WO2020261460A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2020261460A1
WO2020261460A1 PCT/JP2019/025500 JP2019025500W WO2020261460A1 WO 2020261460 A1 WO2020261460 A1 WO 2020261460A1 JP 2019025500 W JP2019025500 W JP 2019025500W WO 2020261460 A1 WO2020261460 A1 WO 2020261460A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
procedure
terminal
radio base
data
Prior art date
Application number
PCT/JP2019/025500
Other languages
French (fr)
Japanese (ja)
Inventor
徹 内野
天楊 閔
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/025500 priority Critical patent/WO2020261460A1/en
Priority to CN201980097802.XA priority patent/CN114009137A/en
Publication of WO2020261460A1 publication Critical patent/WO2020261460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to a terminal that executes wireless communication, particularly a terminal that transitions to a target wireless base station without using a reconnection procedure.
  • LTE Long Term Evolution
  • NR New Radio
  • NG Next Generation
  • a network sets a target radio base station (also called a target cell) based on quality information such as a measurement report transmitted from a terminal (User Equipment, UE). After making a decision and preparing for the handover, the handover command is transmitted to the terminal.
  • a target radio base station also called a target cell
  • quality information such as a measurement report transmitted from a terminal (User Equipment, UE).
  • the terminal passes an appropriate handover point while preparing for the handover on the network side, it transitions to the target radio base station without receiving the handover command from the source radio base station (also called the source cell). Therefore, there is a problem that a momentary interruption of the wireless link may occur.
  • the source radio base station also called the source cell
  • Conditional HO a procedure called Conditional HO is being studied (Non-Patent Document 1).
  • the candidate cell for handover and the transition condition to the candidate cell are set in advance for the terminal.
  • Non-Patent Document 2 it is agreed that the terminal transmits RRC reconfiguration complete to the target radio base station.
  • Conditional HO allows the terminal to transition to the target radio base station without using the reconnection procedure at the target radio base station and the radio resource control layer (RRC).
  • RRC radio resource control layer
  • Non-Patent Document 3 a procedure for early recovery from a wireless link failure (RLF) using a cell transition procedure according to Conditional HO is also being studied.
  • the terminal transmits RRC reconfiguration complete to the target radio base station, but for example, the data already transmitted via Signalling Radio Bearer 1 (SRB1) is In certain situations, such as when it exists, the Buffer Status Report (BSR) is not triggered, so there is a problem that the random access procedure for sending a scheduling request (SR) with the target radio base station is not started.
  • SRB1 Signalling Radio Bearer 1
  • the present invention has been made in view of such a situation, and even when transitioning to the target radio base station without using the reconnection procedure as in Conditional HO, the target radio base station and the target radio base station are surely used.
  • the purpose is to provide a terminal that can initiate a random access procedure.
  • One aspect of the present disclosure includes a control unit (control unit 250) that transitions to the target radio base station without using a reconnection procedure, and the control unit transitions to the target radio base station due to a radio link failure.
  • control unit 250 is a terminal that starts a random access procedure with the target radio base station at a specified timing.
  • One aspect of the present disclosure includes a control unit (control unit 250) that transitions to the target radio base station without using a reconnection procedure, and the control unit transitions to the target radio base station due to a radio link failure.
  • control unit 250 is a terminal that determines the destruction of data transmitted via the signaling radio bearer.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the UE 200.
  • FIG. 3 is an explanatory diagram of a conventional handover procedure.
  • FIG. 4 is an explanatory diagram of the handover procedure by Conditional HO.
  • FIG. 5 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using a reconnection procedure in the RRC layer.
  • FIG. 6 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using Conditional HO.
  • FIG. 7 is a diagram showing a recovery sequence from a handover failure (HOF) using a reconnection procedure in the RRC layer.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the UE 200.
  • FIG. 3 is an explanatory diagram of a conventional handover procedure.
  • FIG. 4 is an explanatory diagram of the handover procedure
  • FIG. 8 is a diagram showing a recovery sequence from a handover failure (HOF) using Conditional HO.
  • FIG. 9 is a diagram showing an image of communication between layers in the terminal at the time of handover.
  • FIG. 10 is a diagram showing an image of communication between layers in the terminal at the time of reconnection to the target radio base station.
  • FIG. 11 is a diagram showing the relationship between the data transmission enable / disable period of SRB0, SRB1 and SRB2 / DRB and the message transmission / reception timing in RRC.
  • FIG. 12 is a diagram showing an example in which the RA procedure is not activated when Conditional HO is applied to wireless link failure (RLF).
  • FIG. 13 is a diagram showing an example in which the RA procedure is activated when the problem shown in FIG. 12 is solved and Conditional HO is applied to the radio link failure (RLF).
  • FIG. 14 is a diagram showing an example of the hardware configuration of UE200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network (NG-RAN) and a user terminal 200 (User Equipment 200, hereinafter, UE200) (not shown).
  • NR 5G New Radio
  • NG-RAN Next Generation-Radio Access Network
  • UE200 User Equipment 200
  • NG-RAN includes radio base station 100A (hereinafter, gNB100A) to radio base station 100C (hereinafter, gNB100C).
  • gNB100A radio base station 100A
  • gNB100C radio base station 100C
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN and 5GC may be simply expressed as a network.
  • GNB100A to gNB100C are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A to gNB100C and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
  • Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • GNB100A to gNB100C each form one or more cells.
  • the UE200 can transition between cells (which may be called radio base stations) formed by gNB100A to gNB100C. “Transition” typically means a handover between cells (radio base stations), but the behavior of the UE 200 (behavior) such that the cell (radio base station) to be connected to is changed, such as cell reselection. ) Can be included.
  • the transition destination cell (radio base station) to which the UE200 transitions is called the target cell or target radio base station.
  • the transition source cell (radio base station) is called a source cell or a source radio base station.
  • Conditional HO which is a procedure for the UE 200 to transition to the target wireless base station without using the reconnection procedure in the wireless resource control layer (RRC), is used.
  • RRC wireless resource control layer
  • a procedure for early recovery from a wireless link failure (RLF) by using a cell transition procedure according to Conditional HO is also used.
  • FIG. 2 is a functional block configuration diagram of UE200. As shown in FIG. 2, the UE 200 includes a wireless transmission unit 210, a wireless reception unit 220, an RA procedure execution unit 230, a data destruction unit 240, and a control unit 250.
  • the UE 200 includes a wireless transmission unit 210, a wireless reception unit 220, an RA procedure execution unit 230, a data destruction unit 240, and a control unit 250.
  • the wireless transmitter 210 transmits an uplink signal (UL signal) according to NR.
  • the wireless receiver 220 receives the downlink signal (DL signal) according to the NR.
  • the wireless transmission unit 210 and the wireless reception unit 220 execute wireless communication via a control channel or a data channel.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • PBCH Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Downlink Shared Channel
  • the RA procedure execution unit 230 executes a random access (RA) procedure with a radio base station, specifically, any of gNB100A to gNB100C. Specifically, the RA procedure execution unit 230 sends and receives a message according to the RA procedure based on the control by the control unit 250.
  • RA random access
  • the RA procedure may include contention-based random access (CBRA) and contention-free random access (CFRA) RA procedure.
  • CBRA contention-based random access
  • CFRA contention-free random access
  • the RA procedure execution unit 230 sends Random Access Preamble (Msg.1) to the connection request destination gNB, and receives Random Access Response (Msg.2), which is a response to Random Access Preamble, from the gNB. .. After that, the RA procedure execution unit 230 transmits the Scheduled Transmission (Msg.3) to the gNB and receives the Contention Resolution (Msg.4) from the gNB.
  • Msg.1 Random Access Preamble
  • Msg.2 Random Access Response
  • Msg.3 Scheduled Transmission
  • Msg.4 Contention Resolution
  • the RA procedure is executed, for example, in the initial access from the RRC_IDLE state and the procedure for reestablishing the RRC connection.
  • the target radio base station is accompanied by a radio link failure (RLF).
  • the RA procedure is also executed when transitioning to.
  • the data destruction unit 240 manages UL data and discards UL data based on the control by the control unit 250. Specifically, the data discarding unit 240 discards UL data held without being transmitted to the buffer (not shown) based on the control by the control unit 250.
  • the data discard unit 240 discards UL data transmitted via the wireless bearer (RB) and untransmitted UL data held in the buffer under the control of the control unit 250. To do.
  • RB wireless bearer
  • the wireless bearer includes a signaling wireless bearer (SRB) and a data wireless bearer (DRB).
  • SRB is for control plane data and the DRB is for user plane data.
  • SRB0, 1, 2, and 3 can be set for SRB depending on the application.
  • SRB0 is for RRC messages that use the Common Control Channel (CCCH) logical channel. Specifically, SRB0 is used to send and receive specific RRC messages (RRCSetupRequest, etc.).
  • CCCH Common Control Channel
  • SRB1 is for RRC messages (which may include piggybacked Non-Access Stratum (NAS) messages) and NAS messages before the establishment of SRB2 using the Dedicated Control Channel (DCCH) logical channel.
  • RRC messages which may include piggybacked Non-Access Stratum (NAS) messages
  • DCCH Dedicated Control Channel
  • SRB2 is for NAS messages and uses a DCCH logical channel.
  • SRB2 has a lower priority than SRB1 and can be set by the network after AS security is activated.
  • SRB3 is for a specific RRC message when UE200 is in E-UTRA-NR Dual Connectivity (EN-DC) and uses a DCCH logical channel.
  • EN-DC E-UTRA-NR Dual Connectivity
  • DRB is for user data.
  • the control unit 250 controls each functional block constituting the UE 200.
  • the transition (including handover) between gNBs of UE200 is controlled.
  • control unit 250 transitions to the target radio base station without using the reconnection procedure to the network. More specifically, the control unit 250 uses the cell transition procedure according to the Conditional HO to transition to the target radio base station without using the reconnection procedure in the RRC layer.
  • the control unit 250 transitions to the target radio base station due to a radio link failure (RLF)
  • the control unit 250 starts a random access procedure (RA procedure) with the target radio base station at a specified timing.
