WO2020262188A1 - 無線機、通信システム及び通信方法 - Google Patents

無線機、通信システム及び通信方法 Download PDF

Info

Publication number
WO2020262188A1
WO2020262188A1 PCT/JP2020/023953 JP2020023953W WO2020262188A1 WO 2020262188 A1 WO2020262188 A1 WO 2020262188A1 JP 2020023953 W JP2020023953 W JP 2020023953W WO 2020262188 A1 WO2020262188 A1 WO 2020262188A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
radio
direct wave
unit
transmission
Prior art date
Application number
PCT/JP2020/023953
Other languages
English (en)
French (fr)
Inventor
本江 直樹
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2021526875A priority Critical patent/JP7084553B2/ja
Priority to US17/617,136 priority patent/US11528060B2/en
Publication of WO2020262188A1 publication Critical patent/WO2020262188A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix

Definitions

  • the present invention relates to a radio of a fixed wireless access system equipped with a plurality of antennas, and particularly a radio capable of high-speed transmission and long-distance transmission while avoiding interruption of wireless communication even if there is a shield. , Communication system and communication method.
  • FWA wireless access
  • MWA Mobile Wireless Access
  • NWA Nomadic Wireless Access
  • FWA FWA
  • a telecommunications carrier there is one used for directly wirelessly connecting an exchange or relay line of a telecommunications carrier to an office or a general household.
  • Such systems include a one-to-multipoint system (P-MP; Point to MultiPoint) that connects a base station on the telecommunications carrier side and a subscriber station on the multiple user side, and a telecommunications carrier side.
  • P-MP Point to MultiPoint
  • PP Point to Point
  • the FWA system is used as a backhaul line that connects the base station of the MWA system and the network side.
  • it was generally composed of an optical fiber capable of providing a large capacity and stable communication.
  • a wireless line that can be easily installed at low cost is required, and a wideband FWA system will be used in combination with an optical line. Is becoming.
  • the FWA system can relatively easily supply a dedicated line for inter-building communication, a temporary line for disasters and events, and a network to places where it was difficult to lay optical cables, and the communication line is cut off due to an accident or disaster. There is an advantage that it is hard to be done.
  • Beamforming Beamforming (BF: Beam Forming) technology for transmitting and receiving using a plurality of antennas is known as a technology for further high-speed transmission and long-distance transmission in an FWA system.
  • the phases of the transmission signals radiated from multiple antennas and spatially synthesizing them the phases of the radio waves radiated from each antenna become close to the same phase in some places and strengthen each other's power, and in other places, The radio waves radiated from each antenna cancel each other out.
  • a combined gain can be obtained in a place where the electric power is strengthened, so that the radio wave propagation loss is compensated and long-distance transmission becomes possible.
  • the desired signal power-to-noise power ratio (C / N ratio: Carrier to Noise Ratio) in the receiver is increased, the number of multiple values of quadrature amplitude modulation is increased to enable high-speed transmission.
  • FIG. 5 is a schematic configuration diagram of a transmission block using digital beamforming.
  • the case where the number of antennas is 4 will be described as an example.
  • the functional blocks related to beamforming are mainly described, and the illustration of other functional blocks generally provided in the radio is omitted.
  • the transmission block (transmission mechanism, transmission unit) using beam forming includes an OFDM (Orthogonal Frequency Division Multiplexing) modulation unit 201 and four GI (Guard Interval) addition units 203. , Four digital phase shifters 208, four D / A conversion units 204, four transmission analog units 205, an antenna control unit 206, and four antennas 207. Further, the D / A conversion unit 204 and the transmission analog unit 205 constitute the transmission function unit 200.
  • OFDM Orthogonal Frequency Division Multiplexing
  • GI Guard Interval
  • the digital phase shifter 208 is a component of the beamforming unit 210 and performs phase rotation of the digital signal.
  • the digital phase shifter is composed of a complex multiplier as an example.
  • the OFDM modulation unit 201 OFDM-modulates the transmission data.
  • the GI addition unit 203 adds a CP (Cyclic Prefix) to the OFDM-modulated signal.
  • CP Cyclic Prefix
  • As a method of adding the CP there is a method of copying a certain part after the OFDM symbol and adding it before the beginning of the OFDM symbol.
  • the amount to be added is designed for each system according to the multipath delay time to be considered, such as 1/4 or 1/8 of the OFDM symbol length.
  • the digital phase shifter 208 provides phase differences to the four signals to perform beamforming on the OFDM symbols transmitted from each antenna 207.
  • the D / A conversion unit 204 converts the signal given the phase difference into an analog signal.
  • the transmission analog unit 205 includes a frequency conversion unit, an analog filter, a power amplifier, and the like, and performs analog signal processing for each signal output from each D / A conversion unit 204.
  • the antenna control unit 206 controls the antenna 207.
  • a plurality of antennas 207 are provided and emit radio waves.
  • the transmission data is OFDM-modulated by the OFDM modulation unit 201, and CP is added by the GI addition unit 203.
  • the signal to which the CP is added is given a phase difference to four signals by the digital phase shifter 208, D / A converted by the D / A conversion unit 204 of the transmission function unit 200, and the frequency is converted by the transmission analog unit 205. Conversion and amplification are performed and radiated from the transmitting antenna 207 via the antenna control unit 206.
  • FIG. 6 is a schematic configuration diagram of a transmission block using analog beamforming technology.
  • An analog phase shifter 209 is provided after the transmission function unit 200.
  • the analog phase shifter 209 is a component of the beamforming unit 210 and performs phase rotation of the analog signal.
  • the difference from FIG. 5 is that beamforming is performed in the analog section.
  • FIG. 7 is a schematic explanatory view showing an example of antenna directivity.
  • 7 (b) to 7 (d) show the directivity of the transmitting antenna when a narrow beam is formed by beamforming (BF), and
  • FIG. 7 (e) shows the directivity when CDD (Cyclic Delay Diversity) described later is performed. It shows the directivity of the antenna.
  • the antenna is an example of a planar antenna such as a patch antenna that is often used in the microwave band and the millimeter wave band. The same applies when a sub-array consisting of a plurality of antennas is arranged as a unit.
  • FIG. 7A shows one element and the directivity of a single planar antenna.
  • FIG. 7B shows a case where beamforming is performed with four elements, the directivity is sharper and the combined power in the front direction is larger than that of one element.
  • FIG. 7C shows a case where beamforming is performed with 16 elements, the directivity becomes sharper, and the combined power in the front direction becomes larger.
  • FIG. 7 (d) has 16 elements, the digital phase shifter 208 performs phase rotation so that the phase of the transmitted signal of each antenna is different from that of FIG. 7 (c), and the directivity is on the left side of the front surface. It is controlled to face.
  • the reception BF includes a method of maximizing the gain in the arrival direction of the desired wave and a method of minimizing the gain in the arrival direction of the interference wave when synthesizing the reception signals of the respective antennas. It is also known that the reception performance is improved when spatial diversity is performed by providing a plurality of antennas. Various studies and practical applications have been conducted on algorithms for selecting and performing the optimum method among these receiving technologies according to changes in the propagation environment.
  • CDD Cyclic Delay Diversity
  • SCD Cyclic Shift Diversity
  • CDD cyclic delay diversity
  • the CDD transmits signals transmitted from a plurality of antennas by adding different circulation delay amounts to the same data signal.
  • OFDM modulation constructs an OFDM symbol with a plurality of narrow-band subcarriers orthogonal to each other, and adds a guard interval called CP (Cyclic Prefix) to a multipath having a delay time. It is used in various wireless systems as a highly resistant method.
  • FIG. 8 is a schematic configuration diagram of a transmission block using a CDD.
  • the case where the number of antennas is 4 will be described as an example.
  • the functional blocks related to the CDD are mainly described, and the illustration of other functional blocks generally provided in the radio is omitted.
  • the transmission block (transmission mechanism, transmission unit) using the CDD has the same OFDM modulation unit 201, GI addition unit 203, and transmission function unit as the transmission block that performs beamforming shown in FIGS.
  • the configuration includes 200, an antenna control unit 206, and a cyclic shift unit 202 instead of the beamforming unit 210 in FIGS. 5 and 6.
  • the description of the same components as those in FIGS. 5 and 6 will be omitted.
  • the cyclic shift unit 202 cyclically shifts the OFDM-modulated signal.
  • the cyclic shift amounts in the four cyclic shift units 202 have different values.
  • the cyclic shift amount is set in advance or is set from a control unit (not shown).
  • the cyclic shift unit 202 gives different cyclic shift amounts to the OFDM symbols transmitted from each antenna 207, so that the transmission diversity effect can be obtained. Specifically, if the distance between the antennas is arranged sufficiently larger than the wavelength of the radio frequency, the correlation between the received signals becomes small on the receiving side, so that a diversity effect can be obtained for multipath fading.
  • the transmitted data is OFDM-modulated by the OFDM modulation unit 201, branched into four, and shifted by the cyclic shift unit 202 with different cyclic shift amounts.
  • a CP is added to the cyclically shifted signal by the GI addition unit 203.
  • the signal to which the CP is added is D / A converted by the D / A conversion unit 204 of the transmission function unit 200, frequency conversion and amplification are performed by the transmission analog unit 205, and the transmission antenna 207 is performed via the antenna control unit 206. Is radiated from.
  • FIG. 7 (e) The antenna directivity in the case of transmitting using the CDD will be described with reference to FIG. 7 (e).
  • the signals transmitted from each antenna are cyclically shifted by different cyclic shift amounts, but this means that when the same signal is transmitted from multiple antennas, unintended BF is performed. This is because the diversity effect cannot be obtained.
  • CDD is an effective technique when using OFDM modulation using CP.
  • CDD is also a type of beamforming, but hereafter, forming a narrow beam is referred to as BF and is distinguished from CDD.
  • FIG. 9 is a schematic configuration diagram of a reception block of the radio.
  • Antenna 207 receives a radio signal.
  • the antenna control unit 206 controls each antenna 207 and outputs the received signal to the corresponding receiving analog unit 301.
  • the reception analog unit 301 includes an LNA (Low Noise Amplifier), an analog filter, and a frequency conversion unit, and performs analog processing of the received signal.
  • the A / D conversion unit 302 converts the signal output from the reception analog unit 301 into a digital signal.
  • the signal received by the antenna 207 is frequency-converted by the reception analog unit 301 for each antenna 207 and subjected to reception processing, converted into a digital signal by the A / D conversion unit 302, and received signal #. It is output as 1 to received signal # 4.
  • various MIMO (Multiple-Input Multiple-Output) processes are performed and OFDM demodulated. If quadrature amplitude modulation or the like is performed before OFDM modulation, the demodulation is also performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-172377, "Wireless Communication Device, Wireless Communication Method, and Wireless Communication System”
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-126271 “Base Station”
  • Patent Document 1 describes a wireless communication device that captures a range in which radio communication is "lined”, compares the captured image with a reference image, detects an obstacle, and notifies the user.
  • Patent Document 2 estimates the effective state of the propagation path, estimates the communication quality of the propagation path, and based on the estimation result, any one of transmission diversity, transmission beamforming, Closed-Loop MIMO, and Open-Loop MIMO.
  • the base station that determines the transmission mode of is described.
  • the conventional radio has a problem that when beamforming is performed, if there is a shield in the line of sight, communication may be interrupted and a serious communication failure may occur. ..
  • Patent Document 1 and Patent Document 2 describe that the presence or absence of a direct wave is detected based on the values of the correlation coefficients of the received signals at a plurality of antennas, and the transmission mode is switched to beamforming or CDD. Not.
  • the present invention has been made in view of the above circumstances, and provides a radio, a communication system, and a communication method capable of preventing communication interruption and improving reliability while enabling high-speed transmission and long-distance transmission.
  • the purpose is.
  • the present invention for solving the problems of the above-mentioned conventional example is a radio device used in a fixed wireless access system, equipped with a plurality of antennas, and transmitting and receiving by an OFDM modulation method, and can be used as a reception signal by the plurality of antennas.
  • a direct wave detection unit that detects the presence or absence of a direct wave based on this, a plurality of cyclic shift units that are provided corresponding to a plurality of antennas and shift the phase of the transmission signal from the antenna by a specific shift amount, and a plurality of cyclic shift units from the antenna.
  • the direct wave detection unit detects a direct wave, it controls a plurality of cyclic shift units and a beamforming unit to create a narrow beam.
  • the cyclic shift unit and the beamforming unit are controlled so that the cyclic shift diversity is performed without generating a narrow beam.
  • the direct wave detection unit determines the presence or absence of a direct wave based on the correlation calculation unit that calculates the correlation coefficient of the received signals from the plurality of antennas and the value of the correlation coefficient.
  • the same shift amount is set in a plurality of cyclic shift units, and when a direct wave is not detected, a different shift amount is set in a plurality of cyclic shift units. It is characterized by having and.
  • the cyclic shift control unit determines that the direct wave is detected when the value of the correlation coefficient is equal to or higher than the preset threshold value, the value of the correlation coefficient is higher than the threshold value. When it is small, it is determined that the direct wave is not detected.
  • the present invention is a fixed radio access system including the first radio described in any of the above and a second radio provided with a plurality of antennas, wherein the first radio receives a received signal.
  • the transmission mode information is transmitted to the second radio, and the second radio receives from the first radio. It is characterized in that beamforming or cyclic shift diversity is performed based on the transmission mode information for transmission.
  • the present invention is a communication method used in a fixed wireless access system that transmits and receives by an OFDM modulation method, in which a radio having a plurality of antennas has a direct wave based on the reception signals of the plurality of antennas.
  • a direct wave is detected, beamforming is performed to generate a narrow beam and transmitted, and when a direct wave is not detected, cyclic shift diversity is performed and transmitted.
  • the present invention is a radio device used in a fixed wireless access system, equipped with a plurality of antennas, and transmitting and receiving by an OFDM modulation method, and detects the presence or absence of a direct wave based on the reception signals of the plurality of antennas.
  • a direct wave detection unit a plurality of cyclic shift units provided corresponding to a plurality of antennas and shifting the phase of the transmission signal from the antenna by a specific shift amount, and a narrowness by performing phase rotation on the transmission signal from the antenna. It is equipped with a beamforming unit that generates a beam, and when the direct wave detection unit detects a direct wave, it controls a plurality of cyclic shift units and a beamforming unit to generate a narrow beam and detect the direct wave.
  • the radio device controls the patrol shift section and the beamforming section to perform patrol shift diversity without generating a narrow beam. Therefore, if there is no obstruction in the line of sight, high-speed transmission and It enables long-distance transmission, and when a shield appears, it has the effect of preventing communication interruption due to the diversity effect of multipath and improving reliability.
  • the cyclic shift control unit determines that a direct wave has been detected when the value of the correlation coefficient is equal to or higher than a preset threshold value, and when the value of the correlation coefficient is smaller than the threshold value, it is determined. Since the above-mentioned radio is used to determine that the direct wave is not detected, there is an effect that the presence or absence of the direct wave can be detected by a simple configuration and processing.
  • a fixed wireless access system including the first radio device described in any of the above and a second radio device having a plurality of antennas, wherein the first radio device is When either beamforming or cyclic shift diversity is transmitted based on the received signal, the transmission mode information is transmitted to the second radio, and the second radio is transmitted from the first radio. Since it is a communication system that performs beamforming or cyclic shift diversity based on the received transmission mode information and transmits it, one radio selects the transmission mode based on the presence or absence of direct waves, and the other radio selects the transmission mode. When there is no obstruction, high-speed transmission and long-distance transmission are possible, and when an obstruction appears, a system that prevents communication interruption can be easily configured.
  • a radio having a plurality of antennas directly waves based on the received signals of the plurality of antennas.
  • beam forming is performed to generate and transmit a narrow beam
  • cyclic shift diversity is performed and transmitted. Therefore, when there is no shield, high-speed transmission and long-distance transmission are possible, and when a shield appears, there is an effect that communication interruption can be prevented.
  • the radio device (the present radio device) according to the embodiment of the present invention includes a plurality of antennas, a plurality of cyclic shift units provided corresponding to the antennas and giving a cyclic shift to a transmission signal for each antenna, and each cyclic shift.
  • a cyclic shift control unit that controls the shift amount of the transmission signal in the unit and a correlation calculation unit that calculates the correlation coefficient for the received signal from each antenna are provided, and the correlation calculation unit has a correlation coefficient for the received signal from each antenna.
  • the cyclic shift control unit detects the presence or absence of a direct wave based on the correlation coefficient, and if there is a direct wave, the cyclic shift unit is given a common shift amount to the transmission signal of each antenna.
  • a narrow beam is formed by beamforming and transmitted, and when there is no direct wave, a different shift amount is given to the patrol shift part to perform patrol shift diversity, and when there is no obstruction in the line of sight. High-speed transmission and long-distance transmission are possible, and when a shield appears, the diversity effect of multipath can prevent communication interruption and improve reliability.
  • the communication system according to the embodiment of the present invention is a fixed wireless access system provided with the present radio, and the communication method according to the embodiment of the present invention is performed by the present radio. It is a communication method.
  • FIG. 1 is a schematic explanatory view showing an outline of operation of this radio.
  • FIG. 1 schematically shows communication in FWA, and shows a state in which a radio 401 equipped with a right antenna and a radio 402 equipped with a left antenna perform PP communication.
  • the radio 401 is the radio.
  • FIG. 1A shows a case where the communication is within the line-of-sight (line-of-sight communication), and the radio 401 generates a narrow beam by beamforming and transmits the narrow beam. In this state, high-speed transmission and long-distance transmission are possible.
  • FIG. 1B shows a case where the shield 403 appears in the line of sight (non-line-of-sight communication), and the narrow beam is blocked by the shield 403 and does not reach the radio 402, so that the communication is interrupted.
  • the radio 401 switches to the CDD for communication when the line of sight is out of sight. Communication switching is performed by detecting the presence or absence of a direct wave. As a result, even if there is a shield 403, multipaths such as reflected waves reach the radio 402, so that communication interruption can be avoided. In this way, the operation of this radio is performed.
  • FIG. 2 is a block diagram of the configuration of this radio.
  • the present radio has the same components as the conventional ones, the OFDM modulation unit 201, the cyclic shift unit 202, the GI addition unit 203, the beamforming unit 211, the transmission function unit 200, and the like. It includes an antenna control unit 206, an antenna 207, and a reception function unit 300, and includes a correlation calculation unit 501 and a cyclic shift control unit 502 as characteristic parts of the radio.
  • the configuration in which the correlation calculation unit 501 and the cyclic shift control unit 502 are combined corresponds to the direct wave detection unit according to the claim.
  • a case where four antennas are provided as the antenna 207 will be described as an example.
  • functional blocks such as AGC (Automatic Gain Control) and AFC (Automatic Frequency Control) may be inserted.
  • the beamforming unit 211 provided with the digital phase shifter 208 is provided in the front stage of the transmission function unit 200, but the beamforming unit provided with the analog phase shifter 209 in the rear stage of the transmission function unit 200.
  • the configuration may include 211.
  • the digital phase shifter 208 and the analog phase shifter 209 may be inserted before and after the transmission function unit 200, respectively. Then, as a feature of this radio, the beamforming unit 211 performs beamforming according to an instruction from the patrol shift control unit 502 described later. This operation will be described later.
  • the cyclic shift unit 202 is provided corresponding to each antenna 207 (four in this case) as in the conventional case, and cyclically shifts the OFDM-modulated transmission signal in symbol units.
  • the cyclic shift amount of the cyclic shift unit 202 is the shift amount given by the cyclic shift control unit 502.
  • the antenna 207 is an antenna for both transmission and reception, and transmission and reception are separated by the antenna control unit 206.
  • the antenna control unit 206 controls transmission / reception for each antenna.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex: frequency
  • a duplexer is provided to switch between transmission and reception frequencies.
  • the transmission function unit 200 is provided with four D / A conversion units and four transmission analog units.
  • the reception function unit 300 is provided with four reception analog units and four A / D conversion units.
  • the correlation calculation unit 501 obtains the correlation between the signals received by the plurality of antennas 207. Specifically, the received signal received by the antenna 207 is subjected to reception processing by the reception function unit 300, A / D converted and input to the correlation calculation unit 501, and the correlation calculation unit 501 between the antennas. Calculate the correlation coefficient of the received signal of. There are various methods for calculating the correlation coefficient, such as a method of obtaining the time correlation of the received signal and a method of obtaining the transfer function using the reference signal (known signal), and any method may be used.
  • the correlation coefficient is generally normalized to 0.0 to 1.0, where 0.0 is uncorrelated and 1.0 is the same signal.
  • the power of the direct wave becomes dominant and becomes close to free space propagation, and the correlation coefficient between the received signals of each ante 207ner becomes large.
  • multipath communication such as reflected waves is performed, and if the distance between the antennas 207 is arranged sufficiently larger than the wavelength of the radio frequency, the correlation coefficient of the received signal of each antenna 207 becomes small.
  • the patrol shift control unit 502 is a characteristic part of this radio, and inputs the correlation coefficient from the correlation calculation unit 501, and sets the patrol shift amount in the patrol shift unit 202 corresponding to each antenna 207 based on the correlation coefficient. It is a thing. Specifically, the cyclic shift control unit 502 compares the input correlation coefficient with a preset threshold value, determines that there is a direct wave if it is equal to or higher than the threshold value, and corresponds to each antenna 207. The same cyclic shift amount is set in the cyclic shift unit 202, and the beamforming unit 211 is instructed to give a phase difference to the transmission signals of each antenna to generate a narrow beam (process BF). As a result, the transmission from the transmission block is transmitted with a narrow beam.
  • process BF narrow beam
  • the input correlation coefficient is smaller than the threshold value, it is determined that there is no direct wave, and different cyclic shift amounts are set in each cyclic shift unit 202, and the BF is set with respect to the beamforming 211. Instruct not to take any action. As a result, CDD is performed and BF is not performed.
  • BF is performed if the correlation coefficient is 0.4 or more, so that the cyclic shift control unit 502 makes the cyclic shift amount of the transmission signal of the antenna 207 the same.
  • the cyclic shift control unit 502 sets the cyclic shift amount of the transmission signal of each antenna 207 to a value different by at least one sample or more, and performs BF on the beamforming 211. Instruct not to. That is, the cyclic shift amounts of all the cyclic shift units 202 are set to be different. The closer the correlation between the antennas is to no correlation, the greater the effect of spatial diversity.
  • the other branched signal is input to the correlation calculation unit 501 as a feature of the radio, the correlation coefficient between the received signals at each antenna 207 is calculated, and the signal is input to the cyclic shift control unit 502. Then, the correlation coefficient is compared with the threshold value in the cyclic shift control unit 502, and when the correlation coefficient is equal to or higher than the threshold value, the cyclic shift control unit 502 applies the same cyclic shift amount to the cyclic shift unit 202 corresponding to each antenna 207. It is set and the beamforming unit 211 is made to perform the BF operation. If the correlation coefficient is less than the threshold value, the cyclic shift control unit 502 sets different cyclic shift amounts in the cyclic shift unit 202 corresponding to each antenna 207, and prevents the beamforming unit 211 from performing BF. Instruct.
  • the operation of the transmission block is the same as the conventional one except that the cyclic shift unit 202 shifts the transmission signal by the cyclic shift amount set from the cyclic shift control unit 502, and thus the description thereof will be omitted.
  • the cyclic shift unit 202 corresponding to each antenna 207 shifts the transmission signal by the same cyclic shift amount, BF is performed at the antenna 207 at the time of transmission, and high-speed transmission becomes possible.
  • the transmission signal is shifted by the different cyclic shift amounts in each cyclic shift unit 202, the CDD is obtained, and the effect of spatial diversity can be obtained. In this way, the operation in this radio is performed.
  • (1) is a steady state when there is no shield, and both radios A and B perform BF.
  • (4) is a steady state when there is a shield, and both radios A and B perform CDD.
  • (2) is a transitional state when a shield appears, and eventually becomes the state of (4).
  • (3) is a transitional state when the shield disappears, and eventually becomes the state of (1).
  • FIG. 3 is a flowchart showing processing in the cyclic shift control unit.
  • the cyclic shift control unit 502 determines whether or not the correlation coefficient is equal to or higher than a preset threshold value (S12). ..
  • the cyclic shift control unit 502 sets the cyclic shift amount of each cyclic shift unit 202 to be the same, and the beamforming unit 211 of each antenna.
  • An instruction is given to give a phase difference to the transmission signal (S13), and the process returns to process S11.
  • BF is performed by the antenna 207, and a narrow beam is generated and transmitted.
  • the cyclic shift control unit 502 sets a different shift amount in each cyclic shift unit 202, and sets each antenna in the beamforming unit 211. It is instructed not to give a phase difference to the transmitted signal of (S14), and returns to the process S11. In this case, a narrow beam is not generated, and the CDD transmits each antenna 207 with the same directivity as when it is alone.
  • the shift amount according to the value of the correlation coefficient is set in advance in the cyclic shift control unit 502. In this way, the processing in the cyclic shift control unit 502 is performed.
  • a cyclic shift control unit 502 that controls the shift amount of the transmitted signal in each circular shift unit 202, and a correlation calculation unit 501 that calculates a correlation coefficient for the received signal from each antenna 207 are provided, and each of the correlation calculation units 501 is provided.
  • the correlation coefficient is calculated for the received signal from the antenna 207, and the cyclic shift control unit 502 compares the correlation coefficient with the threshold value, and if the correlation coefficient is equal to or higher than the threshold value, it is determined that there is a direct wave. Then, a common shift amount is given to the cyclic shift unit 202, a narrow beam is formed by beam forming and transmitted, and if the correlation coefficient is less than the threshold value, it is determined that there is no direct wave and the cyclic shift unit 202 is used. Since different shift amounts are given to 202 to perform cyclic shift diversity, high-speed transmission and long-distance transmission are possible when there is no obstruction in the line of sight, and when an obstruction appears. Has the effect of preventing communication interruption and improving reliability due to the diversity effect of multi-pass.
  • this communication system since it is a fixed wireless access system equipped with this radio, if there is no obstruction in the line of sight, beamforming is performed and transmission is possible, enabling high-speed transmission and long-distance transmission. Then, when a shield appears, it is possible to perform cyclic shift diversity and transmit the signal, and the diversity effect of multipath prevents communication interruption and improves reliability.
  • each radio since each radio independently determines and switches between BF and CDD, no special reference signal is required, and it can be applied to both TDD and FDD systems, and various systems are available. Has the effect of being easily applicable to.
  • the presence or absence of a direct wave is detected by obtaining the correlation coefficient between the received signals of a plurality of antennas, but the received electric field strength is obtained from the received signal and directly based on the strength of the received electric field strength.
  • the presence or absence of waves may be detected.
  • each radio calculates the correlation coefficient, detects the presence or absence of a direct wave, and determines whether it is BF or CDD.
  • one radio is used, for example, the main station and the slave station. When the machine controls the wireless link, only the main station may perform the operation.
  • the main station when the main station is this radio, the main station detects the presence or absence of a direct wave based on the correlation coefficient of the received signal by the method described above, and if there is a direct wave, transmits it by BF and the direct wave. If not, CDD is performed. Then, at the same time, the determined transmission mode is instructed to the slave station. The instruction of the transmission method is included in the control information and transmitted.
  • the other radio may also be configured to indicate the transmission mode.
  • this system can be easily constructed, and if there is no obstruction, it is transmitted by BF to enable high-speed transmission, and if there is an obstruction, it is transmitted by CDD to prevent communication interruption. Has the effect of improving reliability.
  • FIG. 4 is an explanatory diagram showing the antenna directivity of another radio. Another radio performs BF while obtaining the transmission diversity effect, and the basic configuration is the same as that of the present radio described above, but the antenna configuration is different.
  • Another radio includes a plurality of groups consisting of a plurality of antennas.
  • the cyclic shift unit 202 is provided corresponding to each group, and gives the cyclic shift amount set by the cyclic shift control unit 502 to the transmission signals of all the antennas in the group. That is, the transmission signals from the antennas in the same group have the same cyclic shift amount.
  • the cyclic shift control unit 502 determines that the correlation coefficient is equal to or higher than the threshold value and there is a direct wave
  • the same cyclic shift amount is given to different groups.
  • the beamforming unit 211 always performs BF within the same group.
  • the beamforming unit 211 gives a phase difference so that BF is performed even between the groups. In this case, all 16 antennas have the same cyclic shift amount, and BF is also performed between the groups. Therefore, for example, sharp directivity as shown in FIG. 7C can be obtained, and high-speed transmission becomes possible.
  • each cyclic shift unit 202 is given a different cyclic shift amount by one sample or more.
  • different groups are given different cyclic shift amounts, and CDD is performed between the groups.
  • BF is performed within the group as described above.
  • the antenna directivity of another radio is such that four beams having a characteristic intermediate between FIGS. 7 (c) and 7 (e) are generated, and a diversity effect is obtained. Even if a shield appears, it is possible to prevent the communication from being disconnected.
  • a cyclic shift unit 202 having a plurality of groups consisting of a plurality of antennas and giving the same cyclic shift amount to the transmission signals of the antennas in the group corresponding to each group, and a BF within the group are provided.
  • the circuit shift control unit 502 determines that there is a direct wave
  • the same circuit shift amount is given to all the circuit shift units 202, and the beamforming unit is BF even between groups.
  • a different cyclic shift amount is given to all the cyclic shift units 202, and the beamforming unit is controlled not to perform BF between groups.
  • the directivity is sharpened to enable higher-speed transmission and long-distance transmission, and even if there is an obstruction, a diversity effect can be obtained between groups, resulting in communication interruption. It has the effect of preventing the problem and improving the reliability.
  • the present invention is suitable for radios, communication systems and communication methods of fixed wireless access systems that enable high-speed transmission and long-distance transmission while avoiding interruption of wireless communication even if there is a shield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

課題: 高速伝送及び長距離伝送を可能としつつ、通信の断絶を防いで信頼性を向上させることができる無線機、通信システム及び通信方法を提供する。 解決手段: 相関演算部501が各アンテナ207からの受信信号について相関係数を算出し、巡回シフト制御部502が、当該相関係数と閾値とを比較して、相関係数が閾値以上であれば、直接波があるものと判定して巡回シフト部202に対して共通のシフト量を与え、ビームフォーミング部201で狭小ビームを形成して送信させ、相関係数が閾値未満であれば、直接波がないものと判定して巡回シフト部202に対して異なるシフト量を与えて、巡回シフトダイバーシティを行わせる無線機としている。

Description

無線機、通信システム及び通信方法
 本発明は、複数のアンテナを備えた固定無線アクセスシステムの無線機に係り、特に高速伝送及び長距離伝送を可能としつつ、遮蔽物があっても無線通信の断絶を回避することができる無線機、通信システム及び通信方法に関する。
[先行技術の説明]
 無線アクセスシステムの一つとして固定無線アクセス(FWA:Fixed Wireless Access)システムがある。FWAは見通し通信を前提とする場合がほとんどであり、見通し外通信を前提とした移動体通信であるMWA(Mobile Wireless Access)とは異なる。
 また、NWA(Nomadic Wireless Access)は、非定住型ではあるができるだけ見通し通信となるエリアが広範囲になるよう設置されるため、無線通信を行っている短期的にはFWAと無線環境が類似する場合が多い。
 FWAシステムの一例として、電気通信事業者の交換局や中継系回線とオフィスや一般世帯との間を直接無線接続するために用いられるものがある。
 このようなシステムには、電気通信事業者側の基地局と複数の利用者側の加入者局とを結ぶ1対多方向型(P-MP;Point to MultiPoint)と、電気通信事業者側と利用者側とを1対1で結ぶ対向型(P-P;Point to Point)とがある。
 また、FWAシステムは、MWAシステムの基地局とネットワーク側を接続するバックホール回線として用いられる。従来は、大容量で安定した通信を提供できる光ファイバにより構成されるのが一般的であった。しかし、光ファイバの新設には高いコストと工事日数が要求されるため、低コストで簡易に設置可能な無線回線が求められており、光回線と併用する形で広帯域FWAシステムが利用されるようになってきている。
 その他、FWAシステムは、ビル間通信の専用回線、災害時やイベントの臨時回線、光ケーブルの敷設が困難だった場所へのネットワークの供給を比較的容易に実現でき、事故や災害により通信回線が切断されにくいという利点がある。
[ビームフォーミング]
 FWAシステムにおいて、更なる高速伝送、長距離化を図る技術として、複数のアンテナを用いて送受信するビームフォーミング(BF:Beam Forming)技術が知られている。
 送信BFでは複数のアンテナから放射する送信信号の位相を制御して空間合成することにより、ある場所では各アンテナから放射された電波の位相が同相に近くなって電力を強め合い、またある場所では各アンテナから放射された電波が電力を打ち消しあう。その結果、電力を強め合う場所では合成利得を得ることができるため、電波伝搬損失を補償し、長距離伝送が可能となる。
 あるいは、受信機での所望信号電力対雑音電力比(C/N比:Carrier to Noise Ratio)が大きくなるため、直交振幅変調の多値数を大きくして高速伝送が可能となる。
 [デジタルビームフォーミングを用いる無線機の送信ブロック:図5]
 ビームフォーミングを用いる無線機の送信ブロックについて図5を用いて説明する。図5は、デジタルビームフォーミングを用いる送信ブロックの概略構成図である。ここでは、アンテナ数が4の場合を例として説明する。また、図5では、ビームフォーミングに関係する機能ブロックを中心に記載しており、一般的に無線機に設けられている他の機能ブロックの図示は省略している。
 図5に示すように、ビームフォーミングを用いる送信ブロック(送信機構、送信部)は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重方式)変調部201と、4つのGI(Guard Interval)付加部203と、4つのデジタル移相器208と、4つのD/A変換部204と、4つの送信アナログ部205と、アンテナ制御部206と、4つのアンテナ207とを備えている。また、D/A変換部204と送信アナログ部205で送信機能部200を構成している。
 デジタル移相器208は、ビームフォーミング部210の構成要素であり、デジタル信号の位相回転を行う。デジタル移相器は、一例として複素乗算器で構成される。
 OFDM変調部201は、送信データをOFDM変調する。
 GI付加部203は、OFDM変調された信号にCP(Cyclic Prefix:サイクリックプレフィクス)を付加する。
 CPの付加としては、OFDMシンボルの後方の一定部分をコピーしてOFDMシンボルの先頭より前に付加する方法がある。付加する量は、OFDMシンボル長の1/4や1/8など、考慮するマルチパスの遅延時間によってシステムごとに設計される。
 デジタル移相器208は、各アンテナ207から送信されるOFDMシンボルにビームフォーミングを行うために4つの信号に位相差を与える。
 D/A変換部204は、位相差を与えられた信号をアナログ信号に変換する。
 送信アナログ部205は、周波数変換部、アナログフィルタ、電力増幅器等を備え、各D/A変換部204から出力された信号毎にアナログ信号処理を行う。
 アンテナ制御部206は、アンテナ207の制御を行う。
 アンテナ207は、複数設けられ、電波を放射する。
 当該送信ブロックにおける動作を簡単に説明する。
 送信データは、OFDM変調部201でOFDM変調され、GI付加部203でCPを付加される。
 CPが付加された信号は、デジタル移相器208で4つの信号に位相差を与えられて、送信機能部200のD/A変換部204でD/A変換されて、送信アナログ部205で周波数変換及び増幅が行われ、アンテナ制御部206を介して送信アンテナ207から放射される。
 [アナログビームフォーミングを用いる無線機の送信ブロック:図6]
 アナログビームフォーミングを用いる無線機の送信ブロックについて図6を用いて説明する。図6は、アナログビームフォーミング技術を用いる送信ブロックの概略構成図である。送信機能部200の後段にアナログ移相器209を備える。
 アナログ移相器209はビームフォーミング部210の構成要素であり、アナログ信号の位相回転を行う。図5と異なるのは、アナログ部でビームフォーミングを行うことである。
[アンテナ指向性の例:図7]
 アンテナ指向性の例について、図7を用いて説明する。図7は、アンテナ指向性の例を示す模式説明図である。図7(b)~(d)はビームフォーミング(BF)による狭小ビームを形成した場合の送信アンテナの指向性であり、図(e)は後述するCDD(Cyclic Delay Diversity)を行った場合の送信アンテナの指向性を示している。
 ここでは、アンテナはマイクロ波帯やミリ波帯において多く採用されているパッチアンテナ等の平面アンテナを例とした。複数のアンテナから成るサブアレイを単位として配列した場合も同様である。
 図7(a)は、1素子であり、単独の平面アンテナの指向性である。
 図7(b)は、4素子でビームフォーミングを行った場合であり、1素子と比較して指向性は鋭くなり、正面方向の合成電力は大きくなる。
 図7(c)は16素子でビームフォーミングを行った場合であり、さらに指向性は鋭くなり、正面方向の合成電力は大きくなる。
 図7(d)は16素子であるが、デジタル移相器208によって、図7(c)とは各アンテナの送信信号の位相が異なるよう位相回転が施され、正面よりも左側に指向性が向くように制御されている。
 P-P(Point to Point)通信の場合、指向性を鋭くすることによって他の無線機に与える干渉を小さくでき、同じ周波数を使って対向通信を行うことができるため周波数利用効率が良くなるという利点もある。
 P-MP(Point to Multipoint)通信の場合は同様に、指向性を鋭くすることによって、異なる方向の複数の局に対して同じ周波数で同時に複数のビームを送信することができる。
 MWAでは無線機が移動するため、指向性を鋭くするほどビーム追従が困難になるが、FWAやNWAでは基本的に無線機は移動しないためBF技術との相性が良い。
 受信BFは、各アンテナの受信信号を合成する際に、所望波の到来方向のゲインを最大化する方法や、干渉波の到来方向のゲインを最小化する方法などがある。
 また、複数のアンテナを備えて空間ダイバーシティを行うと受信性能が良くなることも知られている。伝搬環境の変化に応じて、これらの受信技術の内で最適な方法を選択して行うアルゴリズムについても種々の研究や実用化が行われている。
[循環遅延ダイバーシティ]
 ここで、送信ダイバーシティ技術の一つである循環遅延ダイバーシティ(CDD;Cyclic Delay Diversity)について簡単に説明する。尚、CDDは、巡回シフトダイバーシティ(CSD;Cyclic Shift Diversity)とも称され、ここでは、循環遅延ダイバーシティ(CDD)は、巡回シフトダイバーシティ(CSD)と同義であるものとして記載する。
 CDDは、複数のアンテナからの送信信号に対して、同一のデータ信号に異なる巡回遅延量を付与して送信するものである。
 OFDM変調は、互いに直交する狭帯域な複数のサブキャリアによってOFDMシンボルを構成し、また、CP(Cyclic Prefix:サイクリックプレフィクス)と呼ばれるガードインターバルを付加することによって、遅延時間を持つマルチパスに対する耐性が強い方式として様々な無線システムに採用されている。
[CDDを用いる無線機の送信ブロック:図8]
 CDDを用いる無線機の送信ブロックについて図8を用いて説明する。図8は、CDDを用いる送信ブロックの概略構成図である。ここでは、アンテナ数が4の場合を例として説明する。また、図8では、CDDに関係する機能ブロックを中心に記載しており、一般的に無線機に設けられている他の機能ブロックの図示は省略している。
 図8に示すように、CDDを用いる送信ブロック(送信機構、送信部)は、図5,6に示したビームフォーミングを行う送信ブロックと同様のOFDM変調部201、GI付加部203、送信機能部200、アンテナ制御部206を備え、図5,6のビームフォーミング部210の代わりに、巡回シフト部202を備えた構成である。
 図5,6と同様の構成部分については説明を省略する。
 巡回シフト部202は、OFDM変調された信号を巡回シフトする。ここで、4つの巡回シフト部202における巡回シフト量は、それぞれ異なる値とする。巡回シフト量は、予め設定されているか、図示しない制御部から設定される。
 巡回シフト部202によって、各アンテナ207から送信されるOFDMシンボルに異なる巡回シフト量が与えられることにより、送信ダイバーシティ効果が得られるものである。具体的には、アンテナ間の距離を無線周波数の波長より十分大きく配置すると、受信側ではそれぞれの受信信号の相関が小さくなるためマルチパスフェージングに対してダイバーシティ効果を得ることができるものである。
 当該送信ブロックにおける動作を簡単に説明する。
 送信データは、OFDM変調部201でOFDM変調され、4つに分岐されて、巡回シフト部202で互いに異なる巡回シフト量でシフトされる。巡回シフトされた信号は、GI付加部203でCPを付加される。
 CPが付加された信号は、送信機能部200のD/A変換部204でD/A変換されて、送信アナログ部205で周波数変換及び増幅が行われ、アンテナ制御部206を介して送信アンテナ207から放射される。
[CDDを用いた場合のアンテナ指向性:図7(e)]
 CDDを用いて送信する場合のアンテナ指向性について図7(e)を用いて説明する。
 上述したように、CDDを用いて送信する場合、それぞれのアンテナから送信する信号を異なる巡回シフト量で巡回シフトするが、これは、同じ信号を複数のアンテナから送信すると、意図しないBFが行われてダイバーシティ効果が得られなくなるためである。
 適切に巡回シフトすると、アンテナの指向性は、図7(e)に示すように、それぞれ独立した1アンテナの場合と等しくなる。CDDはCPを用いるOFDM変調を用いる場合に有効な技術である。
 CDDもビームフォーミングの一種であるが、以降では狭小ビームを形成することをBFと称するものとし、CDDと区別する。
[無線機の受信ブロック:図9]
 無線機の受信ブロック(受信機構、受信部)について図9を用いて説明する。図9は、無線機の受信ブロックの概略構成図である。送信ブロックと同様、アンテナ数が4の場合を例として説明する。
 アンテナ207は、無線信号を受信する。
 アンテナ制御部206は、各アンテナ207を制御し、受信信号を対応する受信アナログ部301に出力する。
 受信アナログ部301は、LNA(Low Noise Amplifier)、アナログフィルタ、周波数変換部を含み、受信した信号のアナログ処理を行う。
 A/D変換部302は、受信アナログ部301から出力された信号をデジタル信号に変換する。
 当該受信ブロックでは、アンテナ207で受信された信号は、アンテナ207毎に受信アナログ部301で周波数変換されて受信処理が施され、A/D変換部302でデジタル信号に変換されて、受信信号#1~受信信号#4として出力される。
 そして、各種のMIMO(Multiple-Input Multiple-Output)処理が行われて、OFDM復調される。OFDM変調の前に直交振幅変調等が施されている場合には、その復調も行われる。
[遮蔽物による通信障害]
 送信ビームフォーミングを行う場合、アンテナ数(又はアンテナサブアレイ数、あるいはアンテナ素子数)を多くしてビーム指向性を鋭くするほど、高速伝送及び長距離伝送の性能が増大する。
 しかしながら、見通し内に遮蔽物が出現した場合には、直接波が受信機に到達しなくなってしまう。
 指向性が鋭いほど遮蔽物の影響を受けやすく、通信が断絶してしまう場合があり、断絶時間が長いと重大な通信障害となってしまう。
[関連技術]
 尚、P-P通信を行う無線通信装置の従来技術としては、特開2013-172377号公報「無線通信装置、無線通信方法、及び無線通信システム」(特許文献1)がある。
 また、複数の送信アンテナを備えた基地局に関する従来技術としては、特開2015-126271号公報「基地局」(特許文献2)がある。
 特許文献1には、電波通信を「見通し」する範囲を撮像し、撮像された画像を基準画像と比較して障害物を検知して通知する無線通信装置が記載されている。
 特許文献2には、伝搬路の実効的な状態を推定し、伝搬路の通信品質を推定し、推定結果に基づいて送信ダイバーシチ、送信ビームフォーミング、Closed-Loop MIMO、Open-Loop MIMOのいずれかの送信モードを決定する基地局が記載されている。
特開2013-172377号公報 特開2015-126271号公報
 上述したように、従来の無線機では、ビームフォーミングを行った場合、見通し内に遮蔽物があると、通信が断絶してしまい、重大な通信障害が発生する恐れがあるという問題点があった。
 尚、特許文献1及び特許文献2には、複数のアンテナでの受信信号の相関係数の値に基づいて直接波の有無を検出して、送信モードをビームフォーミング又はCDDに切り替えることは記載されていない。
 本発明は上記実状に鑑みて為されたもので、高速伝送及び長距離伝送を可能としつつ、通信の断絶を防いで信頼性を向上させることができる無線機、通信システム及び通信方法を提供することを目的とする。
 上記従来例の問題点を解決するための本発明は、固定無線アクセスシステムで用いられ、複数のアンテナを備え、OFDM変調方式で送受信を行う無線機であって、複数のアンテナでの受信信号に基づいて直接波の有無を検出する直接波検出部と、複数のアンテナに対応して設けられ、アンテナからの送信信号の位相を特定のシフト量でシフトさせる複数の巡回シフト部と、アンテナからの送信信号に位相回転を施して狭小ビームを生成するビームフォーミング部とを備え、直接波検出部が、直接波を検出した場合には、複数の巡回シフト部とビームフォーミング部とを制御して狭小ビームを生成させ、直接波を検出しない場合には、巡回シフト部とビームフォーミング部とを制御して、狭小ビームを生成させずに巡回シフトダイバーシティを行わせることを特徴としている。
 また、本発明は、上記無線機において、直接波検出部は、複数のアンテナでの受信信号の相関係数を算出する相関演算部と、相関係数の値に基づいて直接波の有無を判定し、直接波を検出した場合には、複数の巡回シフト部に同一のシフト量を設定し、直接波を検出しない場合には、複数の巡回シフト部に異なるシフト量を設定する巡回シフト制御部とを有することを特徴としている。
 また、本発明は、上記無線機において、巡回シフト制御部が、相関係数の値が予め設定された閾値以上の場合は、直接波を検出したと判定し、相関係数の値が閾値より小さい場合は、直接波を検出しないと判定することを特徴としている。
 また、本発明は、上記のいずれか記載の第1の無線機と、複数のアンテナを備えた第2の無線機を備えた固定無線アクセスシステムであって、第1の無線機が、受信信号に基づいて、ビームフォーミング又は巡回シフトダイバーシティのいずれかの送信を行うと、当該送信モードの情報を、第2の無線機に送信し、第2の無線機が、第1の無線機から受信した送信モードの情報に基づいてビームフォーミング又は巡回シフトダイバーシティを行って送信することを特徴としている。
 また、本発明は、OFDM変調方式で送受信を行う固定無線アクセスシステムで用いられる通信方法であって、複数のアンテナを備える無線機が、当該複数のアンテナでの受信信号に基づいて直接波の有無を検出し、直接波を検出した場合には、ビームフォーミングを行って狭小ビームを生成して送信し、直接波を検出しない場合には、巡回シフトダイバーシティを行って送信することを特徴としている。
 本発明によれば、固定無線アクセスシステムで用いられ、複数のアンテナを備え、OFDM変調方式で送受信を行う無線機であって、複数のアンテナでの受信信号に基づいて直接波の有無を検出する直接波検出部と、複数のアンテナに対応して設けられ、アンテナからの送信信号の位相を特定のシフト量でシフトさせる複数の巡回シフト部と、アンテナからの送信信号に位相回転を施して狭小ビームを生成するビームフォーミング部とを備え、直接波検出部が、直接波を検出した場合には、複数の巡回シフト部とビームフォーミング部とを制御して狭小ビームを生成させ、直接波を検出しない場合には、巡回シフト部とビームフォーミング部とを制御して、狭小ビームを生成させずに巡回シフトダイバーシティを行わせる無線機としているので、見通し上に遮蔽物がない場合には高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には、マルチパスによるダイバーシティ効果で通信の断絶を防ぎ、信頼性を向上させることができる効果がある。
 また、本発明によれば、巡回シフト制御部が、相関係数の値が予め設定された閾値以上の場合は、直接波を検出したと判定し、相関係数の値が閾値より小さい場合は、直接波を検出しないと判定する上記無線機としているので、簡易な構成及び処理で直接波の有無を検出することができる効果がある。
 また、本発明によれば、上記のいずれか記載の第1の無線機と、複数のアンテナを備えた第2の無線機を備えた固定無線アクセスシステムであって、第1の無線機が、受信信号に基づいて、ビームフォーミング又は巡回シフトダイバーシティのいずれかの送信を行うと、当該送信モードの情報を、第2の無線機に送信し、第2の無線機が、第1の無線機から受信した送信モードの情報に基づいてビームフォーミング又は巡回シフトダイバーシティを行って送信する通信システムとしているので、一方の無線機が直接波の有無に基づいて送信モードを選択し、それを他方の無線機に伝えることで、遮蔽物がない場合には高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には通信の断絶を防ぐシステムを簡易に構成することができる効果がある。
 また、本発明によれば、OFDM変調方式で送受信を行う固定無線アクセスシステムで用いられる通信方法であって、複数のアンテナを備える無線機が、当該複数のアンテナでの受信信号に基づいて直接波の有無を検出し、直接波を検出した場合には、ビームフォーミングを行って狭小ビームを生成して送信し、直接波を検出しない場合には、巡回シフトダイバーシティを行って送信する通信システムとしているので、遮蔽物がない場合には高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には通信の断絶を防ぐことができる効果がある。
本無線機の動作概要を示す模式説明図である。 本無線機の構成ブロック図である。 巡回シフト制御部における処理を示すフローチャートである。 別の無線機のアンテナ指向性を示す説明図である。 デジタルビームフォーミング技術を用いる送信ブロックの概略構成図である。 アナログビームフォーミング技術を用いる送信ブロックの概略構成図である。 アンテナ指向性の例を示す模式説明図である。 CDDを用いる送信ブロックの概略構成図である。 無線機の受信ブロックの概略構成図である。
 本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
 本発明の実施の形態に係る無線機(本無線機)は、複数のアンテナと、アンテナに対応して設けられ、アンテナ毎の送信信号に巡回シフトを与える複数の巡回シフト部と、各巡回シフト部における送信信号のシフト量を制御する巡回シフト制御部と、各アンテナからの受信信号について相関係数を算出する相関演算部とを備え、相関演算部が各アンテナからの受信信号について相関係数を算出し、巡回シフト制御部が、相関係数に基づいて直接波の有無を検出し、直接波がある場合には巡回シフト部に対して各アンテナの送信信号に共通のシフト量を与えて、ビームフォーミングにより狭小ビームを形成して送信させ、直接波がない場合には巡回シフト部に対して異なるシフト量を与えて巡回シフトダイバーシティを行わせるものであり、見通し上に遮蔽物がない場合には高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には、マルチパスによるダイバーシティ効果で通信の断絶を防ぎ、信頼性を向上させることができるものである。
 また、本発明の実施の形態に係る通信システム(本通信システム)は、本無線機を備えた固定無線アクセスシステムであり、本発明の実施の形態に係る通信方法は、本無線機で行われる通信方法である。
[本無線機の動作概要:図1]
 本無線機の構成について説明する前に、動作の概要について図1を用いて説明する。図1は、本無線機の動作概要を示す模式説明図である。
 図1は、FWAにおける通信を模式的に表したものであり、右側のアンテナを備えた無線機401と、左側のアンテナを備えた無線402とがP-P通信を行う状態を示しており、ここでは無線機401から無線機402に向けて送信する場合を示している。無線機401が本無線機である。
 図1(a)は、通信が見通し内である場合(見通し通信)であり、無線機401は、ビームフォーミングにより狭小ビームを生成して、送信を行う。この状態では、高速伝送及び長距離伝送が可能である。
 図1(b)は、見通し内に遮蔽物403が出現した場合(見通し外通信)であり、狭小ビームは遮蔽物403に阻まれて無線機402に到達せず、通信が断絶してしまう。
 そこで、無線機401では、図1(c)に示すように、見通し外となった場合には、CDDに切り替えて通信を行う。通信の切り替えは、直接波の有無を検出することにより行われる。これにより、遮蔽物403があっても、反射波等のマルチパスが無線機402に到達するため、通信の断絶を避けることができるものである。
 このようにして本無線機の動作が行われる。
[本無線機の構成:図2]
 次に、本無線機の構成について図2を用いて説明する。図2は、本無線機の構成ブロック図である。尚、従来と同様の構成部分については同一の符号を付しており、詳細な説明は省略する。
 図2に示すように、本無線機は、従来と同様の構成部分として、OFDM変調部201と、巡回シフト部202と、GI付加部203と、ビームフォーミング部211と、送信機能部200と、アンテナ制御部206と、アンテナ207と、受信機能部300とを備え、本無線機の特徴部分として、相関演算部501と、巡回シフト制御部502とを備えている。
 相関演算部501と巡回シフト制御部502とを合わせた構成が、請求項に記載した直接波検出部に相当している。
 尚、ここでは、アンテナ207としてアンテナを4つ備えた場合を例として説明する。また、AGC(Automatic Gain Control:自動利得制御)、AFC(Automatic Frequency Control:自動周波数制御)等の機能ブロックを挿入してもよい。
 更に、ここでは、デジタル移相器208を備えたビームフォーミング部211を送信機能部200の前段に設けた構成としているが、送信機能部200の後段にアナログ移相器209を備えたビームフォーミング部211を備えた構成としてもよい。また、デジタル移相器208とアナログ移相器209を、それぞれ、送信機能部200の前後に挿入してもよい。
 そして、本無線機の特徴として、ビームフォーミング部211は、後述する巡回シフト制御部502からの指示に従ってビームフォーミングを行う。この動作については後述する。
 巡回シフト部202は、従来と同様にアンテナ207毎に対応して設けられ(ここでは4つ)、OFDM変調された送信信号をシンボル単位で巡回シフトさせるものであるが、本無線機では、各巡回シフト部202の巡回シフト量は、巡回シフト制御部502から与えられたシフト量とする。
 アンテナ207は、送受信兼用のアンテナであり、アンテナ制御部206によって送受が分離される。
 アンテナ制御部206は、アンテナ毎に送受信を切り替える制御を行うものであり、TDD(Time Division Duplex:時分割複信)システムの場合にはTDDスイッチ等で送受信を切り替え、FDD(Frequency Division Duplex:周波数分割複信)システムの場合には、デュプレクサを備えて送信用と受信用の周波数を切り替える。
 尚、図8に示した送信ブロックと同様に、GI付加部203も4つ設けられ、送信機能部200には、D/A変換部と、送信アナログ部が4つずつ設けられている。
 同様に、受信機能部300には、受信アナログ部と、A/D変換部が4つずつ設けられている。
 本無線機の特徴部分について具体的に説明する。
 相関演算部501は、複数のアンテナ207で受信された信号間の相関を求めるものである。
 具体的には、アンテナ207で受信された受信信号は、受信機能部300にて受信処理を施され、A/D変換されて相関演算部501に入力され、相関演算部501で、各アンテナ間の受信信号の相関係数を算出する。
 相関係数の算出は、受信信号の時間相関を求める方法や、参照信号(既知信号)を用いて伝達関数を求める方法等、様々な方法があり、いずれの方法でもよい。
 相関係数は、一般的に0.0~1.0に正規化されており、0.0は無相関、1.0は同一の信号とされる。
 FWAシステムにおいて、見通し通信となる場合には、直接波の電力が支配的となって、自由空間伝搬に近くなり、各アンテ207ナの受信信号間の相関係数は大きくなる。
 一方、見通し外通信の場合には、反射波等のマルチパス通信となり、アンテナ207間の距離を無線周波数の波長より十分大きく配置すると、各アンテナ207の受信信号の相関係数は小さくなる。
 巡回シフト制御部502は、本無線機の特徴部分であり、相関演算部501からの相関係数を入力して、それに基づいて各アンテナ207に対応する巡回シフト部202における巡回シフト量を設定するものである。
 具体的には、巡回シフト制御部502は、入力された相関係数を予め設定された閾値と比較して、しきい値以上であれば直接波ありと判定して、各アンテナ207に対応する巡回シフト部202に同一の巡回シフト量を設定すると共に、ビームフォーミング部211に対して、各アンテナの送信信号に位相差を与えて狭小ビームを生成する(BFの処理を施す)よう指示する。これにより、送信ブロックからの送信では狭小ビームで送信される。
 また、入力された相関係数が閾値より小さい場合には、直接波がないものと判断して、各巡回シフト部202にすべて異なる巡回シフト量を設定すると共に、ビームフォーミング211に対してBFの処理を施さないよう指示する。これにより、CDDが行われ、BFは行われない。
 例えば、閾値を0.4とした場合、相関係数が0.4以上であればBFを行うため、巡回シフト制御部502は、アンテナ207の送信信号の巡回シフト量を同一にする。BFによって狭小ビームを生成して送信することにより、高速伝送を可能とし、また、他の無線機に与える干渉を低減できるものである。
 相関係数が0.4未満の場合にはCDDを行うため、巡回シフト制御部502は、各アンテナ207の送信信号の巡回シフト量を少なくとも1サンプル以上異なる値とし、ビームフォーミング211にBFを実施しないよう指示する。つまり、全ての巡回シフト部202の巡回シフト量が異なるように設定する。アンテナ間の相関が無相関に近いほど空間ダイバーシティの効果が大きくなる。
[本無線機における動作:図2]
 本無線機における動作について図2を用いて簡単に説明する。
 本無線機では、受信信号に基づく動作が特徴となっているため、受信ブロックの動作から説明する。
 アンテナ207で受信された信号は、受信機能部300でダウンコンバートされ、A/D変換されて2つに分岐され、分岐された一方は、図示しない復調部に入力されて通常の復調が行われ、受信データを得る。
 分岐された他方の信号は、本無線機の特徴として、相関演算部501に入力されて、各アンテナ207における受信信号間の相関係数が算出され、巡回シフト制御部502に入力される。
 そして、巡回シフト制御部502において相関係数が閾値と比較されて、閾値以上の場合には、巡回シフト制御部502は、各アンテナ207に対応する巡回シフト部202に、同一の巡回シフト量を設定し、ビームフォーミング部211にBF動作を行わせる。
 また、相関係数が閾値未満であれば、巡回シフト制御部502は、各アンテナ207に対応する巡回シフト部202に、それぞれ異なる巡回シフト量を設定し、ビームフォーミング部211にBFを行わないよう指示する。
 送信ブロックの動作は、巡回シフト部202が巡回シフト制御部502から設定された巡回シフト量で送信信号をシフトさせる以外は、従来と同様であるため、説明は省略する。
 各アンテナ207に対応する巡回シフト部202において、同一の巡回シフト量で送信信号をシフトさせた場合には、送信時に、アンテナ207においてBFが行われ、高速伝送が可能となる。
 一方、各巡回シフト部202において、それぞれ異なる巡回シフト量で送信信号をシフトさせた場合は、CDDとなり、空間ダイバーシティの効果を得ることができる。
 このようにして、本無線機における動作が行われるものである。
[本無線機の送信方法(送信モード)の選択]
 ここで、本無線機におけるBF又はCDDの送信モードの選択について説明する。無線機Aと無線機Bとが対向してP-P通信を行うものとする。
 無線機Aと無線機Bは、いずれも本無線機であり、それぞれ独立して、送信モードをBF又はCDDのいずれかに切り替える。次の(1)~(4)の状態について説明する。
 (1)無線機Aの送信モードがBFで、遮蔽物がない場合、無線機Bにおける受信信号の相関は大きいので、無線機BはBFを選択する。
 (2)無線機Aの送信モードがBFで、遮蔽物がある場合、無線機Bにおける受信信号の相関は小さいので、無線機BはCDDを選択する。
 (3)無線機Aの送信モードがCDDで、遮蔽物がない場合、無線機Bにおける受信信号電力は(1)より小さいものの、受信信号の相関は大きいので、無線機BはBFを選択する。
 (4)無線機Aの送信モードがCDDで、遮蔽物がある場合、無線機Bにおける受信信号の相関は小さいので、無線機BはCDDを選択する。
 無線機Bが送信側、無線機Aが受信側になる場合も同様であり、無線機Aが受信信号の相関係数に基づいて自装置での送信モードをBF又はCDDに切り替える。
 (1)は遮蔽物がない場合の定常状態で、無線機A,B共にBFを行う。(4)は遮蔽物がある場合の定常状態で、無線機A,B共にCDDを行う。
 (2)は、遮蔽物が出現した場合の移行状態で、やがて(4)の状態となる。
 (3)は、遮蔽物が消滅した場合の移行状態で、やがて(1)の状態となる。
[巡回シフト制御部における処理:図3]
 本無線機の巡回シフト制御部502における処理について図3を用いて説明する。図3は、巡回シフト制御部における処理を示すフローチャートである。
 図3に示すように、巡回シフト制御部502は、相関演算部501から相関係数が入力されると(S11)、当該相関係数が予め設定された閾値以上かどうかを判断する(S12)。
 処理S11で、相関係数が閾値以上であれば(Yesの場合)、巡回シフト制御部502は、各巡回シフト部202の巡回シフト量を同一に設定すると共に、ビームフォーミング部211に各アンテナの送信信号に位相差を与えるよう指示し(S13)、処理S11に戻る。この場合には、アンテナ207でBFが行われ、狭小ビームが生成されて送信される。
 また、処理S11で、相関係数が閾値未満であれば(Noの場合)、巡回シフト制御部502は、各巡回シフト部202にそれぞれ異なるシフト量を設定すると共に、ビームフォーミング部211に各アンテナの送信信号に位相差を与えないよう指示し(S14)、処理S11に戻る。この場合には、狭小ビームは生成されず、CDDによって各アンテナ207はそれぞれ単独の場合と同じ指向性で送信する。
 相関係数の値に応じたシフト量は、予め巡回シフト制御部502に設定されている。
 このようにして巡回シフト制御部502における処理が行われる。
[実施の形態の効果]
 本無線機及び本通信方法によれば、無線信号を送受信する複数のアンテナ207と、各アンテナ207に対応して設けられ、アンテナ207毎の送信信号に巡回シフトを与える複数の巡回シフト部202と、各巡回シフト部202における送信信号のシフト量を制御する巡回シフト制御部502と、各アンテナ207からの受信信号について相関係数を算出する相関演算部501とを備え、相関演算部501が各アンテナ207からの受信信号について相関係数を算出し、巡回シフト制御部502が、当該相関係数と閾値とを比較して、相関係数が閾値以上であれば、直接波があるものと判定して巡回シフト部202に対して共通のシフト量を与え、ビームフォーミングで狭小ビームを形成して送信させ、相関係数が閾値未満であれば、直接波がないものと判定して巡回シフト部202に対して異なるシフト量を与えて、巡回シフトダイバーシティを行わせるようにしているので、見通し上に遮蔽物がない場合には高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には、マルチパスによるダイバーシティ効果で通信の断絶を防ぎ、信頼性を向上させることができる効果がある。
 また、本通信システムによれば、本無線機を備えた固定無線アクセスシステムとしているので、見通し上に遮蔽物がない場合にはビームフォーミングを行って送信して、高速伝送及び長距離伝送を可能とし、遮蔽物が出現した場合には、巡回シフトダイバーシティを行って送信して、マルチパスによるダイバーシティ効果で通信の断絶を防ぎ、信頼性を向上させることができる効果がある。
 また、本無線機によれば、各無線機が自立的に判断してBFとCDDとを切り替えるため、特別な参照信号を必要とせず、また、TDD方式でもFDD方式でも適用でき、多様なシステムに容易に適用することができる効果がある。
 尚、上述した例では複数のアンテナでの受信信号間の相関係数を求めて直接波の有無を検出しているが、受信信号から受信電界強度を求め、受信電界強度の強弱に基づいて直接波の有無を検出するようにしてもよい。
[応用例]
 本通信システムの応用例について説明する。
 上述した通信システムでは、各無線機がそれぞれ相関係数を算出して、直接波の有無を検出し、BFかCDDかを判断していたが、例えば主局と従局のように、一方の無線機が無線リンクを制御する場合には、主局のみがその動作を行うようにしてもよい。
 例えば、主局が本無線機である場合、主局は、上述した方法で、受信信号の相関係数に基づいて直接波の有無を検出し、直接波があればBFで送信し、直接波がなければCDDを行う。
 そして、それと共に、決定した送信モードを従局に指示する。送信方法の指示は、制御情報等に含めて送信する。
 つまり、P-P通信の場合、2台とも本無線機でなくても、いずれか1台が本無線機であればよく、受信信号から直接波の有無を検出してBF又はCDDを選択し、他方の無線機にも当該送信モードを指示するように構成すればよい。
 これにより、本システムを簡易に構築することができ、遮蔽物がない場合にはBFで送信して高速伝送を可能とし、遮蔽物がある場合にはCDDで送信して、通信の断絶を防いで信頼性を向上させることができる効果がある。
[別の実施の形態]
 次に、本発明の別の実施の形態に係る無線機(別の無線機)について図4を用いて説明する。図4は、別の無線機のアンテナ指向性を示す説明図である。
 別の無線機は、送信ダイバーシティ効果を得ながらBFを行うものであり、基本的な構成は上述した本無線機と同様であるが、アンテナの構成が異なっている。
 別の無線機は、図4に示すように、複数のアンテナから成るグループを複数備えている。
 ここでは、4個の平面アンテナから成るグループを4つ備えているものとする。
 別の無線機の特徴として、巡回シフト部202は、各グループに対応して設けられ、巡回シフト制御部502から設定された巡回シフト量を、当該グループ内の全てのアンテナの送信信号に与える。つまり、同一グループ内のアンテナからの送信信号は同一の巡回シフト量となる。
 また、別の無線機では、巡回シフト制御部502が、相関係数が閾値以上で直接波ありと判定した場合には、異なるグループ同士にも同一の巡回シフト量を与える。
 また、別の無線機では、ビームフォーミング部211は、同一グループ内では常にBFを行う。
 それに加えて、巡回シフト部502が直接波ありと判定した場合には、ビームフォーミング部211は、グループ間でもBFを行うよう、位相差を与える。
 この場合には、16アンテナ全てが同一の巡回シフト量となり、更にグループ間でもBFが行われるため、例えば、図7(c)のような鋭い指向性が得られ、高速伝送が可能となる。
 一方、巡回シフト制御部502が、相関係数が閾値未満で直接波なしと判定した場合には、各巡回シフト部202に1サンプル以上異なる巡回シフト量を与える。これにより、異なるグループ同士は異なる巡回シフト量が与えられ、グループ間でCDDを行うことになる。直接波なしの場合でも、上述したように、グループ内でBFが行われる。
 この場合、別の無線機のアンテナ指向性は、図4に示すように、図7(c)と図7(e)の中間の特性となる4ビームが生成されて、ダイバーシティ効果が得られ、遮蔽物が出現した場合でも、通信の切断を防ぐことができるものである。
[別の実施の形態の効果]
 別の無線機によれば、複数のアンテナから成るグループを複数備え、グループ毎に対応してグループ内のアンテナの送信信号に同一の巡回シフト量を与える巡回シフト部202と、グループ内でBFを行うビームフォーミング部が設けられ、巡回シフト制御部502が、直接波ありと判定した場合には、全ての巡回シフト部202に同一の巡回シフト量を与えると共にビームフォーミング部に対してグループ間でもBFを行うよう制御し、直接波なしと判定した場合には、全ての巡回シフト部202に異なる巡回シフト量を与えると共に、ビームフォーミング部に対してグループ間のBFを行わないよう制御するようにしているので、見通し上に遮蔽物がない場合の指向性を鋭くして一層高速伝送及び長距離伝送を可能とすると共に、遮蔽物がある場合でもグループ間ではダイバーシティ効果が得られるため、通信の断絶を防ぎ、信頼性を向上させることができる効果がある。
 この出願は、2019年6月26日に出願された日本出願特願2019-119146を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 本発明は、高速伝送及び長距離伝送を可能としつつ、遮蔽物があっても無線通信の断絶を回避することができる固定無線アクセスシステムの無線機、通信システム及び通信方法に適している。
 200…送信機能部、 201…OFDM変調部、 202…巡回シフト部、 203…GI付加部、 204…D/A変換部、 205…送信アナログ部、 206…アンテナ制御部、 207…アンテナ、 208…デジタル移相器、 209…アナログ移相器、 210,211…ビームフォーミング部、 300…受信機能部、 301…受信アナログ部、 302…A/D変換部、 401,402…無線機、 403…遮蔽物、 501…相関演算部、 502…巡回シフト制御部

Claims (5)

  1.  固定無線アクセスシステムで用いられ、複数のアンテナを備え、OFDM変調方式で送受信を行う無線機であって、
     前記複数のアンテナでの受信信号に基づいて直接波の有無を検出する直接波検出部と、
     前記複数のアンテナに対応して設けられ、前記アンテナからの送信信号を特定のシフト量でシフトさせる複数の巡回シフト部と、
     前記アンテナからの送信信号に位相回転を施して狭小ビームを生成するビームフォーミング部とを備え、
     前記直接波検出部が、直接波を検出した場合には、前記複数の巡回シフト部と前記ビームフォーミング部とを制御して狭小ビームを生成させ、直接波を検出しない場合には、前記巡回シフト部と前記ビームフォーミング部とを制御して、狭小ビームを生成させずに巡回シフトダイバーシティを行わせることを特徴とする無線機。
  2.  直接波検出部は、複数のアンテナでの受信信号の相関係数を算出する相関演算部と、前記相関係数の値に基づいて直接波の有無を判定し、直接波を検出した場合には、複数の巡回シフト部に同一のシフト量を設定し、直接波を検出しない場合には、前記複数の巡回シフト部に異なるシフト量を設定する巡回シフト制御部とを有することを特徴とする請求項1記載の無線機。
  3.  巡回シフト制御部が、相関係数の値が予め設定された閾値以上の場合は、直接波を検出したと判定し、前記相関係数の値が前記閾値より小さい場合は、直接波を検出しないと判定することを特徴とする請求項2記載の無線機。
  4.  請求項1記載の第1の無線機と、複数のアンテナを備えた第2の無線機を備えた固定無線アクセスシステムであって、
     前記第1の無線機が、受信信号に基づいて、ビームフォーミング又は巡回シフトダイバーシティのいずれかの送信を行うと、当該送信モードの情報を、前記第2の無線機に送信し、
     前記第2の無線機が、前記第1の無線機から受信した送信モードの情報に基づいてビームフォーミング又は巡回シフトダイバーシティを行って送信することを特徴とする通信システム。
  5.  OFDM変調方式で送受信を行う固定無線アクセスシステムで用いられる通信方法であって、
     複数のアンテナを備える無線機が、前記複数のアンテナでの受信信号に基づいて直接波の有無を検出し、直接波を検出した場合には、ビームフォーミングを行って狭小ビームを生成して送信し、直接波を検出しない場合には、巡回シフトダイバーシティを行って送信することを特徴とする通信方法。
PCT/JP2020/023953 2019-06-26 2020-06-18 無線機、通信システム及び通信方法 WO2020262188A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021526875A JP7084553B2 (ja) 2019-06-26 2020-06-18 無線機、通信システム及び通信方法
US17/617,136 US11528060B2 (en) 2019-06-26 2020-06-18 Wireless apparatus, communication system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119146 2019-06-26
JP2019-119146 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262188A1 true WO2020262188A1 (ja) 2020-12-30

Family

ID=74060987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023953 WO2020262188A1 (ja) 2019-06-26 2020-06-18 無線機、通信システム及び通信方法

Country Status (3)

Country Link
US (1) US11528060B2 (ja)
JP (1) JP7084553B2 (ja)
WO (1) WO2020262188A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521358A (ja) * 2002-04-01 2005-07-14 インテル・コーポレーション 無線で送信された情報の送信モードをダイナミックに最適化するシステムおよび方法
JP2008048093A (ja) * 2006-08-14 2008-02-28 Toshiba Corp マルチアンテナ無線通信システムにおける送信方法、送信機及び受信機
JP2008527950A (ja) * 2004-11-30 2008-07-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 適応多入出力(mimo)無線通信システムのための方法と装置
JP2008236428A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法
JP2013123241A (ja) * 2005-06-16 2013-06-20 Qualcomm Inc セルラシステムにおける適応性のあるセクタ化

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020098799A1 (en) * 2001-01-19 2002-07-25 Struhsaker Paul F. Apparatus and method for operating a subscriber interface in a fixed wireless system
JP6058898B2 (ja) 2012-02-22 2017-01-11 株式会社日立国際電気 無線通信装置、無線通信方法、及び無線通信システム
JP2015126271A (ja) 2013-12-25 2015-07-06 株式会社日立製作所 基地局

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521358A (ja) * 2002-04-01 2005-07-14 インテル・コーポレーション 無線で送信された情報の送信モードをダイナミックに最適化するシステムおよび方法
JP2008527950A (ja) * 2004-11-30 2008-07-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 適応多入出力(mimo)無線通信システムのための方法と装置
JP2013123241A (ja) * 2005-06-16 2013-06-20 Qualcomm Inc セルラシステムにおける適応性のあるセクタ化
JP2008048093A (ja) * 2006-08-14 2008-02-28 Toshiba Corp マルチアンテナ無線通信システムにおける送信方法、送信機及び受信機
JP2008236428A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法

Also Published As

Publication number Publication date
US20220271801A1 (en) 2022-08-25
JP7084553B2 (ja) 2022-06-14
JPWO2020262188A1 (ja) 2020-12-30
US11528060B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
EP1841092B1 (en) Wireless communication method and system
US8611455B2 (en) Multiple-input multiple-output spatial multiplexing system with dynamic antenna beam combination selection capability
EP1650883B1 (en) Method for transmission scheme selection based on the number of antennas and the data rate
US4710944A (en) Dual transmit-receive space diversity communication system
US7340248B2 (en) Calibration apparatus
US20100136900A1 (en) Radio Relay Device and Method
EP1906556B1 (en) Method and system for ofdm based mimo system with enhanced diversity
KR101513889B1 (ko) 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
KR100700378B1 (ko) 무선 중계 시스템, 무선 중계 장치 및 무선 중계 방법
JP4107494B2 (ja) 無線通信システム
US20140161018A1 (en) Multi-user mimo via frequency re-use in smart antennas
US9083421B2 (en) Transceiver and a repeater
CN107211484B (zh) 无线系统中的对称和全双工中继器
JP2004533186A (ja) 周波数選択性ビームの形成方法およびその装置
WO2004028037A1 (ja) 無線通信システム
KR20090014740A (ko) 공간 분할 다중 접속을 위한 기지국과 중계기의 연결방법과 이에 따른 중계 방법
US20080032632A1 (en) Apparatus and method for canceling interference in a wireless communication system
EP0936756B1 (en) An architecture for multi-sector base stations
KR101212887B1 (ko) 중계장치
JP6482730B2 (ja) 無線通信システム
WO2020262188A1 (ja) 無線機、通信システム及び通信方法
JP2006287669A (ja) 無線通信装置
WO2017167532A1 (en) Beamforming device for forming different beams for control and data signal
JP2014027367A (ja) 無線通信システムおよび無線通信方法
JP2001053660A (ja) 適応アレーアンテナ受信機、適応アレーアンテナ送信機および適応アレーアンテナ通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830681

Country of ref document: EP

Kind code of ref document: A1