WO2020262425A1 - Base station, mobile station, traffic communication system, and traffic communication method - Google Patents

Base station, mobile station, traffic communication system, and traffic communication method Download PDF

Info

Publication number
WO2020262425A1
WO2020262425A1 PCT/JP2020/024715 JP2020024715W WO2020262425A1 WO 2020262425 A1 WO2020262425 A1 WO 2020262425A1 JP 2020024715 W JP2020024715 W JP 2020024715W WO 2020262425 A1 WO2020262425 A1 WO 2020262425A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control unit
information
road
stop
Prior art date
Application number
PCT/JP2020/024715
Other languages
French (fr)
Japanese (ja)
Inventor
淳 島村
博己 藤田
誠 大羽
隆敏 吉川
優太 梅原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021527669A priority Critical patent/JP7377865B2/en
Publication of WO2020262425A1 publication Critical patent/WO2020262425A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This disclosure relates to base stations, mobile stations, traffic communication systems, and traffic communication methods.
  • Patent Document 1 describes a device provided in a vehicle that controls the own vehicle while traveling on a road where it is difficult for the own vehicle to pass by an oncoming vehicle.
  • This device detects the evacuated area where the vehicle can evacuate based on the map data, and when the own vehicle approaches the oncoming vehicle (that is, when it encounters the oncoming vehicle), it performs vehicle-to-vehicle communication and performs vehicle-to-vehicle communication. If it is determined that the own vehicle is evacuated based on this, the own vehicle is controlled to evacuate to the evacuated area.
  • the vehicle with a shorter distance to the shunting area the vehicle with a large amount of fuel remaining, the vehicle with a small number of past traffic violations by the driver, or the vehicle.
  • the vehicle with the smaller body is determined as the vehicle to evacuate.
  • ITS Intelligent Transport Systems
  • Non-Patent Document 1 includes a roadside machine which is a base station installed on the roadside and an on-board unit which is a mobile station mounted on a vehicle, and the roadside machine and the on-board unit. Describes a system that performs wireless communication.
  • ARIB STD-T109 1.3 version "700MHz band intelligent transportation system"
  • the base station communicates with a vehicle passing in either the first direction or the second direction facing the first direction on the road.
  • the base station has a communication unit that communicates with a plurality of vehicles that pass through the road, and a priority vehicle that can preferentially pass through the road without stopping in both directions from the plurality of vehicles. It includes a control unit that determines based on the communication. The control unit controls the oncoming vehicle to be stopped in advance in both directions before the priority vehicle approaches the oncoming vehicle.
  • the transportation communication system includes a base station that communicates with a plurality of vehicles that pass in either the first direction or the second direction facing the first direction on the road.
  • the traffic communication system includes a control unit that determines, based on the communication, a priority vehicle that can preferentially pass through the road without stopping in both directions from the plurality of vehicles. The control unit controls the oncoming vehicle to be stopped in advance in both directions before the priority vehicle approaches the oncoming vehicle.
  • the traffic communication method is that the base station communicates with a plurality of vehicles passing in either the first direction or the second direction facing the first direction on the road, and the road.
  • the first direction and the second direction can pass at the same time, and one direction in which both of the first direction and the second direction cannot pass at the same time and one of the first direction and the second direction can pass.
  • a priority vehicle capable of preferentially passing on the road without stopping in both directions is determined based on the communication, and the priority vehicle is opposed. This includes controlling the oncoming vehicle to be stopped in advance in both directions before approaching the vehicle.
  • the base station is a first vehicle passing through either the first direction or the second direction facing the first direction on the road, and a second vehicle which is an oncoming vehicle of the first vehicle.
  • the communication unit that receives the position information from each, the bidirectional section that both the first direction and the second direction can pass at the same time, and the first direction and the road that both cannot pass at the same time.
  • the second direction is based on the position information.
  • the communication unit includes a control unit that calculates the speed required for one vehicle and the second vehicle to reach the bidirectional section at the same time for each of the first vehicle and the second vehicle.
  • the first speed control information indicating the speed calculated for the first vehicle is transmitted to the first vehicle
  • the second speed control information indicating the speed calculated for the second vehicle is transmitted to the second vehicle. To do.
  • the traffic communication system is a first vehicle passing through either a first direction or a second direction facing the first direction on a road, and a second vehicle which is an oncoming vehicle of the first vehicle.
  • a base station that receives position information from each of the above roads, a bidirectional section in which both the first direction and the second direction can pass at the same time, and a section in which both cannot pass at the same time, and the first direction. And, when there is a one-way section through which one of the second directions can pass and the two-way section exists between the first vehicle and the second vehicle, the above-mentioned based on the position information.
  • the base station includes a control unit that calculates the speed required for the first vehicle and the second vehicle to reach the bidirectional section at the same time for each of the first vehicle and the second vehicle. Transmits the first speed control information indicating the speed calculated for the first vehicle to the first vehicle, and transmits the second speed control information indicating the speed calculated for the second vehicle to the second vehicle. Send.
  • the traffic communication method is a first vehicle passing through either the first direction or the second direction facing the first direction on the road, and a second vehicle which is an oncoming vehicle of the first vehicle.
  • the base station receives the position information from each of the above, and the road has a bidirectional section in which both the first direction and the second direction can pass at the same time, and both of them cannot pass at the same time.
  • the base station transmits the calculated first speed control information indicating the speed to the first vehicle, and the base station transmits the second speed control information indicating the calculated speed for the second vehicle to the second vehicle. Includes sending to.
  • the base station is a boarding of a passenger who is scheduled to board the vehicle from a first communication unit that wirelessly communicates with a vehicle that can stop at a bus stop on the road and a detection device provided at the bus stop. It includes a second communication unit that receives schedule information and a control unit that controls a traffic safety device provided around the bus stop. After detecting the approach of the vehicle to the stop, the control unit controls the traffic safety device so as to advance or stop the vehicle based on the boarding schedule information.
  • the mobile station according to the eighth aspect is provided on a vehicle that can stop at a bus stop on the road.
  • the mobile station detects the approach of the vehicle to the stop and the receiving unit that receives the boarding schedule information about the passengers scheduled to board the vehicle from the base station by wireless communication, and then uses the boarding schedule information. Based on this, a control unit for determining whether or not to stop the vehicle at the stop is provided.
  • the transportation communication system includes a base station according to the first aspect.
  • the transportation communication system includes the mobile station according to the second aspect.
  • the configuration in which the shunting vehicle is determined by vehicle-to-vehicle communication each time the own vehicle approaches the oncoming vehicle is not a shunting vehicle from the time when the shunting vehicle is determined until it is shunted to the shunting area. It is necessary to stop one of the vehicles and wait for the shunting vehicle to complete shunting.
  • the first and second embodiments enable the vehicle to smoothly pass on a road that is difficult to pass.
  • FIG. 1 is a diagram showing a configuration of a transportation communication system 1 according to an embodiment.
  • FIG. 2 is a diagram showing a road section having a shunting area according to the first embodiment.
  • the traffic communication system 1 includes a plurality of vehicles 100 (vehicles 100a to 100c) passing through the road R, and a roadside machine 200 which is a base station installed on the roadside around the road R. ..
  • the vehicle 100 passes on the road R in the up direction (first direction), the down direction (second direction), or both directions. Further, on the road, a bidirectional section in which both the up direction and the down direction vehicles 100 can pass at the same time, and both cannot pass at the same time, and one of the up direction and the down direction vehicles 100 can pass. There is a one-way section. For example, if the vehicle 100a is a vehicle in the up direction, the vehicle 100b can be a vehicle in the down direction.
  • the passage of the vehicle 100 includes a state in which the vehicle 100 is traveling (running) and a state in which the vehicle 100 is temporarily stopped (a state in which the vehicle 100 is evacuating).
  • the bidirectional section is a shunting area
  • the unidirectional section is a road section excluding the shunting area.
  • the section in both directions is not limited to the shunting area, and the vehicle 100 may be traveling (running) with each other in the up direction and the down direction.
  • Road R is a road where it is difficult for vehicles 100 to pass each other, for example, a one-lane road.
  • the road R may be a general road.
  • a plurality of sections Z having a shunting area are provided on the road R at intervals.
  • These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a plurality of stop sections Zb (stop sections Zb (1) and Zb (2)). Including.
  • a traffic signal may be provided for each section Z.
  • the shunting area X is an area extending toward the outside of the road R, and is an area for allowing the vehicles 100 to pass each other in the section Z.
  • the vehicle 100a passes the vehicle 100b while the vehicle 100b is stopped in the shunting area X in the siding section Za, and passes through the siding section Za.
  • the sections other than the section Z on the road R are alternating traffic sections in which it is difficult for the vehicles 100 to pass each other.
  • a pair of shelter sections Za (1) and Za (2) are provided before and after the tunnel T on the road R. While one vehicle 100 is passing through the tunnel T, the oncoming vehicle stops at the shunting vehicle in the shunting area Za, and the oncoming vehicle waits for the one vehicle 100 to pass through the tunnel T.
  • the bus stop section Zb is provided with a bus stop S for the occupants to get off from the vehicle 100 and for the occupants to get on the vehicle 100.
  • the stop S can be regarded as a station.
  • Each vehicle 100 is provided with an on-board unit 150 (see FIG. 4), which is a mobile station that performs wireless communication.
  • the on-board unit 150 performs wireless communication (that is, road-to-vehicle communication) with the roadside unit 200.
  • the on-board unit 150 may periodically perform road-to-vehicle communication with the roadside unit 200.
  • each vehicle 100 automatically operates according to the control from the roadside machine 200.
  • the automatic driving may be one in which only a part of the driving operation of the vehicle is automated.
  • each vehicle 100 may be manually operated with assistance from the roadside machine 200.
  • the vehicle 100 may be a public vehicle other than a bus, or a general vehicle (for example, an ordinary vehicle, a light vehicle, etc.). May be good.
  • the roadside machine 200 performs road-to-vehicle communication with each vehicle 100 passing through the road R.
  • FIG. 1 shows an example in which one roadside machine 200 in charge of the section between the stop section Zb (1) and the stop section Zb (2) is provided, but the roadside is provided for each one or a plurality of sections Z.
  • a machine 200 may be provided.
  • FIG. 3 is a diagram showing the configuration of the roadside machine 200 according to the first embodiment.
  • the roadside machine 200 has a communication unit 21, a control unit 22, and an interface 23.
  • the communication unit 21 has an antenna 21a, a reception unit 21b, and a transmission unit 21c, and performs wireless communication via the antenna 21a.
  • the communication unit 21 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
  • the antenna 21a may be an omnidirectional antenna or a directional antenna having directivity.
  • the antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
  • the communication unit 21 has a reception unit 21b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the communication unit 21 has a transmission unit 21c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
  • the wireless communication method of the communication unit 21 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehicle-to-e) compliant system of 3GPP (Third Generation Partnership Project) and V2X (Vehicle-to-e).
  • the method may be a method compliant with a wireless LAN (Local Area Network) standard such as IEEE (Institute of Electrical and Electricals Engineers) 802.11 series.
  • the communication unit 21 may be configured to support all of these communication standards.
  • the control unit 22 controls various functions of the roadside machine 200.
  • the control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b.
  • the memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a.
  • the processor 22a performs various processes by executing the program stored in the memory 22b.
  • the interface 23 is connected to the center equipment 500 by wire or wirelessly.
  • the center facility 500 is a facility that collects various traffic information based on the information received from the roadside machine 200 and integrates and manages the road traffic.
  • the interface 23 may be connected to the signal controller 600 by wire or wirelessly.
  • the signal controller 600 is a device that controls a traffic signal.
  • the signal controller 600 may be configured separately from the traffic signal, or may be configured integrally with the traffic signal.
  • the signal controller 600 may be integrally configured with the roadside unit 200.
  • the signal controller 600 controls switching of the signal light color of the traffic signal.
  • the communication unit 21 performs road-to-vehicle communication with a plurality of vehicles 100 passing through the road R where the vehicles 100 are difficult to pass each other (see FIG. 1). From the plurality of vehicles 100, the control unit 22 determines a priority vehicle that can preferentially pass through the road R without stopping in the shunting area X existing on the road R based on the road-to-vehicle communication. Then, the control unit 22 controls to stop the oncoming vehicle in the shunting area X in advance before the priority vehicle approaches the oncoming vehicle.
  • the communication unit 21 receives vehicle type information from each of the plurality of vehicles 100 by road-to-vehicle communication.
  • the control unit 22 determines the priority vehicle based on the vehicle type information.
  • the vehicle type information is information indicating the vehicle type of the vehicle that is the source of the vehicle type information.
  • the vehicle type information is configured so that it can be identified whether or not the vehicle type is an express bus.
  • An express bus is a bus that does not stop at all stops, but only at specific stops.
  • the control unit 22 determines the express bus as a priority vehicle. By performing priority control on such an express bus, it is possible to suppress the occurrence of delay in the express bus.
  • the vehicle type information is configured to be able to identify whether the vehicle type is a bus (or a public vehicle) and whether the vehicle type is an emergency vehicle. It may have been done.
  • An emergency vehicle is a vehicle that is in an emergency, for example, a police car or an ambulance that is traveling while sounding a siren corresponds to an emergency vehicle.
  • the control unit 22 determines the bus or the emergency vehicle as the priority vehicle. By performing priority control on such a bus or an emergency vehicle, it is possible to suppress a delay in the bus or the emergency vehicle.
  • the road R is a dedicated bus road
  • the communication unit 21 may receive operation status information from each of the plurality of vehicles 100 (plurality of buses) by road-to-vehicle communication.
  • the operation status information refers to information indicating the actual operation status with respect to the operation schedule of the bus, and is configured to be able to identify whether or not there is a delay with respect to the operation schedule.
  • the control unit 22 determines that the plurality of vehicles 100 (plurality of buses) include a bus that is delayed with respect to the operation schedule based on the operation status information, the control unit 22 causes a delay with respect to the operation schedule. Determine the bus you are on as a priority vehicle. As a result, it is possible to give priority to the bus having a delay with respect to the operation schedule to pass through the road R, and to return to the operation status according to the operation schedule.
  • the communication unit 21 may receive position information and speed information from each of the plurality of vehicles 100 by road-to-vehicle communication.
  • the position information refers to information indicating the geographical position of the vehicle from which the position information is transmitted.
  • GNSS Global Navigation Satellite System
  • the speed information refers to information indicating the moving speed of the vehicle that is the source of the speed information.
  • the control unit 22 selects a section Z for stopping the oncoming vehicle in order to allow the priority vehicle to pass from among the plurality of sections Z provided on the road R. ..
  • control unit 22 approaches the priority vehicle and the oncoming vehicle when it is assumed that the current moving speed is maintained based on the position information and speed information of the priority vehicle and the position information and speed information of the oncoming vehicle. Predict the position to do. Then, the control unit 22 selects the section Z to which the predicted position belongs or the section Z in front of the predicted position as the section Z for stopping the oncoming vehicle.
  • the control unit 22 Based on the position information and the speed information received by the communication unit 21 from each of the vehicles 100a to 100c, the control unit 22 sets the position where the vehicle 100a and the vehicle 100b are close to each other and the position where the vehicle 100a and the vehicle 100c are close to each other. Predict. For example, the control unit 22 predicts that the position where the vehicle 100a and the vehicle 100b are close to each other is in the tunnel T, and predicts that the position where the vehicle 100a and the vehicle 100c are close to each other is in the shelter section Za (3). To do. In this case, the control unit 22 determines that the vehicle 100b is stopped in the escape area X of the escape area Za (2), and the vehicle 100c is determined to be stopped in the escape area X of the escape area Za (3).
  • the control unit 22 controls the communication unit 21 to transmit a message for stopping the oncoming vehicle in the shunting area X (hereinafter, referred to as a "stop message") to the oncoming vehicle in order to allow the priority vehicle to pass.
  • the stop message includes information indicating the stop instruction and information indicating the section Z to be stopped (that is, the selected section Z).
  • the information indicating the section Z to be stopped may be the position information of the section Z (shelter area X) to be stopped.
  • the message transmitted by the communication unit 21 to each vehicle 100 includes road alignment information indicating the configuration of the road R. When the road alignment information includes the identification number and the position information of each section Z, the information indicating the section Z to be stopped may be the identification number of the section Z to be stopped.
  • the control unit 22 may control the traffic signal in addition to transmitting the stop message to the oncoming vehicle or instead of transmitting the stop message to the oncoming vehicle. Specifically, the control unit 22 displays the signal controller 600 so that the traffic signal provided in the section Z to be stopped (that is, the selected section Z) displays the light color indicating the stop instruction of the oncoming vehicle. To control.
  • FIG. 4 is a diagram showing a configuration of a vehicle 100 according to an embodiment.
  • the vehicle 100 has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15.
  • the communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150.
  • the communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a.
  • the communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
  • the communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
  • the wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE802.11 series.
  • the communication unit 11 may be configured to be compatible with all of these communication standards.
  • the GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100 to the control unit 15.
  • the notification unit 13 notifies the occupants (particularly the driver) of the vehicle 100 of the information under the control of the control unit 15.
  • the notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice.
  • the drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like.
  • the drive control unit 14 may control the drive of the vehicle 100 in cooperation with the control unit 15.
  • the control unit 15 controls various functions in the vehicle 100 (vehicle-mounted device 150).
  • the control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b.
  • the memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a.
  • the processor 15a performs various processes by executing the program stored in the memory 15b.
  • the control unit 15 controls the communication unit 11 so as to transmit the above-mentioned vehicle type information, operation status information, position information (GNSS position information), and speed information to the roadside machine 200.
  • the control unit 15 has a designated section based on the stop message.
  • the drive control unit 14 is controlled so that the own vehicle stops in the shunting area X of Z.
  • the control unit 15 causes the notification unit 13 to notify the occupant of at least one of the information indicating the designated section Z and the information indicating that the vehicle will stop in the shunting area X of the section Z. You may control it.
  • FIG. 5 is a diagram showing an operation example of the roadside machine 200 according to the first embodiment.
  • steps S1 to S3 the communication unit 21 of the roadside unit 200 receives vehicle type information, operation status information, position information, and speed information from each of the vehicles 100a to 100c.
  • the order of steps S1 to S3 is not limited to the order shown in FIG.
  • step S4 the control unit 22 of the roadside machine 200 determines the priority vehicle from the vehicles 100a to 100c based on the vehicle type information and the operation status information received from the vehicles 100a to 100c in steps S1 to S3.
  • the description will proceed on the assumption that the vehicle 100a is determined as the priority vehicle.
  • step S5 the control unit 22 of the roadside machine 200 sets a section Z for stopping each of the oncoming vehicles 100b and 100c based on the position information and the speed information received from the vehicles 100a to 100c in steps S1 to S3. select.
  • step S6 the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a pass permission message indicating that the preferential passage of the road R is permitted to the vehicle 100a.
  • step S7 the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a stop message including information indicating the stop section Z selected for the vehicle 100b in step S5 to the vehicle 100b.
  • step S8 the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a stop message including information indicating the stop section Z selected for the vehicle 100c in step S5 to the vehicle 100c.
  • steps S6 to S8 is not limited to the order shown in FIG.
  • FIG. 6 is a diagram showing a section having a shunting area according to the second embodiment.
  • the traffic communication system 1 includes a plurality of vehicles 100 (vehicles 100a to 100c) passing through the road R, and a roadside machine 200 which is a base station installed on the roadside around the road R. ..
  • the vehicle 100 passes on the road R in the up direction (first direction), the down direction (second direction), or both directions. Further, on the road, a bidirectional section in which both the up direction and the down direction vehicles 100 can pass at the same time, and both cannot pass at the same time, and one of the up direction and the down direction vehicles 100 can pass. There is a one-way section. For example, if the vehicle 100a is a vehicle in the up direction, the vehicle 100b can be a vehicle in the down direction.
  • the passage of the vehicle 100 includes a state in which the vehicle 100 is traveling (running) and a state in which the vehicle 100 is temporarily stopped (a state in which the vehicle 100 is evacuating).
  • the bidirectional section is a shunting area (shunting section), and the one-way section is a road section excluding the shunting area.
  • the bidirectional section is not limited to the shunting area, and the vehicle 100 may be traveling (running) with each other in the up direction and the down direction.
  • Road R is a road where it is difficult for vehicles 100 to pass each other, for example, a one-lane road.
  • the road R may be a general road.
  • a plurality of sections Z having a shunting area are provided on the road R at intervals.
  • These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a plurality of stop sections Zb (stop sections Zb (1) and Zb (2)). Including.
  • a traffic signal may be provided for each section Z.
  • the shunting area X is an area extending toward the outside of the road R, and is an area for enabling the vehicles 100 to pass each other in the section Z.
  • the section other than the section Z on the road R is an alternating traffic section in which it is difficult for the vehicle 100 to pass each other.
  • the vehicle 100a (first vehicle) passing through the road R and the vehicle 100b (second vehicle) which is an oncoming vehicle of the vehicle 100a are the same shelter at the same time.
  • the speeds of the vehicle 100a and the vehicle 100b are controlled so as to reach the section Za.
  • the vehicle 100a and the vehicle 100b pass each other without stopping in the shelter section Za.
  • each vehicle passes through the road R without stopping it is possible to suppress a decrease in riding comfort and a decrease in fuel consumption due to stopping and starting.
  • a pair of shelter sections Za (1) and Za (2) are provided before and after the tunnel T on the road R.
  • the stop section Zb is provided with a stop S for the occupants to get off from the vehicle 100 and for the occupants to get on the vehicle 100.
  • the stop S can be regarded as a station.
  • Each vehicle 100 is provided with an on-board unit 150 (see FIG. 4), which is a mobile station that performs wireless communication.
  • the on-board unit 150 performs wireless communication (that is, road-to-vehicle communication) with the roadside unit 200.
  • the on-board unit 150 may periodically perform road-to-vehicle communication with the roadside unit 200.
  • each vehicle 100 automatically operates according to the control from the roadside machine 200.
  • the automatic driving may be one in which only a part of the driving operation of the vehicle is automated.
  • each vehicle 100 may be manually operated with assistance from the roadside machine 200.
  • the vehicle 100 may be a public vehicle other than a bus, or a general vehicle (for example, an ordinary vehicle, a light vehicle, etc.). May be good.
  • the roadside machine 200 performs road-to-vehicle communication with each vehicle 100 passing through the road R.
  • FIG. 1 shows an example in which one roadside machine 200 in charge of the section between the stop section Zb (1) and the stop section Zb (2) is provided, but the roadside is provided for each one or a plurality of sections Z.
  • a machine 200 may be provided.
  • the roadside machine 200 has a communication unit 21, a control unit 22, and an interface 23.
  • the communication unit 21 has an antenna 21a, a reception unit 21b, and a transmission unit 21c, and performs wireless communication via the antenna 21a.
  • the communication unit 21 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
  • the antenna 21a may be an omnidirectional antenna or a directional antenna having directivity.
  • the antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
  • the communication unit 21 has a reception unit 21b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the communication unit 21 has a transmission unit 21c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
  • the wireless communication method of the communication unit 21 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehicle-to-e) compliant system of 3GPP (Third Generation Partnership Project) and V2X (Vehicle-to-e).
  • the method may be a method compliant with a wireless LAN (Local Area Network) standard such as IEEE (Institute of Electrical and Electricals Engineers) 802.11 series.
  • the communication unit 21 may be configured to support all of these communication standards.
  • the control unit 22 controls various functions of the roadside machine 200.
  • the control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b.
  • the memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a.
  • the memory 22b corresponds to a storage unit.
  • the processor 22a performs various processes by executing the program stored in the memory 22b.
  • the memory 22b stores information about each section Z provided on the road R in advance.
  • the information regarding the section Z includes the position information of the section Z and the width and length information of the shunting area X included in the section Z, and these information are used for information processing by the processor 22a.
  • the interface 23 is connected to the center equipment 500 by wire or wirelessly.
  • the center facility 500 is a facility that collects various traffic information based on the information received from the roadside machine 200 and integrates and manages the road traffic.
  • the interface 23 may be connected to the signal controller 600 by wire or wirelessly.
  • the signal controller 600 is a device that controls a traffic signal.
  • the signal controller 600 may be configured separately from the traffic signal, or may be configured integrally with the traffic signal.
  • the signal controller 600 may be integrally configured with the roadside unit 200.
  • the signal controller 600 controls switching of the signal light color of the traffic signal.
  • the communication unit 21 receives position information from each of the first vehicle passing through the road R and the second vehicle which is an oncoming vehicle of the first vehicle.
  • the position information refers to information indicating the geographical position of the vehicle from which the position information is transmitted, and for example, GNSS (Global Navigation Satellite System) position information can be used.
  • GNSS Global Navigation Satellite System
  • the control unit 22 first receives the position information received from each vehicle by the communication unit 21.
  • the speeds required for the vehicle and the second vehicle to reach the same section Z at the same time are calculated for each of the first vehicle and the second vehicle.
  • control unit 22 determines the distance 1 between the first vehicle and the section Z and the distance 2 between the second vehicle and the section Z based on the respective position information of the first vehicle and the second vehicle. calculate. Then, the control unit 22 calculates the first speed for the first vehicle to reach the section Z after the time T from the distance 1 and the time T, and the second vehicle for the second vehicle to reach the section Z after the time T. The velocity is calculated from the distance 2 and the time T.
  • the communication unit 21 transmits the first speed control information indicating the first speed of the first vehicle calculated by the control unit 22 to the first vehicle, and the second speed control information indicating the second speed calculated by the control unit 22. Is transmitted to the second vehicle.
  • Each of the first speed control information and the second speed control information may be an absolute value indicating the speed.
  • each of the first speed control information and the second speed control information may be a relative value based on the current speed.
  • the speed information refers to information indicating the moving speed of the vehicle that is the source of the speed information.
  • the speeds of the first vehicle and the second vehicle are controlled, and the first vehicle and the second vehicle are in the same section Z at the same time.
  • both the first vehicle and the second vehicle can pass through the section Z without stopping. Therefore, even when the vehicle 100 passes through the road R where it is difficult to pass each other, the delay of each vehicle can be suppressed and each vehicle can smoothly pass through the road R.
  • control unit 22 determines the movement parameters of the first vehicle and the second vehicle in the section Z, respectively.
  • the movement parameter includes at least one of the movement path and the movement speed in the section Z.
  • the movement route in the section Z means a route in which the vehicle moves in the section Z, and is represented by, for example, time-series data of the steering angle.
  • the moving speed in the section Z means the speed at which the vehicle moves in the section Z.
  • the control unit 22 determines the movement parameters of the first vehicle and the second vehicle in the section Z based on at least one information of the width and the length of the shunting area X in the section Z stored in the memory 22b. May be determined. As a result, the movement parameters can be appropriately determined. For example, when the width of the shunting area X in the section Z is wider than the reference value, or when the length of the shunting area X in the section Z is longer than the reference value, the control unit 22 uses the moving speed in the section Z as a reference. It may be decided that the speed is higher than the value.
  • the reference value of the moving speed is, for example, the moving speed during slow driving.
  • the communication unit 21 transmits the first movement parameter, which is the movement parameter determined for the first vehicle, to the first vehicle, and transmits the second parameter, which is the movement parameter determined for the second vehicle, to the second vehicle.
  • the communication unit 21 transmits one road-to-vehicle communication message including the first speed control information and the first movement parameter to the first vehicle, and one road-to-vehicle communication message including the second speed control information and the second movement parameter. May be transmitted to the second vehicle.
  • the movement of the first vehicle and the second vehicle can be controlled so that the first vehicle and the second vehicle appropriately pass each other in the same section Z. Both the 1st vehicle and the 2nd vehicle can pass through the section Z without stopping.
  • control unit 22 prioritizes each vehicle and determines a priority vehicle that can be preferentially passed within the section Z.
  • the communication unit 21 receives vehicle type information from each of the first vehicle and the second vehicle by road-to-vehicle communication.
  • the control unit 22 determines the priority vehicle based on the vehicle type information.
  • the vehicle type information is information indicating the vehicle type of the vehicle that is the source of the vehicle type information.
  • the vehicle type information is configured so that it can be identified whether or not the vehicle type is an express bus.
  • An express bus is a bus that does not stop at all stops, but only at specific stops.
  • the control unit 22 determines the express bus as a priority vehicle. By performing priority control on such an express bus, it is possible to suppress the occurrence of delay in the express bus.
  • the vehicle type information is configured to be able to identify whether the vehicle type is a bus (or a public vehicle) and whether the vehicle type is an emergency vehicle. It may have been done.
  • An emergency vehicle is a vehicle that is in an emergency, for example, a police car or an ambulance that is traveling while sounding a siren corresponds to an emergency vehicle.
  • the control unit 22 determines that the first vehicle and the second vehicle include a bus or an emergency vehicle, the control unit 22 determines the bus or the emergency vehicle as the priority vehicle. By performing priority control on such a bus or an emergency vehicle, it is possible to suppress a delay in the bus or the emergency vehicle.
  • the road R is a dedicated bus road
  • the communication unit 21 may receive operation status information from each of the first vehicle and the second vehicle (plurality of buses) by road-to-vehicle communication. ..
  • the operation status information refers to information indicating the actual operation status with respect to the operation schedule of the bus, and is configured to be able to identify whether or not there is a delay with respect to the operation schedule.
  • the control unit 22 determines that the first vehicle and the second vehicle (plurality of buses) include a bus that is delayed with respect to the operation schedule based on the operation status information, the control unit 22 delays the operation schedule.
  • the bus that is causing the problem is determined as the priority vehicle.
  • the bus that is delayed with respect to the operation schedule can be preferentially passed through the section Z, and the operation status can be returned to the operation schedule.
  • the communication unit 21 further receives speed information from each of the first vehicle and the second vehicle.
  • the control unit 22 determines that the plurality of sections Z are based on the position information and speed information of the first vehicle and the second vehicle, respectively.
  • the section Z in which the first vehicle and the second vehicle pass each other is selected from the inside.
  • the control unit 22 may further select a section Z in which the first vehicle and the second vehicle pass each other from the plurality of sections Z based on the determination result of the priority vehicle.
  • control unit 22 assumes that the current moving speeds of the first vehicle and the second vehicle are maintained based on the position information and speed information of the first vehicle and the position information and speed information of the second vehicle. When this is done, the positions where the first vehicle and the second vehicle are close to each other are predicted. Then, the control unit 22 selects the section Z to which the predicted position belongs or the section Z on the non-priority vehicle side of the predicted position as the section Z where the first vehicle and the second vehicle pass each other.
  • the communication unit 21 may include information indicating the selected section Z (hereinafter, referred to as "selected section information") in the road-to-vehicle communication message and transmit it to the first vehicle and the second vehicle.
  • the selected section information may be the position information of the section Z.
  • the road-to-vehicle communication message transmitted by the communication unit 21 to each vehicle 100 includes road alignment information indicating the configuration of the road R.
  • the selected section information may be the identification number of the section Z.
  • the control unit 22 predicts the position where the vehicle 100a and the vehicle 100b are close to each other. For example, the control unit 22 predicts that the position where the vehicle 100a and the vehicle 100b are close to each other is in the tunnel T. In this case, the control unit 22 selects the shelter section Za (2) as the section Z where the vehicle 100a and the vehicle 100b pass each other. After that, the control unit 22 calculates the speed required for the vehicle 100a and the vehicle 100b to reach the shelter section Za (2) at the same time for each of the vehicle 100a and the vehicle 100b.
  • the vehicle 100 has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15.
  • the communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150.
  • the communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a.
  • the communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
  • the communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
  • the wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE 802.11 series.
  • the communication unit 11 may be configured to be compatible with all of these communication standards.
  • the GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100 to the control unit 15.
  • the notification unit 13 notifies the occupants (particularly the driver) of the vehicle 100 of the information under the control of the control unit 15.
  • the notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice.
  • the drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like.
  • the drive control unit 14 may control the drive of the vehicle 100 in cooperation with the control unit 15.
  • the control unit 15 controls various functions in the vehicle 100 (vehicle-mounted device 150).
  • the control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b.
  • the memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a.
  • the processor 15a performs various processes by executing the program stored in the memory 15b.
  • the control unit 15 controls the communication unit 11 so as to transmit the above-mentioned vehicle type information, operation status information, position information (GNSS position information), and speed information to the roadside machine 200.
  • the control unit 15 indicates the speed control information up to the section Z indicated by the selected section information.
  • the drive control unit 14 is controlled so as to move at a speed.
  • the control unit 15 controls the movement path and the movement speed in the section Z based on the movement parameters.
  • the control unit 15 may control the notification unit 13 so as to notify the occupant of the information included in the road-to-vehicle communication message.
  • FIG. 7 is a diagram showing an operation example of the roadside machine 200 according to the second embodiment in the system configuration shown in FIG.
  • the communication unit 21 of the roadside unit 200 receives vehicle type information, operation status information, and position from each of the vehicle 100a (first vehicle) and the vehicle 100b (second vehicle). Receive information and speed information.
  • the order of steps S21 and S22 is not limited to the order shown in FIG.
  • step S23 the control unit 22 of the roadside machine 200 determines the priority vehicle from the vehicles 100a and 100b based on the vehicle type information and the operation status information received from the vehicles 100a and 100b in steps S21 and S22.
  • the description will proceed on the assumption that the vehicle 100a is determined as the priority vehicle.
  • step S24 the control unit 22 of the roadside machine 200 determines the vehicle 100a and the vehicle based on the position information and speed information received from the vehicles 100a and 100b in steps S21 and S22 and the determination result of the priority vehicle in step S23. From the section Z between the vehicle 100b and the vehicle 100b, the section Z in which the vehicle 100a and the vehicle 100b pass each other is selected.
  • the explanation will proceed on the assumption that the shelter section Za (2) has been determined as the priority vehicle.
  • step S25 the control unit 22 of the roadside machine 200 calculates the speed required for the vehicle 100a and the vehicle 100b to reach the section Z selected in step S24 at the same time for each of the vehicle 100a and the vehicle 100b. ..
  • the control unit 22 of the roadside machine 200 calculates the distance 1 between the vehicle 100a and the shelter section Za (2) and the distance 2 between the vehicle 100b and the shelter section Za (2).
  • the control unit 22 calculates the first speed for the vehicle 100a to reach the shelter section Za (2) after the time T from the distance 1 and the time T, and the vehicle arrives at the shelter section Za (2) after the time T.
  • the second velocity for 100b to reach is calculated from the distance 2 and the time T.
  • the control unit 22 generates the first speed control information indicating the calculated first speed and the second speed control information indicating the calculated second speed.
  • step S26 the control unit 22 of the roadside machine 200 determines the movement parameters of the vehicle 100a and the vehicle 100b in the shelter section Za (2).
  • the movement parameters include at least one of the movement route and the movement speed in the shelter section Za (2).
  • the control unit 22 of the roadside machine 200 determines at least one of the width and length of the shelter area X of the shelter section Za (2) stored in the memory 22b and the priority vehicle in step S23. Based on the result, the first movement parameter which is the movement parameter of the vehicle 100a in the shelter section Za (2) and the second movement parameter which is the movement parameter of the vehicle 100b in the shelter section Za (2) are determined. ..
  • step S27 the communication unit 21 of the roadside machine 200 transmits a road-to-vehicle communication message including the first speed control information and the first movement parameter to the vehicle 100a.
  • the communication unit 21 of the roadside unit 200 may further include the selected section information and the road alignment information in the road-to-vehicle communication message.
  • step S28 the communication unit 21 of the roadside machine 200 transmits a road-to-vehicle communication message including the second speed control information and the second movement parameter to the vehicle 100b.
  • the communication unit 21 of the roadside unit 200 may further include the selected section information and the road alignment information in the road-to-vehicle communication message.
  • steps S27 and S28 is not limited to the order shown in FIG.
  • the vehicle 100a When the vehicle 100a receives the roadside communication message including the first speed control information and the first movement parameter from the roadside unit 200, the vehicle 100a is controlled to move at the first speed indicated by the first speed control information. After that, when the own vehicle enters the section Z passing the vehicle 100b, the vehicle 100a controls the movement route and the movement speed in the section Z based on the first movement parameter.
  • the vehicle 100b when the vehicle 100b receives the road-to-vehicle communication message including the second speed control information and the second movement parameter from the roadside unit 200, the vehicle 100b is controlled to move at the second speed indicated by the second speed control information. After that, when the own vehicle enters the section Z passing the vehicle 100a, the vehicle 100b controls the movement route and the movement speed in the section Z based on the second movement parameter.
  • Non-Patent Document 1 has room for improvement in that it enables efficient operation of vehicles belonging to public transportation such as buses.
  • the third embodiment enables efficient operation of vehicles belonging to public transportation.
  • FIG. 8 is a diagram showing a configuration of a transportation communication system 2 according to a third embodiment.
  • the traffic communication system 2 includes a vehicle 100 passing through the road R and a roadside machine 200 which is a base station installed on the road side of the road R.
  • vehicles 100A and 100B are illustrated as the vehicle 100
  • roadside machines 200A and 200B are illustrated as the roadside machine 200.
  • the vehicle 100 is an example of a vehicle such as an ordinary vehicle or a light vehicle, it may be a vehicle that passes through the road R, for example, a motorcycle (motorcycle) or the like.
  • Each vehicle 100 is equipped with an in-vehicle device 150, which is a mobile station that performs wireless communication.
  • the on-board unit 150 performs road-to-vehicle communication with the roadside unit 200.
  • the roadside machine 200 is installed around the road R.
  • the roadside machine 200 may be installed at each intersection on a general road or on the roadside of an expressway, but the case where the roadside machine 200 is installed around an intersection will be mainly described below.
  • the roadside unit 200A is installed on the traffic signal (traffic signal lamp) 700 or its support, and operates in cooperation with the traffic signal 700.
  • the roadside unit 200A transmits a radio signal including signal information regarding the traffic signal 700 to the vehicle 100 (vehicle-mounted unit 150).
  • wireless communication by broadcasting to an unspecified number of destinations may be used.
  • wireless communication by multicast with a specific majority as a destination may be used, or wireless communication by unicast with a specific singular as a destination may be used.
  • Each roadside unit 200 is connected to the central device 400 via a communication line.
  • a vehicle detector installed on the roadside may be connected to the central device 400 via a communication line.
  • the central device 400 receives vehicle information from each roadside unit 200, including the position and speed of the vehicle 100 received by the roadside unit 200 from the on-board unit 150.
  • the central device 400 may further receive vehicle detection information from roadside sensors installed on each road R.
  • the central device 400 collects and processes various types of traffic information based on the received information, and integrates and manages road traffic.
  • FIG. 9 is a diagram showing an example of an application scenario of the transportation communication system 2 according to the third embodiment.
  • the road R is a road where it is difficult for the vehicle 100 to pass each other, for example, a one-lane road.
  • the road R is a bus-only road
  • the road R may be a general road.
  • a vehicle 100a passing through the road R in the D1 direction and a vehicle 100b passing through the road R in the direction opposite to the D1 direction are illustrated.
  • the vehicle 100 is a bus will be mainly described, but the vehicle 100 may be any vehicle as long as it belongs to public transportation.
  • a plurality of sections Z having a shunting area are provided on the road R at intervals. These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a bus stop section Zb.
  • the shunting area is an area extending toward the outside of the road R, and is an area for allowing the vehicles 100 to pass each other in the section Z.
  • the section other than the section Z on the road R is an alternating traffic section in which it is difficult for the vehicle 100 to pass each other.
  • the traffic signal 700 is an example of a traffic safety device provided on the road R.
  • the traffic safety device is a traffic signal 700 indicating whether or not the vehicle can pass through will be described, but the traffic safety device may be a barrier device that physically restricts the passage by a blocking gate.
  • the traffic signal 700 is used for traffic control so that there is only one vehicle 100 passing through the alternating traffic section. Specifically, for each section Z, a traffic signal 700D1 that determines whether or not the vehicle can pass in the D1 direction and a traffic signal 700D2 that determines whether or not the vehicle can pass in the D2 direction are provided.
  • the bus stop section Zb is provided with a bus stop S for passengers to get off from the vehicle 100 and passengers to get on the vehicle 100.
  • the stop S can be regarded as equivalent to a railway station.
  • Each vehicle 100 automatically operates according to the control from the roadside machine 200.
  • the automatic driving may be one in which only a part of the driving operation of the vehicle 100 is automated.
  • each vehicle 100 may be manually operated with assistance from the roadside machine 200.
  • the roadside unit 200 performs road-to-vehicle communication with the vehicle 100 passing through the road R, and controls the traffic signal 700 according to the road-to-vehicle communication.
  • the roadside unit 200 causes each traffic signal 700 to constantly display a light color (that is, a red light color) indicating that traffic is prohibited.
  • the roadside machine 200 displays a light color (that is, a blue light color) indicating a passage permit on the traffic signal 700 corresponding to the shelter section Za before the vehicle 100 reaches the shelter section Za. ..
  • the roadside machine 200 allows the vehicle 100 to pass the next alternating traffic section of the shelter section Za.
  • the roadside unit 200 can display a blue light color on the traffic signal 700 corresponding to the stop section Zb before the vehicle 100 reaches the stop section Zb.
  • the roadside machine 200 may display a blue light color on the traffic signal 700D1 corresponding to the stop section Zb before the vehicle 100a reaches the stop section Zb.
  • the roadside machine 200 solves such a problem by performing signal control in consideration of passengers waiting to board the bus stop S.
  • the roadside machine 200 controls the traffic signal 700D1 corresponding to the stop section Zb in front of the vehicle 100a.
  • FIG. 10 is a diagram showing the configuration of the roadside machine 200 according to the third embodiment.
  • the roadside machine 200 has a first communication unit 24, a control unit 22, and a second communication unit 25.
  • the first communication unit 24 has an antenna 21a, a reception unit 24b, and a transmission unit 24c, and performs wireless communication via the antenna 21a.
  • the first communication unit 24 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
  • the antenna 21a may be an omnidirectional antenna or a directional antenna having directivity.
  • the antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
  • the first communication unit 24 has a reception unit 24b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the first communication unit 24 has a transmission unit 24c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
  • the wireless communication method of the first communication unit 24 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehice-based) compliant method of 3GPP (Third Generation Partnership Project). And / or a method conforming to a wireless LAN (Local Area Network) standard such as IEEE (Institut of Electrical and Electricals Engineers) 802.11 series may be used.
  • the first communication unit 24 may be configured to be compatible with all of these communication standards.
  • the control unit 22 controls various functions of the roadside machine 200.
  • the control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b.
  • the memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a.
  • the memory 22b corresponds to a storage unit.
  • the processor 22a performs various processes by executing the program stored in the memory 22b.
  • the memory 22b stores in advance stop position information indicating the position of the stop section Zb (stop S) and schedule information indicating the operation schedule of each vehicle 100, and these information are used for information processing by the processor 22a.
  • the memory 22b may store the schedule information for each vehicle 100.
  • the memory 22b stores the schedule information in which the identification information of the vehicle 100 and the time when the vehicle 100 should arrive at the stop S are associated with each other.
  • the second communication unit 25 is connected to the traffic signal 700 by wire or wirelessly.
  • the signal controller and the signal lamp may be provided separately, or the signal controller and the signal lamp may be integrally configured.
  • the second communication unit 25 outputs a control command for switching the signal light color of the traffic signal 700 to the traffic signal 700 under the control of the control unit 22.
  • the second communication unit 25 is connected to the central device 400 by wire or wirelessly.
  • the central device 400 collects various traffic information based on the information received from the roadside unit 200, and integrates and manages the road traffic.
  • the second communication unit 25 is connected to the detection device 800 by wire or wirelessly.
  • the detection device 800 is provided at the stop S and is a device for detecting passengers waiting to board.
  • the detection device 800 includes a motion sensor, a push button, an RF reader, and / or a sensor such as a camera.
  • the first communication unit 24 wirelessly communicates with the vehicle 100a that can stop at the stop S provided on the road R (that is, road-to-vehicle communication). I do.
  • the second communication unit 25 receives boarding schedule information regarding passengers scheduled to board the vehicle 100a from the detection device 800 provided at the stop S.
  • the boarding schedule information may be information indicating whether or not there are passengers waiting to board the bus stop S, or may be information indicating the number of passengers waiting to board the bus stop S.
  • the detection device 800 includes an RF reader
  • the detection device 800 can identify the number of passengers waiting for boarding by using the information read from the IC card of each passenger by the detection device 800.
  • the detection device 800 includes a camera
  • the detection device 800 can identify the number of passengers waiting for boarding by performing image recognition on the image obtained by the camera.
  • the control unit 22 detects the approach of the vehicle 100a to the stop S based on the information received by the first communication unit 24 from the vehicle 100a.
  • the information received from the vehicle 100a by the first communication unit 24 includes at least one of the identification information of the vehicle 100a, the position information of the vehicle 100a, the speed information of the vehicle 100a, and the moving direction information of the vehicle 100a.
  • the control unit 22 After detecting the approach of the vehicle 100a to the stop S, the control unit 22 detects the approach of the vehicle 100a, and then based on the boarding schedule information received from the detection device 800 by the second communication unit 25, the traffic provided on the road R around the stop S. Controls the traffic light 700D1. Specifically, when there are passengers waiting to board the bus stop S, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a red light color) indicating that no traffic is allowed. As a result, when there are passengers waiting to board the bus stop S, the vehicle 100a can be stopped at the bus stop S.
  • a light color that is, a red light color
  • the first communication unit 24 receives the disembarkation schedule information regarding the passengers scheduled to disembark at the stop S from the vehicle 100a.
  • the disembarkation schedule information may be information indicating whether or not there are passengers scheduled to disembark at the stop S, or may be information indicating the number of passengers scheduled to disembark at the stop S.
  • the control unit 22 controls the traffic signal 700D1 based on the boarding schedule information received from the detection device 800 by the second communication unit 25 and the disembarkation schedule information received by the first communication unit 24 from the vehicle 100a.
  • control unit 22 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist based on the boarding schedule information and the disembarking schedule information, so that the traffic 100a is allowed to proceed. Controls the traffic light 700D1. Specifically, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a blue light color) indicating a passage permit.
  • a light color that is, a blue light color
  • control unit 22 traffic so as to stop the vehicle 100a according to the determination that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. Controls the traffic light 700D1. Specifically, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a red light color) indicating that traffic is prohibited.
  • a light color that is, a red light color
  • the control unit 22 may perform signal control in consideration of schedule information indicating the operation schedule of the vehicle 100a. For example, the control unit 22 acquires the schedule information corresponding to the identification information received from the vehicle 100a by the first communication unit 24 from the memory 22b, and compares the time when the vehicle 100a should arrive at the bus stop S with the current time. In this way, the control unit 22 determines whether or not the vehicle 100a is delayed with respect to the operation schedule.
  • the control unit 22 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist, and determines that the vehicle 100a is delayed with respect to the operation schedule, the progress of the vehicle 100a Control the traffic signal 700D1 to allow. As a result, the vehicle 100a can continue to pass on the road R without stopping at the stop S, so that the delay can be easily eliminated.
  • the vehicle 100a determines that there is no delay with respect to the operation schedule
  • the vehicle 100a The traffic signal 700D1 is controlled so as to stop.
  • the vehicle 100a is operating according to the operation schedule, it is less necessary to skip the stop S.
  • the vehicle 100a stops at the stop S when the vehicle 100a is operating according to the operation schedule.
  • control unit 22 may control the first communication unit 24 so as to transmit signal information indicating the signal light color of the traffic signal 700D1 to the vehicle 100a. For example, the control unit 22 periodically transmits signal information from the first communication unit 24.
  • FIG. 11 is a diagram showing the configuration of the vehicle 100a according to the third embodiment.
  • the vehicle 100a has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15.
  • the communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150.
  • the on-board unit 150 is an example of a mobile station.
  • the communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a.
  • the communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
  • the communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
  • the communication unit 11 transmits at least one of the identification information of the vehicle 100a, the position information of the vehicle 100a, the speed information of the vehicle 100a, and the moving direction information of the vehicle 100a to the roadside machine 200. ..
  • the wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE802.11 series.
  • the communication unit 11 may be configured to be compatible with all of these communication standards.
  • the GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100a to the control unit 15.
  • the GNSS position information is used as the above-mentioned position information, and is also used for generating the above-mentioned velocity information and movement direction information.
  • the notification unit 13 notifies the driver of the vehicle 100a of information under the control of the control unit 15.
  • the notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice.
  • the notification unit 13 may notify the information (for example, signal information) received from the roadside unit 200 by the communication unit 11.
  • the drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like.
  • the drive control unit 14 may control the drive of the vehicle 100a in cooperation with the control unit 15.
  • the control unit 15 controls various functions in the vehicle 100a (vehicle-mounted device 150).
  • the control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b.
  • the memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a.
  • the processor 15a performs various processes by executing the program stored in the memory 15b.
  • the control unit 15 controls the communication unit 11 so as to generate the disembarkation schedule information regarding the passengers scheduled to disembark at the stop S and transmit the disembarkation schedule information to the roadside unit 200.
  • the control unit 15 generates disembarkation schedule information based on the passenger's operation on the disembarkation push button provided on the vehicle 100a.
  • FIG. 12 is a diagram showing an operation example of the transportation communication system 2 according to the third embodiment.
  • step S101 the first communication unit 24 of the roadside machine 200 transmits the stop position information to the vehicle 100a.
  • the communication unit 11 receives the stop position information, and the control unit 15 detects the approach of the vehicle 100a to the stop S (step S102).
  • step S103 the control unit 15 of the vehicle 100a acquires the disembarkation schedule information, the position information, and the moving direction information.
  • step S104 the control unit 15 of the vehicle 100a transmits the disembarkation schedule information, the position information, and the moving direction information from the communication unit 11 to the roadside unit 200.
  • the first communication unit 24 of the roadside unit 200 receives the disembarkation schedule information, the position information, and the moving direction information.
  • step S105 the control unit 22 of the roadside machine 200 detects the approach of the vehicle 100a to the stop S based on the received position information and movement direction information.
  • step S106 the control unit 22 of the roadside unit 200 acquires boarding schedule information from the detection device 800 via the second communication unit 25.
  • step S107 the control unit 22 of the roadside machine 200 determines whether or not to stop the vehicle 100a at the stop S based on the disembarkation schedule information from the vehicle 100a and the boarding schedule information from the detection device 800. As described above, the operation schedule of the vehicle 100a may also be taken into consideration in this determination.
  • step S108 the control unit 22 of the roadside unit 200 outputs a control command to the traffic signal 700 via the second communication unit 25 according to the determination result in step S107.
  • the traffic signal 700 switches the light color based on this control command.
  • step S109 the control unit 22 of the roadside unit 200 transmits signal information from the first communication unit 24 to the vehicle 100a.
  • the roadside machine 200 side determines whether or not to stop the vehicle 100a at the stop S, but in this modified example, such a determination is performed on the vehicle 100a side. In this modification, the roadside machine 200 does not have to perform the signal control as described above.
  • FIG. 13 is a diagram showing an example of an application scenario of the transportation communication system 2 according to this modified example. As shown in FIG. 13, vehicles 100a and 100b are passing on a two-lane road R in the same direction.
  • the vehicle 100a is a bus, and the vehicle 100b is a general vehicle.
  • the above-mentioned detection device 800 is provided at the stop S.
  • the receiving unit 11b receives the boarding schedule information regarding the passengers scheduled to board the vehicle 100a at the stop S from the roadside machine 200.
  • the control unit 15 detects the approach of the vehicle 100a to the bus stop S, the control unit 15 determines whether or not to stop the vehicle 100a at the bus stop S based on the boarding schedule information. Specifically, the control unit 15 determines that the vehicle 100a is stopped at the bus stop S when there are passengers waiting to board the bus stop S. As a result, when there are passengers waiting to board the bus stop S, the vehicle 100a can be stopped at the bus stop S.
  • the notification unit 13 may notify the fact, or the control unit 15 operates in cooperation with the drive control unit 14 so as to stop the vehicle 100a at the bus stop S. May be controlled.
  • the notification unit 13 may notify the fact, and the control unit 15 cooperates with the drive control unit 14 so as not to stop the vehicle 100a at the stop S. You may control the operation.
  • control unit 15 acquires the disembarkation schedule information regarding the passengers who are scheduled to disembark at the stop S.
  • the control unit 15 determines whether or not to stop the vehicle 100a at the stop S based on the boarding schedule information and the disembarking schedule information in the same manner as in the third embodiment described above. Specifically, the control unit 15 stops the vehicle 100a at the stop S in response to the determination that neither the passengers scheduled to board nor the passengers scheduled to disembark exist based on the boarding schedule information and the disembarking schedule information. Decide not to let.
  • control unit 15 stops the vehicle 100a at the stop S in response to the determination that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. To decide.
  • the control unit 15 may determine whether or not the vehicle 100a is delayed with respect to the operation schedule based on the schedule information indicating the operation schedule of the vehicle 100a. The control unit 15 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist, and when it is determined that a delay has occurred, the vehicle 100a is not stopped at the stop S. On the other hand, the control unit 15 determines that the vehicle 100a is stopped at the stop S when it is determined that neither the passengers scheduled to board nor the passengers scheduled to disembark exist and no delay has occurred. To do.
  • the communication unit 11 may perform wireless communication (that is, vehicle-to-vehicle communication) with another vehicle 100b.
  • the control unit 15 determines that the vehicle 100a is to be stopped at the bus stop S
  • the control unit 15 predicts the start timing at which the vehicle 100a starts after the vehicle 100a is stopped at the bus stop S.
  • the control unit 15 transmits information indicating the remaining time until the predicted start timing from the transmission unit 11c to the other vehicle 100b by wireless communication.
  • control unit 15 predicts the start timing based on at least one of the schedule information, the boarding schedule information, and the disembarking schedule information.
  • control unit 15 predicts the scheduled start time included in the schedule information as the start timing, and sets the difference between the stop timing at which the vehicle 100a is stopped at the stop S and the predicted start timing as the remaining time until the start timing. Is transmitted from the transmission unit 11c as the initial value of, and then periodically transmitted from the transmission unit 11c while reducing the remaining time.
  • the control unit 15 may correct the scheduled start time included in the schedule information by using at least one of the boarding schedule information and the disembarking schedule information. For example, the control unit 15 may correct the scheduled start time to be delayed as the number of scheduled riders indicated by the boarding schedule information increases, and predict the start timing. Similarly, the control unit 15 may correct the scheduled start time to be delayed as the number of people scheduled to disembark indicated by the disembarkation schedule information increases, and predict the start timing.
  • the vehicle 100b following the vehicle 100a can grasp when the vehicle 100a starts. Therefore, dangerous driving such as overtaking the vehicle 100a is less likely to occur.
  • FIG. 14 is a diagram showing an operation example of the transportation communication system 2 according to this modified example.
  • step S201 the first communication unit 24 of the roadside unit 200 transmits the stop position information to the vehicle 100a.
  • the communication unit 11 receives the stop position information, and the control unit 15 detects the approach of the vehicle 100a to the stop S (step S202).
  • step S203 the control unit 15 of the vehicle 100a acquires the disembarkation schedule information, the position information, and the moving direction information.
  • step S204 the control unit 15 of the vehicle 100a transmits the position information and the moving direction information from the communication unit 11 to the roadside unit 200.
  • the first communication unit 24 of the roadside unit 200 receives the position information and the moving direction information.
  • step S205 the control unit 22 of the roadside machine 200 detects the approach of the vehicle 100a to the stop S based on the received position information and movement direction information.
  • step S206 the control unit 22 of the roadside unit 200 acquires boarding schedule information from the detection device 800 via the second communication unit 25.
  • step S207 the control unit 22 of the roadside machine 200 transmits the acquired boarding schedule information from the first communication unit 24 to the vehicle 100a.
  • the communication unit 11 of the vehicle 100a receives the boarding schedule information.
  • step S208 the control unit 15 of the vehicle 100a determines whether or not to stop the vehicle 100a at the stop S based on the disembarkation schedule information and the boarding schedule information from the roadside machine 200. As described above, the operation schedule of the vehicle 100a may also be taken into consideration in this determination.
  • step S209 the control unit 15 of the vehicle 100a stops the vehicle 100a at the bus stop S and predicts the start timing after the vehicle 100a stops at the bus stop S, according to the determination result in the step S208.
  • step S210 the control unit 15 of the vehicle 100a transmits information indicating the remaining time until the predicted start timing from the transmission unit 11c to the other vehicle 100b by wireless communication.
  • the center facility 500 may execute at least one of the processes of steps S4 and S5 shown in FIG.
  • the control unit 22 of the roadside machine 200 may be provided in the center equipment 500.
  • the center facility 500 may execute at least one of the processes of steps S23 to S26 shown in FIG.
  • the control unit 22 of the roadside machine 200 may be provided in the center equipment 500.
  • a program for causing a computer to execute each process performed by the vehicle 100a (vehicle-mounted device 150) or the roadside device 200 may be provided.
  • the program may be recorded on a computer-readable medium.
  • Computer-readable media can be used to install programs on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit for executing each process performed by the on-board unit 150 or the roadside unit 200 may be integrated, and at least a part of the on-board unit 150 or the roadside unit 200 may be configured as a semiconductor integrated circuit (chipset, SoC).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

A roadside machine 200, which performs communication with a vehicle 100, performs communication with a plurality of the vehicles 100 that pass along a road R on which it is difficult for the vehicles 100 to pass each other. From among the plurality of vehicles 100, the roadside machine 200 determines, on the basis of communication, a priority vehicle which can preferentially pass the road R without stopping at an escape area present on the road R. The roadside machine 200 performs a control for stopping an oncoming vehicle in the escape area in advance before the priority vehicle is close to the oncoming vehicle.

Description

基地局、移動局、交通通信システム、及び交通通信方法Base stations, mobile stations, traffic communication systems, and traffic communication methods
 本開示は、基地局、移動局、交通通信システム、及び交通通信方法に関する。 This disclosure relates to base stations, mobile stations, traffic communication systems, and traffic communication methods.
 特許文献1には、車両に設けられる装置であって、自車両が対向車両とのすれ違いが困難な道路を通行中に自車両を制御する装置が記載されている。 Patent Document 1 describes a device provided in a vehicle that controls the own vehicle while traveling on a road where it is difficult for the own vehicle to pass by an oncoming vehicle.
 この装置は、車両が待避可能な待避領域を地図データに基づき検出し、自車両が対向車両と近接した際(すなわち、対向車両と出くわした際)に、車車間通信を行い、車車間通信に基づいて自車両が待避すると決定すると、自車両が待避領域に待避する制御を行う。 This device detects the evacuated area where the vehicle can evacuate based on the map data, and when the own vehicle approaches the oncoming vehicle (that is, when it encounters the oncoming vehicle), it performs vehicle-to-vehicle communication and performs vehicle-to-vehicle communication. If it is determined that the own vehicle is evacuated based on this, the own vehicle is controlled to evacuate to the evacuated area.
 具体的には、自車両及び対向車両のうち、待避領域までの距離が短い方の車両、燃料の残量が多い方の車両、運転者の過去の交通違反の回数が少ない方の車両、又は車体が小さい方の車両が、退避する車両として決定される。 Specifically, among the own vehicle and the oncoming vehicle, the vehicle with a shorter distance to the shunting area, the vehicle with a large amount of fuel remaining, the vehicle with a small number of past traffic violations by the driver, or the vehicle. The vehicle with the smaller body is determined as the vehicle to evacuate.
 また、近年、交通事故の危険を回避可能な技術として高度道路交通システム(ITS:Intelligent Transport System)が注目されている。 In recent years, intelligent transportation systems (ITS: Intelligent Transport Systems) have been attracting attention as a technology that can avoid the danger of traffic accidents.
 そのようなシステムの1つとして、非特許文献1には、路側に設置される基地局である路側機と、車両に搭載される移動局である車載機とを有し、路側機及び車載機が無線通信を行うシステムが記載されている。 As one such system, Non-Patent Document 1 includes a roadside machine which is a base station installed on the roadside and an on-board unit which is a mobile station mounted on a vehicle, and the roadside machine and the on-board unit. Describes a system that performs wireless communication.
特開2018-151177号公報JP-A-2018-151177
 第1の態様に係る基地局は、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する車両との通信を行う。前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間とがある。前記基地局は、前記道路を通行する複数の車両との通信を行う通信部と、前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定する制御部とを備える。前記制御部は、前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行う。 The base station according to the first aspect communicates with a vehicle passing in either the first direction or the second direction facing the first direction on the road. A bidirectional section in which both the first direction and the second direction can pass at the same time, and the road cannot pass in both directions at the same time, and one of the first direction and the second direction can pass through the road. There is a one-way section. The base station has a communication unit that communicates with a plurality of vehicles that pass through the road, and a priority vehicle that can preferentially pass through the road without stopping in both directions from the plurality of vehicles. It includes a control unit that determines based on the communication. The control unit controls the oncoming vehicle to be stopped in advance in both directions before the priority vehicle approaches the oncoming vehicle.
 第2の態様に係る交通通信システムは、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する複数の車両との通信を行う基地局を備える。前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間とがある。前記交通通信システムは、前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定する制御部を備える。前記制御部は、前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行う。 The transportation communication system according to the second aspect includes a base station that communicates with a plurality of vehicles that pass in either the first direction or the second direction facing the first direction on the road. A bidirectional section in which both the first direction and the second direction can pass at the same time, and the road cannot pass in both directions at the same time, and one of the first direction and the second direction can pass through the road. There is a one-way section. The traffic communication system includes a control unit that determines, based on the communication, a priority vehicle that can preferentially pass through the road without stopping in both directions from the plurality of vehicles. The control unit controls the oncoming vehicle to be stopped in advance in both directions before the priority vehicle approaches the oncoming vehicle.
 第3の態様に係る交通通信方法は、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する複数の車両との通信を基地局が行うことと、前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定することと、前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行うこととを含む。 The traffic communication method according to the third aspect is that the base station communicates with a plurality of vehicles passing in either the first direction or the second direction facing the first direction on the road, and the road. In both directions, the first direction and the second direction can pass at the same time, and one direction in which both of the first direction and the second direction cannot pass at the same time and one of the first direction and the second direction can pass. There is a section, and from among the plurality of vehicles, a priority vehicle capable of preferentially passing on the road without stopping in both directions is determined based on the communication, and the priority vehicle is opposed. This includes controlling the oncoming vehicle to be stopped in advance in both directions before approaching the vehicle.
 第4の態様に係る基地局は、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから位置情報を受信する通信部と、前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出する制御部と、を備え、前記通信部は、前記第1車両について算出した前記速度を示す第1速度制御情報を前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記第2車両に送信する。 The base station according to the fourth aspect is a first vehicle passing through either the first direction or the second direction facing the first direction on the road, and a second vehicle which is an oncoming vehicle of the first vehicle. The communication unit that receives the position information from each, the bidirectional section that both the first direction and the second direction can pass at the same time, and the first direction and the road that both cannot pass at the same time. When there is a one-way section through which one of the second directions can pass and the two-way section exists between the first vehicle and the second vehicle, the second direction is based on the position information. The communication unit includes a control unit that calculates the speed required for one vehicle and the second vehicle to reach the bidirectional section at the same time for each of the first vehicle and the second vehicle. The first speed control information indicating the speed calculated for the first vehicle is transmitted to the first vehicle, and the second speed control information indicating the speed calculated for the second vehicle is transmitted to the second vehicle. To do.
 第5の態様に係る交通通信システムは、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから位置情報を受信する基地局と、前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出する制御部と、を備え、前記基地局は、前記第1車両について算出した前記速度を示す第1速度制御情報を前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記第2車両に送信する。 The traffic communication system according to the fifth aspect is a first vehicle passing through either a first direction or a second direction facing the first direction on a road, and a second vehicle which is an oncoming vehicle of the first vehicle. A base station that receives position information from each of the above roads, a bidirectional section in which both the first direction and the second direction can pass at the same time, and a section in which both cannot pass at the same time, and the first direction. And, when there is a one-way section through which one of the second directions can pass and the two-way section exists between the first vehicle and the second vehicle, the above-mentioned based on the position information. The base station includes a control unit that calculates the speed required for the first vehicle and the second vehicle to reach the bidirectional section at the same time for each of the first vehicle and the second vehicle. Transmits the first speed control information indicating the speed calculated for the first vehicle to the first vehicle, and transmits the second speed control information indicating the speed calculated for the second vehicle to the second vehicle. Send.
 第6の態様に係る交通通信方法は、道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから基地局が位置情報を受信することと、前記道路には、前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出することと、前記第1車両について算出した前記速度を示す第1速度制御情報を前記基地局が前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記基地局が前記第2車両に送信することとを含む。 The traffic communication method according to the sixth aspect is a first vehicle passing through either the first direction or the second direction facing the first direction on the road, and a second vehicle which is an oncoming vehicle of the first vehicle. The base station receives the position information from each of the above, and the road has a bidirectional section in which both the first direction and the second direction can pass at the same time, and both of them cannot pass at the same time. When there is a one-way section through which one of the one direction and the second direction can pass, and the two-way section exists between the first vehicle and the second vehicle, based on the position information. To calculate the speed required for the first vehicle and the second vehicle to reach the bidirectional section at the same time for each of the first vehicle and the second vehicle, and for the first vehicle. The base station transmits the calculated first speed control information indicating the speed to the first vehicle, and the base station transmits the second speed control information indicating the calculated speed for the second vehicle to the second vehicle. Includes sending to.
 第7の態様に係る基地局は、道路にある停留所に停止しうる車両との無線通信を行う第1通信部と、前記停留所に設けられた検出装置から、前記車両に乗車予定の乗客に関する乗車予定情報を受信する第2通信部と、前記停留所の周辺に設けられた交通安全装置を制御する制御部とを備える。前記制御部は、前記停留所への前記車両の接近を検知した後、前記乗車予定情報に基づいて、前記車両を進行又は停止させるよう前記交通安全装置を制御する。 The base station according to the seventh aspect is a boarding of a passenger who is scheduled to board the vehicle from a first communication unit that wirelessly communicates with a vehicle that can stop at a bus stop on the road and a detection device provided at the bus stop. It includes a second communication unit that receives schedule information and a control unit that controls a traffic safety device provided around the bus stop. After detecting the approach of the vehicle to the stop, the control unit controls the traffic safety device so as to advance or stop the vehicle based on the boarding schedule information.
 第8の態様に係る移動局は、道路にある停留所に停止しうる車両に設けられる。前記移動局は、前記停留所における前記車両に乗車予定の乗客に関する乗車予定情報を基地局から無線通信により受信する受信部と、前記停留所への前記車両の接近を検知した後、前記乗車予定情報に基づいて、前記車両を前記停留所で停止させるか否かを決定する制御部とを備える。 The mobile station according to the eighth aspect is provided on a vehicle that can stop at a bus stop on the road. The mobile station detects the approach of the vehicle to the stop and the receiving unit that receives the boarding schedule information about the passengers scheduled to board the vehicle from the base station by wireless communication, and then uses the boarding schedule information. Based on this, a control unit for determining whether or not to stop the vehicle at the stop is provided.
 第9の態様に係る交通通信システムは、第1の態様に係る基地局を備える。 The transportation communication system according to the ninth aspect includes a base station according to the first aspect.
 第10の態様に係る交通通信システムは、第2の態様に係る移動局を備える。 The transportation communication system according to the tenth aspect includes the mobile station according to the second aspect.
第1実施形態に係る交通通信システムの構成を示す図である。It is a figure which shows the structure of the traffic communication system which concerns on 1st Embodiment. 第1実施形態に係る待避領域を有する区間を示す図である。It is a figure which shows the section which has a shunting area which concerns on 1st Embodiment. 第1実施形態に係る路側機の構成を示す図である。It is a figure which shows the structure of the roadside machine which concerns on 1st Embodiment. 第1実施形態に係る車両の構成を示す図である。It is a figure which shows the structure of the vehicle which concerns on 1st Embodiment. 第1実施形態に係る路側機の動作例を示す図である。It is a figure which shows the operation example of the roadside machine which concerns on 1st Embodiment. 第2実施形態に係る待避領域を有する区間を示す図である。It is a figure which shows the section which has a shunting area which concerns on 2nd Embodiment. 第2実施形態に係る路側機の動作例を示す図である。It is a figure which shows the operation example of the roadside machine which concerns on 2nd Embodiment. 第3実施形態に係る交通通信システムの構成を示す図である。It is a figure which shows the structure of the traffic communication system which concerns on 3rd Embodiment. 第3実施形態に係る交通通信システムの適用シナリオの一例を示す図である。It is a figure which shows an example of the application scenario of the traffic communication system which concerns on 3rd Embodiment. 第3実施形態に係る路側機の構成を示す図である。It is a figure which shows the structure of the roadside machine which concerns on 3rd Embodiment. 第3実施形態に係る車両の構成を示す図である。It is a figure which shows the structure of the vehicle which concerns on 3rd Embodiment. 第3実施形態に係る交通通信システムの動作例を示す図である。It is a figure which shows the operation example of the traffic communication system which concerns on 3rd Embodiment. 第3実施形態に係る交通通信システムの適用シナリオの変更例を示す図である。It is a figure which shows the modification example of the application scenario of the traffic communication system which concerns on 3rd Embodiment. 第3実施形態に係る交通通信システムの動作の変更例を示す図である。It is a figure which shows the modification of the operation of the traffic communication system which concerns on 3rd Embodiment.
 特許文献1に記載のように自車両が対向車両と近接する度に車車間通信によって待避車両を決定する構成は、待避車両が決定されてから待避領域に待避するまでの間、待避車両ではない方の車両が停止して、待避車両の待避完了を待つ必要がある。 As described in Patent Document 1, the configuration in which the shunting vehicle is determined by vehicle-to-vehicle communication each time the own vehicle approaches the oncoming vehicle is not a shunting vehicle from the time when the shunting vehicle is determined until it is shunted to the shunting area. It is necessary to stop one of the vehicles and wait for the shunting vehicle to complete shunting.
 特に、自車両が対向車両と近接したときに自車両と対向車両との間の道路区間に待避領域が存在しない場合、待避車両として決定された車両は、後方の待避領域まで後退する必要がありうるため、各車両の遅延が大きくなる。 In particular, when the own vehicle is close to the oncoming vehicle and there is no retreat area in the road section between the own vehicle and the oncoming vehicle, the vehicle determined as the retreat vehicle must retreat to the rear retreat area. Therefore, the delay of each vehicle becomes large.
 そこで、第1及び第2実施形態は、すれ違いが困難な道路を車両が円滑に通行することを可能とする。 Therefore, the first and second embodiments enable the vehicle to smoothly pass on a road that is difficult to pass.
[第1実施形態]
 第1実施形態に係る交通通信システムについて図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
[First Embodiment]
The transportation communication system according to the first embodiment will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals.
 (交通通信システムの構成)
 まず、第1実施形態に係る交通通信システム1の構成について説明する。図1は、一実施形態に係る交通通信システム1の構成を示す図である。図2は、第1実施形態に係る待避領域を有する道路区間を示す図である。
(Composition of transportation communication system)
First, the configuration of the transportation communication system 1 according to the first embodiment will be described. FIG. 1 is a diagram showing a configuration of a transportation communication system 1 according to an embodiment. FIG. 2 is a diagram showing a road section having a shunting area according to the first embodiment.
 図1に示すように、交通通信システム1は、道路Rを通る複数の車両100(車両100a乃至100c)と、道路Rの周辺である路側に設置される基地局である路側機200とを有する。 As shown in FIG. 1, the traffic communication system 1 includes a plurality of vehicles 100 (vehicles 100a to 100c) passing through the road R, and a roadside machine 200 which is a base station installed on the roadside around the road R. ..
 車両100は、道路R上で上り方向(第1方向)、下り方向(第2方向)、又は両方向を通行する。また、道路には、上り方向、下り方向の両方の車両100が同時に通行可能な両方向区間と、両方が同時に通行はできず、上り方向、下り方向のうち何れか一方の車両100が通行可能な片方向区間と、がある。例えば、車両100aは、上り方向の車両とすれば、車両100bは、下り方向の車両とすることができる。 The vehicle 100 passes on the road R in the up direction (first direction), the down direction (second direction), or both directions. Further, on the road, a bidirectional section in which both the up direction and the down direction vehicles 100 can pass at the same time, and both cannot pass at the same time, and one of the up direction and the down direction vehicles 100 can pass. There is a one-way section. For example, if the vehicle 100a is a vehicle in the up direction, the vehicle 100b can be a vehicle in the down direction.
 車両100が通行するとは、車両100が進行(走行)している状態および一時的に停止している状態(車両100が待避している状態)を含む。第1実施形態では、両方向区間を待避領域とし、片方向区間は、待避領域を除いた道路の区間である。第1実施形態以外の他の実施形態では、両方向区間は待避領域に限定されず、車両100が上り方向、下り方向の車両100が互いに進行(走行)していてもよい。 The passage of the vehicle 100 includes a state in which the vehicle 100 is traveling (running) and a state in which the vehicle 100 is temporarily stopped (a state in which the vehicle 100 is evacuating). In the first embodiment, the bidirectional section is a shunting area, and the unidirectional section is a road section excluding the shunting area. In the embodiment other than the first embodiment, the section in both directions is not limited to the shunting area, and the vehicle 100 may be traveling (running) with each other in the up direction and the down direction.
 道路Rは、車両100のすれ違いが困難な道路、例えば一車線の道路である。第1実施形態において、道路Rがバス専用道路である一例について主として説明するが、道路Rは一般道路であってもよい。図1に示す例において、待避領域を有する区間Zが間隔をおいて道路Rに複数設けられている。これらの複数の区間Zは、複数の待避所区間Za(待避所区間Za(1)乃至Za(3))と、複数の停留所区間Zb(停留所区間Zb(1)及びZb(2))とを含む。なお、区間Zごとに交通信号機が設けられていてもよい。 Road R is a road where it is difficult for vehicles 100 to pass each other, for example, a one-lane road. In the first embodiment, an example in which the road R is a bus-only road will be mainly described, but the road R may be a general road. In the example shown in FIG. 1, a plurality of sections Z having a shunting area are provided on the road R at intervals. These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a plurality of stop sections Zb (stop sections Zb (1) and Zb (2)). Including. A traffic signal may be provided for each section Z.
 図2に示すように、待避領域Xは、道路Rの外側に向けて広がった領域であり、区間Zにおいて車両100のすれ違いを可能とするための領域である。例えば、車両100aは、車両100bが待避所区間Za内の待避領域Xに停止している間に車両100bとすれ違い、待避所区間Zaを通行する。一方、道路Rにおける区間Z以外の区間は、車両100のすれ違いが困難な交互交通区間である。 As shown in FIG. 2, the shunting area X is an area extending toward the outside of the road R, and is an area for allowing the vehicles 100 to pass each other in the section Z. For example, the vehicle 100a passes the vehicle 100b while the vehicle 100b is stopped in the shunting area X in the siding section Za, and passes through the siding section Za. On the other hand, the sections other than the section Z on the road R are alternating traffic sections in which it is difficult for the vehicles 100 to pass each other.
 図1に示すように、道路R上のトンネルTの前後に一対の待避所区間Za(1)及びZa(2)が設けられる。1つの車両100がトンネルT内を通行中に、対向車両が待避所区間Za内の待避車両で停止し、この1つの車両100がトンネルTを通過するのを対向車両が待つ。 As shown in FIG. 1, a pair of shelter sections Za (1) and Za (2) are provided before and after the tunnel T on the road R. While one vehicle 100 is passing through the tunnel T, the oncoming vehicle stops at the shunting vehicle in the shunting area Za, and the oncoming vehicle waits for the one vehicle 100 to pass through the tunnel T.
 停留所区間Zbには、車両100から乗員が降車したり、車両100に乗員が乗車したりするための停留所Sが設けられている。なお、車両100が鉄道の代替で用いられる場合、停留所Sは駅とみなすことができる。 The bus stop section Zb is provided with a bus stop S for the occupants to get off from the vehicle 100 and for the occupants to get on the vehicle 100. When the vehicle 100 is used as a substitute for a railway, the stop S can be regarded as a station.
 各車両100には、無線通信を行う移動局である車載機150(図4参照)が設けられている。車載機150は、路側機200との無線通信(すなわち、路車間通信)を行う。車載機150は、路側機200との路車間通信を周期的に行ってもよい。 Each vehicle 100 is provided with an on-board unit 150 (see FIG. 4), which is a mobile station that performs wireless communication. The on-board unit 150 performs wireless communication (that is, road-to-vehicle communication) with the roadside unit 200. The on-board unit 150 may periodically perform road-to-vehicle communication with the roadside unit 200.
 第1実施形態において、各車両100は、路側機200からの制御に応じた自動運転を行う。自動運転は、車両の運転操作の一部のみを自動化したものであってもよい。或いは、各車両100は、路側機200からの補助を用いた手動運転を行うものであってもよい。 In the first embodiment, each vehicle 100 automatically operates according to the control from the roadside machine 200. The automatic driving may be one in which only a part of the driving operation of the vehicle is automated. Alternatively, each vehicle 100 may be manually operated with assistance from the roadside machine 200.
 第1実施形態において、車両100がバスである一例について主として説明するが、車両100は、バス以外の公共車両であってもよいし、一般車両(例えば、普通自動車や軽自動車等)であってもよい。 In the first embodiment, an example in which the vehicle 100 is a bus will be mainly described, but the vehicle 100 may be a public vehicle other than a bus, or a general vehicle (for example, an ordinary vehicle, a light vehicle, etc.). May be good.
 路側機200は、道路Rを通る各車両100との路車間通信を行う。図1において、停留所区間Zb(1)と停留所区間Zb(2)との間の区間を担当する1つの路側機200が設けられる一例を示しているが、1つ又は複数の区間Zごとに路側機200が設けられてもよい。 The roadside machine 200 performs road-to-vehicle communication with each vehicle 100 passing through the road R. FIG. 1 shows an example in which one roadside machine 200 in charge of the section between the stop section Zb (1) and the stop section Zb (2) is provided, but the roadside is provided for each one or a plurality of sections Z. A machine 200 may be provided.
 (路側機の構成)
 次に、第1実施形態に係る路側機200の構成について説明する。図3は、第1実施形態に係る路側機200の構成を示す図である。
(Structure of roadside machine)
Next, the configuration of the roadside machine 200 according to the first embodiment will be described. FIG. 3 is a diagram showing the configuration of the roadside machine 200 according to the first embodiment.
 図3に示すように、路側機200は、通信部21と、制御部22と、インターフェイス23とを有する。 As shown in FIG. 3, the roadside machine 200 has a communication unit 21, a control unit 22, and an interface 23.
 通信部21は、アンテナ21aと、受信部21bと、送信部21cとを有し、アンテナ21aを介して無線通信を行う。通信部21は、車両100(車載機150)との路車間通信を行う。 The communication unit 21 has an antenna 21a, a reception unit 21b, and a transmission unit 21c, and performs wireless communication via the antenna 21a. The communication unit 21 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
 アンテナ21aは、無指向性アンテナであってもよいし、指向性を有する指向性アンテナであってもよい。アンテナ21aは、指向性を動的に変更可能なアダプティブアレイアンテナであってもよい。 The antenna 21a may be an omnidirectional antenna or a directional antenna having directivity. The antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
 通信部21は、アンテナ21aが受信する無線信号を受信データに変換して制御部22に出力する受信部21bを有する。また、通信部21は、制御部22が出力する送信データを無線信号に変換してアンテナ21aから送信する送信部21cを有する。 The communication unit 21 has a reception unit 21b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the communication unit 21 has a transmission unit 21c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
 通信部21の無線通信方式は、ARIB(Association of Radio Industries and Businesses)のT109規格に準拠した方式、3GPP(Third Generation Partnership Project)のV2X(Vehicle-to-everything)規格に準拠した方式、及び/又はIEEE(Institute of Electrical and Electronics Engineers)802.11シリーズ等の無線LAN(Local Area Network)規格に準拠した方式であってもよい。通信部21は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the communication unit 21 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehicle-to-e) compliant system of 3GPP (Third Generation Partnership Project) and V2X (Vehicle-to-e). Alternatively, the method may be a method compliant with a wireless LAN (Local Area Network) standard such as IEEE (Institute of Electrical and Electricals Engineers) 802.11 series. The communication unit 21 may be configured to support all of these communication standards.
 制御部22は、路側機200における各種の機能を制御する。制御部22は、少なくとも1つのメモリ22bと、メモリ22bと電気的に接続された少なくとも1つのプロセッサ22aとを有する。メモリ22bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ22aにおける処理に用いる情報と、プロセッサ22aにより実行されるプログラムとを記憶する。プロセッサ22aは、メモリ22bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 22 controls various functions of the roadside machine 200. The control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b. The memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a. The processor 22a performs various processes by executing the program stored in the memory 22b.
 インターフェイス23は、有線又は無線でセンタ設備500と接続される。センタ設備500は、路側機200から受信する情報に基づいて各種の交通情報を収集し、道路交通を統合して管理する設備である。 The interface 23 is connected to the center equipment 500 by wire or wirelessly. The center facility 500 is a facility that collects various traffic information based on the information received from the roadside machine 200 and integrates and manages the road traffic.
 インターフェイス23は、有線又は無線で信号制御機600と接続されてもよい。信号制御機600は、交通信号機を制御する装置である。信号制御機600は、交通信号機とは別体に構成されてもよいし、交通信号機と一体に構成されていてもよい。信号制御機600は、路側機200と一体に構成されてもよい。信号制御機600は、交通信号機の信号灯色の切り替えを制御する。 The interface 23 may be connected to the signal controller 600 by wire or wirelessly. The signal controller 600 is a device that controls a traffic signal. The signal controller 600 may be configured separately from the traffic signal, or may be configured integrally with the traffic signal. The signal controller 600 may be integrally configured with the roadside unit 200. The signal controller 600 controls switching of the signal light color of the traffic signal.
 このように構成された路側機200において、通信部21は、車両100のすれ違いが困難な道路Rを通行する複数の車両100との路車間通信を行う(図1参照)。制御部22は、これら複数の車両100の中から、道路Rに存在する待避領域Xで停止せずに道路Rを優先的に通行可能な優先車両を路車間通信に基づいて決定する。そして、制御部22は、優先車両が対向車両と近接する前に、この対向車両を待避領域Xで予め停止させる制御を行う。 In the roadside machine 200 configured in this way, the communication unit 21 performs road-to-vehicle communication with a plurality of vehicles 100 passing through the road R where the vehicles 100 are difficult to pass each other (see FIG. 1). From the plurality of vehicles 100, the control unit 22 determines a priority vehicle that can preferentially pass through the road R without stopping in the shunting area X existing on the road R based on the road-to-vehicle communication. Then, the control unit 22 controls to stop the oncoming vehicle in the shunting area X in advance before the priority vehicle approaches the oncoming vehicle.
 このように、優先車両が対向車両と近接する前に、この対向車両を待避領域Xで予め停止させることにより、優先車両が道路Rを通行する際に、対向車両の待避完了を待つために停止する必要がない。このため、車両100のすれ違いが困難な道路Rを通行する場合であっても、優先車両の遅延を抑制し、優先車両が円滑に道路Rを通行できる。 In this way, by stopping the oncoming vehicle in the shunting area X in advance before the priority vehicle approaches the oncoming vehicle, when the priority vehicle passes through the road R, the priority vehicle is stopped to wait for the completion of shunting of the oncoming vehicle. You don't have to. Therefore, even when the vehicle 100 passes on the road R where it is difficult to pass each other, the delay of the priority vehicle can be suppressed and the priority vehicle can smoothly pass on the road R.
 第1実施形態において、通信部21は、路車間通信により、複数の車両100のそれぞれから車両種別情報を受信する。制御部22は、車両種別情報に基づいて優先車両を決定する。車両種別情報は、この車両種別情報の送信元車両の車両種別を示す情報である。 In the first embodiment, the communication unit 21 receives vehicle type information from each of the plurality of vehicles 100 by road-to-vehicle communication. The control unit 22 determines the priority vehicle based on the vehicle type information. The vehicle type information is information indicating the vehicle type of the vehicle that is the source of the vehicle type information.
 例えば、車両種別情報は、車両種別が急行バスであるか否かを識別可能に構成されている。急行バスとは、すべての停留所で停止するのではなく、特定の停留所でのみ停止するバスをいう。制御部22は、道路Rがバス専用道路であって、通信部21が路車間通信を行う複数の車両100に急行バスが含まれる場合、この急行バスを優先車両として決定する。このような急行バスに対する優先制御を行うことで、急行バスに遅延が生じることを抑制できる。 For example, the vehicle type information is configured so that it can be identified whether or not the vehicle type is an express bus. An express bus is a bus that does not stop at all stops, but only at specific stops. When the road R is a bus-only road and the plurality of vehicles 100 for which the communication unit 21 communicates between roads includes an express bus, the control unit 22 determines the express bus as a priority vehicle. By performing priority control on such an express bus, it is possible to suppress the occurrence of delay in the express bus.
 或いは、道路Rが一般道路であると仮定した場合、車両種別情報は、車両種別がバス(或いは公共車両)であるか否か、及び車両種別が緊急車両であるか否かを識別可能に構成されていてもよい。緊急車両とは、緊急走行中の車両をいい、例えばサイレンを鳴らしながら走行しているパトカー又は救急車が緊急車両に相当する。制御部22は、通信部21が路車間通信を行う複数の車両100にバス又は緊急車両が含まれると判定した場合、このバス又は緊急車両を優先車両として決定する。このようなバス又は緊急車両に対する優先制御を行うことで、バス又は緊急車両に遅延が生じることを抑制できる。 Alternatively, assuming that the road R is a general road, the vehicle type information is configured to be able to identify whether the vehicle type is a bus (or a public vehicle) and whether the vehicle type is an emergency vehicle. It may have been done. An emergency vehicle is a vehicle that is in an emergency, for example, a police car or an ambulance that is traveling while sounding a siren corresponds to an emergency vehicle. When the communication unit 21 determines that the plurality of vehicles 100 that perform road-to-vehicle communication include a bus or an emergency vehicle, the control unit 22 determines the bus or the emergency vehicle as the priority vehicle. By performing priority control on such a bus or an emergency vehicle, it is possible to suppress a delay in the bus or the emergency vehicle.
 第1実施形態において、道路Rがバス専用道路であって、通信部21は、路車間通信により、複数の車両100(複数のバス)のそれぞれから運行状況情報を受信してもよい。運行状況情報とは、バスの運行スケジュールに対する実際の運行状況を示す情報をいい、運行スケジュールに対して遅延を生じているか否かを識別可能に構成されている。制御部22は、運行状況情報に基づいて、運行スケジュールに対して遅延を生じているバスが複数の車両100(複数のバス)に含まれると判定した場合、運行スケジュールに対して遅延を生じているバスを優先車両として決定する。これにより、運行スケジュールに対して遅延を生じているバスに優先的に道路Rを通行させ、運行スケジュールどおりの運行状況に戻しやくすることができる。 In the first embodiment, the road R is a dedicated bus road, and the communication unit 21 may receive operation status information from each of the plurality of vehicles 100 (plurality of buses) by road-to-vehicle communication. The operation status information refers to information indicating the actual operation status with respect to the operation schedule of the bus, and is configured to be able to identify whether or not there is a delay with respect to the operation schedule. When the control unit 22 determines that the plurality of vehicles 100 (plurality of buses) include a bus that is delayed with respect to the operation schedule based on the operation status information, the control unit 22 causes a delay with respect to the operation schedule. Determine the bus you are on as a priority vehicle. As a result, it is possible to give priority to the bus having a delay with respect to the operation schedule to pass through the road R, and to return to the operation status according to the operation schedule.
 第1実施形態において、通信部21は、路車間通信により、複数の車両100のそれぞれから位置情報及び速度情報を受信してもよい。位置情報とは、この位置情報の送信元車両の地理的な位置を示す情報をいい、例えばGNSS(Global Navigation Satellite System)位置情報を用いることができる。速度情報とは、この速度情報の送信元車両の移動速度を示す情報をいう。制御部22は、各車両100の位置情報及び速度情報に基づいて、道路Rに設けられている複数の区間Zの中から、優先車両を通行させるために対向車両を停止させる区間Zを選択する。 In the first embodiment, the communication unit 21 may receive position information and speed information from each of the plurality of vehicles 100 by road-to-vehicle communication. The position information refers to information indicating the geographical position of the vehicle from which the position information is transmitted. For example, GNSS (Global Navigation Satellite System) position information can be used. The speed information refers to information indicating the moving speed of the vehicle that is the source of the speed information. Based on the position information and speed information of each vehicle 100, the control unit 22 selects a section Z for stopping the oncoming vehicle in order to allow the priority vehicle to pass from among the plurality of sections Z provided on the road R. ..
 例えば、制御部22は、優先車両の位置情報及び速度情報と、対向車両の位置情報及び速度情報とに基づいて、現在の移動速度が維持されると仮定したときに優先車両及び対向車両が近接する位置を予測する。そして、制御部22は、予想した位置が属する区間Z又は予想した位置の手前の区間Zを、対向車両を停止させる区間Zとして選択する。 For example, the control unit 22 approaches the priority vehicle and the oncoming vehicle when it is assumed that the current moving speed is maintained based on the position information and speed information of the priority vehicle and the position information and speed information of the oncoming vehicle. Predict the position to do. Then, the control unit 22 selects the section Z to which the predicted position belongs or the section Z in front of the predicted position as the section Z for stopping the oncoming vehicle.
 ここで具体例を挙げて説明する。図1において、車両100aが優先車両として決定され、車両100b及び100cが非優先車両(すなわち、優先車両の対向車両)として決定されたと仮定する。通信部21が車両100a乃至100cのそれぞれから受信した位置情報及び速度情報に基づいて、制御部22は、車両100aと車両100bとが近接する位置と、車両100aと車両100cとが近接する位置とを予測する。例えば、制御部22は、車両100aと車両100bとが近接する位置がトンネルT内であると予測し、車両100aと車両100cとが近接する位置が待避所区間Za(3)内であると予測する。この場合、制御部22は、車両100bを待避所区間Za(2)の待避領域Xで停止させると決定し、車両100cを待避所区間Za(3)の待避領域Xで停止させると決定する。 Here, a concrete example will be given for explanation. In FIG. 1, it is assumed that the vehicle 100a is determined as the priority vehicle and the vehicles 100b and 100c are determined as non-priority vehicles (ie, oncoming vehicles of the priority vehicle). Based on the position information and the speed information received by the communication unit 21 from each of the vehicles 100a to 100c, the control unit 22 sets the position where the vehicle 100a and the vehicle 100b are close to each other and the position where the vehicle 100a and the vehicle 100c are close to each other. Predict. For example, the control unit 22 predicts that the position where the vehicle 100a and the vehicle 100b are close to each other is in the tunnel T, and predicts that the position where the vehicle 100a and the vehicle 100c are close to each other is in the shelter section Za (3). To do. In this case, the control unit 22 determines that the vehicle 100b is stopped in the escape area X of the escape area Za (2), and the vehicle 100c is determined to be stopped in the escape area X of the escape area Za (3).
 制御部22は、優先車両を通行させるために対向車両を待避領域Xで停止させるためのメッセージ(以下、「停止メッセージ」と呼ぶ)を対向車両に送信するよう通信部21を制御する。停止メッセージは、停止を指示する旨の情報と、停止すべき区間Z(すなわち、選択された区間Z)を示す情報とを含む。停止すべき区間Zを示す情報は、停止すべき区間Z(待避領域X)の位置情報であってもよい。なお、通信部21が各車両100に送信するメッセージには、道路Rの構成を示す道路線形情報が含まれている。道路線形情報に各区間Zの識別番号及び位置情報が含まれている場合、停止すべき区間Zを示す情報は、停止すべき区間Zの識別番号であってもよい。 The control unit 22 controls the communication unit 21 to transmit a message for stopping the oncoming vehicle in the shunting area X (hereinafter, referred to as a "stop message") to the oncoming vehicle in order to allow the priority vehicle to pass. The stop message includes information indicating the stop instruction and information indicating the section Z to be stopped (that is, the selected section Z). The information indicating the section Z to be stopped may be the position information of the section Z (shelter area X) to be stopped. The message transmitted by the communication unit 21 to each vehicle 100 includes road alignment information indicating the configuration of the road R. When the road alignment information includes the identification number and the position information of each section Z, the information indicating the section Z to be stopped may be the identification number of the section Z to be stopped.
 制御部22は、停止メッセージを対向車両に送信することに加えて、又は停止メッセージを対向車両に送信することに代えて、交通信号機の制御を行ってもよい。具体的には、制御部22は、停止すべき区間Z(すなわち、選択された区間Z)に設けられている交通信号機が対向車両の停止指示を示す灯色を表示するように信号制御機600を制御する。 The control unit 22 may control the traffic signal in addition to transmitting the stop message to the oncoming vehicle or instead of transmitting the stop message to the oncoming vehicle. Specifically, the control unit 22 displays the signal controller 600 so that the traffic signal provided in the section Z to be stopped (that is, the selected section Z) displays the light color indicating the stop instruction of the oncoming vehicle. To control.
 (車両の構成)
 次に、第1実施形態に係る車両100の構成について説明する。図4は、一実施形態に係る車両100の構成を示す図である。
(Vehicle configuration)
Next, the configuration of the vehicle 100 according to the first embodiment will be described. FIG. 4 is a diagram showing a configuration of a vehicle 100 according to an embodiment.
 図4に示すように、車両100は、通信部11と、GNSS受信機12と、通知部13と、駆動制御部14と、制御部15とを有する。通信部11、GNSS受信機12、及び制御部15は、車載機150を構成する。 As shown in FIG. 4, the vehicle 100 has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15. The communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150.
 通信部11は、アンテナ11aと、受信部11bと、送信部11cとを有し、アンテナ11aを介して無線通信を行う。通信部11は、路側機200との路車間通信を行う。 The communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a. The communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
 通信部11は、アンテナ11aが受信する無線信号を受信データに変換して制御部15に出力する受信部11bを有する。また、通信部11は、制御部15が出力する送信データを無線信号に変換してアンテナ11aから送信する送信部11cを有する。 The communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
 通信部11の無線通信方式は、ARIBのT109規格に準拠した方式、3GPPのV2X規格に準拠した方式、及び/又はIEEE802.11シリーズ等の無線LAN規格に準拠した方式であってもよい。通信部11は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE802.11 series. The communication unit 11 may be configured to be compatible with all of these communication standards.
 GNSS受信機12は、GNSS衛星信号に基づいて測位を行い、車両100の現在の地理的な位置(緯度・経度)を示すGNSS位置情報を制御部15に出力する。 The GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100 to the control unit 15.
 通知部13は、制御部15の制御下で、車両100の乗員(特に、運転者)に対する情報の通知を行う。通知部13は、情報を表示するディスプレイ13aと、情報を音声出力するスピーカ13bとを有する。 The notification unit 13 notifies the occupants (particularly the driver) of the vehicle 100 of the information under the control of the control unit 15. The notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice.
 駆動制御部14は、動力源としてのエンジン又はモータ、動力伝達機構、及びブレーキ等を制御する。車両100が自動運転車両である場合、駆動制御部14は、制御部15と連携して車両100の駆動を制御してもよい。 The drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like. When the vehicle 100 is an autonomous driving vehicle, the drive control unit 14 may control the drive of the vehicle 100 in cooperation with the control unit 15.
 制御部15は、車両100(車載機150)における各種の機能を制御する。制御部15は、少なくとも1つのメモリ15bと、メモリ15bと電気的に接続された少なくとも1つのプロセッサ15aとを有する。メモリ15bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ15aにおける処理に用いる情報及びプロセッサ15aにより実行されるプログラムを記憶する。プロセッサ15aは、メモリ15bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 15 controls various functions in the vehicle 100 (vehicle-mounted device 150). The control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b. The memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a. The processor 15a performs various processes by executing the program stored in the memory 15b.
 制御部15は、上述した車両種別情報、運行状況情報、位置情報(GNSS位置情報)、及び速度情報を路側機200に送信するよう通信部11を制御する。 The control unit 15 controls the communication unit 11 so as to transmit the above-mentioned vehicle type information, operation status information, position information (GNSS position information), and speed information to the roadside machine 200.
 また、制御部15は、優先車両を通行させるために対向車両を待避領域Xで停止させるための停止メッセージを路側機200から通信部11が受信すると、この停止メッセージに基づいて、指定された区間Zの待避領域Xで自車両が停止するよう駆動制御部14を制御する。制御部15は、この停止メッセージに基づいて、指定された区間Zを示す情報、及びこの区間Zの待避領域Xで停止する旨の情報のうち少なくとも一方を乗員に通知するように通知部13を制御してもよい。 Further, when the communication unit 11 receives a stop message from the roadside unit 200 for stopping the oncoming vehicle in the shunting area X in order to allow the priority vehicle to pass, the control unit 15 has a designated section based on the stop message. The drive control unit 14 is controlled so that the own vehicle stops in the shunting area X of Z. Based on this stop message, the control unit 15 causes the notification unit 13 to notify the occupant of at least one of the information indicating the designated section Z and the information indicating that the vehicle will stop in the shunting area X of the section Z. You may control it.
 (路側機の動作例)
 次に、第1実施形態に係る路側機200の動作例について説明する。図5は、第1実施形態に係る路側機200の動作例を示す図である。
(Operation example of roadside machine)
Next, an operation example of the roadside machine 200 according to the first embodiment will be described. FIG. 5 is a diagram showing an operation example of the roadside machine 200 according to the first embodiment.
 図5に示すように、ステップS1乃至S3において、路側機200の通信部21は、車両100a乃至100cのそれぞれから、車両種別情報、運行状況情報、位置情報、及び速度情報を受信する。なお、ステップS1乃至S3の順番は、図5に示す順番に限定されるものではない。 As shown in FIGS. 5, in steps S1 to S3, the communication unit 21 of the roadside unit 200 receives vehicle type information, operation status information, position information, and speed information from each of the vehicles 100a to 100c. The order of steps S1 to S3 is not limited to the order shown in FIG.
 ステップS4において、路側機200の制御部22は、ステップS1乃至S3において車両100a乃至100cから受信した車両種別情報及び運行状況情報に基づいて、車両100a乃至100cの中から優先車両を決定する。ここでは車両100aが優先車両として決定されたと仮定して説明を進める。 In step S4, the control unit 22 of the roadside machine 200 determines the priority vehicle from the vehicles 100a to 100c based on the vehicle type information and the operation status information received from the vehicles 100a to 100c in steps S1 to S3. Here, the description will proceed on the assumption that the vehicle 100a is determined as the priority vehicle.
 ステップS5において、路側機200の制御部22は、ステップS1乃至S3において車両100a乃至100cから受信した位置情報及び速度情報に基づいて、対向車両である車両100b及び100cのそれぞれを停止させる区間Zを選択する。 In step S5, the control unit 22 of the roadside machine 200 sets a section Z for stopping each of the oncoming vehicles 100b and 100c based on the position information and the speed information received from the vehicles 100a to 100c in steps S1 to S3. select.
 ステップS6において、路側機200の制御部22は、道路Rの優先的な通行を許可することを示す通行許可メッセージを車両100aに送信するよう通信部21を制御する。 In step S6, the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a pass permission message indicating that the preferential passage of the road R is permitted to the vehicle 100a.
 ステップS7において、路側機200の制御部22は、ステップS5で車両100bについて選択した停止区間Zを示す情報を含む停止メッセージを車両100bに送信するよう通信部21を制御する。 In step S7, the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a stop message including information indicating the stop section Z selected for the vehicle 100b in step S5 to the vehicle 100b.
 ステップS8において、路側機200の制御部22は、ステップS5で車両100cについて選択した停止区間Zを示す情報を含む停止メッセージを車両100cに送信するよう通信部21を制御する。 In step S8, the control unit 22 of the roadside machine 200 controls the communication unit 21 to transmit a stop message including information indicating the stop section Z selected for the vehicle 100c in step S5 to the vehicle 100c.
 なお、ステップS6乃至S8の順番は、図5に示す順番に限定されるものではない。 Note that the order of steps S6 to S8 is not limited to the order shown in FIG.
 [第2実施形態]
 第2実施形態に係る交通通信システムについて図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。第2実施形態について、第1実施形態との相違点を主として説明する。
[Second Embodiment]
The transportation communication system according to the second embodiment will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. The differences between the second embodiment and the first embodiment will be mainly described.
 (交通通信システムの構成)
 まず、第2実施形態に係る交通通信システム1の構成について説明する。第2実施形態に係る交通通信システム1の構成を示す図は、第1実施形態に係る交通通信システム1の構成を示す図と同様である。よって、以下において図1を参照して、第2実施形態に係る交通通信システム1の構成について説明する。また、図6は、第2実施形態に係る待避領域を有する区間を示す図である。
(Composition of transportation communication system)
First, the configuration of the transportation communication system 1 according to the second embodiment will be described. The diagram showing the configuration of the traffic communication system 1 according to the second embodiment is the same as the diagram showing the configuration of the traffic communication system 1 according to the first embodiment. Therefore, the configuration of the transportation communication system 1 according to the second embodiment will be described below with reference to FIG. Further, FIG. 6 is a diagram showing a section having a shunting area according to the second embodiment.
 図1に示すように、交通通信システム1は、道路Rを通る複数の車両100(車両100a乃至100c)と、道路Rの周辺である路側に設置される基地局である路側機200とを有する。 As shown in FIG. 1, the traffic communication system 1 includes a plurality of vehicles 100 (vehicles 100a to 100c) passing through the road R, and a roadside machine 200 which is a base station installed on the roadside around the road R. ..
 車両100は、道路R上で上り方向(第1方向)、下り方向(第2方向)、又は両方向を通行する。また、道路には、上り方向、下り方向の両方の車両100が同時に通行可能な両方向区間と、両方が同時に通行はできず、上り方向、下り方向のうち何れか一方の車両100が通行可能な片方向区間と、がある。例えば、車両100aは、上り方向の車両とすれば、車両100bは、下り方向の車両とすることができる。 The vehicle 100 passes on the road R in the up direction (first direction), the down direction (second direction), or both directions. Further, on the road, a bidirectional section in which both the up direction and the down direction vehicles 100 can pass at the same time, and both cannot pass at the same time, and one of the up direction and the down direction vehicles 100 can pass. There is a one-way section. For example, if the vehicle 100a is a vehicle in the up direction, the vehicle 100b can be a vehicle in the down direction.
 車両100が通行するとは、車両100が進行(走行)している状態および一時的に停止している状態(車両100が待避している状態)を含む。第2実施形態では、両方向区間を待避領域(待避区間)とし、片方向区間は、待避領域を除いた道路の区間である。本実施形態以外の他の実施形態では、両方向区間は待避領域に限定されず、車両100が上り方向、下り方向の車両100が互いに進行(走行)していてもよい。 The passage of the vehicle 100 includes a state in which the vehicle 100 is traveling (running) and a state in which the vehicle 100 is temporarily stopped (a state in which the vehicle 100 is evacuating). In the second embodiment, the bidirectional section is a shunting area (shunting section), and the one-way section is a road section excluding the shunting area. In the embodiment other than the present embodiment, the bidirectional section is not limited to the shunting area, and the vehicle 100 may be traveling (running) with each other in the up direction and the down direction.
 道路Rは、車両100のすれ違いが困難な道路、例えば一車線の道路である。第2実施形態において、道路Rがバス専用道路である一例について主として説明するが、道路Rは一般道路であってもよい。図1に示す例において、待避領域を有する区間Zが間隔をおいて道路Rに複数設けられている。これらの複数の区間Zは、複数の待避所区間Za(待避所区間Za(1)乃至Za(3))と、複数の停留所区間Zb(停留所区間Zb(1)及びZb(2))とを含む。なお、区間Zごとに交通信号機が設けられていてもよい。 Road R is a road where it is difficult for vehicles 100 to pass each other, for example, a one-lane road. In the second embodiment, an example in which the road R is a bus-only road will be mainly described, but the road R may be a general road. In the example shown in FIG. 1, a plurality of sections Z having a shunting area are provided on the road R at intervals. These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a plurality of stop sections Zb (stop sections Zb (1) and Zb (2)). Including. A traffic signal may be provided for each section Z.
 図6に示すように、待避領域Xは、道路Rの外側に向けて広がった領域であり、区間Zにおいて車両100のすれ違いを可能とするための領域である。道路Rにおける区間Z以外の区間は、車両100のすれ違いが困難な交互交通区間である。 As shown in FIG. 6, the shunting area X is an area extending toward the outside of the road R, and is an area for enabling the vehicles 100 to pass each other in the section Z. The section other than the section Z on the road R is an alternating traffic section in which it is difficult for the vehicle 100 to pass each other.
 第2実施形態において、図6Aに示すように、道路Rを通行する車両100a(第1車両)と、車両100aの対向車両である車両100b(第2車両)とが同時期に同一の待避所区間Zaに到達するように、車両100a及び車両100bのそれぞれの速度が制御される。そして、図6A及び図6Bに示すように、車両100a及び車両100bが待避所区間Za内において停止することなくすれ違う。これにより、待避所区間Za内において一方の車両が停止して他方の車両を待つ必要がないため、各車両の遅延を小さくすることができる。また、各車両が道路Rを停止せずに通行することにより、停止及び発進に起因する乗り心地の低下や燃費の低下を抑制できる。 In the second embodiment, as shown in FIG. 6A, the vehicle 100a (first vehicle) passing through the road R and the vehicle 100b (second vehicle) which is an oncoming vehicle of the vehicle 100a are the same shelter at the same time. The speeds of the vehicle 100a and the vehicle 100b are controlled so as to reach the section Za. Then, as shown in FIGS. 6A and 6B, the vehicle 100a and the vehicle 100b pass each other without stopping in the shelter section Za. As a result, it is not necessary for one vehicle to stop and wait for the other vehicle in the shelter section Za, so that the delay of each vehicle can be reduced. Further, since each vehicle passes through the road R without stopping, it is possible to suppress a decrease in riding comfort and a decrease in fuel consumption due to stopping and starting.
 図1に示すように、道路R上のトンネルTの前後に一対の待避所区間Za(1)及びZa(2)が設けられている。一方、停留所区間Zbには、車両100から乗員が降車したり、車両100に乗員が乗車したりするための停留所Sが設けられている。なお、車両100が鉄道の代替で用いられる場合、停留所Sは駅とみなすことができる。 As shown in FIG. 1, a pair of shelter sections Za (1) and Za (2) are provided before and after the tunnel T on the road R. On the other hand, the stop section Zb is provided with a stop S for the occupants to get off from the vehicle 100 and for the occupants to get on the vehicle 100. When the vehicle 100 is used as a substitute for a railway, the stop S can be regarded as a station.
 各車両100には、無線通信を行う移動局である車載機150(図4参照)が設けられている。車載機150は、路側機200との無線通信(すなわち、路車間通信)を行う。車載機150は、路側機200との路車間通信を周期的に行ってもよい。 Each vehicle 100 is provided with an on-board unit 150 (see FIG. 4), which is a mobile station that performs wireless communication. The on-board unit 150 performs wireless communication (that is, road-to-vehicle communication) with the roadside unit 200. The on-board unit 150 may periodically perform road-to-vehicle communication with the roadside unit 200.
 第2実施形態において、各車両100は、路側機200からの制御に応じた自動運転を行う。自動運転は、車両の運転操作の一部のみを自動化したものであってもよい。或いは、各車両100は、路側機200からの補助を用いた手動運転を行うものであってもよい。 In the second embodiment, each vehicle 100 automatically operates according to the control from the roadside machine 200. The automatic driving may be one in which only a part of the driving operation of the vehicle is automated. Alternatively, each vehicle 100 may be manually operated with assistance from the roadside machine 200.
 第2実施形態において、車両100がバスである一例について主として説明するが、車両100は、バス以外の公共車両であってもよいし、一般車両(例えば、普通自動車や軽自動車等)であってもよい。 In the second embodiment, an example in which the vehicle 100 is a bus will be mainly described, but the vehicle 100 may be a public vehicle other than a bus, or a general vehicle (for example, an ordinary vehicle, a light vehicle, etc.). May be good.
 路側機200は、道路Rを通る各車両100との路車間通信を行う。図1において、停留所区間Zb(1)と停留所区間Zb(2)との間の区間を担当する1つの路側機200が設けられる一例を示しているが、1つ又は複数の区間Zごとに路側機200が設けられてもよい。 The roadside machine 200 performs road-to-vehicle communication with each vehicle 100 passing through the road R. FIG. 1 shows an example in which one roadside machine 200 in charge of the section between the stop section Zb (1) and the stop section Zb (2) is provided, but the roadside is provided for each one or a plurality of sections Z. A machine 200 may be provided.
 (路側機の構成)
 次に、第2実施形態に係る路側機200の構成について説明する。第2実施形態に係る路側機200の構成を示す図は、第1実施形態に係る路側機200の構成を示す図と同様である。よって、以下において図3を参照して、第2実施形態に係る路側機200の構成について説明する。
(Structure of roadside machine)
Next, the configuration of the roadside machine 200 according to the second embodiment will be described. The diagram showing the configuration of the roadside machine 200 according to the second embodiment is the same as the diagram showing the configuration of the roadside machine 200 according to the first embodiment. Therefore, the configuration of the roadside machine 200 according to the second embodiment will be described below with reference to FIG.
 図3に示すように、路側機200は、通信部21と、制御部22と、インターフェイス23とを有する。 As shown in FIG. 3, the roadside machine 200 has a communication unit 21, a control unit 22, and an interface 23.
 通信部21は、アンテナ21aと、受信部21bと、送信部21cとを有し、アンテナ21aを介して無線通信を行う。通信部21は、車両100(車載機150)との路車間通信を行う。 The communication unit 21 has an antenna 21a, a reception unit 21b, and a transmission unit 21c, and performs wireless communication via the antenna 21a. The communication unit 21 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
 アンテナ21aは、無指向性アンテナであってもよいし、指向性を有する指向性アンテナであってもよい。アンテナ21aは、指向性を動的に変更可能なアダプティブアレイアンテナであってもよい。 The antenna 21a may be an omnidirectional antenna or a directional antenna having directivity. The antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
 通信部21は、アンテナ21aが受信する無線信号を受信データに変換して制御部22に出力する受信部21bを有する。また、通信部21は、制御部22が出力する送信データを無線信号に変換してアンテナ21aから送信する送信部21cを有する。 The communication unit 21 has a reception unit 21b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the communication unit 21 has a transmission unit 21c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
 通信部21の無線通信方式は、ARIB(Association of Radio Industries and Businesses)のT109規格に準拠した方式、3GPP(Third Generation Partnership Project)のV2X(Vehicle-to-everything)規格に準拠した方式、及び/又はIEEE(Institute of Electrical and Electronics Engineers)802.11シリーズ等の無線LAN(Local Area Network)規格に準拠した方式であってもよい。通信部21は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the communication unit 21 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehicle-to-e) compliant system of 3GPP (Third Generation Partnership Project) and V2X (Vehicle-to-e). Alternatively, the method may be a method compliant with a wireless LAN (Local Area Network) standard such as IEEE (Institute of Electrical and Electricals Engineers) 802.11 series. The communication unit 21 may be configured to support all of these communication standards.
 制御部22は、路側機200における各種の機能を制御する。制御部22は、少なくとも1つのメモリ22bと、メモリ22bと電気的に接続された少なくとも1つのプロセッサ22aとを有する。メモリ22bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ22aにおける処理に用いる情報と、プロセッサ22aにより実行されるプログラムとを記憶する。メモリ22bは、記憶部に相当する。プロセッサ22aは、メモリ22bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 22 controls various functions of the roadside machine 200. The control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b. The memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a. The memory 22b corresponds to a storage unit. The processor 22a performs various processes by executing the program stored in the memory 22b.
 第2実施形態において、メモリ22bは、道路Rに設けられている各区間Zに関する情報を予め記憶している。例えば、区間Zに関する情報は、区間Zの位置情報、区間Zに含まれる待避領域Xの幅及び長さの情報を含み、これらの情報はプロセッサ22aによる情報処理に用いられる。 In the second embodiment, the memory 22b stores information about each section Z provided on the road R in advance. For example, the information regarding the section Z includes the position information of the section Z and the width and length information of the shunting area X included in the section Z, and these information are used for information processing by the processor 22a.
 インターフェイス23は、有線又は無線でセンタ設備500と接続される。センタ設備500は、路側機200から受信する情報に基づいて各種の交通情報を収集し、道路交通を統合して管理する設備である。 The interface 23 is connected to the center equipment 500 by wire or wirelessly. The center facility 500 is a facility that collects various traffic information based on the information received from the roadside machine 200 and integrates and manages the road traffic.
 インターフェイス23は、有線又は無線で信号制御機600と接続されてもよい。信号制御機600は、交通信号機を制御する装置である。信号制御機600は、交通信号機とは別体に構成されてもよいし、交通信号機と一体に構成されていてもよい。信号制御機600は、路側機200と一体に構成されてもよい。信号制御機600は、交通信号機の信号灯色の切り替えを制御する。 The interface 23 may be connected to the signal controller 600 by wire or wirelessly. The signal controller 600 is a device that controls a traffic signal. The signal controller 600 may be configured separately from the traffic signal, or may be configured integrally with the traffic signal. The signal controller 600 may be integrally configured with the roadside unit 200. The signal controller 600 controls switching of the signal light color of the traffic signal.
 このように構成された路側機200において、通信部21は、道路Rを通行する第1車両及び第1車両の対向車両である第2車両のそれぞれから位置情報を受信する。位置情報とは、この位置情報の送信元車両の地理的な位置を示す情報をいい、例えばGNSS(Global Navigation Satellite System)位置情報を用いることができる。 In the roadside machine 200 configured in this way, the communication unit 21 receives position information from each of the first vehicle passing through the road R and the second vehicle which is an oncoming vehicle of the first vehicle. The position information refers to information indicating the geographical position of the vehicle from which the position information is transmitted, and for example, GNSS (Global Navigation Satellite System) position information can be used.
 制御部22は、道路Rにおいて車両100のすれ違いが可能な区間Zが第1車両と第2車両との間に存在する場合、通信部21が各車両から受信する位置情報に基づいて、第1車両及び第2車両が同時期に同一の区間Zに到達するために必要とされる速度を第1車両及び第2車両のそれぞれについて算出する。 When the section Z in which the vehicles 100 can pass each other exists between the first vehicle and the second vehicle on the road R, the control unit 22 first receives the position information received from each vehicle by the communication unit 21. The speeds required for the vehicle and the second vehicle to reach the same section Z at the same time are calculated for each of the first vehicle and the second vehicle.
 例えば、制御部22は、第1車両及び第2車両のそれぞれの位置情報に基づいて、第1車両と区間Zとの間の距離1、及び第2車両と区間Zとの間の距離2を算出する。そして、制御部22は、時間T後に区間Zに第1車両が到達するための第1速度を距離1及び時間Tから算出し、時間T後に区間Zに第2車両が到達するための第2速度を距離2及び時間Tから算出する。 For example, the control unit 22 determines the distance 1 between the first vehicle and the section Z and the distance 2 between the second vehicle and the section Z based on the respective position information of the first vehicle and the second vehicle. calculate. Then, the control unit 22 calculates the first speed for the first vehicle to reach the section Z after the time T from the distance 1 and the time T, and the second vehicle for the second vehicle to reach the section Z after the time T. The velocity is calculated from the distance 2 and the time T.
 通信部21は、制御部22が算出した第1車両の第1速度を示す第1速度制御情報を第1車両に送信するとともに、制御部22が算出した第2速度を示す第2速度制御情報を第2車両に送信する。第1速度制御情報及び第2速度制御情報のそれぞれは、速度を示す絶対値であってもよい。或いは、通信部21が各車両から速度情報を受信している場合、第1速度制御情報及び第2速度制御情報のそれぞれは、現在の速度を基準とした相対値であってもよい。速度情報とは、この速度情報の送信元車両の移動速度を示す情報をいう。 The communication unit 21 transmits the first speed control information indicating the first speed of the first vehicle calculated by the control unit 22 to the first vehicle, and the second speed control information indicating the second speed calculated by the control unit 22. Is transmitted to the second vehicle. Each of the first speed control information and the second speed control information may be an absolute value indicating the speed. Alternatively, when the communication unit 21 receives the speed information from each vehicle, each of the first speed control information and the second speed control information may be a relative value based on the current speed. The speed information refers to information indicating the moving speed of the vehicle that is the source of the speed information.
 このような第1速度制御情報及び第2速度制御情報を送信することにより、第1車両及び第2車両のそれぞれの速度が制御され、第1車両及び第2車両が同一の区間Zに同時期に到達する。区間Z内では第1車両及び第2車両がすれ違い可能であるため、第1車両及び第2車両がいずれも停止することなく区間Zを通行できる。このため、車両100のすれ違いが困難な道路Rを通行する場合であっても、各車両の遅延を抑制し、各車両が円滑に道路Rを通行できる。 By transmitting such first speed control information and second speed control information, the speeds of the first vehicle and the second vehicle are controlled, and the first vehicle and the second vehicle are in the same section Z at the same time. To reach. Since the first vehicle and the second vehicle can pass each other in the section Z, both the first vehicle and the second vehicle can pass through the section Z without stopping. Therefore, even when the vehicle 100 passes through the road R where it is difficult to pass each other, the delay of each vehicle can be suppressed and each vehicle can smoothly pass through the road R.
 また、制御部22は、区間Zにおける第1車両及び第2車両のそれぞれの移動パラメータを決定する。移動パラメータは、区間Zにおける移動経路及び移動速度の少なくとも一方を含む。区間Zにおける移動経路とは、図2に示すように、車両が区間Z内で移動する経路をいい、例えばステアリング角度の時系列データにより表現される。区間Zにおける移動速度とは、車両が区間Z内で移動する際の速度をいう。 Further, the control unit 22 determines the movement parameters of the first vehicle and the second vehicle in the section Z, respectively. The movement parameter includes at least one of the movement path and the movement speed in the section Z. As shown in FIG. 2, the movement route in the section Z means a route in which the vehicle moves in the section Z, and is represented by, for example, time-series data of the steering angle. The moving speed in the section Z means the speed at which the vehicle moves in the section Z.
 ここで、制御部22は、メモリ22bに記憶されている区間Zの待避領域Xの幅及び長さの少なくとも一方の情報に基づいて、区間Zにおける第1車両及び第2車両のそれぞれの移動パラメータを決定してもよい。これにより、移動パラメータを適切に決定できる。例えば、制御部22は、区間Zの待避領域Xの幅が基準値よりも広い場合や、区間Zの待避領域Xの長さが基準値よりも長い場合には、区間Zにおける移動速度を基準値よりも高い速度とするよう決定してもよい。移動速度の基準値は、例えば徐行運転時の移動速度である。 Here, the control unit 22 determines the movement parameters of the first vehicle and the second vehicle in the section Z based on at least one information of the width and the length of the shunting area X in the section Z stored in the memory 22b. May be determined. As a result, the movement parameters can be appropriately determined. For example, when the width of the shunting area X in the section Z is wider than the reference value, or when the length of the shunting area X in the section Z is longer than the reference value, the control unit 22 uses the moving speed in the section Z as a reference. It may be decided that the speed is higher than the value. The reference value of the moving speed is, for example, the moving speed during slow driving.
 通信部21は、第1車両について決定した移動パラメータである第1移動パラメータを第1車両に送信するとともに、第2車両について決定した移動パラメータである第2パラメータを第2車両に送信する。通信部21は、第1速度制御情報及び第1移動パラメータを含む1つの路車間通信メッセージを第1車両に送信するとともに、第2速度制御情報及び第2移動パラメータを含む1つの路車間通信メッセージを第2車両に送信してもよい。 The communication unit 21 transmits the first movement parameter, which is the movement parameter determined for the first vehicle, to the first vehicle, and transmits the second parameter, which is the movement parameter determined for the second vehicle, to the second vehicle. The communication unit 21 transmits one road-to-vehicle communication message including the first speed control information and the first movement parameter to the first vehicle, and one road-to-vehicle communication message including the second speed control information and the second movement parameter. May be transmitted to the second vehicle.
 このような第1パラメータ及び第2パラメータを送信することにより、同一の区間Z内において第1車両及び第2車両が適切にすれ違うように第1車両及び第2車両の移動を制御できるため、第1車両及び第2車両がいずれも停止することなく区間Zを通行できる。 By transmitting such a first parameter and a second parameter, the movement of the first vehicle and the second vehicle can be controlled so that the first vehicle and the second vehicle appropriately pass each other in the same section Z. Both the 1st vehicle and the 2nd vehicle can pass through the section Z without stopping.
 但し、区間Zの待避領域Xの幅及び長さ等によっては、区間Z内において一方の車両が他方の車両に比べて大きく減速及び/又は大きく迂回する必要がありうる。このような場合、制御部22は、各車両を優先度付けし、区間Z内において優先的に通行可能な優先車両を決定する。 However, depending on the width and length of the shunting area X in the section Z, it may be necessary for one vehicle to decelerate and / or detour significantly in the section Z as compared to the other vehicle. In such a case, the control unit 22 prioritizes each vehicle and determines a priority vehicle that can be preferentially passed within the section Z.
 第2実施形態において、通信部21は、路車間通信により、第1車両及び第2車両のそれぞれから車両種別情報を受信する。制御部22は、車両種別情報に基づいて優先車両を決定する。車両種別情報は、この車両種別情報の送信元車両の車両種別を示す情報である。 In the second embodiment, the communication unit 21 receives vehicle type information from each of the first vehicle and the second vehicle by road-to-vehicle communication. The control unit 22 determines the priority vehicle based on the vehicle type information. The vehicle type information is information indicating the vehicle type of the vehicle that is the source of the vehicle type information.
 例えば、車両種別情報は、車両種別が急行バスであるか否かを識別可能に構成されている。急行バスとは、すべての停留所で停止するのではなく、特定の停留所でのみ停止するバスをいう。制御部22は、道路Rがバス専用道路であって、通信部21が路車間通信を行う第1車両及び第2車両に急行バスが含まれる場合、この急行バスを優先車両として決定する。このような急行バスに対する優先制御を行うことで、急行バスに遅延が生じることを抑制できる。 For example, the vehicle type information is configured so that it can be identified whether or not the vehicle type is an express bus. An express bus is a bus that does not stop at all stops, but only at specific stops. When the road R is a bus-only road and the first vehicle and the second vehicle with which the communication unit 21 performs inter-vehicle communication include an express bus, the control unit 22 determines the express bus as a priority vehicle. By performing priority control on such an express bus, it is possible to suppress the occurrence of delay in the express bus.
 或いは、道路Rが一般道路であると仮定した場合、車両種別情報は、車両種別がバス(或いは公共車両)であるか否か、及び車両種別が緊急車両であるか否かを識別可能に構成されていてもよい。緊急車両とは、緊急走行中の車両をいい、例えばサイレンを鳴らしながら走行しているパトカー又は救急車が緊急車両に相当する。制御部22は、第1車両及び第2車両にバス又は緊急車両が含まれると判定した場合、このバス又は緊急車両を優先車両として決定する。このようなバス又は緊急車両に対する優先制御を行うことで、バス又は緊急車両に遅延が生じることを抑制できる。 Alternatively, assuming that the road R is a general road, the vehicle type information is configured to be able to identify whether the vehicle type is a bus (or a public vehicle) and whether the vehicle type is an emergency vehicle. It may have been done. An emergency vehicle is a vehicle that is in an emergency, for example, a police car or an ambulance that is traveling while sounding a siren corresponds to an emergency vehicle. When the control unit 22 determines that the first vehicle and the second vehicle include a bus or an emergency vehicle, the control unit 22 determines the bus or the emergency vehicle as the priority vehicle. By performing priority control on such a bus or an emergency vehicle, it is possible to suppress a delay in the bus or the emergency vehicle.
 第2実施形態において、道路Rがバス専用道路であって、通信部21は、路車間通信により、第1車両及び第2車両(複数のバス)のそれぞれから運行状況情報を受信してもよい。運行状況情報とは、バスの運行スケジュールに対する実際の運行状況を示す情報をいい、運行スケジュールに対して遅延を生じているか否かを識別可能に構成されている。制御部22は、運行状況情報に基づいて、運行スケジュールに対して遅延を生じているバスが第1車両及び第2車両(複数のバス)に含まれると判定した場合、運行スケジュールに対して遅延を生じているバスを優先車両として決定する。これにより、運行スケジュールに対して遅延を生じているバスに優先的に区間Zを通行させ、運行スケジュールどおりの運行状況に戻しやくすることができる。 In the second embodiment, the road R is a dedicated bus road, and the communication unit 21 may receive operation status information from each of the first vehicle and the second vehicle (plurality of buses) by road-to-vehicle communication. .. The operation status information refers to information indicating the actual operation status with respect to the operation schedule of the bus, and is configured to be able to identify whether or not there is a delay with respect to the operation schedule. When the control unit 22 determines that the first vehicle and the second vehicle (plurality of buses) include a bus that is delayed with respect to the operation schedule based on the operation status information, the control unit 22 delays the operation schedule. The bus that is causing the problem is determined as the priority vehicle. As a result, the bus that is delayed with respect to the operation schedule can be preferentially passed through the section Z, and the operation status can be returned to the operation schedule.
 第2実施形態において、通信部21は、第1車両及び第2車両のそれぞれから速度情報をさらに受信する。制御部22は、第1車両と第2車両との間に複数の区間Zが存在する場合、第1車両及び第2車両のそれぞれの位置情報及び速度情報に基づいて、これら複数の区間Zの中から第1車両及び第2車両がすれ違う区間Zを選択する。制御部22は、優先車両の決定結果にさらに基づいて、複数の区間Zの中から第1車両及び第2車両がすれ違う区間Zを選択してもよい。 In the second embodiment, the communication unit 21 further receives speed information from each of the first vehicle and the second vehicle. When a plurality of sections Z exist between the first vehicle and the second vehicle, the control unit 22 determines that the plurality of sections Z are based on the position information and speed information of the first vehicle and the second vehicle, respectively. The section Z in which the first vehicle and the second vehicle pass each other is selected from the inside. The control unit 22 may further select a section Z in which the first vehicle and the second vehicle pass each other from the plurality of sections Z based on the determination result of the priority vehicle.
 例えば、制御部22は、第1車両の位置情報及び速度情報と、第2車両の位置情報及び速度情報とに基づいて、第1車両及び第2車両の現在の移動速度が維持されると仮定したときに第1車両及び第2車両が近接する位置を予測する。そして、制御部22は、予想した位置が属する区間Z、又は予想した位置よりも非優先車両側の区間Zを、第1車両及び第2車両がすれ違う区間Zとして選択する。 For example, the control unit 22 assumes that the current moving speeds of the first vehicle and the second vehicle are maintained based on the position information and speed information of the first vehicle and the position information and speed information of the second vehicle. When this is done, the positions where the first vehicle and the second vehicle are close to each other are predicted. Then, the control unit 22 selects the section Z to which the predicted position belongs or the section Z on the non-priority vehicle side of the predicted position as the section Z where the first vehicle and the second vehicle pass each other.
 通信部21は、選択した区間Zを示す情報(以下、「選択区間情報」と呼ぶ)を路車間通信メッセージに含めて第1車両及び第2車両に送信してもよい。選択区間情報は、区間Zの位置情報であってもよい。なお、通信部21が各車両100に送信する路車間通信メッセージには、道路Rの構成を示す道路線形情報が含まれている。道路線形情報に各区間Zの識別番号及び位置情報が含まれている場合、選択区間情報は、区間Zの識別番号であってもよい。 The communication unit 21 may include information indicating the selected section Z (hereinafter, referred to as "selected section information") in the road-to-vehicle communication message and transmit it to the first vehicle and the second vehicle. The selected section information may be the position information of the section Z. The road-to-vehicle communication message transmitted by the communication unit 21 to each vehicle 100 includes road alignment information indicating the configuration of the road R. When the road alignment information includes the identification number and the position information of each section Z, the selected section information may be the identification number of the section Z.
 ここで具体例を挙げて説明する。図1において、車両100aが優先車両として決定され、車両100aの対向車両である車両100bが非優先車両として決定されたと仮定する。通信部21が車両100a及び100bのそれぞれから受信した位置情報及び速度情報に基づいて、制御部22は、車両100aと車両100bとが近接する位置を予測する。例えば、制御部22は、車両100aと車両100bとが近接する位置がトンネルT内であると予測する。この場合、制御部22は、車両100a及び車両100bがすれ違う区間Zとして待避所区間Za(2)を選択する。その後、制御部22は、車両100a及び車両100bが同時期に待避所区間Za(2)に到達するために必要とされる速度を車両100a及び車両100bのそれぞれについて算出する。 Here, a concrete example will be given for explanation. In FIG. 1, it is assumed that the vehicle 100a is determined as the priority vehicle and the vehicle 100b, which is the oncoming vehicle of the vehicle 100a, is determined as the non-priority vehicle. Based on the position information and the speed information received by the communication unit 21 from the vehicles 100a and 100b, respectively, the control unit 22 predicts the position where the vehicle 100a and the vehicle 100b are close to each other. For example, the control unit 22 predicts that the position where the vehicle 100a and the vehicle 100b are close to each other is in the tunnel T. In this case, the control unit 22 selects the shelter section Za (2) as the section Z where the vehicle 100a and the vehicle 100b pass each other. After that, the control unit 22 calculates the speed required for the vehicle 100a and the vehicle 100b to reach the shelter section Za (2) at the same time for each of the vehicle 100a and the vehicle 100b.
 (車両の構成)
 次に、第2実施形態に係る車両100の構成について説明する。第2実施形態に係る車両100の構成を示す図は、第1実施形態に係る車両100の構成を示す図と同様である。よって、以下において図4を参照して、第2実施形態に係る車両100の構成について説明する。
(Vehicle configuration)
Next, the configuration of the vehicle 100 according to the second embodiment will be described. The diagram showing the configuration of the vehicle 100 according to the second embodiment is the same as the diagram showing the configuration of the vehicle 100 according to the first embodiment. Therefore, the configuration of the vehicle 100 according to the second embodiment will be described below with reference to FIG.
 図4に示すように、車両100は、通信部11と、GNSS受信機12と、通知部13と、駆動制御部14と、制御部15とを有する。通信部11、GNSS受信機12、及び制御部15は、車載機150を構成する。 As shown in FIG. 4, the vehicle 100 has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15. The communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150.
 通信部11は、アンテナ11aと、受信部11bと、送信部11cとを有し、アンテナ11aを介して無線通信を行う。通信部11は、路側機200との路車間通信を行う。 The communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a. The communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
 通信部11は、アンテナ11aが受信する無線信号を受信データに変換して制御部15に出力する受信部11bを有する。また、通信部11は、制御部15が出力する送信データを無線信号に変換してアンテナ11aから送信する送信部11cを有する。 The communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
 通信部11の無線通信方式は、ARIBのT109規格に準拠した方式、3GPPのV2X規格に準拠した方式、及び/又はIEEE802.11シリーズ等の無線LAN規格に準拠した方式であってもよい。通信部11は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE 802.11 series. The communication unit 11 may be configured to be compatible with all of these communication standards.
 GNSS受信機12は、GNSS衛星信号に基づいて測位を行い、車両100の現在の地理的な位置(緯度・経度)を示すGNSS位置情報を制御部15に出力する。 The GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100 to the control unit 15.
 通知部13は、制御部15の制御下で、車両100の乗員(特に、運転者)に対する情報の通知を行う。通知部13は、情報を表示するディスプレイ13aと、情報を音声出力するスピーカ13bとを有する。 The notification unit 13 notifies the occupants (particularly the driver) of the vehicle 100 of the information under the control of the control unit 15. The notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice.
 駆動制御部14は、動力源としてのエンジン又はモータ、動力伝達機構、及びブレーキ等を制御する。車両100が自動運転車両である場合、駆動制御部14は、制御部15と連携して車両100の駆動を制御してもよい。 The drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like. When the vehicle 100 is an autonomous driving vehicle, the drive control unit 14 may control the drive of the vehicle 100 in cooperation with the control unit 15.
 制御部15は、車両100(車載機150)における各種の機能を制御する。制御部15は、少なくとも1つのメモリ15bと、メモリ15bと電気的に接続された少なくとも1つのプロセッサ15aとを有する。メモリ15bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ15aにおける処理に用いる情報及びプロセッサ15aにより実行されるプログラムを記憶する。プロセッサ15aは、メモリ15bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 15 controls various functions in the vehicle 100 (vehicle-mounted device 150). The control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b. The memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a. The processor 15a performs various processes by executing the program stored in the memory 15b.
 制御部15は、上述した車両種別情報、運行状況情報、位置情報(GNSS位置情報)、及び速度情報を路側機200に送信するよう通信部11を制御する。 The control unit 15 controls the communication unit 11 so as to transmit the above-mentioned vehicle type information, operation status information, position information (GNSS position information), and speed information to the roadside machine 200.
 また、制御部15は、速度制御情報、移動パラメータ、選択区間情報、及び道路線形情報を含む路車間通信メッセージを通信部11が受信すると、選択区間情報が示す区間Zまで、速度制御情報が示す速度で移動するよう駆動制御部14を制御する。その後、この区間Zに自車両が進入すると、制御部15は、移動パラメータに基づいて、この区間Z内における移動経路及び移動速度を制御する。さらに、制御部15は、この路車間通信メッセージに含まれる情報を乗員に通知するように通知部13を制御してもよい。 Further, when the communication unit 11 receives the road-to-vehicle communication message including the speed control information, the movement parameter, the selected section information, and the road alignment information, the control unit 15 indicates the speed control information up to the section Z indicated by the selected section information. The drive control unit 14 is controlled so as to move at a speed. After that, when the own vehicle enters the section Z, the control unit 15 controls the movement path and the movement speed in the section Z based on the movement parameters. Further, the control unit 15 may control the notification unit 13 so as to notify the occupant of the information included in the road-to-vehicle communication message.
 (路側機の動作例)
 次に、第2実施形態に係る路側機200の動作例について説明する。図7は、図1に示すシステム構成における第2実施形態に係る路側機200の動作例を示す図である。
(Operation example of roadside machine)
Next, an operation example of the roadside machine 200 according to the second embodiment will be described. FIG. 7 is a diagram showing an operation example of the roadside machine 200 according to the second embodiment in the system configuration shown in FIG.
 図7に示すように、ステップS21及びS22において、路側機200の通信部21は、車両100a(第1車両)及び車両100b(第2車両)のそれぞれから、車両種別情報、運行状況情報、位置情報、及び速度情報を受信する。なお、ステップS21及びS22の順番は、図7に示す順番に限定されるものではない。 As shown in FIGS. 7, in steps S21 and S22, the communication unit 21 of the roadside unit 200 receives vehicle type information, operation status information, and position from each of the vehicle 100a (first vehicle) and the vehicle 100b (second vehicle). Receive information and speed information. The order of steps S21 and S22 is not limited to the order shown in FIG.
 ステップS23において、路側機200の制御部22は、ステップS21及びS22において車両100a及び100bから受信した車両種別情報及び運行状況情報に基づいて、車両100a及び100bの中から優先車両を決定する。ここでは車両100aが優先車両として決定されたと仮定して説明を進める。 In step S23, the control unit 22 of the roadside machine 200 determines the priority vehicle from the vehicles 100a and 100b based on the vehicle type information and the operation status information received from the vehicles 100a and 100b in steps S21 and S22. Here, the description will proceed on the assumption that the vehicle 100a is determined as the priority vehicle.
 ステップS24において、路側機200の制御部22は、ステップS21及びS22において車両100a及び100bから受信した位置情報及び速度情報と、ステップS23での優先車両の決定結果とに基づいて、車両100aと車両100bとの間の区間Zの中から、車両100a及び車両100bがすれ違う区間Zを選択する。ここでは待避所区間Za(2)が優先車両として決定されたと仮定して説明を進める。 In step S24, the control unit 22 of the roadside machine 200 determines the vehicle 100a and the vehicle based on the position information and speed information received from the vehicles 100a and 100b in steps S21 and S22 and the determination result of the priority vehicle in step S23. From the section Z between the vehicle 100b and the vehicle 100b, the section Z in which the vehicle 100a and the vehicle 100b pass each other is selected. Here, the explanation will proceed on the assumption that the shelter section Za (2) has been determined as the priority vehicle.
 ステップS25において、路側機200の制御部22は、車両100a及び車両100bがステップS24で選択した区間Zに同時期に到達するために必要とされる速度を車両100a及び車両100bのそれぞれについて算出する。例えば、路側機200の制御部22は、車両100aと待避所区間Za(2)との間の距離1、及び車両100bと待避所区間Za(2)との間の距離2を算出する。そして、制御部22は、時間T後に待避所区間Za(2)に車両100aが到達するための第1速度を距離1及び時間Tから算出し、時間T後に待避所区間Za(2)に車両100bが到達するための第2速度を距離2及び時間Tから算出する。制御部22は、算出した第1速度を示す第1速度制御情報及び算出した第2速度を示す第2速度制御情報を生成する。 In step S25, the control unit 22 of the roadside machine 200 calculates the speed required for the vehicle 100a and the vehicle 100b to reach the section Z selected in step S24 at the same time for each of the vehicle 100a and the vehicle 100b. .. For example, the control unit 22 of the roadside machine 200 calculates the distance 1 between the vehicle 100a and the shelter section Za (2) and the distance 2 between the vehicle 100b and the shelter section Za (2). Then, the control unit 22 calculates the first speed for the vehicle 100a to reach the shelter section Za (2) after the time T from the distance 1 and the time T, and the vehicle arrives at the shelter section Za (2) after the time T. The second velocity for 100b to reach is calculated from the distance 2 and the time T. The control unit 22 generates the first speed control information indicating the calculated first speed and the second speed control information indicating the calculated second speed.
 ステップS26において、路側機200の制御部22は、待避所区間Za(2)における車両100a及び車両100bのそれぞれの移動パラメータを決定する。移動パラメータは、待避所区間Za(2)における移動経路及び移動速度の少なくとも一方を含む。ここで、路側機200の制御部22は、メモリ22bに記憶されている待避所区間Za(2)の待避領域Xの幅及び長さの少なくとも一方の情報と、ステップS23での優先車両の決定結果とに基づいて、待避所区間Za(2)における車両100aの移動パラメータである第1移動パラメータと、待避所区間Za(2)における車両100bの移動パラメータである第2移動パラメータとを決定する。 In step S26, the control unit 22 of the roadside machine 200 determines the movement parameters of the vehicle 100a and the vehicle 100b in the shelter section Za (2). The movement parameters include at least one of the movement route and the movement speed in the shelter section Za (2). Here, the control unit 22 of the roadside machine 200 determines at least one of the width and length of the shelter area X of the shelter section Za (2) stored in the memory 22b and the priority vehicle in step S23. Based on the result, the first movement parameter which is the movement parameter of the vehicle 100a in the shelter section Za (2) and the second movement parameter which is the movement parameter of the vehicle 100b in the shelter section Za (2) are determined. ..
 ステップS27において、路側機200の通信部21は、第1速度制御情報及び第1移動パラメータを含む路車間通信メッセージを車両100aに送信する。路側機200の通信部21は、選択区間情報及び道路線形情報を路車間通信メッセージにさらに含めてもよい。 In step S27, the communication unit 21 of the roadside machine 200 transmits a road-to-vehicle communication message including the first speed control information and the first movement parameter to the vehicle 100a. The communication unit 21 of the roadside unit 200 may further include the selected section information and the road alignment information in the road-to-vehicle communication message.
 ステップS28において、路側機200の通信部21は、第2速度制御情報及び第2移動パラメータを含む路車間通信メッセージを車両100bに送信する。路側機200の通信部21は、選択区間情報及び道路線形情報を路車間通信メッセージにさらに含めてもよい。 In step S28, the communication unit 21 of the roadside machine 200 transmits a road-to-vehicle communication message including the second speed control information and the second movement parameter to the vehicle 100b. The communication unit 21 of the roadside unit 200 may further include the selected section information and the road alignment information in the road-to-vehicle communication message.
 なお、ステップS27及びS28の順番は、図7に示す順番に限定されるものではない。 Note that the order of steps S27 and S28 is not limited to the order shown in FIG.
 車両100aは、第1速度制御情報及び第1移動パラメータを含む路車間通信メッセージを路側機200から受信すると、第1速度制御情報が示す第1速度で移動するよう制御する。その後、車両100aは、車両100bとすれ違う区間Zに自車両が進入すると、第1移動パラメータに基づいて区間Z内における移動経路及び移動速度を制御する。 When the vehicle 100a receives the roadside communication message including the first speed control information and the first movement parameter from the roadside unit 200, the vehicle 100a is controlled to move at the first speed indicated by the first speed control information. After that, when the own vehicle enters the section Z passing the vehicle 100b, the vehicle 100a controls the movement route and the movement speed in the section Z based on the first movement parameter.
 また、車両100bは、第2速度制御情報及び第2移動パラメータを含む路車間通信メッセージを路側機200から受信すると、第2速度制御情報が示す第2速度で移動するよう制御する。その後、車両100bは、車両100aとすれ違う区間Zに自車両が進入すると、第2移動パラメータに基づいて区間Z内における移動経路及び移動速度を制御する。 Further, when the vehicle 100b receives the road-to-vehicle communication message including the second speed control information and the second movement parameter from the roadside unit 200, the vehicle 100b is controlled to move at the second speed indicated by the second speed control information. After that, when the own vehicle enters the section Z passing the vehicle 100a, the vehicle 100b controls the movement route and the movement speed in the section Z based on the second movement parameter.
[第3実施形態]
 上記非特許文献1のような高度道路交通システムには、バス等の公共交通機関に属する車両の効率的な運行を可能とする点において改善の余地があった。
[Third Embodiment]
The intelligent transportation system as in Non-Patent Document 1 has room for improvement in that it enables efficient operation of vehicles belonging to public transportation such as buses.
 そこで、第3実施形態は、公共交通機関に属する車両の効率的な運行を可能とする。 Therefore, the third embodiment enables efficient operation of vehicles belonging to public transportation.
 第3実施形態に係る交通通信システムについて図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。第3実施形態について、第1及び第2実施形態との相違点を主として説明する。 The transportation communication system according to the third embodiment will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. The differences between the third embodiment and the first and second embodiments will be mainly described.
 (交通通信システムの構成)
 まず、第3実施形態に係る交通通信システムの構成について説明する。図8は、第3実施形態に係る交通通信システム2の構成を示す図である。
(Composition of transportation communication system)
First, the configuration of the transportation communication system according to the third embodiment will be described. FIG. 8 is a diagram showing a configuration of a transportation communication system 2 according to a third embodiment.
 図8に示すように、交通通信システム2は、道路Rを通る車両100と、道路Rの路側に設置される基地局である路側機200とを有する。図8において、車両100として車両100A及び100Bを例示し、路側機200として路側機200A及び200Bを例示している。なお、車両100としては普通自動車や軽自動車等の自動車を例示しているが、道路Rを通る車両であればよく、例えば自動二輪車(オートバイ)等であってもよい。 As shown in FIG. 8, the traffic communication system 2 includes a vehicle 100 passing through the road R and a roadside machine 200 which is a base station installed on the road side of the road R. In FIG. 8, vehicles 100A and 100B are illustrated as the vehicle 100, and roadside machines 200A and 200B are illustrated as the roadside machine 200. Although the vehicle 100 is an example of a vehicle such as an ordinary vehicle or a light vehicle, it may be a vehicle that passes through the road R, for example, a motorcycle (motorcycle) or the like.
 各車両100には、無線通信を行う移動局である車載機150が搭載されている。車載機150は、路側機200との路車間通信を行う。 Each vehicle 100 is equipped with an in-vehicle device 150, which is a mobile station that performs wireless communication. The on-board unit 150 performs road-to-vehicle communication with the roadside unit 200.
 路側機200は、道路R周辺に設置されている。路側機200は、一般道路における交差点ごとに設置されてもよいし、高速道路の路側に設置されてもよいが、以下においては路側機200が交差点周辺に設置されるケースについて主として説明する。 The roadside machine 200 is installed around the road R. The roadside machine 200 may be installed at each intersection on a general road or on the roadside of an expressway, but the case where the roadside machine 200 is installed around an intersection will be mainly described below.
 図8に示す例おいて、路側機200Aは、交通信号機(交通信号灯器)700又はその支柱に設置されており、交通信号機700と連携して動作する。例えば、路側機200Aは、交通信号機700に関する信号情報を含む無線信号を車両100(車載機150)に送信する。 In the example shown in FIG. 8, the roadside unit 200A is installed on the traffic signal (traffic signal lamp) 700 or its support, and operates in cooperation with the traffic signal 700. For example, the roadside unit 200A transmits a radio signal including signal information regarding the traffic signal 700 to the vehicle 100 (vehicle-mounted unit 150).
 このような路車間通信には、不特定多数を宛先とするブロードキャストによる無線通信が用いられてもよい。或いは、路車間通信には、特定多数を宛先とするマルチキャストによる無線通信が用いられてもよいし、特定単数を宛先とするユニキャストによる無線通信が用いられてもよい。 For such road-to-vehicle communication, wireless communication by broadcasting to an unspecified number of destinations may be used. Alternatively, for road-to-vehicle communication, wireless communication by multicast with a specific majority as a destination may be used, or wireless communication by unicast with a specific singular as a destination may be used.
 各路側機200は、通信回線を介して中央装置400に接続される。中央装置400には、路側に設置される車両感知器が通信回線を介して接続されてもよい。中央装置400は、各路側機200から、当該路側機200が車載機150から受信した車両100の位置や車速等を含む車両情報を受信する。中央装置400は、各道路Rに設置された路側センサから車両感知情報をさらに受信してもよい。中央装置400は、受信した情報に基づいて各種の交通情報を収集及び処理し、道路交通を統合して管理する。 Each roadside unit 200 is connected to the central device 400 via a communication line. A vehicle detector installed on the roadside may be connected to the central device 400 via a communication line. The central device 400 receives vehicle information from each roadside unit 200, including the position and speed of the vehicle 100 received by the roadside unit 200 from the on-board unit 150. The central device 400 may further receive vehicle detection information from roadside sensors installed on each road R. The central device 400 collects and processes various types of traffic information based on the received information, and integrates and manages road traffic.
 図9は、第3実施形態に係る交通通信システム2の適用シナリオの一例を示す図である。 FIG. 9 is a diagram showing an example of an application scenario of the transportation communication system 2 according to the third embodiment.
 図9に示すように、道路Rは、車両100のすれ違いが困難な道路、例えば一車線の道路である。第3実施形態において、道路Rがバス専用道路である一例について主として説明するが、道路Rは一般道路であってもよい。 As shown in FIG. 9, the road R is a road where it is difficult for the vehicle 100 to pass each other, for example, a one-lane road. In the third embodiment, an example in which the road R is a bus-only road will be mainly described, but the road R may be a general road.
 図9に示す例において、D1方向に向けて道路Rを通行する車両100aと、D1方向とは逆の方向であるD2方向に向けて道路Rを通行する車両100bとを例示している。以下において、車両100がバスである一例について主として説明するが、車両100は、公共交通機関に属する車両であれば如何なる車両であってもよい。 In the example shown in FIG. 9, a vehicle 100a passing through the road R in the D1 direction and a vehicle 100b passing through the road R in the direction opposite to the D1 direction are illustrated. In the following, an example in which the vehicle 100 is a bus will be mainly described, but the vehicle 100 may be any vehicle as long as it belongs to public transportation.
 道路Rには、待避領域を有する区間Zが間隔をおいて複数設けられている。これらの複数の区間Zは、複数の待避所区間Za(待避所区間Za(1)乃至Za(3))と、停留所区間Zbとを含む。待避領域は、道路Rの外側に向けて広がった領域であり、区間Zにおいて車両100のすれ違いを可能とするための領域である。道路Rにおける区間Z以外の区間は、車両100のすれ違いが困難な交互交通区間である。 A plurality of sections Z having a shunting area are provided on the road R at intervals. These plurality of sections Z include a plurality of shelter sections Za (shelter sections Za (1) to Za (3)) and a bus stop section Zb. The shunting area is an area extending toward the outside of the road R, and is an area for allowing the vehicles 100 to pass each other in the section Z. The section other than the section Z on the road R is an alternating traffic section in which it is difficult for the vehicle 100 to pass each other.
 また、道路Rには、区間Zごとに交通信号機700が設けられている。交通信号機700は、道路R上に設けられる交通安全装置の一例である。以下において、交通安全装置が、通行可否を灯色で示す交通信号機700である一例について説明するが、交通安全装置は、遮断ゲートにより物理的に通行を制限する遮断機であってもよい。 Further, on the road R, a traffic signal 700 is provided for each section Z. The traffic signal 700 is an example of a traffic safety device provided on the road R. Hereinafter, an example in which the traffic safety device is a traffic signal 700 indicating whether or not the vehicle can pass through will be described, but the traffic safety device may be a barrier device that physically restricts the passage by a blocking gate.
 交通信号機700は、交互交通区間を通行する車両100を1つのみとするための交通整理に用いられる。具体的には、区間Zごとに、D1方向への通行可否を定める交通信号機700D1と、D2方向への通行可否を定める交通信号機700D2とが設けられている。 The traffic signal 700 is used for traffic control so that there is only one vehicle 100 passing through the alternating traffic section. Specifically, for each section Z, a traffic signal 700D1 that determines whether or not the vehicle can pass in the D1 direction and a traffic signal 700D2 that determines whether or not the vehicle can pass in the D2 direction are provided.
 停留所区間Zbには、車両100から乗客が降車したり、車両100に乗客が乗車したりするための停留所Sが設けられている。なお、車両100が鉄道の代替で用いられる場合、停留所Sは鉄道駅と同等なものとみなすことができる。 The bus stop section Zb is provided with a bus stop S for passengers to get off from the vehicle 100 and passengers to get on the vehicle 100. When the vehicle 100 is used as a substitute for a railway, the stop S can be regarded as equivalent to a railway station.
 各車両100は、路側機200からの制御に応じた自動運転を行う。自動運転は、車両100の運転操作の一部のみを自動化したものであってもよい。或いは、各車両100は、路側機200からの補助を用いた手動運転を行うものであってもよい。 Each vehicle 100 automatically operates according to the control from the roadside machine 200. The automatic driving may be one in which only a part of the driving operation of the vehicle 100 is automated. Alternatively, each vehicle 100 may be manually operated with assistance from the roadside machine 200.
 路側機200は、道路Rを通る車両100との路車間通信を行い、路車間通信に応じて交通信号機700を制御する。例えば、路側機200は、通行禁止を示す灯色(すなわち、赤灯色)を各交通信号機700に常時表示させる。但し、路側機200は、車両100が待避所区間Zaに到達する前に、この待避所区間Zaに対応する交通信号機700に対して通行許可を示す灯色(すなわち、青灯色)を表示させる。これにより、路側機200は、この待避所区間Zaの次の交互交通区間をこの車両100に通行させる。 The roadside unit 200 performs road-to-vehicle communication with the vehicle 100 passing through the road R, and controls the traffic signal 700 according to the road-to-vehicle communication. For example, the roadside unit 200 causes each traffic signal 700 to constantly display a light color (that is, a red light color) indicating that traffic is prohibited. However, the roadside machine 200 displays a light color (that is, a blue light color) indicating a passage permit on the traffic signal 700 corresponding to the shelter section Za before the vehicle 100 reaches the shelter section Za. .. As a result, the roadside machine 200 allows the vehicle 100 to pass the next alternating traffic section of the shelter section Za.
 しかしながら、このような信号制御を行う場合、路側機200は、車両100が停留所区間Zbに到達する前に、停留所区間Zbに対応する交通信号機700に青灯色を表示させうる。例えば、図9に示す例において、路側機200は、車両100aが停留所区間Zbに到達する前に、停留所区間Zbに対応する交通信号機700D1に青灯色を表示させうる。 However, when such signal control is performed, the roadside unit 200 can display a blue light color on the traffic signal 700 corresponding to the stop section Zb before the vehicle 100 reaches the stop section Zb. For example, in the example shown in FIG. 9, the roadside machine 200 may display a blue light color on the traffic signal 700D1 corresponding to the stop section Zb before the vehicle 100a reaches the stop section Zb.
 その結果、車両100aは、停留所Sに乗車待ちの乗客(すなわち、車両100aに乗車予定の乗客)が存在する場合であっても、停留所Sで停止することなく停留所区間Zbを通過しうる。そこで、路側機200は、停留所Sに乗車待ちの乗客を考慮した信号制御を行うことで、このような問題を解決する。なお、以下においては、路側機200が車両100aの前方の停留所区間Zbに対応する交通信号機700D1を制御するケースについて主として説明する。 As a result, the vehicle 100a can pass through the stop section Zb without stopping at the stop S even if there are passengers waiting to board the vehicle (that is, passengers scheduled to board the vehicle 100a). Therefore, the roadside machine 200 solves such a problem by performing signal control in consideration of passengers waiting to board the bus stop S. In the following, a case where the roadside machine 200 controls the traffic signal 700D1 corresponding to the stop section Zb in front of the vehicle 100a will be mainly described.
 (路側機の構成)
 次に、第3実施形態に係る路側機200の構成について説明する。図10は、第3実施形態に係る路側機200の構成を示す図である。
(Structure of roadside machine)
Next, the configuration of the roadside machine 200 according to the third embodiment will be described. FIG. 10 is a diagram showing the configuration of the roadside machine 200 according to the third embodiment.
 図10に示すように、路側機200は、第1通信部24と、制御部22と、第2通信部25とを有する。 As shown in FIG. 10, the roadside machine 200 has a first communication unit 24, a control unit 22, and a second communication unit 25.
 第1通信部24は、アンテナ21aと、受信部24bと、送信部24cとを有し、アンテナ21aを介して無線通信を行う。第1通信部24は、車両100(車載機150)との路車間通信を行う。 The first communication unit 24 has an antenna 21a, a reception unit 24b, and a transmission unit 24c, and performs wireless communication via the antenna 21a. The first communication unit 24 performs road-to-vehicle communication with the vehicle 100 (vehicle-mounted device 150).
 アンテナ21aは、無指向性アンテナであってもよいし、指向性を有する指向性アンテナであってもよい。アンテナ21aは、指向性を動的に変更可能なアダプティブアレイアンテナであってもよい。 The antenna 21a may be an omnidirectional antenna or a directional antenna having directivity. The antenna 21a may be an adaptive array antenna whose directivity can be dynamically changed.
 第1通信部24は、アンテナ21aが受信する無線信号を受信データに変換して制御部22に出力する受信部24bを有する。また、第1通信部24は、制御部22が出力する送信データを無線信号に変換してアンテナ21aから送信する送信部24cを有する。 The first communication unit 24 has a reception unit 24b that converts the radio signal received by the antenna 21a into received data and outputs the radio signal to the control unit 22. Further, the first communication unit 24 has a transmission unit 24c that converts the transmission data output by the control unit 22 into a wireless signal and transmits it from the antenna 21a.
 第1通信部24の無線通信方式は、ARIB(Association of Radio Industries and Businesses)のT109規格に準拠した方式、3GPP(Third Generation Partnership Project)のV2X(Vehicle-to-everything)規格に準拠した方式、及び/又はIEEE(Institute of Electrical and Electronics Engineers)802.11シリーズ等の無線LAN(Local Area Network)規格に準拠した方式であってもよい。第1通信部24は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the first communication unit 24 is a method compliant with the T109 standard of ARIB (Association of Radio Industries and Businesses), and a V2X (Vehice-based) compliant method of 3GPP (Third Generation Partnership Project). And / or a method conforming to a wireless LAN (Local Area Network) standard such as IEEE (Institut of Electrical and Electricals Engineers) 802.11 series may be used. The first communication unit 24 may be configured to be compatible with all of these communication standards.
 制御部22は、路側機200における各種の機能を制御する。制御部22は、少なくとも1つのメモリ22bと、メモリ22bと電気的に接続された少なくとも1つのプロセッサ22aとを有する。メモリ22bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ22aにおける処理に用いる情報と、プロセッサ22aにより実行されるプログラムとを記憶する。メモリ22bは、記憶部に相当する。プロセッサ22aは、メモリ22bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 22 controls various functions of the roadside machine 200. The control unit 22 has at least one memory 22b and at least one processor 22a electrically connected to the memory 22b. The memory 22b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 22a and a program executed by the processor 22a. The memory 22b corresponds to a storage unit. The processor 22a performs various processes by executing the program stored in the memory 22b.
 メモリ22bは、停留所区間Zb(停留所S)の位置を示す停留所位置情報、及び各車両100の運行スケジュールを示すスケジュール情報を予め記憶しており、これらの情報はプロセッサ22aによる情報処理に用いられる。メモリ22bは、スケジュール情報を車両100ごとに記憶していてもよい。例えば、メモリ22bは、車両100の識別情報と、この車両100が停留所Sに到着すべき時刻とを対応付けたスケジュール情報を記憶する。 The memory 22b stores in advance stop position information indicating the position of the stop section Zb (stop S) and schedule information indicating the operation schedule of each vehicle 100, and these information are used for information processing by the processor 22a. The memory 22b may store the schedule information for each vehicle 100. For example, the memory 22b stores the schedule information in which the identification information of the vehicle 100 and the time when the vehicle 100 should arrive at the stop S are associated with each other.
 第2通信部25は、有線又は無線で交通信号機700と接続されている。交通信号機700は、信号制御機と信号灯器とが別々に設けられていてもよいし、信号制御機と信号灯器とが一体に構成されていてもよい。第2通信部25は、制御部22の制御下で、交通信号機700の信号灯色を切り替えるための制御コマンドを交通信号機700に出力する。 The second communication unit 25 is connected to the traffic signal 700 by wire or wirelessly. In the traffic signal 700, the signal controller and the signal lamp may be provided separately, or the signal controller and the signal lamp may be integrally configured. The second communication unit 25 outputs a control command for switching the signal light color of the traffic signal 700 to the traffic signal 700 under the control of the control unit 22.
 第2通信部25は、有線又は無線で中央装置400と接続される。中央装置400は、路側機200から受信する情報に基づいて各種の交通情報を収集し、道路交通を統合して管理する。 The second communication unit 25 is connected to the central device 400 by wire or wirelessly. The central device 400 collects various traffic information based on the information received from the roadside unit 200, and integrates and manages the road traffic.
 第2通信部25は、有線又は無線で検出装置800と接続される。検出装置800は、停留所Sに設けられており、乗車待ちの乗客を検出するための装置である。検出装置800は、人感センサ、押ボタン、RFリーダ、及び/又はカメラ等のセンサを含んで構成されている。 The second communication unit 25 is connected to the detection device 800 by wire or wirelessly. The detection device 800 is provided at the stop S and is a device for detecting passengers waiting to board. The detection device 800 includes a motion sensor, a push button, an RF reader, and / or a sensor such as a camera.
 このように構成された路側機200において、第1通信部24は、図9に示すように、道路Rに設けられた停留所Sに停止しうる車両100aとの無線通信(すなわち、路車間通信)を行う。 In the roadside unit 200 configured in this way, as shown in FIG. 9, the first communication unit 24 wirelessly communicates with the vehicle 100a that can stop at the stop S provided on the road R (that is, road-to-vehicle communication). I do.
 第2通信部25は、停留所Sに設けられた検出装置800から、車両100aに乗車予定の乗客に関する乗車予定情報を受信する。乗車予定情報は、停留所Sに乗車待ちの乗客が存在するか否かを示す情報であってもよいし、停留所Sに乗車待ちの乗客の人数を示す情報であってもよい。例えば、検出装置800がRFリーダを含む場合、検出装置800は、RFリーダが各乗客のICカードから読み取る情報を用いて乗車待ちの乗客の人数を特定できる。或いは、検出装置800がカメラを含む場合、検出装置800は、カメラにより得られる画像に対して画像認識を行うことにより、乗車待ちの乗客の人数を特定できる。 The second communication unit 25 receives boarding schedule information regarding passengers scheduled to board the vehicle 100a from the detection device 800 provided at the stop S. The boarding schedule information may be information indicating whether or not there are passengers waiting to board the bus stop S, or may be information indicating the number of passengers waiting to board the bus stop S. For example, when the detection device 800 includes an RF reader, the detection device 800 can identify the number of passengers waiting for boarding by using the information read from the IC card of each passenger by the detection device 800. Alternatively, when the detection device 800 includes a camera, the detection device 800 can identify the number of passengers waiting for boarding by performing image recognition on the image obtained by the camera.
 制御部22は、第1通信部24が車両100aから受信する情報に基づいて、停留所Sへの車両100aの接近を検知する。第1通信部24が車両100aから受信する情報は、車両100aの識別情報、車両100aの位置情報、車両100aの速度情報、及び車両100aの移動方向情報のうち少なくとも1つを含む。 The control unit 22 detects the approach of the vehicle 100a to the stop S based on the information received by the first communication unit 24 from the vehicle 100a. The information received from the vehicle 100a by the first communication unit 24 includes at least one of the identification information of the vehicle 100a, the position information of the vehicle 100a, the speed information of the vehicle 100a, and the moving direction information of the vehicle 100a.
 制御部22は、停留所Sへの車両100aの接近を検知した後、第2通信部25が検出装置800から受信した乗車予定情報に基づいて、停留所Sの周辺の道路R上に設けられた交通信号機700D1を制御する。具体的には、制御部22は、停留所Sに乗車待ちの乗客が存在する場合、通行禁止を示す灯色(すなわち、赤灯色)を交通信号機700D1に表示させる。これにより、停留所Sに乗車待ちの乗客が存在する場合、車両100aを停留所Sで停止させることができる。 After detecting the approach of the vehicle 100a to the stop S, the control unit 22 detects the approach of the vehicle 100a, and then based on the boarding schedule information received from the detection device 800 by the second communication unit 25, the traffic provided on the road R around the stop S. Controls the traffic light 700D1. Specifically, when there are passengers waiting to board the bus stop S, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a red light color) indicating that no traffic is allowed. As a result, when there are passengers waiting to board the bus stop S, the vehicle 100a can be stopped at the bus stop S.
 第3実施形態において、第1通信部24は、停留所Sで降車予定の乗客に関する降車予定情報を車両100aから受信する。降車予定情報は、停留所Sで降車予定の乗客が存在するか否かを示す情報であってもよいし、停留所Sで降車予定の乗客の人数を示す情報であってもよい。 In the third embodiment, the first communication unit 24 receives the disembarkation schedule information regarding the passengers scheduled to disembark at the stop S from the vehicle 100a. The disembarkation schedule information may be information indicating whether or not there are passengers scheduled to disembark at the stop S, or may be information indicating the number of passengers scheduled to disembark at the stop S.
 制御部22は、第2通信部25が検出装置800から受信した乗車予定情報と、第1通信部24が車両100aから受信した降車予定情報とに基づいて、交通信号機700D1を制御する。 The control unit 22 controls the traffic signal 700D1 based on the boarding schedule information received from the detection device 800 by the second communication unit 25 and the disembarkation schedule information received by the first communication unit 24 from the vehicle 100a.
 例えば、制御部22は、乗車予定情報及び降車予定情報に基づいて、乗車予定の乗客及び降車予定の乗客のいずれも存在しないと判定したことに応じて、車両100aの進行を許可するように交通信号機700D1を制御する。具体的には、制御部22は、通行許可を示す灯色(すなわち、青灯色)を交通信号機700D1に表示させる。 For example, the control unit 22 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist based on the boarding schedule information and the disembarking schedule information, so that the traffic 100a is allowed to proceed. Controls the traffic light 700D1. Specifically, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a blue light color) indicating a passage permit.
 一方、制御部22は、乗車予定情報及び降車予定情報に基づいて、乗車予定の乗客及び降車予定の乗客の少なくともいずれか一方が存在すると判定したことに応じて、車両100aを停止させるように交通信号機700D1を制御する。具体的には、制御部22は、通行禁止を示す灯色(すなわち、赤灯色)を交通信号機700D1に表示させる。 On the other hand, the control unit 22 traffic so as to stop the vehicle 100a according to the determination that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. Controls the traffic light 700D1. Specifically, the control unit 22 causes the traffic signal 700D1 to display a light color (that is, a red light color) indicating that traffic is prohibited.
 制御部22は、車両100aの運行スケジュールを示すスケジュール情報を考慮した信号制御を行ってもよい。例えば、制御部22は、第1通信部24が車両100aから受信した識別情報に対応するスケジュール情報をメモリ22bから取得し、車両100aが停留所Sに到着すべき時刻と現時刻とを比較する。このようにして、制御部22は、車両100aが運行スケジュールに対して遅延を生じているか否かを判定する。 The control unit 22 may perform signal control in consideration of schedule information indicating the operation schedule of the vehicle 100a. For example, the control unit 22 acquires the schedule information corresponding to the identification information received from the vehicle 100a by the first communication unit 24 from the memory 22b, and compares the time when the vehicle 100a should arrive at the bus stop S with the current time. In this way, the control unit 22 determines whether or not the vehicle 100a is delayed with respect to the operation schedule.
 制御部22は、乗車予定の乗客及び降車予定の乗客及びのいずれも存在しないと判定した場合であって、車両100aが運行スケジュールに対して遅延を生じていると判定したとき、車両100aの進行を許可するように交通信号機700D1を制御する。これにより、車両100aが停留所Sで停止せずに道路Rの通行を継続できるため、遅延を解消し易くすることができる。 When the control unit 22 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist, and determines that the vehicle 100a is delayed with respect to the operation schedule, the progress of the vehicle 100a Control the traffic signal 700D1 to allow. As a result, the vehicle 100a can continue to pass on the road R without stopping at the stop S, so that the delay can be easily eliminated.
 一方、制御部22は、乗車予定の乗客及び降車予定の乗客及びのいずれも存在しないと判定した場合であって、車両100aが運行スケジュールに対して遅延を生じていないと判定したとき、車両100aを停止させるように交通信号機700D1を制御する。車両100aが運行スケジュール通りに運行している場合、停留所Sをスキップする必要性が低い。また、検出装置800の検出範囲外に乗車待ちの乗客が存在する可能性もあるため、車両100aが運行スケジュール通りに運行している場合は車両100aが停留所Sで停止することが好ましい。 On the other hand, when the control unit 22 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist, and the vehicle 100a determines that there is no delay with respect to the operation schedule, the vehicle 100a The traffic signal 700D1 is controlled so as to stop. When the vehicle 100a is operating according to the operation schedule, it is less necessary to skip the stop S. Further, since there is a possibility that there are passengers waiting for boarding outside the detection range of the detection device 800, it is preferable that the vehicle 100a stops at the stop S when the vehicle 100a is operating according to the operation schedule.
 なお、制御部22は、交通信号機700D1の信号灯色を示す信号情報を車両100aに送信するよう第1通信部24を制御してもよい。例えば、制御部22は、第1通信部24から信号情報を周期的に送信させる。 Note that the control unit 22 may control the first communication unit 24 so as to transmit signal information indicating the signal light color of the traffic signal 700D1 to the vehicle 100a. For example, the control unit 22 periodically transmits signal information from the first communication unit 24.
 (車両の構成)
 次に、第3実施形態に係る車両100aの構成について説明する。図11は、第3実施形態に係る車両100aの構成を示す図である。
(Vehicle configuration)
Next, the configuration of the vehicle 100a according to the third embodiment will be described. FIG. 11 is a diagram showing the configuration of the vehicle 100a according to the third embodiment.
 図11に示すように、車両100aは、通信部11と、GNSS受信機12と、通知部13と、駆動制御部14と、制御部15とを有する。通信部11、GNSS受信機12、及び制御部15は、車載機150を構成する。車載機150は移動局の一例である。 As shown in FIG. 11, the vehicle 100a has a communication unit 11, a GNSS receiver 12, a notification unit 13, a drive control unit 14, and a control unit 15. The communication unit 11, the GNSS receiver 12, and the control unit 15 constitute an on-board unit 150. The on-board unit 150 is an example of a mobile station.
 通信部11は、アンテナ11aと、受信部11bと、送信部11cとを有し、アンテナ11aを介して無線通信を行う。通信部11は、路側機200との路車間通信を行う。 The communication unit 11 has an antenna 11a, a reception unit 11b, and a transmission unit 11c, and performs wireless communication via the antenna 11a. The communication unit 11 performs road-to-vehicle communication with the roadside unit 200.
 通信部11は、アンテナ11aが受信する無線信号を受信データに変換して制御部15に出力する受信部11bを有する。また、通信部11は、制御部15が出力する送信データを無線信号に変換してアンテナ11aから送信する送信部11cを有する。 The communication unit 11 has a reception unit 11b that converts the radio signal received by the antenna 11a into received data and outputs the radio signal to the control unit 15. Further, the communication unit 11 has a transmission unit 11c that converts the transmission data output by the control unit 15 into a wireless signal and transmits it from the antenna 11a.
 通信部11は、制御部15の制御下で、車両100aの識別情報、車両100aの位置情報、車両100aの速度情報、及び車両100aの移動方向情報のうち少なくとも1つを路側機200に送信する。 Under the control of the control unit 15, the communication unit 11 transmits at least one of the identification information of the vehicle 100a, the position information of the vehicle 100a, the speed information of the vehicle 100a, and the moving direction information of the vehicle 100a to the roadside machine 200. ..
 通信部11の無線通信方式は、ARIBのT109規格に準拠した方式、3GPPのV2X規格に準拠した方式、及び/又はIEEE802.11シリーズ等の無線LAN規格に準拠した方式であってもよい。通信部11は、これらの通信規格の全てに対応可能に構成されていてもよい。 The wireless communication method of the communication unit 11 may be a method compliant with the T109 standard of ARIB, a method compliant with the V2X standard of 3GPP, and / or a method compliant with a wireless LAN standard such as the IEEE802.11 series. The communication unit 11 may be configured to be compatible with all of these communication standards.
 GNSS受信機12は、GNSS衛星信号に基づいて測位を行い、車両100aの現在の地理的な位置(緯度・経度)を示すGNSS位置情報を制御部15に出力する。GNSS位置情報は、上述した位置情報として用いられるとともに、上述した速度情報及び移動方向情報の生成にも用いられる。 The GNSS receiver 12 performs positioning based on the GNSS satellite signal, and outputs GNSS position information indicating the current geographical position (latitude / longitude) of the vehicle 100a to the control unit 15. The GNSS position information is used as the above-mentioned position information, and is also used for generating the above-mentioned velocity information and movement direction information.
 通知部13は、制御部15の制御下で、車両100aの運転者に対する情報の通知を行う。通知部13は、情報を表示するディスプレイ13aと、情報を音声出力するスピーカ13bとを有する。通知部13は、通信部11が路側機200から受信する情報(例えば、信号情報)を通知してもよい。 The notification unit 13 notifies the driver of the vehicle 100a of information under the control of the control unit 15. The notification unit 13 has a display 13a for displaying information and a speaker 13b for outputting information by voice. The notification unit 13 may notify the information (for example, signal information) received from the roadside unit 200 by the communication unit 11.
 駆動制御部14は、動力源としてのエンジン又はモータ、動力伝達機構、及びブレーキ等を制御する。車両100aが自動運転車両である場合、駆動制御部14は、制御部15と連携して車両100aの駆動を制御してもよい。 The drive control unit 14 controls an engine or motor as a power source, a power transmission mechanism, a brake, and the like. When the vehicle 100a is an autonomous driving vehicle, the drive control unit 14 may control the drive of the vehicle 100a in cooperation with the control unit 15.
 制御部15は、車両100a(車載機150)における各種の機能を制御する。制御部15は、少なくとも1つのメモリ15bと、メモリ15bと電気的に接続された少なくとも1つのプロセッサ15aとを有する。メモリ15bは、揮発性メモリ及び不揮発性メモリを含み、プロセッサ15aにおける処理に用いる情報及びプロセッサ15aにより実行されるプログラムを記憶する。プロセッサ15aは、メモリ15bに記憶されたプログラムを実行することにより各種の処理を行う。 The control unit 15 controls various functions in the vehicle 100a (vehicle-mounted device 150). The control unit 15 has at least one memory 15b and at least one processor 15a electrically connected to the memory 15b. The memory 15b includes a volatile memory and a non-volatile memory, and stores information used for processing in the processor 15a and a program executed by the processor 15a. The processor 15a performs various processes by executing the program stored in the memory 15b.
 制御部15は、停留所Sで降車予定の乗客に関する降車予定情報を生成し、降車予定情報を路側機200に送信するように通信部11を制御する。例えば、制御部15は、車両100aに設けられた降車用の押ボタンに対する乗客の操作に基づいて降車予定情報を生成する。 The control unit 15 controls the communication unit 11 so as to generate the disembarkation schedule information regarding the passengers scheduled to disembark at the stop S and transmit the disembarkation schedule information to the roadside unit 200. For example, the control unit 15 generates disembarkation schedule information based on the passenger's operation on the disembarkation push button provided on the vehicle 100a.
 (交通通信システムの動作例)
 次に、第3実施形態に係る交通通信システム2の動作例について説明する。図12は、第3実施形態に係る交通通信システム2の動作例を示す図である。
(Operation example of transportation communication system)
Next, an operation example of the transportation communication system 2 according to the third embodiment will be described. FIG. 12 is a diagram showing an operation example of the transportation communication system 2 according to the third embodiment.
 図12に示すように、ステップS101において、路側機200の第1通信部24は、停留所位置情報を車両100aに送信する。車両100aにおいて、通信部11が停留所位置情報を受信し、制御部15が停留所Sへの車両100aの接近を検知する(ステップS102)。 As shown in FIG. 12, in step S101, the first communication unit 24 of the roadside machine 200 transmits the stop position information to the vehicle 100a. In the vehicle 100a, the communication unit 11 receives the stop position information, and the control unit 15 detects the approach of the vehicle 100a to the stop S (step S102).
 ステップS103において、車両100aの制御部15は、降車予定情報、位置情報、及び移動方向情報を取得する。 In step S103, the control unit 15 of the vehicle 100a acquires the disembarkation schedule information, the position information, and the moving direction information.
 ステップS104において、車両100aの制御部15は、降車予定情報、位置情報、及び移動方向情報を通信部11から路側機200に送信する。路側機200の第1通信部24は、降車予定情報、位置情報、及び移動方向情報を受信する。 In step S104, the control unit 15 of the vehicle 100a transmits the disembarkation schedule information, the position information, and the moving direction information from the communication unit 11 to the roadside unit 200. The first communication unit 24 of the roadside unit 200 receives the disembarkation schedule information, the position information, and the moving direction information.
 ステップS105において、路側機200の制御部22は、受信した位置情報及び移動方向情報に基づいて、停留所Sへの車両100aの接近を検知する。 In step S105, the control unit 22 of the roadside machine 200 detects the approach of the vehicle 100a to the stop S based on the received position information and movement direction information.
 ステップS106において、路側機200の制御部22は、第2通信部25を介して検出装置800から乗車予定情報を取得する。 In step S106, the control unit 22 of the roadside unit 200 acquires boarding schedule information from the detection device 800 via the second communication unit 25.
 ステップS107において、路側機200の制御部22は、車両100aからの降車予定情報と、検出装置800からの乗車予定情報とに基づいて、車両100aを停留所Sで停止させるか否かを判定する。この判定には、上述したように、車両100aの運行スケジュールも加味されてもよい。 In step S107, the control unit 22 of the roadside machine 200 determines whether or not to stop the vehicle 100a at the stop S based on the disembarkation schedule information from the vehicle 100a and the boarding schedule information from the detection device 800. As described above, the operation schedule of the vehicle 100a may also be taken into consideration in this determination.
 ステップS108において、路側機200の制御部22は、ステップS107での判定結果に応じて、第2通信部25を介して交通信号機700に制御コマンドを出力する。交通信号機700は、この制御コマンドに基づいて灯色を切り替える。 In step S108, the control unit 22 of the roadside unit 200 outputs a control command to the traffic signal 700 via the second communication unit 25 according to the determination result in step S107. The traffic signal 700 switches the light color based on this control command.
 ステップS109において、路側機200の制御部22は、信号情報を第1通信部24から車両100aに送信する。 In step S109, the control unit 22 of the roadside unit 200 transmits signal information from the first communication unit 24 to the vehicle 100a.
 (第3実施形態における交通通信システムの動作の変更例)
 次に、第3実施形態における交通通信システム2の動作の変更例について、上述した動作との相違点を主として説明する。
(Example of changing the operation of the transportation communication system in the third embodiment)
Next, the difference from the above-described operation will be mainly described with respect to the modified example of the operation of the transportation communication system 2 in the third embodiment.
 上述した交通通信システム2の動作では、車両100aを停留所Sで停止させるか否かの判定を路側機200側で行っていたが、本変更例では、このような判定を車両100a側で行う。本変更例では、路側機200は、上述したような信号制御を行わなくてもよい。 In the operation of the traffic communication system 2 described above, the roadside machine 200 side determines whether or not to stop the vehicle 100a at the stop S, but in this modified example, such a determination is performed on the vehicle 100a side. In this modification, the roadside machine 200 does not have to perform the signal control as described above.
 図13は、本変更例に係る交通通信システム2の適用シナリオの一例を示す図である。図13に示すように、車両100a及び100bが2車線の道路Rを同じ方向に向けて通行している。車両100aはバスであって、車両100bは一般車両である。車両100aの前方には停留所Sが存在する。停留所Sには、上述した検出装置800が設けられている。 FIG. 13 is a diagram showing an example of an application scenario of the transportation communication system 2 according to this modified example. As shown in FIG. 13, vehicles 100a and 100b are passing on a two-lane road R in the same direction. The vehicle 100a is a bus, and the vehicle 100b is a general vehicle. There is a stop S in front of the vehicle 100a. The above-mentioned detection device 800 is provided at the stop S.
 ここで、図11を参照して、本変更例に係る車両100aの動作について説明する。図11に示すように、車両100aにおいて、受信部11bは、停留所Sにおける車両100aに乗車予定の乗客に関する乗車予定情報を路側機200から受信する。制御部15は、停留所Sへの車両100aの接近を検知した場合、乗車予定情報に基づいて、車両100aを停留所Sで停止させるか否かを決定する。具体的には、制御部15は、停留所Sに乗車待ちの乗客が存在する場合、車両100aを停留所Sで停止させると決定する。これにより、停留所Sに乗車待ちの乗客が存在する場合、車両100aを停留所Sで停止させることができる。 Here, the operation of the vehicle 100a according to this modification will be described with reference to FIG. As shown in FIG. 11, in the vehicle 100a, the receiving unit 11b receives the boarding schedule information regarding the passengers scheduled to board the vehicle 100a at the stop S from the roadside machine 200. When the control unit 15 detects the approach of the vehicle 100a to the bus stop S, the control unit 15 determines whether or not to stop the vehicle 100a at the bus stop S based on the boarding schedule information. Specifically, the control unit 15 determines that the vehicle 100a is stopped at the bus stop S when there are passengers waiting to board the bus stop S. As a result, when there are passengers waiting to board the bus stop S, the vehicle 100a can be stopped at the bus stop S.
 制御部15は、車両100aを停留所Sで停止させると決定した場合、その旨を通知部13により通知してもよいし、車両100aを停留所Sで停止させるよう駆動制御部14と連携して運転を制御してもよい。一方、制御部15は、車両100aを停留所Sで停止させないと決定した場合、その旨を通知部13により通知してもよいし、車両100aを停留所Sで停止させないよう駆動制御部14と連携して運転を制御してもよい。 When the control unit 15 decides to stop the vehicle 100a at the bus stop S, the notification unit 13 may notify the fact, or the control unit 15 operates in cooperation with the drive control unit 14 so as to stop the vehicle 100a at the bus stop S. May be controlled. On the other hand, when the control unit 15 decides not to stop the vehicle 100a at the stop S, the notification unit 13 may notify the fact, and the control unit 15 cooperates with the drive control unit 14 so as not to stop the vehicle 100a at the stop S. You may control the operation.
 また、制御部15は、停留所Sで降車予定の乗客に関する降車予定情報を取得する。制御部15は、上述した第3実施形態と同様にして、乗車予定情報と降車予定情報とに基づいて、車両100aを停留所Sで停止させるか否かを決定する。具体的には、制御部15は、乗車予定情報及び降車予定情報に基づいて、乗車予定の乗客及び降車予定の乗客のいずれも存在しないと判定したことに応じて、車両100aを停留所Sで停止させないと決定する。一方、制御部15は、乗車予定情報及び降車予定情報に基づいて、乗車予定の乗客及び降車予定の乗客の少なくともいずれか一方が存在すると判定したことに応じて、車両100aを停留所Sで停止させると決定する。 In addition, the control unit 15 acquires the disembarkation schedule information regarding the passengers who are scheduled to disembark at the stop S. The control unit 15 determines whether or not to stop the vehicle 100a at the stop S based on the boarding schedule information and the disembarking schedule information in the same manner as in the third embodiment described above. Specifically, the control unit 15 stops the vehicle 100a at the stop S in response to the determination that neither the passengers scheduled to board nor the passengers scheduled to disembark exist based on the boarding schedule information and the disembarking schedule information. Decide not to let. On the other hand, the control unit 15 stops the vehicle 100a at the stop S in response to the determination that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. To decide.
 制御部15は、車両100aの運行スケジュールを示すスケジュール情報に基づいて、車両100aが運行スケジュールに対して遅延を生じているか否かを判定してもよい。制御部15は、乗車予定の乗客及び降車予定の乗客及びのいずれも存在しないと判定した場合であって、遅延を生じていると判定したとき、車両100aを停留所Sで停止させないと決定する。一方、制御部15は、乗車予定の乗客及び降車予定の乗客及びのいずれも存在しないと判定した場合であって、遅延を生じていないと判定したとき、車両100aを停留所Sで停止させると決定する。 The control unit 15 may determine whether or not the vehicle 100a is delayed with respect to the operation schedule based on the schedule information indicating the operation schedule of the vehicle 100a. The control unit 15 determines that neither the passengers scheduled to board nor the passengers scheduled to disembark exist, and when it is determined that a delay has occurred, the vehicle 100a is not stopped at the stop S. On the other hand, the control unit 15 determines that the vehicle 100a is stopped at the stop S when it is determined that neither the passengers scheduled to board nor the passengers scheduled to disembark exist and no delay has occurred. To do.
 本変更例において、通信部11は、他の車両100bとの無線通信(すなわち、車車間通信)を行ってもよい。制御部15は、車両100aを停留所Sで停止させると決定した場合、車両100aが停留所Sで停止した後に発進する発進タイミングを予測する。そして、制御部15は、予測した発進タイミングまでの残り時間を示す情報を送信部11cから他の車両100bに無線通信により送信する。 In this modification, the communication unit 11 may perform wireless communication (that is, vehicle-to-vehicle communication) with another vehicle 100b. When the control unit 15 determines that the vehicle 100a is to be stopped at the bus stop S, the control unit 15 predicts the start timing at which the vehicle 100a starts after the vehicle 100a is stopped at the bus stop S. Then, the control unit 15 transmits information indicating the remaining time until the predicted start timing from the transmission unit 11c to the other vehicle 100b by wireless communication.
 ここで、制御部15は、スケジュール情報、乗車予定情報、及び降車予定情報のうち少なくとも1つに基づいて発進タイミングを予測する。 Here, the control unit 15 predicts the start timing based on at least one of the schedule information, the boarding schedule information, and the disembarking schedule information.
 例えば、制御部15は、スケジュール情報に含まれる発進予定時刻を発進タイミングとして予測し、車両100aを停留所Sで停止させた停止タイミングと、予測した発進タイミングとの差を、発進タイミングまでの残り時間の初期値として送信部11cから送信し、その後、残り時間を減少させながら周期的に送信部11cから送信する。 For example, the control unit 15 predicts the scheduled start time included in the schedule information as the start timing, and sets the difference between the stop timing at which the vehicle 100a is stopped at the stop S and the predicted start timing as the remaining time until the start timing. Is transmitted from the transmission unit 11c as the initial value of, and then periodically transmitted from the transmission unit 11c while reducing the remaining time.
 制御部15は、スケジュール情報に含まれる発進予定時刻を乗車予定情報及び降車予定情報の少なくとも一方を用いて補正してもよい。例えば、制御部15は、乗車予定情報が示す乗車予定人数が多いほど発進予定時刻を遅らせるよう補正し、発進タイミングを予測してもよい。同様に、制御部15は、降車予定情報が示す降車予定人数が多いほど発進予定時刻を遅らせるよう補正し、発進タイミングを予測してもよい。 The control unit 15 may correct the scheduled start time included in the schedule information by using at least one of the boarding schedule information and the disembarking schedule information. For example, the control unit 15 may correct the scheduled start time to be delayed as the number of scheduled riders indicated by the boarding schedule information increases, and predict the start timing. Similarly, the control unit 15 may correct the scheduled start time to be delayed as the number of people scheduled to disembark indicated by the disembarkation schedule information increases, and predict the start timing.
 このように、予測した発進タイミングまでの残り時間を示す情報を送信部11cから他の車両100bに送信することにより、車両100aに後続する車両100bは、車両100aがいつ発進するかを把握可能となるため、車両100aを追い越すといった危険な運転が生じ難くなる。 In this way, by transmitting the information indicating the remaining time until the predicted start timing from the transmission unit 11c to the other vehicle 100b, the vehicle 100b following the vehicle 100a can grasp when the vehicle 100a starts. Therefore, dangerous driving such as overtaking the vehicle 100a is less likely to occur.
 図14は、本変更例に係る交通通信システム2の動作例を示す図である。 FIG. 14 is a diagram showing an operation example of the transportation communication system 2 according to this modified example.
 図14に示すように、ステップS201において、路側機200の第1通信部24は、停留所位置情報を車両100aに送信する。車両100aにおいて、通信部11が停留所位置情報を受信し、制御部15が停留所Sへの車両100aの接近を検知する(ステップS202)。 As shown in FIG. 14, in step S201, the first communication unit 24 of the roadside unit 200 transmits the stop position information to the vehicle 100a. In the vehicle 100a, the communication unit 11 receives the stop position information, and the control unit 15 detects the approach of the vehicle 100a to the stop S (step S202).
 ステップS203において、車両100aの制御部15は、降車予定情報、位置情報、及び移動方向情報を取得する。 In step S203, the control unit 15 of the vehicle 100a acquires the disembarkation schedule information, the position information, and the moving direction information.
 ステップS204において、車両100aの制御部15は、位置情報及び移動方向情報を通信部11から路側機200に送信する。路側機200の第1通信部24は、位置情報及び移動方向情報を受信する。 In step S204, the control unit 15 of the vehicle 100a transmits the position information and the moving direction information from the communication unit 11 to the roadside unit 200. The first communication unit 24 of the roadside unit 200 receives the position information and the moving direction information.
 ステップS205において、路側機200の制御部22は、受信した位置情報及び移動方向情報に基づいて、停留所Sへの車両100aの接近を検知する。 In step S205, the control unit 22 of the roadside machine 200 detects the approach of the vehicle 100a to the stop S based on the received position information and movement direction information.
 ステップS206において、路側機200の制御部22は、第2通信部25を介して検出装置800から乗車予定情報を取得する。 In step S206, the control unit 22 of the roadside unit 200 acquires boarding schedule information from the detection device 800 via the second communication unit 25.
 ステップS207において、路側機200の制御部22は、取得した乗車予定情報を第1通信部24から車両100aに送信する。車両100aの通信部11は、乗車予定情報を受信する。 In step S207, the control unit 22 of the roadside machine 200 transmits the acquired boarding schedule information from the first communication unit 24 to the vehicle 100a. The communication unit 11 of the vehicle 100a receives the boarding schedule information.
 ステップS208において、車両100aの制御部15は、降車予定情報と、路側機200からの乗車予定情報とに基づいて、車両100aを停留所Sで停止させるか否かを判定する。この判定には、上述したように、車両100aの運行スケジュールも加味されてもよい。 In step S208, the control unit 15 of the vehicle 100a determines whether or not to stop the vehicle 100a at the stop S based on the disembarkation schedule information and the boarding schedule information from the roadside machine 200. As described above, the operation schedule of the vehicle 100a may also be taken into consideration in this determination.
 ステップS209において、車両100aの制御部15は、ステップS208での判定結果に応じて、車両100aを停留所Sで停止させるとともに、車両100aが停留所Sで停止した後に発進する発進タイミングを予測する。 In step S209, the control unit 15 of the vehicle 100a stops the vehicle 100a at the bus stop S and predicts the start timing after the vehicle 100a stops at the bus stop S, according to the determination result in the step S208.
 ステップS210において、車両100aの制御部15は、予測した発進タイミングまでの残り時間を示す情報を送信部11cから他の車両100bに無線通信により送信する。 In step S210, the control unit 15 of the vehicle 100a transmits information indicating the remaining time until the predicted start timing from the transmission unit 11c to the other vehicle 100b by wireless communication.
 [その他の実施形態]
 第1実施形態において、図5に示すステップS4及びS5の処理の少なくとも一方をセンタ設備500が実行してもよい。この場合、路側機200の制御部22がセンタ設備500に設けられてもよい。
[Other Embodiments]
In the first embodiment, the center facility 500 may execute at least one of the processes of steps S4 and S5 shown in FIG. In this case, the control unit 22 of the roadside machine 200 may be provided in the center equipment 500.
 第2実施形態において、図7に示すステップS23乃至S26の処理の少なくとも1つをセンタ設備500が実行してもよい。この場合、路側機200の制御部22がセンタ設備500に設けられてもよい。 In the second embodiment, the center facility 500 may execute at least one of the processes of steps S23 to S26 shown in FIG. In this case, the control unit 22 of the roadside machine 200 may be provided in the center equipment 500.
 車両100a(車載機150)又は路側機200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。 A program for causing a computer to execute each process performed by the vehicle 100a (vehicle-mounted device 150) or the roadside device 200 may be provided. The program may be recorded on a computer-readable medium. Computer-readable media can be used to install programs on a computer. Here, the computer-readable medium on which the program is recorded may be a non-transient recording medium. The non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
 また、車載機150又は路側機200が行う各処理を実行する回路を集積化し、車載機150又は路側機200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。 Further, a circuit for executing each process performed by the on-board unit 150 or the roadside unit 200 may be integrated, and at least a part of the on-board unit 150 or the roadside unit 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although the embodiments have been described in detail with reference to the drawings above, the specific configuration is not limited to the above, and various design changes and the like can be made within a range that does not deviate from the gist.
 本願は、日本国特許出願第2019-119152号(2019年6月26日出願)、日本国特許出願第2019-119154号(2019年6月26日出願)、及び日本国特許出願第2019-119155号(2019年6月26日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。 This application applies to Japanese Patent Application No. 2019-119152 (filed on June 26, 2019), Japanese Patent Application No. 2019-119154 (filed on June 26, 2019), and Japanese Patent Application No. 2019-119155. Claims the priority of issue (filed June 26, 2019), all of which is incorporated herein by reference.

Claims (35)

  1.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する車両との通信を行う基地局であって、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記道路を通行する複数の車両との通信を行う通信部と、
     前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定する制御部と、を備え、
     前記制御部は、前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行う、基地局。
    A base station that communicates with a vehicle passing in either the first direction or the second direction facing the first direction on the road.
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    A communication unit that communicates with a plurality of vehicles passing on the road,
    A control unit that determines, based on the communication, a priority vehicle that can preferentially pass through the road without stopping in the bidirectional section from the plurality of vehicles.
    The control unit is a base station that controls the oncoming vehicle to stop in advance in both directions before the priority vehicle approaches the oncoming vehicle.
  2.  前記通信部は、前記複数の車両のそれぞれから車両種別情報を受信し、
     前記制御部は、前記車両種別情報に基づいて前記優先車両を決定する、請求項1に記載の基地局。
    The communication unit receives vehicle type information from each of the plurality of vehicles, and receives vehicle type information.
    The base station according to claim 1, wherein the control unit determines the priority vehicle based on the vehicle type information.
  3.  前記道路は、バス専用道路であり、
     前記制御部は、前記複数の車両に急行バスが含まれる場合、前記急行バスを前記優先車両として決定する、請求項2に記載の基地局。
    The road is a bus-only road and
    The base station according to claim 2, wherein the control unit determines the express bus as the priority vehicle when the plurality of vehicles include an express bus.
  4.  前記制御部は、前記車両種別情報に基づいて前記複数の車両にバス又は緊急車両が含まれると判定した場合、前記バス又は前記緊急車両を前記優先車両として決定する、請求項2に記載の基地局。 The base according to claim 2, wherein when the control unit determines that the plurality of vehicles include a bus or an emergency vehicle based on the vehicle type information, the control unit determines the bus or the emergency vehicle as the priority vehicle. Station.
  5.  前記道路は、バス専用道路であり、
     前記通信部は、前記複数の車両のそれぞれから運行状況情報を受信し、
     前記制御部は、前記運行状況情報に基づいて、運行スケジュールに対して遅延を生じているバスが前記複数の車両に含まれると判定した場合、該バスを前記優先車両として決定する、請求項1乃至4のいずれか1項に記載の基地局。
    The road is a bus-only road and
    The communication unit receives operation status information from each of the plurality of vehicles, and receives operation status information.
    1. When the control unit determines that a bus having a delay with respect to the operation schedule is included in the plurality of vehicles based on the operation status information, the control unit determines the bus as the priority vehicle. The base station according to any one of 4 to 4.
  6.  前記通信部は、前記複数の車両のそれぞれから位置情報及び速度情報を受信し、
     前記制御部は、前記両方向区間が間隔をおいて前記道路に複数設けられる場合、前記位置情報及び前記速度情報に基づいて、前記複数の両方向区間の中から前記対向車両を停止させる前記両方向区間を選択する、請求項1乃至5のいずれか1項に記載の基地局。
    The communication unit receives position information and speed information from each of the plurality of vehicles, and receives the position information and the speed information.
    When a plurality of the bidirectional sections are provided on the road at intervals, the control unit sets the bidirectional section for stopping the oncoming vehicle from the plurality of bidirectional sections based on the position information and the speed information. The base station according to any one of claims 1 to 5, which is selected.
  7.  前記制御部は、前記対向車両を前記両方向区間で停止させるためのメッセージを前記対向車両に送信するよう前記通信部を制御し、
     前記メッセージは、前記複数の両方向区間の中から前記選択された両方向区間を示す情報を含む、請求項6に記載の基地局。
    The control unit controls the communication unit so as to transmit a message for stopping the oncoming vehicle in the bidirectional sections to the oncoming vehicle.
    The base station according to claim 6, wherein the message includes information indicating the bidirectional section selected from the plurality of bidirectional sections.
  8.  交通信号機との通信を行うためのインターフェイスをさらに備え、
     前記制御部は、前記対向車両を前記両方向区間で停止させるように、前記選択された両方向区間と対応する前記交通信号機を制御する、請求項6に記載の基地局。
    It also has an interface for communicating with traffic lights,
    The base station according to claim 6, wherein the control unit controls the traffic signal corresponding to the selected bidirectional section so as to stop the oncoming vehicle in the bidirectional section.
  9.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する複数の車両との通信を行う基地局と、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定する制御部と、を備え、
     前記制御部は、前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行う、交通通信システム。
    A base station that communicates with a plurality of vehicles passing through either the first direction and the second direction facing the first direction on the road.
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    A control unit that determines, based on the communication, a priority vehicle that can preferentially pass through the road without stopping in the bidirectional section from the plurality of vehicles.
    The control unit is a traffic communication system that controls the oncoming vehicle to be stopped in advance in both directions before the priority vehicle approaches the oncoming vehicle.
  10.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する複数の車両との通信を基地局が行うことと、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記複数の車両の中から、前記両方向区間で停止せずに前記道路を優先的に通行可能な優先車両を前記通信に基づいて決定することと、
     前記優先車両が対向車両と近接する前に前記対向車両を前記両方向区間で予め停止させる制御を行うことと、を含む交通通信方法。
    The base station communicates with a plurality of vehicles passing in either the first direction or the second direction facing the first direction on the road.
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    From the plurality of vehicles, a priority vehicle capable of preferentially passing on the road without stopping in both directions is determined based on the communication.
    A traffic communication method including controlling to stop the oncoming vehicle in advance in both directions before the priority vehicle approaches the oncoming vehicle.
  11.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから位置情報を受信する通信部と、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出する制御部と、を備え、
     前記通信部は、前記第1車両について算出した前記速度を示す第1速度制御情報を前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記第2車両に送信する、基地局。
    A communication unit that receives position information from each of a first vehicle passing through either the first direction or the second direction facing the first direction on the road and a second vehicle that is an oncoming vehicle of the first vehicle. ,
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    When the bidirectional section exists between the first vehicle and the second vehicle, it is necessary for the first vehicle and the second vehicle to reach the bidirectional section at the same time based on the position information. It is provided with a control unit for calculating the speed to be determined for each of the first vehicle and the second vehicle.
    The communication unit transmits the first speed control information indicating the speed calculated for the first vehicle to the first vehicle, and the second speed control information indicating the speed calculated for the second vehicle is transmitted to the first vehicle. 2 A base station that transmits to vehicles.
  12.  前記制御部は、前記両方向区間における前記第1車両及び前記第2車両のそれぞれの移動パラメータを決定し、
     前記移動パラメータは、前記両方向区間における移動経路及び移動速度の少なくとも一方を含み、
     前記通信部は、前記第1車両について決定した前記移動パラメータである第1移動パラメータを前記第1車両に送信するとともに、前記第2車両について決定した前記移動パラメータである第2パラメータを前記第2車両に送信する、請求項11に記載の基地局。
    The control unit determines the movement parameters of the first vehicle and the second vehicle in both directions, respectively.
    The movement parameter includes at least one of the movement path and the movement speed in the bidirectional section.
    The communication unit transmits the first movement parameter, which is the movement parameter determined for the first vehicle, to the first vehicle, and the second parameter, which is the movement parameter determined for the second vehicle, is transmitted to the first vehicle. The base station according to claim 11, which is transmitted to a vehicle.
  13.  前記両方向区間に含まれる待避領域の幅及び長さの少なくとも一方の情報を記憶する記憶部をさらに備え、
     前記制御部は、前記記憶部に記憶された前記情報に基づいて、前記両方向区間における前記第1車両及び前記第2車両のそれぞれの前記移動パラメータを決定する、請求項12に記載の基地局。
    Further, a storage unit for storing information on at least one of the width and length of the shunting area included in the bidirectional section is provided.
    The base station according to claim 12, wherein the control unit determines the movement parameters of the first vehicle and the second vehicle in the bidirectional section based on the information stored in the storage unit.
  14.  前記通信部は、前記第1車両及び前記第2車両のそれぞれから車両種別情報を受信し、
     前記制御部は、前記車両種別情報に基づいて、前記両方向区間内において優先的に通行可能な優先車両を決定する、請求項11乃至13のいずれか1項に記載の基地局。
    The communication unit receives vehicle type information from each of the first vehicle and the second vehicle, and receives vehicle type information.
    The base station according to any one of claims 11 to 13, wherein the control unit determines a priority vehicle that can be preferentially passed within the bidirectional section based on the vehicle type information.
  15.  前記道路は、バス専用道路であり、
     前記制御部は、前記第1車両及び前記第2車両に急行バスが含まれる場合、前記急行バスを前記優先車両として決定する、請求項14に記載の基地局。
    The road is a bus-only road and
    The base station according to claim 14, wherein when the first vehicle and the second vehicle include an express bus, the control unit determines the express bus as the priority vehicle.
  16.  前記制御部は、前記車両種別情報に基づいて前記第1車両及び前記第2車両にバス又は緊急車両が含まれると判定した場合、前記バス又は前記緊急車両を前記優先車両として決定する、請求項14に記載の基地局。 The control unit determines that the bus or the emergency vehicle is the priority vehicle when it determines that the first vehicle and the second vehicle include a bus or an emergency vehicle based on the vehicle type information. 14. The base station according to 14.
  17.  前記道路は、バス専用道路であり、
     前記通信部は、前記第1車両及び前記第2車両のそれぞれから運行状況情報を受信し、
     前記制御部は、前記運行状況情報に基づいて、運行スケジュールに対して遅延を生じているバスが前記第1車両及び前記第2車両に含まれると判定した場合、該バスを前記優先車両として決定する、請求項14乃至16のいずれか1項に記載の基地局。
    The road is a bus-only road and
    The communication unit receives operation status information from each of the first vehicle and the second vehicle, and receives operation status information.
    When the control unit determines that a bus having a delay with respect to the operation schedule is included in the first vehicle and the second vehicle based on the operation status information, the control unit determines the bus as the priority vehicle. The base station according to any one of claims 14 to 16.
  18.  前記通信部は、前記第1車両及び前記第2車両のそれぞれから速度情報をさらに受信し、
     前記制御部は、
      前記両方向区間が間隔をおいて前記道路に複数設けられる場合、前記位置情報及び前記速度情報に基づいて、前記複数の両方向区間の中から前記第1車両及び前記第2車両がすれ違う前記両方向区間を選択し、
      前記選択した両方向区間に前記第1車両及び前記第2車両が同時期に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出する、請求項11乃至17のいずれか1項に記載の基地局。
    The communication unit further receives speed information from each of the first vehicle and the second vehicle, and receives speed information.
    The control unit
    When a plurality of the bidirectional sections are provided on the road at intervals, the bidirectional sections in which the first vehicle and the second vehicle pass each other from the plurality of bidirectional sections are selected based on the position information and the speed information. Selected,
    Claims 11 to 17, wherein the speed required for the first vehicle and the second vehicle to reach the selected bidirectional section at the same time is calculated for each of the first vehicle and the second vehicle. The base station according to any one item.
  19.  前記制御部は、前記位置情報及び前記速度情報と、前記優先車両の決定結果とに基づいて、前記複数の両方向区間の中から前記第1車両及び前記第2車両がすれ違う前記両方向区間を選択する、請求項14乃至17のいずれか1項を引用する請求項8に記載の基地局。 The control unit selects the bidirectional section in which the first vehicle and the second vehicle pass each other from the plurality of bidirectional sections based on the position information, the speed information, and the determination result of the priority vehicle. The base station according to claim 8, wherein any one of claims 14 to 17 is cited.
  20.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから位置情報を受信する基地局と、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出する制御部と、を備え、
     前記基地局は、前記第1車両について算出した前記速度を示す第1速度制御情報を前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記第2車両に送信する、交通通信システム。
    A base station that receives position information from each of a first vehicle passing through either the first direction or the second direction facing the first direction on the road and a second vehicle that is an oncoming vehicle of the first vehicle. ,
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    When the bidirectional section exists between the first vehicle and the second vehicle, it is necessary for the first vehicle and the second vehicle to reach the bidirectional section at the same time based on the position information. It is provided with a control unit for calculating the speed to be determined for each of the first vehicle and the second vehicle.
    The base station transmits the first speed control information indicating the speed calculated for the first vehicle to the first vehicle, and the second speed control information indicating the speed calculated for the second vehicle is transmitted to the first vehicle. 2 A traffic communication system that transmits to vehicles.
  21.  道路上で第1方向及び前記第1方向と対向する第2方向のいずれかを通行する第1車両及び前記第1車両の対向車両である第2車両のそれぞれから基地局が位置情報を受信することと、
     前記道路には、
     前記第1方向及び前記第2方向の両方が同時に通行可能な両方向区間と、
     前記両方が同時に通行はできず、前記第1方向及び前記第2方向のうち一方が通行可能な片方向区間と、があって、
     前記両方向区間が前記第1車両と前記第2車両との間に存在する場合、前記位置情報に基づいて、前記第1車両及び前記第2車両が同時期に前記両方向区間に到達するために必要とされる速度を前記第1車両及び前記第2車両のそれぞれについて算出することと、
     前記第1車両について算出した前記速度を示す第1速度制御情報を前記基地局が前記第1車両に送信するとともに、前記第2車両について算出した前記速度を示す第2速度制御情報を前記基地局が前記第2車両に送信することと、を含む交通通信方法。
    The base station receives position information from each of the first vehicle passing through either the first direction or the second direction facing the first direction on the road and the second vehicle which is the oncoming vehicle of the first vehicle. That and
    On the road
    A bidirectional section in which both the first direction and the second direction can pass at the same time,
    There is a one-way section in which both of the above cannot pass at the same time and one of the first direction and the second direction can pass.
    When the bidirectional section exists between the first vehicle and the second vehicle, it is necessary for the first vehicle and the second vehicle to reach the bidirectional section at the same time based on the position information. To calculate the speed to be determined for each of the first vehicle and the second vehicle,
    The base station transmits the first speed control information indicating the speed calculated for the first vehicle to the first vehicle, and the second speed control information indicating the speed calculated for the second vehicle is transmitted to the base station. A traffic communication method including the transmission to the second vehicle.
  22.  道路にある停留所に停止しうる車両との無線通信を行う第1通信部と、
     前記停留所に設けられた検出装置から、前記車両に乗車予定の乗客に関する乗車予定情報を受信する第2通信部と、
     前記停留所の周辺に設けられた交通安全装置を制御する制御部と、を備え、
     前記制御部は、前記停留所への前記車両の接近を検知した後、前記乗車予定情報に基づいて、前記車両を進行又は停止させるよう前記交通安全装置を制御する、基地局。
    The first communication unit that performs wireless communication with vehicles that can stop at a stop on the road,
    A second communication unit that receives boarding schedule information regarding passengers scheduled to board the vehicle from a detection device provided at the bus stop.
    A control unit for controlling a traffic safety device provided around the bus stop is provided.
    The control unit is a base station that controls the traffic safety device so as to advance or stop the vehicle based on the boarding schedule information after detecting the approach of the vehicle to the stop.
  23.  前記第1通信部は、前記停留所で降車予定の乗客に関する降車予定情報を前記車両から受信し、
     前記制御部は、前記乗車予定情報及び前記降車予定情報に基づいて、前記車両を進行又は停止させるよう前記交通安全装置を制御する、請求項22に記載の基地局。
    The first communication unit receives the disembarkation schedule information regarding the passengers scheduled to disembark at the stop from the vehicle, and receives the disembarkation schedule information.
    The base station according to claim 22, wherein the control unit controls the traffic safety device so as to advance or stop the vehicle based on the boarding schedule information and the disembarkation schedule information.
  24.  前記制御部は、前記乗車予定情報及び前記降車予定情報に基づいて、前記乗車予定の乗客及び前記降車予定の乗客のいずれも存在しないと判定したことに応じて、前記車両の進行を許可するように前記交通安全装置を制御する、請求項23に記載の基地局。 Based on the boarding schedule information and the disembarkation schedule information, the control unit permits the vehicle to proceed in response to the determination that neither the passenger scheduled to board the passenger nor the passenger scheduled to disembark exists. 23. The base station according to claim 23, which controls the traffic safety device.
  25.  前記制御部は、前記車両の運行スケジュールを示すスケジュール情報に基づいて、前記車両が前記運行スケジュールに対して遅延を生じているか否かを判定し、
     前記制御部は、前記乗車予定の乗客及び前記降車予定の乗客及びのいずれも存在しないと判定した場合、
      前記遅延を生じていると判定したとき、前記車両の進行を許可するように前記交通安全装置を制御し、
      前記遅延を生じていないと判定したとき、前記車両を停止させるように前記交通安全装置を制御する、請求項24に記載の基地局。
    The control unit determines whether or not the vehicle is delayed with respect to the operation schedule based on the schedule information indicating the operation schedule of the vehicle.
    When the control unit determines that neither the passenger scheduled to board nor the passenger scheduled to disembark exists.
    When it is determined that the delay has occurred, the traffic safety device is controlled so as to allow the vehicle to proceed.
    24. The base station according to claim 24, which controls the traffic safety device so as to stop the vehicle when it is determined that the delay has not occurred.
  26.  前記制御部は、前記乗車予定情報及び前記降車予定情報に基づいて、前記乗車予定の乗客及び前記降車予定の乗客の少なくともいずれか一方が存在すると判定したことに応じて、前記車両を停止させるように前記交通安全装置を制御する、請求項23乃至25のいずれか1項に記載の基地局。 The control unit stops the vehicle in response to determining that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. The base station according to any one of claims 23 to 25, which controls the traffic safety device.
  27.  道路にある停留所に停止しうる車両に設けられる移動局であって、
     前記停留所における前記車両に乗車予定の乗客に関する乗車予定情報を基地局から無線通信により受信する受信部と、
     前記停留所への前記車両の接近を検知した後、前記乗車予定情報に基づいて、前記車両を前記停留所で停止させるか否かを決定する制御部と、を備える移動局。
    A mobile station installed on a vehicle that can stop at a bus stop on the road.
    A receiving unit that receives boarding schedule information about passengers scheduled to board the vehicle at the bus stop by wireless communication from the base station.
    A mobile station including a control unit that determines whether or not to stop the vehicle at the bus stop based on the boarding schedule information after detecting the approach of the vehicle to the bus stop.
  28.  前記制御部は、
      前記停留所で降車予定の乗客に関する降車予定情報を取得し、
      前記乗車予定情報と前記降車予定情報とに基づいて、前記車両を前記停留所で停止させるか否かを決定する、請求項27に記載の移動局。
    The control unit
    Obtain the disembarkation schedule information regarding the passengers who are scheduled to disembark at the stop,
    The mobile station according to claim 27, which determines whether or not to stop the vehicle at the stop based on the boarding schedule information and the disembarkation schedule information.
  29.  前記制御部は、前記乗車予定情報及び前記降車予定情報に基づいて、前記乗車予定の乗客及び前記降車予定の乗客のいずれも存在しないと判定したことに応じて、前記車両を前記停留所で停止させないと決定する、請求項28に記載の移動局。 The control unit does not stop the vehicle at the stop in response to the determination that neither the passenger scheduled to board nor the passenger scheduled to disembark exists based on the boarding schedule information and the disembarkation schedule information. 28. The mobile station according to claim 28.
  30.  前記制御部は、前記車両の運行スケジュールを示すスケジュール情報に基づいて、前記車両が前記運行スケジュールに対して遅延を生じているか否かを判定し、
     前記制御部は、前記乗車予定の乗客及び前記降車予定の乗客及びのいずれも存在しないと判定した場合、
      前記遅延を生じていると判定したとき、前記車両を前記停留所で停止させないと決定し、
      前記遅延を生じていないと判定したとき、前記車両を前記停留所で停止させると決定する、請求項29に記載の移動局。
    The control unit determines whether or not the vehicle is delayed with respect to the operation schedule based on the schedule information indicating the operation schedule of the vehicle.
    When the control unit determines that neither the passenger scheduled to board nor the passenger scheduled to disembark exists.
    When it is determined that the delay has occurred, it is determined that the vehicle will not be stopped at the stop.
    29. The mobile station of claim 29, which determines that the vehicle is to be stopped at the stop when it is determined that the delay has not occurred.
  31.  前記制御部は、前記乗車予定情報及び前記降車予定情報に基づいて、前記乗車予定の乗客及び前記降車予定の乗客の少なくともいずれか一方が存在すると判定したことに応じて、前記車両を前記停留所で停止させると決定する、請求項28乃至30のいずれか1項に記載の移動局。 Based on the boarding schedule information and the disembarkation schedule information, the control unit determines that at least one of the passengers scheduled to board and the passengers scheduled to disembark exists, and the vehicle is moved to the stop. The mobile station according to any one of claims 28 to 30, which is determined to be stopped.
  32.  前記制御部は、前記車両を前記停留所で停止させると決定した場合、前記車両が前記停留所で停止した後に発進する発進タイミングを予測し、
     前記移動局は、
     前記予測した発進タイミングまでの残り時間を示す情報を他の車両に無線通信により送信する送信部をさらに備える、請求項28乃至30のいずれか1項に記載の移動局。
    When the control unit determines that the vehicle is to be stopped at the bus stop, the control unit predicts the start timing at which the vehicle starts after the vehicle has stopped at the bus stop.
    The mobile station
    The mobile station according to any one of claims 28 to 30, further comprising a transmission unit that wirelessly transmits information indicating the remaining time until the predicted start timing to another vehicle.
  33.  前記制御部は、前記スケジュール情報、前記乗車予定情報、及び前記降車予定情報のうち少なくとも1つに基づいて前記発進タイミングを予測する、請求項30を引用する請求項32に記載の移動局。 The mobile station according to claim 32, wherein the control unit predicts the start timing based on at least one of the schedule information, the boarding schedule information, and the disembarkation schedule information.
  34.  請求項22乃至26のいずれか1項に記載の基地局を備える、交通通信システム。 A transportation communication system including the base station according to any one of claims 22 to 26.
  35.  請求項27乃至33のいずれか1項に記載の移動局を備える、交通通信システム。 A transportation communication system including the mobile station according to any one of claims 27 to 33.
PCT/JP2020/024715 2019-06-26 2020-06-24 Base station, mobile station, traffic communication system, and traffic communication method WO2020262425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527669A JP7377865B2 (en) 2019-06-26 2020-06-24 Base station, mobile station, traffic communication system, and traffic communication method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019119154 2019-06-26
JP2019-119154 2019-06-26
JP2019119152 2019-06-26
JP2019-119152 2019-06-26
JP2019119155 2019-06-26
JP2019-119155 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262425A1 true WO2020262425A1 (en) 2020-12-30

Family

ID=74060391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024715 WO2020262425A1 (en) 2019-06-26 2020-06-24 Base station, mobile station, traffic communication system, and traffic communication method

Country Status (2)

Country Link
JP (1) JP7377865B2 (en)
WO (1) WO2020262425A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569899A (en) * 1978-11-17 1980-05-26 Mitsubishi Electric Corp Bus running control unit
JP2000233751A (en) * 1999-02-17 2000-08-29 Toyota Motor Corp Vehicle operation-supporting method
JP2002109689A (en) * 2000-09-29 2002-04-12 Nippon Signal Co Ltd:The Support system for boarding bus
JP2003256990A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Routine run vehicle riding system
JP2015184790A (en) * 2014-03-20 2015-10-22 東日本旅客鉄道株式会社 Vehicle transit management system
JP2017016255A (en) * 2015-06-29 2017-01-19 鹿島建設株式会社 Travel support system
JP2019070900A (en) * 2017-10-06 2019-05-09 本田技研工業株式会社 Vehicle controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715771B2 (en) 2007-02-28 2011-07-06 株式会社デンソー Driving support system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569899A (en) * 1978-11-17 1980-05-26 Mitsubishi Electric Corp Bus running control unit
JP2000233751A (en) * 1999-02-17 2000-08-29 Toyota Motor Corp Vehicle operation-supporting method
JP2002109689A (en) * 2000-09-29 2002-04-12 Nippon Signal Co Ltd:The Support system for boarding bus
JP2003256990A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Routine run vehicle riding system
JP2015184790A (en) * 2014-03-20 2015-10-22 東日本旅客鉄道株式会社 Vehicle transit management system
JP2017016255A (en) * 2015-06-29 2017-01-19 鹿島建設株式会社 Travel support system
JP2019070900A (en) * 2017-10-06 2019-05-09 本田技研工業株式会社 Vehicle controller

Also Published As

Publication number Publication date
JP7377865B2 (en) 2023-11-10
JPWO2020262425A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US8902080B2 (en) Vehicle-mounted narrow-band wireless communication apparatus and roadside-to-vehicle narrow-band wireless communication system
JP3653954B2 (en) Mobile device for mobile traffic control system, control station for mobile traffic control system, mobile traffic control system
US20200184827A1 (en) Electronic control device and vehicle comprising the same
US11146918B2 (en) Systems and methods for network node communication using dynamically configurable interaction modes
JP2021111340A (en) Movement information providing system, server device, and vehicle
US11302186B2 (en) Methods and apparatuses for controlling traffic lights
KR101774313B1 (en) Unmanned aerial system guiding optimal path in a scramble
JP7094383B2 (en) Transportation communication systems, roadside machines, and methods
JP2010123026A (en) Information provision device and information provision method
WO2013171784A1 (en) Driver assistance apparatus
CN111771224A (en) Emergency traffic control system using mobile device
JP2010134865A (en) Driving support device
JP2013050803A (en) Mobile communication device and method of supporting rear-end collision prevention
WO2020262425A1 (en) Base station, mobile station, traffic communication system, and traffic communication method
KR20210127859A (en) System and method for driving guide
US20210362756A1 (en) Traffic communication system, base station, vehicle, mobile station, and message transmission method
JP7333227B2 (en) Traffic communication system, base station, and traffic management method
KR20040022306A (en) Transport management system and method based on radio frequency communication between traffic load control devices and vehicles
WO2021020306A1 (en) Traffic communication system, base station, mobile station, and vehicle
JP7317089B2 (en) passenger transport system
JP7316138B2 (en) Traffic communication systems, base stations, mobile stations, and vehicles
US20180215377A1 (en) Bicycle and motorcycle protection behaviors
WO2020166664A1 (en) Transit assistance device, base station, vehicle, and transit assistance method
WO2023228687A1 (en) Traffic communication system, terminal device, and program
WO2020066814A1 (en) Base station, traffic communication system, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832879

Country of ref document: EP

Kind code of ref document: A1