  • control unit 250 controls the RA procedure execution unit 230, and the RA is based on a specified timing, for example, an instruction from the RRC layer, or generation or transmission of a predetermined message on the RRC layer. You can start the procedure. The details of the timing will be described later.
  • control unit 250 can determine at least the destruction of the data transmitted via the signaling radio bearer (SRB) when transitioning to the target radio base station along with the RLF. Specifically, the control unit 250 controls the data destruction unit 240 to discard data transmitted via SRB0, 1, 2 (if SRB3 is set, SRB3 may be included). Let the data discard unit 240 execute.
  • SRB signaling radio bearer
  • the control unit 250 starts the RA procedure with the target radio base station based on the buffer status report (BSR). Specifically, the control unit 250 considers the data generated thereafter as high-priority data by discarding the data, and causes the RA procedure execution unit 230 to execute the RA procedure based on the normal BSR.
  • BSR buffer status report
  • FIG. 3 is an explanatory diagram of a conventional handover procedure
  • FIG. 4 is an explanatory diagram of a handover procedure by Conditional HO.
  • the network is based on quality information ((1) in the figure) such as a measurement report (Measurement Report) transmitted from the terminal (User Equipment, UE). Then, the target radio base station (T-gNB) is determined, and the handover command is transmitted to the terminal ((3) in the figure) after the preparation for the handover ((2) in the figure).
  • quality information (1) in the figure
  • UE User Equipment
  • T-gNB target radio base station
  • the terminal passes an appropriate handover point while preparing for the handover on the network side, it transitions to the target radio base station without receiving the handover command from the source radio base station (S-gNB) ( (4) in the figure) may occur (may be called "too late HO"). Therefore, the terminal cannot recognize the setting related to the target radio base station, and the radio link may be interrupted momentarily.
  • S-gNB source radio base station
  • Conditional HO may be abbreviated as CHO
  • the candidate cell for handover and the transition condition to the candidate cell are set in advance for the terminal.
  • the terminal can connect to the target radio base station without waiting for an instruction (handover command) from the network, and can avoid a momentary interruption of the radio link.
  • preparations for handover are executed in advance between the source radio base station (S-gNB) and the target radio base station (T-gNB) ((1) in the figure).
  • Conditional HO settings including transition conditions to the target radio base station are notified to the terminal ((2) in the figure).
  • the terminal decides to connect to the target radio base station by moving or the like, it starts the RA procedure with the target radio base station based on the setting contents of Conditional HO ((3) in the figure).
  • the "handover command” may be called reconfigurationWithSync in NR and RRC connection reconfiguration (including mobilitycontrolinfo) in LTE.
  • FIG. 5 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using a reconnection procedure in the RRC layer
  • FIG. 6 is an explanatory diagram of a procedure for returning from a handover failure (HOF) using Conditional HO. is there.
  • the terminal attempts a handover to cell A ((1) in the figure), but moves into cell B ((2) in the figure) before the handover is completed, and the cell An example of executing the handover to B ((3) in the figure) is shown.
  • the terminal In the case of returning from HOF using the reconnection procedure, when the terminal (UE) detects RLF, it searches for the optimum cell (best cell) as the transition destination (handover destination) at that time. If the best cell can be searched, the terminal activates the reconnection procedure (RRC connection re-establishment) for the cell and executes the connection with the cell (3GPP TS38.331, etc.).
  • RRC connection re-establishment the reconnection procedure for the cell and executes the connection with the cell (3GPP TS38.331, etc.).
  • FIG. 7 shows a recovery sequence from a handover failure (HOF) using a reconnection procedure at the RRC layer.
  • FIG. 8 shows a recovery sequence from a handover failure (HOF) using Conditional HO.
  • both the return from the HOF using the reconnection procedure and the return from the HOF using the Conditional HO are based on the preparation for handover (HO preparation / CHO preparation).
  • the terminal (UE) is notified of the settings (HO config / CHO config) related to the handover.
  • Conditional HO information on CHO such as a candidate cell for handover and a transition condition to the candidate cell is set in advance for the terminal.
  • the terminal sends a Random Access (RA) Preamble to the target cell (cell A, see FIGS. 5 and 6), but because it moves to cell B, the RA procedure fails and the HOF is determined.
  • RA Random Access
  • the terminal After that, in the case of returning from HOF using the reconnection procedure shown in FIG. 7, the terminal starts the cell B (here, gNB # 2) and RA procedure. In addition, a reconnect procedure at the RRC layer is performed to conduct (establish) the user plane.
  • the terminal executes the RA procedure with cell B (gNB # 2), and then transmits only RRC reconfiguration complete, so that the user plane becomes conductive ( Establish.
  • Conditional HO since the terminal recognizes the candidate cell for handover and the transition condition to the candidate cell, it is not necessary to execute the reconnection procedure in the RRC layer. As a result, the momentary interruption time is shortened as compared with the return from the HOF using the reconnection procedure (FIG. 7).
  • RRC reconfiguration complete in the case of returning from HOF using Conditional HO may be further omitted. This is because cell B (gNB # 2) can implicitly recognize that the terminal has transitioned by Conditional HO.
  • the terminal may operate as follows. Specifically, when RLF occurs, the terminal executes cell selection and attempts CHO if the selected cell is a CHO candidate cell. If not, the terminal performs a reconnect procedure at the RRC layer. In addition, the terminal executes cell selection in the case of legacy HO failure (expiration of T304) or access failure in the CHO candidate cell, and attempts CHO if the selected cell is a CHO candidate cell.
  • -RA procedure perspective-Conventional HO and reconnection procedures stipulate that the RA procedure be started and synchronization be established for the target cell.-In the medium access control layer (MAC) layer, such
  • the RA procedure is invoked based on the buffer status report (specifically, Regular BSR) due to the occurrence of high priority data (3GPP TS38.321).
  • the operation flow inside the terminal is (i) high priority data generation, (ii) Regular BSR is triggered, (iii) scheduling request (SR) is triggered, and (iv) RA procedure is activated. ..
  • RRC reconfiguration complete is treated as if "high priority data" has occurred.
  • RRCReestablishmentRequest (transmitted by SRB0 (CCCH)) is generated.
  • RRCReestablishmentRequest is treated as if "high priority data" has occurred.
  • ⁇ SRB1 When sending RRC Reestablishment Request
  • SRB2 / DRB After receiving RRC Reconfiguration
  • Fig. 9 and Fig. 10 are terminals related to the activation of RA procedure. Shows an image of the interaction between the inner layers. Specifically, FIG. 9 shows an image of communication between layers in the terminal at the time of handover, and FIG. 10 shows an image of communication between layers in the terminal at the time of reconnection to the target radio base station.
  • the terminal (UE200) has a radio resource control layer (RRC), a packet data convergence protocol layer (PDCP), a radio link control layer (RLC), and a medium access control layer (MAC) is provided.
  • RRC radio resource control layer
  • PDCP packet data convergence protocol layer
  • RLC radio link control layer
  • MAC medium access control layer
  • the terminal when the terminal (RRC) receives the handover command, it requests the MAC to reset and the PDCP / RLC to re-est. In addition, RRC notifies PDCP / RLC of RRC reconfiguration complete.
  • PDCP / RLC notifies the MAC of the display of the buffer status (BS).
  • the MAC activates the RA procedure based on the display of the BS.
  • PDCP / RLC notifies the MAC of the display of the buffer status (BS).
  • the MAC activates the RA procedure based on the display of the BS.
  • FIG. 11 shows an image of suspension / resume of the radio bearer in reconnection to the target radio base station. Specifically, FIG. 11 shows the relationship between the period during which data transmission of SRB0, SRB1 and SRB2 / DRB is possible / impossible and the timing of sending and receiving messages in RRC.
  • SRB1 is resumed. Furthermore, when the terminal receives RRC Reconfiguration and sends RRC reconfiguration complete, SRB2 / DRB is also restarted. Note that SRB0 is not particularly stopped / restarted, and as a state, data can always be transmitted.
  • the terminal sends an RRC reconfiguration complete to the target radio base station, but the buffer status report (Regular BSR) is not triggered, so the RA for scheduling request (SR) transmission. There are cases where the procedure is not started.
  • Regular BSR buffer status report
  • SR scheduling request
  • FIG. 12 shows an example in which the RA procedure is not activated when Conditional HO is applied to wireless link failure (RLF).
  • RLF wireless link failure
  • Regular BSR is not triggered even if additional data is generated in the state where (untransmitted) data of the same priority already exists in the terminal (see 3GPP TS38.321). Also, in the normal case, once the Regular BSR is triggered, the Regular BSR can be triggered by the expiration of the Retx BSR-timer, but in the above case, the Retx BSR-timer is stopped by the MAC reset at the time of RLF. It ends up.
  • the terminal activates the RA procedure at a predetermined timing.
  • FIG. 13 shows an example in which the RA procedure is activated when the problem shown in FIG. 12 is solved and Conditional HO is applied to wireless link failure (RLF).
  • the terminal can activate the RA procedure by any of the following methods.
  • the predetermined timing may be any of the following.
  • RRC reconfiguration complete When a layer such as PDCP / RLC receives an instruction from the RRC layer-When a specific message (for example, RRC reconfiguration complete) is generated in the RRC layer or sent from RRC to a lower layer such as PDCP / RLC Case-When a specific message arrives in the PDCP / RLC buffer, or when a PDCP PDU, RLC PDU or MAC subPDU is generated based on the message, RRC reconfiguration complete has a different name, for example, CHO completion message. It may be called (the same applies hereinafter). Further, the "predetermined timing" may be either after RLF or after CHO. Alternatively, it may be the timing when the wireless bearer (RB) is stopped or the timing when the MAC reset is transmitted.
  • a specific message for example, RRC reconfiguration complete
  • the activation of the RA procedure can be realized by any of the following (instruction from RRC or MAC layer is executed autonomously).
  • -Destroy (timing to consider that there is no data) can be any of the following-When RLF is detected (may be limited to when CHO is set) -When transitioning to a new cell by CHO-When applying the setting corresponding to the new cell (preset by the CHO setting) -After a predetermined time has passed from any of the above timings-Destroy any of the following ⁇ It is considered that discardOnPDCP (specified for SRB) has been set. ⁇ The terminal (UE) that executes PDCP data recovery or PDCP re-establishment for SRB1 is notified of discardOnPDCP to PDCP. Then, at least one or both of the transmission data and the reception data accumulated at that time for the SRB are discarded.
