WO2020261444A1 - Temperature control device for hot rolling line - Google Patents

Temperature control device for hot rolling line Download PDF

Info

Publication number
WO2020261444A1
WO2020261444A1 PCT/JP2019/025458 JP2019025458W WO2020261444A1 WO 2020261444 A1 WO2020261444 A1 WO 2020261444A1 JP 2019025458 W JP2019025458 W JP 2019025458W WO 2020261444 A1 WO2020261444 A1 WO 2020261444A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
rot
temperature
rolled material
value
Prior art date
Application number
PCT/JP2019/025458
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 敦
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2020534629A priority Critical patent/JP6954476B2/en
Priority to CN201980006321.3A priority patent/CN112437702B/en
Priority to PCT/JP2019/025458 priority patent/WO2020261444A1/en
Publication of WO2020261444A1 publication Critical patent/WO2020261444A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning

Definitions

  • the present invention relates to a temperature control device for a hot rolling line.
  • Patent Document 1 discloses a temperature control device for a hot rolling line. According to the temperature control device, the accuracy of the temperature model in the ROT cooling device of the hot rolling line can be improved.
  • the temperature control device described in Patent Document 1 does not control a hot rolling line in which a ROT cooling device and an acceleration cooling device are provided. Therefore, if a hot rolling line in which a ROT cooling device and an accelerated cooling device are provided is simply applied to the temperature control device, the accuracy of the temperature model cannot be improved.
  • An object of the present invention is to provide a temperature control device for a hot rolling line capable of improving the accuracy of a temperature model at a hot rolling line temperature in which a ROT cooling device and an accelerated cooling device are provided.
  • the temperature control device for the hot rolling line is a unit for water cooling in a temperature model that predicts the temperature of the rolled material with respect to the ROT cooling device that injects water into the rolled material in the downstream process of the hot rolling line.
  • the ROT side calculation unit that calculates the predicted value of the temperature of the rolled material using the ROT side water-cooled heat transfer coefficient that represents the amount of heat removed per area, and the upstream side of the ROT cooling device in the downstream process of the hot rolling line.
  • the amount of heat removed per unit area in water cooling is determined.
  • An acceleration side calculation unit that calculates a predicted value of the temperature of the rolled material using a value set separately from the ROT side water cooling heat transfer coefficient set by the ROT side calculation unit as the acceleration side water-cooled heat transfer coefficient. Equipped with.
  • the temperature control device sets the ROT side water-cooled heat transfer coefficient and the acceleration side water-cooled heat transfer coefficient separately. Therefore, the accuracy of the temperature model can be improved in the hot rolling line in which the ROT cooling device and the acceleration cooling device are installed side by side.
  • FIG. 5 is a block diagram of a main part of a hot rolling line to which a temperature control device for the hot rolling line according to the first embodiment is applied. It is a perspective view of the cut plate to which the temperature control device of the hot rolling line according to Embodiment 1 is applied. It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the ROT cooling device to which the temperature control device of the hot rolling line according to Embodiment 1 is applied.
  • FIG. 1 It is a figure which shows the flow of error learning of the temperature model in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. It is a figure which shows the flow of the error learning of the temperature model in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. It is a hardware block diagram of the temperature control apparatus of the hot rolling line in Embodiment 1. FIG. It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cutting plate in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 2 is applied.
  • FIG. 1 is a block diagram of a main part of a hot rolling line to which the temperature control device for the hot rolling line according to the first embodiment is applied.
  • the finishing rolling mill 1 is provided on the downstream side of a rough rolling mill (not shown).
  • the acceleration cooling device 2 is provided on the downstream side of the finish rolling mill 1.
  • the ROT cooling device 3 is provided on the downstream side of the acceleration cooling device 2.
  • the take-up coiler 4 is provided on the downstream side of the ROT cooling device 3.
  • the acceleration cooling device 2 is divided into a plurality of banks 2a by the cooling water supply system, and the plurality of banks 2a are arranged in the length direction of the hot rolling line.
  • Each of the plurality of banks 2a includes a plurality of water injection valves 2b.
  • the plurality of water injection valves 2b are arranged in the length direction of the hot rolling rolling line.
  • a plurality of nozzles 2c are provided for the plurality of water injection valves 2b.
  • the plurality of nozzles 2c are arranged in the width direction of the hot rolling line.
  • the ROT cooling device 3 is composed of a water injection device and a transfer table.
  • the water injection device is provided at a position higher than that of the acceleration cooling device 2.
  • the water injection device is divided into a plurality of banks 3a in the cooling water supply system.
  • the plurality of banks 3a are arranged in the length direction of the hot rolling line.
  • Each of the plurality of banks 3a includes a plurality of water injection valves 3b.
  • the plurality of water injection valves 3b are arranged in the length direction of the hot rolling line.
  • a plurality of nozzles 3c are provided for the plurality of water injection valves 3b.
  • the plurality of nozzles 3c are arranged in the width direction of the hot rolling line.
  • the finish rolling mill outlet side thermometer 5 is provided between the finish rolling mill 1 and the acceleration cooling device 2.
  • the intermediate thermometer 6 is provided between the acceleration cooling device 2 and the ROT cooling device 3.
  • the take-up thermometer 7 is provided between the ROT cooling device 3 and the take-up coiler 4.
  • the finish rolling mill 1 finish rolls the rolled material 8.
  • the finish rolling mill outlet side thermometer 5 measures the initial temperature of the total length of the rolled material 8 as the actual FDT value before cooling.
  • the acceleration cooling device 2 accelerates and cools the rolled material 8 by driving a pump (not shown) with an inverter (not shown) and injecting water at a high pressure. In accelerated cooling, the cooling rate of the rolled material 8 is faster than that of normal water cooling. As a result, the crystal structure of the rolled material 8 is adjusted, so that the mechanical properties of the rolled material 8 change.
  • the intermediate thermometer 6 measures the initial temperature of the entire length of the rolled material 8 as the actual MT value.
  • the ROT cooling device 3 cools the rolled material 8 by injecting water at a constant pressure.
  • the take-up thermometer 7 measures the initial temperature of the entire length of the rolled material 8 as a CT actual value.
  • the take-up coiler 4 winds up the rolled material 8.
  • the temperature control device 9 includes an acceleration side calculation unit 9a, a ROT side calculation unit 9b, and a control unit 9c.
  • the acceleration side calculation unit 9a predicts in advance the temperature of the rolled material 8 on the entrance / exit side of each bank 2a of the acceleration cooling device 2 using the temperature model.
  • the ROT side calculation unit 9b predicts in advance the temperature of the rolled material 8 on the inlet / outlet side of each bank 3a of the ROT cooling device 3 using the temperature model.
  • the control unit 9c controls the opening and closing of each water injection valve 2b of the acceleration cooling device 2 based on the prediction result by the acceleration side calculation unit 9a.
  • the control unit 9c controls the opening and closing of each water injection valve 3b of the ROT cooling device 3 based on the prediction result by the ROT side calculation unit 9b.
  • the acceleration side calculation unit 9a accelerates based on the FDT actual value from the finish rolling mill output side thermometer 5 and the MT actual value from the intermediate thermometer 6.
  • the ROT side calculation unit 9b learns the temperature model in the ROT cooling device 3 based on the MT actual value from the intermediate thermometer 6 and the CT actual value from the take-up thermometer 7.
  • the temperature control device 9 starts from the FDT actual value of each cutting plate, and each bank of the accelerated cooling device 2 of each cutting plate so that the final CT predicted value reaches the CT target value.
  • the temperature prediction calculation of the inlet / outlet side of each bank 3a of 2a and the ROT cooling device 3 is performed.
  • the temperature control device 9 has a reference value (V 1 acc , C 2 acc , ... C n acc ) of the amount of cooling water to each bank 2a of the accelerated cooling device 2 and the amount of cooling water to each bank 3a of the ROT cooling device 3. (V 1 rot , C 2 rot , ... C n rot ) is determined.
  • each bank 2a the number of water injection valves 2b to be opened is determined based on the reference value.
  • the number of water injection valves 3b to be opened is determined based on the reference value.
  • the temperature control device 9 learns the temperature model in the acceleration cooling device 2 so that the error due to the position of the intermediate thermometer 6 becomes zero.
  • the temperature control device 9 learns the temperature model in the ROT cooling device 3 so that the error due to the position of the take-up thermometer 7 becomes zero.
  • the MT actual value is used as the initial value for the initial temperature in the temperature prediction of each cutting plate.
  • FIG. 2 is a perspective view of a cutting plate to which the temperature control device for the hot rolling line according to the first embodiment is applied.
  • the heat inflow and outflow is calculated after the rolled material 8 is divided into cutting plates 8a having a constant length.
  • the constant length is set between 3 m and 5 m.
  • h w is a water-cooled heat transfer coefficient (W / mm 2 / ° C.). h w is different between the acceleration cooling device 2 and the ROT cooling device 3.
  • a w is the area (mm 2 ) of the upper and lower surfaces of the cutting plate 8a in contact with the cooling water.
  • a w changes with the number of water injection valves opened in each bank.
  • T w is the temperature (° C.) of the cooling water.
  • T surf is the surface temperature (° C.) of the cutting plate 8a.
  • T is the temperature (° C.) of the cutting plate 8a.
  • is the density of the cutting plate 8a (kg / mm 3 ).
  • C P is the specific heat of Setsuban 8a (J / kg / °C) .
  • l is the length (mm) of the cutting plate 8a in the traveling direction.
  • B is the width (mm) of the cutting plate 8a.
  • H is the plate thickness (mm) of the cutting plate 8a.
  • t is the time (s). i is the number of the cutting plate 8a.
  • FIG. 3 is a diagram showing a predicted value and an actual value (re-predicted value) of a temperature change of each cutting plate inside the acceleration cooling device to which the temperature control device of the hot rolling line according to the first embodiment is applied.
  • FIG. 4 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the first embodiment is applied.
  • FIG. 5 is a diagram showing a flow of error learning of a temperature model in an accelerated cooling device to which the temperature control device for the hot rolling line according to the first embodiment is applied.
  • FIG. 6 is a diagram showing a flow of error learning of a temperature model in a ROT cooling device to which a temperature control device for a hot rolling line according to the first embodiment is applied.
  • Z 1 acc and Z 2 acc which are learning values of the water-cooled heat transfer coefficient h w acc of the acceleration cooling device 2, are automatically adjusted.
  • v a acc (m / s ) is the average speed of each Setsuban 8a inside the accelerated cooling device 2.
  • v 0 (m / s) is the reference speed of each cutting plate 8a inside the acceleration cooling device 2.
  • f w acc is a model prediction function.
  • Z 1 acc is a multiplication type learning value for the predicted value of the temperature model.
  • Z 2 acc is a power-type learning value for the velocity ratio.
  • the cooling phenomenon in the rolled material 8 differs between when the rolled material 8 moves at high speed and when the rolled material 8 is stationary. Therefore, as shown in Eq. (3), the influence of speed is adjusted by the learning term.
  • Z 2 acc is obtained so that the error of the MT predicted value becomes 0 by using the data of the specific cutting plate 8a of the Middle portion which is the portion of the rolled material 8 during or after acceleration. At this time, the value obtained in the Head portion is used for Z 1 acc .
  • Z 1 rot and Z 2 rot which are learning values of the water-cooled heat transfer coefficient h w rot of the ROT cooling device 3, are automatically adjusted.
  • v a rot (m / s ) is the average speed of each Setsuban 8a inside the ROT cooling device 3.
  • v 0 (m / s) is the reference speed of each cutting plate 8a inside the ROT cooling device 3.
  • f w rot is a model prediction function.
  • Z 1 rot is a learning value of a multiplication type with respect to the predicted value of the temperature model.
  • Z 2 rot is a power-type learning value for the velocity ratio.
  • the cooling phenomenon in the rolled material 8 differs between when the rolled material 8 moves at high speed and when the rolled material 8 is stationary. Therefore, as shown in Eq. (4), the influence of speed is adjusted by the learning term.
  • the Z 2 rotor is obtained so that the error of the CT predicted value becomes 0. At this time, the value obtained in the head section is used for Z 1 rot .
  • the temperature control device 9 sets the water-cooled heat transfer coefficient separately in the acceleration cooling device 2 and the ROT cooling device 3. Therefore, the accuracy of the temperature model can be improved.
  • the temperature control device 9 corrects the predicted value of the temperature of the rolled material 8 based on the difference between the predicted value of the cooled temperature of the rolled material 8 predicted by the temperature model and the measured value of the actual temperature. Calculate the learning value to do. Therefore, the accuracy of the temperature model can be further improved.
  • the temperature control device 9 calculates a learning value for correcting the predicted value of the temperature of the rolled material 8 based on the actual MT value. Therefore, the accuracy of the temperature model can be further improved.
  • the cooling water can be maintained in a state of covering the surface of the rolled material 8 directly under the intermediate thermometer 6. Therefore, the surface temperature of the rolled material 8 may not be accurately measured by the intermediate thermometer 6.
  • the water injection valve 2b closer to the intermediate thermometer 6 may be closed preferentially.
  • FIG. 7 is a hardware configuration diagram of the temperature control device for the hot rolling line according to the first embodiment.
  • Each function of the temperature control device 9 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit comprises at least one dedicated hardware 200.
  • each function of the temperature control device 9 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the temperature control device 9 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD or the like.
  • the processing circuit comprises at least one dedicated hardware 200
  • the processing circuit may be implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • each function of the temperature control device 9 is realized by a processing circuit.
  • each function of the temperature control device 9 is collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of the control unit 9c is realized by a processing circuit as dedicated hardware 200, and for functions other than the function of the control unit 9c, at least one processor 100a reads a program stored in at least one memory 100b. It may be realized by executing.
  • the processing circuit realizes each function of the temperature control device 9 with the hardware 200, software, firmware, or a combination thereof.
  • FIG. 8 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the second embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • the MT predicted value and the MT actual result of the cutting plate 8a If there is a prediction error of the temperature model between the value and the value, the start point (MT) inside the ROT cooling device 3 is corrected to the actual MT value, and then the ROT cooling device 3 is used to reach the CT target value.
  • the predicted value of the temperature change of the rolled material 8 inside is recalculated.
  • the reference values (V 1 rot , V 2 rot , ... V M rot ) of the amount of cooling water to each bank 3a are corrected so that the recalculated predicted value is achieved.
  • the temperature control device 9 when the temperature control device 9 has a temperature model prediction error between the actual temperature value of the rolled material 8 and the predicted temperature value of the rolled material 8 by the intermediate thermometer 6.
  • the water injection valve 3b of the ROT cooling device 3 is controlled so as to compensate for the error. Therefore, the accuracy of the temperature model can be further improved.
  • the temperature control device 9 uses the intermediate thermometer 6 to measure the temperature of the rolled material 8 when there is an error in the temperature model between the actual temperature value of the rolled material 8 and the predicted temperature value.
  • the predicted value of the temperature change of the rolled material 8 inside the ROT cooling device 3 is recalculated with the actual value of the above as the initial value. Therefore, the accuracy of the temperature model can be further improved.
  • FIG. 9 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the accelerated cooling device to which the temperature control device for the hot rolling line according to the third embodiment is applied.
  • FIG. 10 is a diagram showing a predicted value and an actual value (repredicted value) of a temperature change of each cutting plate inside the ROT cooling device to which the temperature control device of the hot rolling line according to the first embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • an experiment for identifying the cooling efficiency using the acceleration cooling device 2 and the ROT cooling device 3 alone is performed in advance.
  • the acceleration cooling device 2 and the ROT cooling device 3 Based on the actual temperature drop value (° C), which is the value obtained by subtracting the CT actual value from the FDT actual value of each cutting plate 8a, and the actual number of open water injection valves, the acceleration cooling device 2 and the ROT cooling device 3 The cooling efficiency (° C / valve) per valve is calculated.
  • the speed pattern of the rolled material 8 at this time is the same as that of normal rolling.
  • the cooling efficiency of the acceleration cooling device 2 is a (k) (° C./valve).
  • k is the number of the cutting plate 8a.
  • the predicted temperature drop value of the accelerated cooling device 2 is a (k) ⁇ A (k) (° C.).
  • the predicted temperature drop value of the ROT cooling device 3 is b (k) ⁇ B (k) (° C.).
  • the actual temperature drop by the acceleration cooling device 2 for each cutting plate 8a is calculated by the following equation (5).
  • the actual temperature drop by the ROT cooling device 3 for each cutting plate 8a is calculated by the following equation (6).
  • the predicted value on the entry / exit side of each bank 2a is recalculated with the value obtained by subtracting the value shown in the equation (5) from the FDT actual value as the MT actual value.
  • the MT actual value is used as the initial value, and the value obtained by subtracting the value shown in Eq. (6) from the initial value is used as the CT actual value for prediction on the entry / exit side of each bank 3a. The value is recalculated.
  • the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the accelerated cooling device 2 alone, and the cooling efficiency obtained from the upstream side of the accelerated cooling device 2 and the ROT cooling device 3.
  • the cooling efficiency per valve is calculated from the actual value of the temperature drop of the rolled material 8 to the downstream side and the number of sprays used in the accelerated cooling device 2.
  • the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the ROT cooling device 3 alone and the temperature drop of the rolled material 8 from the upstream side to the downstream side of the accelerated cooling device 2 and the ROT cooling device 3.
  • the cooling efficiency per valve is calculated from the actual value and the number of sprays used in the ROT cooling device 3. Therefore, the accuracy of the temperature model can be further improved.
  • the temperature control device 9 may calculate the cooling efficiency of the accelerated cooling device 2 and the cooling efficiency of the ROT cooling device 3 and the cooling efficiency by using the ratio of the accelerated cooling device 2 and the ROT cooling device 3. In this case as well, the accuracy of the temperature model can be further improved.
  • FIG. 11 is a diagram showing a predicted value and an actual value (re-predicted value) of a temperature change of each cutting plate inside the acceleration cooling device to which the temperature control device of the hot rolling line according to the fourth embodiment is applied.
  • FIG. 12 is a diagram showing predicted values and actual values (re-predicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the fourth embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • an experiment for identifying the cooling efficiency using the acceleration cooling device 2 and the ROT cooling device 3 alone is performed in advance. Based on the actual value of temperature drop (° C.) and the actual value of the spray flow rate of the opened valve (m 3 / h), the value obtained by subtracting the actual CT value from the actual FDT value of each cutting plate 8a is combined with the acceleration cooling device 2. cooling efficiency per one valve between the ROT cooling device 3 (°C / m 3 / h ) is calculated. The speed pattern of the rolled material 8 at this time is the same as that of normal rolling.
  • the cooling efficiency of the accelerated cooling device 2 and ⁇ (k) (°C / m 3 / h).
  • the cooling efficiency of the ROT cooling device 3 and ⁇ (k) (°C / m 3 / h).
  • the number of water injection valves 2b used in the acceleration cooling device 2 be A (k) (valve).
  • the number of water injection valves 3b used in the ROT cooling device 3 be B (k) (valve).
  • Pa (m 3 / h / valve) be the spray flow rate per water injection valve 2b in the acceleration cooling device 2.
  • P b (m 3 / h / valve) be the spray flow rate per water injection valve 3 b in the ROT cooling device 3.
  • the temperature drop predicted value of accelerated cooling device 2 is a ⁇ (k) ⁇ A (k ) ⁇ P a (°C).
  • the predicted temperature drop value of the ROT cooling device 3 is ⁇ (k) ⁇ B (k) ⁇ P b (° C.).
  • the actual temperature drop by the acceleration cooling device 2 for each cutting plate 8a is calculated by the following equation (7).
  • the actual temperature drop by the ROT cooling device 3 for each cutting plate 8a is calculated by the following equation (8).
  • the predicted value on the entry / exit side of each bank 2a is recalculated with the value obtained by subtracting the value shown in the equation (7) from the FDT actual value as the MT actual value.
  • the MT actual value is used as the initial value, and the value obtained by subtracting the value shown in Eq. (8) from the initial value is used as the CT actual value for prediction on the entry / exit side of each bank 3a. The value is recalculated.
  • the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the accelerated cooling device 2 alone, and the cooling efficiency obtained from the upstream side of the accelerated cooling device 2 and the ROT cooling device 3.
  • the cooling efficiency per valve is calculated from the actual value of the temperature drop of the rolled material 8 to the downstream side and the volume of the spray flow rate used in the accelerated cooling device 2.
  • the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the ROT cooling device 3 alone and the temperature drop of the rolled material 8 from the upstream side to the downstream side of the accelerated cooling device 2 and the ROT cooling device 3.
  • the cooling efficiency per valve is calculated from the actual value and the volume of the spray flow rate used in the ROT cooling device 3. Therefore, the accuracy of the temperature model can be further improved.
  • temperature control device 9 of any of the first to fourth embodiments may be applied to the hot rolling line provided with the acceleration cooling device 2 on the downstream side of the ROT cooling device 3. In this case as well, the accuracy of the temperature model can be improved.
  • the temperature control device for the hot rolling line according to the present invention can be used for the hot rolling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Provided is a temperature control device for a hot rolling line having a ROT cooling device and an accelerated cooling device, the temperature control device enabling an increase in the accuracy of a temperature model of a rolled material. The temperature control device for a hot rolling line is provided with: a ROT side calculation unit which, in a temperature model for predicting the temperature of a rolled material with respect to a ROT cooling device that injects water to the rolled material, calculates a predicted value of the temperature of the rolled material using a ROT side water-cooled heat transfer coefficient representing the amount of heat removed per unit area during cooling by water; and an acceleration side calculation unit that is provided on an upstream side or a downstream side of the ROT cooling device, and which, in a temperature model for predicting the temperature of the rolled material with respect to an accelerated cooling device that injects water to the rolled material under a different condition from the ROT cooling device, calculates a predicted value of the temperature of the rolled material using a value which is set, separately from the ROT side water cooling heat transfer coefficient set by the ROT side calculation unit, as an acceleration side water cooling heat transfer coefficient representing the amount of heat removed per unit area during cooling by water.

