WO2020262438A1 - Vehicle display device - Google Patents
Vehicle display device Download PDFInfo
- Publication number
- WO2020262438A1 WO2020262438A1 PCT/JP2020/024746 JP2020024746W WO2020262438A1 WO 2020262438 A1 WO2020262438 A1 WO 2020262438A1 JP 2020024746 W JP2020024746 W JP 2020024746W WO 2020262438 A1 WO2020262438 A1 WO 2020262438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- light
- lenticular lens
- display device
- viewpoint
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 49
- 239000006059 cover glass Substances 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- -1 for example Inorganic materials 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/305—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/346—Image reproducers using prisms or semi-transparent mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/363—Image reproducers using image projection screens
Definitions
- the present invention relates to a vehicle display device capable of projecting light onto a vehicle display unit to provide information.
- Some vehicles are equipped with a display device (head-up display device) that provides necessary information to the driver (viewer) by projecting light onto the display unit using a windshield or the like as a display unit. ..
- a display device head-up display device
- Patent Document 1 As a conventional technique for such a display device, there is a technique disclosed in Patent Document 1.
- the display device shown in Patent Document 1 includes a projector that emits light, a screen through which the light emitted from the projector passes, and a case that houses these projectors and the screen. ..
- the projector is a projector equipped with an optical element such as a DMD (Digital Mirror Device).
- the screen is a transmissive screen that is located at the imaging position of the light emitted from the projector.
- the surface through which the light of the screen passes is provided so as to be inclined with respect to the surface from which the light of the projector is emitted. That is, the screen is provided at an angle with respect to the optical axis of the light emitted from the projector.
- the surface through which the light of the screen passes is provided so as to be inclined with respect to the surface from which the light of the projector is emitted, so that the driver can recognize a deep virtual image.
- the display device of Patent Document 1 includes a projector, a screen, a folded mirror, a concave mirror, a cover glass, an exterior, and a control unit.
- the projector projects an image onto a screen, and the image reflected by this screen is magnified by a concave mirror and then emitted to a windshield.
- the display device can be miniaturized.
- the display device of Patent Document 1 since the screen needs to be arranged at an angle, the entire display device becomes large due to the lengthening of the depth of the screen arranged at an angle. Therefore, the present inventors have come up with the idea of downsizing the display device by using a multi-view display that produces an equivalent stereoscopic image without arranging an oblique screen.
- a multi-view display has a flat display panel and a lenticular lens, and is composed of pixels of a plurality of images according to the position of the viewpoint (eye) of the viewer.
- FIG. 1 is a diagram illustrating the operation of a general multi-view display.
- the pixels P1 of the multi-view display 101 correspond to the position of the viewpoint E1 of the viewer in the left-right direction of the vehicle (Le indicates the left and Ri indicates the right in the figure).
- the video is being generated.
- the pixel P2 generates an image corresponding to the viewpoint E2
- the pixel P3 generates a pixel corresponding to the viewpoint E3.
- FIG. 2 is a diagram illustrating a configuration of a general vehicle display device main part.
- the vehicle display device 100 includes a multi-viewpoint display 101 including a flat display panel 102 and a lenticular lens 103, a lens 104 for passing light, and a plane mirror 105 for simply reflecting light.
- An optical system mechanism 106 including a concave mirror (not shown) that reflects light so as to collect light and a display unit (not shown) such as a windshield that displays an image (hereinafter referred to as a virtual image) is required.
- the plane display panel 102 is arranged on the focal plane of the lenticular lens 103, and the light from the plane display panel 102 passes through the lenticular lens 103 and generates a virtual image through the optical system mechanism 106 to be visually recognized.
- the sense of distance when the virtual image is viewed through the optical system mechanism 106 and the sense of distance when the multi-view display 101 is directly viewed do not match due to the influence of the optical system mechanism 106.
- a virtual image for the position of another viewpoint can be visually recognized and the quality of the virtual image can be deteriorated, for example, a virtual image of the pixel P2 which should not be visually recognized at the position of the viewpoint E1 shown in FIG.
- An object of the present invention is to provide a display device for a vehicle capable of improving the quality of a virtual image while using a multi-view display.
- the invention according to claim 1 comprises a multi-view display having a flat display panel in which a plurality of pixels are alternately arranged to emit light, and a lenticular lens in which a plurality of substantially semi-cylindrical cylindrical lenses are arranged in parallel with each other.
- a control unit that controls the light emitted from this multi-view display
- a plane mirror that simply reflects the light emitted from the multi-viewpoint display
- a concave mirror that reflects the light reflected by the plane mirror so as to collect the light
- a display unit on which the light reflected by the concave mirror is projected In a vehicle display device having an optical system mechanism and allowing a viewer to recognize a virtual image.
- the flat display panel is The position is shorter than the focal length of the lenticular lens, and When the plane on which the light emitted from the position of the viewer and passing through the optical system mechanism and the lenticular lens is imaged is used as the optical focal plane, it is characterized that it is arranged on the optical focal plane.
- the multi-view display is preferably a light field display.
- the multi-viewpoint display includes a flat display panel in which a plurality of pixels are alternately arranged to emit light, and a lenticular lens in which a plurality of substantially semi-cylindrical cylindrical lenses are arranged in parallel with each other. ..
- the light emitted from the multi-view display is projected onto the display unit via a plane mirror that simply reflects and a concave mirror that reflects so as to condense, so that the viewer recognizes a virtual image.
- the multi-view display can be used, the entire device can be miniaturized, and the quality of the virtual image can be improved.
- the multi-view display is a light field display, it can be arranged directly under the windshield (display unit), and a screen arranged at an angle as in the prior art is unnecessary. Therefore, the depth along the optical axis can be shortened, and the display device can be miniaturized.
- the left and right refer to the left and right with respect to the occupant (viewer) in the vehicle
- the front and rear refer to the front and rear with reference to the traveling direction of the vehicle.
- Le is left
- Ri right
- Fr is front
- Rr rear
- Up up
- Dn down.
- the head-up display (hereinafter referred to as a vehicle display device) 10 is mounted on a vehicle Ve, for example, and projects light onto a windshield (display unit) WS at the front of the vehicle body.
- a windshield display unit
- the driver (viewer) Mn recognizes that the virtual image V is projected in front of the windshield WS.
- the upper part of the virtual image V projected by the vehicle display device 10 is tilted toward the front side of the vehicle Ve.
- the driver Mn can obtain necessary information during driving.
- the vehicle display device 10 includes a case 20, a multi-viewpoint display (light field display) 30 housed in the case 20 and emitting light, and an optical lens 41 through which the light emitted from the multi-viewpoint display 30 passes.
- a plane mirror 40 that reflects the light that has passed through the optical system lens
- a concave mirror 50 that reflects the light reflected by the plane mirror 40 toward the display unit (windshield) WS
- a cover arranged above the concave mirror 50. It has a glass 60 and a control unit 12 that controls the light emitted by the multi-viewpoint display 30.
- the optical system mechanism 70 is composed of an optical system lens 41, a plane mirror 40, a concave mirror 50, a cover glass 60, and a display unit WS.
- the multi-view display 30 is arranged directly under the windshield WS.
- the case 20 is made of a synthetic resin having a light-shielding property. Therefore, it can be said that the case 20 is a light-shielding portion that prevents light incident on the multi-viewpoint display 30 from the outside from being reflected inside the vehicle interior. Further, the inner wall 20a of the case 20 can be referred to as a light-shielding portion.
- the multi-viewpoint display 30 includes a plurality of planar display panels 32 in which a plurality of pixels 31 are alternately arranged to emit light, and a plurality of semi-cylindrical cylindrical lenses 33 extending in a predetermined direction. It has the lenticular lenses 34 arranged side by side.