  • the terminal discards at least one or both of the transmission data and the reception data to the wireless bearer. As a result, the data is destroyed while using the existing procedure.
  • UE200 terminal
  • UE200 corresponds to Conditional HO that transitions to the target radio base station without using the reconnection procedure in the RRC layer
  • UE200 corresponds to radio link failure (RLF).
  • RLF radio link failure
  • the UE200 also decides to discard the data transmitted via the signaling radio bearer when transitioning to the target radio base station according to Conditional HO without using the reconnection procedure due to a radio link failure (RLF). Can be done.
  • RLF radio link failure
  • the UE200 After discarding the data, the UE200 starts the RA procedure with the target radio base station based on the buffer status report (BSR).
  • BSR buffer status report
  • the UE200 sends an RRC reconfiguration complete to the target radio base station, but in certain situations, for example, if there is already data to be sent via SRB1, the buffer status report (BSR) Is not triggered, so the RA procedure for sending a scheduling request (SR) to the target radio base station may not be started, but even in such a case, the RA procedure with the target radio base station is surely performed. Can start.
  • BSR buffer status report
  • Conditional HO CHO
  • NR has been described as an example, but Conditional HO is also applicable to LTE, and the same operation may be executed in LTE as well. It may also be applied to the addition / change of the Primary SCell (PSCell) of the Multi-RAT Dual Connectivity (MR-DC).
  • PSCell Primary SCell
  • MR-DC Multi-RAT Dual Connectivity
  • Conditional HO has been described as an example, but if it is a transition procedure for transitioning to the target radio base station without using the reconnection procedure in the RRC layer, another procedure is applied instead of Conditional HO. May be done.
  • it may be generally applied when the terminal autonomously selects a cell and executes a random access procedure, such as when transitioning from the IDLE state or the Inactive state to the Connected state. That is, it is not necessarily limited to the case of transitioning to the target radio base station without using the reconnection procedure, and the random access procedure may be executed as described above when transitioning from the predetermined state to the target radio base station.
  • the destruction of the data transmitted via the SRB1 has been described as an example, but the terminal (UE200) is the data transmitted via the signaling radio bearer other than the SRB1 or the data radio bearer (DRB). May be decided to discard.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically connected, or two or more physically or logically separated devices that are directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 14 is a diagram showing an example of the hardware configuration of UE200.
  • the UE 200 may be configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of UE200 (see FIG. 2) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002 to control the communication by the communication device 1004 and the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network nodes
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • Physical RB Physical RB: PRB
  • Sub-Carrier Group: SCG sub-carrier Group: SCG
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 100A-100C gNB 200 UE 210 Wireless transmitter 220 Wireless receiver 230 RA Procedure execution unit 240 Data discard unit 250 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Abstract

A terminal (UE) transitions to a target wireless base station (gNB) without using a reconnection procedure. If the terminal transitions to the target wireless base station in conjunction with radio link failure, the terminal initiates a random-access procedure with respect to the target wireless base station, at a prescribed timing.

Description

端末Terminal
 本発明は、無線通信を実行する端末、特に、再接続手順を用いることなく、ターゲット無線基地局に遷移する端末に関する。 The present invention relates to a terminal that executes wireless communication, particularly a terminal that transitions to a target wireless base station without using a reconnection procedure.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE), and aims to further speed up LTE with LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and the 5th generation mobile communication system. Specifications (also called 5G, New Radio (NR) or Next Generation (NG)) are also underway.
 例えば、従来のハンドオーバ(HO)手順では、ネットワークが、端末(User Equipment, UE)から送信された測定報告(Measurement Report)などの品質情報に基づいて、ターゲット無線基地局(ターゲットセルとも呼ばれる)を決定し、ハンドオーバの準備後にハンドオーバコマンドが端末に送信される。 For example, in a conventional handover (HO) procedure, a network sets a target radio base station (also called a target cell) based on quality information such as a measurement report transmitted from a terminal (User Equipment, UE). After making a decision and preparing for the handover, the handover command is transmitted to the terminal.
 しかしながら、端末が、ネットワーク側でのハンドオーバの準備中に適切なハンドオーバのポイントを通過してしまうと、ソース無線基地局(ソースセルとも呼ばれる)からのハンドオーバコマンドを受信しないままターゲット無線基地局に遷移してしまうため、無線リンクの瞬断が発生し得る問題がある。 However, if the terminal passes an appropriate handover point while preparing for the handover on the network side, it transitions to the target radio base station without receiving the handover command from the source radio base station (also called the source cell). Therefore, there is a problem that a momentary interruption of the wireless link may occur.
 そこで、このような問題を解決するため、Conditional HOと呼ばれる手順が検討されている(非特許文献1)。Conditional HOでは、端末に対して、予めハンドオーバの候補先セルと、当該候補先セルへの遷移条件が設定される。 Therefore, in order to solve such a problem, a procedure called Conditional HO is being studied (Non-Patent Document 1). In Conditional HO, the candidate cell for handover and the transition condition to the candidate cell are set in advance for the terminal.
 また、Conditional HOでは、端末は、ターゲット無線基地局に対してRRC reconfiguration completeを送信することが合意されている(非特許文献2)。 Further, in Conditional HO, it is agreed that the terminal transmits RRC reconfiguration complete to the target radio base station (Non-Patent Document 2).
 これにより、端末は、ネットワークからのハンドオーバコマンドを待つことなく、ターゲット無線基地局への遷移が可能となる。すなわち、Conditional HOは、端末がターゲット無線基地局と無線リソース制御レイヤ(RRC)における再接続手順を用いることなく、ターゲット無線基地局に遷移することを可能とする。 As a result, the terminal can transition to the target radio base station without waiting for the handover command from the network. That is, Conditional HO allows the terminal to transition to the target radio base station without using the reconnection procedure at the target radio base station and the radio resource control layer (RRC).
 さらに、Conditional HOに従ったセル遷移手順を用いて無線リンク障害(RLF)から早期に復帰する手順も検討されている(非特許文献3)。 Furthermore, a procedure for early recovery from a wireless link failure (RLF) using a cell transition procedure according to Conditional HO is also being studied (Non-Patent Document 3).
 しかしながら、Conditional HOに従ったセル遷移手順をRLFからの復帰にそのまま適用すると、次のような問題があると考えられる。 However, if the cell transition procedure according to Conditional HO is applied as it is to the return from RLF, the following problems are considered.
 具体的には、上述したように、Conditional HOでは、端末は、ターゲット無線基地局に対してRRC reconfiguration completeを送信するが、例えば、既にSignalling Radio Bearer 1(SRB1)を介して送信されるデータが存在する場合など、特定の状況では、Buffer Status Report(BSR)がトリガされないため、ターゲット無線基地局との間において、スケジューリング要求(SR)を送信するためのランダムアクセス手順が開始されない問題がある。 Specifically, as described above, in Conditional HO, the terminal transmits RRC reconfiguration complete to the target radio base station, but for example, the data already transmitted via Signalling Radio Bearer 1 (SRB1) is In certain situations, such as when it exists, the Buffer Status Report (BSR) is not triggered, so there is a problem that the random access procedure for sending a scheduling request (SR) with the target radio base station is not started.
 そこで、本発明は、このような状況に鑑みてなされたものであり、Conditional HOのように、再接続手順を用いることなく、ターゲット無線基地局に遷移する場合でも、ターゲット無線基地局と確実にランダムアクセス手順を開始し得る端末の提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and even when transitioning to the target radio base station without using the reconnection procedure as in Conditional HO, the target radio base station and the target radio base station are surely used. The purpose is to provide a terminal that can initiate a random access procedure.
 本開示の一態様は、再接続手順を用いずにターゲット無線基地局に遷移する制御部(制御部250)を備え、前記制御部は、無線リンク障害に伴って前記ターゲット無線基地局に遷移する場合、規定されたタイミングにおいて、前記ターゲット無線基地局とのランダムアクセス手順を開始する端末である。 One aspect of the present disclosure includes a control unit (control unit 250) that transitions to the target radio base station without using a reconnection procedure, and the control unit transitions to the target radio base station due to a radio link failure. In this case, it is a terminal that starts a random access procedure with the target radio base station at a specified timing.
 本開示の一態様は、再接続手順を用いずにターゲット無線基地局に遷移する制御部(制御部250)を備え、前記制御部は、無線リンク障害に伴って前記ターゲット無線基地局に遷移する場合、シグナリング無線ベアラ経由で送信されるデータの破棄を決定する端末である。 One aspect of the present disclosure includes a control unit (control unit 250) that transitions to the target radio base station without using a reconnection procedure, and the control unit transitions to the target radio base station due to a radio link failure. In the case, it is a terminal that determines the destruction of data transmitted via the signaling radio bearer.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、UE200の機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the UE 200. 図3は、従来のハンドオーバ手順の説明図である。FIG. 3 is an explanatory diagram of a conventional handover procedure. 図4は、Conditional HOによるハンドオーバ手順の説明図である。FIG. 4 is an explanatory diagram of the handover procedure by Conditional HO. 図5は、RRCレイヤにおける再接続手順を用いたハンドオーバ障害(HOF)からの復帰手順の説明図である。FIG. 5 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using a reconnection procedure in the RRC layer. 図6は、Conditional HOを用いたハンドオーバ障害(HOF)からの復帰手順の説明図である。FIG. 6 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using Conditional HO. 図7は、RRCレイヤにおける再接続手順を用いたハンドオーバ障害(HOF)からの復帰シーケンスを示す図である。FIG. 7 is a diagram showing a recovery sequence from a handover failure (HOF) using a reconnection procedure in the RRC layer. 図8は、Conditional HOを用いたハンドオーバ障害(HOF)からの復帰シーケンスを示す図である。FIG. 8 is a diagram showing a recovery sequence from a handover failure (HOF) using Conditional HO. 図9は、ハンドオーバ時における端末内レイヤ間におけるやり取りのイメージを示す図である。FIG. 9 is a diagram showing an image of communication between layers in the terminal at the time of handover. 図10は、ターゲット無線基地局への再接続時における端末内レイヤ間におけるやり取りのイメージを示す図である。FIG. 10 is a diagram showing an image of communication between layers in the terminal at the time of reconnection to the target radio base station. 図11は、SRB0,SRB1及びSRB2/DRBのデータ送信可能/不可となる期間と、RRCにおけるメッセージの送受信タイミングとの関係を示す図である。FIG. 11 is a diagram showing the relationship between the data transmission enable / disable period of SRB0, SRB1 and SRB2 / DRB and the message transmission / reception timing in RRC. 図12は、Conditional HOを無線リンク障害(RLF)に適用した場合においてRA手順が起動されない例を示す図である。FIG. 12 is a diagram showing an example in which the RA procedure is not activated when Conditional HO is applied to wireless link failure (RLF). 図13は、図12に示した問題を解消し、Conditional HOを無線リンク障害(RLF)に適用した場合においてRA手順が起動される例を示す図である。FIG. 13 is a diagram showing an example in which the RA procedure is activated when the problem shown in FIG. 12 is solved and Conditional HO is applied to the radio link failure (RLF). 図14は、UE200のハードウェア構成の一例を示す図である。FIG. 14 is a diagram showing an example of the hardware configuration of UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、図示しないNext Generation-Radio Access Network(NG-RAN、及びユーザ端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network (NG-RAN) and a user terminal 200 (User Equipment 200, hereinafter, UE200) (not shown).
 NG-RANには、無線基地局100A(以下、gNB100A)~を無線基地局100C(以下、gNB100C)含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN includes radio base station 100A (hereinafter, gNB100A) to radio base station 100C (hereinafter, gNB100C). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 また、NG-RANは、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN及び5GCは、単にネットワークと表現されてもよい。 In addition, NG-RAN actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. Note that NG-RAN and 5GC may be simply expressed as a network.
 gNB100A~gNB100Cは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A~gNB100C及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A to gNB100C are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G. gNB100A to gNB100C and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
 gNB100A~gNB100Cは、それぞれ1つまたは複数のセルを形成する。UE200は、gNB100A~gNB100Cが形成するセル(無線基地局と呼んでもよい)間を遷移することができる。「遷移」とは、典型的には、セル(無線基地局)間のハンドオーバを意味するが、セル再選択など、接続先のセル(無線基地局)が変更されるようなUE200の挙動(behavior)を含み得る。 GNB100A to gNB100C each form one or more cells. The UE200 can transition between cells (which may be called radio base stations) formed by gNB100A to gNB100C. “Transition” typically means a handover between cells (radio base stations), but the behavior of the UE 200 (behavior) such that the cell (radio base station) to be connected to is changed, such as cell reselection. ) Can be included.
 UE200が遷移する遷移先のセル(無線基地局)は、ターゲットセルまたはターゲット無線基地局と呼ばれる。また、遷移元のセル(無線基地局)は、ソースセルまたはソース無線基地局と呼ばれる。 The transition destination cell (radio base station) to which the UE200 transitions is called the target cell or target radio base station. The transition source cell (radio base station) is called a source cell or a source radio base station.
 無線通信システム10では、UE200が、無線リソース制御レイヤ(RRC)における再接続手順を用いることなく、ターゲット無線基地局に遷移する手順であるConditional HOが用いられる。また、無線通信システム10では、Conditional HOに従ったセル遷移手順を用いて無線リンク障害(RLF)から早期に復帰する手順も用いられる。 In the wireless communication system 10, Conditional HO, which is a procedure for the UE 200 to transition to the target wireless base station without using the reconnection procedure in the wireless resource control layer (RRC), is used. In addition, in the wireless communication system 10, a procedure for early recovery from a wireless link failure (RLF) by using a cell transition procedure according to Conditional HO is also used.
 Conditional HO、及びConditional HOに従ったセル遷移手順を用いてRLFから早期に復帰する手順詳細については後述する。 The details of the procedure for early recovery from RLF using the Conditional HO and the cell transition procedure according to the Conditional HO will be described later.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図2は、UE200の機能ブロック構成図である。図2に示すように、UE200は、無線送信部210、無線受信部220、RA手順実行部230、データ破棄部240及び制御部250を備える。 FIG. 2 is a functional block configuration diagram of UE200. As shown in FIG. 2, the UE 200 includes a wireless transmission unit 210, a wireless reception unit 220, an RA procedure execution unit 230, a data destruction unit 240, and a control unit 250.
 無線送信部210は、NRに従った上りリンク信号(UL信号)を送信する。無線受信部220は、NRに従った下りリンク信号(DL信号)を受信する。 The wireless transmitter 210 transmits an uplink signal (UL signal) according to NR. The wireless receiver 220 receives the downlink signal (DL signal) according to the NR.
 具体的には、無線送信部210及び無線受信部220は、制御チャネルまたはデータチャネルを介して無線通信を実行する。 Specifically, the wireless transmission unit 210 and the wireless reception unit 220 execute wireless communication via a control channel or a data channel.
 制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Downlink Shared Channel)などが含まれる。 In addition, the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Downlink Shared Channel).
 RA手順実行部230は、無線基地局、具体的には、gNB100A~gNB100Cの何れかとランダムアクセス(RA)手順を実行する。具体的には、RA手順実行部230は、制御部250による制御に基づいて、RA手順に従ったメッセージを送受信する。 The RA procedure execution unit 230 executes a random access (RA) procedure with a radio base station, specifically, any of gNB100A to gNB100C. Specifically, the RA procedure execution unit 230 sends and receives a message according to the RA procedure based on the control by the control unit 250.
 なお、RA手順には、コンテンション(競合)ベースのランダムアクセス(CBRA)、及びコンテンションフリーのランダムアクセス(CFRA)によるRA手順が含まれ得る。 Note that the RA procedure may include contention-based random access (CBRA) and contention-free random access (CFRA) RA procedure.
 CBRAの場合、RA手順実行部230は、Random Access Preamble(Msg.1)を接続要求先のgNBに送信し、Random Access Preambleに対する応答であるRandom Access Response(Msg.2)を当該gNBから受信する。その後、RA手順実行部230は、Scheduled Transmission(Msg.3)を当該gNBに送信し、Contention Resolution(Msg.4)を当該gNBから受信する。 In the case of CBRA, the RA procedure execution unit 230 sends Random Access Preamble (Msg.1) to the connection request destination gNB, and receives Random Access Response (Msg.2), which is a response to Random Access Preamble, from the gNB. .. After that, the RA procedure execution unit 230 transmits the Scheduled Transmission (Msg.3) to the gNB and receives the Contention Resolution (Msg.4) from the gNB.
 RA手順は、例えば、RRC_IDLE状態からの初期アクセス、及びRRC接続の再確立手順などにおいて実行されるが、本実施形態では、後述するように、無線リンク障害(RLF)に伴ってターゲット無線基地局に遷移する場合にも、RA手順が実行される。 The RA procedure is executed, for example, in the initial access from the RRC_IDLE state and the procedure for reestablishing the RRC connection. In this embodiment, as will be described later, the target radio base station is accompanied by a radio link failure (RLF). The RA procedure is also executed when transitioning to.
 データ破棄部240は、ULデータを管理し、制御部250による制御に基づいて、ULデータを破棄する。具体的には、データ破棄部240は、制御部250による制御に基づいて、バッファ(不図示)に送信されずに保持されているULデータを破棄する。 The data destruction unit 240 manages UL data and discards UL data based on the control by the control unit 250. Specifically, the data discarding unit 240 discards UL data held without being transmitted to the buffer (not shown) based on the control by the control unit 250.
 具体的には、データ破棄部240は、制御部250による制御に基づいて、無線ベアラ(RB)を介して送信されるULデータであって、バッファに保持されている未送信のULデータを破棄する。 Specifically, the data discard unit 240 discards UL data transmitted via the wireless bearer (RB) and untransmitted UL data held in the buffer under the control of the control unit 250. To do.
 なお、無線ベアラには、シグナリング無線ベアラ(SRB)及びデータ無線ベアラ(DRB)が含まれる。SRBは、制御プレーンデータ用であり、DRBは、ユーザプレーンデータ用である。また、SRBには、用途に応じてSRB0, 1, 2, 3が設定され得る。 The wireless bearer includes a signaling wireless bearer (SRB) and a data wireless bearer (DRB). The SRB is for control plane data and the DRB is for user plane data. In addition, SRB0, 1, 2, and 3 can be set for SRB depending on the application.
 SRB0は、Common Control Channel(CCCH)論理チャネルを使用するRRCメッセージ用である。具体的には、特定のRRCメッセージ(RRC Setup Requestなど)の送受信にはSRB0が用いられる。 SRB0 is for RRC messages that use the Common Control Channel (CCCH) logical channel. Specifically, SRB0 is used to send and receive specific RRC messages (RRCSetupRequest, etc.).
 SRB1は、Dedicated Control Channel(DCCH)論理チャネルを使用して、SRB2の確立前のRRCメッセージ(ピギーバックされたNon-Access Stratum (NAS)メッセージを含み得る)及びNASメッセージのためのものである。 SRB1 is for RRC messages (which may include piggybacked Non-Access Stratum (NAS) messages) and NAS messages before the establishment of SRB2 using the Dedicated Control Channel (DCCH) logical channel.
 SRB2は、NASメッセージ用であり、DCCH論理チャネルを使用する。SRB2は、SRB1よりも優先順位が低く、ASセキュリティのアクティブ化後にネットワークによって設定され得る。 SRB2 is for NAS messages and uses a DCCH logical channel. SRB2 has a lower priority than SRB1 and can be set by the network after AS security is activated.
 SRB3は、UE200がE-UTRA-NR Dual Connectivity(EN-DC)にあり、DCCH論理チャネルを使用するときの特定のRRCメッセージ用である。 SRB3 is for a specific RRC message when UE200 is in E-UTRA-NR Dual Connectivity (EN-DC) and uses a DCCH logical channel.
 また、DRBは、ユーザデータ用である。 Also, DRB is for user data.
 制御部250は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、UE200のgNB間における遷移(ハンドオーバを含む)を制御する。 The control unit 250 controls each functional block constituting the UE 200. In particular, in the present embodiment, the transition (including handover) between gNBs of UE200 is controlled.
 具体的には、制御部250は、ネットワークへの再接続手順を用いずにターゲット無線基地局に遷移する。より具体的には、制御部250は、Conditional HOに従ったセル遷移手順を用いて、RRCレイヤにおける再接続手順を用いずにターゲット無線基地局に遷移する。 Specifically, the control unit 250 transitions to the target radio base station without using the reconnection procedure to the network. More specifically, the control unit 250 uses the cell transition procedure according to the Conditional HO to transition to the target radio base station without using the reconnection procedure in the RRC layer.
 さらに、制御部250は、無線リンク障害(RLF)に伴ってターゲット無線基地局に遷移する場合、規定されたタイミングにおいて、当該ターゲット無線基地局とのランダムアクセス手順(RA手順)を開始する。 Further, when the control unit 250 transitions to the target radio base station due to a radio link failure (RLF), the control unit 250 starts a random access procedure (RA procedure) with the target radio base station at a specified timing.
 具体的には、制御部250は、RA手順実行部230を制御し、規定されたタイミング、例えば、RRCレイヤからの指示、或いはRRCレイヤでの所定のメッセージの生成、送信などに基づいて、RA手順を開始できる。なお、当該タイミングの詳細については、さらに後述する。 Specifically, the control unit 250 controls the RA procedure execution unit 230, and the RA is based on a specified timing, for example, an instruction from the RRC layer, or generation or transmission of a predetermined message on the RRC layer. You can start the procedure. The details of the timing will be described later.
 また、制御部250は、RLFに伴ってターゲット無線基地局に遷移する場合、少なくともシグナリング無線ベアラ(SRB)経由で送信されるデータの破棄を決定できる。具体的には、制御部250は、データ破棄部240を制御し、SRB0, 1, 2経由(SRB3が設定される場合には、SRB3が含まれてもよい)で送信されるデータの破棄をデータ破棄部240に実行させる。 Further, the control unit 250 can determine at least the destruction of the data transmitted via the signaling radio bearer (SRB) when transitioning to the target radio base station along with the RLF. Specifically, the control unit 250 controls the data destruction unit 240 to discard data transmitted via SRB0, 1, 2 (if SRB3 is set, SRB3 may be included). Let the data discard unit 240 execute.
 さらに、制御部250は、当該データを破棄後、バッファ状態報告(BSR)に基づいて、ターゲット無線基地局とのRA手順を開始する。具体的には、制御部250は、当該データを破棄することによって、その後に生成されるデータが高優先度のデータと見なし、通常のBSRに基づくRA手順をRA手順実行部230に実行させる。 Further, after discarding the data, the control unit 250 starts the RA procedure with the target radio base station based on the buffer status report (BSR). Specifically, the control unit 250 considers the data generated thereafter as high-priority data by discarding the data, and causes the RA procedure execution unit 230 to execute the RA procedure based on the normal BSR.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、Conditional HOの動作、及びConditional HOを用いたRLFからの復帰動作について説明した上で、Conditional HOを用いたRLFからの復帰動作上の問題点を解消し得る動作について説明する。
(3) Operation of Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, after explaining the operation of Conditional HO and the operation of returning from RLF using Conditional HO, the operation that can solve the problem of the operation of returning from RLF using Conditional HO will be described.
 (3.1)Conditional HO
 図3は、従来のハンドオーバ手順の説明図であり、図4は、Conditional HOによるハンドオーバ手順の説明図である。
(3.1) Conditional HO
FIG. 3 is an explanatory diagram of a conventional handover procedure, and FIG. 4 is an explanatory diagram of a handover procedure by Conditional HO.
 図3に示すように、従来のハンドオーバ手順では、ネットワーク(gNB)が、端末(User Equipment, UE)から送信された測定報告(Measurement Report)などの品質情報(図中の(1))に基づいて、ターゲット無線基地局(T-gNB)を決定し、ハンドオーバの準備(図中の(2))後にハンドオーバコマンドが端末に送信(図中の(3))される。 As shown in FIG. 3, in the conventional handover procedure, the network (gNB) is based on quality information ((1) in the figure) such as a measurement report (Measurement Report) transmitted from the terminal (User Equipment, UE). Then, the target radio base station (T-gNB) is determined, and the handover command is transmitted to the terminal ((3) in the figure) after the preparation for the handover ((2) in the figure).
 しかしながら、端末が、ネットワーク側でのハンドオーバの準備中に適切なハンドオーバのポイントを通過してしまうと、ソース無線基地局(S-gNB)からのハンドオーバコマンドを受信しないままターゲット無線基地局に遷移(図中の(4))してしまう場合がある("too late HO"と呼ばれてもよい)。このため、端末は、ターゲット無線基地局に関する設定を認識できず、無線リンクの瞬断が発生し得る。 However, if the terminal passes an appropriate handover point while preparing for the handover on the network side, it transitions to the target radio base station without receiving the handover command from the source radio base station (S-gNB) ( (4) in the figure) may occur (may be called "too late HO"). Therefore, the terminal cannot recognize the setting related to the target radio base station, and the radio link may be interrupted momentarily.
 このような問題を解決するため、Conditional HO(CHOと省略されてもよい)と呼ばれる手順が検討されている。Conditional HOでは、端末に対して、予めハンドオーバの候補先セルと、当該候補先セルへの遷移条件が設定される。これにより、端末は、ネットワークからの指示(ハンドオーバコマンド)を待つことなく、ターゲット無線基地局に接続でき、無線リンクの瞬断を回避できる。 In order to solve such a problem, a procedure called Conditional HO (may be abbreviated as CHO) is being considered. In Conditional HO, the candidate cell for handover and the transition condition to the candidate cell are set in advance for the terminal. As a result, the terminal can connect to the target radio base station without waiting for an instruction (handover command) from the network, and can avoid a momentary interruption of the radio link.
 具体的には、図4に示すように、ソース無線基地局(S-gNB)とターゲット無線基地局(T-gNB)との間においてハンドオーバの準備が予め実行(図中の(1))され、ターゲット無線基地局への遷移条件などを含むConditional HOの設定内容が端末に通知(図中の(2))される。端末は、移動などによってターゲット無線基地局と接続することを決定した場合、Conditional HOの設定内容に基づいて、ターゲット無線基地局とRA手順を開始(図中の(3))する。 Specifically, as shown in FIG. 4, preparations for handover are executed in advance between the source radio base station (S-gNB) and the target radio base station (T-gNB) ((1) in the figure). , Conditional HO settings including transition conditions to the target radio base station are notified to the terminal ((2) in the figure). When the terminal decides to connect to the target radio base station by moving or the like, it starts the RA procedure with the target radio base station based on the setting contents of Conditional HO ((3) in the figure).
 なお、「ハンドオーバコマンド」は、NRではreconfigurationWithSyncと呼ばれ、LTEではRRC connection reconfiguration(mobilitycontrolinfoを含む)と呼ばれてもよい。 The "handover command" may be called reconfigurationWithSync in NR and RRC connection reconfiguration (including mobilitycontrolinfo) in LTE.
 (3.2)Conditional HOを用いた無線リンク障害(RLF)からの復帰
 次に、上述したConditional HOを用いた無線リンク障害(RLF)からの復帰手順について説明する。具体的には、RLFの一例として、端末(UE)が、当初のターゲットセル(セルA)へのハンドオーバが失敗(ハンドオーバ障害(HOF)という)し、他のターゲットセル(セルB)にハンドオーバするケースについて説明する。
(3.2) Recovery from radio link failure (RLF) using Conditional HO Next, the procedure for recovery from radio link failure (RLF) using Conditional HO will be described. Specifically, as an example of RLF, a terminal (UE) fails to perform a handover to the initial target cell (cell A) (referred to as a handover failure (HOF)) and performs a handover to another target cell (cell B). The case will be described.
 図5は、RRCレイヤにおける再接続手順を用いたハンドオーバ障害(HOF)からの復帰手順の説明図であり、図6は、Conditional HOを用いたハンドオーバ障害(HOF)からの復帰手順の説明図である。 FIG. 5 is an explanatory diagram of a procedure for recovering from a handover failure (HOF) using a reconnection procedure in the RRC layer, and FIG. 6 is an explanatory diagram of a procedure for returning from a handover failure (HOF) using Conditional HO. is there.
 図5及び図6では、端末がセルAへのハンドオーバを試みる(図中の(1))が、当該ハンドオーバの完了前にセルB内に移動(図中の(2))してしまい、セルBへのハンドオーバを実行(図中の(3))する例が示されている。 In FIGS. 5 and 6, the terminal attempts a handover to cell A ((1) in the figure), but moves into cell B ((2) in the figure) before the handover is completed, and the cell An example of executing the handover to B ((3) in the figure) is shown.
 再接続手順を用いたHOFからの復帰の場合、端末(UE)は、RLFを検出すると、その時点における遷移先(ハンドオーバ先)として最適なセル(ベストセル)をサーチする。ベストセルがサーチできれば、端末は、当該セルに対して、再接続手順(RRC connection re-establishment)を起動し、当該セルとの接続を実行する(3GPP TS38.331など)。 In the case of returning from HOF using the reconnection procedure, when the terminal (UE) detects RLF, it searches for the optimum cell (best cell) as the transition destination (handover destination) at that time. If the best cell can be searched, the terminal activates the reconnection procedure (RRC connection re-establishment) for the cell and executes the connection with the cell (3GPP TS38.331, etc.).
 一方、Conditional HO(CHO)を用いたHOFからの復帰の場合、再接続手順の代わりに、Conditional HOに従った手順が実行(図中の(3))される。これにより、無線リンクの瞬断時間を低減し得る。 On the other hand, in the case of returning from HOF using Conditional HO (CHO), the procedure according to Conditional HO is executed instead of the reconnection procedure ((3) in the figure). As a result, the momentary interruption time of the wireless link can be reduced.
 以下、さらに具体的に説明する。図7は、RRCレイヤにおける再接続手順を用いたハンドオーバ障害(HOF)からの復帰シーケンスを示す。また、図8は、Conditional HOを用いたハンドオーバ障害(HOF)からの復帰シーケンスを示す。 Below, a more specific explanation will be given. FIG. 7 shows a recovery sequence from a handover failure (HOF) using a reconnection procedure at the RRC layer. Further, FIG. 8 shows a recovery sequence from a handover failure (HOF) using Conditional HO.
 図7及び図8に示すように、再接続手順を用いたHOFからの復帰、及びConditional HOを用いたHOFからの復帰の何れにおいても、ハンドオーバの準備(HO preparation/CHO preparation)に基づいて、当該ハンドオーバに関する設定(HO config/CHO config)が端末(UE)に通知される。 As shown in FIGS. 7 and 8, both the return from the HOF using the reconnection procedure and the return from the HOF using the Conditional HO are based on the preparation for handover (HO preparation / CHO preparation). The terminal (UE) is notified of the settings (HO config / CHO config) related to the handover.
 なお、上述したように、Conditional HOの場合、端末に対して、予めハンドオーバの候補先セルと、当該候補先セルへの遷移条件など、CHOに関する情報が設定される。 As described above, in the case of Conditional HO, information on CHO such as a candidate cell for handover and a transition condition to the candidate cell is set in advance for the terminal.
 端末は、ターゲットセル(セルA、図5,6参照)に対してRandom Access (RA) Preambleを送信するが、セルBに移動してしまうため、RA手順が失敗し、HOFを判定する。 The terminal sends a Random Access (RA) Preamble to the target cell (cell A, see FIGS. 5 and 6), but because it moves to cell B, the RA procedure fails and the HOF is determined.
 その後、図7に示す再接続手順を用いたHOFからの復帰の場合、端末は、セルB(ここでは、gNB#2と表記)とRA手順を開始する。さらに、RRCレイヤにおける再接続手順が実行され、ユーザプレーンが導通(確立)する。 After that, in the case of returning from HOF using the reconnection procedure shown in FIG. 7, the terminal starts the cell B (here, gNB # 2) and RA procedure. In addition, a reconnect procedure at the RRC layer is performed to conduct (establish) the user plane.
 一方、図8に示すConditional HOを用いたHOFからの復帰の場合、端末は、セルB(gNB#2)とRA手順を実行後、RRC reconfiguration completeのみを送信することによって、ユーザプレーンが導通(確立)する。Conditional HOでは、端末は、ハンドオーバの候補先セルと、当該候補先セルへの遷移条件を認識しているため、RRCレイヤにおける再接続手順を実行する必要がない。これにより、再接続手順を用いたHOFからの復帰(図7)と比較すると、瞬断時間が短縮される。 On the other hand, in the case of returning from HOF using Conditional HO shown in FIG. 8, the terminal executes the RA procedure with cell B (gNB # 2), and then transmits only RRC reconfiguration complete, so that the user plane becomes conductive ( Establish. In Conditional HO, since the terminal recognizes the candidate cell for handover and the transition condition to the candidate cell, it is not necessary to execute the reconnection procedure in the RRC layer. As a result, the momentary interruption time is shortened as compared with the return from the HOF using the reconnection procedure (FIG. 7).
 なお、Conditional HOを用いたHOFからの復帰の場合におけるRRC reconfiguration completeは、さらに省略されてもよい。セルB(gNB#2)は、端末がConditional HOによって遷移したことを暗黙的に認識できるためである。 Note that RRC reconfiguration complete in the case of returning from HOF using Conditional HO may be further omitted. This is because cell B (gNB # 2) can implicitly recognize that the terminal has transitioned by Conditional HO.
 また、端末は、次のように動作してもよい。具体的には、RLFが発生すると、端末は、セル選択を実行し、選択されたセルがCHO候補セルである場合、CHOを試みる。そうでない場合、端末は、RRCレイヤにおける再接続手順を実行する。また、端末は、レガシーなHO失敗(T304の満了)またはCHO候補セルへのアクセス失敗の場合、セル選択を実行し、選択されたセルがCHO候補セルである場合、CHOを試みる。 In addition, the terminal may operate as follows. Specifically, when RLF occurs, the terminal executes cell selection and attempts CHO if the selected cell is a CHO candidate cell. If not, the terminal performs a reconnect procedure at the RRC layer. In addition, the terminal executes cell selection in the case of legacy HO failure (expiration of T304) or access failure in the CHO candidate cell, and attempts CHO if the selected cell is a CHO candidate cell.
 (3.3)ハンドオーバ・再接続時におけるレイヤ2制御
 上述したような従来のRLF発生時におけるレイヤ2の制御に対して、Conditional HOによる制御を含めると、以下のような課題がある。
(3.3) Layer 2 control at the time of handover / reconnection Including the control by Conditional HO with respect to the conventional layer 2 control at the time of RLF occurrence as described above, there are the following problems.
 具体的には、(i)ターゲット無線基地局とランダムアクセス手順(RA手順)を開始する契機が存在しない、及び(ii)無線ベアラを再開(resume)する契機がない(つまり、ULデータを送信できない)状況が発生し得る。 Specifically, (i) there is no opportunity to start a random access procedure (RA procedure) with the target radio base station, and (ii) there is no opportunity to resume the radio bearer (that is, send UL data). (Cannot) Situations can occur.
 そこで、HOF発生後における無線ベアラの再開契機、及RA手順開始のためのレイヤ2制御が規定されることが望ましい。 Therefore, it is desirable to specify the opportunity to restart the radio bearer after the occurrence of HOF and the layer 2 control for starting the RA procedure.
 ハンドオーバ・再接続時におけるレイヤ2制御に関して、RA手順及びULデータ送信の観点から、次のようなことが言える。 Regarding layer 2 control during handover / reconnection, the following can be said from the viewpoint of RA procedure and UL data transmission.
  ・RA手順の観点
    ・従来のHO及び再接続手順では、ターゲットセルに対してRA手順を開始し、同期を確立することが規定されている
    ・媒体アクセス制御レイヤ(MAC)レイヤでは、このようなRA手順の起動は、高優先データが発生したことによるバッファ状態報告(具体的には、Regular BSR)に基づいて実行される(3GPP TS38.321)
 つまり、(i)高優先度データ発生、(ii)Regular BSRがトリガされる、(iii)スケジューリング要求(SR)がトリガされる、(iv)RA手順の起動、という端末内部の動作フローとなる。
-RA procedure perspective-Conventional HO and reconnection procedures stipulate that the RA procedure be started and synchronization be established for the target cell.-In the medium access control layer (MAC) layer, such The RA procedure is invoked based on the buffer status report (specifically, Regular BSR) due to the occurrence of high priority data (3GPP TS38.321).
In other words, the operation flow inside the terminal is (i) high priority data generation, (ii) Regular BSR is triggered, (iii) scheduling request (SR) is triggered, and (iv) RA procedure is activated. ..
 また、HOの場合、RLFの発生時に全てのSRB1のデータが破棄され、その後、RRC reconfiguration completeが生成される。RRC reconfiguration completeは、「高優先度データ」が発生したものとして取り扱われる。 Also, in the case of HO, all SRB1 data is discarded when RLF occurs, and then RRC reconfiguration complete is generated. RRC reconfiguration complete is treated as if "high priority data" has occurred.
 さらに、ターゲット無線基地局との再接続時には、RRC Reestablishment Request(SRB0 (CCCH)で送信される)が生成される。RRC Reestablishment Requestは、「高優先度データ」が発生したものとして取り扱われる。 Furthermore, when reconnecting to the target radio base station, an RRC Reestablishment Request (transmitted by SRB0 (CCCH)) is generated. RRCReestablishmentRequest is treated as if "high priority data" has occurred.
  ・ULデータの観点
    ・HOの場合、全ての無線ベアラのデータは、HO後に送信可能である
    ・RLFによりターゲット無線基地局との再接続を実行する場合、RLF時に一旦送信が保留(suspend)され、再接続確立後、以下を契機に再開(resume)される
      ・SRB1:RRC Reestablishment Requestの送信時
      ・SRB2/DRB:RRC Reconfigurationの受信処理後
 図9及び図10は、RA手順の起動に関わる端末内レイヤ間におけるやり取り(interaction)のイメージを示す。具体的には、図9は、ハンドオーバ時における端末内レイヤ間におけるやり取りのイメージを示し、図10は、ターゲット無線基地局への再接続時における端末内レイヤ間におけるやり取りのイメージを示す。
-UL data perspective-In the case of HO, all radio bearer data can be transmitted after HO-When reconnecting to the target radio base station by RLF, transmission is temporarily suspended at RLF. , After the reconnection is established, it will be resumed (resume) with the following triggers ・ SRB1: When sending RRC Reestablishment Request ・ SRB2 / DRB: After receiving RRC Reconfiguration Fig. 9 and Fig. 10 are terminals related to the activation of RA procedure. Shows an image of the interaction between the inner layers. Specifically, FIG. 9 shows an image of communication between layers in the terminal at the time of handover, and FIG. 10 shows an image of communication between layers in the terminal at the time of reconnection to the target radio base station.
 図9及び図10に示すように、端末(UE200)は、無線リソース制御レイヤ(RRC)、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)、無線リンク制御レイヤ(RLC)及び媒体アクセス制御レイヤ(MAC)を備える。 As shown in FIGS. 9 and 10, the terminal (UE200) has a radio resource control layer (RRC), a packet data convergence protocol layer (PDCP), a radio link control layer (RLC), and a medium access control layer ( MAC) is provided.
 図9に示すように、HOの場合、端末(RRC)は、ハンドオーバコマンドを受信すると、MACに対してリセットを要求するとともに、PDCP/RLCに対して再確立(re-est)を要求する。また、RRCは、PDCP/RLCに対してRRC reconfiguration completeを通知する。 As shown in FIG. 9, in the case of HO, when the terminal (RRC) receives the handover command, it requests the MAC to reset and the PDCP / RLC to re-est. In addition, RRC notifies PDCP / RLC of RRC reconfiguration complete.
 PDCP/RLCは、MACに対して、バッファ状態(BS)の表示を通知する。MACは、当該BSの表示に基づいてRA手順を起動する。 PDCP / RLC notifies the MAC of the display of the buffer status (BS). The MAC activates the RA procedure based on the display of the BS.
 一方、図10に示すように、ターゲット無線基地局への再接続の場合、端末(RRC)は、RLFを検出すると、SRB0を除く全ての無線ベアラを停止(suspend)する。また、RRCは、MACに対してリセットを要求するとともに、PDCP/RLCに対してRRC Reestablishment Requestを通知する。 On the other hand, as shown in FIG. 10, in the case of reconnection to the target radio base station, when the terminal (RRC) detects RLF, it suspends all radio bearers except SRB0. In addition, RRC requests a reset from MAC and notifies PDCP / RLC of RRC Reestablishment Request.
 以降は図9と同様であり、PDCP/RLCは、MACに対して、バッファ状態(BS)の表示を通知する。MACは、当該BSの表示に基づいてRA手順を起動する。 After that, the same as in FIG. 9, PDCP / RLC notifies the MAC of the display of the buffer status (BS). The MAC activates the RA procedure based on the display of the BS.
 図11は、ターゲット無線基地局への再接続における無線ベアラの停止・再開(suspend/resume)のイメージを示す。具体的には、図11は、SRB0,SRB1及びSRB2/DRBのデータ送信可能/不可となる期間と、RRCにおけるメッセージの送受信タイミングとの関係を示す。 FIG. 11 shows an image of suspension / resume of the radio bearer in reconnection to the target radio base station. Specifically, FIG. 11 shows the relationship between the period during which data transmission of SRB0, SRB1 and SRB2 / DRB is possible / impossible and the timing of sending and receiving messages in RRC.
 図11に示すように、端末がRLFを検出し、RA手順を開始すると、SRB1及びSRB2/DRBは停止(suspend)される。 As shown in FIG. 11, when the terminal detects RLF and starts the RA procedure, SRB1 and SRB2 / DRB are suspended.
 その後、端末がRRC Reestablishment Requestを送信すると、SRB1は、再開(resume)される。さらに、端末がRRC Reconfigurationを受信し、RRC reconfiguration completeを送信すると、SRB2/DRBも再開される。なお、SRB0は、特に停止・再開されず、状態としては、常にデータ送信が可能である。 After that, when the terminal sends an RRC Reestablishment Request, SRB1 is resumed. Furthermore, when the terminal receives RRC Reconfiguration and sends RRC reconfiguration complete, SRB2 / DRB is also restarted. Note that SRB0 is not particularly stopped / restarted, and as a state, data can always be transmitted.
 (3.4)ランダムアクセス手順
 上述したように、従来のRLF発生時におけるレイヤ2の制御に対して、Conditional HO(CHO)による制御を含めると、ターゲット無線基地局とランダムアクセス手順(RA手順)を開始する契機が存在しない場合がある。
(3.4) Random access procedure As described above, if the control by Conditional HO (CHO) is included in the conventional layer 2 control when RLF occurs, the target radio base station and the random access procedure (RA procedure). There may be no opportunity to start.
 より具体的に説明すると、CHOでは、端末は、ターゲット無線基地局に対してRRC reconfiguration completeを送信するが、バッファ状態報告(Regular BSR)がトリガされないため、スケジューリング要求(SR)送信のためのRA手順が起動されないケースがある。 More specifically, in CHO, the terminal sends an RRC reconfiguration complete to the target radio base station, but the buffer status report (Regular BSR) is not triggered, so the RA for scheduling request (SR) transmission. There are cases where the procedure is not started.
 図12は、Conditional HOを無線リンク障害(RLF)に適用した場合においてRA手順が起動されない例を示す。 FIG. 12 shows an example in which the RA procedure is not activated when Conditional HO is applied to wireless link failure (RLF).
 具体的には、既に、SRB1を介して送信されるデータがある場合、例えば、最初のHOで送信しようとしていたRRC reconfiguration completeが存在する場合である。図12に示すように、当該RRC reconfiguration completeは、RLF後も保持される。 Specifically, when there is already data to be transmitted via SRB1, for example, when the RRC reconfiguration complete that was being transmitted at the first HO exists. As shown in FIG. 12, the RRC reconfiguration complete is retained even after RLF.
 より具体的には、端末内において、既に同一優先度の(未送信)データが存在する状態において、追加データが発生しても、Regular BSRはトリガされない(3GPP TS38.321参照)。また、通常ケースでは、一旦Regular BSRがトリガされると、その後、RetxBSR-timerの満了によってRegular BSRがトリガされ得るが、上述のようなケースでは、RLF時のMAC resetによってRetxBSR-timerが停止してしまう。 More specifically, Regular BSR is not triggered even if additional data is generated in the state where (untransmitted) data of the same priority already exists in the terminal (see 3GPP TS38.321). Also, in the normal case, once the Regular BSR is triggered, the Regular BSR can be triggered by the expiration of the Retx BSR-timer, but in the above case, the Retx BSR-timer is stopped by the MAC reset at the time of RLF. It ends up.
 そこで、本実施形態では、端末は、所定のタイミングにおいて、RA手順を起動する。図13は、図12に示した問題を解消し、Conditional HOを無線リンク障害(RLF)に適用した場合においてRA手順が起動される例を示す。 Therefore, in the present embodiment, the terminal activates the RA procedure at a predetermined timing. FIG. 13 shows an example in which the RA procedure is activated when the problem shown in FIG. 12 is solved and Conditional HO is applied to wireless link failure (RLF).
 具体的には、端末は、以下の何れかの方法によって、RA手順を起動することができる。 Specifically, the terminal can activate the RA procedure by any of the following methods.
  ・(方法1):所定タイミングにおいて直接RA手順を起動する
  ・(方法2): RLF後のCHO時にはSRB1のデータを破棄する
 (方法1)の場合、所定タイミングとは、以下の何れでもよい。
-(Method 1): Start the RA procedure directly at a predetermined timing- (Method 2): In the case of discarding the SRB1 data at the time of CHO after RLF (Method 1), the predetermined timing may be any of the following.
  ・RRCレイヤからPDCP/RLCなどのレイヤが指示を受領したタイミング
  ・特定のメッセージ(例えば、RRC reconfiguration complete)がRRCレイヤにおいて生成された場合、或いはRRCからPDCP/RLCなどの下位レイヤに送出された場合
  ・特定のメッセージがPDCP/RLCバッファに到来した場合、或いは当該メッセージに基づくPDCP PDU、RLC PDUまたはMAC subPDUが生成された場合
 なお、RRC reconfiguration completeは、別の名称、例えば、CHO completion messageなどと呼ばれてもよい(以下同)。また、「所定タイミング」とは、RLF後またはCHO後の何れでも構わない。或いは、無線ベアラ(RB)を停止したタイミング、MAC resetを送信したタイミングでもよい。
-When a layer such as PDCP / RLC receives an instruction from the RRC layer-When a specific message (for example, RRC reconfiguration complete) is generated in the RRC layer or sent from RRC to a lower layer such as PDCP / RLC Case-When a specific message arrives in the PDCP / RLC buffer, or when a PDCP PDU, RLC PDU or MAC subPDU is generated based on the message, RRC reconfiguration complete has a different name, for example, CHO completion message. It may be called (the same applies hereinafter). Further, the "predetermined timing" may be either after RLF or after CHO. Alternatively, it may be the timing when the wireless bearer (RB) is stopped or the timing when the MAC reset is transmitted.
 また、RA手順の起動は、以下の何れかによって実現(RRCからの指示またはMACレイヤが自律的に実行)され得る。 In addition, the activation of the RA procedure can be realized by any of the following (instruction from RRC or MAC layer is executed autonomously).
  ・RA手順を直接的にトリガする(トリガされたと見なしてもよい)
  ・スケジューリング要求(SR)をトリガする(トリガされたと見なしてもよい)
  ・Regular BSRをトリガする(トリガされたと見なしてもよい)
 また、(方法2)の場合、当該データの破棄に関して、以下の少なくとも何れかが該当してもよい。
-Trigger the RA procedure directly (may be considered triggered)
-Trigger a scheduling request (SR) (may be considered triggered)
-Trigger Regular BSR (may be considered triggered)
Further, in the case of (Method 2), at least one of the following may be applicable to the destruction of the data.
  ・当該データを破棄することによって、その後に生成されるRRC reconfiguration completeが「高優先度データ」と見なされ、従来のRegular BSRに基づくRA手順が起動される。或いは、当該データを破棄せずに(送信可能な)データがなくなったと見なしてもよい。 ・ By discarding the data, the RRC reconfiguration complete generated after that is regarded as "high priority data", and the RA procedure based on the conventional Regular BSR is started. Alternatively, it may be considered that there is no data (which can be transmitted) without discarding the data.
  ・破棄(データがないと見なすタイミング)は、以下の何れでもよい
    ・RLF検出時(CHOが設定されている場合に限定されてもよい)
    ・CHOによる新たなセルへの遷移時
    ・新たなセルに対応する設定(CHOの設定によって予め設定されている)の適用時
    ・上記何れかのタイミングから所定時間経過後
  ・破棄は、以下の何れかによって実現されてもよい
    ・discardOnPDCP(SRB用に規定)が設定されたと見なす
    ・SRB1に対してPDCP data recoveryまたはPDCP re-establishmentを実行する
 端末(UE)は、PDCPに対してdiscardOnPDCPが通知されると、SRBについてその時点で滞留している送信データまたは受信データの少なくとも何れか一方或いは両方を破棄する。また、端末は、PDCPに対してPDCP data recoveryまたはPDCP re-establishmentが通知されると、無線ベアラに対して送信データ、受信データの少なくとも何れか一方或いは両方を破棄する。これにより、既存の手順を用いつつ、当該データの破棄が実行される。
-Destroy (timing to consider that there is no data) can be any of the following-When RLF is detected (may be limited to when CHO is set)
-When transitioning to a new cell by CHO-When applying the setting corresponding to the new cell (preset by the CHO setting) -After a predetermined time has passed from any of the above timings-Destroy any of the following・ It is considered that discardOnPDCP (specified for SRB) has been set. ・ The terminal (UE) that executes PDCP data recovery or PDCP re-establishment for SRB1 is notified of discardOnPDCP to PDCP. Then, at least one or both of the transmission data and the reception data accumulated at that time for the SRB are discarded. Further, when the PDCP is notified of the PDCP data recovery or PDCP re-establishment, the terminal discards at least one or both of the transmission data and the reception data to the wireless bearer. As a result, the data is destroyed while using the existing procedure.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200(端末)によれば、RRCレイヤにおける再接続手順を用いずにターゲット無線基地局に遷移するConditional HOに対応しており、UE200は、無線リンク障害(RLF)に伴って、再接続手順を用いずに、Conditional HOに従ってターゲット無線基地局に遷移する場合、規定されたタイミングにおいて、当該ターゲット無線基地局とのランダムアクセス手順(RA手順)を開始することができる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, according to UE200 (terminal), it corresponds to Conditional HO that transitions to the target radio base station without using the reconnection procedure in the RRC layer, and UE200 corresponds to radio link failure (RLF). , When transitioning to the target radio base station according to the Conditional HO without using the reconnection procedure, the random access procedure (RA procedure) with the target radio base station can be started at the specified timing.
 また、UE200は、無線リンク障害(RLF)に伴って、再接続手順を用いずに、Conditional HOに従ってターゲット無線基地局に遷移する場合、シグナリング無線ベアラ経由で送信されるデータの破棄を決定することができる。 The UE200 also decides to discard the data transmitted via the signaling radio bearer when transitioning to the target radio base station according to Conditional HO without using the reconnection procedure due to a radio link failure (RLF). Can be done.
 具体的には、UE200は、データを破棄後、バッファ状態報告(BSR)に基づいて、ターゲット無線基地局とのRA手順を開始する。 Specifically, after discarding the data, the UE200 starts the RA procedure with the target radio base station based on the buffer status report (BSR).
 Conditional HOでは、UE200は、ターゲット無線基地局に対してRRC reconfiguration completeを送信するが、例えば、既にSRB1を介して送信されるデータが存在する場合など、特定の状況では、バッファ状態報告(BSR)がトリガされないため、ターゲット無線基地局との間において、スケジューリング要求(SR)を送信するためのRA手順が開始されない場合があるが、このような場合でも、確実にターゲット無線基地局とRA手順を開始し得る。 In ConditionalHO, the UE200 sends an RRC reconfiguration complete to the target radio base station, but in certain situations, for example, if there is already data to be sent via SRB1, the buffer status report (BSR) Is not triggered, so the RA procedure for sending a scheduling request (SR) to the target radio base station may not be started, but even in such a case, the RA procedure with the target radio base station is surely performed. Can start.
 これにより、従来のRLF発生時におけるレイヤ2の制御に対して、Conditional HO(CHO)による制御を含めることによって、例えば、HOF時の瞬断時間を短縮しつつ、RA手順が開始されないことによる通信遅延を回避し得る。 As a result, by including the control by Conditional HO (CHO) in addition to the conventional control of layer 2 when RLF occurs, for example, communication by not starting the RA procedure while shortening the instantaneous interruption time at the time of HOF. Delays can be avoided.
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above with reference to Examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 例えば、上述した実施形態では、NRを例として説明したが、Conditional HOは、LTEにも適用可能であり、LTEにおいても同様の動作が実行されてもよい。また、Multi-RAT Dual Connectivity(MR-DC)のPrimary SCell(PSCell)の追加・変更に適用してもよい。 For example, in the above-described embodiment, NR has been described as an example, but Conditional HO is also applicable to LTE, and the same operation may be executed in LTE as well. It may also be applied to the addition / change of the Primary SCell (PSCell) of the Multi-RAT Dual Connectivity (MR-DC).
 さらに、上述した実施形態では、Conditional HOを例と説明したが、RRCレイヤにおける再接続手順を用いずにターゲット無線基地局に遷移する遷移手順であれば、Conditional HOでなく、他の手順が適用されてもよい。例えば、IDLE状態、あるいはInactive状態からConnected状態へ遷移する場合など、端末が自律でセルを選択してランダムアクセス手順を実行する場合に一般的に適用されてもよい。つまり、必ずしも再接続手順を用いずにターゲット無線基地局に遷移する場合に限られず、所定状態からターゲット無線基地局に遷移する場合に、上述したように、ランダムアクセス手順が実行されてもよい。 Further, in the above-described embodiment, Conditional HO has been described as an example, but if it is a transition procedure for transitioning to the target radio base station without using the reconnection procedure in the RRC layer, another procedure is applied instead of Conditional HO. May be done. For example, it may be generally applied when the terminal autonomously selects a cell and executes a random access procedure, such as when transitioning from the IDLE state or the Inactive state to the Connected state. That is, it is not necessarily limited to the case of transitioning to the target radio base station without using the reconnection procedure, and the random access procedure may be executed as described above when transitioning from the predetermined state to the target radio base station.
 上述した実施形態では、SRB1経由で送信されるデータの破棄を例として説明したが、端末(UE200)は、SRB1以外の他のシグナリング無線ベアラ、或いはデータ無線ベアラ(DRB)経由で送信されるデータの破棄を決定してもよい。 In the above-described embodiment, the destruction of the data transmitted via the SRB1 has been described as an example, but the terminal (UE200) is the data transmitted via the signaling radio bearer other than the SRB1 or the data radio bearer (DRB). May be decided to discard.
 また、上述した実施形態の説明に用いたブロック構成図(図2)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 2) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically connected, or two or more physically or logically separated devices that are directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit or a transmitter. As described above, the method of realizing each is not particularly limited.
 さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、UE200のハードウェア構成の一例を示す図である。図14に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of UE200. As shown in FIG. 14, the UE 200 may be configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 UE200の各機能ブロック(図2参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of UE200 (see FIG. 2) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、UE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002 to control the communication by the communication device 1004 and the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the function of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTIs (eg, normal TTIs, subframes, etc.) may be read as TTIs with a time length of more than 1 ms, and short TTIs (eg, shortened TTIs, etc.) are less than the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include that some action is regarded as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10無線通信システム
 100A~100C gNB
 200 UE
 210 無線送信部
 220 無線受信部
 230 RA手順実行部
 240 データ破棄部
 250 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Wireless communication system 100A-100C gNB
200 UE
210 Wireless transmitter 220 Wireless receiver 230 RA Procedure execution unit 240 Data discard unit 250 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (3)

  1.  再接続手順を用いずにターゲット無線基地局に遷移する制御部を備え、
     前記制御部は、無線リンク障害に伴って前記ターゲット無線基地局に遷移する場合、規定されたタイミングにおいて、前記ターゲット無線基地局とのランダムアクセス手順を開始する端末。
    Equipped with a control unit that transitions to the target radio base station without using the reconnection procedure
    The control unit is a terminal that starts a random access procedure with the target radio base station at a specified timing when transitioning to the target radio base station due to a radio link failure.
  2.  再接続手順を用いずにターゲット無線基地局に遷移する制御部を備え、
     前記制御部は、無線リンク障害に伴って前記ターゲット無線基地局に遷移する場合、シグナリング無線ベアラ経由で送信されるデータの破棄を決定する端末。
    Equipped with a control unit that transitions to the target radio base station without using the reconnection procedure
    The control unit is a terminal that determines the destruction of data transmitted via a signaling radio bearer when transitioning to the target radio base station due to a radio link failure.
  3.  前記制御部は、前記データを破棄後、バッファ状態報告に基づいて、前記ターゲット無線基地局とのランダムアクセス手順を開始する請求項2に記載の端末。
     
    The terminal according to claim 2, wherein the control unit starts a random access procedure with the target radio base station based on the buffer state report after discarding the data.
PCT/JP2019/025500 2019-06-26 2019-06-26 Terminal WO2020261460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/025500 WO2020261460A1 (en) 2019-06-26 2019-06-26 Terminal
CN201980097802.XA CN114009137A (en) 2019-06-26 2019-06-26 Terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025500 WO2020261460A1 (en) 2019-06-26 2019-06-26 Terminal

Publications (1)

Publication Number Publication Date
WO2020261460A1 true WO2020261460A1 (en) 2020-12-30

Family

ID=74061535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025500 WO2020261460A1 (en) 2019-06-26 2019-06-26 Terminal

Country Status (2)

Country Link
CN (1) CN114009137A (en)
WO (1) WO2020261460A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190045568A1 (en) * 2017-09-28 2019-02-07 Intel Corporation Signaling radio bearer type 3 (srb3) and secondary cell group (scg) failure handling
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication
US20190045568A1 (en) * 2017-09-28 2019-02-07 Intel Corporation Signaling radio bearer type 3 (srb3) and secondary cell group (scg) failure handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "LTE Conditional HO failure handling", 3GPP TSG RAN WG2 #106, R2-1906662, vol. 2, 17 May 2019 (2019-05-17), XP051730122 *

Also Published As

Publication number Publication date
CN114009137A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2020261453A1 (en) Terminal
JP7454579B2 (en) terminal
EP4290913A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2022097755A1 (en) Terminal and wireless base station
WO2022085158A1 (en) Terminal and wireless base station
CN112806094B (en) Terminal, wireless communication system, and wireless communication method
JP7440522B2 (en) terminal
JP7402874B2 (en) terminal
WO2020261460A1 (en) Terminal
WO2022153543A1 (en) Terminal, and radio communication method
WO2022153462A1 (en) Terminal and wireless communication method
JP7438232B2 (en) terminal
US20220279363A1 (en) Radio base station
WO2022180778A1 (en) Terminal and wireless communication method
JP7445673B2 (en) terminal
WO2022039189A1 (en) Terminal and wireless communication system
US20220330114A1 (en) Terminal
WO2022220071A1 (en) Terminal and wireless communication method
JP7300510B2 (en) wireless base station
WO2022153510A1 (en) Terminal and wireless communication method
WO2022239244A1 (en) Wireless base station, terminal, and wireless communication method
WO2021131069A1 (en) Base station and wireless communication method
WO2021131066A1 (en) Base station and wireless communication method
EP4017109A1 (en) Terminal
WO2021028998A1 (en) Wireless communication node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP