the steps of preparing a carbonized sheet by heat-treating a polyimide film from 15°C to 1200°C; And graphitizing the carbonized sheet from about 1200° C. to about 2800° C. stepwise while changing a temperature increase rate to produce a graphite sheet having a thickness of about 50 ⁇ m to about 100 ⁇ m. Includes.
  • Second surface damage rate (%) ⁇ (B 1 / B 0 ) ⁇ 100 ⁇
  • Equation 2 B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
  • a specific method of measuring the second surface damage rate (%) is the same as the method of measuring the first surface damage rate represented by Equation 1 above.
  • the polyimide film is the polyimide film described above, and includes polyamic acid; And an imidation catalyst; formed from a composition for forming a polyimide film, having a thickness of about 100 ⁇ m to about 200 ⁇ m, and a first surface damage rate represented by Formula 1 described in the description of the polyimide film is 0 % Or from about 0.001% to about 0.004%.
  • the polyimide film in the method for producing a high-thickness graphite sheet of the present invention is the same as the polyimide film of the present invention, and is also manufactured by the polyimide film of the present invention, so a description thereof will be omitted.
  • the step of preparing the carbonized sheet includes the above-described polyimide film of the present invention from about 15°C to about 1200°C, specifically from about 20°C to about 1200°C, more Specifically, it is carbonized by heat treatment at elevated temperature from about 50°C to about 1200°C. Within the above temperature range, the polymer chains of the polyimide film are sufficiently thermally decomposed to produce a carbonized sheet having an amorphous carbon body formed therethrough, and thus can be used for graphitization for the production of a graphite sheet.
  • the carbonization method after putting the polyimide film into a high-temperature furnace facility such as an electric furnace, heating the polyimide film in a nitrogen/argon atmosphere from about 15°C to the maximum temperature of about 1200°C over about 12 hours to about 14 hours. It may be thermally decomposed while converting the polyimide film into a carbonized sheet.
  • a high-temperature furnace facility such as an electric furnace
  • the temperature increase rate during carbonization is about 1°C/min to about 5°C/min (eg, about 1°C/min, about 2°C/min, about 3°C/min, about 4°C/min or about 5°C/min).
  • the polymer chains of the polyimide film are sufficiently thermally decomposed, thereby producing a carbonized sheet in which an amorphous carbon body is formed, and thus can be used for graphitization for producing a graphite sheet.
  • the step of producing a graphite sheet comprises graphitizing the carbonized sheet obtained in the above and the carbonization step in a temperature range of about 1200°C to about 2800°C while changing the temperature increase rate step by step. Is prepared from about 50 ⁇ m to about 100 ⁇ m of graphite sheet. Through such a graphitization process, a graphite sheet formed by rearranging carbon in an amorphous carbon body in a carbonized sheet is prepared.
  • the graphitization method is not particularly limited, but after putting the carbonized sheet into a high-temperature furnace facility such as an electric furnace, in a mixed gas atmosphere containing nitrogen, argon, and a small amount of helium, about 1200° C. to about 2800° C. It can be prepared by raising and maintaining the temperature step by step over 10 hours to about 14 hours.
  • the carbonized sheet is primary graphitized while raising the temperature from about 1200°C to about 2200°C, and then secondary graphitized while raising the temperature from about 2200°C to about 2500°C, Then tertiary graphitization from about 2500° C. to about 2800° C. may be included.
  • the carbon rearrangement efficiency of the amorphous carbon body in the carbonized sheet is further improved, the brittleness is low even in the high thickness range, and the surface quality may be excellent.
  • the heating rate of the primary graphitization is about 1.5°C/min to about 5°C/min (eg, about 1.5°C/min, about 2°C/min, about 2.5°C/min, about 3°C /min, about 3.5°C/min, about 4°C/min, about 4.5°C/min, or about 5°C/min), and the heating rate of the secondary graphitization is about 0.4°C/min to about 1.3°C/min ( For example, about 0.4°C/min, about 0.5°C/min, about 0.6°C/min, about 0.7°C/min, about 0.8°C/min, about 0.9°C/min, about 1°C/min, about 1.1°C/ min, about 1.2°C/min or about 1.3°C/min), and the rate of temperature increase of the tertiary graphitization is about 8.5°C/min to about 20°C/min (eg, about 8.5°C/min, about 9°C /min, about 9.5°C
  • the gas generated during the production of the graphite sheet proceeds stably, further preventing surface damage,
  • the surface damage rates of the above equations 1 and 2 can be further reduced closer to 0%.
  • the high-thickness graphite sheet manufacturing method includes, after performing the step of manufacturing the graphite sheet, the graphitized graphite sheet from about 5°C/min to about 10°C/min (eg, about 5°C/min, about 6°C/min). a cooling step of cooling at a rate of min, about 7°C/min, about 8°C/min, about 9°C/min or about 10°C/min); It may additionally include. In such a case, the brittleness of the graphite sheet is further lowered, and the surface quality may be further improved.
  • Another embodiment of the present invention relates to a high-thickness graphite sheet manufactured by the above-described high-thickness graphite sheet manufacturing method.
  • the thick graphite sheet has a thickness of about 50 ⁇ m to about 100 ⁇ m. In this case, it has excellent heat capacity and is more advantageous for use as a heat dissipation means applied to an electronic device.
  • the high-thickness graphite sheet is formed from a polyimide film having a thickness of about 100 ⁇ m to about 200 ⁇ m.
  • the high-thickness graphite sheet may be a carbonized and graphitized sheet of a polyimide film having a thickness of about 100 ⁇ m to about 200 ⁇ m.
  • the high-thickness graphite sheet has a thickness of about 50 ⁇ m to about 100 ⁇ m, has excellent heat capacity, and is more advantageous for use as a heat dissipation means applied to electronic devices.
  • the high-thickness graphite sheet implements excellent surface quality as the second surface damage rate represented by Equation 2 is 0% or from about 0.001% to about 0.004%. In this case, it has more advantageous properties to be used as a heat dissipation means applied to an electronic device.
  • the high-thickness graphite sheet may have a thermal conductivity of about 800 W/m ⁇ K or more in a planar direction, specifically about 800 W/m ⁇ K to about 1200 W/m ⁇ K. In this case, it has more advantageous properties to be used as a heat dissipation means applied to an electronic device.
  • Oxydianiline ODA, 3,3'-oxydianiline or 4,4'-oxydianiline
  • dianhydride monomer as diamine monomer in dimethylformamide (DMF) as an organic solvent in a nitrogen atmosphere in a 0.5 L reactor
  • PMDA pyromellitic dianhydride
  • beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
  • composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 ⁇ m using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
  • the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C.
  • First imidization was performed for 10 minutes at a temperature of °C.
  • the polyimide films filmed by the primary and secondary imidization were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 2.5 cm and a thickness of 125 ⁇ m.
  • the polyimide film prepared in Example 1 was subjected to carbonization heat treatment from 50° C. to 1200° C. at a heating rate of 1° C./min to prepare a carbonized sheet.
  • graphitization heat treatment was performed in which the carbonized sheet was calcined while changing the heating rate in steps of 1 to 3 steps in a temperature range of 1200° C. to 2800° C. to prepare a graphite sheet having a final thickness of 50 ⁇ m.
  • the first graphitization was heated from 1200°C to 2200°C at a rate of 1.5°C/min
  • the secondary graphitization was heated from 2200°C to 2500°C at a rate of 0.4°C/min
  • the third graphitization was 2500°C.
  • the temperature was raised from °C to 2800 °C at a rate of 8.5 °C/min.
  • a graphite sheet having a final thickness of 50 ⁇ m was prepared in the same manner as in Example 4, except that the polyimide film was changed to the polyimide film prepared in Example 2.
  • a graphite sheet having a final thickness of 50 ⁇ m was prepared in the same manner as in Example 4, except that the polyimide film was changed to the polyimide film prepared in Example 3.
  • beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
  • composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 ⁇ m using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
  • the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C.
  • First imidization was performed for 10 minutes at a temperature of °C.
  • the polyimide films filmed by the first and second imidizations were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 25 cm and a thickness of 125 ⁇ m.
  • beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
  • composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 ⁇ m using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
  • the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C.
  • First imidization was performed for 10 minutes at a temperature of °C.
  • the polyimide films filmed by the first and second imidizations were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 25 cm and a thickness of 125 ⁇ m.
  • the polyimide film prepared in Comparative Example 1 was subjected to carbonization heat treatment from 50° C. to 1200° C. at a heating rate of 1° C./min to prepare a carbonized sheet.
  • graphitization heat treatment was performed in which the carbonized sheet was calcined while changing the heating rate in steps of 1 to 3 steps in a temperature range of 1200° C. to 2800° C. to prepare a graphite sheet having a final thickness of 50 ⁇ m.
  • the first graphitization was heated from 1200°C to 2200°C at a rate of 1.5°C/min
  • the secondary graphitization was heated from 2200°C to 2500°C at a rate of 0.4°C/min
  • the third graphitization was 2500°C.
  • the temperature was raised from °C to 2800 °C at a rate of 8.5 °C/min.
  • a graphite sheet having a final thickness of 50 ⁇ m was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 2.
  • a graphite sheet having a final thickness of 50 ⁇ m was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 3.
  • a graphite sheet having a final thickness of 50 ⁇ m was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 4.
  • the surface quality of the high-thickness graphite sheets prepared in Examples 4 to 6 and Comparative Examples 5 to 8 was evaluated visually. Specifically, in the evaluation of the surface quality, the surface of each high-thickness graphite sheet was observed through the naked eye for cracks or cracks.
  • Second surface damage rate (%) ⁇ (B 1 / B 0 ) ⁇ 100 ⁇
  • Equation 2 B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
  • the thermal diffusivity of the graphite sheet specimens of Examples and Comparative Examples in the plane direction was measured by a laser flash method using a thermal diffusivity measuring equipment (model name LFA 467, Netsch), and the density (weight/volume) in the thermal diffusivity measured value And specific heat (a measure of specific heat using DSC) to calculate thermal conductivity.
  • specific heat a measure of specific heat using DSC
  • the number of bright spots generated is a factor causing surface defects of the graphite sheet, and the number of protrusions having a size of 0.05 mm or more in the 50 mm X 50 mm square of the sheet was measured.
  • the (1) surface quality evaluation cracks or cracks occurred, or a specimen that was not graphitized could not be measured. The results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a polyimide film for a graphite sheet and a manufacturing method therefor. In an embodiment, the polyimide film for a graphite sheet is formed from a composition for forming a polyimide film, the composition comprising: a polyamic acid; and an imidization catalyst, wherein the polyimide film has a thickness of about 100 ㎛ to about 200 ㎛ and a first surface damage rate, expressed by equation 1, of 0% or about 0.001% to about 0.004%. (Equation 1 is as defined in the detailed description.)

Description

그라파이트 시트용 폴리이미드 필름 및 이의 제조방법Polyimide film for graphite sheet and its manufacturing method
본 발명은 고후도 그라파이트 시트용 폴리이미드 필름 및 상기 그라파이트 시트용 폴리이미드 필름의 제조방법에 관한 것이다.The present invention relates to a polyimide film for a high-thickness graphite sheet and a method of manufacturing the polyimide film for a graphite sheet.
그라파이트는 열전도도가 매우 우수한 물질로서 방열 수단으로 크게 각광 받고 있다. 특히, 얇은 시트의 형태로 제조하는 인조 그라파이트는 구리나 알루미늄과 비교하였을 때, 약 2 배 내지 약 7 배 정도의 우수한 열전도도를 가지므로, 전자기기에 적용되는 방열 수단으로서 바람직하게 이용되고 있다.Graphite is a material with very excellent thermal conductivity and has been in the spotlight as a means of heat dissipation. In particular, the artificial graphite manufactured in the form of a thin sheet has excellent thermal conductivity of about 2 to about 7 times as compared to copper or aluminum, and is therefore preferably used as a heat dissipation means applied to electronic devices.
최근의 전자기기는 점차 그 구조가 경량화, 소형화, 박형화 및 고집적화됨에 따라 단위 체적당 발열량이 증가하는 추세에 있다. 이러한 경우, 열 부하로 인한 반도체의 연산 속도 저하와 배터리의 열화로 인한 수명 단축 등 전자기기 성능에 직접적인 악 영향을 줄 수 있다. Recently, electronic devices have a tendency to increase the amount of heat generated per unit volume as their structures are gradually reduced in weight, size, thickness, and high integration. In this case, the performance of the electronic device may be directly adversely affected, such as a reduction in the operation speed of a semiconductor due to a heat load and a shortened lifespan due to deterioration of a battery.
이와 같은 문제를 해결하기 위한 방안 중 하나로, 두께가 상대적으로 두꺼운 고후도의 그라파이트 시트를 전자기기에 적용하는 방법이 제안되고 있다. 고후도 그라파이트 시트는, 통상의 박형 그라파이트 시트, 예를 들어 30 ㎛ 이하의 두께를 갖는 그라파이트 시트와 비교하여 열 수용량의 측면에서 유리하므로, 전자기기의 발열량이 증가하더라도 열을 효율적으로 방열시킬 수 있는 이점이 있다.As one of the solutions to this problem, a method of applying a graphite sheet having a relatively thick thickness to an electronic device has been proposed. The high-thickness graphite sheet is advantageous in terms of heat capacity compared to a conventional thin graphite sheet, for example, a graphite sheet having a thickness of 30 μm or less, so that even if the calorific value of an electronic device increases, heat can be efficiently dissipated. There is an advantage.
일반적으로, 인조 그라파이트 시트는 전구체인 폴리이미드 필름을 탄화 및 흑연화 가공하여 제조된다. 고후도 그라파이트 시트의 제조에는 목적하는 두께 수준에 따라 고후도 폴리이미드 필름, 예를 들어 두께가 100 ㎛ 이상인 폴리이미드 필름이 이용될 수 있다.In general, artificial graphite sheets are manufactured by carbonizing and graphitizing a polyimide film as a precursor. In the manufacture of the high-thickness graphite sheet, a high-thickness polyimide film, for example, a polyimide film having a thickness of 100 μm or more may be used depending on the desired thickness level.
그러나, 고후도의 폴리이미드 필름을 이용하여 그라파이트 시트를 제조하더라도, 열처리 과정에서 표면이 매끄럽고 내부의 그라파이트 구조가 손상되지 않은 양질의 그라파이트 시트를 수득하기는 어려워 수율이 낮은 문제가 있다.However, even if a graphite sheet is manufactured using a high-thickness polyimide film, it is difficult to obtain a high-quality graphite sheet with a smooth surface and an internal graphite structure in which the graphite structure is not damaged during the heat treatment process, so that the yield is low.
이는, 폴리이미드 필름의 표면층과 내부에서 거의 동시에 탄화와 흑연화가 진행된다고 가정할 때, 고후도 폴리이미드 필름의 경우 내부로부터 발생하는 승화 가스의 양이 많아 표면층에 형성된 또는 형성되는 중의 그라파이트 구조가 손상 내지 파괴될 가능성이 높아짐에 따른 것으로 추측된다. 또한, 표면뿐만 아니라, 필름의 중심부 및 이에 인접한 내측 또한 상대적으로 다량의 승화 가스에 의해 압력이 크게 증가하여, 형성된 또는 형성되는 중의 그라파이트 구조가 파괴되는 것도 하나의 원인으로 볼 수 있다.This is, assuming that carbonization and graphitization proceed almost simultaneously in the surface layer and inside of the polyimide film, in the case of a high-thickness polyimide film, the amount of sublimation gas generated from the inside is large, and the graphite structure formed on or during the formation of the surface layer is damaged. It is presumed to be due to the increased possibility of being destroyed. In addition, not only the surface, but also the central portion of the film and the inner side adjacent thereto, the pressure is greatly increased by a relatively large amount of sublimation gas, and the graphite structure formed or formed is destroyed as one cause.
따라서, 고후도이면서도 표면 품질과 그라파이트 구조가 온전한, 양질의 그라파이트 시트를 제조할 수 있는 기술의 필요성이 높은 실정이다.Accordingly, there is a high need for a technology capable of manufacturing a high-quality graphite sheet with a high thickness and intact surface quality and graphite structure.
본 발명의 하나의 목적은 그라파이트 시트에 적용 시 취성이 낮고, 표면 품질이 우수하면서 동시에 고후도를 확보할 수 있는 폴리이미드 필름 및 이의 제조 방법을 제공하는 것이다. One object of the present invention is to provide a polyimide film that has low brittleness when applied to a graphite sheet, has excellent surface quality, and can secure a high thickness at the same time, and a method of manufacturing the same.
본 발명의 다른 목적은 표면 품질 및 열전도도가 우수하고, 취성이 낮으면서도 고후도를 확보할 수 있는 그라파이트 시트의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a graphite sheet that has excellent surface quality and thermal conductivity, and is capable of securing a high thickness while having low brittleness.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.All of the above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 일 구현예는 폴리아믹산; 및 이미드화 촉매;를 포함하는 폴리이미드 필름 형성용 조성물로부터 형성되고, 두께가 약 100 ㎛ 내지 약 200 ㎛이고, 하기 식 1로 표시되는 제1 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 그라파이트 시트용 폴리이미드 필름에 관한 것이다.One embodiment of the present invention is polyamic acid; And an imidation catalyst; formed from a composition for forming a polyimide film, having a thickness of about 100 μm to about 200 μm, and a first surface damage rate of 0% or about 0.001% to about 0.004 represented by Equation 1 below. %. It relates to a polyimide film for graphite sheets.
<식 1><Equation 1>
제1 표면 손상률(%) = { ( A1 / A0 ) × 100 }1st surface damage rate (%) = {(A 1 / A 0 ) × 100}
상기 식 1에서, A0는 크기가 200 mm X 25 mm인 폴리이미드 필름 시편을 약 1℃/min 내지 약 5℃/min의 승온 속도로 약 15℃에서 약 1200℃까지 열처리하여 탄화한 후, 약 1.5℃/min 내지 약 5℃/min의 승온 속도로 약 1200℃에서부터 약 2200℃까지 열처리하여 1차 흑연화하고, 약 0.4℃/min 내지 약 1.3℃/min의 승온 속도로 약 2200℃에서부터 약 2500℃까지 열처리하여 2차 흑연화하고, 약 8.5℃/min 내지 약 20℃/min의 승온 속도로 약 2500℃에서부터 약 2800℃까지 열처리하여 3차 흑연화하여 얻어진 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, A1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 1, A 0 is a polyimide film specimen having a size of 200 mm X 25 mm by heat treatment from about 15° C. to about 1200° C. at a heating rate of about 1° C./min to about 5° C./min to carbonize, First graphitized by heat treatment from about 1200°C to about 2200°C at a temperature rising rate of about 1.5°C/min to about 5°C/min, and from about 2200°C at a temperature rising rate of about 0.4°C/min to about 1.3°C/min Secondary graphitization by heat treatment to about 2500°C, and heat treatment from about 2500°C to about 2800°C at a temperature increase rate of about 8.5°C/min to about 20°C/min to obtain a graphite sheet specimen obtained by tertiary graphitization at 10 magnification. It is the area measured by taking a picture (mm 2 ), and A 1 is the area (mm 2 ) of the damaged area measured by taking a picture of the graphite sheet specimen at 10 magnification.
상기 구현예에서, 상기 폴리이미드 필름 형성용 조성물 중 폴리아믹산의 아믹산기:이미드화 촉매의 몰비는 약 1:0.15 내지 약 1:0.20일 수 있다.In the above embodiment, the molar ratio of the amic acid group of the polyamic acid: the imidation catalyst in the composition for forming the polyimide film may be about 1:0.15 to about 1:0.20.
상기 구현예에서, 상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부; 및 이미드화 촉매 약 17 중량부 내지 약 36 중량부;를 포함하는 것일 수 있다.In the above embodiment, the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of an imidation catalyst.
본 발명의 다른 구현예는 폴리아믹산; 및 이미드화 촉매;를 포함하는 폴리이미드 필름 형성용 조성물을 약 100℃ 내지 약 200℃에서 겔화한 후, 약 200℃ 내지 약 400℃에서 1차 이미드화 및 약 300℃ 내지 약 500℃에서 2차 이미드화하여, 약 100 ㎛인 내지 약 200 ㎛의 두께로 필름화하는 것을 포함하는, 그라파이트 시트용 폴리이미드 필름의 제조 방법이고, 상기 폴리이미드 필름은 상기 식 1로 표시되는 제1 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 그라파이트 시트용 폴리이미드 필름의 제조 방법에 관한 것이다. Another embodiment of the present invention is polyamic acid; And an imidation catalyst; after gelling the composition for forming a polyimide film at about 100° C. to about 200° C., primary imidization at about 200° C. to about 400° C. and secondary at about 300° C. to about 500° C. It is a method for producing a polyimide film for a graphite sheet, comprising imidizing and forming a film to a thickness of about 100 µm to about 200 µm, and the polyimide film has a first surface damage rate represented by Equation 1 above. It relates to a method for producing a polyimide film for a graphite sheet having 0% or about 0.001% to about 0.004%.
본 발명의 또 다른 구현예는 전술한 폴리이미드 필름을 약 15℃에서부터 약 1200℃까지 승온 열처리하여 탄화된 시트를 제조하는 단계; 및 상기 탄화된 시트를 약 1200℃에서부터 약 2800℃까지 단계적으로 승온 속도를 변경하면서 흑연화하여 두께가 약 50㎛인 내지 약 100㎛인 그라파이트 시트를 제조하는 단계; 를 포함하고, 상기 그라파이트 시트는 하기 식 2로 표시되는 제2 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 고후도 그라파이트 시트 제조 방법에 관한 것이다:Another embodiment of the present invention is a step of preparing a carbonized sheet by heat-treating the above-described polyimide film from about 15°C to about 1200°C; And graphitizing the carbonized sheet from about 1200° C. to about 2800° C. stepwise while changing the temperature increase rate to produce a graphite sheet having a thickness of about 50 μm to about 100 μm. Including, the graphite sheet relates to a method for producing a high-thickness graphite sheet having a second surface damage rate of 0% or about 0.001% to about 0.004% represented by the following Equation 2:
<식 2><Equation 2>
제2 표면 손상률(%) = { ( B1 / B0 ) × 100 }Second surface damage rate (%) = {(B 1 / B 0 ) × 100}
상기 식 2에서, B0는 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, B1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 2, B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
상기 탄화된 시트를 제조하는 단계는 상기 폴리이미드 필름을 약 1℃/min 내지 약 5℃/min의 속도로 승온하면서 열분해하는 것을 포함할 수 있다.The step of preparing the carbonized sheet may include thermally decomposing the polyimide film while heating at a rate of about 1°C/min to about 5°C/min.
상기 흑연화는 상기 탄화된 시트를 약 1200℃에서부터 약 2200℃까지 승온하면서 1차 흑연화한 후, 약 2200℃에서부터 약 2500℃까지 승온하면서 2차 흑연화하고, 이어서 약 2500℃에서부터 약 2800℃까지 3차 흑연화하는 것일 수 있다.In the graphitization, the carbonized sheet is first graphitized while raising the temperature from about 1200° C. to about 2200° C., followed by secondary graphitization while increasing the temperature from about 2200° C. to about 2500° C., and then from about 2500° C. to about 2800° C. To the tertiary graphitization.
상기 1차 흑연화의 승온 속도는 약 1.5 ℃/min 내지 약 5 ℃/min 이고, 상기 2차 흑연화의 승온 속도는 약 0.4 ℃/min 내지 약 1.3 ℃/min 이고, 상기 3차 흑연화의 승온 속도는 약 8.5 ℃/min 내지 약 20 ℃/min 일 수 있다.The temperature increase rate of the primary graphitization is from about 1.5° C./min to about 5° C./min, the temperature increase rate of the secondary graphitization is from about 0.4° C./min to about 1.3° C./min, and The heating rate may be about 8.5 °C/min to about 20 °C/min.
상기 구현예에서, 상기 폴리이미드 필름 형성용 조성물 중 폴리아믹산의 아믹산기:이미드화 촉매의 몰비는 약 1:0.15 내지 약 1:0.20일 수 있다.In the above embodiment, the molar ratio of the amic acid group of the polyamic acid: the imidation catalyst in the composition for forming the polyimide film may be about 1:0.15 to about 1:0.20.
상기 구현예에서, 상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부; 및 이미드화 촉매 약 17 중량부 내지 약 36 중량부;를 포함하는 것일 수 있다.In the above embodiment, the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of an imidation catalyst.
상기 구현예에서, 상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부를 기준으로 약 1,500 ppm 내지 약 2,500 ppm의 무기물계 필러를 더 포함하며, 상기 무기물계 필러는 탄산칼슘, 제2인산칼슘, 인산수소칼슘, 황산바륨, 실리카, 산화티탄, 알루미나, 질화규소 및 질화붕소 중 1종 이상을 포함하는 것일 수 있다.In the above embodiment, the composition for forming a polyimide film further comprises an inorganic filler of about 1,500 ppm to about 2,500 ppm based on 100 parts by weight of polyamic acid, and the inorganic filler is calcium carbonate, dicalcium phosphate, phosphoric acid. It may include one or more of calcium hydrogen, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride.
본 발명은 그라파이트 시트에 적용 시 취성이 낮고, 표면 품질이 우수하면서 동시에 고후도를 확보할 수 있는 폴리이미드 필름, 이의 제조 방법 및 이를 이용하여 표면품질 및 열전도도가 우수하고, 취성이 낮으면서도 고후도를 확보할 수 있는 그라파이트 시트 제조방법을 제공한다.The present invention is a polyimide film that has low brittleness when applied to a graphite sheet, has excellent surface quality, and can secure a high thickness at the same time, a method for manufacturing the same, and excellent surface quality and thermal conductivity using the same, and low brittleness and high thickness. It provides a graphite sheet manufacturing method that can secure the degree.
도 1은 본 발명 실시예 1의 표면 품질 평가 결과를 나타낸 것이다.1 shows the results of evaluating the surface quality of Example 1 of the present invention.
도 2는 본 발명 비교예 7의 표면 품질 평가 결과를 나타낸 것이다.2 shows the results of evaluating the surface quality of Comparative Example 7 of the present invention.
도 3은 본 발명 비교예 5의 표면 품질 평가 결과를 나타낸 것이다.3 shows the results of evaluating the surface quality of Comparative Example 5 of the present invention.
도 4는 본 발명의 제1 표면 손상률의 측정 시 면적을 측정하는 방법을 예시적으로 나타낸 것이다.4 is an exemplary illustration of a method of measuring an area when measuring the first surface damage rate of the present invention.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. In describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.When'include','have','consists of' and the like mentioned in the present specification are used, other parts may be added unless'only' is used. In the case of expressing the constituent elements in the singular, it includes the case of including the plural unless specifically stated otherwise.
또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.In addition, in interpreting the constituent elements, it is interpreted as including an error range even if there is no explicit description.
본 명세서에서 사용되는 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second used in the present specification may be used to describe various components, but the components should not be limited by terms. The terms are only used for the purpose of distinguishing one component from another component.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 에서 "내지"는 ≥a이고 ≤b으로 정의한다.In "a to b" representing a numerical range in the present specification, "to" is defined as ≥a and ≤b.
폴리이미드 필름Polyimide film
본 발명의 일 구현예는 고후도 그라파이트 시트용 폴리이미드 필름에 관한 것이다. 이러한 본 발명의 그라파이트 시트용 폴리이미드 필름은 폴리아믹산; 및 이미드화 촉매; 를 포함하는 폴리이미드 필름 형성용 조성물로부터 형성되며, 상기 폴리이미드 필름 형성용 조성물의 겔화 및 이미드화물이다.One embodiment of the present invention relates to a polyimide film for a high-thickness graphite sheet. The polyimide film for a graphite sheet of the present invention includes polyamic acid; And an imidation catalyst; It is formed from a composition for forming a polyimide film comprising, and is a gelled and imidized product of the composition for forming a polyimide film.
본 발명의 그라파이트 시트용 폴리이미드 필름은 두께가 약 100 ㎛ 내지 약 200 ㎛(예를 들면, 약 100 ㎛, 약 110 ㎛, 약 120 ㎛, 약 130 ㎛, 약 140 ㎛, 약 150 ㎛, 약 160 ㎛, 약 170 ㎛, 약 180 ㎛, 약 190 ㎛ 또는 약 200 ㎛)로 종래보다 두꺼운 두께로 형성되어, 탄화 및 흑연화 후에도 두께가 약 50 ㎛ 내지 약 100 ㎛(예를 들면, 약 50 ㎛, 약 60 ㎛, 약 70 ㎛, 약 80 ㎛, 약 90 ㎛ 또는 약 100 ㎛)인 고후도의 그라파이트 시트를 제공한다.The polyimide film for a graphite sheet of the present invention has a thickness of about 100 µm to about 200 µm (for example, about 100 µm, about 110 µm, about 120 µm, about 130 µm, about 140 µm, about 150 µm, about 160 µm Μm, about 170 µm, about 180 µm, about 190 µm, or about 200 µm) is formed to have a thicker thickness than the conventional one, so that the thickness is about 50 µm to about 100 µm (for example, about 50 µm, after carbonization and graphitization). A graphite sheet having a high thickness of about 60 μm, about 70 μm, about 80 μm, about 90 μm, or about 100 μm) is provided.
또한, 본 발명의 그라파이트 시트용 폴리이미드 필름은 그라파이트 시트로 적용 시 두께가 약 50 ㎛ 내지 약 100 ㎛(예를 들면, 약 50 ㎛, 약 60 ㎛, 약 70 ㎛, 약 80 ㎛, 약 90 ㎛ 또는 약 100 ㎛)인 동시에 하기 식 1로 표시되는 제1 표면 손상률이 0% 내지 약 0.004%(예를 들면, 0%, 약 0.001%, 약 0.002%, 약 0.003% 또는 약 0.004%, 다른 예를 들면 0% 또는 약 0.001% 내지 약 0.004%)로 우수한 표면 품질을 구현한다.In addition, the polyimide film for a graphite sheet of the present invention has a thickness of about 50 µm to about 100 µm (e.g., about 50 µm, about 60 µm, about 70 µm, about 80 µm, about 90 µm) when applied as a graphite sheet. Or about 100 μm), and the first surface damage rate represented by the following equation 1 is 0% to about 0.004% (e.g., 0%, about 0.001%, about 0.002%, about 0.003% or about 0.004%, other For example, 0% or about 0.001% to about 0.004%) to achieve excellent surface quality.
<식 1><Equation 1>
제1 표면 손상률(%) = { ( A1 / A0 ) × 100 }1st surface damage rate (%) = {(A 1 / A 0 ) × 100}
상기 식 1에서, A0는 크기가 200 mm × 25 mm인 폴리이미드 필름 시편을 약 1℃/min 내지 약 5℃/min(예를 들면, 약 1℃/min, 약 2℃/min, 약 3℃/min, 약 4℃/min 또는 약 5℃/min)의 승온 속도로 약 15℃에서 약 1,200℃까지 열처리하여 탄화한 후, 약 1.5℃/min 내지 약 5℃/min(예를 들면, 약 1.5℃/min, 약 2℃/min, 약 2.5℃/min, 약 3℃/min, 약 3.5℃/min, 약 4℃/min, 약 4.5℃/min 또는 약 5℃/min)의 승온 속도로 약 1,200℃에서부터 약 2,200℃까지 열처리하여 1차 흑연화하고, 약 0.4℃/min 내지 약 1.3℃/min(예를 들면, 약 0.4℃/min, 약 0.5℃/min, 약 0.6℃/min, 약 0.7℃/min, 약 0.8℃/min, 약 0.9℃/min, 약 1℃/min, 약 1.1℃/min, 약 1.2℃/min 또는 약 1.3℃/min)의 승온 속도로 약 2,200℃에서부터 약 2,500℃까지 열처리하여 2차 흑연화하고, 약 8.5℃/min 내지 약 20℃/min(예를 들면, 약 8.5℃/min, 약 9℃/min, 약 9.5℃/min, 약 10℃/min, 약 10.5℃/min, 약 11℃/min, 약 11.5℃/min, 약 12℃/min, 약 12.5℃/min, 약 13℃/min, 약 13.5℃/min, 약 14℃/min, 약 14.5℃/min, 약 15℃/min, 약 15.5℃/min, 약 16℃/min, 약 16.5℃/min, 약 17℃/min, 약 17.5℃/min, 약 18℃/min, 약 18.5℃/min, 약 19℃/min, 약 19.5℃/min 또는 약 20℃/min)의 승온 속도로 약 2,500℃에서부터 약 2,800℃까지 열처리하여 3차 흑연화하여 얻어진 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, A1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 1, A 0 is a polyimide film specimen having a size of 200 mm × 25 mm from about 1°C/min to about 5°C/min (eg, about 1°C/min, about 2°C/min, about After heat treatment and carbonization from about 15° C. to about 1,200° C. at a heating rate of 3° C./min, about 4° C./min, or about 5° C./min, about 1.5° C./min to about 5° C./min (for example, , About 1.5℃/min, about 2℃/min, about 2.5℃/min, about 3℃/min, about 3.5℃/min, about 4℃/min, about 4.5℃/min, or about 5℃/min) First graphitized by heat treatment from about 1,200°C to about 2,200°C at a heating rate, and then about 0.4°C/min to about 1.3°C/min (e.g., about 0.4°C/min, about 0.5°C/min, about 0.6°C /min, about 0.7℃/min, about 0.8℃/min, about 0.9℃/min, about 1℃/min, about 1.1℃/min, about 1.2℃/min or about 1.3℃/min) Heat treatment from 2,200°C to about 2,500°C for secondary graphitization, and from about 8.5°C/min to about 20°C/min (for example, about 8.5°C/min, about 9°C/min, about 9.5°C/min, about 10℃/min, about 10.5℃/min, about 11℃/min, about 11.5℃/min, about 12℃/min, about 12.5℃/min, about 13℃/min, about 13.5℃/min, about 14℃ /min, about 14.5℃/min, about 15℃/min, about 15.5℃/min, about 16℃/min, about 16.5℃/min, about 17℃/min, about 17.5℃/min, about 18℃/min , About 18.5℃/min, about 19℃/min, about 19.5℃/min, or about 20℃/min). It is the area measured by taking a picture with a magnification (mm 2 ), and A 1 is the damaged area measured by taking a picture of the graphite sheet specimen at 10 magnification Is the area of (mm 2 ).
구체적으로, 상기 제1 표면 손상률은 크기가 200 mm X 25 mm이고, 두께가 약 100 ㎛ 내지 약 200 ㎛ 중 어느 하나인 폴리이미드 필름 시편을 약 1℃/min 내지 약 5℃/min 중 어느 하나의 승온 속도로 약 15℃에서부터 약 1,200℃까지 열처리하여 탄화한 후, 약 1.5℃/min 내지 약 5℃/min 중 어느 하나의 승온 속도로 약 1,200℃에서부터 약 2,200℃까지 열처리하여 1차 흑연화하고, 약 0.4℃/min 내지 약 1.3℃/min 중 어느 하나의 승온 속도로 약 2,200℃에서부터 약 2,500℃까지 열처리하여 2차 흑연화하고, 약 8.5℃/min 내지 약 20℃/min 중 어느 하나의 승온 속도로 약 2,500℃에서부터 약 2,800℃까지 열처리하여 3차 흑연화하여 그라파이트 시트 시편으로 제조하였을 때, 상기 그라파이트 시트에 발생하는 표면 손상률을 의미할 수 있다.Specifically, the first surface damage rate is a polyimide film specimen having a size of 200 mm X 25 mm and a thickness of about 100 µm to about 200 µm from about 1°C/min to about 5°C/min. After heat-treating from about 15°C to about 1,200°C at one heating rate to carbonize, heat treatment from about 1,200°C to about 2,200°C at any one of about 1.5°C/min to about 5°C/min And secondary graphitization by heat treatment from about 2,200° C. to about 2,500° C. at a temperature rising rate of about 0.4° C./min to about 1.3° C./min, and about 8.5° C./min to about 20° C./min. It may mean the rate of surface damage occurring to the graphite sheet when the graphite sheet specimen is manufactured by third graphitization by heat treatment from about 2,500°C to about 2,800°C at one heating rate.
보다 구체적으로, 상기 제1 표면 손상률은 크기가 200 mm × 25 mm이고, 두께가 125 ㎛인 폴리이미드 필름 시편을 1℃/min의 승온 속도로 15℃에서부터 1,200℃까지 열처리하여 탄화한 후, 1.5℃/min의 승온 속도로 1,200℃에서부터 2,200℃까지 열처리하여 1차 흑연화하고, 0.4℃/min의 승온 속도로 2,200℃에서부터 2,500℃까지 열처리하여 2차 흑연화하고, 8.5℃/min의 승온 속도로 2,500℃에서부터 2,800℃까지 열처리하여 3차 흑연화하여 그라파이트 시트 시편으로 제조하였을 때, 상기 그라파이트 시트에 발생하는 표면 손상률을 의미할 수 있다.More specifically, the first surface damage rate is a polyimide film specimen having a size of 200 mm × 25 mm and a thickness of 125 µm is carbonized by heat treatment from 15° C. to 1,200° C. at a heating rate of 1° C./min, Heat treatment from 1,200℃ to 2,200℃ at a rate of 1.5℃/min for primary graphitization, heat treatment at a rate of 0.4℃/min from 2,200℃ to 2,500℃ for secondary graphitization, and a temperature increase of 8.5℃/min When prepared as a graphite sheet specimen by tertiary graphitization by heat treatment from 2,500°C to 2,800°C at a rate, it may mean the rate of surface damage occurring to the graphite sheet.
상기 제1 표면 손상률에서 A0는 상기 그라파이트 시트 시편을 디지털 카메라를 이용하여 10 배율로 사진 촬영한 후 측정한 mm2 단위의 면적이고, A1은 상기 그라파이트 시트 시편에 대해 디지털 카메라를 이용하여 10 배율로 사진 촬영한 후 측정한 mm2 단위의 손상 부위의 면적이다.In the first surface damage rate, A 0 is the area of the graphite sheet specimen in mm 2 measured after photographing the graphite sheet specimen at 10 magnification using a digital camera, and A 1 is the graphite sheet specimen using a digital camera. It is the area of the damaged area in mm 2 measured after taking a picture at 10 magnification.
이때, 각각의 면적의 측정은 10 배율로 촬영된 디지털 이미지 사진에 가로 1 mm 및 세로 1 mm의 간격으로 격자가 그려진 필터를 적용하여 육안으로 확인한 후 면적에 포함되는 사각형(mm2)의 개수를 세어 측정하는 방식으로 수행될 수 있다.At this time, each area is measured by applying a filter with a grid drawn at intervals of 1 mm in width and 1 mm in height to a digital image photograph taken at 10 magnification and visually checking the number of squares (mm 2 ) included in the area. It can be done by counting and measuring.
도 4는 상기 식 1로 표시되는 제1 표면 손상률의 측정 시 면적을 측정하는 방법을 예시한 것이다. 도 4를 참조하면, 상기 식 1로 표시되는 제1 표면 손상률의 측정 시 (a)에서와 같이 준비된 그라파이트 시트에 대해 10 배율로 촬영된 디지털 이미지 사진을 준비하고, 가로 1 mm 및 세로 1 mm의 간격으로 격자가 그려진 필터를 적용한다. 이때, 상기 격자가 이루는 한칸의 면적이 1 mm2이 된다. 상기 제1 표면 손상률에서 A0는 (b)에서와 같이 격자가 이루는 한칸의 면적에서 그라파이트 시트가 50% 이상의 면적을 차지하는 경우를 세어 측정한다. 도 4의 (b)에서 측정된 A0는 총 200개이므로, 200 mm2로 측정될 수 있다. 상기 제1 표면 손상률에서 A1은 (c)에서와 같이 격자가 이루는 한칸의 면적에서 그라파이트 시트가 차지하는 부분 중 육안으로 확인되는 손상이 50% 이상의 면적을 차지하는 경우를 세어 측정한다. 도 4의 (c)에서 측정된 A1은 총 159개이므로, 159 mm2로 측정될 수 있다. 이러한 예시에서의 A0 값과 A1을 식 1의 표면 손상률에 대입하면, 도 4의 예시적인 20 mm x 10 mm 크기의 그라파이트 시편에서의 손상률은 79.5%이다.4 illustrates a method of measuring an area when measuring the first surface damage rate represented by Equation 1. Referring to FIG. 4, when measuring the first surface damage rate represented by Equation 1, a digital image photograph taken at 10 magnification was prepared for the graphite sheet prepared as in (a), and 1 mm in width and 1 mm in length. Apply a filter with a grid drawn at intervals of. At this time, the area of one space formed by the grid is 1 mm 2 . In the first surface damage rate, A 0 is measured by counting the case where the graphite sheet occupies 50% or more of the area of one space formed by the grid as in (b). Since A 0 measured in FIG. 4B is a total of 200, it can be measured as 200 mm 2 . In the first surface damage rate, A 1 is measured by counting the cases where the visually visible damage occupies 50% or more of the portion occupied by the graphite sheet in the area of one space formed by the grid as in (c). Since A 1 measured in FIG. 4C is 159 in total, it may be measured as 159 mm 2 . Substituting the A 0 value and A 1 in this example for the surface damage rate of Equation 1, the damage rate in the exemplary 20 mm x 10 mm sized graphite specimen of FIG. 4 is 79.5%.
종래의 폴리이미드 필름이 약 50 ㎛ 내지 약 100 ㎛ 범위의 고후도 그라파이트 시트로 적용 시 표면 손상률이 높아 두께와 표면 품질을 양립하기 어려웠던 것과 달리, 본 발명의 폴리이미드 필름은 그라파이트 시트에 적용 시 취성이 낮고, 표면 품질이 우수하면서 동시에 고후도를 확보할 수 있다.Unlike the conventional polyimide film, which was difficult to achieve both thickness and surface quality due to high surface damage rate when applied as a high-thickness graphite sheet in the range of about 50 μm to about 100 μm, the polyimide film of the present invention is applied to a graphite sheet. It has low brittleness, has excellent surface quality, and can secure a high thickness at the same time.
상기 폴리이미드 필름 형성용 조성물은 하기와 같은 폴리아믹산 및 이미드화 촉매를 포함한다.The composition for forming a polyimide film includes a polyamic acid and an imidization catalyst as follows.
(폴리아믹산)(Polyamic acid)
폴리이미드 필름 형성용 조성물 중 폴리아믹산은 이미드화 촉매에 의해 폴리이미드로 전환되는 전구체의 역할을 수행한다. 상기 폴리아믹산은 디안하이드라이드 단량체 및 디아민계 단량체를 중합하여 얻어지는 것이라면, 특별히 제한되지 않는다.In the composition for forming a polyimide film, polyamic acid serves as a precursor to be converted to polyimide by an imidization catalyst. The polyamic acid is not particularly limited as long as it is obtained by polymerizing a dianhydride monomer and a diamine monomer.
예를 들면, 상기 폴리아믹산의 원료로 이용될 수 있는 디안하이드라이드 단량체는 피로멜리틱디안하이드라이드, 2,3,6,7-나프탈렌테트라카르복실릭디안하이드라이드, 3,3',4,4'-비페닐테트라카르복실릭디안하이드라이드, 1,2,5,6-나프탈렌테트라카르복실릭디안하이드라이드, 2,2',3,3'-비페닐테트라카르복실릭디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭디안하이드라이드, 2,2-비스(3,4-디카르복시페닐) 프로판 디안하이드라이드, 3,4,9,10-페릴렌 테트라카르복실릭디안하이드라이드, 비스(3,4-디카르복시페닐) 프로판 디안하이드라이드, 1,1-비스(2,3-디카르복시페닐) 에탄 디안하이드라이드, 1,1-비스(3,4-디카르복시페닐) 에탄 디안하이드라이드, 비스(2,3-디카르복시페닐) 메탄 디안하이드라이드, 비스(3,4-디카르복시페닐) 에탄 디안하이드라이드, 옥시디프탈릭안하이드라이드, 비스(3,4-디카르복시페닐) 설폰 디안하이드라이드, p-페닐렌비스(트리멜리틱 모노에스테르애시드 안하이드라이드), 에틸렌비스(트리멜리틱 모노에스테르애시드 안하이드라이드), 비스페놀 A비스(트리멜리틱 모노에스테르애시드 안하이드라이드) 및 이들의 유도체 중 1종 이상일 수 있다. 상기 예시의 디안하이드라이드 단량체를 사용하는 경우, 이미드화 효율이 우수하면서도, 균일성이 향상된 폴리아믹산을 수득할 수 있다. 또한, 상기 예시의 디안하이드라이드 단량체는 1종을 단독으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있다.For example, dianhydride monomers that can be used as raw materials for the polyamic acid are pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4, 4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylene tetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4 -Dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic anhydride, bis (3 ,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimelitic monoester acid anhydride), ethylenebis (trimelitic monoester acid anhydride), bisphenol Abis (trimelitic Monoester acid anhydride) and derivatives thereof. When using the dianhydride monomer of the above example, it is possible to obtain a polyamic acid having excellent imidization efficiency and improved uniformity. In addition, the dianhydride monomer of the above example may be used alone or in combination of two or more.
예를 들면, 상기 폴리아믹산의 원료로 이용될 수 있는 디아민은, 4,4'-디아미노디페닐프로판, 4,4'-디아미노디페닐메탄, 벤지딘, 3,3'-디클로로벤지딘, 4,4'-디아미노디페닐술피드, 3,3'-디아미노디페닐술폰, 4,4'-디아미노디페닐술폰, 4,4'-디아미노디페닐에테르(4,4'-옥시디아닐린), 3,3'-디아미노디페닐에테르(3,3'-옥시디아닐린), 3,4'-디아미노디페닐에테르(3,4'-옥시디아닐린), 1,5-디아미노나프탈렌, 4,4'-디아미노디페닐 디에틸 실란, 4,4'-디아미노디페닐 실란, 4,4'-디아미노디페닐 에틸포스핀 옥사이드, 4,4'-디아미노디페닐 N-메틸아민, 4,4'-디아미노디페닐 N-페닐 아민, 1,4-디아미노벤젠(p-페닐렌디아민), 1,3-디아미노벤젠, 1,2-디아미노벤젠 및 이들의 유도체 중 1종 이상일 수 있다. 상기 예시의 디아민 단량체를 사용하는 경우, 이미드화 효율이 우수하면서도, 균일성이 향상된 폴리아믹산을 수득할 수 있다. 또한, 상기 예시의 단량체는 1종을 단독으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있다.For example, diamines that can be used as a raw material for the polyamic acid are 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 4 ,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether (4,4'-oxy Cydianiline), 3,3'-diaminodiphenyl ether (3,3'-oxydianiline), 3,4'-diaminodiphenyl ether (3,4'-oxydianiline), 1,5- Diaminonaphthalene, 4,4'-diaminodiphenyl diethyl silane, 4,4'-diaminodiphenyl silane, 4,4'-diaminodiphenyl ethylphosphine oxide, 4,4'-diaminodi Phenyl N-methylamine, 4,4'-diaminodiphenyl N-phenyl amine, 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene And it may be one or more of these derivatives. When the diamine monomer of the above example is used, it is possible to obtain a polyamic acid having improved uniformity while having excellent imidization efficiency. In addition, the monomers of the above example may be used alone or in combination of two or more.
예를 들면, 상기 폴리아믹산의 원료로 이용될 수 있는 디안하이드라이드 단량체와 디아민 단량체는 약 1:0.9 내지 약 1:1.1(예를 들면, 약 1:0.9, 약 1:1 또는 약 1:1.1)의 몰비로 폴리아믹산 중합에 이용될 수 있다. 상기 범위 내에서, 이미드화 효율이 우수하면서도, 균일성이 향상된 폴리아믹산을 수득할 수 있다.For example, the dianhydride monomer and diamine monomer that can be used as raw materials for the polyamic acid are about 1:0.9 to about 1:1.1 (e.g., about 1:0.9, about 1:1, or about 1:1.1 ) Can be used in the polymerization of polyamic acid. Within the above range, it is possible to obtain a polyamic acid having excellent imidization efficiency and improved uniformity.
상기 폴리아믹산의 중량평균분자량은 특별히 제한되지 않으나, 약 150,000 g/mole 이상 내지 약 1,000,000 g/mole 이하(예를 들면, 약 150,000 g/mole, 약 200,000 g/mole, 약 250,000 g/mole, 약 300,000 g/mole, 약 350,000 g/mole, 약 400,000 g/mole, 약 450,000 g/mole, 약 500,000 g/mole, 약 550,000 g/mole, 약 600,000 g/mole, 약 650,000 g/mole, 약 700,000 g/mole, 약 750,000 g/mole, 약 800,000 g/mole, 약 850,000 g/mole, 약 900,000 g/mole, 약 950,000 g/mole 또는 약 1,000,000 g/mole), 구체적으로 약 170,000 g/mole 이상 내지 약 700,000 g/mole 이하, 보다 구체적으로 약 190,000 g/mole 이상 내지 약 500,000 g/mole 이하일 수 있다. 상기 범위 내에서, 폴리아믹산은 본 발명의 폴리이미드 필름의 내열성 및 기계적 물성을 더욱 향상시킬 수 있다.The weight average molecular weight of the polyamic acid is not particularly limited, but about 150,000 g/mole or more to about 1,000,000 g/mole or less (e.g., about 150,000 g/mole, about 200,000 g/mole, about 250,000 g/mole, about 300,000 g/mole, about 350,000 g/mole, about 400,000 g/mole, about 450,000 g/mole, about 500,000 g/mole, about 550,000 g/mole, about 600,000 g/mole, about 650,000 g/mole, about 700,000 g /mole, about 750,000 g/mole, about 800,000 g/mole, about 850,000 g/mole, about 900,000 g/mole, about 950,000 g/mole or about 1,000,000 g/mole), specifically about 170,000 g/mole or more to about It may be 700,000 g/mole or less, more specifically about 190,000 g/mole or more to about 500,000 g/mole or less. Within the above range, the polyamic acid may further improve the heat resistance and mechanical properties of the polyimide film of the present invention.
상기 폴리아믹산의 점도는 특별히 제한되지 않으나, 약 90,000 cP 이상 내지 약 500,000 cP 이하(예를 들면, 약 90,000 cP, 약 100,000 cP, 약 110,000 cP, 약 120,000 cP, 약 130,000 cP, 약 140,000 cP, 약 150,000 cP, 약 160,000 cP, 약 170,000 cP, 약 180,000 cP, 약 190,000 cP, 약 200,000 cP, 약 210,000 cP, 약 220,000 cP, 약 230,000 cP, 약 240,000 cP, 약 250,000 cP, 약 260,000 cP, 약 270,000 cP, 약 280,000 cP, 약 290,000 cP, 약 300,000 cP, 약 310,000 cP, 약 320,000 cP, 약 330,000 cP, 약 340,000 cP, 약 350,000 cP, 약 360,000 cP, 약 370,000 cP, 약 380,000 cP, 약 390,000 cP, 약 400,000 cP, 약 410,000 cP, 약 420,000 cP, 약 430,000 cP, 약 440,000 cP, 약 450,000 cP, 약 460,000 cP, 약 470,000 cP, 약 480,000 cP, 약 490,000 cP 또는 약 500,000 cP), 구체적으로 약 150,000 cP 이상 내지 약 400,000 cP, 보다 구체적으로 약 180,000 cP 이상 내지 약 300,000 cP일 수 있다. 상기 범위 내에서, 폴리아믹산은 본 발명의 폴리이미드 필름의 내열성 및 기계적 물성을 더욱 향상시킬 수 있다. The viscosity of the polyamic acid is not particularly limited, but about 90,000 cP or more and about 500,000 cP or less (e.g., about 90,000 cP, about 100,000 cP, about 110,000 cP, about 120,000 cP, about 130,000 cP, about 140,000 cP, about 150,000 cP, about 160,000 cP, about 170,000 cP, about 180,000 cP, about 190,000 cP, about 200,000 cP, about 210,000 cP, about 220,000 cP, about 230,000 cP, about 240,000 cP, about 250,000 cP, about 260,000 cP, about 270,000 cP , About 280,000 cP, about 290,000 cP, about 300,000 cP, about 310,000 cP, about 320,000 cP, about 330,000 cP, about 340,000 cP, about 350,000 cP, about 360,000 cP, about 370,000 cP, about 380,000 cP, about 390,000 cP, about 400,000 cP, about 410,000 cP, about 420,000 cP, about 430,000 cP, about 440,000 cP, about 450,000 cP, about 460,000 cP, about 470,000 cP, about 480,000 cP, about 490,000 cP or about 500,000 cP), specifically about 150,000 cP or more To about 400,000 cP, more specifically about 180,000 cP or more to about 300,000 cP. Within the above range, the polyamic acid may further improve the heat resistance and mechanical properties of the polyimide film of the present invention.
상기 폴리아믹산은 유기 용매에 용해되어 폴리아믹산 용액으로 이용될 수 있다. 이러한 경우, 폴리아믹산 용액은 폴리이미드 필름의 제조 시 가공성과 작업 용이성을 더욱 향상시킬 수 있다. The polyamic acid may be dissolved in an organic solvent and used as a polyamic acid solution. In this case, the polyamic acid solution can further improve processability and ease of operation when manufacturing a polyimide film.
상기 유기 용매는 폴리아믹산이 용해될 수 있는 용매라면 특별히 한정되지는 않으나, 구체적으로 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.The organic solvent is not particularly limited as long as it is a solvent in which polyamic acid can be dissolved, but may be specifically an aprotic polar solvent.
예를 들면, 상기 비양성자성 극성 용매는, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등일 수 있다.For example, the aprotic polar solvent is an amide solvent such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chlorophenol Phenolic solvents such as N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme.
상기 유기 용매는 필요에 따라 보조적 용매를 추가로 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다. 상기 보조적 용매는 예를 들면, 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등일 수 있다.The organic solvent may further use an auxiliary solvent as necessary to adjust the solubility of the polyamic acid. The auxiliary solvent may be, for example, toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, water, and the like.
상기 폴리아믹산이 유기 용매에 용해되어 폴리아믹산 용액으로 이용되는 경우, 폴리아믹산 용액은 폴리 아믹산 고형분을 약 15 중량% 내지 약 20 중량%(예를 들면, 약 15 중량%, 약 16 중량%, 약 17 중량%, 약 18 중량%, 약 19 중량% 또는 약 20 중량%)의 함량으로 포함하고, 유기 용매를 약 80 중량% 내지 약 85 중량%(예를 들면, 약 80 중량%, 약 81 중량%, 약 82 중량%, 약 83 중량%, 약 84 중량% 또는 약 85 중량%)로 포함할 수 있다. 상기 범위 내에서, 폴리아믹산 용액 전체의 중량평균분자량과 점도를 조절하기에 유리하며, 필름화 공정에 더욱 유리할 수 있다.When the polyamic acid is dissolved in an organic solvent and used as a polyamic acid solution, the polyamic acid solution contains about 15% by weight to about 20% by weight (e.g., about 15% by weight, about 16% by weight, About 17% by weight, about 18% by weight, about 19% by weight, or about 20% by weight), and about 80% by weight to about 85% by weight of an organic solvent (e.g., about 80% by weight, about 81% by weight) Weight percent, about 82 weight percent, about 83 weight percent, about 84 weight percent, or about 85 weight percent). Within the above range, it is advantageous to control the weight average molecular weight and viscosity of the total polyamic acid solution, and may be more advantageous in the film formation process.
(이미드화 촉매)(Imidation catalyst)
폴리이미드 필름 형성용 조성물 중 이미드화 촉매는 폴리아믹산을 폴리이미드로 전환하는 것을 촉진하는 역할을 수행한다. In the composition for forming a polyimide film, the imidation catalyst serves to promote the conversion of polyamic acid to polyimide.
상기 이미드화 촉매는 지방족 3급 아민, 방향족 3급 아민, 및 복소환식 3급 아민 등의 이민계 성분일 수 있다. 이중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민이 바람직할 수 있다. 복소환식 3급 아민의 비제한적인 예로서, 퀴놀린, 이소퀴놀린, β-피콜린(BP), 피리딘 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.The imidation catalyst may be an imine-based component such as an aliphatic tertiary amine, an aromatic tertiary amine, and a heterocyclic tertiary amine. Among these, a heterocyclic tertiary amine may be preferable from the viewpoint of reactivity as a catalyst. Non-limiting examples of the heterocyclic tertiary amine include quinoline, isoquinoline, β-picoline (BP), pyridine, and the like, and these may be used alone or in combination of two or more.
일 구체예에서, 상기 폴리이미드 필름용 전구체 조성물 중 이미드화 촉매의 함량은 전술한 폴리아믹산의 아믹산 작용기 1 몰에 대하여 약 0.15 몰 내지 약 0.2 몰, 예를 들면 약 0.15 몰, 약 0.16 몰, 약 0.17 몰 약 0.18 몰, 약 0.19 몰 또는 약 0.20 몰일 수 있다. 상기 범위 내에서, 이미드화 촉매는 본 발명의 폴리이미드 필름의 매트릭스 구조를 종래 보다 규칙적으로 배열되도록 하면서, 결정성을 더욱 향상시킬 수 있다. In one embodiment, the content of the imidation catalyst in the precursor composition for a polyimide film is about 0.15 mol to about 0.2 mol, for example about 0.15 mol, about 0.16 mol, based on 1 mol of the amic acid functional group of the polyamic acid. About 0.17 moles, about 0.18 moles, about 0.19 moles, or about 0.20 moles. Within the above range, the imidation catalyst can further improve crystallinity while allowing the matrix structure of the polyimide film of the present invention to be arranged more regularly than before.
다른 구체예에서, 상기 폴리이미드 필름용 전구체 조성물 중 이미드화 촉매의 함량은 전술한 폴리아믹산의 아믹산 100 중량부에 대하여 약 17 중량부 내지 약 36 중량부(예를 들면, 약 17 중량부, 약 18 중량부, 약 19 중량부, 약 20 중량부, 약 21 중량부, 약 22 중량부, 약 23 중량부, 약 24 중량부, 약 25 중량부, 약 26 중량부, 약 27 중량부, 약 28 중량부, 약 29 중량부, 약 30 중량부, 약 31 중량부, 약 32 중량부, 약 33 중량부, 약 34 중량부, 약 35 중량부 또는 약 36 중량부)일 수 있다. 상기 범위 내에서, 이미드화 촉매는 본 발명의 폴리이미드 필름의 매트릭스 구조를 종래 보다 규칙적으로 배열되도록 하면서, 결정성을 더욱 향상시킬 수 있다.In another embodiment, the content of the imidation catalyst in the precursor composition for the polyimide film is from about 17 parts by weight to about 36 parts by weight based on 100 parts by weight of the amic acid of the polyamic acid (for example, about 17 parts by weight, About 18 parts by weight, about 19 parts by weight, about 20 parts by weight, about 21 parts by weight, about 22 parts by weight, about 23 parts by weight, about 24 parts by weight, about 25 parts by weight, about 26 parts by weight, about 27 parts by weight, About 28 parts by weight, about 29 parts by weight, about 30 parts by weight, about 31 parts by weight, about 32 parts by weight, about 33 parts by weight, about 34 parts by weight, about 35 parts by weight, or about 36 parts by weight). Within the above range, the imidation catalyst can further improve crystallinity while allowing the matrix structure of the polyimide film of the present invention to be arranged more regularly than before.
(무기물계 필러)(Inorganic filler)
폴리이미드 필름 형성용 조성물은 전술한 성분 이외에, 무기물계 필러를 추가로 포함할 수 있다. 폴리이미드 필름 형성용 조성물 중 상기 무기물계 필러는 폴리이미드 필름에서, 매트릭스 내에 분산된 상태로 존재하다가 탄화 및/또는 흑연화 시 승화하여 소정의 발포 현상을 유도할 수 있다. 이러한 경우, 폴리이미드 필름은 폴리이미드 매트릭스 내에 무기물계 필러가 균일하게 분산된 구조에 의해 규칙성이 높은 폴리이미드 간격을 형성할 수 있다. 이러한 발포에 따라 형성되는 소정의 공극은 그라파이트 시트의 내굴곡성을 향상시킬 수 있고, 탄화 및/또는 흑연화 시 무기물계 필러가 승화되면서 폴리이미드가 그라파이트로 전환됨에 의해 우수한 규칙성 및 배열성의 그라파이트 시트를 제조할 수 있다. 또한, 무기물계 필러가 승화되면서 자체적으로 가스 방출의 통로 역할도 수행할 수 있어, 발포에 의한 표면 결함과 손상을 방지할 수 있다.In addition to the above-described components, the composition for forming a polyimide film may further include an inorganic filler. In the composition for forming a polyimide film, the inorganic filler may be present in a dispersed state in a matrix in the polyimide film, and then sublimated during carbonization and/or graphitization to induce a predetermined foaming phenomenon. In this case, the polyimide film may form a polyimide spacing with high regularity due to a structure in which inorganic fillers are uniformly dispersed in the polyimide matrix. The predetermined voids formed by such foaming can improve the bending resistance of the graphite sheet, and the inorganic filler is sublimated during carbonization and/or graphitization, and the polyimide is converted into graphite, so that the graphite sheet has excellent regularity and alignment. Can be manufactured. In addition, as the inorganic filler is sublimated, it can itself serve as a passage for gas discharge, thereby preventing surface defects and damage due to foaming.
상기 무기물계 필러는 약 1000℃ 이상의 온도에서 승화성을 갖는 것이라면 특별히 제한되지 않으나, 구체적으로 탄산칼슘, 제2인산칼슘, 인산수소칼슘, 황산바륨, 실리카, 산화티탄, 알루미나, 질화규소 및 질화붕소 중 1종 이상을 포함하는 것일 수 있다. 상기 예시의 무기계 필러를 사용하는 경우, 폴리이미드 필름은 내굴곡성 및 구조적 균일성이 더욱 향상된 그라파이트 시트를 수득할 수 있다. 또한, 상기 예시의 무기계 필러는 1종을 단독으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있다.The inorganic filler is not particularly limited as long as it has sublimability at a temperature of about 1000°C or higher, but specifically, among calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride. It may contain one or more. When using the inorganic filler of the above example, the polyimide film can obtain a graphite sheet having further improved bending resistance and structural uniformity. In addition, the inorganic filler of the above example may be used alone or in combination of two or more.
상기 폴리이미드 필름용 전구체 조성물 중 무기물계 필러의 함량은 폴리아믹산 100 중량부를 기준으로 약 1,500 ppm 내지 약 2,500 ppm(예를 들면, 약 1,500 ppm, 약 1,600 ppm, 약 1,700 ppm, 약 1,800 ppm, 약 1,900 ppm, 약 2,000 ppm, 약 2,100 ppm, 약 2,200 ppm, 약 2,300 ppm, 약 2,400 ppm 또는 약 2,500 ppm)일 수 있다. 상기 범위 내에서, 폴리이미드 필름이 탄화 및/또는 흑연화될 때, 필름 내부에서 발생하는 승화 가스가 필름 외부로 원활하게 배출되면서, 표면 품질을 더욱 향상시키고, 폴리이미드 구조가 인조 그라파이트 구조로 전환되는 효율을 더욱 향상시킬 수 있다.The content of the inorganic filler in the precursor composition for a polyimide film is about 1,500 ppm to about 2,500 ppm (e.g., about 1,500 ppm, about 1,600 ppm, about 1,700 ppm, about 1,800 ppm, about 100 parts by weight of polyamic acid). 1,900 ppm, about 2,000 ppm, about 2,100 ppm, about 2,200 ppm, about 2,300 ppm, about 2,400 ppm, or about 2,500 ppm). Within the above range, when the polyimide film is carbonized and/or graphitized, sublimation gas generated inside the film is smoothly discharged to the outside of the film, further improving the surface quality, and converting the polyimide structure to an artificial graphite structure. It can further improve the efficiency.
상기 무기물계 필러의 평균 입경은 특별히 제한되지 않으나, 약 1.5 ㎛ 내지 약 4.5 ㎛(예를 들면, 약 1.5 ㎛, 약 2 ㎛, 약 2.5 ㎛, 약 3 ㎛, 약 3.5 ㎛, 약 4 ㎛ 또는 약 4.5 ㎛)일 수 있다. 상기 범위 내에서, 무기물꼐 필러는 폴리이미드 필름 표면의 조도가 과도하게 낮아지는 것을 방지하면서, 과도한 발포에 의해 브라이트 스팟이 형성되는 것을 더욱 저감하여, 표면 품질을 더욱 향상시킬 수 있다.The average particle diameter of the inorganic filler is not particularly limited, but about 1.5 µm to about 4.5 µm (eg, about 1.5 µm, about 2 µm, about 2.5 µm, about 3 µm, about 3.5 µm, about 4 µm, or about 4.5 μm). Within the above range, the inorganic filler may further reduce the formation of bright spots due to excessive foaming, while preventing the polyimide film surface from being excessively low in roughness, thereby further improving the surface quality.
(첨가제)(additive)
폴리이미드 필름 형성용 조성물은 전술한 성분 이외에, 탈수제 등을 포함하는 첨가제를 추가로 포함할 수 있다.The composition for forming a polyimide film may further include additives including a dehydrating agent, in addition to the above-described components.
상기 탈수제는 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하는 것으로, 구체적으로 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 지방산 무수물, 아릴포스폰산디할로겐화물, 티오닐할로겐화물, 또는 이들 중 2종 이상의 혼합물일 수 있다.The dehydrating agent promotes a ring closure reaction through a dehydration action on polyamic acid, specifically aliphatic acid anhydride, aromatic acid anhydride, N,N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphos It may be a fondane dihalide, a thionyl halide, or a mixture of two or more of these.
상기 예시 중에서도, 아세트산 무수물, 프로피온산 무수물, 및 락트산 무수물 등의 지방족 산 무수물, 또는 이들 2종 이상의 혼합물을 사용하는 경우, 원료 입수의 용이성, 비용의 절감의 효과를 구현할 수 있다.Among the above examples, when an aliphatic acid anhydride such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof is used, it is possible to realize the effect of ease of obtaining raw materials and reduction of cost.
상기 폴리이미드 필름 형성용 조성물 중 탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 약 0.5 몰 내지 약 5 몰(예를 들면, 약 0.5 몰, 약 1 몰, 약 1.5 몰, 약 2 몰, 약 2.5 몰, 약 3 몰, 약 3.5 몰, 약 4 몰, 약 4.5 몰 또는 약 5 몰)일 수 있다. 상기 범위 내에서, 폴리이미드 필름 형성용 조성물은 탈수 작용에 의한 이미드화 효율이 더욱 향상될 수 있다.The addition amount of the dehydrating agent in the composition for forming a polyimide film is about 0.5 mol to about 5 mol (e.g., about 0.5 mol, about 1 mol, about 1.5 mol, about 2 mol, about 1 mol of the amic acid group in the polyamic acid). 2.5 moles, about 3 moles, about 3.5 moles, about 4 moles, about 4.5 moles or about 5 moles). Within the above range, the composition for forming a polyimide film may further improve imidization efficiency due to dehydration.
폴리이미드 필름의 제조 방법Manufacturing method of polyimide film
본 발명의 다른 구현예는 폴리아믹산; 및 이미드화 촉매; 를 포함하는 폴리이미드 필름 형성용 조성물을 약 100℃ 내지 약 200℃(예를 들면, 약 100℃, 약 110℃, 약 120℃, 약 130℃, 약 140℃, 약 150℃, 약 160℃, 약 170℃, 약 180℃, 약 190℃ 또는 약 200℃)에서 겔화한 후, 약 200℃ 내지 약 400℃(예를 들면, 약 200℃, 약 210℃, 약 220℃, 약 230℃, 약 240℃, 약 250℃, 약 260℃, 약 270℃, 약 280℃, 약 290℃, 약 300℃, 약 310℃, 약 320℃, 약 330℃, 약 340℃, 약 350℃, 약 360℃, 약 370℃, 약 380℃, 약 390℃ 또는 약 400℃)에서 1차 이미드화 및 약 300℃ 내지 약 500℃(예를 들면, 약 300℃, 약 310℃, 약 320℃, 약 330℃, 약 340℃, 약 350℃, 약 360℃, 약 370℃, 약 380℃, 약 390℃, 약 400℃, 약 410℃, 약 420℃, 약 430℃, 약 440℃, 약 450℃, 약 460℃, 약 470℃, 약 480℃, 약 490℃ 또는 약 500℃)에서 2차 이미드화하여, 약 100 ㎛인 내지 약 200 ㎛(예를 들면, 약 100 ㎛, 약 110 ㎛, 약 120 ㎛, 약 130 ㎛, 약 140 ㎛, 약 150 ㎛, 약 160 ㎛, 약 170 ㎛, 약 180 ㎛, 약 190 ㎛ 또는 약 200 ㎛)의 두께로 필름화하는 것을 포함하는, 고후도 그라파이트 시트용 폴리이미드 필름의 제조 방법에 관한 것이다. 이를 통해, 본 발명은 그라파이트 시트에 적용 시 취성이 낮으면서도 고후도를 확보할 수 있는 폴리이미드 필름을 보다 경제적이고, 효율적으로 제조하는 효과를 제공한다. Another embodiment of the present invention is polyamic acid; And an imidation catalyst; A composition for forming a polyimide film comprising a polyimide film of about 100 ℃ to about 200 ℃ (for example, about 100 ℃, about 110 ℃, about 120 ℃, about 130 ℃, about 140 ℃, about 150 ℃, about 160 ℃, After gelation at about 170°C, about 180°C, about 190°C, or about 200°C), about 200°C to about 400°C (eg, about 200°C, about 210°C, about 220°C, about 230°C, about 240℃, about 250℃, about 260℃, about 270℃, about 280℃, about 290℃, about 300℃, about 310℃, about 320℃, about 330℃, about 340℃, about 350℃, about 360℃ , At about 370°C, about 380°C, about 390°C or about 400°C) and about 300°C to about 500°C (for example, about 300°C, about 310°C, about 320°C, about 330°C) , About 340℃, about 350℃, about 360℃, about 370℃, about 380℃, about 390℃, about 400℃, about 410℃, about 420℃, about 430℃, about 440℃, about 450℃, about Secondary imidization at 460° C., about 470° C., about 480° C., about 490° C., or about 500° C.), and from about 100 μm to about 200 μm (eg, about 100 μm, about 110 μm, about 120 μm) , About 130 µm, about 140 µm, about 150 µm, about 160 µm, about 170 µm, about 180 µm, about 190 µm, or about 200 µm), including filming to a thickness of, high-thickness graphite sheet polyimide It relates to a method of manufacturing a film. Through this, the present invention provides an effect of more economically and efficiently manufacturing a polyimide film capable of securing a high thickness while having low brittleness when applied to a graphite sheet.
또한, 상기 그라파이트 시트용 폴리이미드 필름의 제조 방법으로 제조된 폴리이미드 필름은 전술한 식 1로 표시되는 표면 손상률이 0% 내지 약 0.004%(예를 들면, 0%, 약 0.001%, 약 0.002%, 약 0.003% 또는 약 0.004%, 다른 예를 들면 0% 또는 약 0.001% 내지 약 0.004%)이다. 식 1에 대한 설명은 전술한 바와 같다.In addition, the polyimide film prepared by the method for producing a polyimide film for a graphite sheet has a surface damage rate of 0% to about 0.004% (e.g., 0%, about 0.001%, about 0.002) represented by the above formula 1 %, about 0.003% or about 0.004%, for example 0% or about 0.001% to about 0.004%). The description of Equation 1 is as described above.
또한, 상기 폴리이미드 필름 형성용 조성물 및 이에 포함되는 각각의 성분, 구체적인 예시, 함량 등에 대한 설명은 전술한 바와 같다.In addition, the composition for forming the polyimide film and the respective components contained therein, specific examples, and descriptions of the content are as described above.
구체적으로, 상기 폴리이미드 필름 형성용 조성물 중 폴리아믹산의 아믹산기:이미드화 촉매의 몰비는 약 1:0.15 내지 약 1:0.20(예를 들면, 약 1:0.15, 약 1:0.16, 약 1:0.17, 약 1:0.18, 약 1:0.19 또는 약 1:0.20)일 수 있다.Specifically, the molar ratio of the amic acid group of the polyamic acid: the imidization catalyst in the composition for forming the polyimide film is about 1:0.15 to about 1:0.20 (eg, about 1:0.15, about 1:0.16, about 1: 0.17, about 1:0.18, about 1:0.19 or about 1:0.20).
구체적으로, 상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부; 및 이미드화 촉매 약 17 중량부 내지 약 36 중량부(예를 들면, 약 17 중량부, 약 18 중량부, 약 19 중량부, 약 20 중량부, 약 21 중량부, 약 22 중량부, 약 23 중량부, 약 24 중량부, 약 25 중량부, 약 26 중량부, 약 27 중량부, 약 28 중량부, 약 29 중량부, 약 30 중량부, 약 31 중량부, 약 32 중량부, 약 33 중량부, 약 34 중량부, 약 35 중량부 또는 약 36 중량부);를 포함하는 것일 수 있다.Specifically, the composition for forming a polyimide film is 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of the imidation catalyst (e.g., about 17 parts by weight, about 18 parts by weight, about 19 parts by weight, about 20 parts by weight, about 21 parts by weight, about 22 parts by weight, about 23 parts by weight) Parts by weight, about 24 parts by weight, about 25 parts by weight, about 26 parts by weight, about 27 parts by weight, about 28 parts by weight, about 29 parts by weight, about 30 parts by weight, about 31 parts by weight, about 32 parts by weight, about 33 Parts by weight, about 34 parts by weight, about 35 parts by weight, or about 36 parts by weight); may be included.
구체적으로, 상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부를 기준으로 약 1,500 ppm 내지 약 2,500 ppm(예를 들면, 약 1,500 ppm, 약 1,600 ppm, 약 1,700 ppm, 약 1,800 ppm, 약 1,900 ppm, 약 2,000 ppm, 약 2,100 ppm, 약 2,200 ppm, 약 2,300 ppm, 약 2,400 ppm 또는 약 2,500 ppm)의 무기물계 필러를 더 포함하며, 상기 무기물계 필러는 탄산칼슘, 제2인산칼슘, 인산수소칼슘, 황산바륨, 실리카, 산화티탄, 알루미나, 질화규소 및 질화붕소 중 1종 이상을 포함하는 것일 수 있다.Specifically, the composition for forming a polyimide film is about 1,500 ppm to about 2,500 ppm (e.g., about 1,500 ppm, about 1,600 ppm, about 1,700 ppm, about 1,800 ppm, about 1,900 ppm, based on 100 parts by weight of polyamic acid, About 2,000 ppm, about 2,100 ppm, about 2,200 ppm, about 2,300 ppm, about 2,400 ppm or about 2,500 ppm) of an inorganic filler, wherein the inorganic filler is calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, It may contain at least one of barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride.
본 발명의 폴리이미드 필름의 제조 방법은 폴리이미드 필름 형성용 조성물을 겔화하기에 앞서, 폴리아믹산을 제조하는 단계를 추가적으로 수행할 수 있다. 이러한 폴리아믹산을 제조하는 단계는 특별히 제한되지 않으며, 유화 중합, 용액 중합, 벌크 중합, 현탁 중합 등의 방식 중에서 적절한 방식을 채용할 수 있다.In the method for producing a polyimide film of the present invention, prior to gelling the composition for forming a polyimide film, a step of preparing a polyamic acid may be additionally performed. The step of preparing such a polyamic acid is not particularly limited, and an appropriate method may be employed among methods such as emulsion polymerization, solution polymerization, bulk polymerization, and suspension polymerization.
상기 폴리이미드 필름의 제조 방법에서, 겔화 온도가 약 100℃ 미만인 경우, 폴리이미드 필름 형성용 조성물을 폴리이미드 필름으로 필름화하기 어렵다. 반면, 상기 겔화 온도가 약 200℃ 초과인 경우, 겔화가 과도하게 진행되어 얻어진 폴리이미드 필름을 그라파이트 시트로 적용 시 취성이 발생하는 문제점이 있다.In the method for producing a polyimide film, when the gelling temperature is less than about 100° C., it is difficult to film the composition for forming a polyimide film into a polyimide film. On the other hand, when the gelling temperature is greater than about 200°C, there is a problem that brittleness occurs when the polyimide film obtained by excessive gelation is applied as a graphite sheet.
구체적으로, 상기 겔화 과정에서, 폴리이미드 필름 형성용 조성물은 용액 상으로 준비된 후, 지지체에 도포된 후 건조하여 시트 형상의 겔로 제조될 수 있다. 상기 지지체는 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등일 수 있으나, 이에 제한되지 않는다. 상기 도포 방법은 특별히 제한되지 않으며, 예를 들면 캐스팅 방식일 수 있다. 이때, 상기 시트 형상의 겔은 상기 겔화 온도의 범위에서 약 10분 내지 약 20분 간 건조 및 겔화되어 자기 지지성을 갖는 시트 형상의 겔로 제조될 수 있다. Specifically, in the gelling process, the composition for forming a polyimide film may be prepared as a solution, applied to a support, and dried to form a sheet-shaped gel. The support may be a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum, but is not limited thereto. The application method is not particularly limited, and may be, for example, a casting method. At this time, the sheet-shaped gel may be dried and gelled for about 10 minutes to about 20 minutes in the range of the gelling temperature to be prepared as a sheet-shaped gel having self-support.
상기 시트 형상으로 제조되어 겔화된 시트 형상의 겔은 이어서 지지체로부터 박리된 후 약 200℃ 내지 약 400℃(예를 들면, 약 200℃, 약 210℃, 약 220℃, 약 230℃, 약 240℃, 약 250℃, 약 260℃, 약 270℃, 약 280℃, 약 290℃, 약 300℃, 약 310℃, 약 320℃, 약 330℃, 약 340℃, 약 350℃, 약 360℃, 약 370℃, 약 380℃, 약 390℃ 또는 약 400℃)에서 1차 이미드화 및 약 300℃ 내지 약 500℃(예를 들면, 약 300℃, 약 310℃, 약 320℃, 약 330℃, 약 340℃, 약 350℃, 약 360℃, 약 370℃, 약 380℃, 약 390℃, 약 400℃, 약 410℃, 약 420℃, 약 430℃, 약 440℃, 약 450℃, 약 460℃, 약 470℃, 약 480℃, 약 490℃ 또는 약 500℃)에서 2차 이미드화하는 과정을 거쳐 필름화될 수 있다. 이와 같이 1차 및 2차 이미드화를 수행하는 경우, 반응하지 않고 남은 아믹산(amic acid)을 추가적으로 이미드화하고, 폴리이미드 필름의 품질을 더욱 균질하게 향상시킬 수 있다. 또한, 상기 온도 범위 내에서, 폴리아믹산이 폴리이미드로 전환되는 효율이 더욱 향상될 수 있다.The sheet-shaped gel prepared in the sheet shape is then peeled off from the support and then from about 200°C to about 400°C (eg, about 200°C, about 210°C, about 220°C, about 230°C, about 240°C , About 250℃, about 260℃, about 270℃, about 280℃, about 290℃, about 300℃, about 310℃, about 320℃, about 330℃, about 340℃, about 350℃, about 360℃, about Primary imidization at 370°C, about 380°C, about 390°C or about 400°C and about 300°C to about 500°C (e.g., about 300°C, about 310°C, about 320°C, about 330°C, about 340℃, about 350℃, about 360℃, about 370℃, about 380℃, about 390℃, about 400℃, about 410℃, about 420℃, about 430℃, about 440℃, about 450℃, about 460℃ , About 470°C, about 480°C, about 490°C, or about 500°C) through a secondary imidization process to form a film. In the case of performing the primary and secondary imidization as described above, amic acid remaining without reaction may be additionally imidized, and the quality of the polyimide film may be further uniformly improved. In addition, within the temperature range, the efficiency of converting the polyamic acid to polyimide may be further improved.
상기와 같이 필름화된 폴리이미드 필름은 두께가 약 100 ㎛인 내지 약 200 ㎛(예를 들면, 약 100 ㎛, 약 110 ㎛, 약 120 ㎛, 약 130 ㎛, 약 140 ㎛, 약 150 ㎛, 약 160 ㎛, 약 170 ㎛, 약 180 ㎛, 약 190 ㎛ 또는 약 200 ㎛)로 제어된다. 상기 폴리이미드 필름의 두께가 약 100 ㎛ 미만인 경우 고후도의 그라파이트 시트로 적용하기 어렵다. 반면, 상기 폴리이미드 필름의 두께가 약 200 ㎛ 초과인 경우 취성이 과도하게 높아진다.The polyimide film filmed as described above has a thickness of about 100 μm to about 200 μm (for example, about 100 μm, about 110 μm, about 120 μm, about 130 μm, about 140 μm, about 150 μm, about 160 μm, about 170 μm, about 180 μm, about 190 μm or about 200 μm). When the thickness of the polyimide film is less than about 100 μm, it is difficult to apply it as a high-thick graphite sheet. On the other hand, when the thickness of the polyimide film exceeds about 200 μm, brittleness is excessively high.
그라파이트 시트Graphite sheet
본 발명의 또 다른 구현예는 하기 식 2로 표시되는 제2 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 고후도 그라파이트 시트 제조 방법에 관한 것이다. 제2 표면 손상률이 0%, 약 0.001%, 약 0.002%, 약 0.003% 또는 약 0.004% 일 수 있다. 다른 예를 들면 0% 또는 약 0.001% 내지 약 0.004%일 수 있다.Another embodiment of the present invention relates to a method of manufacturing a high-thickness graphite sheet having a second surface damage rate of 0% or about 0.001% to about 0.004% represented by Equation 2 below. The second surface damage rate may be 0%, about 0.001%, about 0.002%, about 0.003%, or about 0.004%. For another example, it may be 0% or from about 0.001% to about 0.004%.
상기 고후도 그라파이트 시트 제조 방법은 폴리이미드 필름을 15℃에서부터 1200℃까지 승온 열처리하여 탄화된 시트를 제조하는 단계; 및 상기 탄화된 시트를 약 1200℃에서부터 약 2800℃까지 단계적으로 승온 속도를 변경하면서 흑연화하여 두께가 약 50㎛ 내지 약 100㎛인 그라파이트 시트를 제조하는 단계; 를 포함한다.The high-thickness graphite sheet manufacturing method includes the steps of preparing a carbonized sheet by heat-treating a polyimide film from 15°C to 1200°C; And graphitizing the carbonized sheet from about 1200° C. to about 2800° C. stepwise while changing a temperature increase rate to produce a graphite sheet having a thickness of about 50 μm to about 100 μm. Includes.
<식 2><Equation 2>
제2 표면 손상률(%) = { ( B1 / B0 ) × 100 }Second surface damage rate (%) = {(B 1 / B 0 ) × 100}
상기 식 2에서, B0는 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, B1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 2, B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
이때, 상기 제2 표면 손상률(%)을 측정하는 구체적인 방법은 전술한 식 1로 표시되는 제1 표면 손상률의 측정 방법과 동일하다.In this case, a specific method of measuring the second surface damage rate (%) is the same as the method of measuring the first surface damage rate represented by Equation 1 above.
상기 폴리이미드 필름은 전술한 폴리이미드 필름으로, 폴리아믹산; 및 이미드화 촉매;를 포함하는 폴리이미드 필름 형성용 조성물로부터 형성되고, 두께가 약 100 ㎛ 내지 약 200 ㎛이고, 폴리이미드 필름에 대한 설명에서 서술한 식 1로 표시되는 제1 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 것일 수 있다.The polyimide film is the polyimide film described above, and includes polyamic acid; And an imidation catalyst; formed from a composition for forming a polyimide film, having a thickness of about 100 µm to about 200 µm, and a first surface damage rate represented by Formula 1 described in the description of the polyimide film is 0 % Or from about 0.001% to about 0.004%.
본 발명의 고후도 그라파이트 시트 제조 방법에서 폴리이미드 필름은 전술한 본 발명의 폴리이미드 필름과 동일하며, 또한 전술한 본 발명의 폴리이미드 필름에 의해 제조되는 것이므로 설명을 생략한다.The polyimide film in the method for producing a high-thickness graphite sheet of the present invention is the same as the polyimide film of the present invention, and is also manufactured by the polyimide film of the present invention, so a description thereof will be omitted.
(탄화 단계)(Carbonization step)
본 발명의 고후도 그라파이트 시트 제조 방법에서, 상기 탄화된 시트를 제조하는 단계는 전술한 본 발명의 폴리이미드 필름을 약 15℃에서부터 약 1200℃까지, 구체적으로 약 20℃에서부터 약 1200℃까지, 보다 구체적으로 약 50℃에서부터 약 1200℃까지 승온 열처리하여 탄화시킨다. 상기 온도 범위 내에서, 폴리이미드 필름의 고분자 사슬이 충분히 열분해되고, 이를 통해 비정질 탄소체가 형성된 탄화된 시트를 제조하여, 그라파이트 시트의 제조를 위한 흑연화에 이용될 수 있다. In the method for producing a high-thickness graphite sheet of the present invention, the step of preparing the carbonized sheet includes the above-described polyimide film of the present invention from about 15°C to about 1200°C, specifically from about 20°C to about 1200°C, more Specifically, it is carbonized by heat treatment at elevated temperature from about 50°C to about 1200°C. Within the above temperature range, the polymer chains of the polyimide film are sufficiently thermally decomposed to produce a carbonized sheet having an amorphous carbon body formed therethrough, and thus can be used for graphitization for the production of a graphite sheet.
구체적으로, 탄화 방식은 폴리이미드 필름을 전기로와 같은 고온로 설비에 투입한 후, 통해 질소/아르곤 분위기에서 약 15℃에서부터 최고 온도인 약 1200℃ 온도까지 약 12 시간 내지 약 14 시간에 걸쳐 승온 가열하면서 열분해하여, 폴리이미드 필름을 탄화된 시트로 변환하는 것일 수 있다.Specifically, in the carbonization method, after putting the polyimide film into a high-temperature furnace facility such as an electric furnace, heating the polyimide film in a nitrogen/argon atmosphere from about 15°C to the maximum temperature of about 1200°C over about 12 hours to about 14 hours. It may be thermally decomposed while converting the polyimide film into a carbonized sheet.
상기 탄화된 시트를 제조하는 단계에서, 탄화 시 승온 속도는 약 1℃/min 내지 약 5 ℃/min(예를 들면, 약 1℃/min, 약 2℃/min, 약 3℃/min, 약 4℃/min 또는 약 5℃/min)일 수 있다. 상기 승온 속도 범위 내에서, 폴리이미드 필름의 고분자 사슬이 충분히 열분해되고, 이를 통해 비정질 탄소체가 형성된 탄화된 시트를 제조하여, 그라파이트 시트의 제조를 위한 흑연화에 이용될 수 있다.In the step of preparing the carbonized sheet, the temperature increase rate during carbonization is about 1°C/min to about 5°C/min (eg, about 1°C/min, about 2°C/min, about 3°C/min, about 4°C/min or about 5°C/min). Within the temperature increase rate range, the polymer chains of the polyimide film are sufficiently thermally decomposed, thereby producing a carbonized sheet in which an amorphous carbon body is formed, and thus can be used for graphitization for producing a graphite sheet.
(흑연화 단계)(Graphitization step)
본 발명의 고후도 그라파이트 시트 제조 방법에서, 그라파이트 시트를 제조하는 단계는 상기와 탄화 단계에서 얻어진 탄화된 시트를 약 1200℃ 내지 약 2800℃의 온도 범위에서 단계적으로 승온 속도를 변경하면서 흑연화하여 두께가 약 50 ㎛ 내지 약 100 ㎛인 그라파이트 시트로 제조한다. 이와 같은 흑연화 과정을 통해 탄화된 시트 중의 비정질 탄소체를 탄소 재배열하여 형성된 그라파이트 시트를 제조한다.In the method for producing a high-thickness graphite sheet of the present invention, the step of producing a graphite sheet comprises graphitizing the carbonized sheet obtained in the above and the carbonization step in a temperature range of about 1200°C to about 2800°C while changing the temperature increase rate step by step. Is prepared from about 50 μm to about 100 μm of graphite sheet. Through such a graphitization process, a graphite sheet formed by rearranging carbon in an amorphous carbon body in a carbonized sheet is prepared.
구체적으로, 흑연화 방식은 특별히 제한되지 않으나, 탄화된 시트를 전기로와 같은 고온로 설비에 투입 후, 질소, 아르곤 및 소량의 헬륨을 포함하는 혼합 기체 분위기에서, 약 1200℃에서부터 약 2800℃까지 약 10 시간 내지 약 14 시간에 걸쳐 단계적으로 승온 및 유지하여 제조할 수 있다.Specifically, the graphitization method is not particularly limited, but after putting the carbonized sheet into a high-temperature furnace facility such as an electric furnace, in a mixed gas atmosphere containing nitrogen, argon, and a small amount of helium, about 1200° C. to about 2800° C. It can be prepared by raising and maintaining the temperature step by step over 10 hours to about 14 hours.
보다 구체적으로, 상기 그라파이트 시트를 제조하는 단계는 상기 탄화된 시트를 약 1200℃에서부터 약 2200℃까지 승온하면서 1차 흑연화한 후, 약 2200℃에서부터 약 2500℃까지 승온하면서 2차 흑연화하고, 이어서 약 2500℃에서부터 약 2800℃까지 3차 흑연화하는 것을 포함할 수 있다. 이와 같은 경우에서, 탄화된 시트 중의 비정질 탄소체를 탄소 재배열 효율이 더욱 향상되고, 고후도 범위에서도 취성이 낮고, 표면 품질이 우수할 수 있다.More specifically, in the step of preparing the graphite sheet, the carbonized sheet is primary graphitized while raising the temperature from about 1200°C to about 2200°C, and then secondary graphitized while raising the temperature from about 2200°C to about 2500°C, Then tertiary graphitization from about 2500° C. to about 2800° C. may be included. In such a case, the carbon rearrangement efficiency of the amorphous carbon body in the carbonized sheet is further improved, the brittleness is low even in the high thickness range, and the surface quality may be excellent.
보다 구체적으로, 상기 1차 흑연화의 승온 속도는 약 1.5℃/min 내지 약 5℃/min(예를 들면, 약 1.5℃/min, 약 2℃/min, 약 2.5℃/min, 약 3℃/min, 약 3.5℃/min, 약 4℃/min, 약 4.5℃/min 또는 약 5℃/min)이고, 상기 2차 흑연화의 승온 속도는 약 0.4℃/min 내지 약 1.3℃/min(예를 들면, 약 0.4℃/min, 약 0.5℃/min, 약 0.6℃/min, 약 0.7℃/min, 약 0.8℃/min, 약 0.9℃/min, 약 1℃/min, 약 1.1℃/min, 약 1.2℃/min 또는 약 1.3℃/min)이고, 상기 3차 흑연화의 승온 속도는 약 8.5℃/min 내지 약 20℃/min(예를 들면, 약 8.5℃/min, 약 9℃/min, 약 9.5℃/min, 약 10℃/min, 약 10.5℃/min, 약 11℃/min, 약 11.5℃/min, 약 12℃/min, 약 12.5℃/min, 약 13℃/min, 약 13.5℃/min, 약 14℃/min, 약 14.5℃/min, 약 15℃/min, 약 15.5℃/min, 약 16℃/min, 약 16.5℃/min, 약 17℃/min, 약 17.5℃/min, 약 18℃/min, 약 18.5℃/min, 약 19℃/min, 약 19.5℃/min 또는 약 20℃/min일 수 있다. 이와 같은 경우에서, 탄화된 시트 중의 비정질 탄소체를 탄소 재배열 효율이 더욱 향상되고, 고후도 범위에서도 취성이 낮고, 표면 품질이 우수할 수 있다.More specifically, the heating rate of the primary graphitization is about 1.5°C/min to about 5°C/min (eg, about 1.5°C/min, about 2°C/min, about 2.5°C/min, about 3°C /min, about 3.5°C/min, about 4°C/min, about 4.5°C/min, or about 5°C/min), and the heating rate of the secondary graphitization is about 0.4°C/min to about 1.3°C/min ( For example, about 0.4°C/min, about 0.5°C/min, about 0.6°C/min, about 0.7°C/min, about 0.8°C/min, about 0.9°C/min, about 1°C/min, about 1.1°C/ min, about 1.2°C/min or about 1.3°C/min), and the rate of temperature increase of the tertiary graphitization is about 8.5°C/min to about 20°C/min (eg, about 8.5°C/min, about 9°C /min, about 9.5℃/min, about 10℃/min, about 10.5℃/min, about 11℃/min, about 11.5℃/min, about 12℃/min, about 12.5℃/min, about 13℃/min , About 13.5℃/min, about 14℃/min, about 14.5℃/min, about 15℃/min, about 15.5℃/min, about 16℃/min, about 16.5℃/min, about 17℃/min, about It may be 17.5° C./min, about 18° C./min, about 18.5° C./min, about 19° C./min, about 19.5° C./min, or about 20° C. In such a case, the amorphous carbon body in the carbonized sheet The carbon rearrangement efficiency is further improved, the brittleness is low even in the high thickness range, and the surface quality may be excellent.
또한, 상기 1차 내지 3차의 흑연화 온도 범위 및 1차 내지 3차의 흑연화 승온 속도 내에서, 그라파이트 시트의 제조 시 발생하는 기체의 배출이 안정적으로 진행되어, 표면 손상을 더욱 방지하고, 전술한 식 1 및 식 2의 표면 손상률을 더욱 0%에 가깝게 저감할 수 있다. In addition, within the first to third graphitization temperature range and the first to third graphitization heating rate, the gas generated during the production of the graphite sheet proceeds stably, further preventing surface damage, The surface damage rates of the above equations 1 and 2 can be further reduced closer to 0%.
상기 고후도 그라파이트 시트 제조 방법은 그라파이트 시트를 제조하는 단계의 수행 후, 흑연화된 그라파이트 시트를 약 5℃/min 내지 약 10℃/min(예를 들면, 약 5℃/min, 약 6℃/min, 약 7℃/min, 약 8℃/min, 약 9℃/min 또는 약 10℃/min)의 속도로 냉각하는 냉각 단계; 를 추가적으로 포함할 수 있다. 이와 같은 경우에서, 그라파이트 시트의 취성이 더욱 낮아지고, 표면 품질이 더욱 향상될 수 있다.The high-thickness graphite sheet manufacturing method includes, after performing the step of manufacturing the graphite sheet, the graphitized graphite sheet from about 5°C/min to about 10°C/min (eg, about 5°C/min, about 6°C/min). a cooling step of cooling at a rate of min, about 7°C/min, about 8°C/min, about 9°C/min or about 10°C/min); It may additionally include. In such a case, the brittleness of the graphite sheet is further lowered, and the surface quality may be further improved.
본 발명의 또 다른 구현예는 전술한 고후도 그라파이트 시트 제조 방법에 의해서 제조된 고후도 그라파이트 시트에 관한 것이다.Another embodiment of the present invention relates to a high-thickness graphite sheet manufactured by the above-described high-thickness graphite sheet manufacturing method.
상기 고후도 그라파이트 시트는 두께가 약 50 ㎛ 내지 약 100 ㎛이다. 이러한 경우, 열용량이 우수하여, 전자기기에 적용되는 방열 수단으로서 사용되기에 보다 유리한 특성을 갖는다.The thick graphite sheet has a thickness of about 50 μm to about 100 μm. In this case, it has excellent heat capacity and is more advantageous for use as a heat dissipation means applied to an electronic device.
상기 고후도 그라파이트 시트는 두께가 약 100 ㎛ 내지 약 200 ㎛인 폴리이미드 필름으로부터 형성되는 것이다. 또한, 상기 고후도 그라파이트 시트는 두께가 약 100 ㎛ 내지 약 200 ㎛인 폴리이미드 필름의 탄화 및 흑연화된 시트일 수 있다. 이러한 경우, 고후도 그라파이트 시트는 두께가 약 50 ㎛ 내지 약 100 ㎛로 형성되고, 열용량이 우수하여, 전자기기에 적용되는 방열 수단으로서 사용되기에 보다 유리한 특성을 갖는다.The high-thickness graphite sheet is formed from a polyimide film having a thickness of about 100 μm to about 200 μm. In addition, the high-thickness graphite sheet may be a carbonized and graphitized sheet of a polyimide film having a thickness of about 100 μm to about 200 μm. In this case, the high-thickness graphite sheet has a thickness of about 50 µm to about 100 µm, has excellent heat capacity, and is more advantageous for use as a heat dissipation means applied to electronic devices.
상기 고후도 그라파이트 시트는 전술한 식 2로 표시되는 제2 표면 손상률이 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%로 우수한 표면 품질을 구현한다. 이러한 경우, 전자기기에 적용되는 방열 수단으로서 사용되기에 보다 유리한 특성을 갖는다.The high-thickness graphite sheet implements excellent surface quality as the second surface damage rate represented by Equation 2 is 0% or from about 0.001% to about 0.004%. In this case, it has more advantageous properties to be used as a heat dissipation means applied to an electronic device.
또한, 상기 고후도 그라파이트 시트는 평면방향에 대한 열전도도가 약 800 W/m·K 이상, 구체적으로 약 800 W/m·K 내지 약 1200 W/m·K 일 수 있다. 이러한 경우, 전자기기에 적용되는 방열 수단으로서 사용되기에 보다 유리한 특성을 갖는다. In addition, the high-thickness graphite sheet may have a thermal conductivity of about 800 W/m·K or more in a planar direction, specifically about 800 W/m·K to about 1200 W/m·K. In this case, it has more advantageous properties to be used as a heat dissipation means applied to an electronic device.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
0.5 L의 반응기에 질소 분위기 하에서 유기 용매로서 디메틸포름아미드(DMF)에 디아민 단량체로서 옥시디아닐린(ODA, 3,3'-옥시디아닐린 또는 4,4'-옥시디아닐린) 및 디안하이드라이드 단량체로서 피로멜리틱디안하이드라이드(PMDA, pyromellitic dianhydride)를 1:1의 중량비로 투입한 후 중합하여, 폴리아믹산 용액을 제조하였다. 이때, 전체 반응물 중 고형분:용매의 중량비는 20:80 이었다. Oxydianiline (ODA, 3,3'-oxydianiline or 4,4'-oxydianiline) and dianhydride monomer as diamine monomer in dimethylformamide (DMF) as an organic solvent in a nitrogen atmosphere in a 0.5 L reactor As a result, pyromellitic dianhydride (PMDA, pyromellitic dianhydride) was added in a weight ratio of 1:1 and then polymerized to prepare a polyamic acid solution. At this time, the weight ratio of the solid content to the solvent in the total reaction product was 20:80.
상기 폴리아믹산 용액에 무기물계 필러로서 평균 입경이 3 ㎛인 인산칼슘 2,500 ppm을 투입하고, 교반하여 전구체 조성물을 수득하였다.2,500 ppm of calcium phosphate having an average particle diameter of 3 µm was added to the polyamic acid solution as an inorganic filler, and stirred to obtain a precursor composition.
이어서, 이미드화 촉매로서 베타-피콜린(beta-picoline)을 아믹산기 1몰에 대한 0.17 몰비의 함량으로 투입한 후 균일하게 혼합 및 탈포하여 폴리이미드 필름 형성용 조성물을 제조하였다.Subsequently, beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
상기 폴리이미드 필름 형성용 조성물을 지지체인 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 500 ㎛로 캐스팅하고, 100℃ 내지 200℃의 온도 범위에서 열풍 방식으로 건조시켜 시트 형상의 겔을 제조하였다.The composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 µm using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
그 다음, 시트 형상의 겔을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하고, 고온 텐터에서 200℃ 내지 400℃의 온도에서 10분간 1차 이미드화를 수행한 후, 300℃ 내지 500℃의 온도에서 10분간 1차 이미드화를 수행하였다. 상기 1차 및 2차 이미드화에 의해 필름화된 폴리이미드 필름을 25 ℃에서 냉각시킨 후 핀 프레임에서 분리하여 크기가 20 cm x 2.5 cm이고, 두께가 125 ㎛인 폴리이미드 필름을 수득하였다.Then, the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C. First imidization was performed for 10 minutes at a temperature of °C. The polyimide films filmed by the primary and secondary imidization were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 2.5 cm and a thickness of 125 μm.
실시예 2 내지 실시예 3 Examples 2 to 3
하기 표 1에 기재된 바와 같이 폴리아믹산 용액의 용제 함량과 폴리이미드 필름 형성용 조성물 중 이미드화 촉매(beta-picoline)의 몰비(함량)을 변경한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 125 ㎛ 인 폴리이미드 필름을 제조하였다.Thickness in the same manner as in Example 1, except that the solvent content of the polyamic acid solution and the molar ratio (content) of the imidation catalyst (beta-picoline) in the composition for forming a polyimide film were changed as shown in Table 1 below. A 125 μm polyimide film was prepared.
실시예 4 Example 4
실시예 1에서 제조된 폴리이미드 필름을 50℃에서부터 1200℃까지 1℃/min 승온 속도로 탄화 열처리하여, 탄화된 시트를 제조하였다.The polyimide film prepared in Example 1 was subjected to carbonization heat treatment from 50° C. to 1200° C. at a heating rate of 1° C./min to prepare a carbonized sheet.
이어서, 상기 탄화된 시트를 1200℃ 내지 2800℃의 온도 범위에서 1차 내지 3차로 단계적으로 승온 속도를 변경하면서 소성하는 흑연화 열처리를 수행하여 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다. 이때, 1차 흑연화는 1200℃에서부터 2200℃까지 1.5℃/min의 속도로 승온하였고, 2차 흑연화는 2200℃에서부터 2500℃까지 0.4℃/min의 속도로 승온하였고, 3차 흑연화는 2500℃에서부터 2800℃까지 8.5℃/min의 속도로 승온하였다.Subsequently, graphitization heat treatment was performed in which the carbonized sheet was calcined while changing the heating rate in steps of 1 to 3 steps in a temperature range of 1200° C. to 2800° C. to prepare a graphite sheet having a final thickness of 50 μm. At this time, the first graphitization was heated from 1200°C to 2200°C at a rate of 1.5°C/min, the secondary graphitization was heated from 2200°C to 2500°C at a rate of 0.4°C/min, and the third graphitization was 2500°C. The temperature was raised from °C to 2800 °C at a rate of 8.5 °C/min.
실시예 5Example 5
폴리이미드 필름을 실시예 2에서 제조된 폴리이미드 필름으로 변경한 점을 제외하고, 실시예 4와 동일한 방법으로 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다.A graphite sheet having a final thickness of 50 μm was prepared in the same manner as in Example 4, except that the polyimide film was changed to the polyimide film prepared in Example 2.
실시예 6 Example 6
폴리이미드 필름을 실시예 3에서 제조된 폴리이미드 필름으로 변경한 점을 제외하고, 실시예 4와 동일한 방법으로 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다.A graphite sheet having a final thickness of 50 μm was prepared in the same manner as in Example 4, except that the polyimide film was changed to the polyimide film prepared in Example 3.
비교예 1 (열법)Comparative Example 1 (thermal method)
0.5 L의 반응기에 질소 분위기 하에서 유기 용매로서 디메틸포름아미드(DMF)에 디아민 단량체로서 옥시디아닐린(ODA, 3,3'-옥시디아닐린) 및 디안하이드라이드 단량체로서 피로멜리틱디안하이드라이드(PMDA, pyromellitic dianhydride)를 1:1의 중량비로 투입한 후 중합하여, 폴리아믹산 용액을 제조하였다. 이때, 전체 반응물 중 고형분:용매의 중량비는 20:80이었다. In a 0.5 L reactor in a nitrogen atmosphere, in dimethylformamide (DMF) as an organic solvent, oxydianiline (ODA, 3,3'-oxydianiline) as a diamine monomer, and pyromellitic dianhydride (PMDA) as a dianhydride monomer. , pyromellitic dianhydride) was added in a weight ratio of 1:1 and then polymerized to prepare a polyamic acid solution. At this time, the weight ratio of solid content: solvent in the total reaction product was 20:80.
상기 폴리아믹산 용액에 무기물계 필러로서 평균 입경이 3 ㎛인 인산칼슘 2,500 ppm을 투입하고, 교반하여 전구체 조성물을 수득하였다.2,500 ppm of calcium phosphate having an average particle diameter of 3 µm was added to the polyamic acid solution as an inorganic filler, and stirred to obtain a precursor composition.
이어서, 이미드화 촉매로서 베타-피콜린(beta-picoline)을 아믹산기 1몰에 대한 0.17 몰비의 함량으로 투입한 후 균일하게 혼합 및 탈포하여 폴리이미드 필름 형성용 조성물을 제조하였다.Subsequently, beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
상기 폴리이미드 필름 형성용 조성물을 지지체인 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 500 ㎛로 캐스팅하고, 100℃ 내지 200℃의 온도 범위에서 열풍 방식으로 건조시켜 시트 형상의 겔을 제조하였다.The composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 µm using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
그 다음, 시트 형상의 겔을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하고, 고온 텐터에서 200℃ 내지 400℃의 온도에서 10분간 1차 이미드화를 수행한 후, 300℃ 내지 500℃의 온도에서 10분간 1차 이미드화를 수행하였다. 상기 1차 및 2차 이미드화에 의해 필름화된 폴리이미드 필름을 25 ℃에서 냉각시킨 후 핀 프레임에서 분리하여 크기가 20 cm x 25 cm이고, 두께가 125 ㎛인 폴리이미드 필름을 수득하였다.Then, the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C. First imidization was performed for 10 minutes at a temperature of °C. The polyimide films filmed by the first and second imidizations were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 25 cm and a thickness of 125 μm.
비교예 2 (촉매법 -기존일반 촉매법)Comparative Example 2 (catalyst method-conventional general catalyst method)
0.5 L의 반응기에 질소 분위기 하에서 유기 용매로서 디메틸포름아미드(DMF)에 디아민 단량체로서 옥시디아닐린(ODA, 3,3'-옥시디아닐린) 및 디안하이드라이드 단량체로서 피로멜리틱디안하이드라이드(PMDA, pyromellitic dianhydride)를 1:1의 중량비로 투입한 후 중합하여, 폴리아믹산 용액을 제조하였다. 이때, 전체 반응물 중 고형분:용매의 중량비는 20:80이었다. In a 0.5 L reactor in a nitrogen atmosphere, in dimethylformamide (DMF) as an organic solvent, oxydianiline (ODA, 3,3'-oxydianiline) as a diamine monomer, and pyromellitic dianhydride (PMDA) as a dianhydride monomer. , pyromellitic dianhydride) was added in a weight ratio of 1:1 and then polymerized to prepare a polyamic acid solution. At this time, the weight ratio of solid content: solvent in the total reaction product was 20:80.
상기 폴리아믹산 용액에 무기물계 필러로서 평균 입경이 3 ㎛인 인산칼슘 2,500 ppm을 투입하고, 교반하여 전구체 조성물을 수득하였다.2,500 ppm of calcium phosphate having an average particle diameter of 3 µm was added to the polyamic acid solution as an inorganic filler, and stirred to obtain a precursor composition.
이어서, 이미드화 촉매로서 베타-피콜린(beta-picoline)을 아믹산기 1몰에 대한 0.17 몰비의 함량으로 투입한 후 균일하게 혼합 및 탈포하여 폴리이미드 필름 형성용 조성물을 제조하였다.Subsequently, beta-picoline as an imidation catalyst was added in an amount of 0.17 molar to 1 mol of amic acid group, and then uniformly mixed and degassed to prepare a composition for forming a polyimide film.
상기 폴리이미드 필름 형성용 조성물을 지지체인 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 500 ㎛로 캐스팅하고, 100℃ 내지 200℃의 온도 범위에서 열풍 방식으로 건조시켜 시트 형상의 겔을 제조하였다.The composition for forming a polyimide film was cast on a SUS plate (100SA, Sandvik) as a support at 500 µm using a doctor blade, and dried in a hot air method at a temperature ranging from 100°C to 200°C to prepare a sheet-shaped gel. .
그 다음, 시트 형상의 겔을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하고, 고온 텐터에서 200℃ 내지 400℃의 온도에서 10분간 1차 이미드화를 수행한 후, 300℃ 내지 500℃의 온도에서 10분간 1차 이미드화를 수행하였다. 상기 1차 및 2차 이미드화에 의해 필름화된 폴리이미드 필름을 25 ℃에서 냉각시킨 후 핀 프레임에서 분리하여 크기가 20 cm x 25 cm이고, 두께가 125 ㎛인 폴리이미드 필름을 수득하였다.Then, the sheet-shaped gel is peeled off the SUS plate, fixed to the pin frame, transferred to a high-temperature tenter, and subjected to primary imidization for 10 minutes at a temperature of 200°C to 400°C in a high-temperature tenter, and then 300°C to 500°C. First imidization was performed for 10 minutes at a temperature of °C. The polyimide films filmed by the first and second imidizations were cooled at 25° C. and separated from the pin frame to obtain a polyimide film having a size of 20 cm x 25 cm and a thickness of 125 μm.
비교예 3 내지 4Comparative Examples 3 to 4
하기 표 1에 기재된 바와 같이 폴리아믹산 용액의 용제 함량과 폴리이미드 필름 형성용 조성물 중 이미드화 촉매(beta-picoline)의 몰비(함량)을 변경한 점을 제외하고, 실시예 1과 동일한 방법으로 두께 125 ㎛ 인 폴리이미드 필름을 제조하였다.Thickness in the same manner as in Example 1, except that the solvent content of the polyamic acid solution and the molar ratio (content) of the imidation catalyst (beta-picoline) in the composition for forming a polyimide film were changed as shown in Table 1 below. A 125 μm polyimide film was prepared.
비교예 5Comparative Example 5
비교예 1에서 제조된 폴리이미드 필름을 50℃에서부터 1200℃까지 1℃/min 승온 속도로 탄화 열처리하여, 탄화된 시트를 제조하였다.The polyimide film prepared in Comparative Example 1 was subjected to carbonization heat treatment from 50° C. to 1200° C. at a heating rate of 1° C./min to prepare a carbonized sheet.
이어서, 상기 탄화된 시트를 1200℃ 내지 2800℃의 온도 범위에서 1차 내지 3차로 단계적으로 승온 속도를 변경하면서 소성하는 흑연화 열처리를 수행하여 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다. 이때, 1차 흑연화는 1200℃에서부터 2200℃까지 1.5℃/min의 속도로 승온하였고, 2차 흑연화는 2200℃에서부터 2500℃까지 0.4℃/min의 속도로 승온하였고, 3차 흑연화는 2500℃에서부터 2800℃까지 8.5℃/min의 속도로 승온하였다.Subsequently, graphitization heat treatment was performed in which the carbonized sheet was calcined while changing the heating rate in steps of 1 to 3 steps in a temperature range of 1200° C. to 2800° C. to prepare a graphite sheet having a final thickness of 50 μm. At this time, the first graphitization was heated from 1200°C to 2200°C at a rate of 1.5°C/min, the secondary graphitization was heated from 2200°C to 2500°C at a rate of 0.4°C/min, and the third graphitization was 2500°C. The temperature was raised from °C to 2800 °C at a rate of 8.5 °C/min.
비교예 6Comparative Example 6
비교예 5의 폴리이미드 필름을 비교예 2의 폴리이미드 필름으로 변경한 점을 제외하고, 실시예 6과 동일한 방법으로 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다.A graphite sheet having a final thickness of 50 μm was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 2.
비교예 7Comparative Example 7
비교예 5의 폴리이미드 필름을 비교예 3의 폴리이미드 필름으로 변경한 점을 제외하고, 실시예 6과 동일한 방법으로 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다.A graphite sheet having a final thickness of 50 μm was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 3.
비교예 8Comparative Example 8
비교예 5의 폴리이미드 필름을 비교예 4의 폴리이미드 필름으로 변경한 점을 제외하고, 실시예 6과 동일한 방법으로 최종 두께가 50 ㎛인 그라파이트 시트를 제조하였다.A graphite sheet having a final thickness of 50 μm was prepared in the same manner as in Example 6, except that the polyimide film of Comparative Example 5 was changed to the polyimide film of Comparative Example 4.
Figure PCTKR2019014620-appb-T000001
Figure PCTKR2019014620-appb-T000001
Figure PCTKR2019014620-appb-T000002
Figure PCTKR2019014620-appb-T000002
<물성 평가><Physical property evaluation>
(1) 표면 품질 평가 1(1) Surface quality evaluation 1
실시예 4~6 및 비교예 5~8에서 제조된 고후도 그라파이트 시트에 대하여 육안으로 표면 품질을 평가하였다. 구체적으로, 표면 품질 평가는 각각의 고후도 그라파이트 시트의 표면을 육안을 통해 깨짐 또는 균열이 발생한 부위를 관찰하였다.The surface quality of the high-thickness graphite sheets prepared in Examples 4 to 6 and Comparative Examples 5 to 8 was evaluated visually. Specifically, in the evaluation of the surface quality, the surface of each high-thickness graphite sheet was observed through the naked eye for cracks or cracks.
상기 관찰 면적(가로 20 cm, 세로 2.5 cm)내에서 깨짐 또는 균열이 전혀 발생하지 않은 경우 표면 품질을 "우수"으로 표시하고, 깨짐 또는 균열의 개수가 1개 내지 5개 발생한 경우 표면 품질을 "보통"으로 표시하고, 깨짐 또는 균열의 개수가 5개 초과 발생한 경우 또는 흑연화가 되지 않은 경우 표면 품질을 "불량"으로 평가하였다. 결과는 도 1 내지 3 및 하기 표 3에 나타내었다.When no cracks or cracks occur within the observation area (20 cm wide and 2.5 cm long), the surface quality is indicated as "excellent", and when the number of cracks or cracks occurs 1 to 5, the surface quality is indicated as " When the number of cracks or cracks occurred more than 5 or graphitized was not performed, the surface quality was evaluated as "poor". Results are shown in FIGS. 1 to 3 and Table 3 below.
(2) 표면 손상률 평가(2) Surface damage rate evaluation
실시예 4~6 및 비교예 5~8에서 제조된 고후도 그라파이트 시트에 대하여 하기 식 2로 표시되는 제2 표면 손상률을 측정하고, 상기 제2 표면 손상률이 0.004를 초과하는 경우 "부적합"으로 평가하였다. 결과는 하기 표 3에 나타내었다.For the high-thickness graphite sheets prepared in Examples 4 to 6 and Comparative Examples 5 to 8, the second surface damage rate represented by Equation 2 was measured, and when the second surface damage rate exceeds 0.004, "unsuitable" Evaluated as. The results are shown in Table 3 below.
<식 2><Equation 2>
제2 표면 손상률(%) = { ( B1 / B0 ) × 100 }Second surface damage rate (%) = {(B 1 / B 0 ) × 100}
상기 식 2에서, B0는 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, B1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 2, B 0 is the area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ), and B 1 is the area of the damaged area measured by photographing the graphite sheet specimen at 10 magnification (mm 2 ).
(3) 열전도도(3) thermal conductivity
열확산율 측정 장비(모델명 LFA 467, Netsch 사)를 사용하여 laser flash 법으로 실시예 및 비교예의 그라파이트 시트 시편의 평면방향에 대한 열확산율을 측정하였으며, 상기 열확산율 측정값에 밀도(중량/부피) 및 비열(DSC를 사용한 비열 측정값)을 곱하여 열전도도를 산출하였다. 또한, 상기 (1) 표면 품질 평가에서 깨짐 또는 균열이 발생하거나, 흑연화가 되지 않은 시편은 측정할 수 없으므로, 측정 불가로 나타내었다. 결과는 하기 표 3에 나타내었다.The thermal diffusivity of the graphite sheet specimens of Examples and Comparative Examples in the plane direction was measured by a laser flash method using a thermal diffusivity measuring equipment (model name LFA 467, Netsch), and the density (weight/volume) in the thermal diffusivity measured value And specific heat (a measure of specific heat using DSC) to calculate thermal conductivity. In addition, in the (1) surface quality evaluation, cracks or cracks occurred, or a specimen that was not graphitized could not be measured. The results are shown in Table 3 below.
(4) 브라이트 스팟 발생 평가(4) Bright spot occurrence evaluation
브라이트 스팟의 발생 수량은 그라파이트 시트의 표면 불량을 발생시키는 요인으로서, 상기 시트의 50 mm X 50 mm인 정사각형 내부에 크기가 0.05 mm 이상인 돌기의 발생 수량을 측정하였다. 또한, 상기 (1) 표면 품질 평가에서 깨짐 또는 균열이 발생하거나, 흑연화가 되지 않은 시편은 측정할 수 없으므로, 측정 불가로 나타내었다. 결과는 하기 표 3에 나타내었다.The number of bright spots generated is a factor causing surface defects of the graphite sheet, and the number of protrusions having a size of 0.05 mm or more in the 50 mm X 50 mm square of the sheet was measured. In addition, in the (1) surface quality evaluation, cracks or cracks occurred, or a specimen that was not graphitized could not be measured. The results are shown in Table 3 below.
Figure PCTKR2019014620-appb-T000003
Figure PCTKR2019014620-appb-T000003
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although the above has been described with reference to the embodiments of the present invention, a person of ordinary skill in the field to which the present invention belongs will be able to make various applications and modifications within the scope of the present invention based on the above contents.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes of the present invention can be easily implemented by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (8)

  1. 폴리아믹산; 및 이미드화 촉매;를 포함하는 폴리이미드 필름 형성용 조성물로부터 형성되고,Polyamic acid; And an imidation catalyst; is formed from a composition for forming a polyimide film comprising,
    두께가 약 100 ㎛ 내지 약 200 ㎛이고, 하기 식 1로 표시되는 제1 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 그라파이트 시트용 폴리이미드 필름:A polyimide film for a graphite sheet having a thickness of about 100 µm to about 200 µm and a first surface damage rate of 0% or about 0.001% to about 0.004% represented by Equation 1 below:
    <식 1><Equation 1>
    제1 표면 손상률 (%) = { ( A1 / A0 ) × 100 }1st surface damage rate (%) = {(A 1 / A 0 ) × 100}
    상기 식 1에서, A0는 크기가 200 mm X 25 mm인 폴리이미드 필름 시편을 약 1℃/min 내지 약 5℃/min의 승온 속도로 약 15℃에서 약 1200℃까지 열처리하여 탄화한 후, 약 1.5℃/min 내지 약 5℃/min의 승온 속도로 약 1200℃에서부터 약 2200℃까지 열처리하여 1차 흑연화하고, 약 0.4℃/min 내지 약 1.3℃/min의 승온 속도로 약 2200℃에서부터 약 2500℃까지 열처리하여 2차 흑연화하고, 약 8.5℃/min 내지 약 20℃/min의 승온 속도로 약 2500℃에서부터 약 2800℃까지 열처리하여 3차 흑연화하여 얻어진 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, A1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 1, A 0 is a polyimide film specimen having a size of 200 mm X 25 mm by heat treatment from about 15° C. to about 1200° C. at a heating rate of about 1° C./min to about 5° C./min to carbonize, First graphitized by heat treatment from about 1200°C to about 2200°C at a temperature rising rate of about 1.5°C/min to about 5°C/min, and from about 2200°C at a temperature rising rate of about 0.4°C/min to about 1.3°C/min Secondary graphitization by heat treatment to about 2500°C, and heat treatment from about 2500°C to about 2800°C at a temperature increase rate of about 8.5°C/min to about 20°C/min to obtain a graphite sheet specimen obtained by tertiary graphitization at 10 magnification. It is the area measured by taking a picture (mm 2 ), and A 1 is the area (mm 2 ) of the damaged area measured by taking a picture of the graphite sheet specimen at 10 magnification.
  2. 제1항에 있어서,The method of claim 1,
    상기 폴리이미드 필름 형성용 조성물 중 폴리아믹산의 아믹산기:이미드화 촉매의 몰비는 약 1:0.15 내지 약 1:0.20인, 그라파이트 시트용 폴리이미드 필름.In the composition for forming a polyimide film, the amic acid group of the polyamic acid: the molar ratio of the imidation catalyst is about 1:0.15 to about 1:0.20, a polyimide film for a graphite sheet.
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부; 및 이미드화 촉매 약 17 중량부 내지 약 36 중량부;를 포함하는 것인 그라파이트 시트용 폴리이미드 필름.The composition for forming a polyimide film may include 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of the imidization catalyst; to a polyimide film for a graphite sheet containing.
  4. 제1항에 있어서,The method of claim 1,
    상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부를 기준으로 약 1,500 ppm 내지 약 2,500 ppm의 무기물계 필러를 더 포함하며, The composition for forming a polyimide film further comprises an inorganic filler of about 1,500 ppm to about 2,500 ppm based on 100 parts by weight of polyamic acid,
    상기 무기물계 필러는 탄산칼슘, 제2인산칼슘, 인산수소칼슘, 황산바륨, 실리카, 산화티탄, 알루미나, 질화규소 및 질화붕소 중 1종 이상을 포함하는 것인, 그라파이트 시트용 폴리이미드 필름.The inorganic filler is calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and a polyimide film for a graphite sheet containing at least one of boron nitride.
  5. 폴리아믹산; 및 이미드화 촉매;를 포함하는 폴리이미드 필름 형성용 조성물을 약 100℃ 내지 약 200℃에서 겔화한 후, 약 200℃ 내지 약 400℃에서 1차 이미드화 및 약 300℃ 내지 약 500℃에서 2차 이미드화하여, 약 100 ㎛ 내지 약 200 ㎛의 두께로 필름화하는 것을 포함하는, 그라파이트 시트용 폴리이미드 필름의 제조 방법이고, Polyamic acid; And an imidation catalyst; after gelling the composition for forming a polyimide film at about 100° C. to about 200° C., primary imidization at about 200° C. to about 400° C. and secondary at about 300° C. to about 500° C. It is a method for producing a polyimide film for a graphite sheet comprising imidizing and forming a film to a thickness of about 100 μm to about 200 μm,
    상기 폴리이미드 필름은 하기 식 1로 표시되는 제1 표면 손상률이 0% 또는 약 0.001% 내지 약 0.004%인 그라파이트 시트용 폴리이미드 필름의 제조 방법:The polyimide film is a method of manufacturing a polyimide film for a graphite sheet having a first surface damage rate of 0% or about 0.001% to about 0.004% represented by the following formula:
    <식 1><Equation 1>
    제1 표면 손상률(%) = { ( A1 / A0 ) × 100 }1st surface damage rate (%) = {(A 1 / A 0 ) × 100}
    상기 식 1에서, A0는 크기가 200 mm X 25 mm인 폴리이미드 필름 시편을 약 1℃/min 내지 약 5℃/min의 승온 속도로 약 15℃에서 약 1200℃까지 열처리하여 탄화한 후, 약 1.5℃/min 내지 약 5℃/min의 승온 속도로 약 1200℃에서부터 약 2200℃까지 열처리하여 1차 흑연화하고, 약 0.4℃/min 내지 약 1.3℃/min의 승온 속도로 약 2200℃에서부터 약 2500℃까지 열처리하여 2차 흑연화하고, 약 8.5℃/min 내지 약 20℃/min의 승온 속도로 약 2500℃에서부터 약 2800℃까지 열처리하여 3차 흑연화하여 얻어진 그라파이트 시트 시편을 10 배율로 사진 촬영하여 측정한 면적(mm2)이고, A1은 상기 그라파이트 시트 시편에 대해 10 배율로 사진 촬영하여 측정한 손상 부위의 면적(mm2)이다.In Equation 1, A 0 is a polyimide film specimen having a size of 200 mm X 25 mm by heat treatment from about 15° C. to about 1200° C. at a heating rate of about 1° C./min to about 5° C./min to carbonize, First graphitized by heat treatment from about 1200°C to about 2200°C at a temperature rising rate of about 1.5°C/min to about 5°C/min, and from about 2200°C at a temperature rising rate of about 0.4°C/min to about 1.3°C/min Secondary graphitization by heat treatment to about 2500°C, and heat treatment from about 2500°C to about 2800°C at a temperature increase rate of about 8.5°C/min to about 20°C/min to obtain a graphite sheet specimen obtained by tertiary graphitization at 10 magnification. It is the area measured by taking a picture (mm 2 ), and A 1 is the area (mm 2 ) of the damaged area measured by taking a picture of the graphite sheet specimen at 10 magnification.
  6. 제5항에 있어서, The method of claim 5,
    상기 폴리이미드 필름 형성용 조성물 중 폴리아믹산의 아믹산기:이미드화 촉매의 몰비는 약 1:0.15 내지 약 1:0.20인, 그라파이트 시트용 폴리이미드 필름의 제조 방법.In the composition for forming a polyimide film, the amic acid group of the polyamic acid: the molar ratio of the imidation catalyst is about 1:0.15 to about 1:0.20, a method for producing a polyimide film for a graphite sheet.
  7. 제5항에 있어서,The method of claim 5,
    상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부; 및 이미드화 촉매 약 17 중량부 내지 약 36 중량부;를 포함하는 것인, 그라파이트 시트용 폴리이미드 필름의 제조 방법.The composition for forming a polyimide film may include 100 parts by weight of polyamic acid; And about 17 parts by weight to about 36 parts by weight of an imidation catalyst; a method for producing a polyimide film for a graphite sheet.
  8. 제5항에 있어서,The method of claim 5,
    상기 폴리이미드 필름 형성용 조성물은 폴리아믹산 100 중량부를 기준으로 약 1,500 ppm 내지 약 2,500 ppm의 무기물계 필러를 더 포함하며, The composition for forming a polyimide film further comprises an inorganic filler of about 1,500 ppm to about 2,500 ppm based on 100 parts by weight of polyamic acid,
    상기 무기물계 필러는 탄산칼슘, 제2인산칼슘, 인산수소칼슘, 황산바륨, 실리카, 산화티탄, 알루미나, 질화규소 및 질화붕소 중 1종 이상을 포함하는 것인, 그라파이트 시트용 폴리이미드 필름의 제조 방법.The inorganic filler includes one or more of calcium carbonate, dicalcium phosphate, calcium hydrogen phosphate, barium sulfate, silica, titanium oxide, alumina, silicon nitride, and boron nitride, a method for producing a polyimide film for a graphite sheet .
PCT/KR2019/014620 2019-06-28 2019-10-31 Polyimide film for graphite sheet and manufacturing method therefor WO2020262765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0078274 2019-06-28
KR1020190078274A KR102286058B1 (en) 2019-06-28 2019-06-28 Polyimide film for graphite sheet and manufacturing method for the polyimide film