- the flat display panel 32 includes, for example, a backlight 32a and a liquid crystal panel 32b, and has a plurality of pixels 31 that emit light toward the cylindrical lens 33.
- the light emitted by the flat display panel 32 is a bundle of light emitted by each pixel 31.
- Each pixel 31 is composed of red, green, and blue sub-pixels.
- the sub-pixels emit light, light is emitted toward each cylindrical lens 33.
- the brightness, hue, and saturation of the light emitted from the pixel 31 can be made different.
- the lenticular lens 34 includes, for example, a transparent polycarbonate flat plate-shaped base plate portion 33a, and a cylindrical lens 33 extending in a predetermined direction on the base plate portion 33a and being arranged in plurality in a predetermined direction and through which light emitted from the pixel 31 passes. doing.
- the predetermined direction in which the cylindrical lens 33 extends is the vertical direction of the viewpoint of the viewer Mn.
- the plurality of cylindrical lenses 33 extending in the vertical direction in this way are arranged side by side periodically.
- the lenticular lens 34 is cut so that vertically long cylindrical lenses 33 that collect light with respect to the cross section are lined up horizontally (left and right) on the base plate portion 33a.
- the cylindrical lens 33 has a so-called semi-cylindrical shape (D-shape), and the vertically long semi-cylindrical lens 33 arranged side by side becomes the lenticular lens 34.
- the lenticular lens 34 refracts the light emitted from each pixel 31 in a predetermined direction.
- the lenticular lens 34 is tilted toward the inner wall 20a so that the external light incident on the lenticular lens 34 from the outside of the case 20 is reflected toward the inner wall 20a as a light-shielding portion.
- the lenticular lens 34 is made of, for example, fused silica, optical glass, plastic or the like.
- the base plate portion 33a is provided parallel to the surface of the flat display panel 32 that emits light.
- the cross-sectional shape of the cylindrical lens 33 on the exit side includes, for example, a convex shape, a spherical shape, an aspherical shape, and the like.
- Each cylindrical lens 33 is provided corresponding to each pixel 31 and refracts the light emitted from each pixel 31.
- the light emitted by the multi-viewpoint display 30 refers to the light emitted from each pixel 31 (planar display panel 32) and passed through the lenticular lens 34. That is, it can be said that the light emitted from each pixel 31 passes through the lenticular lens 34, so that the light is emitted from the multi-viewpoint display 30.
- the lenticular lens 34 By arranging the lenticular lens 34 at an angle with respect to the optical axis F, it is possible to prevent the light reflected by the surface of the multi-viewpoint display 30 from returning to the viewpoint when the external light G is incident.
- the tilt angle of the multi-view display 30 in the schematic drawing is large, but the actual tilt angle is the light reflected on the surface of the multi-view display 30 when the external light G is incident. It is a small angle that does not return to.
- the plane mirror 40 is a mirror in which a metal, for example, aluminum is vapor-deposited on a resin, for example, polycarbonate, which is molded so as to have a flat portion, and simply reflects light.
- the concave mirror 50 is a mirror in which a metal, for example, aluminum is vapor-deposited on a resin, for example, polycarbonate, which is molded so as to have a concave surface, and reflects parallel light so as to collect it.
- a metal for example, aluminum
- a resin for example, polycarbonate
- the cover glass 60 is a transparent resin, for example, a polycarbonate film.
- the case 20 is a housing that accommodates all the above-mentioned parts.
- the control unit 12 is composed of a microprocessor and various electronic components, a board, and a case for operating the microprocessor, processes vehicle information input from the outside of the device and user input, and appropriately displays an image based on the input. Controls the multi-view display 30. Specifically, the control unit 12 controls the direction of the light emitted by the multi-viewpoint display 30 so that the light that has passed through the lenticular lens 34 is projected onto the windshield WS. That is, the control unit 12 controls the light emitted by each pixel 31 so that the light passing through the lenticular lens 34 goes in a predetermined direction.
- the driver Mn recognizes that the light emitted from the multi-viewpoint display 30 is projected onto the windshield WS to project a virtual image V whose angle is tilted forward by ⁇ . In such a virtual image V, a different image is projected for each viewpoint. That is, in order for the driver Mn to visually recognize the deep virtual image V, the multi-viewpoint display 30 needs to project an image with appropriate parallax for each viewpoint.
- the control unit 12 continuously emits light having a different imaging position from one end to the other end of the lenticular lens 34, and each pixel is visually recognized as a virtual image V whose upper portion is tilted forward. Controls the light emitted by 31. Further, the control unit 12 can control the light emitted from each pixel 31 to freely change the imaging position of the light emitted from the lenticular lens 34. As a result, the tilt angle of the virtual image V can be freely changed. By controlling the light emitted from each pixel 31, the control unit 12 projects an arbitrary virtual image V visually recognized by the driver Mn.
- FIG. 5 schematically shows a main part of the vehicle display device 10 in a plan view.
- the vehicle display device 10 includes a multi-view display 30 and an optical system mechanism 70.
- the multi-view display 30 includes a flat display panel 32 and a cylindrical lens 33.
- the optical system mechanism 70 includes an optical system lens 41 and a plane mirror 40.
- the light F is originally reflected by the plane mirror 40, but for convenience of explanation in the schematic diagram, the light F is described as passing through the plane mirror 40.
- the focal plane (hereinafter referred to as the optical focal plane) FH by the optical system mechanism 70 is defined as the imaging position through the lenticular lens 34 when the light F is emitted from the eyes of the viewer Mn.
- the image plane I of the lenticular lens 34 (multi-view display 30) coincides with the optical focal plane FH.
- the image plane I of the lenticular lens 34 (multi-viewpoint display 30) and the optical focal plane FH are slightly deviated from each other in the drawings, but they are essentially the same.
- the focal plane FL of the lenticular lens 34 (hereinafter referred to as the lenticular lens focal plane) is located between the optical focal plane FH and the lenticular lens 34.
- the distance from the lenticular lens 34 to the focal length FL of the lenticular lens is also the focal length D0 of the lenticular lens 34.
- the flat display panel 32 is arranged at a position moved to the lenticular lens 34 side by a distance d1 from the lenticular lens focal plane FL.
- the flat display panel 32 is located at a position shorter than the focal length D0 of the lenticular lens 34, and the light that has passed through the lenticular lens 34 from the viewer Mn side is the plane mirror 40, the concave mirror (see FIG. 3), and the light. It is arranged at a position where an image is formed on the optical focal length FH of the optical system mechanism 70 composed of the display unit WS (see FIG. 3).
- the stereoscopic image L generated by the multi-viewpoint display 30 passes through the optical system lens 41, is reflected by the plane mirror 40 to the concave mirror 50, and is magnified and reflected by the concave mirror 50 to the cover glass 60. Then, it passes through the cover glass 60, is enlarged and reflected by the windshield WS to the viewer Mn, and is observed as a virtual image V from the viewpoint of the viewer Mn.
- the light emitted from the eyes of the viewer Mn passes through the optical system mechanism 70 and further passes through the lenticular lens 34 (multi-viewpoint display 30).
- An image is formed on the optical focal plane FH. That is, the image plane I of the lenticular lens 34 (multi-view display 30) coincides with the optical focal plane FH. Therefore, the sense of distance when the virtual image V (see FIG. 3) is observed through the optical system mechanism 70 and the sense of distance when the multi-viewpoint display 30 is directly viewed are the same.