Description

熱間圧延ラインの温度制御装置Temperature control device for hot rolling line
 この発明は、熱間圧延ラインの温度制御装置に関する。 The present invention relates to a temperature control device for a hot rolling line.
 特許文献1は、熱間圧延ラインの温度制御装置を開示する。当該温度制御装置によれば、熱間圧延ラインのROT冷却装置における温度モデルの精度を高め得る。 Patent Document 1 discloses a temperature control device for a hot rolling line. According to the temperature control device, the accuracy of the temperature model in the ROT cooling device of the hot rolling line can be improved.
日本特許第5835483号公報Japanese Patent No. 58354843
 しかしながら、特許文献1に記載の温度制御装置は、ROT冷却装置と加速冷却装置とを併設した熱間圧延ラインを制御対象としない。このため、ROT冷却装置と加速冷却装置とを併設した熱間圧延ラインを当該温度制御装置に単純に適用すると、温度モデルの精度を高めることができない。 However, the temperature control device described in Patent Document 1 does not control a hot rolling line in which a ROT cooling device and an acceleration cooling device are provided. Therefore, if a hot rolling line in which a ROT cooling device and an accelerated cooling device are provided is simply applied to the temperature control device, the accuracy of the temperature model cannot be improved.
 この発明は、上述の課題を解決するためになされた。この発明の目的は、ROT冷却装置と加速冷却装置とを併設した熱間圧延ライン温度において、温度モデルの精度を高めることができる熱間圧延ラインの温度制御装置を提供することである。 This invention was made to solve the above-mentioned problems. An object of the present invention is to provide a temperature control device for a hot rolling line capable of improving the accuracy of a temperature model at a hot rolling line temperature in which a ROT cooling device and an accelerated cooling device are provided.
 この発明に係る熱間圧延ラインの温度制御装置は、熱間圧延ラインの下流工程において、圧延材に注水するROT冷却装置に対し、当該圧延材の温度を予測する温度モデルにおいて、水冷冷却における単位面積あたりの抜熱量を表すROT側水冷熱伝達係数を用いて当該圧延材の温度の予測値を計算するROT側計算部と、前記熱間圧延ラインの下流工程において、前記ROT冷却装置の上流側または下流側に設けられ、前記ROT冷却装置とは異なる条件で当該圧延材に注水する加速冷却装置に対し、当該圧延材の温度を予測する温度モデルにおいて、水冷冷却における単位面積あたりの抜熱量を表す加速側水冷熱伝達係数として前記ROT側計算部により設定されたROT側水冷熱伝達係数とは別に設定された値を用いて当該圧延材の温度の予測値を計算する加速側計算部と、を備えた。 The temperature control device for the hot rolling line according to the present invention is a unit for water cooling in a temperature model that predicts the temperature of the rolled material with respect to the ROT cooling device that injects water into the rolled material in the downstream process of the hot rolling line. The ROT side calculation unit that calculates the predicted value of the temperature of the rolled material using the ROT side water-cooled heat transfer coefficient that represents the amount of heat removed per area, and the upstream side of the ROT cooling device in the downstream process of the hot rolling line. Alternatively, in a temperature model that predicts the temperature of the rolled material for an accelerated cooling device that is installed on the downstream side and injects water into the rolled material under conditions different from the ROT cooling device, the amount of heat removed per unit area in water cooling is determined. An acceleration side calculation unit that calculates a predicted value of the temperature of the rolled material using a value set separately from the ROT side water cooling heat transfer coefficient set by the ROT side calculation unit as the acceleration side water-cooled heat transfer coefficient. Equipped with.
 この発明によれば、温度制御装置は、ROT側水冷熱伝達係数と加速側水冷熱伝達係数とを別々に設定する。このため、ROT冷却装置と加速冷却装置とを併設した熱間圧延ラインにおいて、温度モデルの精度を高めることができる。 According to the present invention, the temperature control device sets the ROT side water-cooled heat transfer coefficient and the acceleration side water-cooled heat transfer coefficient separately. Therefore, the accuracy of the temperature model can be improved in the hot rolling line in which the ROT cooling device and the acceleration cooling device are installed side by side.
実施の形態1における熱間圧延ラインの温度制御装置が適用される熱間圧延ラインの要部の構成図である。FIG. 5 is a block diagram of a main part of a hot rolling line to which a temperature control device for the hot rolling line according to the first embodiment is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用される切板の斜視図である。It is a perspective view of the cut plate to which the temperature control device of the hot rolling line according to Embodiment 1 is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the ROT cooling device to which the temperature control device of the hot rolling line according to Embodiment 1 is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用される加速冷却装置での温度モデルの誤差学習の流れを示す図である。It is a figure which shows the flow of error learning of the temperature model in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置での温度モデルの誤差学習の流れを示す図である。It is a figure which shows the flow of the error learning of the temperature model in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. 実施の形態1における熱間圧延ラインの温度制御装置のハードウェア構成図である。It is a hardware block diagram of the temperature control apparatus of the hot rolling line in Embodiment 1. FIG. 実施の形態2における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cutting plate in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 2 is applied. 実施の形態3における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cutting plate in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 3 is applied. 実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 1 is applied. 実施の形態4における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the acceleration cooling device to which the temperature control device of the hot rolling line in Embodiment 4 is applied. 実施の形態4における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。It is a figure which shows the predicted value and the actual value (re-predicted value) of the temperature change of each cut plate in the ROT cooling device to which the temperature control device of the hot rolling line in Embodiment 4 is applied.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。 The embodiment for carrying out the present invention will be described with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals. The duplicate description of the relevant part will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1における熱間圧延ラインの温度制御装置が適用される熱間圧延ラインの要部の構成図である。
Embodiment 1.
FIG. 1 is a block diagram of a main part of a hot rolling line to which the temperature control device for the hot rolling line according to the first embodiment is applied.
 図1の熱間圧延ラインにおいて、仕上圧延機1は、図示されない粗圧延機の下流側に設けられる。加速冷却装置2は、仕上圧延機1の下流側に設けられる。ROT冷却装置3は、加速冷却装置2の下流側に設けられる。巻取コイラー4は、ROT冷却装置3の下流側に設けられる。 In the hot rolling line of FIG. 1, the finishing rolling mill 1 is provided on the downstream side of a rough rolling mill (not shown). The acceleration cooling device 2 is provided on the downstream side of the finish rolling mill 1. The ROT cooling device 3 is provided on the downstream side of the acceleration cooling device 2. The take-up coiler 4 is provided on the downstream side of the ROT cooling device 3.
 加速冷却装置2は、冷却水の供給系統で複数のバンク2aに区分される、複数のバンク2aは、熱間圧延ラインの長さ方向に並ぶ。複数のバンク2aの各々は、複数の注水バルブ2bを備える。複数の注水バルブ2bは、圧延熱間圧延ラインの長さ方向に並ぶ。複数の注水バルブ2bに対し、複数のノズル2cが設けられる。複数のノズル2cは、熱間圧延ラインの幅方向に並ぶ。 The acceleration cooling device 2 is divided into a plurality of banks 2a by the cooling water supply system, and the plurality of banks 2a are arranged in the length direction of the hot rolling line. Each of the plurality of banks 2a includes a plurality of water injection valves 2b. The plurality of water injection valves 2b are arranged in the length direction of the hot rolling rolling line. A plurality of nozzles 2c are provided for the plurality of water injection valves 2b. The plurality of nozzles 2c are arranged in the width direction of the hot rolling line.
 ROT冷却装置3は、注水装置と搬送テーブルから構成される。ROT冷却装置3において、注水装置は、加速冷却装置2よりも高い位置に設けられる。ROT冷却装置3において、注水装置は、冷却水の供給系統で複数のバンク3aに区分される。複数のバンク3aは、熱間圧延ラインの長さ方向に並ぶ。複数のバンク3aの各々は、複数の注水バルブ3bを備える。複数の注水バルブ3bは、熱間圧延ラインの長さ方向に並ぶ。複数の注水バルブ3bに対し、複数のノズル3cが設けられる。複数のノズル3cは、熱間圧延ラインの幅方向に並ぶ。 The ROT cooling device 3 is composed of a water injection device and a transfer table. In the ROT cooling device 3, the water injection device is provided at a position higher than that of the acceleration cooling device 2. In the ROT cooling device 3, the water injection device is divided into a plurality of banks 3a in the cooling water supply system. The plurality of banks 3a are arranged in the length direction of the hot rolling line. Each of the plurality of banks 3a includes a plurality of water injection valves 3b. The plurality of water injection valves 3b are arranged in the length direction of the hot rolling line. A plurality of nozzles 3c are provided for the plurality of water injection valves 3b. The plurality of nozzles 3c are arranged in the width direction of the hot rolling line.
 仕上圧延機出側温度計5は、仕上圧延機1と加速冷却装置2との間に設けられる。中間温度計6は、加速冷却装置2とROT冷却装置3との間に設けられる。巻取温度計7は、ROT冷却装置3と巻取コイラー4との間に設けられる。 The finish rolling mill outlet side thermometer 5 is provided between the finish rolling mill 1 and the acceleration cooling device 2. The intermediate thermometer 6 is provided between the acceleration cooling device 2 and the ROT cooling device 3. The take-up thermometer 7 is provided between the ROT cooling device 3 and the take-up coiler 4.
 仕上圧延機1は、圧延材8を仕上圧延する。その後、仕上圧延機出側温度計5は、冷却前に当該圧延材8の全長の初期温度をFDT実績値として計測する。その後、加速冷却装置2は、図示されないインバータで図示されないポンプを駆動して高圧で注水することで当該圧延材8を加速冷却する。加速冷却において、圧延材8の冷却速度は、通常の水冷よりも速くなる。その結果、圧延材8の結晶組織が調整されることで、圧延材8の機械的性質が変化する。 The finish rolling mill 1 finish rolls the rolled material 8. After that, the finish rolling mill outlet side thermometer 5 measures the initial temperature of the total length of the rolled material 8 as the actual FDT value before cooling. After that, the acceleration cooling device 2 accelerates and cools the rolled material 8 by driving a pump (not shown) with an inverter (not shown) and injecting water at a high pressure. In accelerated cooling, the cooling rate of the rolled material 8 is faster than that of normal water cooling. As a result, the crystal structure of the rolled material 8 is adjusted, so that the mechanical properties of the rolled material 8 change.
 その後、中間温度計6は、当該圧延材8の全長の初期温度をMT実績値として計測する。その後、ROT冷却装置3は、一定の圧力で注水することで当該圧延材8を冷却する。その後、巻取温度計7は、当該圧延材8の全長の初期温度をCT実績値として計測する。その後、巻取コイラー4は、当該圧延材8を巻き取る。 After that, the intermediate thermometer 6 measures the initial temperature of the entire length of the rolled material 8 as the actual MT value. After that, the ROT cooling device 3 cools the rolled material 8 by injecting water at a constant pressure. After that, the take-up thermometer 7 measures the initial temperature of the entire length of the rolled material 8 as a CT actual value. After that, the take-up coiler 4 winds up the rolled material 8.
 温度制御装置9は、加速側計算部9aとROT側計算部9bと制御部9cとを備える。 The temperature control device 9 includes an acceleration side calculation unit 9a, a ROT side calculation unit 9b, and a control unit 9c.
 加速側計算部9aは、温度モデルを用いて加速冷却装置2の各バンク2aの出入側における圧延材8の温度を事前に予測する。ROT側計算部9bは、温度モデルを用いてROT冷却装置3の各バンク3aの出入側における圧延材8の温度を事前に予測する。制御部9cは、加速側計算部9aによる予測結果に基づいて加速冷却装置2の各注水バルブ2bの開閉を制御する。制御部9cは、ROT側計算部9bによる予測結果に基づいてROT冷却装置3の各注水バルブ3bの開閉を制御する。 The acceleration side calculation unit 9a predicts in advance the temperature of the rolled material 8 on the entrance / exit side of each bank 2a of the acceleration cooling device 2 using the temperature model. The ROT side calculation unit 9b predicts in advance the temperature of the rolled material 8 on the inlet / outlet side of each bank 3a of the ROT cooling device 3 using the temperature model. The control unit 9c controls the opening and closing of each water injection valve 2b of the acceleration cooling device 2 based on the prediction result by the acceleration side calculation unit 9a. The control unit 9c controls the opening and closing of each water injection valve 3b of the ROT cooling device 3 based on the prediction result by the ROT side calculation unit 9b.
 圧延材8が巻取コイラー4に巻き取られた後、加速側計算部9aは、仕上圧延機出側温度計5からのFDT実績値と中間温度計6からのMT実績値とに基づいて加速冷却装置2における温度モデルを学習する。ROT側計算部9bは、中間温度計6からのMT実績値と巻取温度計7からのCT実績値とに基づいてROT冷却装置3における温度モデルを学習する。 After the rolled material 8 is wound by the take-up coiler 4, the acceleration side calculation unit 9a accelerates based on the FDT actual value from the finish rolling mill output side thermometer 5 and the MT actual value from the intermediate thermometer 6. Learn the temperature model in the cooling device 2. The ROT side calculation unit 9b learns the temperature model in the ROT cooling device 3 based on the MT actual value from the intermediate thermometer 6 and the CT actual value from the take-up thermometer 7.
 具体的には、温度制御装置9は、各切板のFDT実績値を開始点として、最終的なCT予測値がCT目標値に到達するように、各切板の加速冷却装置2の各バンク2aとROT冷却装置3の各バンク3aの入出側の温度予測計算を行う。温度制御装置9は、加速冷却装置2の各バンク2aへの冷却水量の基準値(V acc、C acc、・・・C acc)とROT冷却装置3の各バンク3aへの冷却水量の基準値(V rot、C rot、・・・C rot)とを決定する。 Specifically, the temperature control device 9 starts from the FDT actual value of each cutting plate, and each bank of the accelerated cooling device 2 of each cutting plate so that the final CT predicted value reaches the CT target value. The temperature prediction calculation of the inlet / outlet side of each bank 3a of 2a and the ROT cooling device 3 is performed. The temperature control device 9 has a reference value (V 1 acc , C 2 acc , ... C n acc ) of the amount of cooling water to each bank 2a of the accelerated cooling device 2 and the amount of cooling water to each bank 3a of the ROT cooling device 3. (V 1 rot , C 2 rot , ... C n rot ) is determined.
 各バンク2aにおいては、当該基準値に基づいて開く注水バルブ2bの数を決定する。各バンク3aにおいては、当該基準値に基づいて開く注水バルブ3bの数を決定する。 In each bank 2a, the number of water injection valves 2b to be opened is determined based on the reference value. In each bank 3a, the number of water injection valves 3b to be opened is determined based on the reference value.
 圧延材8の切板が中間温度計6の位置に達した際、温度制御装置9は、中間温度計6の位置による誤差が0になるように加速冷却装置2における温度モデルを学習する。圧延材8が巻取温度計7の位置に達した際、温度制御装置9は、巻取温度計7の位置による誤差が0になるようにROT冷却装置3における温度モデルを学習する。この際、各切板の温度予測における初期温度はMT実績値を初期値とする。 When the cut plate of the rolled material 8 reaches the position of the intermediate thermometer 6, the temperature control device 9 learns the temperature model in the acceleration cooling device 2 so that the error due to the position of the intermediate thermometer 6 becomes zero. When the rolled material 8 reaches the position of the take-up thermometer 7, the temperature control device 9 learns the temperature model in the ROT cooling device 3 so that the error due to the position of the take-up thermometer 7 becomes zero. At this time, the MT actual value is used as the initial value for the initial temperature in the temperature prediction of each cutting plate.
 次に、図2を用いて、温度モデルの考え方を説明する。
 図2は実施の形態1における熱間圧延ラインの温度制御装置が適用される切板の斜視図である。
Next, the concept of the temperature model will be described with reference to FIG.
FIG. 2 is a perspective view of a cutting plate to which the temperature control device for the hot rolling line according to the first embodiment is applied.
 図2に示されるように、圧延材8がROT冷却装置3の直下においてローラーテーブル10で搬送される際、熱の出入りは、圧延材8を一定長の切板8aに分割した上で計算される。例えば、一定長は、3mから5mの間で設定される。 As shown in FIG. 2, when the rolled material 8 is conveyed by the roller table 10 directly under the ROT cooling device 3, the heat inflow and outflow is calculated after the rolled material 8 is divided into cutting plates 8a having a constant length. To. For example, the constant length is set between 3 m and 5 m.
 熱の出入りの要素としては、水冷熱伝達、放射、相変態よる発熱等が考えられる。例えば、水冷熱伝達のみが要素とされる場合、水冷による抜熱量(W)は、次の(1)式で表される。 As factors for heat in and out, water-cooled heat transfer, radiation, heat generation due to phase transformation, etc. can be considered. For example, when only water-cooled heat transfer is a factor, the amount of heat removed by water cooling (W) is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式において、hは水冷熱伝達係数(W/mm/℃)である。hは加速冷却装置2とROT冷却装置3とで異なる。Aは冷却水と接触する切板8aの上下面の面積(mm)である。Aは各バンクにおいて開く注水バルブの数で変化する。Tは冷却水の温度(℃)である。Tsurfは切板8aの表面温度(℃)である。 In equation (1), h w is a water-cooled heat transfer coefficient (W / mm 2 / ° C.). h w is different between the acceleration cooling device 2 and the ROT cooling device 3. A w is the area (mm 2 ) of the upper and lower surfaces of the cutting plate 8a in contact with the cooling water. A w changes with the number of water injection valves opened in each bank. T w is the temperature (° C.) of the cooling water. T surf is the surface temperature (° C.) of the cutting plate 8a.
 この際、各切板8aの温度変化は、次の(2)式で表される。 At this time, the temperature change of each cutting plate 8a is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (2)式において、Tは切板8aの温度(℃)である。ρは切板8aの密度(kg/mm)である。Cは切板8aの比熱(J/kg/℃)である。lは切板8aの進行方向長さ(mm)である。Bは切板8aの幅(mm)である。Hは切板8aの板厚(mm)である。tは時間(s)である。iは切板8aの番号である。 In equation (2), T is the temperature (° C.) of the cutting plate 8a. ρ is the density of the cutting plate 8a (kg / mm 3 ). C P is the specific heat of Setsuban 8a (J / kg / ℃) . l is the length (mm) of the cutting plate 8a in the traveling direction. B is the width (mm) of the cutting plate 8a. H is the plate thickness (mm) of the cutting plate 8a. t is the time (s). i is the number of the cutting plate 8a.
 次に、図3と図4とを用いて、温度モデルの学習を説明する。
 図3は実施の形態1における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。図4は実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。
Next, learning of the temperature model will be described with reference to FIGS. 3 and 4.
FIG. 3 is a diagram showing a predicted value and an actual value (re-predicted value) of a temperature change of each cutting plate inside the acceleration cooling device to which the temperature control device of the hot rolling line according to the first embodiment is applied. FIG. 4 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the first embodiment is applied.
 図3に示されるように、加速冷却装置2における冷却制御に関し、MT実績値に対して温度モデルの予測誤差があった場合、当該予測誤差の値を用いて各バンク2aの入出側における予測値が再計算される。その結果、各バンク2aの入出側における圧延材8の温度の実績値として確からしい値が求められる。 As shown in FIG. 3, regarding the cooling control in the accelerated cooling device 2, when there is a prediction error of the temperature model with respect to the actual MT value, the predicted value on the entry / exit side of each bank 2a is used using the value of the prediction error. Is recalculated. As a result, a probable value is obtained as the actual temperature value of the rolled material 8 on the inlet / outlet side of each bank 2a.
 図4に示されるように、ROT冷却装置3における冷却制御に関し、CT実績値に対して温度モデルの予測誤差があった場合、当該予測誤差の値を用いて各バンク3aの入出側における予測値が再計算される。その結果、各バンク3aの入出側における圧延材8の温度の実績値として確からしい値が求められる。 As shown in FIG. 4, regarding the cooling control in the ROT cooling device 3, when there is a prediction error of the temperature model with respect to the actual CT value, the predicted value on the entry / exit side of each bank 3a is used using the value of the prediction error. Is recalculated. As a result, a probable value is obtained as the actual temperature value of the rolled material 8 on the inlet / outlet side of each bank 3a.
 次に、図5と図6とを用いて、圧延材8の巻き取り完了後の学習機能の概要を説明する。
 図5は実施の形態1における熱間圧延ラインの温度制御装置が適用される加速冷却装置での温度モデルの誤差学習の流れを示す図である。図6は実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置での温度モデルの誤差学習の流れを示す図である。
Next, the outline of the learning function after the winding of the rolled material 8 is completed will be described with reference to FIGS. 5 and 6.
FIG. 5 is a diagram showing a flow of error learning of a temperature model in an accelerated cooling device to which the temperature control device for the hot rolling line according to the first embodiment is applied. FIG. 6 is a diagram showing a flow of error learning of a temperature model in a ROT cooling device to which a temperature control device for a hot rolling line according to the first embodiment is applied.
 図5において、次の(3)式に示されるように、加速冷却装置2の水冷熱伝達係数h accの学習値であるZ accとZ accとが自動調整される。 In FIG. 5, as shown in the following equation (3), Z 1 acc and Z 2 acc, which are learning values of the water-cooled heat transfer coefficient h w acc of the acceleration cooling device 2, are automatically adjusted.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (3)式において、v acc(m/s)は加速冷却装置2の内部での各切板8aの平均速度である。v(m/s)は加速冷却装置2の内部での各切板8aの基準速度である。f accはモデル予測関数である。Z accは温度モデルの予測値に対する乗算型の学習値である。Z accは速度比に対するべき乗型の学習値である。 (3) In the equation, v a acc (m / s ) is the average speed of each Setsuban 8a inside the accelerated cooling device 2. v 0 (m / s) is the reference speed of each cutting plate 8a inside the acceleration cooling device 2. f w acc is a model prediction function. Z 1 acc is a multiplication type learning value for the predicted value of the temperature model. Z 2 acc is a power-type learning value for the velocity ratio.
 圧延材8における冷却現象は、圧延材8が高速で移動するときと圧延材8が静止しているときとで異なる。このため、(3)式に示されるように、速度の影響は、学習項で調整される。 The cooling phenomenon in the rolled material 8 differs between when the rolled material 8 moves at high speed and when the rolled material 8 is stationary. Therefore, as shown in Eq. (3), the influence of speed is adjusted by the learning term.
 具体的には、圧延材8の全長の先端に近い部分であるHead部の特定の切板8aのデータを用いて、当該切板8aのMT予測値の誤差が0になるようにZ accが求められる。この際、Z accは、0として扱われる。 Specifically, using the data of a specific cut plate 8a of the head portion which is a portion near the tip of the total length of the rolled material 8, Z 1 acc so that the error of the MT predicted value of the cut plate 8a becomes 0. Is required. At this time, Z 2 acc is treated as 0.
 圧延材8の加速中または加速後の部分であるMiddle部の特定の切板8aのデータを用いてMT予測値の誤差が0になるようにZ accが求められる。この際、Z accは、Head部において求められた値が用いられる。 Z 2 acc is obtained so that the error of the MT predicted value becomes 0 by using the data of the specific cutting plate 8a of the Middle portion which is the portion of the rolled material 8 during or after acceleration. At this time, the value obtained in the Head portion is used for Z 1 acc .
 求められたZ accとZ accとが(3)式に代入されることで、全ての切板8aの再予測値が計算される。Head部とMiddle部との予測誤差を0にすることで、圧延材8の全長における精度が改善される。 By substituting the obtained Z 1 acc and Z 2 acc into the equation (3), the repredicted values of all the cutting plates 8a are calculated. By setting the prediction error between the head portion and the middle portion to 0, the accuracy of the total length of the rolled material 8 is improved.
 図6において、次の(4)式に示されるように、ROT冷却装置3の水冷熱伝達係数h rotの学習値であるZ rotとZ rotとが自動調整される。 In FIG. 6, as shown in the following equation (4), Z 1 rot and Z 2 rot, which are learning values of the water-cooled heat transfer coefficient h w rot of the ROT cooling device 3, are automatically adjusted.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (4)式において、v rot(m/s)はROT冷却装置3の内部での各切板8aの平均速度である。v(m/s)はROT冷却装置3の内部での各切板8aの基準速度である。f rotはモデル予測関数である。Z rotは温度モデルの予測値に対する乗算型の学習値である。Z rotは速度比に対するべき乗型の学習値である。 (4) In the formula, v a rot (m / s ) is the average speed of each Setsuban 8a inside the ROT cooling device 3. v 0 (m / s) is the reference speed of each cutting plate 8a inside the ROT cooling device 3. f w rot is a model prediction function. Z 1 rot is a learning value of a multiplication type with respect to the predicted value of the temperature model. Z 2 rot is a power-type learning value for the velocity ratio.
 圧延材8における冷却現象は、圧延材8が高速で移動するときと圧延材8が静止しているときとで異なる。このため、(4)式に示されるように、速度の影響は、学習項で調整される。 The cooling phenomenon in the rolled material 8 differs between when the rolled material 8 moves at high speed and when the rolled material 8 is stationary. Therefore, as shown in Eq. (4), the influence of speed is adjusted by the learning term.
 具体的には、圧延材8の全長の先端に近い部分であるHead部の特定の切板8aのデータを用いて、当該切板8aのCT予測値の誤差が0になるようにZ rotが求められる。この際、Z rotは、0として扱われる。 Specifically, using the data of a specific cut plate 8a of the head portion which is a portion close to the tip of the total length of the rolled material 8, Z 1 rot so that the error of the CT prediction value of the cut plate 8a becomes 0. Is required. At this time, Z 2 lot is treated as 0.
 圧延材8の加速中または加速後の部分であるMiddle部の特定の切板8aのデータを用いてCT予測値の誤差が0になるようにZ rotが求められる。この際、Z rotは、Head部において求められた値が用いられる。 Using the data of the specific cutting plate 8a of the Middle portion, which is the portion of the rolled material 8 during or after acceleration, the Z 2 rotor is obtained so that the error of the CT predicted value becomes 0. At this time, the value obtained in the head section is used for Z 1 rot .
 求められたZ rotとZ rotとが(4)式に代入されることで、全ての切板8aの再予測値が計算される。Head部とMiddle部との予測誤差を0にすることで、圧延材8の全長における精度が改善される。 By substituting the obtained Z 1 rot and Z 2 rot into the equation (4), the repredicted values of all the cutting plates 8a are calculated. By setting the prediction error between the head portion and the middle portion to 0, the accuracy of the total length of the rolled material 8 is improved.
 以上で説明した実施の形態1によれば、温度制御装置9は、加速冷却装置2とROT冷却装置3とにおいて水冷熱伝達係数とを別々に設定する。このため、温度モデルの精度を高めることができる。 According to the first embodiment described above, the temperature control device 9 sets the water-cooled heat transfer coefficient separately in the acceleration cooling device 2 and the ROT cooling device 3. Therefore, the accuracy of the temperature model can be improved.
 また、温度制御装置9は、温度モデルによって予測した当該圧延材8の冷却後の温度の予測値と実際の温度の実測値との差に基づいて、当該圧延材8の温度の予測値を補正するための学習値を計算する。このため、温度モデルの精度をより高めることができる。 Further, the temperature control device 9 corrects the predicted value of the temperature of the rolled material 8 based on the difference between the predicted value of the cooled temperature of the rolled material 8 predicted by the temperature model and the measured value of the actual temperature. Calculate the learning value to do. Therefore, the accuracy of the temperature model can be further improved.
 また、温度制御装置9は、MT実績値に基づいて、当該圧延材8の温度の予測値を補正するための学習値を計算する。このため、温度モデルの精度をより高めることができる。 Further, the temperature control device 9 calculates a learning value for correcting the predicted value of the temperature of the rolled material 8 based on the actual MT value. Therefore, the accuracy of the temperature model can be further improved.
 なお、中間温度計6の周辺の注水バルブ2bを開くと、中間温度計6の直下において、冷却水が圧延材8の表面を覆った状態に維持され得る。このため、中間温度計6において、圧延材8の表面温度が正確に計測されない場合もある。この場合、中間温度計6に近いバンク2aの全ての注水バルブ2bを全て閉じることで巻取温度計7の直下において、冷却水が圧延材8の表面を覆うことを抑制できる。その結果、中間温度計6において、圧延材8の表面温度を正確に計測することができる。中間温度計6に近いバンク2aの全てのち注水バルブ2bの全てを閉じることが難しい場合は、中間温度計6により近い注水バルブ2bを優先的に閉じればよい。 When the water injection valve 2b around the intermediate thermometer 6 is opened, the cooling water can be maintained in a state of covering the surface of the rolled material 8 directly under the intermediate thermometer 6. Therefore, the surface temperature of the rolled material 8 may not be accurately measured by the intermediate thermometer 6. In this case, by closing all the water injection valves 2b of the bank 2a close to the intermediate thermometer 6, it is possible to prevent the cooling water from covering the surface of the rolled material 8 directly under the take-up thermometer 7. As a result, the surface temperature of the rolled material 8 can be accurately measured by the intermediate thermometer 6. If it is difficult to close all the water injection valves 2b of the bank 2a close to the intermediate thermometer 6, the water injection valve 2b closer to the intermediate thermometer 6 may be closed preferentially.
 次に、図7を用いて、温度制御装置9の例を説明する。
 図7は実施の形態1における熱間圧延ラインの温度制御装置のハードウェア構成図である。
Next, an example of the temperature control device 9 will be described with reference to FIG. 7.
FIG. 7 is a hardware configuration diagram of the temperature control device for the hot rolling line according to the first embodiment.
 温度制御装置9の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。 Each function of the temperature control device 9 can be realized by a processing circuit. For example, the processing circuit includes at least one processor 100a and at least one memory 100b. For example, the processing circuit comprises at least one dedicated hardware 200.
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、温度制御装置9の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、温度制御装置9の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 100a and at least one memory 100b, each function of the temperature control device 9 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the temperature control device 9 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. For example, at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD or the like.
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、温度制御装置9の各機能は、それぞれ処理回路で実現される。例えば、温度制御装置9の各機能は、まとめて処理回路で実現される。 If the processing circuit comprises at least one dedicated hardware 200, the processing circuit may be implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. To. For example, each function of the temperature control device 9 is realized by a processing circuit. For example, each function of the temperature control device 9 is collectively realized by a processing circuit.
 温度制御装置9の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、制御部9cの機能については専用のハードウェア200としての処理回路で実現し、制御部9cの機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。 For each function of the temperature control device 9, a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware. For example, the function of the control unit 9c is realized by a processing circuit as dedicated hardware 200, and for functions other than the function of the control unit 9c, at least one processor 100a reads a program stored in at least one memory 100b. It may be realized by executing.
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで温度制御装置9の各機能を実現する。 In this way, the processing circuit realizes each function of the temperature control device 9 with the hardware 200, software, firmware, or a combination thereof.
実施の形態2.
 図8は実施の形態2における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
FIG. 8 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the second embodiment is applied. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
 図8に示されるように、実施の形態2においては、圧延材8の冷却中に、各切板8aが中間温度計6の直下を通過した際、当該切板8aのMT予測値とMT実績値との間において、温度モデルの予測誤差がある場合、ROT冷却装置3の内部における開始点(MT)をMT実績値に修正した上で、CT目標値に到達するようにROT冷却装置3の内部における圧延材8の温度変化の予測値が再計算される。再計算された予測値が達成されるように、各バンク3aへの冷却水量の基準値(V rot、V rot、・・・V rot)が修正される。 As shown in FIG. 8, in the second embodiment, when each cutting plate 8a passes directly under the intermediate thermometer 6 during cooling of the rolled material 8, the MT predicted value and the MT actual result of the cutting plate 8a If there is a prediction error of the temperature model between the value and the value, the start point (MT) inside the ROT cooling device 3 is corrected to the actual MT value, and then the ROT cooling device 3 is used to reach the CT target value. The predicted value of the temperature change of the rolled material 8 inside is recalculated. The reference values (V 1 rot , V 2 rot , ... V M rot ) of the amount of cooling water to each bank 3a are corrected so that the recalculated predicted value is achieved.
 以上で説明した実施の形態2によれば、温度制御装置9は、中間温度計6による当該圧延材8の温度の実績値と温度の予測値との間に温度モデルの予測誤差があった場合に、当該誤差を補償するようにROT冷却装置3の注水バルブ3bを制御する。このため、温度モデルの精度をより高めることができる。 According to the second embodiment described above, when the temperature control device 9 has a temperature model prediction error between the actual temperature value of the rolled material 8 and the predicted temperature value of the rolled material 8 by the intermediate thermometer 6. In addition, the water injection valve 3b of the ROT cooling device 3 is controlled so as to compensate for the error. Therefore, the accuracy of the temperature model can be further improved.
 また、温度制御装置9は、中間温度計6による当該圧延材8の温度実績値と温度予測値との間に温度モデルの誤差があった場合に、中間温度計6による当該圧延材8の温度の実績値を初期値としてROT冷却装置3の内部における当該圧延材8の温度変化の予測値を再計算する。このため、温度モデルの精度をより高めることができる。 Further, the temperature control device 9 uses the intermediate thermometer 6 to measure the temperature of the rolled material 8 when there is an error in the temperature model between the actual temperature value of the rolled material 8 and the predicted temperature value. The predicted value of the temperature change of the rolled material 8 inside the ROT cooling device 3 is recalculated with the actual value of the above as the initial value. Therefore, the accuracy of the temperature model can be further improved.
実施の形態3.
 図9は実施の形態3における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。図10は実施の形態1における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 3.
FIG. 9 is a diagram showing predicted values and actual values (repredicted values) of temperature changes of each cutting plate inside the accelerated cooling device to which the temperature control device for the hot rolling line according to the third embodiment is applied. FIG. 10 is a diagram showing a predicted value and an actual value (repredicted value) of a temperature change of each cutting plate inside the ROT cooling device to which the temperature control device of the hot rolling line according to the first embodiment is applied. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
 実施の形態3においては、加速冷却装置2とROT冷却装置3とを単体のみで用いる冷却効率の同定実験が事前に行われる。各切板8aのFDT実績値からCT実績値を引いた値である温度降下の実績値(℃)と開いた注水バルブの本数の実績とに基づいて、加速冷却装置2とROT冷却装置3とのバルブ一本当たりの冷却効率(℃/valve)が計算される。この際の圧延材8の速度パターンは、通常の圧延と同様である。 In the third embodiment, an experiment for identifying the cooling efficiency using the acceleration cooling device 2 and the ROT cooling device 3 alone is performed in advance. Based on the actual temperature drop value (° C), which is the value obtained by subtracting the CT actual value from the FDT actual value of each cutting plate 8a, and the actual number of open water injection valves, the acceleration cooling device 2 and the ROT cooling device 3 The cooling efficiency (° C / valve) per valve is calculated. The speed pattern of the rolled material 8 at this time is the same as that of normal rolling.
 ここで、加速冷却装置2の冷却効率をa(k)(℃/valve)とする。ROT冷却装置3の冷却効率をb(k)(℃/valve)とする。加速冷却装置2で使用した注水バルブ2bの数をA(k)(valve)とする。ROT冷却装置3で使用した注水バルブ3bの数をB(k)(valve)とする。kは切板8aの番号である。 Here, the cooling efficiency of the acceleration cooling device 2 is a (k) (° C./valve). Let the cooling efficiency of the ROT cooling device 3 be b (k) (° C./valve). Let the number of water injection valves 2b used in the acceleration cooling device 2 be A (k) (valve). Let the number of water injection valves 3b used in the ROT cooling device 3 be B (k) (valve). k is the number of the cutting plate 8a.
 この場合、加速冷却装置2の温度降下予測値は、a(k)×A(k)(℃)である。ROT冷却装置3の温度降下予測値は、b(k)×B(k)(℃)である。 In this case, the predicted temperature drop value of the accelerated cooling device 2 is a (k) × A (k) (° C.). The predicted temperature drop value of the ROT cooling device 3 is b (k) × B (k) (° C.).
 各切板8aに対する加速冷却装置2による温度降下実績は、次の(5)式により計算される。 The actual temperature drop by the acceleration cooling device 2 for each cutting plate 8a is calculated by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 各切板8aに対するROT冷却装置3による温度降下実績は、次の(6)式により計算される。 The actual temperature drop by the ROT cooling device 3 for each cutting plate 8a is calculated by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 加速冷却装置2に関しては、図9に示されるように、FDT実績値から(5)式に示す値を引いた値をMT実績値として各バンク2aの入出側における予測値が再計算される。 Regarding the accelerated cooling device 2, as shown in FIG. 9, the predicted value on the entry / exit side of each bank 2a is recalculated with the value obtained by subtracting the value shown in the equation (5) from the FDT actual value as the MT actual value.
 ROT冷却装置3に関しては、図10に示されるように、MT実績値を初期値として、当該初期値から(6)式に示す値引いた値をCT実績値として各バンク3aの入出側における予測値が再計算される。 Regarding the ROT cooling device 3, as shown in FIG. 10, the MT actual value is used as the initial value, and the value obtained by subtracting the value shown in Eq. (6) from the initial value is used as the CT actual value for prediction on the entry / exit side of each bank 3a. The value is recalculated.
 以上で説明した実施の形態3によれば、温度制御装置9は、加速冷却装置2を単体で使用する同定実験により得られた冷却効率と加速冷却装置2とROT冷却装置3との上流側から下流側への当該圧延材8の温度降下の実績値と加速冷却装置2において使用されたスプレーの本数から1バルブあたりの冷却効率を計算する。温度制御装置9は、ROT冷却装置3を単体で使用する同定実験により得られた冷却効率と加速冷却装置2とROT冷却装置3との上流側から下流側への当該圧延材8の温度降下の実績値とROT冷却装置3において使用されたスプレーの本数から1バルブあたりの冷却効率を計算する。このため、温度モデルの精度をより高めることができる。 According to the third embodiment described above, the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the accelerated cooling device 2 alone, and the cooling efficiency obtained from the upstream side of the accelerated cooling device 2 and the ROT cooling device 3. The cooling efficiency per valve is calculated from the actual value of the temperature drop of the rolled material 8 to the downstream side and the number of sprays used in the accelerated cooling device 2. The temperature control device 9 has the cooling efficiency obtained by the identification experiment using the ROT cooling device 3 alone and the temperature drop of the rolled material 8 from the upstream side to the downstream side of the accelerated cooling device 2 and the ROT cooling device 3. The cooling efficiency per valve is calculated from the actual value and the number of sprays used in the ROT cooling device 3. Therefore, the accuracy of the temperature model can be further improved.
 なお、温度制御装置9は、加速冷却装置2とROT冷却装置3との比を用いて、加速冷却装置2の冷却効率とROT冷却装置3と冷却効率とを計算してもよい。この場合も、温度モデルの精度をより高めることができる。 Note that the temperature control device 9 may calculate the cooling efficiency of the accelerated cooling device 2 and the cooling efficiency of the ROT cooling device 3 and the cooling efficiency by using the ratio of the accelerated cooling device 2 and the ROT cooling device 3. In this case as well, the accuracy of the temperature model can be further improved.
実施の形態4.
 図11は実施の形態4における熱間圧延ラインの温度制御装置が適用される加速冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。図12は実施の形態4における熱間圧延ラインの温度制御装置が適用されるROT冷却装置の内部での各切板の温度変化の予測値と実績値(再予測値)を示す図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 4.
FIG. 11 is a diagram showing a predicted value and an actual value (re-predicted value) of a temperature change of each cutting plate inside the acceleration cooling device to which the temperature control device of the hot rolling line according to the fourth embodiment is applied. FIG. 12 is a diagram showing predicted values and actual values (re-predicted values) of temperature changes of each cutting plate inside the ROT cooling device to which the temperature control device for the hot rolling line according to the fourth embodiment is applied. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
 実施の形態4においては、加速冷却装置2とROT冷却装置3とを単体のみで用いる冷却効率の同定実験が事前に行われる。各切板8aのFDT実績値からCT実績値を引いた値を温度降下の実績値(℃)と開いたバルブのスプレー流量(m/h)の実績とに基づいて、加速冷却装置2とROT冷却装置3とのバルブ一本当たりの冷却効率(℃/m/h)が計算される。この際の圧延材8の速度パターンは、通常の圧延と同様である。 In the fourth embodiment, an experiment for identifying the cooling efficiency using the acceleration cooling device 2 and the ROT cooling device 3 alone is performed in advance. Based on the actual value of temperature drop (° C.) and the actual value of the spray flow rate of the opened valve (m 3 / h), the value obtained by subtracting the actual CT value from the actual FDT value of each cutting plate 8a is combined with the acceleration cooling device 2. cooling efficiency per one valve between the ROT cooling device 3 (℃ / m 3 / h ) is calculated. The speed pattern of the rolled material 8 at this time is the same as that of normal rolling.
 ここで、加速冷却装置2の冷却効率をα(k)(℃/m/h)とする。ROT冷却装置3の冷却効率をβ(k)(℃/m/h)とする。加速冷却装置2で使用した注水バルブ2bの数をA(k)(valve)とする。ROT冷却装置3で使用した注水バルブ3bの数をB(k)(valve)とする。加速冷却装置2における1注水バルブ2bあたりのスプレー流量をP(m/h/valve)とする。ROT冷却装置3における1注水バルブ3bあたりのスプレー流量をP(m/h/valve)とする。 Here, the cooling efficiency of the accelerated cooling device 2 and α (k) (℃ / m 3 / h). The cooling efficiency of the ROT cooling device 3 and β (k) (℃ / m 3 / h). Let the number of water injection valves 2b used in the acceleration cooling device 2 be A (k) (valve). Let the number of water injection valves 3b used in the ROT cooling device 3 be B (k) (valve). Let Pa (m 3 / h / valve) be the spray flow rate per water injection valve 2b in the acceleration cooling device 2. Let P b (m 3 / h / valve) be the spray flow rate per water injection valve 3 b in the ROT cooling device 3.
 この場合、加速冷却装置2の温度降下予測値は、α(k)×A(k)×P(℃)である。ROT冷却装置3の温度降下予測値は、β(k)×B(k)×P(℃)である。 In this case, the temperature drop predicted value of accelerated cooling device 2 is a α (k) × A (k ) × P a (℃). The predicted temperature drop value of the ROT cooling device 3 is β (k) × B (k) × P b (° C.).
 各切板8aに対する加速冷却装置2による温度降下実績は、次の(7)式により計算される。 The actual temperature drop by the acceleration cooling device 2 for each cutting plate 8a is calculated by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 各切板8aに対するROT冷却装置3による温度降下実績は、次の(8)式により計算される。 The actual temperature drop by the ROT cooling device 3 for each cutting plate 8a is calculated by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 加速冷却装置2に関しては、図11に示されるように、FDT実績値から(7)式に示す値を引いた値をMT実績値として各バンク2aの入出側における予測値が再計算される。 Regarding the accelerated cooling device 2, as shown in FIG. 11, the predicted value on the entry / exit side of each bank 2a is recalculated with the value obtained by subtracting the value shown in the equation (7) from the FDT actual value as the MT actual value.
 ROT冷却装置3に関しては、図12に示されるように、MT実績値を初期値として、当該初期値から(8)式に示す値引いた値をCT実績値として各バンク3aの入出側における予測値が再計算される。 Regarding the ROT cooling device 3, as shown in FIG. 12, the MT actual value is used as the initial value, and the value obtained by subtracting the value shown in Eq. (8) from the initial value is used as the CT actual value for prediction on the entry / exit side of each bank 3a. The value is recalculated.
 以上で説明した実施の形態4によれば、温度制御装置9は、加速冷却装置2を単体で使用する同定実験により得られた冷却効率と加速冷却装置2とROT冷却装置3との上流側から下流側への当該圧延材8の温度降下の実績値と加速冷却装置2において使用されたスプレー流量の体積から1バルブあたりの冷却効率を計算する。温度制御装置9は、ROT冷却装置3を単体で使用する同定実験により得られた冷却効率と加速冷却装置2とROT冷却装置3との上流側から下流側への当該圧延材8の温度降下の実績値とROT冷却装置3において使用されたスプレー流量の体積から1バルブあたりの冷却効率を計算する。このため、温度モデルの精度をより高めることができる。 According to the fourth embodiment described above, the temperature control device 9 has the cooling efficiency obtained by the identification experiment using the accelerated cooling device 2 alone, and the cooling efficiency obtained from the upstream side of the accelerated cooling device 2 and the ROT cooling device 3. The cooling efficiency per valve is calculated from the actual value of the temperature drop of the rolled material 8 to the downstream side and the volume of the spray flow rate used in the accelerated cooling device 2. The temperature control device 9 has the cooling efficiency obtained by the identification experiment using the ROT cooling device 3 alone and the temperature drop of the rolled material 8 from the upstream side to the downstream side of the accelerated cooling device 2 and the ROT cooling device 3. The cooling efficiency per valve is calculated from the actual value and the volume of the spray flow rate used in the ROT cooling device 3. Therefore, the accuracy of the temperature model can be further improved.
 なお、ROT冷却装置3の下流側に加速冷却装置2が設けられた熱間圧延ラインに対し、実施の形態1から実施の形態4のいずれかの温度制御装置9を適用してもよい。この場合も、温度モデルの精度を高めることができる。 Note that the temperature control device 9 of any of the first to fourth embodiments may be applied to the hot rolling line provided with the acceleration cooling device 2 on the downstream side of the ROT cooling device 3. In this case as well, the accuracy of the temperature model can be improved.
 以上のように、この発明に係る熱間圧延ラインの温度制御装置は、熱間圧延システムに利用できる。 As described above, the temperature control device for the hot rolling line according to the present invention can be used for the hot rolling system.
 1 仕上圧延機、 2 加速冷却装置、 2a バンク、 2b 注水バルブ、 2c ノズル、 3 ROT冷却装置、 3a バンク、 3b 注水バルブ、 3c ノズル、 4 巻取コイラー、 5 仕上圧延機出側温度計、 6 中間温度計、 7 巻取温度計、 8 圧延材、8a 切板、 9 温度制御装置、 9a 加速側計算部、 9b ROT側計算部、 9c 制御部、 10 ローラーテーブル、 100a プロセッサ、 100b メモリ、 200 ハードウェア 1 Finishing rolling mill, 2 Acceleration cooling device, 2a bank, 2b water injection valve, 2c nozzle, 3 ROT cooling device, 3a bank, 3b water injection valve, 3c nozzle, 4 winding coiler, 5 Finishing rolling mill outlet thermometer, 6 Intermediate thermometer, 7 winding thermometer, 8 rolled material, 8a cutting plate, 9 temperature control device, 9a acceleration side calculation unit, 9b ROT side calculation unit, 9c control unit, 10 roller table, 100a processor, 100b memory, 200 hardware

Claims (9)

  1.  熱間圧延ラインの下流工程において、圧延材に注水するROT冷却装置に対し、当該圧延材の温度を予測する温度モデルにおいて、水冷冷却における単位面積あたりの抜熱量を表すROT側水冷熱伝達係数を用いて当該圧延材の温度の予測値を計算するROT側計算部と、
     前記熱間圧延ラインの下流工程において、前記ROT冷却装置の上流側または下流側に設けられ、前記ROT冷却装置とは異なる条件で当該圧延材に注水する加速冷却装置に対し、当該圧延材の温度を予測する温度モデルにおいて、水冷冷却における単位面積あたりの抜熱量を表す加速側水冷熱伝達係数として前記ROT側計算部により設定されたROT側水冷熱伝達係数とは別に設定された値を用いて当該圧延材の温度の予測値を計算する加速側計算部と、
    を備えた熱間圧延ラインの温度制御装置。
    In the downstream process of the hot rolling line, for the ROT cooling device that injects water into the rolled material, in the temperature model that predicts the temperature of the rolled material, the ROT side water-cooled heat transfer coefficient, which represents the amount of heat removed per unit area in water-cooled cooling, is calculated. ROT side calculation unit that calculates the predicted value of the temperature of the rolled material using
    In the downstream process of the hot rolling line, the temperature of the rolled material is relative to the accelerated cooling device provided on the upstream side or the downstream side of the ROT cooling device and injecting water into the rolled material under conditions different from those of the ROT cooling device. In the temperature model for predicting, the value set separately from the ROT side water-cooled heat transfer coefficient set by the ROT side calculation unit is used as the acceleration side water-cooled heat transfer coefficient representing the amount of heat removed per unit area in water-cooled cooling. The acceleration side calculation unit that calculates the predicted value of the temperature of the rolled material, and
    A temperature control device for hot rolling lines equipped with.
  2.  前記ROT側計算部と前記加速側計算部とは、温度モデルによって予測した当該圧延材の冷却後の温度の予測値と実際の温度の実測値との差に基づいて、当該圧延材の温度の予測値を補正するための学習値を計算する請求項1に記載の熱間圧延ラインの温度制御装置。 The ROT side calculation unit and the acceleration side calculation unit determine the temperature of the rolled material based on the difference between the predicted value of the temperature of the rolled material after cooling predicted by the temperature model and the measured value of the actual temperature. The temperature control device for a hot rolling line according to claim 1, wherein a learning value for correcting a predicted value is calculated.
  3.  前記ROT側計算部と前記加速側計算部とは、前記ROT冷却装置と前記加速冷却装置との間に設けられた中間温度計による当該圧延材の温度の実績値に基づいて、当該圧延材の温度の予測値を補正するための学習値を計算する請求項2に記載の熱間圧延ラインの温度制御装置。 The ROT side calculation unit and the acceleration side calculation unit of the rolled material are based on the actual temperature value of the rolled material by an intermediate thermometer provided between the ROT cooling device and the accelerated cooling device. The temperature control device for a hot rolling line according to claim 2, wherein a learning value for correcting a predicted temperature value is calculated.
  4.  前記ROT冷却装置と前記加速冷却装置とに対し、前記中間温度計の周辺のバルブを閉じる制御部、
    を備えた請求項3に記載の熱間圧延ラインの温度制御装置。
    A control unit that closes a valve around the intermediate thermometer with respect to the ROT cooling device and the accelerated cooling device.
    The temperature control device for a hot rolling line according to claim 3.
  5.  前記制御部は、前記中間温度計による当該圧延材の温度の実績値と温度の予測値との間に温度モデルの誤差があった場合に、当該誤差を補償するように前記ROT冷却装置のバルブを制御する請求項4に記載の熱間圧延ラインの温度制御装置。 When there is an error in the temperature model between the actual temperature value of the rolled material and the predicted temperature value by the intermediate thermometer, the control unit is a valve of the ROT cooling device so as to compensate for the error. The temperature control device for a hot rolling line according to claim 4.
  6.  前記ROT側計算部は、前記中間温度計による当該圧延材の温度の実績値と温度の予測値との間に温度モデルの誤差があった場合に、前記中間温度計による当該圧延材の温度の実績値を初期値として前記ROT冷却装置の内部における当該圧延材の温度変化の予測値を再計算する請求項4に記載の熱間圧延ラインの温度制御装置。 The ROT side calculation unit determines the temperature of the rolled material by the intermediate thermometer when there is an error in the temperature model between the actual temperature value of the rolled material by the intermediate thermometer and the predicted temperature value. The temperature control device for a hot rolling line according to claim 4, wherein the predicted value of the temperature change of the rolled material inside the ROT cooling device is recalculated with the actual value as the initial value.
  7.  前記ROT側計算部は、前記ROT冷却装置を単体で使用する同定実験により得られた冷却効率と前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記ROT冷却装置において使用されたスプレーの本数から1バルブあたりの冷却効率を計算し、
     前記加速側計算部は、前記加速冷却装置を単体で使用する同定実験により得られた冷却効率と前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記加速冷却装置において使用されたスプレーの本数から1バルブあたりの冷却効率を計算する請求項1または請求項2に記載の熱間圧延ラインの温度制御装置。
    The ROT side calculation unit determines the cooling efficiency obtained by the identification experiment using the ROT cooling device alone and the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the accelerated cooling device. The cooling efficiency per valve was calculated from the actual value and the number of sprays used in the ROT cooling device.
    The acceleration side calculation unit determines the cooling efficiency obtained by the identification experiment using the acceleration cooling device alone and the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the acceleration cooling device. The temperature control device for a hot rolling line according to claim 1 or 2, wherein the cooling efficiency per valve is calculated from the actual value and the number of sprays used in the accelerated cooling device.
  8.  前記ROT側計算部は、前記ROT冷却装置と前記加速冷却装置との冷却効率の比を用いて前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記ROT冷却装置において使用されたスプレーの本数からROT側水冷熱伝達係数の実績値と学習値とを計算し、
     前記加速側計算部は、前記ROT冷却装置と前記加速冷却装置との冷却効率の比を用いて前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記加速冷却装置において使用されたスプレーの本数から加速側水冷熱伝達係数の実績値と学習値とを計算する請求項7に記載の熱間圧延ラインの温度制御装置。
    The ROT side calculation unit uses the ratio of the cooling efficiencies of the ROT cooling device and the accelerated cooling device to determine the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the accelerated cooling device. The actual value and the learning value of the ROT side water-cooled heat transfer coefficient are calculated from the actual value and the number of sprays used in the ROT cooling device.
    The acceleration side calculation unit uses the ratio of the cooling efficiencies of the ROT cooling device and the acceleration cooling device to determine the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the acceleration cooling device. The temperature control device for a hot rolling line according to claim 7, wherein the actual value and the learning value of the acceleration side water-cooled heat transfer coefficient are calculated from the actual value and the number of sprays used in the acceleration cooling device.
  9.  前記ROT側計算部は、前記ROT冷却装置を単体で使用する同定実験により得られた冷却効率と前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記ROT冷却装置において使用されたスプレー流量の体積から1バルブあたりの冷却効率を計算し、
     前記加速側計算部は、前記加速冷却装置を単体で使用する同定実験により得られた冷却効率と前記ROT冷却装置と前記加速冷却装置との上流側から下流側への当該圧延材の温度降下の実績値と前記加速冷却装置において使用されたスプレー流量の体積から1バルブあたりの冷却効率を計算する請求項7に記載の熱間圧延ラインの温度制御装置。
    The ROT side calculation unit determines the cooling efficiency obtained by the identification experiment using the ROT cooling device alone and the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the accelerated cooling device. The cooling efficiency per valve was calculated from the actual value and the volume of the spray flow rate used in the ROT cooling device.
    The acceleration side calculation unit determines the cooling efficiency obtained by the identification experiment using the acceleration cooling device alone and the temperature drop of the rolled material from the upstream side to the downstream side of the ROT cooling device and the acceleration cooling device. The temperature control device for a hot rolling line according to claim 7, wherein the cooling efficiency per valve is calculated from the actual value and the volume of the spray flow rate used in the accelerated cooling device.
PCT/JP2019/025458 2019-06-26 2019-06-26 Temperature control device for hot rolling line WO2020261444A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020534629A JP6954476B2 (en) 2019-06-26 2019-06-26 Temperature control device for hot rolling line
CN201980006321.3A CN112437702B (en) 2019-06-26 2019-06-26 Temperature control device of hot rolling production line
PCT/JP2019/025458 WO2020261444A1 (en) 2019-06-26 2019-06-26 Temperature control device for hot rolling line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025458 WO2020261444A1 (en) 2019-06-26 2019-06-26 Temperature control device for hot rolling line

Publications (1)

Publication Number Publication Date
WO2020261444A1 true WO2020261444A1 (en) 2020-12-30

Family

ID=74061094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025458 WO2020261444A1 (en) 2019-06-26 2019-06-26 Temperature control device for hot rolling line

Country Status (3)

Country Link
JP (1) JP6954476B2 (en)
CN (1) CN112437702B (en)
WO (1) WO2020261444A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114417530B (en) * 2022-01-14 2023-01-20 北京科技大学 Optimized scheduling method and device for hot continuous rolling laminar cooling water supply pump station
TWI785975B (en) * 2022-01-26 2022-12-01 中國鋼鐵股份有限公司 Method for controlling temperature of finishing mill

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH09216011A (en) * 1996-02-08 1997-08-19 Sumitomo Metal Ind Ltd Method for controlling cooling of hot rolled steel sheet
JP2001240915A (en) * 2000-03-01 2001-09-04 Nkk Corp Method for producing extra-low carbon hot-rolled steel strip and its producing apparatus
JP2009148809A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
WO2014006681A1 (en) * 2012-07-02 2014-01-09 東芝三菱電機産業システム株式会社 Temperature control device
JP2015054322A (en) * 2013-09-10 2015-03-23 株式会社日立製作所 Winding temperature control device and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435234B2 (en) * 2015-05-20 2018-12-05 株式会社日立製作所 Hot roll finishing mill outlet temperature control device and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218414A (en) * 1993-01-25 1994-08-09 Nisshin Steel Co Ltd Cooling control method for hot rolled steel sheet
JPH09216011A (en) * 1996-02-08 1997-08-19 Sumitomo Metal Ind Ltd Method for controlling cooling of hot rolled steel sheet
JP2001240915A (en) * 2000-03-01 2001-09-04 Nkk Corp Method for producing extra-low carbon hot-rolled steel strip and its producing apparatus
JP2009148809A (en) * 2007-12-21 2009-07-09 Hitachi Ltd Device and method for controlling winding temperature
WO2014006681A1 (en) * 2012-07-02 2014-01-09 東芝三菱電機産業システム株式会社 Temperature control device
JP2015054322A (en) * 2013-09-10 2015-03-23 株式会社日立製作所 Winding temperature control device and control method

Also Published As

Publication number Publication date
CN112437702A (en) 2021-03-02
JP6954476B2 (en) 2021-10-27
JPWO2020261444A1 (en) 2021-09-13
CN112437702B (en) 2023-02-10

Similar Documents

Publication Publication Date Title
US6225609B1 (en) Coiling temperature control method and system
JP4425978B2 (en) Hot rolling mill temperature control device
KR101352224B1 (en) Rolled material cooling control device, rolled material cooling control method, and recording medium for rolled material cooling control program
WO2009011070A1 (en) Method of cooling control, cooling control unit and cooling water quantity computing unit
WO2020261444A1 (en) Temperature control device for hot rolling line
TWI625173B (en) System for controlling rolling mill delivery side temperature
JP4208505B2 (en) Winding temperature controller
JPS5890314A (en) Device of spray cooling in hot rolling
JP5994999B2 (en) Control method of cooling device for hot rolling line
JP7201126B2 (en) Hot rolling line controller
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
KR100711387B1 (en) Method for controlling longitudinal direction temperature of hot-rolled steel plate
JP2007283346A (en) Method for controlling cooling of rolled stock and rolling equipment
JP2744399B2 (en) Rolled material cooling control device
JP2009233716A (en) Method of cooling rolled stock
JPH08252625A (en) Method for controlling coiling temperature in hot rolling
JPH01162508A (en) Cooling control method for steel material
JP3450108B2 (en) Hot rolled sheet cooling control device
JP2004331992A (en) Method for predicting temperature of and cooling metal sheet in hot rolling
JPH05277535A (en) Method for controlling cooling of steel strip
US20230249235A1 (en) Control device for cooling apparatus
JP4111144B2 (en) Cooling method for high temperature steel sheet
JP3722101B2 (en) Cooling control method for hot-rolled steel strip
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JP3697881B2 (en) Winding temperature control method for hot-rolled steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020534629

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934995

Country of ref document: EP

Kind code of ref document: A1