Publications (1)

Publication Number Publication Date
WO2020262765A1 true WO2020262765A1 (en) 2020-12-30

Family

ID=74060929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014620 WO2020262765A1 (en) 2019-06-28 2019-10-31 Polyimide film for graphite sheet and manufacturing method therefor

Country Status (3)

Country Link
KR (1) KR102286058B1 (en)
TW (1) TWI775102B (en)
WO (1) WO2020262765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423467A (en) * 2019-09-04 2019-11-08 株洲时代新材料科技股份有限公司 A kind of superthick polyimide film and preparation method thereof and graphite flake

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492197B1 (en) * 2021-03-23 2023-01-27 피아이첨단소재 주식회사 Polyimide film for graphite sheet and graphite sheet prepraed therefrom
KR20230071326A (en) * 2021-11-16 2023-05-23 피아이첨단소재 주식회사 Polyimide film for graphite sheet and graphite sheet prepraed therefrom
CN115974067A (en) * 2023-01-13 2023-04-18 富优特(山东)新材料科技有限公司 High-thermal-conductivity graphite film of pyridine ring modified polyimide and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063509A (en) * 2010-12-17 2011-03-31 Kaneka Corp Film-like graphite and method for producing the same
JP2013151429A (en) * 2013-05-13 2013-08-08 Kaneka Corp Method for producing film-like graphite
JP2015093988A (en) * 2013-11-13 2015-05-18 財團法人工業技術研究院Industrial Technology Research Institute Polyamic acid, polyimide and method for manufacturing graphite sheet
KR20170049912A (en) * 2015-10-29 2017-05-11 에스케이씨코오롱피아이 주식회사 Polyimide film and preparation method thereof
KR20170112329A (en) * 2016-03-31 2017-10-12 한국화학연구원 Manufacturing method for graphite sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063509A (en) * 2010-12-17 2011-03-31 Kaneka Corp Film-like graphite and method for producing the same
JP2013151429A (en) * 2013-05-13 2013-08-08 Kaneka Corp Method for producing film-like graphite
JP2015093988A (en) * 2013-11-13 2015-05-18 財團法人工業技術研究院Industrial Technology Research Institute Polyamic acid, polyimide and method for manufacturing graphite sheet
KR20170049912A (en) * 2015-10-29 2017-05-11 에스케이씨코오롱피아이 주식회사 Polyimide film and preparation method thereof
KR20170112329A (en) * 2016-03-31 2017-10-12 한국화학연구원 Manufacturing method for graphite sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423467A (en) * 2019-09-04 2019-11-08 株洲时代新材料科技股份有限公司 A kind of superthick polyimide film and preparation method thereof and graphite flake
CN110423467B (en) * 2019-09-04 2021-11-16 株洲时代华鑫新材料技术有限公司 Ultra-thick polyimide film, preparation method thereof and graphite sheet

Also Published As

Publication number Publication date
KR20210001738A (en) 2021-01-06
TW202104373A (en) 2021-02-01
KR102286058B1 (en) 2021-08-05
TWI775102B (en) 2022-08-21

Similar Documents

Publication Publication Date Title
WO2020262765A1 (en) Polyimide film for graphite sheet and manufacturing method therefor
WO2019164068A1 (en) Graphite sheet polyimide film comprising spherical pi-based filler, manufacturing method therefor, and graphite sheet manufactured using same
WO2019168245A1 (en) Graphite sheet polyimide film comprising graphene-containing spherical pi-based filler, manufacturing method therefor, and graphite sheet manufactured using same
WO2017073921A1 (en) Polyimide film and method for producing same
WO2019164067A1 (en) Polyimide film for graphite sheet having improved thermal conductivity, method for manufacturing same, and graphite sheet manufactured using same
WO2019112151A1 (en) Polyimide film having low permittivity and high thermal conductivity
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2019093669A2 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2020091432A1 (en) Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom
WO2020054912A1 (en) Polyimide film having improved surface quality and method for manufacturing same
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2020017697A1 (en) Polyimide film including fluorine-containing silane additive and carbon black, and method for producing same
WO2019160218A1 (en) Polyamic acid composition having improved storage stability, manufacturing method for polyimide film using same, and polyimide film manufactured by means of same
WO2020105889A1 (en) Low-hygroscopic polyimide film, and flexible metal foil clad laminate comprising same
WO2019143000A1 (en) Highly thermally conductive polyimide film comprising two or more types of fillers
WO2019139249A1 (en) Polyimide film with improved alkali resistance and method for manufacturing same
WO2020080598A1 (en) Thick polyimide film having improved surface quality and method for manufacturing same
WO2019182224A1 (en) Polyimide film comprising omnidirectional polymer chain, method for manufacturing same, and graphite sheet manufactured using same
WO2020040527A1 (en) Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor
WO2020017692A1 (en) Polyimide film comprising clay particles and carbon black and manufacturing method therefor
WO2021015363A1 (en) Graphite sheet and electronic device comprising same
WO2020071588A1 (en) Method for producing polyamideimide film, and polyamideimide film produced therefrom
WO2020262764A1 (en) Graphite sheet and manufacturing method therefor
WO2020101230A1 (en) Highly thick graphite sheet and method for producing same
WO2020040347A1 (en) Polyimide film having improved alkali resistance and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934739

Country of ref document: EP

Kind code of ref document: A1