- the light F of the plane display panel 32 at a position shorter than the focal length D0 of the wrenchular lens 34 and passing through the wrenchular lens 34 from the viewer Mn side is the plane mirror 40, the concave mirror 50, and the concave mirror 50. Since it is arranged at a position where it forms an image on the optical focal plane FH of the optical system mechanism 70 composed of the display unit WS, the sense of distance when a virtual image is viewed through the optical system mechanism 70 and the feeling of distance when the multi-viewpoint display 30 is directly viewed It matches the sense of distance.
- the multi-view display 30 can be used, the entire device can be miniaturized, and the quality of the virtual image can be improved.
- the multi-view display 30 can be arranged with a small inclination so that the light reflected on the surface does not return to the viewpoint when external light is incident, the depth in the direction along the optical axis F can be increased. It can be shortened, and the entire vehicle display device 10 can be miniaturized.
- the multi-view display 30 is a light field display, it can be arranged directly under the windshield (display unit) WS, eliminating the need for a screen arranged at an angle as in the prior art, and the optical axis. It is possible to shorten the depth along the line, and it is possible to reduce the size of the vehicle display device 10.
- the image of the oblique surface can be adjusted by controlling the position of the light emitting pixel of the flat display panel 32, the mounting tolerance can be relaxed and the manufacturing cost can be reduced.
- the vehicle display device may be applied to a two-wheeled vehicle or a three-wheeled vehicle in addition to a four-wheeled vehicle. Furthermore, it can be applied to vehicles other than vehicles, construction machinery, and the like.
- the display unit is described as a windshield.
- the display device according to the present invention can also project light onto a display unit including a so-called combiner.
- the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
- the display device of the present invention is suitable for mounting on a vehicle.
- 10 Vehicle display device (head-up display), 12 ... Control unit, 30 ... Multi-view display (light field display), 31 ... Pixels, 32 ... Flat display panel, 33 ... Cylindrical lens, 34 ... Lenticular lens, 40 ... Plane mirror, 50 ... concave mirror, 70 ... optical system mechanism, Mn ... viewer (driver), Ve ... vehicle, V ... virtual image (image), WS ... display unit (windshield), F ... optical axis (light), FH ... Optical system focus, FL ... Lenticular lens focal length, I ... Image plane (imaging position where light from the viewer side passes through the lenticular lens), D0 ... Focal length of the lenticular lens.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Instrument Panels (AREA)
Abstract
Provided is a vehicle display device capable of improving the quality of a virtual image using a multi-viewpoint display. A vehicle display device 10 is equipped with a multi-viewpoint display 30 and an optical system mechanism 70. A flat display panel 32 is positioned in a location which is nearer than is the focal distance D0 of a lenticular lens 34, and at which light F which has passed through the lenticular lens from the viewer Mn side forms an image on the optical focal plane FH of the optical system mechanism 70, which is configured from a plane mirror 40, a concave mirror and a display unit.
Description
本発明は、車両の表示部に光を投射し情報を提供することができる車両用表示装置に関する。
The present invention relates to a vehicle display device capable of projecting light onto a vehicle display unit to provide information.
一部の車両には、ウィンドシールド等を表示部として表示部に光を投射することにより、運転者(視認者)に必要な情報を提供する表示装置(ヘッドアップディスプレイ装置)が搭載されている。このような、表示装置の従来技術として特許文献1に開示される技術がある。
Some vehicles are equipped with a display device (head-up display device) that provides necessary information to the driver (viewer) by projecting light onto the display unit using a windshield or the like as a display unit. .. As a conventional technique for such a display device, there is a technique disclosed in Patent Document 1.
特許文献1に示される表示装置は、光を出射する投射器と、この投射器から出射された光が通過するスクリーンと、これらの投射器及びスクリーンを収納しているケースと、を備えている。
The display device shown in Patent Document 1 includes a projector that emits light, a screen through which the light emitted from the projector passes, and a case that houses these projectors and the screen. ..
投射器は、DMD(Digital Mirror Device)等の光学素子を備えるプロジェクタである。スクリーンは、投射器から出射される光の結像位置に配置されている、透過型のスクリーンである。スクリーンの光が通過する面は、投射器の光を出射する面に対して、傾いて設けられている。即ち、スクリーンは、投射器から出射される光の光軸に対して、傾いて設けられている。
The projector is a projector equipped with an optical element such as a DMD (Digital Mirror Device). The screen is a transmissive screen that is located at the imaging position of the light emitted from the projector. The surface through which the light of the screen passes is provided so as to be inclined with respect to the surface from which the light of the projector is emitted. That is, the screen is provided at an angle with respect to the optical axis of the light emitted from the projector.
スクリーンの光が通過する面が、投射器の光を出射する面に対して傾いて設けられていることにより、奥行きのある虚像を運転者に認識させることができる。
The surface through which the light of the screen passes is provided so as to be inclined with respect to the surface from which the light of the projector is emitted, so that the driver can recognize a deep virtual image.
特許文献1の表示装置は、投射器、スクリーン、折り返しミラー、凹面鏡、カバーガラス、外装、制御部とからなる。投射器は、映像をスクリーンに投射し、このスクリーンで反射された映像は、凹面鏡で拡大された後、ウィンドシールドへ出射される。
The display device of Patent Document 1 includes a projector, a screen, a folded mirror, a concave mirror, a cover glass, an exterior, and a control unit. The projector projects an image onto a screen, and the image reflected by this screen is magnified by a concave mirror and then emitted to a windshield.
ところで、表示装置の取付位置には様々な機器が配置されるため、表示装置を小型化することができれば好ましい。しかし、特許文献1の表示装置では、スクリーンを斜めに傾けて配置する必要があるため、斜めに配置したスクリーンの分奥行が長くなることで表示装置全体が大きくなる。そこで本発明者らは、斜めのスクリーンを配置することなく、同等の立体像を生成する多視点ディスプレイを使用して表示装置を小型化することを想起するに至った。
By the way, since various devices are arranged at the mounting position of the display device, it is preferable if the display device can be miniaturized. However, in the display device of Patent Document 1, since the screen needs to be arranged at an angle, the entire display device becomes large due to the lengthening of the depth of the screen arranged at an angle. Therefore, the present inventors have come up with the idea of downsizing the display device by using a multi-view display that produces an equivalent stereoscopic image without arranging an oblique screen.
一般的には、多視点ディスプレイは、平面表示パネルとレンチキュラレンズとを有し、視認者の視点(目)の位置に応じた複数の映像を画素で構成している。
In general, a multi-view display has a flat display panel and a lenticular lens, and is composed of pixels of a plurality of images according to the position of the viewpoint (eye) of the viewer.
図1を参照する。図1は、一般的な多視点ディスプレイの作用を説明する図である。図1に示すように、多視点ディスプレイ101単体では車両の左右方向(図中Leは左、Riは右を示す)において、多視点ディスプレイ101の画素P1は、視認者の視点E1の位置に応じた映像を生成している。また画素P2は視点E2に応じた映像を生成し、画素P3は視点E3に応じた画素を生成している。
See FIG. FIG. 1 is a diagram illustrating the operation of a general multi-view display. As shown in FIG. 1, in the multi-view display 101 alone, the pixels P1 of the multi-view display 101 correspond to the position of the viewpoint E1 of the viewer in the left-right direction of the vehicle (Le indicates the left and Ri indicates the right in the figure). The video is being generated. Further, the pixel P2 generates an image corresponding to the viewpoint E2, and the pixel P3 generates a pixel corresponding to the viewpoint E3.
図2を参照する。図2は、一般的な車両用表示装置要部の構成を説明する図である。多視点ディスプレイ101を車両で使用する場合、車両用表示装置100は、平面表示パネル102及びレンチキュラレンズ103からなる多視点ディスプレイ101の他に、光を通すレンズ104、光を単純反射する平面鏡105、集光するように反射する凹面鏡(不図示)及び映像(以下、虚像という)が表示されるウィンドシールド等の表示部(不図示)から構成される光学系機構106が必要となる。通常、レンチキュラレンズ103の焦点面に平面表示パネル102が配置されており、平面表示パネル102からの光は、レンチキュラレンズ103を通し、光学系機構106を介して虚像を生成し視認される。しかし、多視点ディスプレイ101を車両で使用すると、光学系機構106の影響により光学系機構106を通して虚像を見た場合の距離感と、多視点ディスプレイ101を直視した場合の距離感とが一致せず、例えば図1に示す視点E1の位置で本来視認できないはずの画素P2の虚像が視認されるなど、他の視点の位置用の虚像が視認され虚像の品質が低下しうることが分かった。
Refer to Fig. 2. FIG. 2 is a diagram illustrating a configuration of a general vehicle display device main part. When the multi-viewpoint display 101 is used in a vehicle, the vehicle display device 100 includes a multi-viewpoint display 101 including a flat display panel 102 and a lenticular lens 103, a lens 104 for passing light, and a plane mirror 105 for simply reflecting light. An optical system mechanism 106 including a concave mirror (not shown) that reflects light so as to collect light and a display unit (not shown) such as a windshield that displays an image (hereinafter referred to as a virtual image) is required. Normally, the plane display panel 102 is arranged on the focal plane of the lenticular lens 103, and the light from the plane display panel 102 passes through the lenticular lens 103 and generates a virtual image through the optical system mechanism 106 to be visually recognized. However, when the multi-view display 101 is used in a vehicle, the sense of distance when the virtual image is viewed through the optical system mechanism 106 and the sense of distance when the multi-view display 101 is directly viewed do not match due to the influence of the optical system mechanism 106. For example, it has been found that a virtual image for the position of another viewpoint can be visually recognized and the quality of the virtual image can be deteriorated, for example, a virtual image of the pixel P2 which should not be visually recognized at the position of the viewpoint E1 shown in FIG.
本発明は、多視点ディスプレイを使用した上で、虚像の品質を向上させることができる車両用表示装置を提供することを課題とする。
An object of the present invention is to provide a display device for a vehicle capable of improving the quality of a virtual image while using a multi-view display.
請求項1に係る発明では、複数の画素が交互に並んで光を出射する平面表示パネル、及び、略半円筒形状の複数のシリンドリカルレンズを互いに平行に並べてなるレンチキュラレンズ、を有する多視点ディスプレイと、
この多視点ディスプレイから出射される光を制御する制御部と、
前記多視点ディスプレイから出射された光を単純反射する平面鏡、この平面鏡によって反射された光を集光するように反射する凹面鏡、及び、この凹面鏡によって反射された光が投射される表示部、を含む光学系機構と、を有し、視認者に虚像を認識させる車両用表示装置において、
前記平面表示パネルは、
前記レンチキュラレンズの焦点距離よりも短い位置であって、且つ、
前記視認者の位置から出射され前記光学系機構及び前記レンチキュラレンズを通過した光が結像する面を光学焦点面とした場合に、この光学焦点面上に配置されていることを特徴とする。 The invention according toclaim 1 comprises a multi-view display having a flat display panel in which a plurality of pixels are alternately arranged to emit light, and a lenticular lens in which a plurality of substantially semi-cylindrical cylindrical lenses are arranged in parallel with each other. ,
A control unit that controls the light emitted from this multi-view display,
A plane mirror that simply reflects the light emitted from the multi-viewpoint display, a concave mirror that reflects the light reflected by the plane mirror so as to collect the light, and a display unit on which the light reflected by the concave mirror is projected. In a vehicle display device having an optical system mechanism and allowing a viewer to recognize a virtual image.
The flat display panel is
The position is shorter than the focal length of the lenticular lens, and
When the plane on which the light emitted from the position of the viewer and passing through the optical system mechanism and the lenticular lens is imaged is used as the optical focal plane, it is characterized that it is arranged on the optical focal plane.
この多視点ディスプレイから出射される光を制御する制御部と、
前記多視点ディスプレイから出射された光を単純反射する平面鏡、この平面鏡によって反射された光を集光するように反射する凹面鏡、及び、この凹面鏡によって反射された光が投射される表示部、を含む光学系機構と、を有し、視認者に虚像を認識させる車両用表示装置において、
前記平面表示パネルは、
前記レンチキュラレンズの焦点距離よりも短い位置であって、且つ、
前記視認者の位置から出射され前記光学系機構及び前記レンチキュラレンズを通過した光が結像する面を光学焦点面とした場合に、この光学焦点面上に配置されていることを特徴とする。 The invention according to
A control unit that controls the light emitted from this multi-view display,
A plane mirror that simply reflects the light emitted from the multi-viewpoint display, a concave mirror that reflects the light reflected by the plane mirror so as to collect the light, and a display unit on which the light reflected by the concave mirror is projected. In a vehicle display device having an optical system mechanism and allowing a viewer to recognize a virtual image.
The flat display panel is
The position is shorter than the focal length of the lenticular lens, and
When the plane on which the light emitted from the position of the viewer and passing through the optical system mechanism and the lenticular lens is imaged is used as the optical focal plane, it is characterized that it is arranged on the optical focal plane.
請求項2に係る発明では、好ましくは、多視点ディスプレイは、ライトフィールドディスプレイである。
In the invention according to claim 2, the multi-view display is preferably a light field display.
請求項1に係る発明では、多視点ディスプレイは、複数の画素が交互に並んで光を出射する平面表示パネル、及び、略半円筒形状の複数のシリンドリカルレンズを互いに平行に並べてなるレンチキュラレンズを有する。多視点ディスプレイから出射された光を、単純反射する平面鏡及び集光するように反射する凹面鏡を介して表示部に投射し、視認者に虚像を認識させる。平面表示パネルを、レンチキュラレンズの焦点距離よりも短い位置であって、且つ視認者側からレンチキュラレンズを通過した光が、平面鏡、凹面鏡及び表示部から構成される光学系機構の光学焦点面に結像する位置に配置したので、光学系機構を通して虚像を見た場合の距離感と、多視点ディスプレイを直視した場合の距離感とが一致する。このため、所定の画素からの光が、視認者の所定の視点位置以外に外れることがなく、所定の視点位置にのみ虚像を生成することができ、高品質な虚像を得ることができる。このように、本発明の車両用表示装置では、多視点ディスプレイを使用し、装置全体を小型化した上で、虚像の品質を向上させることができる。
In the invention according to claim 1, the multi-viewpoint display includes a flat display panel in which a plurality of pixels are alternately arranged to emit light, and a lenticular lens in which a plurality of substantially semi-cylindrical cylindrical lenses are arranged in parallel with each other. .. The light emitted from the multi-view display is projected onto the display unit via a plane mirror that simply reflects and a concave mirror that reflects so as to condense, so that the viewer recognizes a virtual image. Light that has passed through the lenticular lens from the viewer side at a position shorter than the focal length of the lenticular lens on the flat display panel is connected to the optical focal plane of the optical system mechanism composed of the planar mirror, the concave mirror, and the display unit. Since it is placed at the position where it is imaged, the sense of distance when the virtual image is viewed through the optical system mechanism and the sense of distance when the multi-view display is directly viewed match. Therefore, the light from the predetermined pixel does not deviate to other than the predetermined viewpoint position of the viewer, and the virtual image can be generated only at the predetermined viewpoint position, and a high quality virtual image can be obtained. As described above, in the vehicle display device of the present invention, the multi-view display can be used, the entire device can be miniaturized, and the quality of the virtual image can be improved.
請求項2に係る発明では、多視点ディスプレイは、ライトフィールドディスプレイであるので、ウィンドシールド(表示部)の直下に配置することができ、従来技術のような斜めに傾けて配置されたスクリーンが不要となり、光軸に沿った奥行を短くすることが可能となり、表示装置の小型化を図ることができる。
In the invention according to claim 2, since the multi-view display is a light field display, it can be arranged directly under the windshield (display unit), and a screen arranged at an angle as in the prior art is unnecessary. Therefore, the depth along the optical axis can be shortened, and the display device can be miniaturized.
本発明の実施の形態を添付図に基づいて以下に説明する。尚、説明中、左右とは、車内の乗員(視認者)を基準として左右をいい、前後とは車両の進行方向を基準として前後をいう。また、図中Leは左、Riは右、Frは前、Rrは後、Upは上、Dnは下、を示している。
An embodiment of the present invention will be described below with reference to the attached figure. In the explanation, the left and right refer to the left and right with respect to the occupant (viewer) in the vehicle, and the front and rear refer to the front and rear with reference to the traveling direction of the vehicle. In the figure, Le is left, Ri is right, Fr is front, Rr is rear, Up is up, and Dn is down.
本発明の基本構成について説明する。図3に示すように、ヘッドアップディスプレイ(以下、車両用表示装置という)10は、例えば、車両Veに搭載され、車体の前部にあるウィンドシールド(表示部)WSに光を投射する。ウィンドシールドWSに光が投射されることにより、運転者(視認者)Mnは、ウィンドシールドWSの前方に虚像Vが投影されているように認識する。
The basic configuration of the present invention will be described. As shown in FIG. 3, the head-up display (hereinafter referred to as a vehicle display device) 10 is mounted on a vehicle Ve, for example, and projects light onto a windshield (display unit) WS at the front of the vehicle body. By projecting light onto the windshield WS, the driver (viewer) Mn recognizes that the virtual image V is projected in front of the windshield WS.
車両用表示装置10により投影される虚像Vは、上部が車両Veの前方側に傾いている。この上部が傾いた虚像Vに車速やナビゲーション情報等の情報を含ませることにより、運転者Mnは走行時に必要な情報を得ることができる。
The upper part of the virtual image V projected by the vehicle display device 10 is tilted toward the front side of the vehicle Ve. By including information such as vehicle speed and navigation information in the virtual image V whose upper portion is tilted, the driver Mn can obtain necessary information during driving.
車両用表示装置10は、ケース20と、このケース20に収納され光を出射する多視点ディスプレイ(ライトフィールドディスプレイ)30と、この多視点ディスプレイ30から出射された光が通過する光学系レンズ41と、この光学系レンズを通過した光を反射する平面鏡40と、この平面鏡40が反射した光を表示部(ウィンドシールド)WSに向かって反射する凹面鏡50と、この凹面鏡50の上方に配置されたカバーガラス60と、多視点ディスプレイ30が出射する光を制御する制御部12と、を有している。光学系レンズ41、平面鏡40、凹面鏡50、カバーガラス60及び表示部WSから光学系機構70が構成されている。
The vehicle display device 10 includes a case 20, a multi-viewpoint display (light field display) 30 housed in the case 20 and emitting light, and an optical lens 41 through which the light emitted from the multi-viewpoint display 30 passes. A plane mirror 40 that reflects the light that has passed through the optical system lens, a concave mirror 50 that reflects the light reflected by the plane mirror 40 toward the display unit (windshield) WS, and a cover arranged above the concave mirror 50. It has a glass 60 and a control unit 12 that controls the light emitted by the multi-viewpoint display 30. The optical system mechanism 70 is composed of an optical system lens 41, a plane mirror 40, a concave mirror 50, a cover glass 60, and a display unit WS.
ケース20が車両Veに取り付けられることで、多視点ディスプレイ30がウィンドシールドWSの直下に配置されている。ケース20は、遮光性を有する合成樹脂によって形成されている。このため、ケース20は、外部から多視点ディスプレイ30に入射した光が、車室内に反射することを防ぐ遮光部である、ということができる。更には、ケース20の内壁20aを遮光部ということもできる。
By attaching the case 20 to the vehicle Ve, the multi-view display 30 is arranged directly under the windshield WS. The case 20 is made of a synthetic resin having a light-shielding property. Therefore, it can be said that the case 20 is a light-shielding portion that prevents light incident on the multi-viewpoint display 30 from the outside from being reflected inside the vehicle interior. Further, the inner wall 20a of the case 20 can be referred to as a light-shielding portion.
図3及び図4に示すように、多視点ディスプレイ30は、複数の画素31が交互に並んで光を出射する平面表示パネル32と、所定方向に延びている半円筒形状のシリンドリカルレンズ33が複数並んだレンチキュラレンズ34を、を有している。
As shown in FIGS. 3 and 4, the multi-viewpoint display 30 includes a plurality of planar display panels 32 in which a plurality of pixels 31 are alternately arranged to emit light, and a plurality of semi-cylindrical cylindrical lenses 33 extending in a predetermined direction. It has the lenticular lenses 34 arranged side by side.
平面表示パネル32は、例えばバックライト32aと、液晶パネル32bとからなることで、シリンドリカルレンズ33に向かって光を出射する画素31を複数有している。尚、平面表示パネル32が出射する光は、各画素31が出射する光の束である。
The flat display panel 32 includes, for example, a backlight 32a and a liquid crystal panel 32b, and has a plurality of pixels 31 that emit light toward the cylindrical lens 33. The light emitted by the flat display panel 32 is a bundle of light emitted by each pixel 31.
各画素31は、赤・緑・青の副画素により構成されている。副画素が発光することにより、各シリンドリカルレンズ33に向かって光が出射される。尚、各副画素の発光を組み合わせることで、画素31から出射される光の明度、色相、彩度を異ならせることができる。
Each pixel 31 is composed of red, green, and blue sub-pixels. When the sub-pixels emit light, light is emitted toward each cylindrical lens 33. By combining the light emission of each sub-pixel, the brightness, hue, and saturation of the light emitted from the pixel 31 can be made different.
レンチキュラレンズ34は、例えば透明なポリカーボネートの平板状のベース板部33aと、このベース板部33aに所定方向に延びて複数配列され画素31から出射された光が通過するシリンドリカルレンズ33と、を有している。シリンドリカルレンズ33が延びている所定方向は、視認者Mnの視点の縦方向である。このように縦方向に延びている複数のシリンドリカルレンズ33は、それぞれ横に周期的に並んで配置されている。
The lenticular lens 34 includes, for example, a transparent polycarbonate flat plate-shaped base plate portion 33a, and a cylindrical lens 33 extending in a predetermined direction on the base plate portion 33a and being arranged in plurality in a predetermined direction and through which light emitted from the pixel 31 passes. doing. The predetermined direction in which the cylindrical lens 33 extends is the vertical direction of the viewpoint of the viewer Mn. The plurality of cylindrical lenses 33 extending in the vertical direction in this way are arranged side by side periodically.
また、レンチキュラレンズ34は、ベース板部33a上に、横断面に関して集光する縦長のシリンドリカルレンズ33が横(左右)に並ぶように切削加工したものである。これにより、シリンドリカルレンズ33はいわゆるカマボコ形状(D字状)であり、縦長のカマボコ形状のシリンドリカルレンズ33が横に並んで配置されたものがレンチキュラレンズ34となる。
Further, the lenticular lens 34 is cut so that vertically long cylindrical lenses 33 that collect light with respect to the cross section are lined up horizontally (left and right) on the base plate portion 33a. As a result, the cylindrical lens 33 has a so-called semi-cylindrical shape (D-shape), and the vertically long semi-cylindrical lens 33 arranged side by side becomes the lenticular lens 34.
