WO2020261620A1 - Endoscopic treatment simulation model - Google Patents

Endoscopic treatment simulation model Download PDF

Info

Publication number
WO2020261620A1
WO2020261620A1 PCT/JP2020/001650 JP2020001650W WO2020261620A1 WO 2020261620 A1 WO2020261620 A1 WO 2020261620A1 JP 2020001650 W JP2020001650 W JP 2020001650W WO 2020261620 A1 WO2020261620 A1 WO 2020261620A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
bile duct
liver
endoscope
tip
Prior art date
Application number
PCT/JP2020/001650
Other languages
French (fr)
Japanese (ja)
Inventor
知輝 小杉
裕太 中西
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Publication of WO2020261620A1 publication Critical patent/WO2020261620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to an endoscopic treatment simulation model.
  • ERCP Endoscopic Retrograde Cholangiopancreatography
  • the endoscope is advanced to the duodenum, and a medical device such as a catheter protruding from the tip of the endoscope is inserted from the papilla into the common bile duct or the like.
  • Patent Document 1 discloses a device having a tubular organ that imitates the large intestine and capable of training an operation or examination using an endoscope.
  • Patent Documents 2 and 3 include a device having a route imitating a coronary artery and capable of training percutaneous coronary angioplasty (PTCA: Percutaneous Transluminal Catheter Angioplasty) using a medical device such as a catheter. It is disclosed.
  • PTCA percutaneous Transluminal Catheter Angioplasty
  • Japanese Unexamined Patent Publication No. 2016-218415 Japanese Unexamined Patent Publication No. 2001-343891 Japanese Unexamined Patent Publication No. 2008-237304
  • Patent Document 1 has a problem that it cannot simulate treatment or examination of the bile duct or pancreatic duct because it only includes a tubular organ that imitates the large intestine.
  • the techniques described in Patent Documents 2 and 3 have a problem that they cannot simulate treatment or examination of bile ducts and pancreatic ducts because they only provide a route imitating a coronary artery.
  • the technique described in Patent Document 1 has a problem that it is necessary to separately prepare an endoscope.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and an object of the present invention is to provide a technique capable of simulating treatment or examination of a bile duct.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
  • an endoscopic treatment simulation model is provided.
  • This endoscopic treatment simulation model is an endoscopic model that imitates the tip side of an endoscope, and has a device lumen for inserting a medical device and an endoscope tip opening that communicates with the device lumen.
  • An endoscopic model having, a liver model having an intrahepatic bile duct lumen imitating the bile duct in the liver, and a common bile duct model having a common bile duct lumen imitating the common bile duct communicating with the intrahepatic bile duct lumen.
  • a common bile duct model having a common bile duct tip opening that communicates with the common bile duct lumen and into which the tip of the medical device protruding from the endoscope tip opening is inserted.
  • the endoscopic treatment simulation model includes a liver model having an intrahepatic bile duct lumen that imitates the intrahepatic bile duct (intrahepatic bile duct) and a common bile duct that imitates the common bile duct that communicates with the intrahepatic bile duct lumen.
  • a common bile duct model with lumens is provided so that treatment or examination of the bile duct can be simulated.
  • the endoscopic treatment simulation model further includes an endoscopic model that imitates the tip side of the endoscope. Therefore, even when simulating a procedure using an endoscope such as endoscopic retrograde cholangiopancreatography (ERCP), it is not necessary to prepare an endoscope separately. , You can easily simulate the procedure.
  • ERCP endoscopic retrograde cholangiopancreatography
  • the tip of the endoscopic model is curved in the direction in which the liver model is arranged, and the tip of the endoscope is formed. It may have a tip surface facing the direction in which the liver model is arranged. According to this configuration, the tip of the endoscope model is curved in the direction in which the liver model is placed, so that the posture of the endoscope inserted up to the duodenal papilla in the actual ERCP is simulated. can do.
  • the endoscopic model has a tip surface facing the direction in which the liver model is arranged, the tip surface is used to move a medical device such as a guide wire in the direction in which the liver model is arranged. You can get up towards it. That is, the forceps raising table of the endoscope can be simulated by using the tip surface of the endoscope model.
  • the endoscopic model and the total are further provided with a predetermined distance between the endoscopic tip opening and the common bile duct tip opening. It may be provided with a retainer that holds the bile duct model. According to this configuration, since the endoscopic treatment simulation model includes a holding portion, the endoscopic model and the common bile duct model are modeled with a predetermined distance between the tip of the endoscope and the tip of the common bile duct. And can be retained.
  • the holding portion is in a state where the relative position of the common bile duct tip opening with respect to the endoscopic tip opening is changed, and the endoscopic model and the total It may be possible to hold a bile duct model.
  • the holding portion can hold the endoscope model and the common bile duct model in a state where the relative position of the common bile duct tip with respect to the endoscope tip is changed. Therefore, the treatment or examination of the bile duct is simulated with the relative position of the common bile duct tip relative to the endoscopic tip opening changed according to the individual difference in the positional relationship between the duodenal papilla and the common bile duct. be able to.
  • the liver model communicates with the intrahepatic bile duct lumen, and also communicates with the liver connection port connected to the common bile duct lumen and the intrahepatic bile duct lumen. At the same time, it may have a liver base end port provided on the downstream side of the liver connection port. According to this configuration, the liver model simulates the configuration of the actual organ that connects the common bile duct to the intrahepatic bile duct because it has a liver connection port that communicates with the intrahepatic bile duct lumen and is connected to the common bile duct lumen. be able to.
  • the liver model is provided with a liver proximal opening provided on the downstream side of the liver connecting port, when the intrahepatic bile duct lumen is filled with a liquid simulating bile, the liquid is transferred from the liver proximal opening to the outside. Can be discharged.
  • the liver model further includes a plurality of end members having substantially the same shape, which are attached to the liver connection port and the liver base end port, respectively. May be good.
  • the liver model includes end members attached to the liver connection port and the liver base end port, respectively. By using this end member, it is possible to easily supply the liquid to the intrahepatic bile duct lumen. Further, since the plurality of end members have substantially the same shape, it is possible to easily supply the liquid to the intrahepatic bile duct lumen from any end member.
  • different identifiers may be displayed on the plurality of end members. According to this configuration, since different identifiers are displayed on the plurality of end members, the target liver connection port or liver group is used when simulating treatment or examination using the endoscopic treatment simulation model. The end mouth can be easily identified and transmitted.
  • a plurality of pairs of the endoscopic model, the liver model, and the common bile duct model may be arranged side by side.
  • a plurality of pairs of an endoscopic model, a liver model, and a common bile duct model are arranged side by side. Therefore, for example, when the first medical device is inserted into a certain set and the second medical device is inserted into another set, the behavior of the first medical device and the second medical device is changed. Easy to compare.
  • an endoscopic treatment simulation model is provided.
  • an endoscopic model that imitates an endoscope inserted up to the papilla of Vater and a medical device that protrudes from the tip of the endoscopic model pass through the common bile duct to the liver.
  • It includes a common bile duct model that imitates the path leading to the common bile duct, and a liver model that mimics the path that the medical device that has passed through the common bile duct model follows the intrahepatic bile duct in the liver.
  • the endoscopic treatment simulation model consists of an endoscopic model that imitates an endoscope inserted up to the papilla of Vater and a medical device that protrudes from the tip of the endoscopic model, and the common bile duct.
  • a common bile duct model that mimics the path through the liver to the liver and a liver model that mimics the path through the intrahepatic bile duct in the liver are provided, so that treatment or examination of the bile duct can be simulated.
  • the present invention can be realized in various aspects, and other organ models (for example, a pancreas model having a pancreatic duct lumen imitating a pancreatic duct, a duodenum model imitating a duodenum, a stomach model imitating a stomach, etc. ) Can be realized in the form of an endoscopic treatment simulation model, a method of manufacturing an endoscopic treatment simulation model, or the like.
  • organ models for example, a pancreas model having a pancreatic duct lumen imitating a pancreatic duct, a duodenum model imitating a duodenum, a stomach model imitating a stomach, etc.
  • FIG. 1 is an explanatory diagram illustrating the configuration of the endoscopic treatment simulation model 1.
  • the endoscopic treatment simulation model 1 is a device used to simulate a treatment or examination procedure using an endoscope and a medical device for the bile duct.
  • endoscopic retrograde cholangiopancreatography ERCP
  • the endoscope is advanced to the duodenal papilla, and a medical device protruding from the tip of the endoscope is inserted from the papilla into the common bile duct or the like.
  • the medical device means a device for minimally invasive treatment or examination, such as a catheter or a guide wire.
  • the endoscopic treatment simulation model 1 includes an endoscopic model 10, a liver model 20, a common bile duct model 30, and a holding portion 40.
  • the XYZ axes which are orthogonal to each other are illustrated.
  • the X-axis corresponds to the width direction of the endoscopic treatment simulation model 1.
  • the Y-axis corresponds to the height direction of the endoscopic treatment simulation model 1.
  • the Z-axis corresponds to the depth direction of the endoscopic treatment simulation model 1.
  • FIG. 2 is an explanatory view illustrating the configuration of the endoscope model 10 as viewed from the first direction.
  • FIG. 3 is an explanatory view illustrating the configuration of the endoscope model 10 as viewed from the second direction.
  • the XYZ axes of FIGS. 2 and 3 correspond to the XYZ axes of FIG. 1, respectively.
  • the endoscope model 10 is a model that reproduces the tip side of the endoscope in a state where it is inserted up to the duodenal papilla.
  • the endoscope model 10 includes a straight portion 110 that imitates the insertion portion of the endoscope, a curved portion 120 that imitates the tip portion of the endoscope, and four pedestals 191 to 194.
  • the straight portion 110 imitates the posture of the insertion portion of the endoscope in the body, and extends in the Y-axis direction while being gently curved.
  • a device lumen 10L extending along the extending direction of the straight portion 110 is formed (FIGS. 1 to 3: broken line).
  • the device lumen 10L of the straight portion 110 has an end portion in the + Y-axis direction communicating with the endoscope base end port 111 and an end portion in the ⁇ Y axis direction communicating with the device lumen 10L of the curved portion 120.
  • the curved portion 120 imitates the posture of the tip portion of the endoscope in the body, and is connected to the straight portion 110 in the + Y-axis direction and the direction of the duodenal papilla in the ⁇ Y-axis direction, in other words, the liver. It is curved in the direction in which the model 20 is arranged (in the case of FIG. 1, the + X-axis direction). Inside the curved portion 120, a device lumen 10L extending along the extending direction of the curved portion 120 is formed (FIGS. 1 to 3: broken line).
  • the end of the curved portion 120 in the + Y-axis direction communicates with the device lumen 10L of the straight portion 110, and the end in the ⁇ Y-axis direction communicates with the endoscope tip port 154.
  • a tip surface 150 facing the direction in which the liver model 20 is arranged and having the endoscope tip port 154 is formed.
  • the tip surface 150 is tilted at about 45 degrees with respect to the Y axis.
  • the inclination angle of the tip surface 150 can be arbitrarily determined.
  • the curved portion 120 may be configured integrally with the straight portion 110, or may be configured to be removable. When it is configured to be removable, for example, it is preferable to prepare a plurality of curved portions 120 having different degrees of curvature and angles of the tip surface 150 in advance. Then, the curved portion 120 having an appropriate degree of curvature or the angle of the tip surface 150 can be selected and used according to the individual difference in the positional relationship between the duodenal papilla and the common bile duct, and more depending on the actual situation. The treatment or examination can be simulated in various aspects.
  • a tube tubular body
  • the endoscope model 10 is formed by forming the interpolated tube with the same or similar material as the material of the tube constituting the device lumen in the actual endoscope. Can be more similar.
  • the endoscopic treatment simulation model 1 of the present embodiment includes three sets of endoscopic models 10.
  • the three sets of endoscope models 10 are integrally formed, and each includes the straight portion 110, the curved portion 120, and the device lumen 10L (FIGS. 2 and 3: broken lines) described above.
  • subscripts a, b, and c are added after the reference numerals in order to distinguish the components of each endoscope model 10.
  • the straight portion 110a means the straight portion 110 of the first endoscope model
  • the straight portion 110b means the straight portion 110 of the second endoscope model
  • the straight portion 110c means the straight portion 110.
  • It means the straight portion 110 of the endoscope model 10 of 3.
  • the subscripts a, b, and c will be omitted.
  • the four pedestals 191 to 194 are substantially rectangular support members formed at the ends of the straight portion 110c.
  • the pedestals 191 to 194 allow the endoscope model 10 to be placed on a desk in a state where three sets of endoscope models 10 are stacked in the Z-axis direction.
  • FIG. 4 is an explanatory diagram illustrating the configuration of the liver model 20.
  • the liver model 20 is a model that reproduces the bile duct in the liver (hereinafter, also simply referred to as “intrahepatic bile duct”). Inside the liver model 20, an intrahepatic bile duct lumen 20L simulating the arrangement of the intrahepatic bile duct in the human body is formed (FIG. 4: broken line).
  • the intrahepatic bile lumen 20L is provided at four locations: the liver connection port 211, the first liver base end port 221 and the second liver base end port 231 and the third liver base end port 241. Communicating.
  • the first to third liver proximal ports 221 to 241 are openings that are open to the outside on the downstream side (meaning the downstream side in the traveling direction of the medical device) from the liver connection port 211.
  • the 1st to 3rd liver base ends 221 to 241 are also collectively referred to as "liver base end mouth”.
  • An end member 210 is attached to the liver connection port 211.
  • the first liver base end port 221 has a first end member 220
  • the second liver base end port 231 has a second end member 230
  • the third liver base end port 241 has a third end member 240.
  • the end member 210 and the first to third end members 220 to 240 are luer lock connectors having substantially the same shape, respectively.
  • different identifiers (blanks, 1, 2, 3) are displayed on the end member 210 and the first to third end members 220 to 240, respectively.
  • numbers are illustrated as an example of identifiers, but arbitrary identifiers such as characters, symbols, figures, and combinations thereof can be displayed.
  • the end member 210 and the first to third end members 220 to 240 are also collectively referred to as an "end member".
  • the intrahepatic bile duct lumen 20L has nine ends of the flow path that do not communicate with the outside at the ends 250, 251,252, 253, 254, 255, 256, 257, 259.
  • the length of each flow path from the liver connection port 211 to the first to third liver base end ports 221 to 241 is the length of each flow path from the liver connection port 211 to the terminal 250 to 259. Longer than the length.
  • the length L1 of the flow path from the liver connection port 211 to the second liver base end port 231 (FIG. 4: solid line arrow) is the length of the flow path from the liver connection port 211 to the terminal 259. Is longer than L3 (Fig. 4: dashed arrow). In this way, the liver model 20 can be miniaturized.
  • the endoscopic treatment simulation model 1 of the present embodiment includes three sets of liver models 20 so as to correspond to the three sets of endoscopic models 10 described with reference to FIGS. 2 and 3, respectively.
  • the three sets of liver models 20 are integrally formed, and each includes the above-mentioned intrahepatic bile duct lumen 20L and end members 210 to 240, and are laminated in the Z-axis direction.
  • FIG. 5 is an explanatory diagram illustrating a usage state of the endoscopic treatment simulation model 1.
  • each component covered by the holding portion 40 is represented by a broken line.
  • the common bile duct model 30 is a model that reproduces the common bile duct.
  • the common bile duct model 30 includes a tubular portion 310 and a movable member 320.
  • the tubular portion 310 is a tubular body having a common bile duct lumen 30L formed inside.
  • One end (the end in the + Y-axis direction in the case of FIG. 5) communicates with the bile duct connection port 311 and the other end (the end in the ⁇ Y-axis direction in the case of FIG. 5) of the common bile duct lumen 30L of the tubular portion 310. It communicates with the opening 312.
  • the bile duct connection port 311 is connected to the liver connection port 211 of the liver model 20 via the end member 210.
  • the opening 312 is connected to the opening 325 of the movable member 320.
  • the movable member 320 includes a prismatic main body portion 321 and a pair of first arm portions 322 and second arm portions 323 formed at both ends of the main body portion 321. ..
  • the main body 321 is formed with a through hole penetrating the lower surface and the upper surface. This through hole communicates with the common bile duct tip opening 324 on the lower surface side (FIG. 2) and communicates with the opening 325 on the upper surface side (FIG. 3).
  • the opening 325 is connected to the opening 312 of the common bile duct model 30 as described above.
  • the duodenal papilla is simulated by the common bile duct tip opening 324, and the common bile duct extending from the duodenal papilla is simulated by the through hole of the movable member 320 and the common bile duct lumen 30L of the tubular portion 310.
  • the first arm portion 322 and the second arm portion 323 rotate around the rotation axis O (that is, the endoscope tip port 154) in the vicinity of the exit from the tip surface 150 of the endoscope model 10.
  • FIG. 3: One-dot chain line) is rotatably supported by the holding portion 40.
  • the holding portion 40 is a member that holds the endoscope model 10 and the common bile duct model 30 with a predetermined distance between the endoscope tip opening 154 and the common bile duct tip opening 324.
  • the holding portion 40 includes a pair of a first holding plate 410 and a second holding plate 420.
  • the first holding plate 410 and the second holding plate 420 are plate-shaped members having a substantially semicircular shape.
  • the first holding plate 410 is fixed to the outside of the curved portion 120a (FIG. 3: -Z axis direction), and the second holding plate 420 is fixed to the outside of the curved portion 120c (FIG. 3: + Z axis direction). ing.
  • the first holding plate 410 and the second holding plate 420 are formed with a first rail portion 411 and a second rail portion 421, which are grooves for sliding the movable member 320 around the rotation shaft O, respectively.
  • the user slides the movable member 320 around the rotation axis O, and fixes the movable member 320 to the holding portion 40 at a desired position using a screw 431.
  • the endoscope model 10 and the common bile duct model 30 can be held in a state where the relative position of the common bile duct tip opening 324 with respect to the endoscope tip opening 154 is changed.
  • the endoscopic treatment simulation model 1 of the present embodiment has three tubular portions 310 and three through holes so as to correspond to the three sets of endoscopic models 10 described with reference to FIGS. 2 and 3, respectively. It includes a formed movable member 320.
  • the movable member 320 has a configuration in which the relative positions of the common bile duct tip ports 324a to c with respect to the endoscope tip ports 154a to c are collectively changed.
  • the movable member 320 has a position of the common bile duct tip opening 324a with respect to the endoscope tip opening 154a, a position of the common bile duct tip opening 324b with respect to the endoscope tip opening 154b, and a common bile duct tip opening with respect to the endoscope tip opening 154c.
  • the position of the 324c and the position may be individually changeable.
  • the endoscopic model 10, the liver model 20, the total bile duct model 30, and the holding portion 40 described above may be made of synthetic resin (for example, ABS resin, PLA resin, polypropylene resin, acrylic resin, PET resin, PVA resin, silicon, etc.). , Rubber, plaster, metal and any other material.
  • the endoscopic model 10, the movable member 320 of the common bile duct model 30, and the holding portion 40 are preferably formed of a transparent or translucent resin (for example, acrylic resin, PET resin, etc.). Then, the state of the medical device passing through the device lumen 10L can be easily observed from the outside.
  • tubular portion 310 of the liver model 20 and the common bile duct model 30 is preferably formed of a resin (for example, PVA resin, silicone) that is transparent or translucent and has flexibility.
  • a resin for example, PVA resin, silicone
  • the state of the medical device passing through the intrahepatic bile duct lumen 20L and the common bile duct lumen 30L can be easily observed from the outside, and the tactile sensation of the liver model 20 and the common bile duct model 30 can be seen in the actual liver. And can resemble the tactile sensation of the common bile duct.
  • the endoscope model 10, the liver model 20, the movable member 320 of the common bile duct model 30, and the holding portion 40 each input data in which the outer shape, the lumen shape, and the opening shape are input in advance into, for example, a 3D printer. It can be produced by printing. By using a 3D printer, an endoscope model 10, a liver model 20, a movable member 320 of the common bile duct model 30, and a holding portion 40 having a complicated shape can be easily manufactured.
  • the guide wire 2 will be described as an example as a medical device.
  • the inside of the intrahepatic bile duct lumen 20L and the common bile duct lumen 30L is filled with a liquid imitating bile.
  • a syringe is attached to any one of the end member 210 and the first to third end members 220 to 240 to supply the liquid.
  • the supplied liquid is filled in 20 L of intrahepatic bile duct lumen, and then 30 L of common bile duct lumen communicated with 20 L of intrahepatic bile duct lumen.
  • the supplied liquid when a liquid is supplied from the end member 210, the supplied liquid easily flows into the first to third end members 220 to 240 having low back pressure (pressure applied to the flow path), and thus the intrahepatic bile duct.
  • the air in the lumen 20L can be quickly discharged from the first to third end members 220 to 240.
  • air bubbles can be discharged from the first to third end members 220 to 240 by adding a liquid from the syringe.
  • the air and air bubbles in the intrahepatic bile duct lumen 20L can be efficiently discharged to the outside by the back pressure difference, so that a pump or the like for circulating the liquid is not required, and the endoscopic treatment simulation model 1 Can be miniaturized.
  • the guide wire 2 is inserted into the device lumen 10L from the endoscope base end port 111 of the endoscope model 10.
  • the guide wire 2 is pushed through the device lumen 10L to the tip (curved portion 120) of the endoscope model 10, and the tip of the guide wire 2 is projected outward from the endoscope tip port 154.
  • the tip of the guide wire 2 is inserted into the common bile duct lumen 30L from the common bile duct tip opening 324 simulating the duodenal papilla.
  • This state corresponds to the state in which the guide wire 2 is inserted into the common bile duct from the duodenal papilla in ERCP.
  • the guide wire 2 is gripped at two points, the corner portion 154E (FIG. 5: one-dot chain line circle) and the corner portion 324E (FIG. 5: one-dot chain line circle).
  • the guide wire 2 can be given a steep curve as in the case where the guide wire 2 is raised by the forceps raising table of the endoscope with a steep bend.
  • the corners 154E and 324E function similarly to the forceps raising platform of the endoscope.
  • the tip of the guide wire 2 can be directed toward the common bile duct tip opening 324, which simulates the duodenal papilla.
  • this state corresponds to a state in which the guide wire 2 is projected from the tip of the endoscope advanced to the duodenum and the tip of the guide wire 2 is directed toward the duodenal papilla.
  • the corner portion 154E is a portion formed by the tip surface 150 inclined in the direction in which the liver model 20 is arranged and the endoscope tip opening 154.
  • the corner portion 324E is a portion formed by the lower surface of the main body portion 321 constituting the movable member 320 and the common bile duct tip opening 324.
  • the common bile duct lumen 30L and the intrahepatic bile duct lumen 20L are filled with a liquid imitating bile.
  • the end members (first to third end members 220 to 240) provided at the first to third liver base end ports 221 to 241 are respectively provided so as to project to the outside of the liver model 20. Therefore, it is possible to easily distinguish between the first to third liver base end ports 221-241 that communicate with the outside and the terminals 250 to 259 that do not communicate with the outside.
  • the liver model 20 having an intrahepatic bile duct lumen 20L that imitates the bile duct (intrahepatic bile duct) in the liver and the intrahepatic bile duct lumen 20L
  • a common bile duct model 30 having a common bile duct lumen 30 L that mimics the common bile duct that communicates with the bile duct is provided, so that treatment or examination of the bile duct can be simulated.
  • the endoscopic treatment simulation model 1 of the first embodiment further includes an endoscopic model 10 that imitates the tip end side of the endoscope. Therefore, even when simulating a procedure using an endoscope, such as endoscopic retrograde cholangiopancreatography (ERCP), there is no need to prepare an endoscope separately, and the procedure is easy. Can be simulated.
  • ERCP endoscopic retrograde cholangiopancreatography
  • the curved portion 120 at the tip of the endoscopic model 10 is curved in the direction in which the liver model 20 is arranged. Therefore, it is possible to simulate the posture of the endoscope inserted up to the duodenal papilla in the actual ERCP. Further, since the endoscope model 10 has a tip surface 150 facing the direction in which the liver model 20 is arranged, the liver model 20 arranges a medical device such as a guide wire 2 using the tip surface 150. It can be raised in the direction in which it is being used, and the forceps raising platform of the endoscope can be simulated.
  • the liver model 20 is arranged with the guide wire 2 by the corner portion 154E formed on the tip surface 150 and the corner portion 324E formed on the lower surface of the main body portion 321 constituting the movable member 320. It can be raised in the direction, and the forceps raising base of the endoscope can be simulated.
  • the holding portion 40 since the holding portion 40 is provided, a predetermined distance is opened between the endoscope tip opening 154 and the common bile duct tip opening 324.
  • the endoscopic model 10 and the common bile duct model 30 can be held.
  • the holding portion 40 can hold the endoscope model 10 and the common bile duct model 30 in a state where the relative position of the common bile duct tip opening 324 with respect to the endoscope tip opening 154 is changed.
  • the liver model 20 includes a liver connection port 211 that communicates with the intrahepatic bile duct lumen 20L and is connected to the common bile duct lumen 30L. It is possible to simulate the actual composition of the organs connected to the intrahepatic bile duct. Further, since the liver model 20 includes the first to third liver proximal ports 221-241 provided on the downstream side of the path of the medical device from the liver connection port 211, bile is simulated in the intrahepatic bile duct lumen 20L. When the liquid is filled, the liquid can be discharged to the outside from the first to third liver base ends 221 to 241.
  • the liver model 20 has an end member 210 and a first end member 210 attached to the liver connection port 211 and the first to third liver base end ports 221-241, respectively.
  • the first to third end members 220 to 240 (end members) are provided.
  • the end member 210 and the first to third end members 220 to 240 it is possible to easily supply the fluid to the intrahepatic bile duct lumen 20L.
  • the end member 210 and the first to third end members 220 to 240 have substantially the same shape, the syringe can be attached from any end member, and the fluid can be supplied to the intrahepatic bile duct lumen 20L. You can do it easily.
  • the end member 210 and the first to third end members 220 to 240 are displayed.
  • the target liver connection port 211 and the first to third liver base end ports 221 to 241 can be easily identified and transmitted.
  • the endoscopic treatment simulation model 1 of the first embodiment a plurality of pairs of the endoscopic model 10, the liver model 20, and the common bile duct model 30 are arranged side by side. Therefore, for example, when the first medical device is inserted into a certain set and the second medical device is inserted into another set, the behavior of the first medical device and the second medical device is changed. Easy to compare.
  • the endoscopic treatment simulation model 1 is an endoscopic model 10 that imitates an endoscope inserted up to the papilla of Vater and a medical use that protrudes from a curved portion 120 at the tip of the endoscopic model 10.
  • the device comprises a common bile duct model 30 that mimics the path through the common bile duct to the liver and a liver model 20 that mimics the path through the intrahepatic bile duct in the liver, thus simulating treatment or examination of the bile duct. can do.
  • FIG. 6 is an explanatory diagram illustrating the configuration of the endoscope model 10A of the second embodiment.
  • the endoscopic treatment simulation model 1A of the second embodiment includes an endoscopic model 10A instead of the endoscopic model 10.
  • the endoscope model 10A has a configuration in which the relative position of the common bile duct tip 324 with respect to the endoscope tip 154 cannot be changed.
  • the endoscope model 10A includes a holding member 320A instead of the movable member 320, and has a holding portion 40A instead of the holding portion 40.
  • the holding member 320A has a prismatic main body portion 321A.
  • the main body 321A is formed with a through hole that communicates with the common bile duct tip opening 324 on the lower surface side and communicates with the opening 325 on the upper surface side.
  • the end portion of the main body portion 321A in the ⁇ Z axis direction is fixed to the first holding plate 410A of the holding portion 40A by using a screw 431.
  • the end portion of the main body portion 321A in the + Z axis direction is fixed to the second holding plate 420A of the holding portion 40A by using a screw.
  • the holding portion 40A includes a first holding plate 410A and a second holding plate 420A, which are substantially semicircular plate-shaped members.
  • the first rail portion 411 and the second rail portion 421 described in the first embodiment are not formed on the first holding plate 410A and the second holding plate 420A.
  • the configuration of the endoscope model 10A can be changed in various ways, and by changing the configurations of the holding member 320A and the holding portion 40A, the relative of the common bile duct tip opening 324 to the endoscope tip opening 154. The position may not be changed. Further, in the configuration described with reference to FIG. 6, the holding member 320A and the holding portion 40A may be integrally formed. In such an endoscopic treatment simulation model 1A of the second embodiment, the same effect as that of the first embodiment described above can be obtained.
  • FIG. 7 is an explanatory diagram illustrating the configuration of the endoscope model 10B of the third embodiment.
  • the endoscopic treatment simulation model 1B of the third embodiment includes an endoscopic model 10B instead of the endoscopic model 10.
  • the tip surface 150B of the end portion of the curved portion 120B in the ⁇ Y axis direction does not face the direction in which the liver model 20 is arranged.
  • the tip surface 150B is formed along the Y axis and is not inclined with respect to the Y axis.
  • the configuration of the endoscope model 10B can be changed in various ways, and various tip-side shapes in the endoscope may be simulated by changing the configurations of the straight portion 110 and the curved portion 120B. Even in the endoscopic treatment simulation model 1B of the third embodiment, the same effect as that of the first embodiment described above can be obtained.
  • FIG. 8 is an explanatory diagram illustrating the configuration of the liver model 20C of the fourth embodiment.
  • the endoscopic treatment simulation model 1C of the fourth embodiment includes a liver model 20C instead of the liver model 20.
  • the liver model 20C comprises an end 259C instead of an end 259.
  • the end 259C is the end of a flow path (intrahepatic bile duct lumen 20L) that does not communicate with the outside.
  • the length L1 of the flow path from the liver connection port 211 to the second liver base end port 231 (FIG. 8: solid arrow) is the length L3C of the flow path from the liver connection port 211 to the terminal 259C (FIG. 8).
  • the configuration of the liver model 20C can be changed in various ways, and the length of the flow path that does not communicate with the outside may be longer than the length of the flow path that communicates with the outside. Further, the shape of the intrahepatic bile duct lumen 20L in the liver model 20C can be arbitrarily changed, and the arrangement of the intrahepatic bile duct in the human body does not have to be simulated. In such an endoscopic treatment simulation model 1C of the fourth embodiment, the same effect as that of the first embodiment described above can be obtained.
  • FIG. 9 is an explanatory diagram illustrating the configuration of the liver model 20D of the fifth embodiment.
  • the endoscopic treatment simulation model 1D of the fifth embodiment includes a liver model 20D instead of the liver model 20.
  • the liver model 20D does not include the first to third end members 220 to 240 that are provided at the first to third liver proximal ports 221 to 241 in the first embodiment.
  • the configuration of the liver model 20D can be changed in various ways, and the end member may be omitted.
  • the end members of the first to third liver base end ports 221 to 241 are omitted, while the configuration including the end member 210 of the liver connection port 211 is illustrated, but the end member of the liver connection port 211 is illustrated.
  • 210 can be omitted.
  • the same effect as that of the first embodiment described above can be obtained.
  • FIG. 10 is an explanatory diagram illustrating the configuration of the liver model 20E of the sixth embodiment.
  • the endoscopic treatment simulation model 1E of the sixth embodiment includes a liver model 20E instead of the liver model 20.
  • the liver model 20E includes end members 210E and first to third end members 220E to 240E in place of the end members 210 and the first to third end members 220 to 240.
  • the end member 210E and the first to third end members 220E to 240E are luer lock connectors having no identifier display.
  • the configuration of the liver model 20E can be changed in various ways, and in addition to eliminating the display of identifiers in the end members 210E and the first to third end members 220E to 240E, the end members can be made to have an arbitrary size. , Color, shape.
  • the end members 210E and the first to third end members 220E to 240E do not have to be luer lock connectors.
  • the end members 210E and the first to third end members 220E to 240E may be different in at least one of the size, the color, and the shape. In such an endoscopic treatment simulation model 1E of the sixth embodiment, the same effect as that of the first embodiment described above can be obtained.
  • the configuration of the endoscopic treatment simulation model can be changed in various ways.
  • the endoscopic treatment simulation model has a configuration including three sets of endoscopic models stacked in the Z-axis direction, a liver model, and a common bile duct model.
  • the endoscopic treatment simulation model may be composed of one set of endoscopic model, liver model, and common bile duct model, and two or more sets of endoscopic model and liver model. , May be constructed with a common bile duct model.
  • the numbers of the endoscopic model, the liver model, and the common bile duct model do not have to be the same, and may be different from each other.
  • the endoscopic treatment simulation model may include other models not described above (for example, a pancreatic model having a pancreatic duct lumen imitating the pancreatic duct, a duodenum model imitating the duodenum, a stomach model imitating the stomach, etc.). ..
  • an endoscopic treatment simulation model controls at least some of the endoscopic model, liver model, common bile duct model, and other models, or obtains output values from sensors installed in these models. It may be provided with a control device.
  • the endoscopic treatment simulation model may include a pump for circulating fluid in the liver model (intrahepatic bile duct lumen) and the common bile duct model (common bile duct lumen).
  • the configuration of the endoscope model can be changed in various ways.
  • the pedestal formed on the straight portion may be omitted.
  • the straight portion and the curved portion may be integrally formed and may have a non-removable configuration.
  • the tip surface of the curved portion may be configured so that the angle with respect to the Y axis can be changed.
  • a tube tubular body
  • the hydrophilicity of the PVA resin allows the intrahepatic bile duct lumen to feel the actual tactile sensation in the intrahepatic bile duct lumen when it is filled with a liquid imitating bile. It is preferable because it can resemble the human body.
  • FIG. 4 an example of the configuration of the common bile duct model 30 is shown.
  • the configuration of the common bile duct model can be changed in various ways.
  • a valve made of rubber or a flexible resin material may be provided at the tip of the common bile duct that imitates the papilla of Vater.
  • the tip of the common bile duct can be made to resemble an actual human body.
  • a tube tubular body
  • the inserted tube is made of PVA resin.
  • Modification 5 Configuration of endoscopic treatment simulation models 1, 1A to 1E of the first to sixth embodiments, and configuration of endoscopic treatment simulation model, endoscopic model, liver model, and common bile duct model of the above-mentioned modified examples 1 to 4. May be combined as appropriate.
  • the endoscopic treatment simulation model may be constructed by combining the endoscopic model described in the second embodiment or the third embodiment and the liver model described in the fourth to sixth embodiments.

Abstract

An endoscopic treatment simulation model comprises: an endoscope model which simulates the tip side of an endoscope and is provided with a device lumen for inserting a medical device and an endoscope tip opening communicating with the device lumen; a liver model which is provided with an intrahepatic bile duct lumen simulating a bile duct inside the liver; and a common bile duct model which is provided with a common bile duct lumen simulating a common bile duct and communicating with the intrahepatic bile duct lumen, said common bile duct model having a common bile duct tip opening which communicates with the common bile duct lumen and into which the tip of the medical device protruding from the endoscope tip opening is inserted.

Description

内視鏡治療シミュレーションモデルEndoscopic treatment simulation model
 本発明は、内視鏡治療シミュレーションモデルに関する。 The present invention relates to an endoscopic treatment simulation model.
 胆管や膵管への低侵襲な治療または検査の一手法として、内視鏡的逆行性胆管膵管造影(ERCP:Endoscopic Retrograde Cholangiopancreatography)が知られている。ERCPでは、内視鏡を十二指腸まで進め、内視鏡の先端部から突出させたカテーテル等の医療用デバイスを、乳頭から総胆管等に進入させる。例えば、特許文献1には、大腸を模した管状臓器を備え、内視鏡を用いた手術又は検査をトレーニングすることが可能な装置が開示されている。例えば、特許文献2及び3には、冠動脈を模した経路を備え、カテーテル等の医療用デバイスを用いた経皮的冠動脈形成術(PTCA:Percutaneous Transluminal Catheter Angioplasty)をトレーニングすることが可能な装置が開示されている。 Endoscopic Retrograde Cholangiopancreatography (ERCP) is known as a method for minimally invasive treatment or examination of the bile duct and pancreatic duct. In ERCP, the endoscope is advanced to the duodenum, and a medical device such as a catheter protruding from the tip of the endoscope is inserted from the papilla into the common bile duct or the like. For example, Patent Document 1 discloses a device having a tubular organ that imitates the large intestine and capable of training an operation or examination using an endoscope. For example, Patent Documents 2 and 3 include a device having a route imitating a coronary artery and capable of training percutaneous coronary angioplasty (PTCA: Percutaneous Transluminal Catheter Angioplasty) using a medical device such as a catheter. It is disclosed.
特開2016-218415号公報Japanese Unexamined Patent Publication No. 2016-218415 特開2001-343891号公報Japanese Unexamined Patent Publication No. 2001-343891 特開2008-237304号公報Japanese Unexamined Patent Publication No. 2008-237304
 しかし、特許文献1に記載の技術では、大腸を模した管状臓器を備えるのみであるため、胆管や膵管への治療または検査を模擬できないという課題があった。同様に、特許文献2及び3に記載の技術では、冠動脈を模した経路を備え備えるのみであるため、胆管や膵管への治療または検査を模擬できないという課題があった。また、特許文献1に記載の技術では、内視鏡を別途準備する必要があるという課題があった。 However, the technique described in Patent Document 1 has a problem that it cannot simulate treatment or examination of the bile duct or pancreatic duct because it only includes a tubular organ that imitates the large intestine. Similarly, the techniques described in Patent Documents 2 and 3 have a problem that they cannot simulate treatment or examination of bile ducts and pancreatic ducts because they only provide a route imitating a coronary artery. Further, the technique described in Patent Document 1 has a problem that it is necessary to separately prepare an endoscope.
 本発明は、上述した課題の少なくとも一部を解決するためになされたものであり、胆管への治療または検査を模擬することが可能な技術を提供することを目的とする。 The present invention has been made to solve at least a part of the above-mentioned problems, and an object of the present invention is to provide a technique capable of simulating treatment or examination of a bile duct.
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。 The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
(1)本発明の一形態によれば、内視鏡治療シミュレーションモデルが提供される。この内視鏡治療シミュレーションモデルは、内視鏡の先端側を模した内視鏡モデルであって、医療用デバイスを挿入するためのデバイスルーメンと、前記デバイスルーメンに連通する内視鏡先端口と、を有する内視鏡モデルと、肝臓内の胆管を模した肝内胆管ルーメンを有する肝臓モデルと、前記肝内胆管ルーメンに連通する総胆管を模した総胆管ルーメンを有する総胆管モデルであって、前記総胆管ルーメンに連通すると共に、前記内視鏡先端口から突出した前記医療用デバイスの先端が挿入される総胆管先端口を有する総胆管モデルと、を備える。 (1) According to one embodiment of the present invention, an endoscopic treatment simulation model is provided. This endoscopic treatment simulation model is an endoscopic model that imitates the tip side of an endoscope, and has a device lumen for inserting a medical device and an endoscope tip opening that communicates with the device lumen. An endoscopic model having, a liver model having an intrahepatic bile duct lumen imitating the bile duct in the liver, and a common bile duct model having a common bile duct lumen imitating the common bile duct communicating with the intrahepatic bile duct lumen. A common bile duct model having a common bile duct tip opening that communicates with the common bile duct lumen and into which the tip of the medical device protruding from the endoscope tip opening is inserted.
 この構成によれば、内視鏡治療シミュレーションモデルは、肝臓内の胆管(肝内胆管)を模した肝内胆管ルーメンを有する肝臓モデルと、肝内胆管ルーメンに連通する総胆管を模した総胆管ルーメンを有する総胆管モデルと、を備えるため、胆管への治療または検査を模擬することができる。また、内視鏡治療シミュレーションモデルは、内視鏡の先端側を模した内視鏡モデルをさらに備える。このため、例えば内視鏡的逆行性胆管膵管造影(ERCP:Endoscopic Retrograde Cholangiopancreatography)のような、内視鏡を利用した手技を模擬する場合であっても、内視鏡を別途準備する必要がなく、手軽に手技を模擬できる。 According to this configuration, the endoscopic treatment simulation model includes a liver model having an intrahepatic bile duct lumen that imitates the intrahepatic bile duct (intrahepatic bile duct) and a common bile duct that imitates the common bile duct that communicates with the intrahepatic bile duct lumen. A common bile duct model with lumens is provided so that treatment or examination of the bile duct can be simulated. In addition, the endoscopic treatment simulation model further includes an endoscopic model that imitates the tip side of the endoscope. Therefore, even when simulating a procedure using an endoscope such as endoscopic retrograde cholangiopancreatography (ERCP), it is not necessary to prepare an endoscope separately. , You can easily simulate the procedure.
(2)上記形態の内視鏡治療シミュレーションモデルにおいて、前記内視鏡モデルは、先端部が、前記肝臓モデルが配置されている方向に向かって湾曲すると共に、前記内視鏡先端口が形成された先端面であって、前記肝臓モデルが配置されている方向を向いた先端面を有していてもよい。
 この構成によれば、内視鏡モデルの先端部は、肝臓モデルが配置されている方向に向かって湾曲しているため、実際のERCPにおいて十二指腸乳頭部まで挿入された内視鏡の姿勢を模擬することができる。また、内視鏡モデルは、肝臓モデルが配置されている方向を向いた先端面を有するため、この先端面を利用して、ガイドワイヤ等の医療用デバイスを肝臓モデルが配置されている方向に向かって起上させることができる。すなわち、内視鏡モデルの先端面を利用して、内視鏡の鉗子起上台を模擬することができる。
(2) In the endoscopic treatment simulation model of the above-described embodiment, the tip of the endoscopic model is curved in the direction in which the liver model is arranged, and the tip of the endoscope is formed. It may have a tip surface facing the direction in which the liver model is arranged.
According to this configuration, the tip of the endoscope model is curved in the direction in which the liver model is placed, so that the posture of the endoscope inserted up to the duodenal papilla in the actual ERCP is simulated. can do. In addition, since the endoscopic model has a tip surface facing the direction in which the liver model is arranged, the tip surface is used to move a medical device such as a guide wire in the direction in which the liver model is arranged. You can get up towards it. That is, the forceps raising table of the endoscope can be simulated by using the tip surface of the endoscope model.
(3)上記形態の内視鏡治療シミュレーションモデルでは、さらに、前記内視鏡先端口と、前記総胆管先端口との間に所定の距離を開けた状態で、前記内視鏡モデルと前記総胆管モデルとを保持する保持部を備えていてもよい。
 この構成によれば、内視鏡治療シミュレーションモデルは保持部を備えるため、内視鏡先端口と総胆管先端口との間に所定の距離を開けた状態で、内視鏡モデルと総胆管モデルとを保持することができる。
(3) In the endoscopic treatment simulation model of the above-described embodiment, the endoscopic model and the total are further provided with a predetermined distance between the endoscopic tip opening and the common bile duct tip opening. It may be provided with a retainer that holds the bile duct model.
According to this configuration, since the endoscopic treatment simulation model includes a holding portion, the endoscopic model and the common bile duct model are modeled with a predetermined distance between the tip of the endoscope and the tip of the common bile duct. And can be retained.
(4)上記形態の内視鏡治療シミュレーションモデルにおいて、前記保持部は、前記内視鏡先端口に対する前記総胆管先端口の相対的な位置を変更した状態で、前記内視鏡モデルと前記総胆管モデルとを保持することが可能であってもよい。
 この構成によれば、保持部は、内視鏡先端口に対する総胆管先端口の相対的な位置を変更した状態で、内視鏡モデルと総胆管モデルとを保持できる。このため、十二指腸乳頭部と総胆管との位置関係の個人差に合わせて、内視鏡先端口に対する総胆管先端口の相対的な位置を変更した状態で、胆管への治療または検査を模擬することができる。
(4) In the endoscopic treatment simulation model of the above-described embodiment, the holding portion is in a state where the relative position of the common bile duct tip opening with respect to the endoscopic tip opening is changed, and the endoscopic model and the total It may be possible to hold a bile duct model.
According to this configuration, the holding portion can hold the endoscope model and the common bile duct model in a state where the relative position of the common bile duct tip with respect to the endoscope tip is changed. Therefore, the treatment or examination of the bile duct is simulated with the relative position of the common bile duct tip relative to the endoscopic tip opening changed according to the individual difference in the positional relationship between the duodenal papilla and the common bile duct. be able to.
(5)上記形態の内視鏡治療シミュレーションモデルにおいて、前記肝臓モデルは、前記肝内胆管ルーメンに連通すると共に、前記総胆管ルーメンに接続された肝臓接続口と、前記肝内胆管ルーメンに連通すると共に、前記肝臓接続口よりも下流側に設けられた肝臓基端口と、を有していてもよい。
 この構成によれば、肝臓モデルは、肝内胆管ルーメンに連通すると共に総胆管ルーメンに接続された肝臓接続口を備えるため、総胆管から肝内胆管へと繋がった実際の臓器の構成を模擬することができる。また、肝臓モデルは、肝臓接続口よりも下流側に設けられた肝臓基端口を備えるため、肝内胆管ルーメンに胆汁を模擬した液体を充填した際に、当該液体を肝臓基端口から外部へと排出することができる。
(5) In the endoscopic treatment simulation model of the above-described form, the liver model communicates with the intrahepatic bile duct lumen, and also communicates with the liver connection port connected to the common bile duct lumen and the intrahepatic bile duct lumen. At the same time, it may have a liver base end port provided on the downstream side of the liver connection port.
According to this configuration, the liver model simulates the configuration of the actual organ that connects the common bile duct to the intrahepatic bile duct because it has a liver connection port that communicates with the intrahepatic bile duct lumen and is connected to the common bile duct lumen. be able to. In addition, since the liver model is provided with a liver proximal opening provided on the downstream side of the liver connecting port, when the intrahepatic bile duct lumen is filled with a liquid simulating bile, the liquid is transferred from the liver proximal opening to the outside. Can be discharged.
(6)上記形態の内視鏡治療シミュレーションモデルにおいて、前記肝臓モデルは、さらに、前記肝臓接続口及び前記肝臓基端口にそれぞれ取り付けられた、略同一形状を有する複数の端部部材を備えていてもよい。
 この構成によれば、肝臓モデルは、肝臓接続口及び肝臓基端口にそれぞれ取り付けられた端部部材を備える。この端部部材を用いることで、肝内胆管ルーメンに対する液体の供給を容易にできる。また、複数の端部部材は略同一形状を有するため、どの端部部材からでも、肝内胆管ルーメンに対する液体の供給を容易にできる。
(6) In the endoscopic treatment simulation model of the above-described embodiment, the liver model further includes a plurality of end members having substantially the same shape, which are attached to the liver connection port and the liver base end port, respectively. May be good.
According to this configuration, the liver model includes end members attached to the liver connection port and the liver base end port, respectively. By using this end member, it is possible to easily supply the liquid to the intrahepatic bile duct lumen. Further, since the plurality of end members have substantially the same shape, it is possible to easily supply the liquid to the intrahepatic bile duct lumen from any end member.
(7)上記形態の内視鏡治療シミュレーションモデルにおいて、前記複数の端部部材には、それぞれ異なる識別子が表示されていてもよい。
 この構成によれば、複数の端部部材には、それぞれ異なる識別子が表示されているため、内視鏡治療シミュレーションモデルを用いた治療または検査の模擬の際に、目的の肝臓接続口又は肝臓基端口を容易に特定、伝達できる。
(7) In the endoscopic treatment simulation model of the above-described embodiment, different identifiers may be displayed on the plurality of end members.
According to this configuration, since different identifiers are displayed on the plurality of end members, the target liver connection port or liver group is used when simulating treatment or examination using the endoscopic treatment simulation model. The end mouth can be easily identified and transmitted.
(8)上記形態の内視鏡治療シミュレーションモデルにおいて、前記内視鏡モデルと、前記肝臓モデルと、前記総胆管モデルとの組が、複数並んで配置されていてもよい。
 この構成によれば、内視鏡治療シミュレーションモデルには、内視鏡モデルと、肝臓モデルと、総胆管モデルとの組が、複数並んで配置されている。このため、例えば、ある組に第1の医療用デバイスを挿入し、他の組に第2の医療用デバイスを挿入した場合において、第1の医療用デバイスと第2の医療用デバイスの挙動を比較しやすい。
(8) In the endoscopic treatment simulation model of the above-described embodiment, a plurality of pairs of the endoscopic model, the liver model, and the common bile duct model may be arranged side by side.
According to this configuration, in the endoscopic treatment simulation model, a plurality of pairs of an endoscopic model, a liver model, and a common bile duct model are arranged side by side. Therefore, for example, when the first medical device is inserted into a certain set and the second medical device is inserted into another set, the behavior of the first medical device and the second medical device is changed. Easy to compare.
(9)本発明の一形態によれば、内視鏡治療シミュレーションモデルが提供される。この内視鏡治療シミュレーションモデルは、十二指腸乳頭部まで挿入された内視鏡を模した内視鏡モデルと、前記内視鏡モデルの先端部から突出した医療用デバイスが、総胆管を通って肝臓まで進む経路を模した総胆管モデルと、前記総胆管モデルを通過した前記医療用デバイスが、前記肝臓内の肝内胆管を進む経路を模した肝臓モデルと、を備える。
 この構成によれば、内視鏡治療シミュレーションモデルは、十二指腸乳頭部まで挿入された内視鏡を模した内視鏡モデルと、内視鏡モデルの先端部から突出した医療用デバイスが、総胆管を通って肝臓まで進む経路を模した総胆管モデルと、肝臓内の肝内胆管を進む経路を模した肝臓モデルと、を備えるため、胆管への治療または検査を模擬することができる。
(9) According to one embodiment of the present invention, an endoscopic treatment simulation model is provided. In this endoscopic treatment simulation model, an endoscopic model that imitates an endoscope inserted up to the papilla of Vater and a medical device that protrudes from the tip of the endoscopic model pass through the common bile duct to the liver. It includes a common bile duct model that imitates the path leading to the common bile duct, and a liver model that mimics the path that the medical device that has passed through the common bile duct model follows the intrahepatic bile duct in the liver.
According to this configuration, the endoscopic treatment simulation model consists of an endoscopic model that imitates an endoscope inserted up to the papilla of Vater and a medical device that protrudes from the tip of the endoscopic model, and the common bile duct. A common bile duct model that mimics the path through the liver to the liver and a liver model that mimics the path through the intrahepatic bile duct in the liver are provided, so that treatment or examination of the bile duct can be simulated.
 なお、本発明は、種々の態様で実現することが可能であり、他の臓器モデル(例えば、膵管を模した膵管ルーメンを有する膵臓モデル、十二指腸を模した十二指腸モデル、胃を模した胃モデル等)を備える内視鏡治療シミュレーションモデル、内視鏡治療シミュレーションモデルの製造方法などの形態で実現することができる。 The present invention can be realized in various aspects, and other organ models (for example, a pancreas model having a pancreatic duct lumen imitating a pancreatic duct, a duodenum model imitating a duodenum, a stomach model imitating a stomach, etc. ) Can be realized in the form of an endoscopic treatment simulation model, a method of manufacturing an endoscopic treatment simulation model, or the like.
内視鏡治療シミュレーションモデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the endoscopic treatment simulation model. 第1の方向から見た内視鏡モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the endoscope model seen from the 1st direction. 第2の方向から見た内視鏡モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the endoscope model seen from the 2nd direction. 肝臓モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the liver model. 内視鏡治療シミュレーションモデルの使用状態を例示した説明図である。It is explanatory drawing which illustrated the use state of the endoscopic treatment simulation model. 第2実施形態の内視鏡モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the endoscope model of 2nd Embodiment. 第3実施形態の内視鏡モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the endoscope model of 3rd Embodiment. 第4実施形態の肝臓モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the liver model of 4th Embodiment. 第5実施形態の肝臓モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the liver model of 5th Embodiment. 第6実施形態の肝臓モデルの構成を例示した説明図である。It is explanatory drawing which illustrated the structure of the liver model of 6th Embodiment.
<第1実施形態>
 図1は、内視鏡治療シミュレーションモデル1の構成を例示した説明図である。内視鏡治療シミュレーションモデル1は、胆管に対して、内視鏡と医療用デバイスとを用いた治療または検査の手技を模擬するために使用される装置である。以降、内視鏡と医療用デバイスとを用いた手技の一例として、内視鏡的逆行性胆管膵管造影(ERCP:Endoscopic Retrograde Cholangiopancreatography)を例示して説明する。一般に、ERCPでは内視鏡を十二指腸乳頭部まで進め、内視鏡の先端部から突出させた医療用デバイスを、乳頭から総胆管等に進入させる。なお、医療用デバイスとは、カテーテルやガイドワイヤ等の、低侵襲な治療または検査のためのデバイスを意味する。
<First Embodiment>
FIG. 1 is an explanatory diagram illustrating the configuration of the endoscopic treatment simulation model 1. The endoscopic treatment simulation model 1 is a device used to simulate a treatment or examination procedure using an endoscope and a medical device for the bile duct. Hereinafter, endoscopic retrograde cholangiopancreatography (ERCP) will be described as an example of a procedure using an endoscope and a medical device. Generally, in ERCP, the endoscope is advanced to the duodenal papilla, and a medical device protruding from the tip of the endoscope is inserted from the papilla into the common bile duct or the like. The medical device means a device for minimally invasive treatment or examination, such as a catheter or a guide wire.
 図1に示すように、内視鏡治療シミュレーションモデル1は、内視鏡モデル10と、肝臓モデル20と、総胆管モデル30と、保持部40とを備えている。なお、図1及び以降の各図では、相互に直交するXYZ軸を図示する。X軸は、内視鏡治療シミュレーションモデル1の幅方向に対応する。Y軸は、内視鏡治療シミュレーションモデル1の高さ方向に対応する。Z軸は、内視鏡治療シミュレーションモデル1の奥行き方向に対応する。 As shown in FIG. 1, the endoscopic treatment simulation model 1 includes an endoscopic model 10, a liver model 20, a common bile duct model 30, and a holding portion 40. In addition, in FIG. 1 and each subsequent figure, the XYZ axes which are orthogonal to each other are illustrated. The X-axis corresponds to the width direction of the endoscopic treatment simulation model 1. The Y-axis corresponds to the height direction of the endoscopic treatment simulation model 1. The Z-axis corresponds to the depth direction of the endoscopic treatment simulation model 1.
 図2は、第1の方向から見た内視鏡モデル10の構成を例示した説明図である。図3は、第2の方向から見た内視鏡モデル10の構成を例示した説明図である。図2及び図3のXYZ軸は、図1のXYZ軸とそれぞれ対応している。内視鏡モデル10は、十二指腸乳頭部まで挿入された状態の内視鏡の先端側を再現したモデルである。内視鏡モデル10は、内視鏡の挿入部を模したストレート部110と、内視鏡の先端部を模した湾曲部120と、4つの台座191~194とを備えている。 FIG. 2 is an explanatory view illustrating the configuration of the endoscope model 10 as viewed from the first direction. FIG. 3 is an explanatory view illustrating the configuration of the endoscope model 10 as viewed from the second direction. The XYZ axes of FIGS. 2 and 3 correspond to the XYZ axes of FIG. 1, respectively. The endoscope model 10 is a model that reproduces the tip side of the endoscope in a state where it is inserted up to the duodenal papilla. The endoscope model 10 includes a straight portion 110 that imitates the insertion portion of the endoscope, a curved portion 120 that imitates the tip portion of the endoscope, and four pedestals 191 to 194.
 ストレート部110は、体内における内視鏡の挿入部の姿勢を模しており、緩やかに湾曲しつつY軸方向に延びている。ストレート部110の内側には、ストレート部110の延伸方向に沿って延びるデバイスルーメン10Lが形成されている(図1~図3:破線)。ストレート部110のデバイスルーメン10Lは、+Y軸方向の端部が内視鏡基端口111に連通し、-Y軸方向の端部が湾曲部120のデバイスルーメン10Lに連通している。 The straight portion 110 imitates the posture of the insertion portion of the endoscope in the body, and extends in the Y-axis direction while being gently curved. Inside the straight portion 110, a device lumen 10L extending along the extending direction of the straight portion 110 is formed (FIGS. 1 to 3: broken line). The device lumen 10L of the straight portion 110 has an end portion in the + Y-axis direction communicating with the endoscope base end port 111 and an end portion in the −Y axis direction communicating with the device lumen 10L of the curved portion 120.
 湾曲部120は、体内における内視鏡の先端部の姿勢を模しており、+Y軸方向においてストレート部110に接続されると共に、-Y軸方向において十二指腸乳頭部の方向、換言すれば、肝臓モデル20が配置されている方向(図1の場合は+X軸方向)に向かって湾曲している。湾曲部120の内側には、湾曲部120の延伸方向に沿って延びるデバイスルーメン10Lが形成されている(図1~図3:破線)。湾曲部120のデバイスルーメン10Lは、+Y軸方向の端部がストレート部110のデバイスルーメン10Lに連通し、-Y軸方向の端部が内視鏡先端口154に連通している。図3に示すように、湾曲部120の-Y軸方向の端部には、肝臓モデル20が配置されている方向を向き、かつ、内視鏡先端口154を有する先端面150が形成されている。本実施形態では、先端面150は、Y軸に対して約45度に傾斜している。なお、先端面150の傾斜角度は任意に定めることができる。 The curved portion 120 imitates the posture of the tip portion of the endoscope in the body, and is connected to the straight portion 110 in the + Y-axis direction and the direction of the duodenal papilla in the −Y-axis direction, in other words, the liver. It is curved in the direction in which the model 20 is arranged (in the case of FIG. 1, the + X-axis direction). Inside the curved portion 120, a device lumen 10L extending along the extending direction of the curved portion 120 is formed (FIGS. 1 to 3: broken line). The end of the curved portion 120 in the + Y-axis direction communicates with the device lumen 10L of the straight portion 110, and the end in the −Y-axis direction communicates with the endoscope tip port 154. As shown in FIG. 3, at the end of the curved portion 120 in the −Y axis direction, a tip surface 150 facing the direction in which the liver model 20 is arranged and having the endoscope tip port 154 is formed. There is. In this embodiment, the tip surface 150 is tilted at about 45 degrees with respect to the Y axis. The inclination angle of the tip surface 150 can be arbitrarily determined.
 なお、湾曲部120は、ストレート部110に対して一体的に構成されてもよく、取り外し可能に構成されてもよい。取り外し可能に構成された場合、例えば、湾曲度合いや先端面150の角度の異なる複数の湾曲部120を予め準備しておくことが好ましい。そうすれば、十二指腸乳頭部と総胆管との位置関係の個人差に応じて、適切な湾曲度合い又は先端面150の角度を有する湾曲部120を選択し、使用することができ、より実情に応じた態様で治療または検査を模擬することができる。なお、ストレート部110及び湾曲部120のデバイスルーメン10Lには、チューブ(管状体)が内挿されていてもよい。この場合、内挿されたチューブを、実際の内視鏡においてデバイスルーメンを構成しているチューブの材料と同一又は類似した材料により形成することで、内視鏡モデル10を、実際の内視鏡により似せることができる。 The curved portion 120 may be configured integrally with the straight portion 110, or may be configured to be removable. When it is configured to be removable, for example, it is preferable to prepare a plurality of curved portions 120 having different degrees of curvature and angles of the tip surface 150 in advance. Then, the curved portion 120 having an appropriate degree of curvature or the angle of the tip surface 150 can be selected and used according to the individual difference in the positional relationship between the duodenal papilla and the common bile duct, and more depending on the actual situation. The treatment or examination can be simulated in various aspects. A tube (tubular body) may be inserted into the device lumen 10L of the straight portion 110 and the curved portion 120. In this case, the endoscope model 10 is formed by forming the interpolated tube with the same or similar material as the material of the tube constituting the device lumen in the actual endoscope. Can be more similar.
 図2及び図3に示すように、本実施形態の内視鏡治療シミュレーションモデル1は、3組の内視鏡モデル10を備えている。3組の内視鏡モデル10は一体的に形成され、それぞれ、上述したストレート部110、湾曲部120、デバイスルーメン10L(図2、図3:破線)を備えている。図1~図3では、各内視鏡モデル10の構成要素を区別するために、符号の後ろにa,b,cの添え字を付している。例えば、ストレート部110aは、第1の内視鏡モデル10のストレート部110を意味し、ストレート部110bは、第2の内視鏡モデル10のストレート部110を意味し、ストレート部110cは、第3の内視鏡モデル10のストレート部110を意味する。本実施形態では、それぞれについて特に区別する必要のない場合は、a,b,cの添え字を省略して説明する。 As shown in FIGS. 2 and 3, the endoscopic treatment simulation model 1 of the present embodiment includes three sets of endoscopic models 10. The three sets of endoscope models 10 are integrally formed, and each includes the straight portion 110, the curved portion 120, and the device lumen 10L (FIGS. 2 and 3: broken lines) described above. In FIGS. 1 to 3, subscripts a, b, and c are added after the reference numerals in order to distinguish the components of each endoscope model 10. For example, the straight portion 110a means the straight portion 110 of the first endoscope model 10, the straight portion 110b means the straight portion 110 of the second endoscope model 10, and the straight portion 110c means the straight portion 110. It means the straight portion 110 of the endoscope model 10 of 3. In the present embodiment, when it is not necessary to distinguish each of them, the subscripts a, b, and c will be omitted.
 4つの台座191~194は、ストレート部110cの端部に形成された略矩形状の支持部材である。台座191~194によって、3組の内視鏡モデル10をZ軸方向に積層した状態で、内視鏡モデル10を机上に裁置できる。 The four pedestals 191 to 194 are substantially rectangular support members formed at the ends of the straight portion 110c. The pedestals 191 to 194 allow the endoscope model 10 to be placed on a desk in a state where three sets of endoscope models 10 are stacked in the Z-axis direction.
 図4は、肝臓モデル20の構成を例示した説明図である。肝臓モデル20は、肝臓内の胆管(以降、単に「肝内胆管」とも呼ぶ)を再現したモデルである。肝臓モデル20の内側には、人体における肝内胆管の配置を模擬した肝内胆管ルーメン20Lが形成されている(図4:破線)。図1及び図4の例では、肝内胆管ルーメン20Lは、肝臓接続口211と、第1肝臓基端口221と、第2肝臓基端口231と、第3肝臓基端口241との4か所に連通している。肝臓接続口211には、後述する総胆管モデル30が接続される。第1~第3肝臓基端口221~241は、肝臓接続口211よりも下流側(医療用デバイスの進行方向における下流側を意味する)において、外部に向かって開放された開口である。なお、第1~第3肝臓基端口221~241を総称して「肝臓基端口」とも呼ぶ。 FIG. 4 is an explanatory diagram illustrating the configuration of the liver model 20. The liver model 20 is a model that reproduces the bile duct in the liver (hereinafter, also simply referred to as “intrahepatic bile duct”). Inside the liver model 20, an intrahepatic bile duct lumen 20L simulating the arrangement of the intrahepatic bile duct in the human body is formed (FIG. 4: broken line). In the examples of FIGS. 1 and 4, the intrahepatic bile lumen 20L is provided at four locations: the liver connection port 211, the first liver base end port 221 and the second liver base end port 231 and the third liver base end port 241. Communicating. A common bile duct model 30, which will be described later, is connected to the liver connection port 211. The first to third liver proximal ports 221 to 241 are openings that are open to the outside on the downstream side (meaning the downstream side in the traveling direction of the medical device) from the liver connection port 211. The 1st to 3rd liver base ends 221 to 241 are also collectively referred to as "liver base end mouth".
 肝臓接続口211には、端部部材210が取り付けられている。同様に、第1肝臓基端口221には第1端部部材220が、第2肝臓基端口231には第2端部部材230が、第3肝臓基端口241には第3端部部材240が、それぞれ取り付けられている。端部部材210と、第1~第3端部部材220~240とは、それぞれ、略同一形状のルアーロックコネクタである。図示の例では、端部部材210と、第1~第3端部部材220~240には、それぞれ異なる識別子(空白,1,2,3)が表示されている。図示の例では、識別子の一例として数字を例示したが、文字、記号、図形、これらの組み合わせ等の任意の識別子を表示することができる。なお、端部部材210と、第1~第3端部部材220~240とを総称して「端部部材」とも呼ぶ。 An end member 210 is attached to the liver connection port 211. Similarly, the first liver base end port 221 has a first end member 220, the second liver base end port 231 has a second end member 230, and the third liver base end port 241 has a third end member 240. , Each is attached. The end member 210 and the first to third end members 220 to 240 are luer lock connectors having substantially the same shape, respectively. In the illustrated example, different identifiers (blanks, 1, 2, 3) are displayed on the end member 210 and the first to third end members 220 to 240, respectively. In the illustrated example, numbers are illustrated as an example of identifiers, but arbitrary identifiers such as characters, symbols, figures, and combinations thereof can be displayed. The end member 210 and the first to third end members 220 to 240 are also collectively referred to as an "end member".
 また、肝内胆管ルーメン20Lは、端部250,251,252,253,254,255,256,257,259の9か所において、外部に連通しない流路の終端を有している。本実施形態の肝臓モデル20では、肝臓接続口211から第1~第3肝臓基端口221~241までの各流路の長さは、肝臓接続口211から終端250~259までの各流路の長さよりも長い。例えば、図4に示すように、肝臓接続口211から第2肝臓基端口231までの流路の長さL1(図4:実線矢印)は、肝臓接続口211から終端259までの流路の長さL3(図4:破線矢印)よりも長い。このようにすれば、肝臓モデル20を小型化することができる。 Further, the intrahepatic bile duct lumen 20L has nine ends of the flow path that do not communicate with the outside at the ends 250, 251,252, 253, 254, 255, 256, 257, 259. In the liver model 20 of the present embodiment, the length of each flow path from the liver connection port 211 to the first to third liver base end ports 221 to 241 is the length of each flow path from the liver connection port 211 to the terminal 250 to 259. Longer than the length. For example, as shown in FIG. 4, the length L1 of the flow path from the liver connection port 211 to the second liver base end port 231 (FIG. 4: solid line arrow) is the length of the flow path from the liver connection port 211 to the terminal 259. Is longer than L3 (Fig. 4: dashed arrow). In this way, the liver model 20 can be miniaturized.
 なお、本実施形態の内視鏡治療シミュレーションモデル1は、図2及び図3で説明した3組の内視鏡モデル10にそれぞれ対応するように、3組の肝臓モデル20を備えている。3組の肝臓モデル20は一体的に形成され、それぞれ、上述した肝内胆管ルーメン20L、端部部材210~240を備えており、Z軸方向に積層されている。 The endoscopic treatment simulation model 1 of the present embodiment includes three sets of liver models 20 so as to correspond to the three sets of endoscopic models 10 described with reference to FIGS. 2 and 3, respectively. The three sets of liver models 20 are integrally formed, and each includes the above-mentioned intrahepatic bile duct lumen 20L and end members 210 to 240, and are laminated in the Z-axis direction.
 図5は、内視鏡治療シミュレーションモデル1の使用状態を例示した説明図である。図5では、保持部40に覆われた各構成部材を破線で表している。図5に示すように、総胆管モデル30は、総胆管を再現したモデルである。図5に示すように、総胆管モデル30は、管状部310と、可動部材320とを備えている。 FIG. 5 is an explanatory diagram illustrating a usage state of the endoscopic treatment simulation model 1. In FIG. 5, each component covered by the holding portion 40 is represented by a broken line. As shown in FIG. 5, the common bile duct model 30 is a model that reproduces the common bile duct. As shown in FIG. 5, the common bile duct model 30 includes a tubular portion 310 and a movable member 320.
 管状部310は、内側に総胆管ルーメン30Lが形成された管状体である。管状部310の総胆管ルーメン30Lは、一端(図5の場合は+Y軸方向の端部)が胆管接続口311に連通し、他端(図5の場合は-Y軸方向の端部)が開口312に連通している。胆管接続口311は、端部部材210を介して、肝臓モデル20の肝臓接続口211に接続されている。開口312は、可動部材320の開口325に接続されている。 The tubular portion 310 is a tubular body having a common bile duct lumen 30L formed inside. One end (the end in the + Y-axis direction in the case of FIG. 5) communicates with the bile duct connection port 311 and the other end (the end in the −Y-axis direction in the case of FIG. 5) of the common bile duct lumen 30L of the tubular portion 310. It communicates with the opening 312. The bile duct connection port 311 is connected to the liver connection port 211 of the liver model 20 via the end member 210. The opening 312 is connected to the opening 325 of the movable member 320.
 可動部材320は、図2及び図3に示すように、角柱状の本体部321と、本体部321の両端に形成された一対の第1腕部322及び第2腕部323とを備えている。本体部321には、下面と上面とを貫通する貫通孔が形成されている。この貫通孔は、下面側において総胆管先端口324に連通し(図2)、上面側において開口325に連通している(図3)。開口325は、上述の通り総胆管モデル30の開口312に接続されている。このような構成とすることで、総胆管先端口324によって十二指腸乳頭部を模擬し、可動部材320の貫通孔と管状部310の総胆管ルーメン30Lとによって、十二指腸乳頭部から延びる総胆管を模擬することができる。また、図3に示すように、第1腕部322及び第2腕部323は、内視鏡モデル10の先端面150からの出口(すなわち内視鏡先端口154)の近傍を回転軸O(図3:一点鎖線)とするように、保持部40に回転可能に支持されている。 As shown in FIGS. 2 and 3, the movable member 320 includes a prismatic main body portion 321 and a pair of first arm portions 322 and second arm portions 323 formed at both ends of the main body portion 321. .. The main body 321 is formed with a through hole penetrating the lower surface and the upper surface. This through hole communicates with the common bile duct tip opening 324 on the lower surface side (FIG. 2) and communicates with the opening 325 on the upper surface side (FIG. 3). The opening 325 is connected to the opening 312 of the common bile duct model 30 as described above. With such a configuration, the duodenal papilla is simulated by the common bile duct tip opening 324, and the common bile duct extending from the duodenal papilla is simulated by the through hole of the movable member 320 and the common bile duct lumen 30L of the tubular portion 310. be able to. Further, as shown in FIG. 3, the first arm portion 322 and the second arm portion 323 rotate around the rotation axis O (that is, the endoscope tip port 154) in the vicinity of the exit from the tip surface 150 of the endoscope model 10. FIG. 3: One-dot chain line) is rotatably supported by the holding portion 40.
 保持部40は、内視鏡先端口154と総胆管先端口324との間に所定の距離を開けた状態で、内視鏡モデル10と、総胆管モデル30とを保持する部材である。保持部40は、一対の第1保持板410及び第2保持板420を備えている。第1保持板410及び第2保持板420は、略半円形状の板状部材である。第1保持板410は、湾曲部120aの外側(図3:-Z軸方向)に固定されており、第2保持板420は、湾曲部120cの外側(図3:+Z軸方向)に固定されている。第1保持板410及び第2保持板420には、回転軸Oを中心として可動部材320をスライドさせるための溝である第1レール部411及び第2レール部421が、それぞれ形成されている。利用者は、回転軸Oを中心として可動部材320をスライドさせ、所望の位置で、ねじ431を用いて可動部材320を保持部40に固定する。これにより、内視鏡先端口154に対する総胆管先端口324の相対的な位置を変更した状態で、内視鏡モデル10と総胆管モデル30とを保持することができる。 The holding portion 40 is a member that holds the endoscope model 10 and the common bile duct model 30 with a predetermined distance between the endoscope tip opening 154 and the common bile duct tip opening 324. The holding portion 40 includes a pair of a first holding plate 410 and a second holding plate 420. The first holding plate 410 and the second holding plate 420 are plate-shaped members having a substantially semicircular shape. The first holding plate 410 is fixed to the outside of the curved portion 120a (FIG. 3: -Z axis direction), and the second holding plate 420 is fixed to the outside of the curved portion 120c (FIG. 3: + Z axis direction). ing. The first holding plate 410 and the second holding plate 420 are formed with a first rail portion 411 and a second rail portion 421, which are grooves for sliding the movable member 320 around the rotation shaft O, respectively. The user slides the movable member 320 around the rotation axis O, and fixes the movable member 320 to the holding portion 40 at a desired position using a screw 431. As a result, the endoscope model 10 and the common bile duct model 30 can be held in a state where the relative position of the common bile duct tip opening 324 with respect to the endoscope tip opening 154 is changed.
 なお、本実施形態の内視鏡治療シミュレーションモデル1は、図2及び図3で説明した3組の内視鏡モデル10にそれぞれ対応するように、3つの管状部310と、3つの貫通孔が形成された可動部材320と、を備えている。図示の例では、可動部材320は、内視鏡先端口154a~cに対する総胆管先端口324a~cの相対的な位置を、ひとまとめに変更する構成である。しかし、可動部材320は、内視鏡先端口154aに対する総胆管先端口324aの位置と、内視鏡先端口154bに対する総胆管先端口324bの位置と、内視鏡先端口154cに対する総胆管先端口324cの位置と、を個別に変更可能に構成されてもよい。 The endoscopic treatment simulation model 1 of the present embodiment has three tubular portions 310 and three through holes so as to correspond to the three sets of endoscopic models 10 described with reference to FIGS. 2 and 3, respectively. It includes a formed movable member 320. In the illustrated example, the movable member 320 has a configuration in which the relative positions of the common bile duct tip ports 324a to c with respect to the endoscope tip ports 154a to c are collectively changed. However, the movable member 320 has a position of the common bile duct tip opening 324a with respect to the endoscope tip opening 154a, a position of the common bile duct tip opening 324b with respect to the endoscope tip opening 154b, and a common bile duct tip opening with respect to the endoscope tip opening 154c. The position of the 324c and the position may be individually changeable.
 上述した内視鏡モデル10、肝臓モデル20、総胆管モデル30、及び保持部40は、合成樹脂(例えば、ABS樹脂、PLA樹脂、ポリプロピレン樹脂、アクリル樹脂、PET樹脂、PVA樹脂、シリコン等)や、ゴム、石膏、金属等の任意の材料によって形成できる。内視鏡モデル10、総胆管モデル30の可動部材320、及び保持部40は、透明又は半透明な樹脂(例えば、アクリル樹脂、PET樹脂等)により形成することが好ましい。そうすれば、デバイスルーメン10Lを通過する医療用デバイスの様子を外部から容易に観察することができる。また、肝臓モデル20及び総胆管モデル30の管状部310は、透明又は半透明であり、かつ、柔軟性を有する樹脂(例えば、PVA樹脂、シリコン)により形成することが好ましい。そうすれば、肝内胆管ルーメン20Lと総胆管ルーメン30Lとを通過する医療用デバイスの様子を外部から容易に観察することができると共に、肝臓モデル20及び総胆管モデル30の触感を、実際の肝臓及び総胆管の触感に似せることができる。 The endoscopic model 10, the liver model 20, the total bile duct model 30, and the holding portion 40 described above may be made of synthetic resin (for example, ABS resin, PLA resin, polypropylene resin, acrylic resin, PET resin, PVA resin, silicon, etc.). , Rubber, plaster, metal and any other material. The endoscopic model 10, the movable member 320 of the common bile duct model 30, and the holding portion 40 are preferably formed of a transparent or translucent resin (for example, acrylic resin, PET resin, etc.). Then, the state of the medical device passing through the device lumen 10L can be easily observed from the outside. Further, the tubular portion 310 of the liver model 20 and the common bile duct model 30 is preferably formed of a resin (for example, PVA resin, silicone) that is transparent or translucent and has flexibility. By doing so, the state of the medical device passing through the intrahepatic bile duct lumen 20L and the common bile duct lumen 30L can be easily observed from the outside, and the tactile sensation of the liver model 20 and the common bile duct model 30 can be seen in the actual liver. And can resemble the tactile sensation of the common bile duct.
 例えば、内視鏡モデル10、肝臓モデル20、総胆管モデル30の可動部材320、及び保持部40は、それぞれ、外側形状、ルーメン形状、及び開口形状を予め入力したデータを、例えば3Dプリンタに入力し、印刷することによって作製できる。3Dプリンタを用いることで、複雑な形状を有する内視鏡モデル10、肝臓モデル20、総胆管モデル30の可動部材320、及び保持部40を、簡単に作製できる。 For example, the endoscope model 10, the liver model 20, the movable member 320 of the common bile duct model 30, and the holding portion 40 each input data in which the outer shape, the lumen shape, and the opening shape are input in advance into, for example, a 3D printer. It can be produced by printing. By using a 3D printer, an endoscope model 10, a liver model 20, a movable member 320 of the common bile duct model 30, and a holding portion 40 having a complicated shape can be easily manufactured.
 図5を参照しつつ、内視鏡治療シミュレーションモデル1の使用例について説明する。以下では、医療用デバイスとしてガイドワイヤ2を例示して説明する。まず、肝内胆管ルーメン20Lと総胆管ルーメン30Lの内部を、胆汁を模した液体で満たす。具体的には、端部部材210と、第1~第3端部部材220~240とのいずれかに対して、シリンジを装着して液体を供給する。供給された液体は、肝内胆管ルーメン20Lに充填され、次いで、肝内胆管ルーメン20Lに連通された総胆管ルーメン30Lに充填される。 An example of using the endoscopic treatment simulation model 1 will be described with reference to FIG. In the following, the guide wire 2 will be described as an example as a medical device. First, the inside of the intrahepatic bile duct lumen 20L and the common bile duct lumen 30L is filled with a liquid imitating bile. Specifically, a syringe is attached to any one of the end member 210 and the first to third end members 220 to 240 to supply the liquid. The supplied liquid is filled in 20 L of intrahepatic bile duct lumen, and then 30 L of common bile duct lumen communicated with 20 L of intrahepatic bile duct lumen.
 例えば、端部部材210から液体を供給した場合、供給された液体は、背圧(流路に掛かる圧力)の低い第1~第3端部部材220~240に流入しやすいため、肝内胆管ルーメン20L内の空気を、第1~第3端部部材220~240から速やかに排出できる。肝内胆管ルーメン20L内に空気(気泡)が残存している場合、シリンジから液体を追加することにより、第1~第3端部部材220~240から気泡を排出することができる。このように、背圧差によって効率的に肝内胆管ルーメン20L内の空気や気泡を外部に排出することができるため、液体を循環させるためのポンプ等を必要とせず、内視鏡治療シミュレーションモデル1を小型化できる。 For example, when a liquid is supplied from the end member 210, the supplied liquid easily flows into the first to third end members 220 to 240 having low back pressure (pressure applied to the flow path), and thus the intrahepatic bile duct. The air in the lumen 20L can be quickly discharged from the first to third end members 220 to 240. When air (air bubbles) remains in the intrahepatic bile duct lumen 20L, air bubbles can be discharged from the first to third end members 220 to 240 by adding a liquid from the syringe. In this way, the air and air bubbles in the intrahepatic bile duct lumen 20L can be efficiently discharged to the outside by the back pressure difference, so that a pump or the like for circulating the liquid is not required, and the endoscopic treatment simulation model 1 Can be miniaturized.
 次に、ガイドワイヤ2を、内視鏡モデル10の内視鏡基端口111からデバイスルーメン10Lに挿入する。ガイドワイヤ2を、デバイスルーメン10Lを通して内視鏡モデル10の先端部(湾曲部120)まで押し進め、ガイドワイヤ2の先端部を、内視鏡先端口154から外部へと突出させる。 Next, the guide wire 2 is inserted into the device lumen 10L from the endoscope base end port 111 of the endoscope model 10. The guide wire 2 is pushed through the device lumen 10L to the tip (curved portion 120) of the endoscope model 10, and the tip of the guide wire 2 is projected outward from the endoscope tip port 154.
 次に、ガイドワイヤ2の先端部を、十二指腸乳頭部を模擬した総胆管先端口324から、総胆管ルーメン30Lに挿入する。この状態は、ERCPにおいて、ガイドワイヤ2が十二指腸乳頭部から総胆管に挿入された状態に相当する。この際、図5に示すように、ガイドワイヤ2は、角部154E(図5:一点鎖線円)と、角部324E(図5:一点鎖線円)との二点で把持されることによって、実際のERCPにおいてガイドワイヤ2が内視鏡の鉗子起上台によって急峻な曲がり具合で起上させられる場合と同様に、ガイドワイヤ2に対して急峻な湾曲を付与できる。換言すると、角部154Eと角部324Eが内視鏡の鉗子起上台と同様に機能する。これにより、ガイドワイヤ2の先端部を、十二指腸乳頭部を模擬した総胆管先端口324の方向に向けることができる。この状態は、ERCPにおいて、十二指腸まで進めた内視鏡の先端部からガイドワイヤ2を突出させ、ガイドワイヤ2の先端部を十二指腸乳頭部に向けた状態に相当する。ここで、角部154Eは、肝臓モデル20が配置されている方向を向いて傾斜した先端面150と、内視鏡先端口154とにより形成された部位である。角部324Eは、可動部材320を構成する本体部321の下面と、総胆管先端口324とにより形成された部位である。ガイドワイヤ2の出口である内視鏡先端口154において、角部154E(図5:一点鎖線円)を有することにより、可動部材320をどのような角度にした場合であっても、ガイドワイヤ2の二点把持(角部154Eと角部324Eによる把持)を維持できる。この結果、臨床における色々な状況が模擬できる。 Next, the tip of the guide wire 2 is inserted into the common bile duct lumen 30L from the common bile duct tip opening 324 simulating the duodenal papilla. This state corresponds to the state in which the guide wire 2 is inserted into the common bile duct from the duodenal papilla in ERCP. At this time, as shown in FIG. 5, the guide wire 2 is gripped at two points, the corner portion 154E (FIG. 5: one-dot chain line circle) and the corner portion 324E (FIG. 5: one-dot chain line circle). In an actual ERCP, the guide wire 2 can be given a steep curve as in the case where the guide wire 2 is raised by the forceps raising table of the endoscope with a steep bend. In other words, the corners 154E and 324E function similarly to the forceps raising platform of the endoscope. As a result, the tip of the guide wire 2 can be directed toward the common bile duct tip opening 324, which simulates the duodenal papilla. In ERCP, this state corresponds to a state in which the guide wire 2 is projected from the tip of the endoscope advanced to the duodenum and the tip of the guide wire 2 is directed toward the duodenal papilla. Here, the corner portion 154E is a portion formed by the tip surface 150 inclined in the direction in which the liver model 20 is arranged and the endoscope tip opening 154. The corner portion 324E is a portion formed by the lower surface of the main body portion 321 constituting the movable member 320 and the common bile duct tip opening 324. By having the corner portion 154E (FIG. 5: alternate long and short dash line circle) at the endoscope tip port 154, which is the outlet of the guide wire 2, the guide wire 2 is provided regardless of the angle of the movable member 320. (Gripping by the corner portion 154E and the corner portion 324E) can be maintained. As a result, various clinical situations can be simulated.
 次に、ガイドワイヤ2をそのまま押し進めて、ガイドワイヤ2の先端部を、総胆管ルーメン30Lを通して肝内胆管ルーメン20Lまで押し進める。この状態は、ERCPにおいて、ガイドワイヤ2が肝内胆管に挿入された状態に相当する。その後は、ガイドワイヤ2の先端部が、第1~第3肝臓基端口221~241のうち、所望の肝臓基端口へと到達するように、ガイドワイヤ2を押し進める。 Next, push the guide wire 2 as it is, and push the tip of the guide wire 2 through the common bile duct lumen 30L to the intrahepatic bile duct lumen 20L. This state corresponds to the state in which the guide wire 2 is inserted into the intrahepatic bile duct in ERCP. After that, the guide wire 2 is pushed forward so that the tip of the guide wire 2 reaches the desired liver proximal port of the first to third liver proximal ports 221 to 241.
 上述の通り、総胆管ルーメン30Lと肝内胆管ルーメン20Lとには、胆汁を模した液体が充填されている。また、第1~第3肝臓基端口221~241に設けられた端部部材(第1~第3端部部材220~240)は、それぞれ、肝臓モデル20の外側に突出して設けられている。このため、外側に連通した第1~第3肝臓基端口221~241と、外側に連通しない終端250~259とを容易に区別できる。 As described above, the common bile duct lumen 30L and the intrahepatic bile duct lumen 20L are filled with a liquid imitating bile. Further, the end members (first to third end members 220 to 240) provided at the first to third liver base end ports 221 to 241 are respectively provided so as to project to the outside of the liver model 20. Therefore, it is possible to easily distinguish between the first to third liver base end ports 221-241 that communicate with the outside and the terminals 250 to 259 that do not communicate with the outside.
 以上のように、第1実施形態の内視鏡治療シミュレーションモデル1によれば、肝臓内の胆管(肝内胆管)を模した肝内胆管ルーメン20Lを有する肝臓モデル20と、肝内胆管ルーメン20Lに連通する総胆管を模した総胆管ルーメン30Lを有する総胆管モデル30と、を備えるため、胆管への治療または検査を模擬することができる。また、第1実施形態の内視鏡治療シミュレーションモデル1は、内視鏡の先端側を模した内視鏡モデル10をさらに備える。このため、例えば内視鏡的逆行性胆管膵管造影(ERCP)のような、内視鏡を利用した手技を模擬する場合であっても、内視鏡を別途準備する必要がなく、手軽に手技を模擬できる。 As described above, according to the endoscopic treatment simulation model 1 of the first embodiment, the liver model 20 having an intrahepatic bile duct lumen 20L that imitates the bile duct (intrahepatic bile duct) in the liver and the intrahepatic bile duct lumen 20L A common bile duct model 30 having a common bile duct lumen 30 L that mimics the common bile duct that communicates with the bile duct is provided, so that treatment or examination of the bile duct can be simulated. Further, the endoscopic treatment simulation model 1 of the first embodiment further includes an endoscopic model 10 that imitates the tip end side of the endoscope. Therefore, even when simulating a procedure using an endoscope, such as endoscopic retrograde cholangiopancreatography (ERCP), there is no need to prepare an endoscope separately, and the procedure is easy. Can be simulated.
 また、第1実施形態の内視鏡治療シミュレーションモデル1によれば、内視鏡モデル10の先端部の湾曲部120は、肝臓モデル20が配置されている方向に向かって湾曲している。このため、実際のERCPにおいて十二指腸乳頭部まで挿入された内視鏡の姿勢を模擬することができる。また、内視鏡モデル10は、肝臓モデル20が配置されている方向を向いた先端面150を有するため、先端面150を利用してガイドワイヤ2等の医療用デバイスを、肝臓モデル20が配置されている方向に向かって起上させることができ、内視鏡の鉗子起上台を模擬することができる。具体的には、先端面150に形成された角部154Eと、可動部材320を構成する本体部321の下面に形成された角部324Eとによって、ガイドワイヤ2を肝臓モデル20が配置されている方向に向かって起上させることができ、内視鏡の鉗子起上台を模擬することができる。 Further, according to the endoscopic treatment simulation model 1 of the first embodiment, the curved portion 120 at the tip of the endoscopic model 10 is curved in the direction in which the liver model 20 is arranged. Therefore, it is possible to simulate the posture of the endoscope inserted up to the duodenal papilla in the actual ERCP. Further, since the endoscope model 10 has a tip surface 150 facing the direction in which the liver model 20 is arranged, the liver model 20 arranges a medical device such as a guide wire 2 using the tip surface 150. It can be raised in the direction in which it is being used, and the forceps raising platform of the endoscope can be simulated. Specifically, the liver model 20 is arranged with the guide wire 2 by the corner portion 154E formed on the tip surface 150 and the corner portion 324E formed on the lower surface of the main body portion 321 constituting the movable member 320. It can be raised in the direction, and the forceps raising base of the endoscope can be simulated.
 さらに、第1実施形態の内視鏡治療シミュレーションモデル1によれば、保持部40を備えるため、内視鏡先端口154と総胆管先端口324との間に所定の距離を開けた状態で、内視鏡モデル10と総胆管モデル30とを保持することができる。また、保持部40は、内視鏡先端口154に対する総胆管先端口324の相対的な位置を変更した状態で、内視鏡モデル10と総胆管モデル30とを保持できる。このため、十二指腸乳頭部と総胆管との位置関係の個人差に合わせて、内視鏡先端口154に対する総胆管先端口324の相対的な位置を変更した状態で、胆管への治療または検査を模擬することができる。この結果、臨床における色々な状況が模擬できる。 Further, according to the endoscopic treatment simulation model 1 of the first embodiment, since the holding portion 40 is provided, a predetermined distance is opened between the endoscope tip opening 154 and the common bile duct tip opening 324. The endoscopic model 10 and the common bile duct model 30 can be held. Further, the holding portion 40 can hold the endoscope model 10 and the common bile duct model 30 in a state where the relative position of the common bile duct tip opening 324 with respect to the endoscope tip opening 154 is changed. Therefore, treatment or examination of the bile duct is performed with the relative position of the common bile duct tip 324 relative to the endoscope tip 154 changed according to the individual difference in the positional relationship between the duodenal papilla and the common bile duct. Can be simulated. As a result, various clinical situations can be simulated.
 さらに、第1実施形態の内視鏡治療シミュレーションモデル1によれば、肝臓モデル20は、肝内胆管ルーメン20Lに連通すると共に総胆管ルーメン30Lに接続された肝臓接続口211を備えるため、総胆管から肝内胆管へと繋がった実際の臓器の構成を模擬することができる。また、肝臓モデル20は、肝臓接続口211よりも医療用デバイスの進路上の下流側に設けられた第1~第3肝臓基端口221~241を備えるため、肝内胆管ルーメン20Lに胆汁を模擬した液体を充填した際に、当該液体を第1~第3肝臓基端口221~241から外部へと排出することができる。 Further, according to the endoscopic treatment simulation model 1 of the first embodiment, the liver model 20 includes a liver connection port 211 that communicates with the intrahepatic bile duct lumen 20L and is connected to the common bile duct lumen 30L. It is possible to simulate the actual composition of the organs connected to the intrahepatic bile duct. Further, since the liver model 20 includes the first to third liver proximal ports 221-241 provided on the downstream side of the path of the medical device from the liver connection port 211, bile is simulated in the intrahepatic bile duct lumen 20L. When the liquid is filled, the liquid can be discharged to the outside from the first to third liver base ends 221 to 241.
 さらに、第1実施形態の内視鏡治療シミュレーションモデル1によれば、肝臓モデル20は、肝臓接続口211及び第1~第3肝臓基端口221~241にそれぞれ取り付けられた端部部材210及び第1~第3端部部材220~240(端部部材)を備える。この端部部材210及び第1~第3端部部材220~240を用いることで、肝内胆管ルーメン20Lに対する流体の供給を容易にできる。また、端部部材210及び第1~第3端部部材220~240は略同一形状を有するため、どの端部部材からでもシリンジを装着することができ、肝内胆管ルーメン20Lに対する流体の供給を容易にできる。また、端部部材210及び第1~第3端部部材220~240には、それぞれ異なる識別子が表示されているため、内視鏡治療シミュレーションモデル1を用いた治療または検査の模擬の際に、目的の肝臓接続口211及び第1~第3肝臓基端口221~241を容易に特定、伝達できる。 Further, according to the endoscopic treatment simulation model 1 of the first embodiment, the liver model 20 has an end member 210 and a first end member 210 attached to the liver connection port 211 and the first to third liver base end ports 221-241, respectively. The first to third end members 220 to 240 (end members) are provided. By using the end member 210 and the first to third end members 220 to 240, it is possible to easily supply the fluid to the intrahepatic bile duct lumen 20L. Further, since the end member 210 and the first to third end members 220 to 240 have substantially the same shape, the syringe can be attached from any end member, and the fluid can be supplied to the intrahepatic bile duct lumen 20L. You can do it easily. Further, since different identifiers are displayed on the end member 210 and the first to third end members 220 to 240, when simulating treatment or examination using the endoscopic treatment simulation model 1, the end member 210 and the first to third end members 220 to 240 are displayed. The target liver connection port 211 and the first to third liver base end ports 221 to 241 can be easily identified and transmitted.
 さらに、第1実施形態の内視鏡治療シミュレーションモデル1では、内視鏡モデル10と、肝臓モデル20と、総胆管モデル30との組が、複数並んで配置されている。このため、例えば、ある組に第1の医療用デバイスを挿入し、他の組に第2の医療用デバイスを挿入した場合において、第1の医療用デバイスと第2の医療用デバイスの挙動を比較しやすい。以上の通り、内視鏡治療シミュレーションモデル1は、十二指腸乳頭部まで挿入された内視鏡を模した内視鏡モデル10と、内視鏡モデル10の先端部の湾曲部120から突出した医療用デバイスが、総胆管を通って肝臓まで進む経路を模した総胆管モデル30と、肝臓内の肝内胆管を進む経路を模した肝臓モデル20と、を備えるため、胆管への治療または検査を模擬することができる。 Further, in the endoscopic treatment simulation model 1 of the first embodiment, a plurality of pairs of the endoscopic model 10, the liver model 20, and the common bile duct model 30 are arranged side by side. Therefore, for example, when the first medical device is inserted into a certain set and the second medical device is inserted into another set, the behavior of the first medical device and the second medical device is changed. Easy to compare. As described above, the endoscopic treatment simulation model 1 is an endoscopic model 10 that imitates an endoscope inserted up to the papilla of Vater and a medical use that protrudes from a curved portion 120 at the tip of the endoscopic model 10. The device comprises a common bile duct model 30 that mimics the path through the common bile duct to the liver and a liver model 20 that mimics the path through the intrahepatic bile duct in the liver, thus simulating treatment or examination of the bile duct. can do.
<第2実施形態>
 図6は、第2実施形態の内視鏡モデル10Aの構成を例示した説明図である。第2実施形態の内視鏡治療シミュレーションモデル1Aは、内視鏡モデル10に代えて内視鏡モデル10Aを備えている。内視鏡モデル10Aは、内視鏡先端口154に対する総胆管先端口324の相対的な位置を変更不可能な構成である。内視鏡モデル10Aは、可動部材320に代えて保持部材320Aを備え、保持部40に代えて保持部40Aを備えている。
<Second Embodiment>
FIG. 6 is an explanatory diagram illustrating the configuration of the endoscope model 10A of the second embodiment. The endoscopic treatment simulation model 1A of the second embodiment includes an endoscopic model 10A instead of the endoscopic model 10. The endoscope model 10A has a configuration in which the relative position of the common bile duct tip 324 with respect to the endoscope tip 154 cannot be changed. The endoscope model 10A includes a holding member 320A instead of the movable member 320, and has a holding portion 40A instead of the holding portion 40.
 保持部材320Aは、角柱状の本体部321Aを有している。本体部321Aには、下面側において総胆管先端口324に連通し、上面側において開口325に連通した貫通孔が形成されている。本体部321Aの-Z軸方向の端部は、保持部40Aの第1保持板410Aに対して、ねじ431を用いて固定されている。同様に、本体部321Aの+Z軸方向の端部は、保持部40Aの第2保持板420Aに対して、ねじを用いて固定されている。保持部40Aは、略半円形状の板状部材である第1保持板410A及び第2保持板420Aを備えている。第1保持板410A及び第2保持板420Aには、第1実施形態で説明した第1レール部411及び第2レール部421が形成されていない。 The holding member 320A has a prismatic main body portion 321A. The main body 321A is formed with a through hole that communicates with the common bile duct tip opening 324 on the lower surface side and communicates with the opening 325 on the upper surface side. The end portion of the main body portion 321A in the −Z axis direction is fixed to the first holding plate 410A of the holding portion 40A by using a screw 431. Similarly, the end portion of the main body portion 321A in the + Z axis direction is fixed to the second holding plate 420A of the holding portion 40A by using a screw. The holding portion 40A includes a first holding plate 410A and a second holding plate 420A, which are substantially semicircular plate-shaped members. The first rail portion 411 and the second rail portion 421 described in the first embodiment are not formed on the first holding plate 410A and the second holding plate 420A.
 このように、内視鏡モデル10Aの構成は種々の変更が可能であり、保持部材320Aや保持部40Aの構成を変更することによって、内視鏡先端口154に対する総胆管先端口324の相対的な位置を変更不可能な構成としてもよい。また、図6において説明した構成において、保持部材320Aと保持部40Aとが一体的に形成されていてもよい。このような第2実施形態の内視鏡治療シミュレーションモデル1Aにおいても、上述した第1実施形態と同様の効果を奏することができる。 As described above, the configuration of the endoscope model 10A can be changed in various ways, and by changing the configurations of the holding member 320A and the holding portion 40A, the relative of the common bile duct tip opening 324 to the endoscope tip opening 154. The position may not be changed. Further, in the configuration described with reference to FIG. 6, the holding member 320A and the holding portion 40A may be integrally formed. In such an endoscopic treatment simulation model 1A of the second embodiment, the same effect as that of the first embodiment described above can be obtained.
<第3実施形態>
 図7は、第3実施形態の内視鏡モデル10Bの構成を例示した説明図である。第3実施形態の内視鏡治療シミュレーションモデル1Bは、内視鏡モデル10に代えて内視鏡モデル10Bを備えている。内視鏡モデル10Bは、湾曲部120Bの-Y軸方向の端部の先端面150Bが、肝臓モデル20が配置されている方向を向いていない。換言すれば、先端面150Bは、Y軸に沿って形成されており、Y軸に対して傾斜していない。このように、内視鏡モデル10Bの構成は種々の変更が可能であり、ストレート部110や湾曲部120Bの構成を変更することによって、内視鏡における種々の先端側形状を模擬してよい。このような第3実施形態の内視鏡治療シミュレーションモデル1Bにおいても、上述した第1実施形態と同様の効果を奏することができる。
<Third Embodiment>
FIG. 7 is an explanatory diagram illustrating the configuration of the endoscope model 10B of the third embodiment. The endoscopic treatment simulation model 1B of the third embodiment includes an endoscopic model 10B instead of the endoscopic model 10. In the endoscope model 10B, the tip surface 150B of the end portion of the curved portion 120B in the −Y axis direction does not face the direction in which the liver model 20 is arranged. In other words, the tip surface 150B is formed along the Y axis and is not inclined with respect to the Y axis. As described above, the configuration of the endoscope model 10B can be changed in various ways, and various tip-side shapes in the endoscope may be simulated by changing the configurations of the straight portion 110 and the curved portion 120B. Even in the endoscopic treatment simulation model 1B of the third embodiment, the same effect as that of the first embodiment described above can be obtained.
<第4実施形態>
 図8は、第4実施形態の肝臓モデル20Cの構成を例示した説明図である。第4実施形態の内視鏡治療シミュレーションモデル1Cは、肝臓モデル20に代えて肝臓モデル20Cを備えている。肝臓モデル20Cは、端部259に代えて端部259Cを備えている。端部259Cは、外部に連通しない流路(肝内胆管ルーメン20L)の終端である。肝臓モデル20Cでは、肝臓接続口211から第2肝臓基端口231までの流路の長さL1(図8:実線矢印)は、肝臓接続口211から終端259Cまでの流路の長さL3C(図8:破線矢印)よりも短い。このように、肝臓モデル20Cの構成は種々の変更が可能であり、外部に連通しない流路の長さを、外部に連通する流路の長さよりも長くしてもよい。また、肝臓モデル20Cにおける肝内胆管ルーメン20Lの形状は任意に変更が可能であり、人体における肝内胆管の配置を模擬していなくてもよい。このような第4実施形態の内視鏡治療シミュレーションモデル1Cにおいても、上述した第1実施形態と同様の効果を奏することができる。
<Fourth Embodiment>
FIG. 8 is an explanatory diagram illustrating the configuration of the liver model 20C of the fourth embodiment. The endoscopic treatment simulation model 1C of the fourth embodiment includes a liver model 20C instead of the liver model 20. The liver model 20C comprises an end 259C instead of an end 259. The end 259C is the end of a flow path (intrahepatic bile duct lumen 20L) that does not communicate with the outside. In the liver model 20C, the length L1 of the flow path from the liver connection port 211 to the second liver base end port 231 (FIG. 8: solid arrow) is the length L3C of the flow path from the liver connection port 211 to the terminal 259C (FIG. 8). 8: Shorter than the broken line arrow). As described above, the configuration of the liver model 20C can be changed in various ways, and the length of the flow path that does not communicate with the outside may be longer than the length of the flow path that communicates with the outside. Further, the shape of the intrahepatic bile duct lumen 20L in the liver model 20C can be arbitrarily changed, and the arrangement of the intrahepatic bile duct in the human body does not have to be simulated. In such an endoscopic treatment simulation model 1C of the fourth embodiment, the same effect as that of the first embodiment described above can be obtained.
<第5実施形態>
 図9は、第5実施形態の肝臓モデル20Dの構成を例示した説明図である。第5実施形態の内視鏡治療シミュレーションモデル1Dは、肝臓モデル20に代えて肝臓モデル20Dを備えている。肝臓モデル20Dは、第1実施形態において第1~第3肝臓基端口221~241に設けられるとした第1~第3端部部材220~240を備えていない。このように、肝臓モデル20Dの構成は種々の変更が可能であり、端部部材を省略してもよい。図示の例では、第1~第3肝臓基端口221~241の端部部材を省略する一方、肝臓接続口211の端部部材210を備える構成を例示したが、肝臓接続口211の端部部材210についても同様に、省略可能である。このような第5実施形態の内視鏡治療シミュレーションモデル1Dにおいても、上述した第1実施形態と同様の効果を奏することができる。
<Fifth Embodiment>
FIG. 9 is an explanatory diagram illustrating the configuration of the liver model 20D of the fifth embodiment. The endoscopic treatment simulation model 1D of the fifth embodiment includes a liver model 20D instead of the liver model 20. The liver model 20D does not include the first to third end members 220 to 240 that are provided at the first to third liver proximal ports 221 to 241 in the first embodiment. As described above, the configuration of the liver model 20D can be changed in various ways, and the end member may be omitted. In the illustrated example, the end members of the first to third liver base end ports 221 to 241 are omitted, while the configuration including the end member 210 of the liver connection port 211 is illustrated, but the end member of the liver connection port 211 is illustrated. Similarly, 210 can be omitted. In such an endoscopic treatment simulation model 1D of the fifth embodiment, the same effect as that of the first embodiment described above can be obtained.
<第6実施形態>
 図10は、第6実施形態の肝臓モデル20Eの構成を例示した説明図である。第6実施形態の内視鏡治療シミュレーションモデル1Eは、肝臓モデル20に代えて肝臓モデル20Eを備えている。肝臓モデル20Eは、端部部材210及び第1~第3端部部材220~240に代えて、端部部材210E及び第1~第3端部部材220E~240Eを備えている。端部部材210E及び第1~第3端部部材220E~240Eは、識別子の表示のないルアーロックコネクタである。このように、肝臓モデル20Eの構成は種々の変更が可能であり、端部部材210E及び第1~第3端部部材220E~240Eにおける識別子の表示を無くすほか、端部部材を任意の大きさ、色、形状とすることができる。例えば、端部部材210E及び第1~第3端部部材220E~240Eは、ルアーロックコネクタでなくてもよい。また、端部部材210E及び第1~第3端部部材220E~240Eは、大きさ、色、形状の少なくともいずれかが相互に異なっていてもよい。このような第6実施形態の内視鏡治療シミュレーションモデル1Eにおいても、上述した第1実施形態と同様の効果を奏することができる。
<Sixth Embodiment>
FIG. 10 is an explanatory diagram illustrating the configuration of the liver model 20E of the sixth embodiment. The endoscopic treatment simulation model 1E of the sixth embodiment includes a liver model 20E instead of the liver model 20. The liver model 20E includes end members 210E and first to third end members 220E to 240E in place of the end members 210 and the first to third end members 220 to 240. The end member 210E and the first to third end members 220E to 240E are luer lock connectors having no identifier display. In this way, the configuration of the liver model 20E can be changed in various ways, and in addition to eliminating the display of identifiers in the end members 210E and the first to third end members 220E to 240E, the end members can be made to have an arbitrary size. , Color, shape. For example, the end members 210E and the first to third end members 220E to 240E do not have to be luer lock connectors. Further, the end members 210E and the first to third end members 220E to 240E may be different in at least one of the size, the color, and the shape. In such an endoscopic treatment simulation model 1E of the sixth embodiment, the same effect as that of the first embodiment described above can be obtained.
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
<Modified example of this embodiment>
The present invention is not limited to the above-described embodiment, and can be implemented in various aspects without departing from the gist thereof. For example, the following modifications are also possible.
 [変形例1]
 上記第1~6実施形態では、内視鏡治療シミュレーションモデル1,1A~1Eの構成の一例を示した。しかし、内視鏡治療シミュレーションモデルの構成は種々の変更が可能である。例えば、内視鏡治療シミュレーションモデルは、Z軸方向に積層された3組の内視鏡モデルと、肝臓モデルと、総胆管モデルとを備える構成とした。しかし、内視鏡治療シミュレーションモデルは、1組の内視鏡モデルと、肝臓モデルと、総胆管モデルとにより構成されてもよく、2組又は4組以上の内視鏡モデルと、肝臓モデルと、総胆管モデルとにより構成されてもよい。また、内視鏡モデルと、肝臓モデルと、総胆管モデルとの数は同一でなくてもよく、相互に異なっていてもよい。
[Modification 1]
In the first to sixth embodiments, an example of the configuration of the endoscopic treatment simulation models 1, 1A to 1E is shown. However, the configuration of the endoscopic treatment simulation model can be changed in various ways. For example, the endoscopic treatment simulation model has a configuration including three sets of endoscopic models stacked in the Z-axis direction, a liver model, and a common bile duct model. However, the endoscopic treatment simulation model may be composed of one set of endoscopic model, liver model, and common bile duct model, and two or more sets of endoscopic model and liver model. , May be constructed with a common bile duct model. Further, the numbers of the endoscopic model, the liver model, and the common bile duct model do not have to be the same, and may be different from each other.
 例えば、内視鏡治療シミュレーションモデルは、上述しない他のモデル(例えば、膵管を模した膵管ルーメンを有する膵臓モデル、十二指腸を模した十二指腸モデル、胃を模した胃モデル等)を備えていてもよい。例えば、内視鏡治療シミュレーションモデルは、内視鏡モデル、肝臓モデル、総胆管モデル、及び他のモデルの少なくとも一部を制御し、又はこれらのモデルに設置されたセンサからの出力値を取得する制御装置を備えていてもよい。例えば、内視鏡治療シミュレーションモデルは、肝臓モデル(肝内胆管ルーメン)及び総胆管モデル(総胆管ルーメン)における液体の循環を行うためのポンプを備えていてもよい。 For example, the endoscopic treatment simulation model may include other models not described above (for example, a pancreatic model having a pancreatic duct lumen imitating the pancreatic duct, a duodenum model imitating the duodenum, a stomach model imitating the stomach, etc.). .. For example, an endoscopic treatment simulation model controls at least some of the endoscopic model, liver model, common bile duct model, and other models, or obtains output values from sensors installed in these models. It may be provided with a control device. For example, the endoscopic treatment simulation model may include a pump for circulating fluid in the liver model (intrahepatic bile duct lumen) and the common bile duct model (common bile duct lumen).
 [変形例2]
 上記第1~6実施形態では、内視鏡モデル10,10A,10Bの構成の一例を示した。しかし、内視鏡モデルの構成は種々の変更が可能である。例えば、ストレート部に形成されるとした台座は、省略してもよい。例えば、ストレート部と湾曲部とは一体的に形成されており、取り外し不可能な構成であってもよい。例えば、湾曲部の先端面はY軸に対する角度が変更可能に構成されていてもよい。
[Modification 2]
In the first to sixth embodiments, an example of the configuration of the endoscope models 10, 10A and 10B is shown. However, the configuration of the endoscope model can be changed in various ways. For example, the pedestal formed on the straight portion may be omitted. For example, the straight portion and the curved portion may be integrally formed and may have a non-removable configuration. For example, the tip surface of the curved portion may be configured so that the angle with respect to the Y axis can be changed.
 [変形例3]
 上記第1~6実施形態では、肝臓モデル20,20C~20Eの構成の一例を示した。しかし、肝臓モデルの構成は種々の変更が可能である。例えば、肝内胆管ルーメンには、チューブ(管状体)が内挿されていてもよい。この場合、内挿されたチューブをPVA樹脂とすれば、PVA樹脂の親水性によって、肝内胆管ルーメンに胆汁を模した液体が充填された際に、肝内胆管ルーメン内の触感を、実際の人体に似せることができる点で好ましい。
[Modification 3]
In the above 1st to 6th embodiments, an example of the configuration of the liver models 20, 20C to 20E is shown. However, the configuration of the liver model can be modified in various ways. For example, a tube (tubular body) may be interpolated into the intrahepatic bile duct lumen. In this case, if the inserted tube is made of PVA resin, the hydrophilicity of the PVA resin allows the intrahepatic bile duct lumen to feel the actual tactile sensation in the intrahepatic bile duct lumen when it is filled with a liquid imitating bile. It is preferable because it can resemble the human body.
 [変形例4]
 上記第1~6実施形態では、総胆管モデル30の構成の一例を示した。しかし、総胆管モデルの構成は種々の変更が可能である。例えば、十二指腸乳頭部を模した総胆管先端口に、ゴムや柔軟性を有する樹脂材料により形成された弁を設けてもよい。このようにすれば、総胆管先端口をより一層、実際の人体に似せることができる点で好ましい。例えば、管状部の貫通孔の内部や、総胆管ルーメンには、チューブ(管状体)が内挿されていてもよい。この場合、内挿されたチューブをPVA樹脂とすることが好ましい。
[Modification example 4]
In the first to sixth embodiments, an example of the configuration of the common bile duct model 30 is shown. However, the configuration of the common bile duct model can be changed in various ways. For example, a valve made of rubber or a flexible resin material may be provided at the tip of the common bile duct that imitates the papilla of Vater. This is preferable in that the tip of the common bile duct can be made to resemble an actual human body. For example, a tube (tubular body) may be interpolated inside the through hole of the tubular portion or in the lumen of the common bile duct. In this case, it is preferable that the inserted tube is made of PVA resin.
 [変形例5]
 第1~6実施形態の内視鏡治療シミュレーションモデル1,1A~1Eの構成、及び上記変形例1~4の内視鏡治療シミュレーションモデル、内視鏡モデル、肝臓モデル、及び総胆管モデルの構成は、適宜組み合わせてもよい。例えば、第2実施形態又は第3実施形態で説明した内視鏡モデルと、第4~6実施形態で説明した肝臓モデルと、を組み合わせて内視鏡治療シミュレーションモデルを構成してもよい。
[Modification 5]
Configuration of endoscopic treatment simulation models 1, 1A to 1E of the first to sixth embodiments, and configuration of endoscopic treatment simulation model, endoscopic model, liver model, and common bile duct model of the above-mentioned modified examples 1 to 4. May be combined as appropriate. For example, the endoscopic treatment simulation model may be constructed by combining the endoscopic model described in the second embodiment or the third embodiment and the liver model described in the fourth to sixth embodiments.
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。 The present embodiment has been described above based on the embodiments and modifications, but the embodiments of the above-described embodiments are for facilitating the understanding of the present embodiment, and do not limit the present embodiment. This aspect may be modified or improved without departing from its spirit and claims, and this aspect includes its equivalents. In addition, if the technical feature is not described as essential in the present specification, it may be deleted as appropriate.
  1,1A~1E…内視鏡治療シミュレーションモデル
  2…ガイドワイヤ
  10,10A,10B…内視鏡モデル
  20,20C~20E…肝臓モデル
  30…総胆管モデル
  40,40A…保持部
  110,110a~110c…ストレート部
  111…内視鏡基端口
  120,120B…湾曲部
  150,150B…先端面
  154…内視鏡先端口
  154E…角部
  191…台座
  210…端部部材
  211…肝臓接続口
  220…第1端部部材
  221…第1肝臓基端口
  230…第2端部部材
  231…第2肝臓基端口
  240…第3端部部材
  241…第3肝臓基端口
  250~259…端部
  310…管状部
  311…胆管接続口
  312…開口
  320…可動部材
  320A…保持部材
  321,321A…本体部
  322…第1腕部
  323…第2腕部
  324…総胆管先端口
  324E…角部
  325…開口
  410,410A…第1保持板
  420,420A…第2保持板
  411…第1レール部
  421…第2レール部
1,1A to 1E ... Endoscopic treatment simulation model 2 ... Guide wire 10,10A, 10B ... Endoscopic model 20,20C to 20E ... Liver model 30 ... Common bile duct model 40,40A ... Holding part 110,110a to 110c ... Straight part 111 ... Endoscope base end port 120, 120B ... Curved part 150, 150B ... Tip surface 154 ... Endoscope tip port 154E ... Corner 191 ... Pedestal 210 ... End member 211 ... Liver connection port 220 ... First End member 221 ... First liver base end port 230 ... Second end member 231 ... Second liver base end port 240 ... Third end member 241 ... Third liver base end port 250 to 259 ... End 310 ... Tubular part 311 ... Bile duct connection port 312 ... Opening 320 ... Movable member 320A ... Holding member 321 and 321A ... Main body part 322 ... First arm part 323 ... Second arm part 324 ... Common bile duct tip opening 324E ... Corner part 325 ... Opening 410, 410A ... No. 1 Holding plate 420, 420A ... 2nd holding plate 411 ... 1st rail part 421 ... 2nd rail part

Claims (9)

  1.  内視鏡治療シミュレーションモデルであって、
     内視鏡の先端側を模した内視鏡モデルであって、医療用デバイスを挿入するためのデバイスルーメンと、前記デバイスルーメンに連通する内視鏡先端口と、を有する内視鏡モデルと、
     肝臓内の胆管を模した肝内胆管ルーメンを有する肝臓モデルと、
     前記肝内胆管ルーメンに連通する総胆管を模した総胆管ルーメンを有する総胆管モデルであって、前記総胆管ルーメンに連通すると共に、前記内視鏡先端口から突出した前記医療用デバイスの先端が挿入される総胆管先端口を有する総胆管モデルと、
    を備える、内視鏡治療シミュレーションモデル。
    It is an endoscopic treatment simulation model
    An endoscope model that imitates the tip side of an endoscope and has a device lumen for inserting a medical device and an endoscope tip port communicating with the device lumen.
    A liver model with an intrahepatic bile duct lumen that mimics the bile duct in the liver,
    A common bile duct model having a common bile duct lumen that imitates the common bile duct that communicates with the intrahepatic bile duct lumen. The tip of the medical device that communicates with the common bile duct lumen and protrudes from the tip of the endoscope A common bile duct model with a common bile duct tip to be inserted,
    Endoscopic treatment simulation model equipped with.
  2.  請求項1に記載の内視鏡治療シミュレーションモデルであって、
     前記内視鏡モデルは、
      先端部が、前記肝臓モデルが配置されている方向に向かって湾曲すると共に、
      前記内視鏡先端口が形成された先端面であって、前記肝臓モデルが配置されている方向を向いた先端面を有する、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to claim 1.
    The endoscopic model is
    The tip is curved in the direction in which the liver model is placed, and
    An endoscopic treatment simulation model having a tip surface on which the tip port of the endoscope is formed and facing the direction in which the liver model is arranged.
  3.  請求項1または請求項2に記載の内視鏡治療シミュレーションモデルであって、さらに、
     前記内視鏡先端口と、前記総胆管先端口との間に所定の距離を開けた状態で、前記内視鏡モデルと前記総胆管モデルとを保持する保持部を備える、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to claim 1 or 2, further comprising:
    Endoscopic treatment simulation including a holding portion for holding the endoscopic model and the common bile duct model with a predetermined distance between the endoscopic tip port and the common bile duct tip port. model.
  4.  請求項3に記載の内視鏡治療シミュレーションモデルであって、
     前記保持部は、前記内視鏡先端口に対する前記総胆管先端口の相対的な位置を変更した状態で、前記内視鏡モデルと前記総胆管モデルとを保持することが可能な、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to claim 3.
    The holding portion is an endoscope capable of holding the endoscope model and the common bile duct model in a state where the relative position of the common bile duct tip mouth with respect to the endoscope tip mouth is changed. Treatment simulation model.
  5.  請求項1から請求項4のいずれか一項に記載の内視鏡治療シミュレーションモデルであって、
     前記肝臓モデルは、
      前記肝内胆管ルーメンに連通すると共に、前記総胆管ルーメンに接続された肝臓接続口と、
      前記肝内胆管ルーメンに連通すると共に、前記肝臓接続口よりも下流側に設けられた肝臓基端口と、を有する、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to any one of claims 1 to 4.
    The liver model is
    With the liver connection port connected to the common bile duct lumen while communicating with the intrahepatic bile duct lumen,
    An endoscopic treatment simulation model that communicates with the intrahepatic bile duct lumen and has a hepatic proximal end opening provided on the downstream side of the liver connection port.
  6.  請求項5に記載の内視鏡治療シミュレーションモデルであって、
     前記肝臓モデルは、さらに、前記肝臓接続口及び前記肝臓基端口にそれぞれ取り付けられた、略同一形状を有する複数の端部部材を備える、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to claim 5.
    The liver model is an endoscopic treatment simulation model further comprising a plurality of end members having substantially the same shape attached to the liver connection port and the liver base end port, respectively.
  7.  請求項6に記載の内視鏡治療シミュレーションモデルであって、
     前記複数の端部部材には、それぞれ異なる識別子が表示されている、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to claim 6.
    An endoscopic treatment simulation model in which different identifiers are displayed on the plurality of end members.
  8.  請求項1から請求項7のいずれか一項に記載の内視鏡治療シミュレーションモデルであって、
     前記内視鏡モデルと、前記肝臓モデルと、前記総胆管モデルとの組が、複数並んで配置されている、内視鏡治療シミュレーションモデル。
    The endoscopic treatment simulation model according to any one of claims 1 to 7.
    An endoscopic treatment simulation model in which a plurality of pairs of the endoscopic model, the liver model, and the common bile duct model are arranged side by side.
  9.  内視鏡治療シミュレーションモデルであって、
     十二指腸乳頭部まで挿入された内視鏡を模した内視鏡モデルと、
     前記内視鏡モデルの先端部から突出した医療用デバイスが、総胆管を通って肝臓まで進む経路を模した総胆管モデルと、
     前記総胆管モデルを通過した前記医療用デバイスが、前記肝臓内の肝内胆管を進む経路を模した肝臓モデルと、
    を備える、内視鏡治療シミュレーションモデル。
    It is an endoscopic treatment simulation model
    An endoscope model that imitates an endoscope inserted up to the papilla of Vater,
    A common bile duct model that mimics the path of a medical device protruding from the tip of the endoscopic model through the common bile duct to the liver.
    A liver model that mimics the path of the medical device that has passed through the common bile duct model through the intrahepatic bile duct in the liver.
    Endoscopic treatment simulation model equipped with.
PCT/JP2020/001650 2019-06-25 2020-01-20 Endoscopic treatment simulation model WO2020261620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117111A JP7269803B2 (en) 2019-06-25 2019-06-25 Endoscopic treatment simulation model
JP2019-117111 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261620A1 true WO2020261620A1 (en) 2020-12-30

Family

ID=74060223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001650 WO2020261620A1 (en) 2019-06-25 2020-01-20 Endoscopic treatment simulation model

Country Status (2)

Country Link
JP (1) JP7269803B2 (en)
WO (1) WO2020261620A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539664B1 (en) * 2021-05-26 2023-06-08 메디컬아이피 주식회사 Upper gastrointestinal endoscopy simulator
WO2024048477A1 (en) * 2022-08-29 2024-03-07 デンカ株式会社 Duodenal papilla model
KR102560347B1 (en) * 2022-10-07 2023-07-27 김동춘 Self Training Devices for Endoscopic Retrograde Cholangio Pancreatography

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086332A1 (en) * 2009-10-09 2011-04-14 Bjoern Speiser Simulation system for training in endoscopic procedures
JP2011203699A (en) * 2010-03-26 2011-10-13 Terumo Corp Skeleton model and human body model
US20140370474A1 (en) * 2011-12-14 2014-12-18 Brigham And Women's Hospital, Inc. System and method for part-task training box for flexible endoscopy
JP2015085017A (en) * 2013-10-31 2015-05-07 オリンパスメディカルシステムズ株式会社 Training device for endoscope
JP2019012126A (en) * 2017-06-29 2019-01-24 国立大学法人信州大学 Endoscope training device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086332A1 (en) * 2009-10-09 2011-04-14 Bjoern Speiser Simulation system for training in endoscopic procedures
JP2011203699A (en) * 2010-03-26 2011-10-13 Terumo Corp Skeleton model and human body model
US20140370474A1 (en) * 2011-12-14 2014-12-18 Brigham And Women's Hospital, Inc. System and method for part-task training box for flexible endoscopy
JP2015085017A (en) * 2013-10-31 2015-05-07 オリンパスメディカルシステムズ株式会社 Training device for endoscope
JP2019012126A (en) * 2017-06-29 2019-01-24 国立大学法人信州大学 Endoscope training device

Also Published As

Publication number Publication date
JP7269803B2 (en) 2023-05-09
JP2021004915A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2020261620A1 (en) Endoscopic treatment simulation model
CN102871636B (en) There is the linkwork of flex-hinged chain link
Dhir et al. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of “Mumbai EUS” stereolithography/3D printing bile duct prototype (with videos)
EP3123460B1 (en) Simulated dissectible tissue
CN101048101B (en) Articulating mechanism with flex-hinged links
US8480406B2 (en) Interface device and method for interfacing instruments to medical procedure simulation systems
JP2008237304A (en) Cardiovascular system simulation model
EP1103041B1 (en) Interface device and method for interfacing instruments to medical procedure simulation system
JP6408838B2 (en) Training equipment
JP5769194B2 (en) Vascular stenosis model
EP2772897A1 (en) Medical training apparatus for catheterization
JP5749909B2 (en) Simulated human body
EP2163217A3 (en) Surgical port assembly
ATE427768T1 (en) EXPANDABLE GUIDE SLEEVE
JPH05509255A (en) Linear everting catheter device with extension control
CN109310274A (en) Silk locked component
US20110160682A1 (en) Medical device
Gundeti Pediatric robotic and reconstructive urology: a comprehensive guide
US20190304344A1 (en) Method and system for simulating an insertion of an elongated instrument into a subject
JP2012220728A (en) Stenosis model and training kit
JP7339790B2 (en) Vascular simulation model
DE4418868A1 (en) Catheter
US6827580B1 (en) Fiberscope training apparatus
Placek et al. Simulation in Surgical Endoscopy
CN114430847B (en) Multi-tool medical simulation system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831060

Country of ref document: EP

Kind code of ref document: A1