WO2020262353A1 - Anomaly detection device and anomaly detection method - Google Patents

Anomaly detection device and anomaly detection method Download PDF

Info

Publication number
WO2020262353A1
WO2020262353A1 PCT/JP2020/024547 JP2020024547W WO2020262353A1 WO 2020262353 A1 WO2020262353 A1 WO 2020262353A1 JP 2020024547 W JP2020024547 W JP 2020024547W WO 2020262353 A1 WO2020262353 A1 WO 2020262353A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
measure
vector
anomaly
feature vector
Prior art date
Application number
PCT/JP2020/024547
Other languages
French (fr)
Japanese (ja)
Inventor
渋谷 久恵
統治郎 野田
昇三 宮部
拓貴 柏
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Priority to CN202080044178.XA priority Critical patent/CN113994340A/en
Publication of WO2020262353A1 publication Critical patent/WO2020262353A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • G06F18/2113Selection of the most significant subset of features by ranking or filtering the set of features, e.g. using a measure of variance or of feature cross-correlation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Definitions

  • the present invention relates to an abnormality detection device and an abnormality detection method for early detection of an abnormality based on a plurality of time-series sensor signals output by a plant, equipment, or the like.
  • Electric power companies use waste heat from gas turbines to supply hot water for district heating, and supply high-pressure steam and low-pressure steam to factories.
  • Petrochemical companies operate gas turbines and other equipment as power supply equipment. In various plants and equipment using gas turbines and the like, abnormality detection for detecting equipment malfunctions or signs thereof is extremely important for minimizing damage to society.
  • the target equipment or plant is equipped with multiple sensors that acquire various physical information, and it is judged whether the target equipment or plant is normal or abnormal according to the monitoring standard for each sensor.
  • Patent Document 1 is a conventional technique in this technical field.
  • a feature vector is extracted from a sensor signal, the extracted feature vector is clustered, data belonging to the center of each cluster and the cluster are accumulated as learning data, and newly observed from these.
  • One or several clusters are selected according to the feature vector, a predetermined number of training data is selected from the data belonging to the selected cluster according to the newly observed feature vector, and the selected training data is selected.
  • a normal model is created using the above, an abnormality measurement is calculated based on a newly observed feature vector and a normal model, and an abnormality detection method for determining whether an abnormality is normal or normal based on the calculated abnormality measurement is disclosed.
  • the anomaly measure is an amount of deviation from the vector value in the normal state by expressing the value measured by a plurality of sensors as one vector value.
  • the anomaly detection method described in Patent Document 1 is predetermined from the data belonging to one or several neighboring clusters of the newly observed feature vector when calculating the anomaly measure from the newly observed feature vector. Since a number of neighborhood data is searched, it can be processed at a higher speed than searching a predetermined number of neighborhood data from all the training data. However, a process for searching nearby data is required, and this calculation time is still long. In addition, since clustering is performed during learning, the time required for learning is long.
  • An object of the present invention is an anomaly detection device and anomaly detection capable of high-speed processing of both anomaly measurement calculation and clustering while maintaining anomaly detection sensitivity in anomaly detection based on a plurality of time-series sensor signals in order to solve the above problems. To provide a method.
  • an abnormality detection device which is a sensor signal for inputting a plurality of time-series sensor signals output from a plurality of sensors mounted on equipment.
  • An input unit a feature vector extraction unit that extracts feature vectors from sensor signals at each time, and a clustering unit that clusters feature vectors for a specified learning period and adjusts the feature vectors belonging to each cluster to a certain number.
  • a reference vector is created using the cluster selection unit that selects one from the clusters according to the feature vector extracted in, and all the feature vectors belonging to the selected cluster, and is based on the created reference vector and the newly extracted feature vector. It is provided with an abnormality measurement calculation unit that calculates an abnormality measurement, and an abnormality detection unit that determines whether the sensor signal at each time is normal or abnormal by comparing the abnormality measurement with a threshold value.
  • an abnormality detection device and an abnormality detection method capable of high-speed processing it is possible to provide an abnormality detection device and an abnormality detection method capable of high-speed processing.
  • FIG. 1 is a functional configuration block diagram of the abnormality detection device in this embodiment.
  • the abnormality detection device 100 acquires the sensor signal 102 output from the sensor mounted on the equipment 101 to be detected (periodically) at predetermined time intervals.
  • the acquired sensor signal 102 is temporarily stored in the sensor signal storage unit 103.
  • the sensor signal input unit 104 inputs the sensor signal 102 directly from the sensor signal storage unit 103 or from the sensor mounted on the equipment 101, and sends the sensor signal 102 to the feature vector extraction unit 105.
  • the feature vector extraction unit 105 extracts a feature vector at predetermined time intervals (hereinafter, may be expressed as each time) based on the sensor signal 102, and sends the feature vector to the clustering unit 106 and the cluster selection unit 108.
  • the clustering unit 106 performs clustering using the feature vectors of the learning period specified in advance, and stores the center of the cluster and the feature vectors belonging to the cluster as learning data in the learning result storage unit 107.
  • the cluster selection unit 108 selects a cluster according to the feature vector for each feature vector from the clusters accumulated as training data, and the anomaly measure calculation unit 109 selects all the features belonging to the selected cluster for each feature vector. Calculate the anomaly measure using a vector.
  • the threshold value calculation unit 110 calculates the threshold value based on the abnormality measure of the learning data by the abnormality measure calculation unit 109.
  • the threshold value calculated by the threshold value calculation unit 110 is stored in the learning result storage unit 107 as a learning result.
  • the anomaly detection unit 111 detects and detects an abnormality in the equipment 101 by comparing the anomaly measure of each feature vector sent from the anomaly measure calculation unit 109 with the threshold value calculated by the threshold value calculation unit 110.
  • the result 112 is output to the outside.
  • FIG. 2 is a block configuration diagram of a hardware image of the abnormality detection device in this embodiment.
  • the abnormality detection device 100 is realized by a device having a processing device (CPU), a storage device (memory), and an input / output interface (I / F), which are general information processing devices. That is, the processing of the sensor signal input unit 104, the feature vector extraction unit 105, the clustering unit 106, the cluster selection unit 108, the abnormality measurement calculation unit 109, the threshold value calculation unit 110, and the abnormality detection unit 111 of the abnormality detection device 100 in FIG. Is executed by the CPU 10 software processing those processing programs stored in the memory 20 in FIG. Further, the sensor signal storage unit 103 and the learning result storage unit 107 in FIG.
  • CPU processing device
  • I / F input / output interface
  • the sensor signal 102 is acquired by the input I / F30. Further, the abnormality detection signal from the abnormality detection unit 111 in FIG. 1 is output to an external display device or the like via the output I / F40.
  • each configuration of FIG. 1 may be realized by hardware, for example, by designing a part or all of them with an integrated circuit.
  • information such as programs, data, and files that realize each function can be stored not only in a memory but also in a recording device such as a hard disk or a recording medium such as an IC card.
  • a wireless network or the like it is also possible to download and install it via a wireless network or the like as needed.
  • the processing performed by the CPU 10 may be performed on the cloud via a wireless network or the like.
  • the feature vector is a representation of the values measured by a plurality of sensors as one vector value.
  • the anomalous measure is the amount of offset of the feature vector of interest from the feature vector over a specified time period.
  • the equipment 101 targeted for abnormality detection is, for example, equipment or a plant such as a gas turbine or a steam turbine.
  • FIG. 3 is an example in which a plurality of sensor signals 102 are listed and represented in a table format.
  • the sensor signal 102 is a multidimensional time-series signal in which a plurality of physical information having different physical characteristics is acquired at predetermined intervals.
  • the structure of the table shown in FIG. 3 shows the information of the date and time 201 and the sensor signal values 202 of the plurality of sensors in correspondence with each other.
  • Sensors can range from hundreds to thousands, depending on their type, for example, temperature of cylinders, oil, cooling water, pressure of oil or cooling water, shaft speed, room temperature, operating time, etc. Is output as a sensor value.
  • the sensor value not only represents the output or state of equipment or plant, but may also be a control signal for controlling the state of something to a certain value (for example, a target value).
  • FIG. 4 is an overall outline processing flow diagram performed by the abnormality detection device 100 in this embodiment.
  • the operation of the abnormality detection device 100 includes a “learning” process in which learning data is generated and saved using the data stored in the sensor signal storage unit 103, and “abnormality detection” in which an abnormality is detected based on an input signal.
  • “learning” is an offline process
  • “anomaly detection” is an online process.
  • FIG. 4A shows an abnormality measure calculation process during learning, in which a sensor signal during the learning period is input (S301), feature vector extraction (S302), clustering (S303), cluster selection (S304), and abnormality measure calculation. (S305) and the calculation of the threshold value (S306) are performed.
  • FIG. 4B shows an abnormality determination process at the time of abnormality detection, in which a sensor signal to be detected is input (S311), feature vector extraction (S312), cluster selection (S313), and abnormality measure calculation (S314) are performed. .. Then, the normality / abnormality of the equipment is determined by comparing the calculated abnormality measure with the threshold value obtained in S306 (S315).
  • S301 sensor signal during the learning period
  • S302 feature vector extraction
  • S303 clustering
  • S304 cluster selection
  • S305 the calculation of the threshold value
  • S306 the threshold value obtained in S306
  • FIGS. 5 and 6A will be described below, but the detailed flow of FIG. 4 (a) is shown in FIGS. 5, 6, 7, 8, 10, 10A, and 10B. The detailed flow of (b) will be described with reference to FIGS. 11A and 11B.
  • step S302 the feature vector extraction unit 105 normalizes the input sensor signal and extracts the feature vector. Normalization of sensor signals is performed in order to handle a plurality of sensor signals having different units and scales in the same manner. Specifically, each sensor signal is converted so that the average is 0 and the variance is 1 by using the average and standard deviation of the learning period of each sensor signal. The average and standard deviation of each sensor signal are stored in the learning result storage unit 107 so that the same conversion can be performed when an abnormality is detected. Alternatively, each sensor signal is converted so that the maximum is 1 and the minimum is 0 by using the maximum and minimum values of the learning period of each sensor signal.
  • preset upper and lower limit values may be used instead of the maximum and minimum values.
  • the maximum value and the minimum value or the upper limit value and the lower limit value of each sensor signal are stored in the learning result storage unit 107 so that the same conversion can be performed when an abnormality is detected.
  • the canonicalized sensor signal is arranged as it is as an element to form a vector.
  • a window of ⁇ 1, ⁇ 2, ... For a certain time is provided, and the time change of the sensor signal is represented by setting the window width (3, 5, ...) ⁇ the feature vector of the number of sensors.
  • DWT discrete wavelet Transform
  • the discrete wavelet transform may be performed to decompose into frequency components.
  • FIG. 5 is a flow chart of the clustering process (S303) at the time of learning in this embodiment.
  • the feature vector of the learning period extracted by the feature vector extraction unit 105 is input (S401).
  • the clustering unit 106 the learning period is divided into a plurality of sections (S402). It is desirable that one section has a constant length, and for example, one day is set as one section.
  • batch processing such as a chemical plant, it may be for each batch, in the case of a processing device, it may be for each individual to be processed, and in the case of a medical device such as MRI, it may be for each inspection target.
  • cluster center initial placement is performed (S403), and k-means clustering is performed (S404).
  • the members of each cluster are adjusted (S405).
  • the member of the cluster is a feature vector belonging to the cluster.
  • the similarity between the feature vectors of different sections is regarded as 0.
  • feature vectors of different sections are prevented from being mixed in one cluster.
  • the learning result storage unit 107 the section ID, the center, and the cluster members of each cluster are recorded (S406).
  • the cluster center initial arrangement (S403), k-means clustering (S404), and cluster member adjustment (S405) will be described in detail.
  • FIG. 6 is a flow chart of the initial setting process of the cluster center position in this embodiment.
  • the maximum number of clusters and the censoring reference value of the initial arrangement that is, the reference similarity
  • S501 the maximum number of clusters and the censoring reference value of the initial arrangement, that is, the reference similarity
  • the first feature vector of the specified learning period is set as the first cluster center (S502).
  • the processes of steps S504 to S507 are repeated up to the maximum number of clusters (S503).
  • the degree of similarity between the set cluster center and all the feature vectors of the learning period is calculated (S504).
  • the degree of similarity is calculated as 1 / (1 + distance). However, if the intervals are different, the similarity is set to 0.
  • the maximum value of similarity with the cluster center is obtained for all feature vectors (S505). If the minimum value of this value is smaller than the censoring reference value (S506), the feature vector that minimizes the maximum value of similarity with the cluster center is set as the next cluster center (S507). That is, the feature vector farthest to the nearest cluster center is the cluster center. When the number of clusters reaches the maximum number, the loop is exited and the process ends (S508). If the minimum value of the maximum value of the similarity is equal to or greater than the censoring reference value in step S506, the processing is censored, that is, the loop is exited and the processing is terminated (S508). By this censoring, the number of clusters can be suppressed to the minimum necessary, so that not only the calculation time of the cluster center initial placement process can be shortened, but also the calculation time of the entire clustering process and the anomaly measure calculation process can be shortened.
  • the initial position of the cluster center is generally arranged randomly, and may be arranged randomly in this embodiment as well.
  • the data in the transient state is less than the data in the steady state, so it is difficult to select the initial center position if randomly selected. Then, the influence of the transient data on the cluster center calculation becomes relatively small.
  • the method of the cluster center initial placement process described above aims at initial placement of the cluster centers far from each other, whereby the number of transient clusters can be increased.
  • FIG. 7 is a flow chart of the clustering process by the k-means method in this embodiment.
  • the maximum number of repetitions and the censoring reference value are input (S601).
  • the processes of steps S603 to S605 are repeated up to the maximum number of repetitions (S602).
  • cluster members are distributed to all feature vectors in the designated learning period (S603). Specifically, each feature vector is a member of the cluster with the shortest distance to the center. For each cluster, the average of the feature vectors of all cluster members is taken as the new cluster center vector (S604).
  • the process returns to the first processing of the loop (S603). If not, the loop is exited and the process ends (S606). When the maximum number of repetitions is reached, the loop is exited and the process is terminated (S606).
  • FIG. 8 is a flow chart of the cluster member adjustment process in this embodiment.
  • the specified value of the number of cluster members is input (S701).
  • the processes of steps S703 to S706 are repeated for each cluster (S702).
  • the members are added to the cluster so that the number becomes the specified number (S704).
  • the members to be added are determined in order of proximity to the cluster center among the feature vectors other than the members.
  • step S704 is skipped.
  • step S705 the number of cluster members is greater than the specified value
  • S706 the number is thinned out to the specified number (S706).
  • Members to be thinned out may be randomly determined.
  • the large number of cluster members means that the vector density is high in the feature space, and it does not make much difference if any member is deleted.
  • the learning processes (S304 to S306) of FIG. 4A in the cluster selection unit 108, the abnormality measure calculation unit 109, and the threshold value calculation unit 110 will be described.
  • FIG. 9A is a diagram illustrating an abnormality measure calculation process by the neighborhood data preset method.
  • the projection distance when the attention vector q is projected onto the k-1 dimensional affine subspace spanned by k vectors that are members of the nearest cluster of the attention vector q is measured.
  • the affine subspace, that is, the plane is formed by the three vectors x1 to x3, the point Xb on the affine subspace closest to the attention vector q becomes the projection point (reference vector), and the distance from the attention vector q to the reference vector Xb is It is an anomalous measure.
  • k may be any number as long as it is sufficiently smaller than the number of dimensions of the feature vector.
  • FIG. 9B is a diagram illustrating an anomaly measure calculation process by the neighborhood data search method.
  • a k-1 dimensional affine subspace in which k neighborhood vectors with respect to the attention vector q are searched and selected for members of one or several neighborhood clusters of the attention vector q, and the selected k neighborhood vectors are stretched. Measure the projection distance when the attention vector q is projected to.
  • Let xi (i 1, ..., K) be the k selected neighborhood vectors, calculate the vector b using equations (1) and (2), and use the norm of the vector (q-Xb) or The anomaly measure is calculated from the square.
  • FIG. 10A is a flow chart of the abnormality measure calculation process at the time of learning when the neighborhood data preset method is selected.
  • the feature vector of the learning period is input (S901), and the learning period is divided into a plurality of sections (S902). This section shall be divided so as to be the same as step S402.
  • the following processing is repeated for all the extracted feature vectors (S903).
  • the distance from the attention vector to the reference vector one time ago is calculated (S904).
  • the cluster selection unit 108 selects the nearest neighbor cluster closest to the attention vector among the clusters in the section different from the attention vector. (S906).
  • the anomaly measure calculation unit 109 calculates a reference vector by the method shown in FIG. 9A using all the members of the nearest neighbor cluster (S907), and calculates the distance to the reference vector to obtain an anomaly measure (S908). .. If the condition of step S905 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the maximum value of the calculated abnormality measure of the processing target section, the processing from steps S906 to S908 is skipped.
  • the maximum value of the anomaly measure is a candidate for the anomaly determination threshold, and the distance calculated in step S908 is not larger than the distance calculated in step S904. Therefore, the calculation is discontinued because the maximum value is not changed. There is.
  • the threshold value calculation unit 110 calculates the threshold value (S909). Specifically, the maximum value of the anomaly measure is set as the threshold value.
  • step S905 since the entire loop of step S903 was intended to be processed in parallel for each section, it was compared with the maximum value of the section to be processed. However, it is not always necessary to perform parallel processing, and if parallel processing is not performed, the entire loop is processed. Compare with the calculated maximum value of the anomaly measure.
  • FIG. 10B is a flow chart of the abnormality measure calculation process at the time of learning when the neighborhood data search method is selected.
  • the feature vector of the learning period is input (S911), and the learning period is divided into a plurality of sections in the same manner as in step S402 (S912).
  • the following processing is repeated for all the extracted feature vectors (S913).
  • the distance from the attention vector to the reference vector one time ago is calculated (S914).
  • the cluster selection unit 108 selects a specified number of neighboring clusters from the one closest to the attention vector (S916).
  • the anomaly measure calculation unit 109 extracts a neighborhood search target from the members of the selected cluster, excluding the vector in the same section as the attention vector (S917).
  • a specified number of neighborhood data is searched from the extracted neighborhood search target (S918), a reference vector is calculated using the searched neighborhood data (S919), and the distance to the reference vector is calculated. Calculate and use as an abnormality measure (S920). If the condition of step S915 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the maximum value of the calculated abnormality measure of the processing target section, the processing from steps S916 to S920 is skipped.
  • the threshold value calculation unit 110 calculates the threshold value (S921). This threshold value is compared with the abnormality measure input to the abnormality detection unit 113, and is used to determine the normality / abnormality of the equipment. The threshold value calculation unit 110 calculates a threshold value that does not determine normal learning data as abnormal. In other words, the maximum value of the anomalous measure obtained from normal learning data is calculated as the threshold value.
  • the learning result is saved in the learning result storage unit 107.
  • the data saved as the training result includes at least the parameters for feature vector extraction, the parameters for calculating the anomaly measure, the parameters for sensor normalization, the number of clusters, and the center position and member vectors of each cluster. There are ID and interval ID, all feature vector data that are members of any cluster, and anomaly determination threshold.
  • the parameters for extracting the feature vector and the parameters for calculating the anomaly measure are the same as those specified at the time of learning.
  • the parameters for sensor normalization are the average, standard deviation, maximum value, minimum value, and the like of each sensor signal calculated by the feature vector extraction unit 105 in the process of step S302.
  • the anomaly measure calculation process described with reference to FIGS. 9A and 9B is a modification of the local subspace method, but the projection distance method or the Gaussian process may be used.
  • the projection distance method is a method of creating a subspace with a unique origin for the selected feature vector, that is, an affine subspace (space with the maximum variance).
  • a plurality of feature vectors corresponding to the attention vector are selected by some method, and the affine subspace is calculated by the following method.
  • the mean ⁇ of the selected feature vectors and the covariance matrix ⁇ are obtained, then the eigenvalue problem of ⁇ is solved, and a matrix U in which the eigenvectors corresponding to r predetermined eigenvalues are arranged from the largest value is obtained.
  • r is a number smaller than the dimension of the feature vector and smaller than the number of selected data. Alternatively, r may not be a fixed number, but may be a value when the cumulative contribution rate from the larger eigenvalue exceeds a predetermined ratio.
  • the point on the affine subspace closest to the attention vector is the reference vector.
  • the vector obtained by subtracting the reference vector from the vector of interest is the residual vector, and the norm of the residual vector or the square of the norm is the anomalous measure.
  • the processing flow described with reference to FIG. 10A can be used.
  • the anomaly measure can be calculated.
  • the difference from the local subspace method is that the affine subspace having a dimension smaller than k-1 is calculated from k feature vectors.
  • step S311 the sensor signal input unit 104 inputs the sensor signal 102 directly from the sensor signal storage unit 103 or from the sensor mounted on the equipment 101.
  • step S312 the feature vector extraction unit 105 normalizes the input sensor signal and extracts the feature vector in the same manner as in step S302.
  • the normalization of the sensor signals is performed using the average and standard deviation of each sensor signal or the maximum and minimum values calculated in step S302 and stored in the learning result storage unit 107.
  • FIG. 11A is a flow chart of abnormality determination processing at the time of abnormality detection when the neighborhood data preset method is selected.
  • the selection method is the same as during learning.
  • the following processing is repeated for all the feature vectors extracted in step S312 (S1001).
  • the distance from the attention vector to the reference vector one time ago is calculated (S1002).
  • the calculated distance is larger than the abnormality determination threshold value calculated in step S306 and stored in the learning result storage unit 107 (S1003), it is stored in the learning result storage unit 107 in the cluster selection unit 108.
  • the nearest neighbor cluster closest to the vector of interest is selected from the clusters (S1004).
  • the anomaly measure calculation unit 109 determines all the members of the nearest neighbor cluster.
  • the reference vector is calculated by the method shown in FIG. 9A (S1006), and the distance to the reference vector is calculated and used as an abnormality measure (S1007).
  • the abnormality detection unit 111 compares the abnormality measure with the abnormality determination threshold value to determine whether it is normal or abnormal (S1008). Specifically, if the anomaly measure is below the threshold value, the equipment is determined to be "normal”, and if the anomaly measure is greater than the threshold value, it is determined to be "abnormal".
  • step S1003 If the condition of step S1003 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1009), and the processing of the attention vector is terminated. Further, when the condition of step S1005 is not satisfied, that is, when the distance to the nearest neighbor cluster is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1009), and the processing of the attention vector is terminated. From the idea that the distance calculated in step S1007 does not become larger than the distance calculated in step S1002 or step S1005, if either of them is equal to or less than the threshold value, it is judged as normal and the calculation is terminated. Can be shortened.
  • the calculation time when the calculation is not terminated can be shortened. That is, when calculating the anomaly measure from the newly observed feature vector, one cluster is selected according to the newly observed feature vector, and a reference vector is created from all the feature vectors belonging to the selected cluster. Therefore, it is not necessary to search for nearby data, and the calculation time for calculating the anomaly measure can be shortened.
  • FIG. 11B is a flow chart of abnormality determination processing at the time of abnormality detection when the neighborhood data search method is selected.
  • the following processing is repeated for all the feature vectors extracted in step S312 (S1011).
  • the distance from the attention vector to the reference vector one time ago is calculated (S1012).
  • the learning result storage unit 107 is stored in the cluster selection unit 108.
  • a specified number of neighboring clusters are selected from the clusters closest to the attention vector (S1014).
  • the anomaly measure calculation unit 109 extracts all the members of the selected cluster as neighbor search targets (S1016). ). As shown in FIG. 9B, a specified number of neighborhood data is searched from the extracted neighborhood search target (S1017), a reference vector is calculated using the searched neighborhood data (S1018), and the distance to the reference vector is calculated. Calculate and use as an abnormality measure (S1019).
  • the abnormality detection unit 111 compares the abnormality measure with the abnormality determination threshold value and determines whether it is normal or abnormal (S1020).
  • step S1013 If the condition of step S1013 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1021), and the processing of the attention vector is terminated. Further, when the condition of step S1015 is not satisfied, that is, when the distance to the nearest neighbor cluster is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1021), and the processing of the attention vector is terminated. Similar to the process of FIG. 11A, the calculation time can be shortened by discontinuing the calculation process.
  • GUI user interface
  • FIGS. 12A and 12B are examples of GUIs for setting the learning period for performing offline analysis and analysis conditions including processing parameters. On this screen, it is also possible to register the calculated learning result as a recipe. Further, it is assumed that the past sensor signal 102 is stored in the database in association with the equipment ID and the time.
  • FIG. 12A is an example when the neighborhood data preset method is selected as the abnormality measure calculation method
  • FIG. 12B is an example when the neighborhood data search method is selected.
  • the target equipment, learning period, test period, clustering parameter, and abnormality measure calculation parameter are input.
  • the equipment ID input window 1102 the ID of the target equipment is input.
  • the equipment list display button 1103 By pressing the equipment list display button 1103, a list of device IDs of data stored in the sensor signal storage unit 103 is displayed, and a list is selected and input from the list. If there is only one equipment 101 connected to the abnormality detection device 100, the equipment ID input window 1102 is not displayed.
  • the learning period input window 1104 enter the start date and end date of the period for which learning data is to be extracted.
  • the test period input window 1105 enter the start date and end date of the period to be analyzed.
  • the sensor to be used is input to the sensor selection input window 1106.
  • a sensor list (not shown) is displayed by clicking the list display button 1107, so select and input from the list.
  • the clustering parameter setting input window 1108 the number of clusters (1108a) and the number of cluster members (1108b) specified in the processing in the clustering unit 106, and the censoring reference value of the cluster center initial arrangement used in step S506 are converted into distances (1108c). ),
  • the clustering repetition cutoff reference value (1108d) used in step S605 is input.
  • the number of cluster selections (1108e) specified in the process in the cluster selection unit 108 is input.
  • the neighborhood data preset method selection check button (1108f) is specified.
  • the check button 1108f is checked as shown in FIG.
  • the number of cluster members is fixed to the same value as the number of data k used for creating the reference vector, and the number of selected clusters is fixed to 1, making it uneditable. .. Then, processing is performed according to the processing flow shown in FIG. 10A during learning and FIG. 11A during abnormality detection. The larger the initial arrangement and the repeat censoring reference value, the faster the censoring is performed, and when it is set to 0, the censoring is not performed.
  • FIG. 12B when the check button 1108f is not checked, the number of cluster members (1108b) and the number of cluster selections (1108e) can be edited, as shown in FIG. 10B during learning and in FIG. 11B when an abnormality is detected. It is processed according to the processing flow shown.
  • the anomaly measure calculation parameter input window 1109 input the parameters used in the anomaly measure calculation.
  • the figure is an example when a local subspace is adopted as a method, and the number of neighborhood vectors k (1109a) and the regularization parameter (1109b) used for creating the reference vector are input.
  • the regularization parameter is a small number to be added to the diagonal component in order to prevent the inverse matrix of the correlation matrix C from being obtained in Eq. (2).
  • a check button (1109c) for whether to execute the anomaly measure calculation discontinuation based on the distance to the reference vector one time ago, and a check button (1109c) for executing the anomaly measure calculation discontinuation based on the distance to the nearest cluster. 1109d) is specified.
  • step S904 to S905 or S914 to S915 and the processes of steps S1002 to S1003 or S1012 to S1013 are not executed. If the check button 1109d is not checked, the process of step S1005 or S1015 is not executed.
  • the offline analysis is executed by pressing the execute button 1111.
  • learning is executed according to the processing flow of FIG. 4A using the sensor signal during the learning period.
  • the data that becomes a member of any of the clusters and the threshold value calculated in step S306 are saved.
  • the abnormality measure calculated in step S305 is compared with the threshold value to determine whether it is normal or abnormal, and the determination result, the abnormality measure, and the threshold value are also stored as time-series data.
  • the anomaly measure is calculated according to the processing flow shown in FIG. 4 (b), and whether it is normal or abnormal is determined. Save as.
  • the result display screen described later is displayed.
  • the screen returns to the offline analysis condition setting screen 1101.
  • the learning result includes the sensor selection information, the clustering parameter, and the abnormality measurement calculation parameter input in the input windows 1106, 1108, and 1109, in addition to the data created and saved by executing the learning.
  • the end button 1113 is pressed, the process ends without doing anything. In this case, the learning result created and saved by learning and the analysis result created and saved by the subsequent abnormality detection process are deleted or overwritten by the analysis executed next.
  • the registered learning results are managed with a label of active or inactive, and then online analysis is executed.
  • the newly input data is subjected to the processing shown in FIG. 4B using the information of the active learning result whose device ID matches, and the result is saved in association with the recipe name and the processing date and time. I will do it.
  • These processes are performed on a regular basis, for example, daily. For equipment with a short sampling interval or equipment that requires real-time performance, the execution interval should be shorter.
  • FIG. 12C is an example of a GUI for designating a display target of online analysis results.
  • the user specifies the equipment, recipe, and period to be displayed from the display target specification screen 1121.
  • the equipment ID is selected by the device ID selection window 1122.
  • the recipe to be displayed is selected from the list of recipes for the equipment ID (1122) by the recipe name selection window 1123.
  • the data recording period display unit 1124 displays the start date and end date of the period in which the input recipe is processed and the recording is left.
  • the display button 1126 is pressed, the result of the abnormality detection process is displayed.
  • the end button 1127 is pressed, the process of specifying the display target is terminated.
  • 13A and 13B are examples of GUI for showing the analysis result to the user.
  • the user selects a tab displayed at the top of each screen, the user switches to either the analysis result overall display screen 1201 or the analysis result enlarged display screen 1202.
  • FIG. 13A is an example of the analysis result overall display screen 1201.
  • the analysis result overall display screen 1201 displays an abnormality measure, a threshold value, a determination result, and a time series graph of the sensor signal for a specified period.
  • the period display window 1203 displays the learning period and the test period specified in FIG. 12A.
  • the result display period specified in FIG. 12C is displayed.
  • the abnormality measure 1204a the abnormality measure 1204a, the threshold value 1204b (broken line), and the judgment result 1204c in the designated learning period / test period or result display period are displayed.
  • a circle 1204d is displayed in the section used for learning.
  • the sensor signal display window 1205 the time series sensor signal 1205a is displayed for the designated sensor in the designated learning period / test period or result display period.
  • the sensor is specified by the user's input. However, before the user specifies it, the first sensor used is selected.
  • the cursor 1207 represents the starting point at the time of enlarged display, and can be moved by the user's mouse operation.
  • the number of days from the start point to the end point of the enlarged display on the analysis result enlarged display screen 1202 is displayed in the display days designation window 1208, and can be input on this screen.
  • the date at the cursor position is displayed in the date display window 1209. By pressing the end button 1210, both the analysis result overall display screen 1201 and the analysis result enlarged display screen 1202 are erased, and the analysis result display ends.
  • FIG. 13B is an example of the analysis result enlarged display screen 1202.
  • the result and the time series graph of the sensor signal are displayed. That is, the same information as the analysis result overall display screen 1201 is enlarged and displayed on the abnormality measure display window 1204 and the sensor signal display window 1205.
  • the scroll bar 1211 and the scroll bar area 1212 are additionally displayed on the analysis result enlarged display screen 1202.
  • the length of the scroll bar 1211 corresponds to the number of days specified in the display days designation window 1208, and the total length of the scroll bar area 1212 corresponds to the period displayed on the analysis result overall display screen 1201.
  • the left end portion of the scroll bar 1211 corresponds to the starting point of the enlarged display.
  • the user can also change the starting point of the display by operating the scroll bar 1211, and this change is reflected in the position of the cursor 1207 on the analysis result overall display screen 1201 and the display of the date display window 1209.
  • 100 Anomaly detection device
  • 101 Equipment
  • 102 Sensor signal
  • 103 Sensor signal storage unit
  • 104 Sensor signal input unit
  • 105 Feature vector extraction unit
  • 106 Clustering unit
  • 107 Learning result storage unit
  • 108 Cluster selection unit
  • 109 Abnormality measurement calculation unit
  • 110 Threshold calculation unit
  • 111 Abnormality detection unit
  • 1101 Offline analysis condition setting screen
  • 1121 Display target specification screen
  • 1201 Analysis result overall display screen
  • 1202 Analysis result enlarged display screen.

Abstract

The purpose of the present invention is to enable an anomaly measure calculation and clustering to be processed at high speeds while maintaining anomaly detection sensitivity, during anomaly detection based on a plurality of time-series sensor signals. In order to achieve the purpose, in an anomaly detection device, feature vectors in a specified learning period are clustered to adjust the number of feature vectors belonging to each cluster to a certain number, one cluster is selected in accordance with a newly extracted feature vector, and an anomaly measure is calculated on the basis of a reference vector calculated using all the feature vectors belonging to the selected cluster.

Description

異常検知装置および異常検知方法Anomaly detection device and abnormality detection method
 本発明は、プラントや設備などが出力する複数の時系列センサ信号をもとに異常を早期に検知する異常検知装置および異常検知方法に関する。 The present invention relates to an abnormality detection device and an abnormality detection method for early detection of an abnormality based on a plurality of time-series sensor signals output by a plant, equipment, or the like.
 電力会社では、ガスタービンの廃熱などを利用して地域暖房用温水を供給したり、工場向けに高圧蒸気や低圧蒸気を供給したりしている。石油化学会社では、ガスタービンなどを電源設備として運転している。このようにガスタービンなどを用いた各種プラントや設備において、設備の不具合またはその兆候を検知する異常検知は、社会へのダメージを最小限に抑えるためにも極めて重要である。 Electric power companies use waste heat from gas turbines to supply hot water for district heating, and supply high-pressure steam and low-pressure steam to factories. Petrochemical companies operate gas turbines and other equipment as power supply equipment. In various plants and equipment using gas turbines and the like, abnormality detection for detecting equipment malfunctions or signs thereof is extremely important for minimizing damage to society.
 ガスタービンや蒸気タービンのみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、機器・部品レベルでも、搭載電池の劣化・寿命など、上記のような予防保全を必要とする設備は枚挙に暇がない。 Not only gas turbines and steam turbines, but also water turbines at hydropower plants, nuclear reactors at nuclear power plants, wind turbines at wind power plants, engines for aircraft and heavy machinery, railroad vehicles and tracks, escalator, elevators, equipment / parts level. There is no time to list the equipment that requires preventive maintenance such as deterioration and life of the on-board battery.
 このため、対象設備やプラントでは様々な物理情報を取得する複数のセンサを取り付け、センサ毎の監視基準に従って、対象設備やプラントが正常か異常かを判定される。 Therefore, the target equipment or plant is equipped with multiple sensors that acquire various physical information, and it is judged whether the target equipment or plant is normal or abnormal according to the monitoring standard for each sensor.
 本技術分野における従来技術として特許文献1がある。特許文献1には、センサ信号から特徴ベクトルを抽出し、抽出された特徴ベクトルをクラスタリングし、各クラスタの中心とクラスタに属するデータを学習データとして蓄積しておき、これらの中から新たに観測された特徴ベクトルに応じて1個または数個のクラスタを選択し、選択されたクラスタに属するデータの中から新たに観測された特徴ベクトルに応じて所定数の学習データを選択し、選択した学習データを用いて正常モデルを作成し、新たに観測された特徴ベクトルと正常モデルに基づき異常測度を算出し、算出した異常測度に基づき異常か正常かを判定する異常検知方法が開示されている。ここに異常測度とは、複数のセンサによる測定値を1つのベクトル値として表現し、正常状態のベクトル値からの偏移量のことである。 Patent Document 1 is a conventional technique in this technical field. In Patent Document 1, a feature vector is extracted from a sensor signal, the extracted feature vector is clustered, data belonging to the center of each cluster and the cluster are accumulated as learning data, and newly observed from these. One or several clusters are selected according to the feature vector, a predetermined number of training data is selected from the data belonging to the selected cluster according to the newly observed feature vector, and the selected training data is selected. A normal model is created using the above, an abnormality measurement is calculated based on a newly observed feature vector and a normal model, and an abnormality detection method for determining whether an abnormality is normal or normal based on the calculated abnormality measurement is disclosed. Here, the anomaly measure is an amount of deviation from the vector value in the normal state by expressing the value measured by a plurality of sensors as one vector value.
特開2014-32455号公報Japanese Unexamined Patent Publication No. 2014-32455
 特許文献1に記載の異常検知方法は、新たに観測された特徴ベクトルから異常測度を算出する際に、新たに観測された特徴ベクトルの1個または数個の近傍クラスタに属するデータの中から所定数の近傍データを探索するため、全学習データの中から所定数の近傍データを探索するよりも高速に処理可能である。しかしながら、近傍データを探索する処理が必要であり、この計算時間は依然として大きい。また、学習時にクラスタリングを行うため、学習に要する時間も大きい。 The anomaly detection method described in Patent Document 1 is predetermined from the data belonging to one or several neighboring clusters of the newly observed feature vector when calculating the anomaly measure from the newly observed feature vector. Since a number of neighborhood data is searched, it can be processed at a higher speed than searching a predetermined number of neighborhood data from all the training data. However, a process for searching nearby data is required, and this calculation time is still long. In addition, since clustering is performed during learning, the time required for learning is long.
 本発明の目的は、上記課題を解決するため、複数の時系列センサ信号に基づく異常検知において、異常検知感度を維持しながら、異常測度算出、クラスタリングともに高速に処理可能な異常検知装置および異常検知方法を提供することにある。 An object of the present invention is an anomaly detection device and anomaly detection capable of high-speed processing of both anomaly measurement calculation and clustering while maintaining anomaly detection sensitivity in anomaly detection based on a plurality of time-series sensor signals in order to solve the above problems. To provide a method.
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、異常検知装置であって、設備に装着された複数のセンサから出力される複数の時系列のセンサ信号を入力するセンサ信号入力部と、センサ信号から時刻毎に特徴ベクトルを抽出する特徴ベクトル抽出部と、指定された学習期間の特徴ベクトルをクラスタリングして各クラスタに属する特徴ベクトルを一定数に調整するクラスタリング部と、新たに抽出した特徴ベクトルに応じてクラスタから1個を選択するクラスタ選択部と、選択したクラスタに属する全特徴ベクトルを用いて基準ベクトルを作成し、作成した基準ベクトルと新たに抽出した特徴ベクトルに基づいて異常測度を算出する異常測度算出部と、異常測度をしきい値と比較することにより各時刻のセンサ信号が正常か異常かを判定する異常検出部とを備える。 In view of the above background technology and problems, the present invention is, for example, an abnormality detection device, which is a sensor signal for inputting a plurality of time-series sensor signals output from a plurality of sensors mounted on equipment. An input unit, a feature vector extraction unit that extracts feature vectors from sensor signals at each time, and a clustering unit that clusters feature vectors for a specified learning period and adjusts the feature vectors belonging to each cluster to a certain number. A reference vector is created using the cluster selection unit that selects one from the clusters according to the feature vector extracted in, and all the feature vectors belonging to the selected cluster, and is based on the created reference vector and the newly extracted feature vector. It is provided with an abnormality measurement calculation unit that calculates an abnormality measurement, and an abnormality detection unit that determines whether the sensor signal at each time is normal or abnormal by comparing the abnormality measurement with a threshold value.
 本発明によれば、高速に処理可能な異常検知装置および異常検知方法を提供することができる。 According to the present invention, it is possible to provide an abnormality detection device and an abnormality detection method capable of high-speed processing.
本実施例における異常検知装置の機能構成ブロック図である。It is a functional block diagram of the abnormality detection device in this Example. 本実施例における異常検知装置のハードウェアイメージのブロック構成図である。It is a block block diagram of the hardware image of the abnormality detection device in this Example. 本実施例における複数のセンサ信号をリスト化して表形式に表した例を示す図である。It is a figure which shows the example which made a list of a plurality of sensor signals in this Example and represented them in a tabular form. 本実施例における異常検知装置の行う全体の概略処理フロー図である。It is a schematic process flow diagram of the whole performed by the abnormality detection device in this Example. 本実施例における学習時のクラスタリング処理のフロー図である。It is a flow diagram of the clustering process at the time of learning in this Example. 本実施例におけるクラスタ初期位置設定処理の処理フロー図である。It is a processing flow diagram of the cluster initial position setting processing in this Example. 本実施例におけるk平均クラスタリング処理の処理フロー図である。It is a processing flow diagram of k-means clustering processing in this Example. 本実施例におけるクラスタメンバ調整処理のフロー図である。It is a flow chart of the cluster member adjustment processing in this Example. 本実施例における近傍データプリセット方式による異常測度算出処理を説明する図である。It is a figure explaining the anomaly measure calculation process by the neighborhood data preset method in this Example. 本実施例における近傍データ探索方式による異常測度算出処理を説明する図である。It is a figure explaining the anomaly measure calculation process by the neighborhood data search method in this Example. 本実施例における学習時の異常測度算出処理のフロー図である。It is a flow chart of the abnormality measure calculation processing at the time of learning in this Example. 本実施例における学習時の他の異常測度算出処理のフロー図である。It is a flow chart of other abnormality measure calculation processing at the time of learning in this Example. 本実施例における異常検知時の異常測度算出処理のフロー図である。It is a flow chart of the abnormality measure calculation processing at the time of abnormality detection in this Example. 本実施例における異常検知時の他の異常測度算出処理のフロー図である。It is a flow chart of another abnormality measure calculation processing at the time of abnormality detection in this Example. 本実施例におけるオフライン解析条件を設定するGUIを示す図である。It is a figure which shows the GUI which sets the offline analysis condition in this Example. 本実施例におけるオンライン解析結果の表示対象を指定するGUIを示す図である。It is a figure which shows the GUI which specifies the display target of the online analysis result in this Example. 本実施例における解析結果全体表示画面を示す図である。It is a figure which shows the analysis result whole display screen in this Example. 本実施例における解析結果拡大表示画面を示す図である。It is a figure which shows the analysis result enlarged display screen in this Example.
 以下、本発明の実施例について、図面を用いて詳細に説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings.
 図1は、本実施例における異常検知装置の機能構成ブロック図である。図1において、異常検知装置100は、検知対象である設備101に装着されたセンサから出力されるセンサ信号102を、所定時間ごとに(周期的に)取得する。取得したセンサ信号102は、一旦センサ信号蓄積部103にて蓄積される。センサ信号入力部104は、センサ信号蓄積部103から、あるいは設備101に装着されたセンサから直接にセンサ信号102を入力し、特徴ベクトル抽出部105へ送る。特徴ベクトル抽出部105は、センサ信号102をもとに所定時間毎(以下、各時刻と表現する場合もある)特徴ベクトルを抽出し、クラスタリング部106とクラスタ選択部108へと送る。クラスタリング部106は、予め指定された学習期間の特徴ベクトルを用いてクラスタリングを行い、クラスタの中心とクラスタに属する特徴ベクトルを学習データとして学習結果蓄積部107に蓄積する。クラスタ選択部108は、学習データとして蓄積されたクラスタの中から、特徴ベクトル毎に特徴ベクトルに応じてクラスタを選択し、異常測度算出部109は、特徴ベクトル毎に、選択したクラスタに属する全特徴ベクトルを用いて異常測度を算出する。 FIG. 1 is a functional configuration block diagram of the abnormality detection device in this embodiment. In FIG. 1, the abnormality detection device 100 acquires the sensor signal 102 output from the sensor mounted on the equipment 101 to be detected (periodically) at predetermined time intervals. The acquired sensor signal 102 is temporarily stored in the sensor signal storage unit 103. The sensor signal input unit 104 inputs the sensor signal 102 directly from the sensor signal storage unit 103 or from the sensor mounted on the equipment 101, and sends the sensor signal 102 to the feature vector extraction unit 105. The feature vector extraction unit 105 extracts a feature vector at predetermined time intervals (hereinafter, may be expressed as each time) based on the sensor signal 102, and sends the feature vector to the clustering unit 106 and the cluster selection unit 108. The clustering unit 106 performs clustering using the feature vectors of the learning period specified in advance, and stores the center of the cluster and the feature vectors belonging to the cluster as learning data in the learning result storage unit 107. The cluster selection unit 108 selects a cluster according to the feature vector for each feature vector from the clusters accumulated as training data, and the anomaly measure calculation unit 109 selects all the features belonging to the selected cluster for each feature vector. Calculate the anomaly measure using a vector.
 しきい値算出部110は、異常測度算出部109による学習データの異常測度に基づいてしきい値を算出する。しきい値算出部110で算出されたしきい値は学習結果として学習結果蓄積部107に保存される。異常検出部111は、異常測度算出部109から送られる各特徴ベクトルの異常測度と、しきい値算出部110で算出したしきい値とを比較することで、設備101の異常を検出し、検出結果112は外部に出力される。 The threshold value calculation unit 110 calculates the threshold value based on the abnormality measure of the learning data by the abnormality measure calculation unit 109. The threshold value calculated by the threshold value calculation unit 110 is stored in the learning result storage unit 107 as a learning result. The anomaly detection unit 111 detects and detects an abnormality in the equipment 101 by comparing the anomaly measure of each feature vector sent from the anomaly measure calculation unit 109 with the threshold value calculated by the threshold value calculation unit 110. The result 112 is output to the outside.
 また、図2は本実施例における異常検知装置のハードウェアイメージのブロック構成図である。図2において、異常検知装置100は、一般的な情報処理装置である、処理装置(CPU)と記憶装置(メモリ)と入出力インターフェース(I/F)を有する装置によって実現される。すなわち、図1における異常検知装置100のセンサ信号入力部104、特徴ベクトル抽出部105、クラスタリング部106、クラスタ選択部108、異常測度算出部109、しきい値算出部110、異常検出部111の処理は、図2におけるメモリ20に格納されたそれらの処理プログラムをCPU10がソフトウェア処理することにより実行される。また、図1におけるセンサ信号蓄積部103と学習結果蓄積部107は、図2におけるメモリ20に対応する。また、入力I/F30で、センサ信号102取得する。また、図1における異常検出部111からの異常検出信号は、出力I/F40を介して、外部の表示装置等に出力される。 Further, FIG. 2 is a block configuration diagram of a hardware image of the abnormality detection device in this embodiment. In FIG. 2, the abnormality detection device 100 is realized by a device having a processing device (CPU), a storage device (memory), and an input / output interface (I / F), which are general information processing devices. That is, the processing of the sensor signal input unit 104, the feature vector extraction unit 105, the clustering unit 106, the cluster selection unit 108, the abnormality measurement calculation unit 109, the threshold value calculation unit 110, and the abnormality detection unit 111 of the abnormality detection device 100 in FIG. Is executed by the CPU 10 software processing those processing programs stored in the memory 20 in FIG. Further, the sensor signal storage unit 103 and the learning result storage unit 107 in FIG. 1 correspond to the memory 20 in FIG. Further, the sensor signal 102 is acquired by the input I / F30. Further, the abnormality detection signal from the abnormality detection unit 111 in FIG. 1 is output to an external display device or the like via the output I / F40.
 なお、図1の各構成は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、各構成をソフトウェアで実現する場合、各機能を実現するプログラム、データ、ファイル等の情報は、メモリのみならず、ハードディスク等の記録装置、または、ICカード等の記録媒体におくことができるし、必要に応じて無線ネットワーク等を介してダウンロードし、インストールすることも可能である。また、上記CPU10で行う処理を無線ネットワーク等を介してクラウド上で行ってもよい。 Note that each configuration of FIG. 1 may be realized by hardware, for example, by designing a part or all of them with an integrated circuit. When each configuration is realized by software, information such as programs, data, and files that realize each function can be stored not only in a memory but also in a recording device such as a hard disk or a recording medium such as an IC card. However, it is also possible to download and install it via a wireless network or the like as needed. Further, the processing performed by the CPU 10 may be performed on the cloud via a wireless network or the like.
 ここで、以下で用いる用語の簡単な説明を行う。特徴ベクトルとは、複数のセンサによる測定値を1つのベクトル値として表現したものである。異常測度とは、注目する特徴ベクトルの、指定された期間の特徴ベクトルからの偏移量のことである。異常検知の対象とする設備101は、例えばガスタービンや蒸気タービンなどの設備やプラントである。 Here, a brief explanation of the terms used below will be given. The feature vector is a representation of the values measured by a plurality of sensors as one vector value. The anomalous measure is the amount of offset of the feature vector of interest from the feature vector over a specified time period. The equipment 101 targeted for abnormality detection is, for example, equipment or a plant such as a gas turbine or a steam turbine.
 図3は、複数のセンサ信号102をリスト化して表形式に表した例である。センサ信号102は、物理特性の異なる複数の物理情報が所定間隔毎に取得される多次元時系列信号である。図3に示す表の構成は、日時201の情報と、複数のセンサのセンサ信号値202を対応させて示している。センサは、数百から数千といった数になる場合もあり、それらの種類によって、例えば、シリンダ、オイル、冷却水などの温度、オイルや冷却水の圧力、軸の回転速度、室温、運転時間などをセンサ値として出力する。センサ値は、設備やプラントなどの出力や状態を表すのみならず、何かの状態をある値(たとえば目標値)に制御するための制御信号の場合もある。 FIG. 3 is an example in which a plurality of sensor signals 102 are listed and represented in a table format. The sensor signal 102 is a multidimensional time-series signal in which a plurality of physical information having different physical characteristics is acquired at predetermined intervals. The structure of the table shown in FIG. 3 shows the information of the date and time 201 and the sensor signal values 202 of the plurality of sensors in correspondence with each other. Sensors can range from hundreds to thousands, depending on their type, for example, temperature of cylinders, oil, cooling water, pressure of oil or cooling water, shaft speed, room temperature, operating time, etc. Is output as a sensor value. The sensor value not only represents the output or state of equipment or plant, but may also be a control signal for controlling the state of something to a certain value (for example, a target value).
 図4は、本実施例における異常検知装置100の行う全体の概要処理フロー図である。ここで、異常検知装置100の動作には、センサ信号蓄積部103に蓄積されたデータを用いて学習データの生成、保存を行う「学習」処理と、入力信号に基づき異常を検知する「異常検知」処理のフェーズがある。基本的に「学習」はオフラインの処理、「異常検知」はオンラインの処理である。ただし、「異常検知」をオフラインの処理とすることも可能である。以下の説明では、それらを「学習時」、「異常検知時」という言葉で区別する。 FIG. 4 is an overall outline processing flow diagram performed by the abnormality detection device 100 in this embodiment. Here, the operation of the abnormality detection device 100 includes a "learning" process in which learning data is generated and saved using the data stored in the sensor signal storage unit 103, and "abnormality detection" in which an abnormality is detected based on an input signal. There is a processing phase. Basically, "learning" is an offline process, and "anomaly detection" is an online process. However, it is also possible to make "abnormality detection" an offline process. In the following explanation, they are distinguished by the words "at the time of learning" and "at the time of abnormality detection".
 図4(a)は学習時の異常測度算出処理で、学習期間のセンサ信号を入力し(S301)、特徴ベクトルの抽出(S302)とクラスタリング(S303)とクラスタ選択(S304)と異常測度の算出(S305)としきい値の算出(S306)を行う。図4(b)は異常検知時の異常判定処理で、検知対象のセンサ信号を入力し(S311)、特徴ベクトルの抽出(S312)とクラスタ選択(S313)と異常測度の算出(S314)を行う。そして、算出した異常測度を、S306で求めたしきい値と比較することにより、設備の正常/異常を判定する(S315)。
  以下、図4(a)、(b)の詳細について説明するが、図4(a)の詳細なフローは、図5、図6、図7、図8、図10A、図10Bで、図4(b)の詳細なフローは、図11A、図11Bにて説明する。
FIG. 4A shows an abnormality measure calculation process during learning, in which a sensor signal during the learning period is input (S301), feature vector extraction (S302), clustering (S303), cluster selection (S304), and abnormality measure calculation. (S305) and the calculation of the threshold value (S306) are performed. FIG. 4B shows an abnormality determination process at the time of abnormality detection, in which a sensor signal to be detected is input (S311), feature vector extraction (S312), cluster selection (S313), and abnormality measure calculation (S314) are performed. .. Then, the normality / abnormality of the equipment is determined by comparing the calculated abnormality measure with the threshold value obtained in S306 (S315).
The details of FIGS. 4 (a) and 4 (b) will be described below, but the detailed flow of FIG. 4 (a) is shown in FIGS. 5, 6, 7, 8, 10, 10A, and 10B. The detailed flow of (b) will be described with reference to FIGS. 11A and 11B.
 まず、図4(a)の学習時の異常測度算出処理について説明する。ステップS302において、特徴ベクトル抽出部105は、入力したセンサ信号の正準化および特徴ベクトルの抽出を行う。センサ信号の正準化は、単位及びスケールの異なる複数のセンサ信号を同様に扱うために行う。具体的には、各センサ信号の学習期間の平均と標準偏差を用いて、平均が0、分散が1となるように各センサ信号を変換する。異常検知時に同じ変換ができるように、各センサ信号の平均と標準偏差を学習結果蓄積部107に記憶しておく。または、各センサ信号の学習期間の最大値と最小値を用いて、最大が1、最小が0となるように各センサ信号を変換する。または、最大値と最小値の代わりに予め設定した上限値と下限値を用いてもよい。この場合は、異常検知時に同様の変換ができるように、各センサ信号の最大値と最小値または上限値と下限値を学習結果蓄積部107に記憶しておく。 First, the abnormality measure calculation process during learning in FIG. 4A will be described. In step S302, the feature vector extraction unit 105 normalizes the input sensor signal and extracts the feature vector. Normalization of sensor signals is performed in order to handle a plurality of sensor signals having different units and scales in the same manner. Specifically, each sensor signal is converted so that the average is 0 and the variance is 1 by using the average and standard deviation of the learning period of each sensor signal. The average and standard deviation of each sensor signal are stored in the learning result storage unit 107 so that the same conversion can be performed when an abnormality is detected. Alternatively, each sensor signal is converted so that the maximum is 1 and the minimum is 0 by using the maximum and minimum values of the learning period of each sensor signal. Alternatively, preset upper and lower limit values may be used instead of the maximum and minimum values. In this case, the maximum value and the minimum value or the upper limit value and the lower limit value of each sensor signal are stored in the learning result storage unit 107 so that the same conversion can be performed when an abnormality is detected.
 特徴ベクトル抽出は、センサ信号を正準化したものをそのまま要素として並べてベクトルとする。あるいは、ある時刻に対して±1,±2,・・・のウィンドウを設け、ウィンドウ幅(3,5,・・・)×センサ数の特徴ベクトルとすることで、センサ信号の時間変化を表す特徴を抽出することもできる。また、離散ウェーブレット変換(DWT:Discrete Wavelet Transform)を施して、周波数成分に分解してもよい。 In the feature vector extraction, the canonicalized sensor signal is arranged as it is as an element to form a vector. Alternatively, a window of ± 1, ± 2, ... For a certain time is provided, and the time change of the sensor signal is represented by setting the window width (3, 5, ...) × the feature vector of the number of sensors. Features can also be extracted. Further, the discrete wavelet transform (DWT: Discrete Wavelet Transform) may be performed to decompose into frequency components.
 図5は、本実施例における学習時のクラスタリング処理(S303)のフロー図である。図5において、最初に、特徴ベクトル抽出部105で抽出された学習期間の特徴ベクトルを入力する(S401)。次に、クラスタリング部106において、学習期間を複数の区間に分ける(S402)。1区間は一定の長さであることが望ましく、例えば1日を1区間とする。あるいは、化学プラントのようなバッチ処理の場合はバッチ毎、加工装置の場合は加工対象個体毎、MRIのような医療装置の場合は検査対象者毎としてもよい。次に入力された特徴ベクトルに基づいて、クラスタ中心初期配置を行い(S403)、k平均クラスタリングを行う(S404)。そして、各クラスタのメンバの調整を行う(S405)。ここで、クラスタのメンバとは、クラスタに属する特徴ベクトルのことである。S403において、異なる区間の特徴ベクトル同士の類似度は0とみなす。また、ステップS404およびステップS405の処理では、1つのクラスタに異なる区間の特徴ベクトルが混在しないようにする。次に、学習結果蓄積部107において、各クラスタの区間IDと中心とクラスタメンバを記録する(S406)。以下、クラスタ中心初期配置(S403)、k平均クラスタリング(S404)、クラスタメンバ調整(S405)について、詳細に説明する。 FIG. 5 is a flow chart of the clustering process (S303) at the time of learning in this embodiment. In FIG. 5, first, the feature vector of the learning period extracted by the feature vector extraction unit 105 is input (S401). Next, in the clustering unit 106, the learning period is divided into a plurality of sections (S402). It is desirable that one section has a constant length, and for example, one day is set as one section. Alternatively, in the case of batch processing such as a chemical plant, it may be for each batch, in the case of a processing device, it may be for each individual to be processed, and in the case of a medical device such as MRI, it may be for each inspection target. Next, based on the input feature vector, cluster center initial placement is performed (S403), and k-means clustering is performed (S404). Then, the members of each cluster are adjusted (S405). Here, the member of the cluster is a feature vector belonging to the cluster. In S403, the similarity between the feature vectors of different sections is regarded as 0. Further, in the processes of steps S404 and S405, feature vectors of different sections are prevented from being mixed in one cluster. Next, in the learning result storage unit 107, the section ID, the center, and the cluster members of each cluster are recorded (S406). Hereinafter, the cluster center initial arrangement (S403), k-means clustering (S404), and cluster member adjustment (S405) will be described in detail.
 まず、クラスタ中心初期配置(S403)について説明する。図6は、本実施例におけるクラスタ中心位置の初期設定処理のフロー図である。図6において、始めに、クラスタの最大数および初期配置の打切り基準値、すなわち、基準類似度、を入力する(S501)。次に、指定された学習期間の最初の特徴ベクトルを最初のクラスタ中心とする(S502)。次に、クラスタ最大数までステップS504~S507の処理を繰り返す(S503)。まず、設定済みのクラスタ中心と学習期間の全特徴ベクトルとの類似度を算出する(S504)。類似度は1/(1+距離)で算出する。ただし区間が異なる場合は類似度を0とする。次に、全特徴ベクトルについてクラスタ中心との類似度の最大値を求める(S505)。この値の最小値が打切り基準値よりも小さければ(S506)、クラスタ中心との類似度の最大値が最小となる特徴ベクトルを次のクラスタ中心とする(S507)。つまり、最も近いクラスタ中心まで最も遠い特徴ベクトルをクラスタ中心とする。クラスタ数が最大数に達すればループを抜けて処理終了となる(S508)。また、ステップS506において類似度の最大値の最小値が打切り基準値以上であれば、処理を打切り、すなわちループを抜けて処理終了となる(S508)。この打切りにより、クラスタ数を必要最低限に抑えることが可能となるため、クラスタ中心初期配置処理の計算時間を短縮できるだけではなく、クラスタリング処理全体と異常測度算出処理の計算時間も短縮できる。 First, the cluster center initial arrangement (S403) will be described. FIG. 6 is a flow chart of the initial setting process of the cluster center position in this embodiment. In FIG. 6, first, the maximum number of clusters and the censoring reference value of the initial arrangement, that is, the reference similarity, are input (S501). Next, the first feature vector of the specified learning period is set as the first cluster center (S502). Next, the processes of steps S504 to S507 are repeated up to the maximum number of clusters (S503). First, the degree of similarity between the set cluster center and all the feature vectors of the learning period is calculated (S504). The degree of similarity is calculated as 1 / (1 + distance). However, if the intervals are different, the similarity is set to 0. Next, the maximum value of similarity with the cluster center is obtained for all feature vectors (S505). If the minimum value of this value is smaller than the censoring reference value (S506), the feature vector that minimizes the maximum value of similarity with the cluster center is set as the next cluster center (S507). That is, the feature vector farthest to the nearest cluster center is the cluster center. When the number of clusters reaches the maximum number, the loop is exited and the process ends (S508). If the minimum value of the maximum value of the similarity is equal to or greater than the censoring reference value in step S506, the processing is censored, that is, the loop is exited and the processing is terminated (S508). By this censoring, the number of clusters can be suppressed to the minimum necessary, so that not only the calculation time of the cluster center initial placement process can be shortened, but also the calculation time of the entire clustering process and the anomaly measure calculation process can be shortened.
 クラスタ中心の初期位置は、一般的にランダムに配置する場合が多く、本実施例においてもランダムに配置してもよい。しかし、運転、停止の切り替えがある設備において、その過渡状態のデータは定常状態のデータより少ないため、ランダムに選択すると初期中心位置に選ばれにくい。すると、過渡状態のデータがクラスタ中心算出に与える影響が相対的に小さくなってしまう。上記で説明したクラスタ中心初期配置処理の方法は、クラスタ中心をお互いに遠くに初期配置することを狙ったものであり、これにより、過渡状態のクラスタを増やすことができる。 The initial position of the cluster center is generally arranged randomly, and may be arranged randomly in this embodiment as well. However, in equipment with switching between operation and stop, the data in the transient state is less than the data in the steady state, so it is difficult to select the initial center position if randomly selected. Then, the influence of the transient data on the cluster center calculation becomes relatively small. The method of the cluster center initial placement process described above aims at initial placement of the cluster centers far from each other, whereby the number of transient clusters can be increased.
 次に、k平均クラスタリング(S404)について説明する。図7は、本実施例におけるk平均法によるクラスタリング処理のフロー図である。図7において、始めに、繰り返し最大数と打切り基準値を入力する(S601)。次に、繰り返し最大数までステップS603~S605の処理を繰り返す(S602)。まず、指定された学習期間の全特徴ベクトルを対象としてクラスタメンバの振り分けを行う(S603)。具体的には各特徴ベクトルを最も中心までの距離が近いクラスタのメンバとする。各クラスタについて、全クラスタメンバの特徴ベクトルの平均を新しいクラスタ中心ベクトルとする(S604)。クラスタ中心の移動量が打切り基準値より大きい場合(S605)、ループの最初の処理(S603)に戻る。そうでない場合は、ループを抜けて処理を終了する(S606)。また、繰り返し最大数に達した場合、ループを抜け、処理を終了する(S606)。 Next, k-means clustering (S404) will be described. FIG. 7 is a flow chart of the clustering process by the k-means method in this embodiment. In FIG. 7, first, the maximum number of repetitions and the censoring reference value are input (S601). Next, the processes of steps S603 to S605 are repeated up to the maximum number of repetitions (S602). First, cluster members are distributed to all feature vectors in the designated learning period (S603). Specifically, each feature vector is a member of the cluster with the shortest distance to the center. For each cluster, the average of the feature vectors of all cluster members is taken as the new cluster center vector (S604). When the movement amount at the center of the cluster is larger than the censoring reference value (S605), the process returns to the first processing of the loop (S603). If not, the loop is exited and the process ends (S606). When the maximum number of repetitions is reached, the loop is exited and the process is terminated (S606).
 クラスタメンバ振り分け(S603)において、特徴ベクトルの区間とステップS406で記録されたクラスタの区間IDが一致しない場合は、距離を無限大とみなす。したがって、一つのクラスタの全メンバが同じ区間の特徴ベクトルとなる。これにより、距離算出処理を大幅に省略することができる。 In the cluster member distribution (S603), if the section of the feature vector and the section ID of the cluster recorded in step S406 do not match, the distance is regarded as infinite. Therefore, all members of one cluster are feature vectors of the same interval. As a result, the distance calculation process can be largely omitted.
 次に、クラスタメンバ調整(S405)について説明する。この処理は、各クラスタのメンバ数を異常測度算出に必要な近傍データの数に揃えることを目的とする。図8は、本実施例におけるクラスタメンバ調整処理のフロー図である。始めに、クラスタメンバ数の指定値を入力する(S701)。次に、各クラスタについて、ステップS703~S706の処理を繰り返す(S702)。まず、クラスタのメンバ数が指定した数より少なければ(S703)、クラスタにメンバを追加して指定された数になるようにする(S704)。追加するメンバは、メンバ以外の特徴ベクトルのうちクラスタ中心から近い順に決める。ステップS703においてクラスタのメンバ数が指定値以上であれば、ステップS704をスキップする。次に、クラスタのメンバ数が指定値より多ければ(S705)、間引いて指定した数になるようにする(S706)。間引くメンバはランダムに決めてよい。クラスタのメンバ数が多いということは、特徴空間上でベクトルの密度が高いということであり、どのメンバを削除しても大差ないからである。 Next, cluster member adjustment (S405) will be described. The purpose of this process is to align the number of members of each cluster with the number of neighboring data required for calculating the anomaly measure. FIG. 8 is a flow chart of the cluster member adjustment process in this embodiment. First, the specified value of the number of cluster members is input (S701). Next, the processes of steps S703 to S706 are repeated for each cluster (S702). First, if the number of members in the cluster is less than the specified number (S703), members are added to the cluster so that the number becomes the specified number (S704). The members to be added are determined in order of proximity to the cluster center among the feature vectors other than the members. If the number of cluster members is equal to or greater than the specified value in step S703, step S704 is skipped. Next, if the number of cluster members is greater than the specified value (S705), the number is thinned out to the specified number (S706). Members to be thinned out may be randomly determined. The large number of cluster members means that the vector density is high in the feature space, and it does not make much difference if any member is deleted.
 次に、クラスタ選択部108、異常測度算出部109およびしきい値算出部110における、図4(a)の学習時の処理(S304~S306)について説明する。なお、異常測度算出処理には2種の方式があり、いずれかの方式を予め選択しておくものとする。以下の説明ではそれぞれ近傍データプリセット方式、近傍データ探索方式と呼ぶこととする。 Next, the learning processes (S304 to S306) of FIG. 4A in the cluster selection unit 108, the abnormality measure calculation unit 109, and the threshold value calculation unit 110 will be described. There are two types of anomaly measure calculation processing, and one of the methods shall be selected in advance. In the following description, they will be referred to as a neighborhood data preset method and a neighborhood data search method, respectively.
 図9Aは、近傍データプリセット方式による異常測度算出処理を説明する図である。注目ベクトルqの最近傍クラスタのメンバであるk個のベクトルが張るk-1次元のアフィン部分空間へ注目ベクトルqを投影したときの投影距離を測る。図9Aは、k=3の場合の例である。3個のベクトルx1~x3でアフィン部分空間すなわち平面を形成し、注目ベクトルqに最も近いアフィン部分空間上の点Xbが投影点(基準ベクトル)となり、注目ベクトルqから基準ベクトルXbまでの距離が異常測度である。なお、kは特徴ベクトルの次元数より十分小さければいくつでもよい。 FIG. 9A is a diagram illustrating an abnormality measure calculation process by the neighborhood data preset method. The projection distance when the attention vector q is projected onto the k-1 dimensional affine subspace spanned by k vectors that are members of the nearest cluster of the attention vector q is measured. FIG. 9A is an example in the case of k = 3. The affine subspace, that is, the plane is formed by the three vectors x1 to x3, the point Xb on the affine subspace closest to the attention vector q becomes the projection point (reference vector), and the distance from the attention vector q to the reference vector Xb is It is an anomalous measure. It should be noted that k may be any number as long as it is sufficiently smaller than the number of dimensions of the feature vector.
 具体的な算出法を説明する。評価データqとk個のベクトルxi(i=1,・・・,k)から、qをk個並べた行列Qとxiを並べた行列Xを作成し、(1)式から両者の相関行列Cを求める。次に、(2)式から近傍ベクトルxiの重み付けを表す係数ベクトルbを計算する。異常測度dは、ベクトル(q-Xb)のノルムまたはその2乗により算出される。 Explain the specific calculation method. From the evaluation data q and k vectors xi (i = 1, ..., K), a matrix Q in which k qs are arranged and a matrix X in which xis are arranged are created, and a correlation matrix of both is created from Eq. Find C. Next, the coefficient vector b representing the weighting of the neighborhood vector xi is calculated from the equation (2). The anomaly measure d is calculated by the norm of the vector (q-Xb) or its square.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図9Bは、近傍データ探索方式による異常測度算出処理を説明する図である。注目ベクトルqの1ないし数個の近傍クラスタのメンバを対象として、注目ベクトルqに対するk個の近傍ベクトルを探索して選択し、選択したk個の近傍ベクトルが張るk-1次元のアフィン部分空間へ注目ベクトルqを投影したときの投影距離を測る。選択したk個の近傍ベクトルをxi(i=1,・・・,k)とおき、(1)式および(2)式を用いてベクトルbを算出し、ベクトル(q-Xb)のノルムまたはその2乗により異常測度を算出する。 FIG. 9B is a diagram illustrating an anomaly measure calculation process by the neighborhood data search method. A k-1 dimensional affine subspace in which k neighborhood vectors with respect to the attention vector q are searched and selected for members of one or several neighborhood clusters of the attention vector q, and the selected k neighborhood vectors are stretched. Measure the projection distance when the attention vector q is projected to. Let xi (i = 1, ..., K) be the k selected neighborhood vectors, calculate the vector b using equations (1) and (2), and use the norm of the vector (q-Xb) or The anomaly measure is calculated from the square.
 図10Aは、近傍データプリセット方式を選択した場合の学習時の異常測度算出処理のフロー図である。図10Aにおいて、まず、学習期間の特徴ベクトルを入力し(S901)、学習期間を複数の区間に分ける(S902)。この区間は、ステップS402と同じになるように分けるものとする。次に、抽出した全特徴ベクトルについて、以下の処理を繰り返す(S903)。まず、注目ベクトルから1時刻前の基準ベクトルまでの距離を算出する(S904)。算出された距離が処理対象区間の算出済みの異常測度の最大値より大きい場合(S905)、クラスタ選択部108において、注目ベクトルと異なる区間のクラスタのうち最も注目ベクトルに近い最近傍クラスタを選択する(S906)。次に、異常測度算出部109において、最近傍クラスタの全メンバを用いて図9Aに示す方法で基準ベクトルを算出し(S907)、基準ベクトルまでの距離を算出して異常測度とする(S908)。ステップS905の条件を満たさない場合、すなわち1時刻前の基準ベクトルまでの距離が、処理対象区間の算出済みの異常測度の最大値以下の場合、ステップS906からS908までの処理をスキップする。異常測度の最大値は異常判定しきい値の候補であり、ステップS908で算出される距離は、ステップS904で算出される距離より大きくならないという考えから、最大値を変化させないため、計算を打ち切っている。計算の打切りにより、異常測度算出のための計算時間を短縮することができる。全特徴ベクトルについて異常測度算出処理が終了したら、しきい値算出部110において、しきい値を算出する(S909)。具体的には、異常測度の最大値をしきい値とする。 FIG. 10A is a flow chart of the abnormality measure calculation process at the time of learning when the neighborhood data preset method is selected. In FIG. 10A, first, the feature vector of the learning period is input (S901), and the learning period is divided into a plurality of sections (S902). This section shall be divided so as to be the same as step S402. Next, the following processing is repeated for all the extracted feature vectors (S903). First, the distance from the attention vector to the reference vector one time ago is calculated (S904). When the calculated distance is larger than the maximum value of the calculated anomaly measure of the section to be processed (S905), the cluster selection unit 108 selects the nearest neighbor cluster closest to the attention vector among the clusters in the section different from the attention vector. (S906). Next, the anomaly measure calculation unit 109 calculates a reference vector by the method shown in FIG. 9A using all the members of the nearest neighbor cluster (S907), and calculates the distance to the reference vector to obtain an anomaly measure (S908). .. If the condition of step S905 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the maximum value of the calculated abnormality measure of the processing target section, the processing from steps S906 to S908 is skipped. The maximum value of the anomaly measure is a candidate for the anomaly determination threshold, and the distance calculated in step S908 is not larger than the distance calculated in step S904. Therefore, the calculation is discontinued because the maximum value is not changed. There is. By discontinuing the calculation, the calculation time for calculating the anomaly measure can be shortened. When the abnormality measure calculation process for all feature vectors is completed, the threshold value calculation unit 110 calculates the threshold value (S909). Specifically, the maximum value of the anomaly measure is set as the threshold value.
 なお、ステップS905において、ステップS903のループ全体を区間毎に並列処理することを意図したため、処理対象区間の最大値と比較するとしたが、必ずしも並列処理を行う必要はなく、並列処理しない場合は全体の算出済みの異常測度の最大値と比較する。 In step S905, since the entire loop of step S903 was intended to be processed in parallel for each section, it was compared with the maximum value of the section to be processed. However, it is not always necessary to perform parallel processing, and if parallel processing is not performed, the entire loop is processed. Compare with the calculated maximum value of the anomaly measure.
 図10Bは、近傍データ探索方式を選択した場合の学習時の異常測度算出処理のフロー図である。近傍データ探索方式を選択する場合は、図5で説明したクラスタリング処理において、1つのクラスタに異なる区間の特徴ベクトルが混在しないようにすることが困難であるため、1つのクラスタに異なる区間の特徴ベクトルが混在する可能性があることを前提としている。 FIG. 10B is a flow chart of the abnormality measure calculation process at the time of learning when the neighborhood data search method is selected. When selecting the neighborhood data search method, it is difficult to prevent the feature vectors of different sections from being mixed in one cluster in the clustering process described with reference to FIG. 5, so the feature vectors of different sections in one cluster. It is assumed that there is a possibility that
 図10Bにおいて、まず、学習期間の特徴ベクトルを入力し(S911)、ステップS402と同様の方法で学習期間を複数の区間に分ける(S912)。次に、抽出した全特徴ベクトルについて、以下の処理を繰り返す(S913)。まず、注目ベクトルから1時刻前の基準ベクトルまでの距離を算出する(S914)。算出された距離が処理対象区間の算出済みの異常測度の最大値より大きい場合(S915)、クラスタ選択部108において、注目ベクトルに近い方から指定数の近傍クラスタを選択する(S916)。次に、異常測度算出部109において、選択されたクラスタのメンバの中から、注目ベクトルと同じ区間のベクトルを除いて近傍探索対象を抽出する(S917)。抽出された近傍探索対象から、図9Bに示すように、指定数の近傍データを探索し(S918)、探索された近傍データを用いて基準ベクトルを算出し(S919)、基準ベクトルまでの距離を算出して異常測度とする(S920)。ステップS915の条件を満たさない場合、すなわち1時刻前の基準ベクトルまでの距離が、処理対象区間の算出済みの異常測度の最大値以下の場合、ステップS916からS920までの処理をスキップする。 In FIG. 10B, first, the feature vector of the learning period is input (S911), and the learning period is divided into a plurality of sections in the same manner as in step S402 (S912). Next, the following processing is repeated for all the extracted feature vectors (S913). First, the distance from the attention vector to the reference vector one time ago is calculated (S914). When the calculated distance is larger than the maximum value of the calculated anomaly measure of the processing target section (S915), the cluster selection unit 108 selects a specified number of neighboring clusters from the one closest to the attention vector (S916). Next, the anomaly measure calculation unit 109 extracts a neighborhood search target from the members of the selected cluster, excluding the vector in the same section as the attention vector (S917). As shown in FIG. 9B, a specified number of neighborhood data is searched from the extracted neighborhood search target (S918), a reference vector is calculated using the searched neighborhood data (S919), and the distance to the reference vector is calculated. Calculate and use as an abnormality measure (S920). If the condition of step S915 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the maximum value of the calculated abnormality measure of the processing target section, the processing from steps S916 to S920 is skipped.
 全特徴ベクトルについて異常測度算出処理が終了したら、しきい値算出部110において、しきい値を算出する(S921)。このしきい値は、異常検出部113に入力する異常測度と比較され、設備の正常/異常を判定するために用いられるものである。しきい値算出部110は、正常な学習データを異常と判定しないしきい値を算出する。言い換えれば、正常な学習データから得られる異常測度の最大値をしきい値として算出する。 When the abnormality measure calculation process for all feature vectors is completed, the threshold value calculation unit 110 calculates the threshold value (S921). This threshold value is compared with the abnormality measure input to the abnormality detection unit 113, and is used to determine the normality / abnormality of the equipment. The threshold value calculation unit 110 calculates a threshold value that does not determine normal learning data as abnormal. In other words, the maximum value of the anomalous measure obtained from normal learning data is calculated as the threshold value.
 図10Aの処理は、クラスタ選択後、近傍データ探索処理が不要のため、図10Bの処理よりも、計算時間短縮の効果が大きい。しかし、図10Aの処理と図10Bの処理の両方を備え、データに応じて選択可能にしておくとよい。なぜならば、図10Bの処理では、従来方式と同じ感度であるのに対し、図10Aの処理では、データによっては感度が許容範囲を超えて低下する場合があるためである。 Since the process of FIG. 10A does not require the neighborhood data search process after selecting the cluster, the effect of shortening the calculation time is greater than the process of FIG. 10B. However, it is preferable that both the process of FIG. 10A and the process of FIG. 10B are provided and can be selected according to the data. This is because the processing of FIG. 10B has the same sensitivity as the conventional method, whereas the processing of FIG. 10A may reduce the sensitivity beyond the permissible range depending on the data.
 学習処理においては、学習結果蓄積部107に学習結果を保存しておく。学習結果として保存されるデータには、少なくとも特徴ベクトル抽出のためのパラメータ、異常測度算出のためのパラメータ、センサ正準化のためのパラメータ、クラスタ数および各クラスタの中心位置とメンバとなるベクトルのIDと区間ID、いずれかのクラスタのメンバとなる全特徴ベクトルデータ、異常判定しきい値がある。特徴ベクトル抽出のためのパラメータ及び異常測度算出のためのパラメータは、学習時に指定されたものと共通である。センサ正準化のためのパラメータは、特徴ベクトル抽出部105がステップS302の処理で算出した各センサ信号の平均、標準偏差、最大値、最小値などである。 In the learning process, the learning result is saved in the learning result storage unit 107. The data saved as the training result includes at least the parameters for feature vector extraction, the parameters for calculating the anomaly measure, the parameters for sensor normalization, the number of clusters, and the center position and member vectors of each cluster. There are ID and interval ID, all feature vector data that are members of any cluster, and anomaly determination threshold. The parameters for extracting the feature vector and the parameters for calculating the anomaly measure are the same as those specified at the time of learning. The parameters for sensor normalization are the average, standard deviation, maximum value, minimum value, and the like of each sensor signal calculated by the feature vector extraction unit 105 in the process of step S302.
 図9Aおよび図9Bで説明した異常測度算出処理は、局所部分空間法を変形したものであるが、投影距離法やガウシアンプロセスを利用してもよい。 The anomaly measure calculation process described with reference to FIGS. 9A and 9B is a modification of the local subspace method, but the projection distance method or the Gaussian process may be used.
 投影距離法は、選択された特徴ベクトルに対し独自の原点をもつ部分空間すなわちアフィン部分空間(分散最大の空間)を作成する方法である。何らかの方法で注目ベクトルに対応する複数の特徴ベクトルを選択し、以下の方法でアフィン部分空間を算出する。 The projection distance method is a method of creating a subspace with a unique origin for the selected feature vector, that is, an affine subspace (space with the maximum variance). A plurality of feature vectors corresponding to the attention vector are selected by some method, and the affine subspace is calculated by the following method.
 まず、選択された特徴ベクトルの平均μと共分散行列Σを求め、次にΣの固有値問題を解いて、値の大きい方から予め指定したr個の固有値に対応する固有ベクトルを並べた行列Uをアフィン部分空間の正規直交基底とする。rは特徴ベクトルの次元より小さくかつ選択データ数より小さい数とする。またはrを固定した数とせず、固有値の大きい方から累積した寄与率が予め指定した割合を超えたときの値としてもよい。注目ベクトルから最も近いアフィン部分空間上の点が基準ベクトルとなる。また、注目ベクトルから基準ベクトルを引いたものが残差ベクトルとなり、残差ベクトルのノルムまたはノルムの2乗が異常測度となる。 First, the mean μ of the selected feature vectors and the covariance matrix Σ are obtained, then the eigenvalue problem of Σ is solved, and a matrix U in which the eigenvectors corresponding to r predetermined eigenvalues are arranged from the largest value is obtained. Let it be an orthonormal basis of the affine subspace. r is a number smaller than the dimension of the feature vector and smaller than the number of selected data. Alternatively, r may not be a fixed number, but may be a value when the cumulative contribution rate from the larger eigenvalue exceeds a predetermined ratio. The point on the affine subspace closest to the attention vector is the reference vector. Further, the vector obtained by subtracting the reference vector from the vector of interest is the residual vector, and the norm of the residual vector or the square of the norm is the anomalous measure.
 ここで、複数の特徴ベクトルの選択方法を、学習対象の特徴ベクトルを予めクラスタリングしておき、注目ベクトルに最も近いクラスタに含まれる特徴ベクトルを選択するようにすると、図10Aで説明した処理フローにより、異常測度を算出可能である。局所部分空間法との違いは、k個の特徴ベクトルから、k-1よりさらに小さい次元のアフィン部分空間を算出する点である。 Here, as a method of selecting a plurality of feature vectors, if the feature vectors to be learned are clustered in advance and the feature vectors included in the cluster closest to the attention vector are selected, the processing flow described with reference to FIG. 10A can be used. , The anomaly measure can be calculated. The difference from the local subspace method is that the affine subspace having a dimension smaller than k-1 is calculated from k feature vectors.
 次に、図4(b)の異常検知時の異常判定処理について説明する。ステップS311において、センサ信号入力部104は、センサ信号蓄積部103から、あるいは設備101に装着されたセンサから直接にセンサ信号102を入力する。ステップS312において、特徴ベクトル抽出部105は、ステップS302と同様、入力したセンサ信号の正準化および特徴ベクトルの抽出を行う。センサ信号の正準化は、ステップS302で算出し、学習結果蓄積部107に記憶しておいた各センサ信号の平均と標準偏差あるいは最大値と最小値を用いて行う。 Next, the abnormality determination process at the time of abnormality detection in FIG. 4B will be described. In step S311, the sensor signal input unit 104 inputs the sensor signal 102 directly from the sensor signal storage unit 103 or from the sensor mounted on the equipment 101. In step S312, the feature vector extraction unit 105 normalizes the input sensor signal and extracts the feature vector in the same manner as in step S302. The normalization of the sensor signals is performed using the average and standard deviation of each sensor signal or the maximum and minimum values calculated in step S302 and stored in the learning result storage unit 107.
 以下、クラスタ選択部108、異常測度算出部109、異常検出部111における、図4(b)の異常検知時の処理(S313~S315)について詳細に説明する。 Hereinafter, the processing (S313 to S315) at the time of abnormality detection in FIG. 4B in the cluster selection unit 108, the abnormality measure calculation unit 109, and the abnormality detection unit 111 will be described in detail.
 図11Aは、近傍データプリセット方式を選択した場合の異常検知時の異常判定処理のフロー図である。選択方式は学習時と同じとする。図11Aにおいて、ステップS312で抽出した全特徴ベクトルについて、以下の処理を繰り返す(S1001)。まず、注目ベクトルから1時刻前の基準ベクトルまでの距離を算出する(S1002)。算出された距離がステップS306で算出し、学習結果蓄積部107に記憶しておいた異常判定しきい値より大きい場合(S1003)、クラスタ選択部108において、学習結果蓄積部107に記憶しておいたクラスタのうち最も注目ベクトルに近い最近傍クラスタを選択する(S1004)。次に、注目ベクトルから最近傍クラスタの中心までの距離を算出し(S1005)、その値が異常判定しきい値より大きい場合(S1005)、異常測度算出部109において、最近傍クラスタの全メンバを用いて図9Aに示す方法で基準ベクトルを算出し(S1006)、基準ベクトルまでの距離を算出して異常測度とする(S1007)。異常検出部111において、異常測度を異常判定しきい値と比較して正常か異常かの判定を行う(S1008)。具体的には、異常測度がしきい値以下であれば設備は「正常」と判定し、異常測度がしきい値より大きければ「異常」と判定する。ステップS1003の条件を満たさない場合、すなわち1時刻前の基準ベクトルまでの距離が、異常判定しきい値以下の場合、ただちに正常と判定し(S1009)、注目ベクトルの処理を終了する。また、ステップS1005の条件を満たさない場合、すなわち最近傍クラスタまでの距離が異常判定しきい値以下の場合も、ただちに正常と判定し(S1009)、注目ベクトルの処理を終了する。ステップS1007で算出される距離は、ステップS1002あるいはステップS1005で算出される距離より大きくならないという考えから、いずれかがしきい値以下であれば正常と判定して、計算を打ち切るため、計算時間を短縮することができる。また、クラスタ選択後、近傍データ探索が不要のため、計算を打ち切らない場合の計算時間も短縮することができる。すなわち、新たに観測された特徴ベクトルから異常測度を算出する際に、新たに観測された特徴ベクトルに応じて1個のクラスタを選択し、選択したクラスタに属する全特徴ベクトルから基準ベクトルを作成するため、近傍データ探索を行う必要がなくなり、異常測度算出の計算時間を短縮することができる。 FIG. 11A is a flow chart of abnormality determination processing at the time of abnormality detection when the neighborhood data preset method is selected. The selection method is the same as during learning. In FIG. 11A, the following processing is repeated for all the feature vectors extracted in step S312 (S1001). First, the distance from the attention vector to the reference vector one time ago is calculated (S1002). When the calculated distance is larger than the abnormality determination threshold value calculated in step S306 and stored in the learning result storage unit 107 (S1003), it is stored in the learning result storage unit 107 in the cluster selection unit 108. The nearest neighbor cluster closest to the vector of interest is selected from the clusters (S1004). Next, the distance from the attention vector to the center of the nearest neighbor cluster is calculated (S1005), and when the value is larger than the abnormality determination threshold value (S1005), the anomaly measure calculation unit 109 determines all the members of the nearest neighbor cluster. The reference vector is calculated by the method shown in FIG. 9A (S1006), and the distance to the reference vector is calculated and used as an abnormality measure (S1007). The abnormality detection unit 111 compares the abnormality measure with the abnormality determination threshold value to determine whether it is normal or abnormal (S1008). Specifically, if the anomaly measure is below the threshold value, the equipment is determined to be "normal", and if the anomaly measure is greater than the threshold value, it is determined to be "abnormal". If the condition of step S1003 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1009), and the processing of the attention vector is terminated. Further, when the condition of step S1005 is not satisfied, that is, when the distance to the nearest neighbor cluster is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1009), and the processing of the attention vector is terminated. From the idea that the distance calculated in step S1007 does not become larger than the distance calculated in step S1002 or step S1005, if either of them is equal to or less than the threshold value, it is judged as normal and the calculation is terminated. Can be shortened. In addition, since it is not necessary to search for neighboring data after selecting a cluster, the calculation time when the calculation is not terminated can be shortened. That is, when calculating the anomaly measure from the newly observed feature vector, one cluster is selected according to the newly observed feature vector, and a reference vector is created from all the feature vectors belonging to the selected cluster. Therefore, it is not necessary to search for nearby data, and the calculation time for calculating the anomaly measure can be shortened.
 図11Bは、近傍データ探索方式を選択した場合の異常検知時の異常判定処理のフロー図である。図11Bにおいて、ステップS312で抽出した全特徴ベクトルについて、以下の処理を繰り返す(S1011)。まず、注目ベクトルから1時刻前の基準ベクトルまでの距離を算出する(S1012)。算出された距離がステップS306で算出し、学習結果蓄積部107に記憶しておいた異常判定しきい値より大きい場合(S1013)、クラスタ選択部108において、学習結果蓄積部107に記憶しておいたクラスタのうち注目ベクトルに近い方から指定数の近傍クラスタを選択する(S1014)。次に、注目ベクトルから最近傍クラスタの中心までの距離が異常判定しきい値より大きい場合(S1015)、異常測度算出部109において、選択されたクラスタの全メンバを近傍探索対象として抽出する(S1016)。抽出された近傍探索対象から、図9Bに示すように、指定数の近傍データを探索し(S1017)、探索された近傍データを用いて基準ベクトルを算出し(S1018)、基準ベクトルまでの距離を算出して異常測度とする(S1019)。異常検出部111において、異常測度を異常判定しきい値と比較して正常か異常かの判定を行う(S1020)。ステップS1013の条件を満たさない場合、すなわち1時刻前の基準ベクトルまでの距離が、異常判定しきい値以下の場合、ただちに正常と判定し(S1021)、注目ベクトルの処理を終了する。また、ステップS1015の条件を満たさない場合、すなわち最近傍クラスタまでの距離が異常判定しきい値以下の場合も、ただちに正常と判定し(S1021)、注目ベクトルの処理を終了する。図11Aの処理と同様、計算処理の打ち切りにより計算時間を短縮することができる。 FIG. 11B is a flow chart of abnormality determination processing at the time of abnormality detection when the neighborhood data search method is selected. In FIG. 11B, the following processing is repeated for all the feature vectors extracted in step S312 (S1011). First, the distance from the attention vector to the reference vector one time ago is calculated (S1012). When the calculated distance is larger than the abnormality determination threshold value calculated in step S306 and stored in the learning result storage unit 107 (S1013), it is stored in the learning result storage unit 107 in the cluster selection unit 108. A specified number of neighboring clusters are selected from the clusters closest to the attention vector (S1014). Next, when the distance from the attention vector to the center of the nearest cluster is larger than the abnormality determination threshold value (S1015), the anomaly measure calculation unit 109 extracts all the members of the selected cluster as neighbor search targets (S1016). ). As shown in FIG. 9B, a specified number of neighborhood data is searched from the extracted neighborhood search target (S1017), a reference vector is calculated using the searched neighborhood data (S1018), and the distance to the reference vector is calculated. Calculate and use as an abnormality measure (S1019). The abnormality detection unit 111 compares the abnormality measure with the abnormality determination threshold value and determines whether it is normal or abnormal (S1020). If the condition of step S1013 is not satisfied, that is, if the distance to the reference vector one time before is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1021), and the processing of the attention vector is terminated. Further, when the condition of step S1015 is not satisfied, that is, when the distance to the nearest neighbor cluster is equal to or less than the abnormality determination threshold value, it is immediately determined to be normal (S1021), and the processing of the attention vector is terminated. Similar to the process of FIG. 11A, the calculation time can be shortened by discontinuing the calculation process.
 次に、以上の動作を実現するための異常検知装置100のユーザインタフェース(GUI)の例を説明する。 Next, an example of the user interface (GUI) of the abnormality detection device 100 for realizing the above operation will be described.
 図12Aおよび図12Bは、オフライン解析実施のための学習期間、及び処理パラメータ含む解析条件を設定するGUIの例である。この画面では、算出された学習結果をレシピとして登録することも可能である。また、過去のセンサ信号102は、設備ID及び時刻と対応付けられてデータベースに保存されているものとする。 FIGS. 12A and 12B are examples of GUIs for setting the learning period for performing offline analysis and analysis conditions including processing parameters. On this screen, it is also possible to register the calculated learning result as a recipe. Further, it is assumed that the past sensor signal 102 is stored in the database in association with the equipment ID and the time.
 図12Aは異常測度算出方法として近傍データプリセット方式を選択する場合、図12Bは近傍データ探索方式を選択する場合の例である。オフライン解析条件設定画面1101では、対象設備、学習期間、テスト期間、クラスタリングパラメータ、異常測度算出パラメータを入力する。設備ID入力ウィンドウ1102には、対象とする設備のIDを入力する。設備リスト表示ボタン1103の押下により、センサ信号蓄積部103に保存されているデータの装置IDのリストが表示されるので、リストから選択入力する。異常検知装置100につながる設備101が1台のみの場合は、設備ID入力ウィンドウ1102は表示されない。 FIG. 12A is an example when the neighborhood data preset method is selected as the abnormality measure calculation method, and FIG. 12B is an example when the neighborhood data search method is selected. On the offline analysis condition setting screen 1101, the target equipment, learning period, test period, clustering parameter, and abnormality measure calculation parameter are input. In the equipment ID input window 1102, the ID of the target equipment is input. By pressing the equipment list display button 1103, a list of device IDs of data stored in the sensor signal storage unit 103 is displayed, and a list is selected and input from the list. If there is only one equipment 101 connected to the abnormality detection device 100, the equipment ID input window 1102 is not displayed.
 学習期間入力ウィンドウ1104には、学習データを抽出したい期間の開始日と終了日を入力する。テスト期間入力ウィンドウ1105には、解析対象としたい期間の開始日と終了日を入力する。センサ選択入力ウィンドウ1106には、使用するセンサを入力する。リスト表示ボタン1107のクリックにより図示しないがセンサリストが表示されるので、リストから選択入力する。 In the learning period input window 1104, enter the start date and end date of the period for which learning data is to be extracted. In the test period input window 1105, enter the start date and end date of the period to be analyzed. The sensor to be used is input to the sensor selection input window 1106. A sensor list (not shown) is displayed by clicking the list display button 1107, so select and input from the list.
 クラスタリングパラメータ設定入力ウィンドウ1108には、クラスタリング部106における処理で指定するクラスタ数(1108a)およびクラスタメンバ数(1108b)、ステップS506で使用するクラスタ中心初期配置の打切り基準値を距離換算した値(1108c)、ステップS605で使用するクラスタリング繰り返し打ち切り基準値(1108d)を入力する。また、クラスタ選択部108における処理で指定するクラスタ選択数(1108e)を入力する。さらに、近傍データプリセット方式選択チェックボタン(1108f)を指定する。ここで、図12Aに示すようにチェックボタン1108fがチェックされている場合は、クラスタメンバ数を基準ベクトル作成に用いるデータ数kと同じ値、クラスタ選択数を1に固定して、編集不可とする。そして、学習時は図10A、異常検知時は図11Aに示す処理フローに従って処理される。初期配置および繰り返しの打切り基準値はその値が大きいほど早く打ち切られ、0にすると打切りは行われなくなる。図12Bに示すようにチェックボタン1108fがチェックされていない場合は、クラスタメンバ数(1108b)、クラスタ選択数(1108e)の編集が可能であり、学習時は図10B、異常検知時は図11Bに示す処理フローに従って処理される。 In the clustering parameter setting input window 1108, the number of clusters (1108a) and the number of cluster members (1108b) specified in the processing in the clustering unit 106, and the censoring reference value of the cluster center initial arrangement used in step S506 are converted into distances (1108c). ), The clustering repetition cutoff reference value (1108d) used in step S605 is input. Further, the number of cluster selections (1108e) specified in the process in the cluster selection unit 108 is input. Further, the neighborhood data preset method selection check button (1108f) is specified. Here, when the check button 1108f is checked as shown in FIG. 12A, the number of cluster members is fixed to the same value as the number of data k used for creating the reference vector, and the number of selected clusters is fixed to 1, making it uneditable. .. Then, processing is performed according to the processing flow shown in FIG. 10A during learning and FIG. 11A during abnormality detection. The larger the initial arrangement and the repeat censoring reference value, the faster the censoring is performed, and when it is set to 0, the censoring is not performed. As shown in FIG. 12B, when the check button 1108f is not checked, the number of cluster members (1108b) and the number of cluster selections (1108e) can be edited, as shown in FIG. 10B during learning and in FIG. 11B when an abnormality is detected. It is processed according to the processing flow shown.
 異常測度算出パラメータ入力ウィンドウ1109には、異常測度算出において使用するパラメータを入力する。図は手法として局所部分空間を採用した場合の例であり、基準ベクトル作成に用いる近傍ベクトル数k(1109a)と正則化パラメータ(1109b)を入力する。正則化パラメータは、(2)式において相関行列Cの逆行列が求められないことを防ぐため、対角成分に加算する小さい数である。また、1時刻前の基準ベクトルまでの距離に基づく異常測度算出打切りを実行するかどうかのチェックボタン(1109c)、最近傍クラスタまでの距離に基づく異常測度算出打切りを実行するかどうかのチェックボタン(1109d)を指定する。チェックボタン1109cがチェックされていない場合、ステップS904~S905またはS914~S915の処理およびステップS1002~S1003またはS1012~S1013の処理が実行されない。また、チェックボタン1109dがチェックされていない場合、ステップS1005またはS1015の処理が実行されない。 In the anomaly measure calculation parameter input window 1109, input the parameters used in the anomaly measure calculation. The figure is an example when a local subspace is adopted as a method, and the number of neighborhood vectors k (1109a) and the regularization parameter (1109b) used for creating the reference vector are input. The regularization parameter is a small number to be added to the diagonal component in order to prevent the inverse matrix of the correlation matrix C from being obtained in Eq. (2). In addition, a check button (1109c) for whether to execute the anomaly measure calculation discontinuation based on the distance to the reference vector one time ago, and a check button (1109c) for executing the anomaly measure calculation discontinuation based on the distance to the nearest cluster. 1109d) is specified. If the check button 1109c is not checked, the processes of steps S904 to S905 or S914 to S915 and the processes of steps S1002 to S1003 or S1012 to S1013 are not executed. If the check button 1109d is not checked, the process of step S1005 or S1015 is not executed.
 以上の解析条件の情報が確定したら、実行ボタン1111の押下により、オフライン解析を実行する。
  まず、学習期間のセンサ信号を用い、図4(a)の処理フローに従って学習を実行する。学習結果として、ステップS302で算出されたセンサ信号毎の平均と標準偏差、ステップS303で算出された各クラスタの中心位置とメンバとなるベクトルのIDと区間ID、ステップS302で抽出された特徴ベクトルデータのうち、いずれかのクラスタのメンバとなるデータ、ステップS306で算出されたしきい値を保存しておく。さらに、ステップS305で算出した異常測度をしきい値と比較して正常か異常かの判定を行い、判定結果、異常測度、しきい値を併せて時系列データとして保存しておく。次に、テスト期間のセンサ信号を用い、図4(b)の処理フローに従って異常測度を算出し、正常か異常かの判定を行い、判定結果、異常測度、しきい値を併せて時系列データとして保存しておく。
When the above analysis condition information is confirmed, the offline analysis is executed by pressing the execute button 1111.
First, learning is executed according to the processing flow of FIG. 4A using the sensor signal during the learning period. As learning results, the average and standard deviation for each sensor signal calculated in step S302, the center position of each cluster calculated in step S303, the ID and section ID of the vector to be a member, and the feature vector data extracted in step S302. Among them, the data that becomes a member of any of the clusters and the threshold value calculated in step S306 are saved. Further, the abnormality measure calculated in step S305 is compared with the threshold value to determine whether it is normal or abnormal, and the determination result, the abnormality measure, and the threshold value are also stored as time-series data. Next, using the sensor signal during the test period, the anomaly measure is calculated according to the processing flow shown in FIG. 4 (b), and whether it is normal or abnormal is determined. Save as.
 解析終了後、後述する結果表示画面が表示される。ユーザによる確認が終了すると、オフライン解析条件設定画面1101に戻ってくる。レシピ名入力ウィンドウ1110にレシピ名を入力し、登録ボタン1112を押下することにより、設備ID及びレシピ名と対応付けて学習結果および解析結果を保存し、終了する。ここで、学習結果には、学習の実行により作成保存されたデータのほか、入力ウィンドウ1106、1108、1109で入力されたセンサ選択情報、クラスタリングパラメータ、異常測度算出パラメータが含まれる。終了ボタン1113が押下された場合は、何もしないで終了する。この場合、学習により作成保存された学習結果および、続く異常検知処理により作成保存された解析結果は、削除されるか次に実行される解析によって上書きされる。 After the analysis is completed, the result display screen described later is displayed. When the confirmation by the user is completed, the screen returns to the offline analysis condition setting screen 1101. By inputting the recipe name in the recipe name input window 1110 and pressing the registration button 1112, the learning result and the analysis result are saved in association with the equipment ID and the recipe name, and the process ends. Here, the learning result includes the sensor selection information, the clustering parameter, and the abnormality measurement calculation parameter input in the input windows 1106, 1108, and 1109, in addition to the data created and saved by executing the learning. When the end button 1113 is pressed, the process ends without doing anything. In this case, the learning result created and saved by learning and the analysis result created and saved by the subsequent abnormality detection process are deleted or overwritten by the analysis executed next.
 登録された学習結果は、活性か不活性かのラベルをつけて管理され、以降オンラインの解析が実行される。オンライン解析では、新しく入力されたデータに対し、装置IDが一致する活性な学習結果の情報を用いて、図4(b)に示す処理を行い、結果をレシピ名および処理日時と対応付けて保存しておく。これらの処理は定期的、例えば1日毎に実行する。サンプリング間隔が短い設備やリアルタイム性を求められる設備については、実行の間隔をもっと短くする。 The registered learning results are managed with a label of active or inactive, and then online analysis is executed. In the online analysis, the newly input data is subjected to the processing shown in FIG. 4B using the information of the active learning result whose device ID matches, and the result is saved in association with the recipe name and the processing date and time. I will do it. These processes are performed on a regular basis, for example, daily. For equipment with a short sampling interval or equipment that requires real-time performance, the execution interval should be shorter.
 図12Cは、オンライン解析結果の表示対象を指定するためのGUIの例である。ユーザは、表示対象指定画面1121から表示対象の設備、レシピ及び期間を指定する。始めに、装置ID選択ウィンドウ1122により設備IDを選択する。次に、レシピ名選択ウィンドウ1123により、設備ID(1122)を対象としたレシピのリストから表示対象のレシピを選択する。データ記録期間表示部1124には、入力されたレシピを用いて処理され、記録が残されている期間の開始日と終了日が表示される。結果表示期間指定ウィンドウ1125には、結果を表示したい期間の開始日と終了日を入力する。表示ボタン1126を押下すると、異常検知処理の結果が表示される。終了ボタン1127を押下すると、表示対象を指定する処理を終了する。 FIG. 12C is an example of a GUI for designating a display target of online analysis results. The user specifies the equipment, recipe, and period to be displayed from the display target specification screen 1121. First, the equipment ID is selected by the device ID selection window 1122. Next, the recipe to be displayed is selected from the list of recipes for the equipment ID (1122) by the recipe name selection window 1123. The data recording period display unit 1124 displays the start date and end date of the period in which the input recipe is processed and the recording is left. In the result display period specification window 1125, enter the start date and end date of the period for which the result is to be displayed. When the display button 1126 is pressed, the result of the abnormality detection process is displayed. When the end button 1127 is pressed, the process of specifying the display target is terminated.
 図13Aおよび図13Bは、解析結果をユーザに示すためのGUIの例である。ユーザが各画面の上部に表示されたタブを選択することにより、解析結果全体表示画面1201および解析結果拡大表示画面1202のいずれかに切り換わる。 13A and 13B are examples of GUI for showing the analysis result to the user. When the user selects a tab displayed at the top of each screen, the user switches to either the analysis result overall display screen 1201 or the analysis result enlarged display screen 1202.
 図13Aは、解析結果全体表示画面1201の例である。解析結果全体表示画面1201には、指定された期間の、異常測度、しきい値、及び判定結果、並びにセンサ信号の時系列グラフが表示される。期間表示ウィンドウ1203には、オフライン解析の結果を表示する場合は図12Aで指定された学習期間及びテスト期間が表示される。オンライン解析の結果を表示する場合は、図示していないが、図12Cで指定された結果表示期間が表示される。 FIG. 13A is an example of the analysis result overall display screen 1201. The analysis result overall display screen 1201 displays an abnormality measure, a threshold value, a determination result, and a time series graph of the sensor signal for a specified period. When displaying the result of the offline analysis, the period display window 1203 displays the learning period and the test period specified in FIG. 12A. When displaying the result of the online analysis, although not shown, the result display period specified in FIG. 12C is displayed.
 異常測度表示ウィンドウ1204には、指定された学習期間・テスト期間あるいは結果表示期間での異常測度1204a、しきい値1204b(破線)、及び判定結果1204cが表示される。また、学習に使用した区間に丸印1204dが表示される。センサ信号表示ウィンドウ1205には、指定された学習期間・テスト期間あるいは結果表示期間での指定されたセンサについて、時系列センサ信号1205aが表示される。 In the abnormality measure display window 1204, the abnormality measure 1204a, the threshold value 1204b (broken line), and the judgment result 1204c in the designated learning period / test period or result display period are displayed. In addition, a circle 1204d is displayed in the section used for learning. In the sensor signal display window 1205, the time series sensor signal 1205a is displayed for the designated sensor in the designated learning period / test period or result display period.
 センサ選択ウィンドウ1206では、ユーザの入力によってセンサを指定する。ただし、ユーザが指定する前は、先頭の使用センサが選択されている。カーソル1207は、拡大表示の時の起点を表し、ユーザのマウス操作により移動できる。表示日数指定ウィンドウ1208には、解析結果拡大表示画面1202での拡大表示の起点から終点までの日数が表示され、この画面で入力することもできる。日付表示ウィンドウ1209には、カーソル位置の日付が表示される。終了ボタン1210の押下により、解析結果全体表示画面1201、解析結果拡大表示画面1202のいずれもが消去され、解析結果の表示が終了する。 In the sensor selection window 1206, the sensor is specified by the user's input. However, before the user specifies it, the first sensor used is selected. The cursor 1207 represents the starting point at the time of enlarged display, and can be moved by the user's mouse operation. The number of days from the start point to the end point of the enlarged display on the analysis result enlarged display screen 1202 is displayed in the display days designation window 1208, and can be input on this screen. The date at the cursor position is displayed in the date display window 1209. By pressing the end button 1210, both the analysis result overall display screen 1201 and the analysis result enlarged display screen 1202 are erased, and the analysis result display ends.
 図13Bは、解析結果拡大表示画面1202の例である。解析結果拡大表示画面1202には、解析結果全体表示画面1201においてカーソル1207で示された日付を起点とし、表示日数指定ウィンドウ1208で指定された日数の期間内の、異常測度、しきい値、判定結果、及びセンサ信号の時系列グラフが表示される。すなわち、異常測度表示ウィンドウ1204及びセンサ信号表示ウィンドウ1205には、解析結果全体表示画面1201と同様の情報が、拡大して表示される。 FIG. 13B is an example of the analysis result enlarged display screen 1202. On the analysis result enlarged display screen 1202, the abnormality measurement, the threshold value, and the determination within the period of the number of days specified by the display days designation window 1208, starting from the date indicated by the cursor 1207 on the analysis result overall display screen 1201. The result and the time series graph of the sensor signal are displayed. That is, the same information as the analysis result overall display screen 1201 is enlarged and displayed on the abnormality measure display window 1204 and the sensor signal display window 1205.
 なお、解析結果拡大表示画面1202では、スクロールバー1211とスクロールバー領域1212を追加表示している。スクロールバー1211の長さは表示日数指定ウィンドウ1208で指定された日数に、スクロールバー領域1212の全体の長さは解析結果全体表示画面1201に表示されている期間に相当する。また、スクロールバー1211の左端部が拡大表示の起点に対応する。ユーザはスクロールバー1211を操作することで、表示の起点を変更することも可能であり、この変更は解析結果全体表示画面1201のカーソル1207の位置と日付表示ウィンドウ1209の表示に反映される。 
 以上のように、本実施例によれば、高速に処理可能な異常検知装置および異常検知方法を提供することができる。
The scroll bar 1211 and the scroll bar area 1212 are additionally displayed on the analysis result enlarged display screen 1202. The length of the scroll bar 1211 corresponds to the number of days specified in the display days designation window 1208, and the total length of the scroll bar area 1212 corresponds to the period displayed on the analysis result overall display screen 1201. Further, the left end portion of the scroll bar 1211 corresponds to the starting point of the enlarged display. The user can also change the starting point of the display by operating the scroll bar 1211, and this change is reflected in the position of the cursor 1207 on the analysis result overall display screen 1201 and the display of the date display window 1209.
As described above, according to the present embodiment, it is possible to provide an abnormality detection device and an abnormality detection method capable of high-speed processing.
 100:異常検知装置、101:設備、102:センサ信号、103:センサ信号蓄積部、104:センサ信号入力部、105:特徴ベクトル抽出部、106:クラスタリング部、107:学習結果蓄積部、108:クラスタ選択部、109:異常測度算出部、110:しきい値算出部、111:異常検出部、1101:オフライン解析条件設定画面、1121:表示対象指定画面、1201:解析結果全体表示画面、1202:解析結果拡大表示画面。 100: Anomaly detection device, 101: Equipment, 102: Sensor signal, 103: Sensor signal storage unit, 104: Sensor signal input unit, 105: Feature vector extraction unit, 106: Clustering unit, 107: Learning result storage unit, 108: Cluster selection unit, 109: Abnormality measurement calculation unit, 110: Threshold calculation unit, 111: Abnormality detection unit, 1101: Offline analysis condition setting screen, 1121: Display target specification screen, 1201: Analysis result overall display screen, 1202: Analysis result enlarged display screen.

Claims (9)

  1.  設備に装着された複数のセンサから出力される複数の時系列のセンサ信号を入力するセンサ信号入力部と、
     前記センサ信号から時刻毎に特徴ベクトルを抽出する特徴ベクトル抽出部と、
     指定された学習期間の前記特徴ベクトルをクラスタリングして各クラスタに属する特徴ベクトルを一定数に調整するクラスタリング部と、
     新たに抽出した前記特徴ベクトルに応じて前記クラスタから1個または数個を選択するクラスタ選択部と、
     前記選択したクラスタに属する特徴ベクトルの中から前記新たに抽出した特徴ベクトルに応じて所定数の特徴ベクトルを選択し、前記選択した特徴ベクトルを用いて基準ベクトルを作成し、前記作成した基準ベクトルと前記新たに抽出した特徴ベクトルに基づいて異常測度を算出する異常測度算出部と、
     前記異常測度をしきい値と比較することにより各時刻のセンサ信号が正常か異常かを判定する異常検出部とを備え、
     前記異常測度算出部は、異常検知時に、新たに抽出した特徴ベクトルと前記選択したクラスタの中心位置に基づいて仮の異常測度を算出し、
     前記異常検出部は、前記仮の異常測度が前記しきい値以下の場合に前記センサ信号が正常と判定することを特徴とする異常検知装置。
    A sensor signal input unit that inputs multiple time-series sensor signals output from multiple sensors installed in the equipment,
    A feature vector extraction unit that extracts a feature vector from the sensor signal at each time of day,
    A clustering unit that clusters the feature vectors for a specified learning period and adjusts the feature vectors belonging to each cluster to a certain number.
    A cluster selection unit that selects one or several from the clusters according to the newly extracted feature vector, and
    A predetermined number of feature vectors are selected from the feature vectors belonging to the selected cluster according to the newly extracted feature vector, a reference vector is created using the selected feature vector, and the reference vector is combined with the created reference vector. Anomalous measure calculation unit that calculates anomalous measure based on the newly extracted feature vector,
    It is provided with an abnormality detection unit that determines whether the sensor signal at each time is normal or abnormal by comparing the abnormality measure with a threshold value.
    At the time of abnormality detection, the abnormality measure calculation unit calculates a temporary abnormality measure based on the newly extracted feature vector and the center position of the selected cluster.
    The abnormality detection unit is an abnormality detection device, characterized in that the sensor signal is determined to be normal when the provisional abnormality measure is equal to or less than the threshold value.
  2.  設備に装着された複数のセンサから出力される複数の時系列のセンサ信号を入力するセンサ信号入力部と、
     前記センサ信号から時刻毎に特徴ベクトルを抽出する特徴ベクトル抽出部と、
     指定された学習期間の前記特徴ベクトルをクラスタリングして各クラスタに属する特徴ベクトルを一定数に調整するクラスタリング部と、
     新たに抽出した前記特徴ベクトルに応じて前記クラスタから1個または数個を選択するクラスタ選択部と、
     前記選択したクラスタに属する特徴ベクトルの中から前記新たに抽出した特徴ベクトルに応じて所定数の特徴ベクトルを選択し、前記選択した全特徴ベクトルを用いて基準ベクトルを作成し、前記作成した基準ベクトルと前記新たに抽出した特徴ベクトルに基づいて異常測度を算出する異常測度算出部と、
     前記異常測度をしきい値と比較することにより各時刻のセンサ信号が正常か異常かを判定する異常検出部とを備え、
     前記異常測度算出部は、前記クラスタ選択部におけるクラスタ選択の前に、新たに抽出した特徴ベクトルとその1時刻前の基準ベクトルに基づいて仮の異常測度を算出し、学習時は、前記仮の異常測度が処理対象区間で算出済みの前記異常測度の最大値以下の場合、異常検知時は、前記仮の異常測度が前記しきい値以下の場合に、前記仮の異常測度を異常測度とすることを特徴とする異常検知装置。
    A sensor signal input unit that inputs multiple time-series sensor signals output from multiple sensors installed in the equipment,
    A feature vector extraction unit that extracts a feature vector from the sensor signal at each time of day,
    A clustering unit that clusters the feature vectors for a specified learning period and adjusts the feature vectors belonging to each cluster to a certain number.
    A cluster selection unit that selects one or several from the clusters according to the newly extracted feature vector, and
    A predetermined number of feature vectors are selected from the feature vectors belonging to the selected cluster according to the newly extracted feature vector, a reference vector is created using all the selected feature vectors, and the created reference vector is created. And the anomaly measure calculation unit that calculates the anomaly measure based on the newly extracted feature vector,
    It is provided with an abnormality detection unit that determines whether the sensor signal at each time is normal or abnormal by comparing the abnormality measure with a threshold value.
    The anomaly measure calculation unit calculates a tentative anomaly measure based on the newly extracted feature vector and the reference vector one time before the cluster selection in the cluster selection unit, and at the time of learning, the tentative measure is calculated. When the anomaly measure is equal to or less than the maximum value of the anomaly measure calculated in the section to be processed, the provisional anomaly measure is defined as the anomaly measure when the provisional anomaly measure is equal to or less than the threshold value at the time of abnormality detection. Anomaly detection device characterized by this.
  3.  請求項1または2に記載の異常検知装置であって、
     前記クラスタリング部は、クラスタ中心位置の初期配置を互いの類似度が低くなるように1個ずつクラスタを追加し、指定された基準類似度より互いの類似度が高くなるか、指定された最大数を超える場合に追加を停止することを特徴とする異常検知装置。
    The abnormality detection device according to claim 1 or 2.
    The clustering unit adds clusters one by one so that the initial arrangement of the cluster center positions is low in similarity to each other, and the similarity to each other is higher than the specified reference similarity or the specified maximum number. Anomaly detection device characterized in that addition is stopped when the number exceeds.
  4.  請求項1または2に記載の異常検知装置であって、
     前記クラスタリング部は、学習期間を予め複数の区間に分け、一つのクラスタに属する特徴ベクトルの区間は同一となるようにクラスタリングを行い、
     前記クラスタ選択部は、学習時は前記新たに抽出した特徴ベクトルとは異なる区間の前記クラスタから、異常検知時は前記クラスタから、前記新たに抽出した特徴ベクトルに応じて1個を選択し、
     前記異常測度算出部は、前記選択したクラスタに属する全特徴ベクトルを用いて基準ベクトルを作成することを特徴とする異常検知装置。
    The abnormality detection device according to claim 1 or 2.
    The clustering unit divides the learning period into a plurality of sections in advance, and performs clustering so that the sections of the feature vectors belonging to one cluster are the same.
    The cluster selection unit selects one from the cluster in a section different from the newly extracted feature vector at the time of learning, and from the cluster at the time of abnormality detection according to the newly extracted feature vector.
    The anomaly measure calculation unit is an anomaly detection device characterized in that a reference vector is created using all the feature vectors belonging to the selected cluster.
  5.  複数の時系列センサ信号を入力して時刻毎に特徴ベクトルを抽出し、
     指定された学習期間の前記特徴ベクトルをクラスタリングして各クラスタに属する特徴ベクトルを一定数に調整し、
     前記各クラスタの中心とクラスタに属する特徴ベクトルを学習データとして蓄積し、新たに抽出した特徴ベクトルに応じて、学習データとして蓄積したクラスタの中から1個または数個のクラスタを選択し、
     前記選択したクラスタに属する特徴ベクトルの中から前記新たに抽出した特徴ベクトルに応じて所定数の特徴ベクトルを選択し、前記選択した全特徴ベクトルを用いて基準ベクトルを作成し、
     前記新たに抽出した特徴ベクトルと前記作成した基準ベクトルに基づき異常測度を算出し、
     前記異常測度をしきい値と比較することにより各時刻のセンサ信号が異常か正常かを判定し、
     前記異常測度の算出は、異常検知時に、新たに抽出した特徴ベクトルと前記選択したクラスタの中心位置に基づいて仮の異常測度を算出し、
     前記異常か正常かの判定は、前記仮の異常測度が前記しきい値以下の場合に前記センサ信号が正常と判定することを特徴とする異常検知方法。
    A feature vector is extracted for each time by inputting multiple time-series sensor signals.
    The feature vectors of the specified learning period are clustered and the feature vectors belonging to each cluster are adjusted to a certain number.
    The center of each cluster and the feature vectors belonging to the clusters are accumulated as training data, and one or several clusters are selected from the clusters accumulated as training data according to the newly extracted feature vector.
    A predetermined number of feature vectors are selected from the feature vectors belonging to the selected cluster according to the newly extracted feature vector, and a reference vector is created using all the selected feature vectors.
    Anomalous measures are calculated based on the newly extracted feature vector and the created reference vector.
    By comparing the anomaly measure with the threshold value, it is determined whether the sensor signal at each time is abnormal or normal.
    In the calculation of the anomaly measure, a temporary anomaly measure is calculated based on the newly extracted feature vector and the center position of the selected cluster at the time of abnormality detection.
    The abnormality detection method is characterized in that the sensor signal is determined to be normal when the provisional abnormality measure is equal to or less than the threshold value.
  6.  複数の時系列センサ信号を入力して時刻毎に特徴ベクトルを抽出し、
     指定された学習期間の前記特徴ベクトルをクラスタリングして各クラスタに属する特徴ベクトルを一定数に調整し、
     前記各クラスタの中心とクラスタに属する特徴ベクトルを学習データとして蓄積し、新たに抽出した特徴ベクトルに応じて、学習データとして蓄積したクラスタの中から1個または数個のクラスタを選択し、
     前記選択したクラスタに属する特徴ベクトルの中から前記新たに抽出した特徴ベクトルに応じて所定数の特徴ベクトルを選択し、前記選択した特徴ベクトルを用いて基準ベクトルを作成し、
     前記新たに抽出した特徴ベクトルと前記作成した基準ベクトルに基づき異常測度を算出し、
     前記異常測度をしきい値と比較することにより各時刻のセンサ信号が異常か正常かを判定し、
     前記異常測度の算出は、前記クラスタの選択の前に、新たに抽出した特徴ベクトルとその1時刻前の基準ベクトルに基づいて仮の異常測度を算出し、学習時は、前記仮の異常測度が処理対象区間で算出済みの前記異常測度の最大値以下の場合、異常検知時は、前記仮の異常測度が前記しきい値以下の場合に、前記仮の異常測度を異常測度とすることを特徴とする異常検知方法。
    A feature vector is extracted for each time by inputting multiple time-series sensor signals.
    The feature vectors of the specified learning period are clustered and the feature vectors belonging to each cluster are adjusted to a certain number.
    The center of each cluster and the feature vectors belonging to the clusters are accumulated as training data, and one or several clusters are selected from the clusters accumulated as training data according to the newly extracted feature vector.
    A predetermined number of feature vectors are selected from the feature vectors belonging to the selected cluster according to the newly extracted feature vector, and a reference vector is created using the selected feature vector.
    Anomalous measures are calculated based on the newly extracted feature vector and the created reference vector.
    By comparing the anomaly measure with the threshold value, it is determined whether the sensor signal at each time is abnormal or normal.
    In the calculation of the anomaly measure, a provisional anomaly measure is calculated based on the newly extracted feature vector and the reference vector one time before the cluster selection, and the provisional anomaly measure is calculated at the time of learning. When the anomaly measure is equal to or less than the maximum value of the anomaly measure calculated in the processing target section, the provisional anomaly measure is set as the anomaly measure when the provisional anomaly measure is equal to or less than the threshold value. Anomaly detection method.
  7.  請求項5または6に記載の異常検知方法であって、
     前記クラスタリングは、クラスタ中心位置の初期配置を互いの類似度が低くなるように1個ずつクラスタを追加し、指定された基準類似度より互いの類似度が高くなるか、指定された最大数を超える場合に、追加を停止することを特徴とする異常検知方法。
    The abnormality detection method according to claim 5 or 6.
    In the clustering, clusters are added one by one so that the initial arrangement of the cluster center positions is low in similarity with each other, and the similarity with each other is higher than the specified reference similarity, or the specified maximum number is used. An anomaly detection method characterized by stopping the addition when the number exceeds the limit.
  8.  請求項5または6に記載の異常検知方法であって、
     前記クラスタリングは、学習期間を予め複数の区間に分け、一つのクラスタに属する特徴ベクトルの区間は同一となるようにクラスタリングを行い、
     前記クラスタの選択は、学習時は前記新たに抽出した特徴ベクトルとは異なる区間の前記クラスタから、異常検知時は前記クラスタから、前記新たに抽出した特徴ベクトルに応じて1個を選択し、
     前記異常測度の算出は、前記選択したクラスタに属する全特徴ベクトルを用いて基準ベクトルを作成することを特徴とする異常検知方法。
    The abnormality detection method according to claim 5 or 6.
    In the clustering, the learning period is divided into a plurality of sections in advance, and clustering is performed so that the sections of the feature vectors belonging to one cluster are the same.
    For the selection of the cluster, one is selected from the cluster in a section different from the newly extracted feature vector at the time of learning, and one from the cluster at the time of abnormality detection according to the newly extracted feature vector.
    The anomaly measurement method is an anomaly detection method characterized in that a reference vector is created using all feature vectors belonging to the selected cluster.
  9.  請求項5から8の何れか1項に記載の異常検知方法をCPUに実行させるプログラム。 A program that causes the CPU to execute the abnormality detection method according to any one of claims 5 to 8.
PCT/JP2020/024547 2019-06-25 2020-06-23 Anomaly detection device and anomaly detection method WO2020262353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080044178.XA CN113994340A (en) 2019-06-25 2020-06-23 Abnormality detection device and abnormality detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117357A JP6738943B1 (en) 2019-06-25 2019-06-25 Abnormality detection device and abnormality detection method
JP2019-117357 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020262353A1 true WO2020262353A1 (en) 2020-12-30

Family

ID=71949308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024547 WO2020262353A1 (en) 2019-06-25 2020-06-23 Anomaly detection device and anomaly detection method

Country Status (3)

Country Link
JP (1) JP6738943B1 (en)
CN (1) CN113994340A (en)
WO (1) WO2020262353A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225455A (en) * 2022-06-15 2022-10-21 中国电信股份有限公司 Abnormal device detection method and device, electronic device and storage medium
CN116109176A (en) * 2022-12-21 2023-05-12 成都安讯智服科技有限公司 Alarm abnormity prediction method and system based on collaborative clustering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032657A (en) * 2013-06-19 2014-02-20 Hitachi Power Solutions Co Ltd Abnormality detecting method and device thereof
JP2019070930A (en) * 2017-10-06 2019-05-09 株式会社日立パワーソリューションズ Abnormality detection device and abnormality detection method
JP2019096014A (en) * 2017-11-22 2019-06-20 富士通株式会社 Determination device, determination program, and determination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032657A (en) * 2013-06-19 2014-02-20 Hitachi Power Solutions Co Ltd Abnormality detecting method and device thereof
JP2019070930A (en) * 2017-10-06 2019-05-09 株式会社日立パワーソリューションズ Abnormality detection device and abnormality detection method
JP2019096014A (en) * 2017-11-22 2019-06-20 富士通株式会社 Determination device, determination program, and determination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225455A (en) * 2022-06-15 2022-10-21 中国电信股份有限公司 Abnormal device detection method and device, electronic device and storage medium
CN116109176A (en) * 2022-12-21 2023-05-12 成都安讯智服科技有限公司 Alarm abnormity prediction method and system based on collaborative clustering
CN116109176B (en) * 2022-12-21 2024-01-05 成都安讯智服科技有限公司 Alarm abnormity prediction method and system based on collaborative clustering

Also Published As

Publication number Publication date
CN113994340A (en) 2022-01-28
JP6738943B1 (en) 2020-08-12
JP2021005146A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
Hsu et al. Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing
JP5301717B1 (en) Equipment condition monitoring method and apparatus
JP5342708B1 (en) Anomaly detection method and apparatus
EP2905665B1 (en) Information processing apparatus, diagnosis method, and program
JP6216242B2 (en) Anomaly detection method and apparatus
US20120041575A1 (en) Anomaly Detection Method and Anomaly Detection System
JP5538597B2 (en) Anomaly detection method and anomaly detection system
KR101316486B1 (en) Error detection method and system
JP6076751B2 (en) Abnormality diagnosis method and apparatus
JP5364530B2 (en) Equipment state monitoring method, monitoring system, and monitoring program
EP2752722B1 (en) Facility state monitoring method and device for same
JP6076421B2 (en) Equipment condition monitoring method and apparatus
Sarkar et al. Data-driven fault detection in aircraft engines with noisy sensor measurements
WO2013011745A1 (en) Facility state monitoring method and device therefor
US20170193372A1 (en) Health Management Using Distances for Segmented Time Series
WO2020262353A1 (en) Anomaly detection device and anomaly detection method
JP2013140135A (en) Abnormality detection apparatus for periodic driving system, processing apparatus including periodic driving system, abnormality detection method for periodic driving system, and computer program
JP2013143009A (en) Equipment state monitoring method and device using the same
Cheng et al. Using cross-validation for model parameter selection of sequential probability ratio test
Zhou et al. Automatic feature selection for unsupervised clustering of cycle-based signals in manufacturing processes
KR102054500B1 (en) Method for providing design drawing
JP7344015B2 (en) Anomaly detection device and anomaly detection method
WO2018092317A1 (en) Selection device, selection method and selection program
JP6973445B2 (en) Display method, display device, and program
JPWO2013030984A1 (en) Equipment condition monitoring method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831282

Country of ref document: EP

Kind code of ref document: A1