このような形状とすることで、レンチキュラレンズ34は、各画素31から出射された光を所定方向に屈折させる。レンチキュラレンズ34は、ケース20の外部からレンチキュラレンズ34に入射した外光を遮光部としての内壁20aに向かって反射するよう、内壁20a側に傾けられている。レンチキュラレンズ34は、例えば、フューズドシリカ、光学ガラス、プラスチック等からなる。
With such a shape, the lenticular lens 34 refracts the light emitted from each pixel 31 in a predetermined direction. The lenticular lens 34 is tilted toward the inner wall 20a so that the external light incident on the lenticular lens 34 from the outside of the case 20 is reflected toward the inner wall 20a as a light-shielding portion. The lenticular lens 34 is made of, for example, fused silica, optical glass, plastic or the like.
ベース板部33aは、平面表示パネル32の光を出射する面に対して平行に設けられている。シリンドリカルレンズ33の出射側の断面形状は、例えば、凸形状、球面形状及び非球面形状等からなる。各シリンドリカルレンズ33は、各画素31に対応して設けられ、各画素31から出射された光を屈折させる。
The base plate portion 33a is provided parallel to the surface of the flat display panel 32 that emits light. The cross-sectional shape of the cylindrical lens 33 on the exit side includes, for example, a convex shape, a spherical shape, an aspherical shape, and the like. Each cylindrical lens 33 is provided corresponding to each pixel 31 and refracts the light emitted from each pixel 31.
ここで、多視点ディスプレイ30が出射する光とは、各画素31(平面表示パネル32)から出射された光であってレンチキュラレンズ34を通過した光のことをいう。つまり、各画素31から出射された光がレンチキュラレンズ34を通過することによって、多視点ディスプレイ30から光が出射される、ということができる。
Here, the light emitted by the multi-viewpoint display 30 refers to the light emitted from each pixel 31 (planar display panel 32) and passed through the lenticular lens 34. That is, it can be said that the light emitted from each pixel 31 passes through the lenticular lens 34, so that the light is emitted from the multi-viewpoint display 30.
レンチキュラレンズ34を光軸Fに対して傾斜して配置することにより、外光Gが入射した場合に、多視点ディスプレイ30の表面で反射した光が視点に戻らないようにすることができる。なお、便宜上、模式的に示した図面での多視点ディスプレイ30の傾斜角は大きくしたが、実際の傾斜角は、外光Gが入射した場合に多視点ディスプレイ30の表面で反射した光が視点に戻らないようにする程度の小さな角度である。
By arranging the lenticular lens 34 at an angle with respect to the optical axis F, it is possible to prevent the light reflected by the surface of the multi-viewpoint display 30 from returning to the viewpoint when the external light G is incident. For convenience, the tilt angle of the multi-view display 30 in the schematic drawing is large, but the actual tilt angle is the light reflected on the surface of the multi-view display 30 when the external light G is incident. It is a small angle that does not return to.
平面鏡40は、平面部分を有するように成形した樹脂、例えばポリカーボネートに、金属、例えばアルミを蒸着したミラーであり、光を単純反射するものである。
The plane mirror 40 is a mirror in which a metal, for example, aluminum is vapor-deposited on a resin, for example, polycarbonate, which is molded so as to have a flat portion, and simply reflects light.
凹面鏡50は、凹面を有するように成形した樹脂、例えばポリカーボネートに、金属、例えばアルミを蒸着したミラーであり、平行光を集光するように反射するものである。
The concave mirror 50 is a mirror in which a metal, for example, aluminum is vapor-deposited on a resin, for example, polycarbonate, which is molded so as to have a concave surface, and reflects parallel light so as to collect it.
カバーガラス60は、透明な樹脂、例えばポリカーボネートのフィルムである。ケース20は,前述の全ての部分を収容する筐体である。
The cover glass 60 is a transparent resin, for example, a polycarbonate film. The case 20 is a housing that accommodates all the above-mentioned parts.
制御部12は、マイクロプロセッサとそれを動作させる為の各種電子部品、基板、ケースからなり、装置外部から入力される車両情報やユーザーの入力を処理し、それに基づいて映像を適切に表示するように多視点ディスプレイ30を制御する。具体的には、制御部12は、レンチキュラレンズ34を通過した光がウィンドシールドWSに投射されるように、多視点ディスプレイ30が出射する光の方向を制御する。つまり、制御部12は、レンチキュラレンズ34を通過した光が所定方向に向かうよう各画素31が出射する光を制御する。
The control unit 12 is composed of a microprocessor and various electronic components, a board, and a case for operating the microprocessor, processes vehicle information input from the outside of the device and user input, and appropriately displays an image based on the input. Controls the multi-view display 30. Specifically, the control unit 12 controls the direction of the light emitted by the multi-viewpoint display 30 so that the light that has passed through the lenticular lens 34 is projected onto the windshield WS. That is, the control unit 12 controls the light emitted by each pixel 31 so that the light passing through the lenticular lens 34 goes in a predetermined direction.
運転者Mnは、多視点ディスプレイ30から出射された光がウィンドシールドWSに投射されることにより、角度がθだけ前方に傾いた虚像Vが投影されているよう認識する。このような虚像Vは、視点ごとに異なる映像が投影される。つまり、奥行きのある虚像Vを運転者Mnに視認させるためには、多視点ディスプレイ30が、視点ごとに適切な視差が付いた映像を投影する必要がある。
The driver Mn recognizes that the light emitted from the multi-viewpoint display 30 is projected onto the windshield WS to project a virtual image V whose angle is tilted forward by θ. In such a virtual image V, a different image is projected for each viewpoint. That is, in order for the driver Mn to visually recognize the deep virtual image V, the multi-viewpoint display 30 needs to project an image with appropriate parallax for each viewpoint.
制御部12は、多視点ディスプレイ30がレンチキュラレンズ34の一端から他端に亘って連続して結像位置の異なる光を出射し、上部が前方に傾いた虚像Vが視認されるよう、各画素31が出射する光を制御する。更に、制御部12は、各画素31から出射される光を制御して、レンチキュラレンズ34から出射される光の結像位置を自由に変化させることもできる。これにより、虚像Vの傾き角度を自由に変えることができる。制御部12が各画素31から出射される光を制御することで、運転者Mnの視認する任意の虚像Vが投影される。
The control unit 12 continuously emits light having a different imaging position from one end to the other end of the lenticular lens 34, and each pixel is visually recognized as a virtual image V whose upper portion is tilted forward. Controls the light emitted by 31. Further, the control unit 12 can control the light emitted from each pixel 31 to freely change the imaging position of the light emitted from the lenticular lens 34. As a result, the tilt angle of the virtual image V can be freely changed. By controlling the light emitted from each pixel 31, the control unit 12 projects an arbitrary virtual image V visually recognized by the driver Mn.
次に実施例に示す車両用表示装置10の要部について説明する。なお、図5では車両用表示装置10の要部を平面視で模式的に示している。
Next, the main parts of the vehicle display device 10 shown in the embodiment will be described. Note that FIG. 5 schematically shows a main part of the vehicle display device 10 in a plan view.
図5に示すように、車両用表示装置10は、多視点ディスプレイ30と、光学系機構70とを備えている。多視点ディスプレイ30は、平面表示パネル32と、シリンドリカルレンズ33とを備えている。光学系機構70は、光学系レンズ41と、平面鏡40とを備えている。なお、光Fは本来平面鏡40で反射するものであるが、模式図での説明の便宜上、光Fが平面鏡40を通過しているように記載している。
As shown in FIG. 5, the vehicle display device 10 includes a multi-view display 30 and an optical system mechanism 70. The multi-view display 30 includes a flat display panel 32 and a cylindrical lens 33. The optical system mechanism 70 includes an optical system lens 41 and a plane mirror 40. The light F is originally reflected by the plane mirror 40, but for convenience of explanation in the schematic diagram, the light F is described as passing through the plane mirror 40.
また、光学系機構70による焦点面(以下、光学焦点面という)FHは、視認者Mnの目から光Fを放った場合のレンチキュラレンズ34を通った結像位置と定義する。レンチキュラレンズ34(多視点ディスプレイ30)の像面Iは、光学焦点面FHと一致している。なお、説明の便宜上、図面上ではレンチキュラレンズ34(多視点ディスプレイ30)の像面Iと、光学焦点面FHとが若干ずれているが、本来的には一致しているものとする。
Further, the focal plane (hereinafter referred to as the optical focal plane) FH by the optical system mechanism 70 is defined as the imaging position through the lenticular lens 34 when the light F is emitted from the eyes of the viewer Mn. The image plane I of the lenticular lens 34 (multi-view display 30) coincides with the optical focal plane FH. For convenience of explanation, it is assumed that the image plane I of the lenticular lens 34 (multi-viewpoint display 30) and the optical focal plane FH are slightly deviated from each other in the drawings, but they are essentially the same.
レンチキュラレンズ34の焦点面(以下、レンチキュラレンズ焦点面という)FLは、光学焦点面FHとレンチキュラレンズ34との間に位置している。レンチキュラレンズ34からレンチキュラレンズ焦点面FLまでの距離は、レンチキュラレンズ34の焦点距離D0でもある。平面表示パネル32は、レンチキュラレンズ焦点面FLよりも、距離d1だけレンチキュラレンズ34側に移動した位置に配置されている。
The focal plane FL of the lenticular lens 34 (hereinafter referred to as the lenticular lens focal plane) is located between the optical focal plane FH and the lenticular lens 34. The distance from the lenticular lens 34 to the focal length FL of the lenticular lens is also the focal length D0 of the lenticular lens 34. The flat display panel 32 is arranged at a position moved to the lenticular lens 34 side by a distance d1 from the lenticular lens focal plane FL.
このように、平面表示パネル32は、レンチキュラレンズ34の焦点距離D0よりも短い位置であって、且つ視認者Mn側からレンチキュラレンズ34を通過した光が、平面鏡40、凹面鏡(図3参照)及び表示部WS(図3参照)から構成される光学系機構70の光学焦点面FHに結像する位置に配置されている。
As described above, the flat display panel 32 is located at a position shorter than the focal length D0 of the lenticular lens 34, and the light that has passed through the lenticular lens 34 from the viewer Mn side is the plane mirror 40, the concave mirror (see FIG. 3), and the light. It is arranged at a position where an image is formed on the optical focal length FH of the optical system mechanism 70 composed of the display unit WS (see FIG. 3).
次に本発明の作用を説明する。
Next, the operation of the present invention will be described.
図3に示すように、基本作用として、多視点ディスプレイ30が生成する立体像Lは、光学系レンズ41を通過して平面鏡40によって凹面鏡50へ反射され、凹面鏡50によってカバーガラス60へ拡大・反射され、カバーガラス60を透過してウィンドシールドWSによって視認者Mnへ拡大・反射され、視認者Mnの視点において虚像Vとして観察される。
As shown in FIG. 3, as a basic action, the stereoscopic image L generated by the multi-viewpoint display 30 passes through the optical system lens 41, is reflected by the plane mirror 40 to the concave mirror 50, and is magnified and reflected by the concave mirror 50 to the cover glass 60. Then, it passes through the cover glass 60, is enlarged and reflected by the windshield WS to the viewer Mn, and is observed as a virtual image V from the viewpoint of the viewer Mn.
図5に示すように、本発明の要部の作用として、仮に視認者Mnの目から出射した光は、光学系機構70を通過し、さらにレンチキュラレンズ34(多視点ディスプレイ30)を通過して、光学焦点面FHで結像する。すなわち、レンチキュラレンズ34(多視点ディスプレイ30)の像面Iが光学焦点面FHに一致する。このため、光学系機構70を通して虚像V(図3参照)を観察した場合の距離感と、多視点ディスプレイ30を直視した場合の距離感とが一致し、例えば図1に示した画素P1の光は視点E1の位置でのみ視認され、画素P2からの光がE1で視認されることなない。
As shown in FIG. 5, as an action of the main part of the present invention, the light emitted from the eyes of the viewer Mn passes through the optical system mechanism 70 and further passes through the lenticular lens 34 (multi-viewpoint display 30). , An image is formed on the optical focal plane FH. That is, the image plane I of the lenticular lens 34 (multi-view display 30) coincides with the optical focal plane FH. Therefore, the sense of distance when the virtual image V (see FIG. 3) is observed through the optical system mechanism 70 and the sense of distance when the multi-viewpoint display 30 is directly viewed are the same. For example, the light of the pixel P1 shown in FIG. Is visually recognized only at the position of the viewpoint E1, and the light from the pixel P2 is not visually recognized at E1.
次に、本発明の効果を説明する。
Next, the effect of the present invention will be described.
以上に述べたように、平面表示パネル32を、レンチキュラレンズ34の焦点距離D0よりも短い位置であって、且つ視認者Mn側からレンチキュラレンズ34を通過した光Fが、平面鏡40、凹面鏡50及び表示部WSから構成される光学系機構70の光学焦点面FHに結像する位置に配置したので、光学系機構70を通して虚像を見た場合の距離感と、多視点ディスプレイ30を直視した場合の距離感とが一致する。このため、所定の画素31からの光が、視認者Mnの所定の視点位置以外に外れることがなく、所定の視点位置にのみ虚像を生成することができ、高品質な虚像を得ることができる。このように、本発明の車両用表示装置10では、多視点ディスプレイ30を使用し、装置全体を小型化した上で、虚像の品質を向上させることができる。
As described above, the light F of the plane display panel 32 at a position shorter than the focal length D0 of the wrenchular lens 34 and passing through the wrenchular lens 34 from the viewer Mn side is the plane mirror 40, the concave mirror 50, and the concave mirror 50. Since it is arranged at a position where it forms an image on the optical focal plane FH of the optical system mechanism 70 composed of the display unit WS, the sense of distance when a virtual image is viewed through the optical system mechanism 70 and the feeling of distance when the multi-viewpoint display 30 is directly viewed It matches the sense of distance. Therefore, the light from the predetermined pixel 31 does not deviate from the position other than the predetermined viewpoint position of the viewer Mn, and the virtual image can be generated only at the predetermined viewpoint position, and a high quality virtual image can be obtained. .. As described above, in the vehicle display device 10 of the present invention, the multi-view display 30 can be used, the entire device can be miniaturized, and the quality of the virtual image can be improved.
さらに、多視点ディスプレイ30は、外光が入射した場合に表面で反射した光が視点に戻らないようにする程度の小さい傾斜で配置することができるので、光軸Fに沿った方向の奥行きを短くすることができ、車両用表示装置10全体を小型化することができる。
Further, since the multi-view display 30 can be arranged with a small inclination so that the light reflected on the surface does not return to the viewpoint when external light is incident, the depth in the direction along the optical axis F can be increased. It can be shortened, and the entire vehicle display device 10 can be miniaturized.
さらに、多視点ディスプレイ30は、ライトフィールドディスプレイであるので、ウィンドシールド(表示部)WSの直下に配置することができ、従来技術のような斜めに傾けて配置されたスクリーンが不要となり、光軸に沿った奥行を短くすることが可能となり、車両用表示装置10の小型化を図ることができる。
Further, since the multi-view display 30 is a light field display, it can be arranged directly under the windshield (display unit) WS, eliminating the need for a screen arranged at an angle as in the prior art, and the optical axis. It is possible to shorten the depth along the line, and it is possible to reduce the size of the vehicle display device 10.
さらに、平面表示パネル32の発光画素の位置を制御することにより斜め面の映像を調整できる為、取り付けの公差が緩和され、製造コストを下げることができる。
Further, since the image of the oblique surface can be adjusted by controlling the position of the light emitting pixel of the flat display panel 32, the mounting tolerance can be relaxed and the manufacturing cost can be reduced.
尚、本発明による車両用表示装置は、四輪車の他、二輪車又は三輪車に適用されても良い。更には、車両以外の乗り物や建機等にも適用が可能である。
The vehicle display device according to the present invention may be applied to a two-wheeled vehicle or a three-wheeled vehicle in addition to a four-wheeled vehicle. Furthermore, it can be applied to vehicles other than vehicles, construction machinery, and the like.
更に、実施例において、表示部はウィンドシールドとして説明されている。しかしながら、本発明による表示装置は、いわゆるコンバイナからなる表示部に光を投射することもできる。
Further, in the embodiment, the display unit is described as a windshield. However, the display device according to the present invention can also project light onto a display unit including a so-called combiner.
即ち、本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。
That is, the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
本発明の表示装置は、車両に搭載するのに好適である。
The display device of the present invention is suitable for mounting on a vehicle.
10…車両用表示装置(ヘッドアップディスプレイ)、12…制御部、30…多視点ディスプレイ(ライトフィールドディスプレイ)、31…画素、32…平面表示パネル、33…シリンドリカルレンズ、34…レンチキュラレンズ、40…平面鏡、50…凹面鏡、70…光学系機構、Mn…視認者(運転者)、Ve…車両、V…虚像(像)、WS…表示部(ウィンドシールド)、F…光軸(光)、FH…光学系焦点、FL…レンチキュラレンズ焦点面、I…像面(視認者側からの光がレンチキュラレンズを通過した結像位置)、D0…レンチキュラレンズの焦点距離。
10 ... Vehicle display device (head-up display), 12 ... Control unit, 30 ... Multi-view display (light field display), 31 ... Pixels, 32 ... Flat display panel, 33 ... Cylindrical lens, 34 ... Lenticular lens, 40 ... Plane mirror, 50 ... concave mirror, 70 ... optical system mechanism, Mn ... viewer (driver), Ve ... vehicle, V ... virtual image (image), WS ... display unit (windshield), F ... optical axis (light), FH ... Optical system focus, FL ... Lenticular lens focal length, I ... Image plane (imaging position where light from the viewer side passes through the lenticular lens), D0 ... Focal length of the lenticular lens.
Claims (2)
- 複数の画素が交互に並んで光を出射する平面表示パネル、及び、略半円筒形状の複数のシリンドリカルレンズを互いに平行に並べてなるレンチキュラレンズ、を有する多視点ディスプレイと、
この多視点ディスプレイから出射される光を制御する制御部と、
前記多視点ディスプレイから出射された光を単純反射する平面鏡、この平面鏡によって反射された光を集光するように反射する凹面鏡、及び、この凹面鏡によって反射された光が投射される表示部、を含む光学系機構と、を有し、視認者に虚像を認識させる車両用表示装置において、
前記平面表示パネルは、
前記レンチキュラレンズの焦点距離よりも短い位置であって、且つ、
前記視認者の位置から出射され前記光学系機構及び前記レンチキュラレンズを通過した光が結像する面を光学焦点面とした場合に、この光学焦点面上に配置されていることを特徴とする車両用表示装置。 A multi-view display having a flat display panel in which a plurality of pixels are alternately arranged to emit light, and a lenticular lens in which a plurality of substantially semi-cylindrical cylindrical lenses are arranged in parallel with each other.
A control unit that controls the light emitted from this multi-view display,
A plane mirror that simply reflects the light emitted from the multi-viewpoint display, a concave mirror that reflects the light reflected by the plane mirror so as to collect the light, and a display unit on which the light reflected by the concave mirror is projected. In a vehicle display device having an optical system mechanism and allowing a viewer to recognize a virtual image.
The flat display panel is
The position is shorter than the focal length of the lenticular lens, and
A vehicle characterized in that it is arranged on the optical focal plane when the plane on which the light emitted from the position of the viewer and passing through the optical system mechanism and the lenticular lens is formed is the optical focal plane. Display device for. - 前記多視点ディスプレイは、ライトフィールドディスプレイであることを特徴とする請求項1記載の表示装置。 The display device according to claim 1, wherein the multi-view display is a light field display.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019117047 | 2019-06-25 | ||
JP2019-117047 | 2019-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020262438A1 true WO2020262438A1 (en) | 2020-12-30 |
Family
ID=74061743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/024746 WO2020262438A1 (en) | 2019-06-25 | 2020-06-24 | Vehicle display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020262438A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004280052A (en) * | 2003-02-28 | 2004-10-07 | Nec Corp | Picture display device, portable terminal device, display panel and picture display method |
JP2006287592A (en) * | 2005-03-31 | 2006-10-19 | Namco Bandai Games Inc | Image generating device, electronic equipment, and image generation method and program |
US20140285640A1 (en) * | 2013-03-22 | 2014-09-25 | Samsung Display Co., Ltd. | Three dimensional image display device and method of displaying three dimensional image |
JP2019032467A (en) * | 2017-08-09 | 2019-02-28 | 株式会社デンソー | Stereoscopic display device |
-
2020
- 2020-06-24 WO PCT/JP2020/024746 patent/WO2020262438A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004280052A (en) * | 2003-02-28 | 2004-10-07 | Nec Corp | Picture display device, portable terminal device, display panel and picture display method |
JP2006287592A (en) * | 2005-03-31 | 2006-10-19 | Namco Bandai Games Inc | Image generating device, electronic equipment, and image generation method and program |
US20140285640A1 (en) * | 2013-03-22 | 2014-09-25 | Samsung Display Co., Ltd. | Three dimensional image display device and method of displaying three dimensional image |
JP2019032467A (en) * | 2017-08-09 | 2019-02-28 | 株式会社デンソー | Stereoscopic display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6601438B2 (en) | Head-up display device | |
JP2022027798A (en) | Head-up display device | |
TWI541543B (en) | Beam splitting module and projector device using the same | |
JP6738543B2 (en) | Display device and head-up display | |
JP6597022B2 (en) | Head-up display device | |
JP2011128500A (en) | Lens optical system, image display device and head-up display | |
WO2017138430A1 (en) | Display device and head-up display | |
WO2018225309A1 (en) | Virtual image display device, intermediary image formation unit, and image display light generation unit | |
WO2016190134A1 (en) | Headup display device | |
WO2020059619A1 (en) | Display device | |
WO2019087615A1 (en) | Virtual image display device | |
JP6646614B2 (en) | Display device for vehicles | |
JP2017142284A (en) | Display device and head-up display | |
WO2020262438A1 (en) | Vehicle display device | |
WO2020262441A1 (en) | Vehicle display device | |
WO2020235375A1 (en) | Display device | |
WO2020235376A1 (en) | Display device | |
JP2021005071A (en) | Display unit for vehicle | |
JP2021005070A (en) | Display unit for vehicle | |
JP2020190595A (en) | Display device | |
WO2020059620A1 (en) | Display device | |
WO2020031549A1 (en) | Virtual image display device | |
JP2020181030A (en) | Display device | |
JP2021018257A (en) | Display device | |
JP2020181031A (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20831479 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20831479 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |