WO2020260839A1 - Outil de confinement pour fabriquer un corps composite - Google Patents

Outil de confinement pour fabriquer un corps composite Download PDF

Info

Publication number
WO2020260839A1
WO2020260839A1 PCT/FR2020/051120 FR2020051120W WO2020260839A1 WO 2020260839 A1 WO2020260839 A1 WO 2020260839A1 FR 2020051120 W FR2020051120 W FR 2020051120W WO 2020260839 A1 WO2020260839 A1 WO 2020260839A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
groove
cover
composite
composite body
Prior art date
Application number
PCT/FR2020/051120
Other languages
English (en)
Inventor
Abderrahman OUAKKA
Original Assignee
Sogefi Suspensions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogefi Suspensions filed Critical Sogefi Suspensions
Publication of WO2020260839A1 publication Critical patent/WO2020260839A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/774Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/774Springs
    • B29L2031/7742Springs helical springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials

Definitions

  • This disclosure relates to a containment tool for manufacturing a composite body, a method of manufacturing a composite body as well as such a composite body.
  • Such a method is particularly useful for manufacturing a composite body forming an element for vehicle suspension, such as a spring for vehicle suspension or a stabilizer bar for vehicle suspension.
  • Such composite springs are thus made from a composite cord, formed from a plurality of fibrous layers impregnated with resin, wound around each other, shaped and then solidified by polymerization of the resin.
  • the rope is passed through a resin bath after each new fibrous layer has been wound up.
  • the fibrous ribbons wrapped around the cord during manufacture are pre-impregnated with resin.
  • the present disclosure relates to a confinement tool for manufacturing a composite body, comprising
  • a support having an outer surface having a groove configured to receive at least a portion of an impregnated composite cord
  • a cover intended to be attached to the support and held against the latter, having an internal surface capable of being pressed against the external surface of the support and configured to follow the contour of the portion of the impregnated composite cord projecting out of the throat of the support.
  • the groove of the support the geometry of the final composite body.
  • the installation of the composite rope in the groove of the support allows it to be shaped according to the desired geometry for the final composite body, this geometry being fixed after firing the composite rope.
  • the placing of the cover on the support makes it possible to firmly hold and to confine the composite cord.
  • the composite cord is thus gripped, without play or practically without play, between the walls of the groove of the support on the one hand and the internal surface of the cover which conforms to the contour of the portion of the impregnated composite cord protruding out of the groove of the support.
  • This confinement makes it possible to maintain and compress the fibers and the resin of the composite cord during the solidification of the latter: the network of fibers and / or the crosslinked matrix of the composite cord are then less porous and more dense, which improves the mechanical properties of the composite body obtained.
  • the containment tool enclosing the composite cord can then be heated, in an oven or by intrinsic means for example, in order to cook the composite cord thus shaped and confined: the solidification of the composite cord then results in the final composite body.
  • such a confinement tool facilitates the handling of the composite cord after its shaping and before its firing.
  • the rope is locked in such a way that its geometry is locked: it is therefore possible to freely manipulate the confinement tool, to transfer it for example between a shaping station and a cooking station, without the risk of letting the composite cord drop and therefore losing its shaping.
  • the support is a core and the cover is a shell attached around the support.
  • the shell forms a closed contour when attached around the support.
  • the cover can thus firmly grip the support.
  • Such a configuration is also useful for fabricating three-dimensional geometries.
  • the external surface of the support goes around the support. Such a configuration is in particular useful for manufacturing composite bodies having one or more loops winding around a main direction of the support.
  • the external surface of the support is devoid of ridges. In other words, the external surface of the support is derivable at any point. This makes it possible to obtain geometries for the composite body which are also continuous and derivable.
  • the outer surface of the support may have one or more ridges. This makes it possible to obtain a composite body of which certain portions are angular.
  • the external surface of the support is a cylindrical or conical surface. These geometries are particularly useful for manufacturing springs. However, it is preferably a cylindrical surface of revolution.
  • the support is an axially symmetrical cylindrical mandrel. Such a configuration makes it possible for example to manufacture helical springs.
  • the support is configured to be able to collapse under the composite cord. It is meant here that the outer surface of the support can move back to release the composite body after solidification. It can just as well be a mechanical recoil, using moving parts for example, as a physical recoil by disappearance of all or part of the support, by change of physical state or chemical alteration for example.
  • the support is fusible at a temperature below 180 ° C, preferably below 1500. However, preferably, its melting temperature is above 110 ° C, preferably above 130 ° vs. Thus, the support holds the compost cord at least at the start of cooking of the latter and then melts after cooking or after a specific step of melting the support.
  • the support is made of a eutectic material, for example a tin-bismuth or lead-tin-bismuth mixture.
  • the groove of the support extends along a left curve, that is to say a curve which is not contained in a plane. It is thus possible to manufacture a composite body extending in space, not limited to a given plane.
  • the groove is helical. This makes it possible in particular to manufacture helical springs.
  • the groove of the support has a
  • the profile of the groove of the support is
  • the profile of the groove of the support is semi-circular. The groove thus receives the internal half of the composite cord.
  • the profile of the support groove is U-shaped.
  • the composite cord thus sinks deeper into the groove: the portion of the composite cord protruding out of the groove is thus smaller. than its outer half.
  • the profile of the groove of the support has a non-circular elliptical portion.
  • An elliptical section of the composite body provides better mechanical properties for certain applications, especially for coil springs.
  • the groove of the support has a
  • depth between 50% and 90% of its width preferably between 60% and 80% of its width.
  • a depth of 50% is preferable when the geometry of the internal surface of the cover is fixed.
  • a greater depth is possible, and possibly preferred according to the applications, when the geometry of the internal surface of the cover is variable.
  • the space defined between the groove of the support and the internal surface of the cover is airtight once the cover is attached to the support. In other words, this space in which the composite rope is enclosed does not lead to the outside of the containment tool.
  • the inner surface and / or the outer surface is coated with a powder, preferably talc.
  • This powdering reduces the risk of the composite cord adhering to the inner surface and / or the outer surface and therefore reduces the risk of fibers or resin fragments being torn from the composite rope. This also facilitates cleaning of the containment tool between two manufacturing cycles, or even makes this cleaning unnecessary.
  • the cover comprises at least two parts, preferably exactly two parts, which can be assembled.
  • the parts of the cover join together according to a non-linear interface, preferably crenellated.
  • a non-linear interface facilitates and ensures the alignment of the different parts of the cover.
  • the internal surface of the cover has a groove extending vis-à-vis the groove of the support.
  • the groove of the cover and the groove of the support complement each other to form a space having the dimensions of the composite cord and having the desired geometry for shaping the composite cord. The shaping of the composite cord can thus be controlled very precisely.
  • the groove of the cover has a
  • the groove of the cover has a
  • each groove cooperates with one half of the composite cord.
  • the cover comprises an elastic gasket defining the internal surface of the cover.
  • the internal surface of the cover is elastic and thus can deform to conform to the contour of the composite cord, even without a groove on the internal surface. Thanks to such a configuration, it is possible to use the same cover for several diameters of composite strings or for several geometries of composite bodies.
  • the elastic lining is made of elastomer.
  • the elastic lining has a
  • This disclosure also relates to a method of manufacturing a composite body, in particular an element for vehicle suspension, the composite body having a given shape, the method comprising the following steps:
  • the impregnated composite cord comprises fibers impregnated with a resin. It may for example be glass fibers impregnated with an epoxy resin.
  • the diameter of the support groove is strictly less than the diameter of the impregnated composite cord supplied. This makes it possible to compress the composite cord within the groove in order to better control its firing and thus obtain better mechanical properties.
  • the present disclosure also relates to a composite body obtained by the method according to any of the preceding embodiments.
  • the composite body benefits from a more precise shape and internal structure, which gives it better mechanical properties.
  • the composite body has a non-circular section, preferably elliptical or quasi-elliptical.
  • the section of the composite body does not necessarily have a symmetry central.
  • the contour of this section remains continuous and derivable at any point.
  • Figure 1 is a perspective view of a first example of a containment tool.
  • Figure 2 is a perspective view of the support of the first example of a containment tool.
  • Figure 3 is a perspective view of the cover of the first
  • Figure 4 is a perspective view of the first example of a containment tool in which a composite rope has been installed.
  • FIG. 5A-5B Figure 5A is a sectional view illustrating the installation of the composite rope in the holder of the first example.
  • FIG. 5B is a sectional view illustrating the positioning of the cover on the support.
  • Figure 6 is a perspective view of a second exemplary containment tool.
  • FIG. 7 Figure 7 is a perspective view of the cover of the second exemplary containment tool.
  • Figure 8A-8B Figure 8A is a sectional view illustrating the installation of the composite cord in the support of the second example.
  • FIG. 8B is a sectional view illustrating the positioning of the cover on the support.
  • Figure 9 shows the different steps of an example of a manufacturing process.
  • Figure 10 is a perspective view of an example of a body
  • Figure 1 illustrates a first example of a containment tool 1 according to
  • the presentation It comprises a support 10 and a cover 20.
  • the containment tool 1 is designed to make a coil spring 90 of a composite material such as that shown in Figure 10.
  • Figure 2 illustrates the support 10 in isolation.
  • Support 10 includes a
  • the support 10 is made of a eutectic metallic material, for example a tin-bismuth mixture, giving it a relatively low melting point.
  • the groove 12 extends in a unidirectional curve, without
  • the groove 12 extends between two ends 12a, 12b closed and contained in the outer surface 1 1; in other words, the groove 12 does not open out from the external surface 11.
  • the support 10 takes the form of a core, more precisely of a cylindrical mandrel, with a circular base, of main axis A, so that the outer surface 1 1 is also cylindrical; the groove 12 extends for its part in a spiral around the axis A corresponding to the desired geometry for the spring 90.
  • the groove 12 has a constant profile; in other words, it has an invariant section from its first end 12a to its second end 12b. As can be seen in Figure 5A, the section of the groove 12 is semi-circular.
  • Figure 3 illustrates the cover 20 in isolation.
  • the cover 20 comprises an internal surface 21 in which a groove 22.
  • the cover 20 is made of metal.
  • the geometry of the groove 22 is provided to correspond exactly to the geometry of the groove 12 of the support 10.
  • the groove 22 of the cover 20 extends exactly along and vis-à-vis the groove 12 of the support 10 from the first end 12a to the second end 12b.
  • the ends of the groove 22 of the cover 20 coincide with the ends 12a, 12b of the groove 12 of the support 10 and therefore do not open out from the internal surface 21.
  • the groove 22 also has a constant profile. : as can be seen in Figure 5B, its section is also semi-circular.
  • the grooves 12 and 22 complement each other to form a closed, airtight space, not opening out to the outside of the containment tool 1, intended to receive a composite rope 30.
  • the cover takes the form of a shell comprising two semi-cylindrical parts 20a, 20b capable of being assembled in order to completely surround the support 10.
  • the internal surface 21 of the cover 20 is therefore formed by assembling the internal surfaces of each of the parts 20a, 20b of the cover 20: thus, once the cover 20 is closed, the internal surface 21 is cylindrical.
  • the groove 22 of the cover 20 is formed by assembling the groove sections present on each of the parts 20a, 20b of the cover 20: thus, once the cover 20 is closed, the groove 22 is helical.
  • the internal diameter of the internal surface 21 of the cover 20 corresponds to the external diameter of the external surface 11 of the support 10 so that, when the cover 20 is closed, the internal surface 21 of the cover 20 is pressed against the surface external 1 1 of the support 10.
  • this is not shown in the figures, it should be noted that it is possible, in other examples, that the two parts 20a, 20b of the cover 20 are assembled not according to linear interfaces but according to crenellated interfaces, thus allowing their nesting in a precise position.
  • each part 20a, 20b of the cover 20 can include fixing flanges.
  • the method 80 firstly comprises a step of supplying 81 of a rope
  • impregnated composite 30 By “impregnated” is meant here that the cord 30 comprises a fibrous reinforcement impregnated with an organic resin (or matrix).
  • the cord 30 can be produced by braiding and / or winding pre-impregnated tapes. The methods for carrying out such a braiding and / or
  • the cord 30 can be produced by in-line impregnation, that is, the resin or organic matrix is supplied during the braiding and / or winding of the fibrous tapes of the cord 30.
  • the tapes comprise a reinforcement of glass fibers
  • Each strip for example, takes the form of a strip of constant width and thickness. Alternatively, some or all of the ribbons may be of varying width and / or thickness.
  • the method 80 then comprises an installation step 82 in which the rope 30 is installed in the groove 12 of the support 10 of a containment tool 1 such as that described above. On this occasion, the cord 30 is shaped so as to obtain the shape of the final composite body 90.
  • This installation step 82 is shown in Figures 4 and 5A.
  • the method 80 then comprises a step 83 of closing the tool
  • the method 80 then comprises a cooking step 84 of the assembly formed by the containment tool 1 and the composite cord 30 enclosed therein.
  • this cooking step 84 consists in bringing this assembly to a sufficient temperature and for a sufficient time to harden the resin of the cord 30.
  • said temperature is also low enough not to damage (for example by pyrolysis ) the resin of the rope 30.
  • the method 80 comprises a step
  • the cover 20 is thus removed, revealing the final composite body 90.
  • the support 10 is a core around which the composite body 90 surrounds itself at the bottom. less partially, which is the case with the coil spring 90, the final composite body 90 remains at this stage trapped in the groove 12 of the support 10.
  • the method 80 further comprises a
  • step 86 of releasing the composite body 90 the latter is carried out by heating the support 10 until it reaches its melting point. The support 10 then liquefies, which releases the composite body 90.
  • this liquefaction of the support 10 can take place during the cooking step 84, preferably at the end of the latter. In such a case, the composite body 90 is released from step
  • Figure 6 illustrates a second example of a containment tool 101 according to the disclosure. It includes a support 1 10 and a cover 120. This
  • containment 101 is designed to make the same coil spring 90 as the first example.
  • Its support 110 is quite similar to that of the first example except with regard to the profile of its groove 112.
  • the groove 1 12 here has a U-shape having a semicircular portion 1 13 extended by a rectilinear portion 114. More precisely, in this example, the depth of the groove 112 is equal to 75% of its width.
  • the cover 120 shown in Figure 7, has a general shape similar to that of the first example: in particular, it is here also formed of two parts 120a, 120b assembled with one another.
  • the cover comprises a base 123, rigid, made of metal, and an elastic lining 124, deformable, made of elastomer.
  • the internal surface 121 of the cover 120 is then formed by the surface of the elastic lining 124.
  • the internal surface 121 is here devoid of a groove.
  • the inner surface 121 is rough; it is also powdered with talcum powder.
  • the composite cord 130 is compressed between the groove 1 12 of the support 1 10 and the elastic gasket 124 of the cover 120.
  • the section of the composite cord 130 is therefore no longer circular: it is deformed, loses its central symmetry and only retains axial symmetry.
  • the final composite body 90 therefore inherits this particular shape after solidification of the composite cord 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

Outil de confinement pour fabriquer un corps composite, procédé de fabrication d'un corps composite et corps composite, l'outil de confinement comprenant un support (10), possédant une surface externe (11) présentant une gorge configurée pour recevoir au moins une portion d'une corde composite imprégnée (30), et un couvercle (20), prévu pour être rapporté sur le support (10) et maintenu contre ce dernier, possédant une surface interne (21) pouvant pour être plaquée contre la surface externe (11) du support (10) et configurée pour épouser le contour de la portion de la corde composite imprégnée (30) dépassant hors de la gorge (11) du support (10).

Description

Description
Titre de l'invention : Outil de confinement pour fabriquer un corps composite
Domaine Technique
[0001 ] Le présent exposé concerne un outil de confinement pour fabriquer un corps composite, un procédé de fabrication d’un corps composite ainsi qu’un tel corps composite.
[0002] Un tel procédé est notamment particulièrement utile pour fabriquer un corps composite formant un élément pour suspension de véhicule, tel qu’un ressort pour suspension de véhicule ou une barre stabilisatrice pour suspension de véhicule.
Technique antérieure
[0003] L’industrie automobile requiert la fabrication de ressorts de grandes tailles et de fortes raideurs pour la suspension des véhicules routiers. Historiquement, ces ressorts automobiles sont réalisés en métal. Toutefois, depuis quelques années, afin notamment d’obtenir d’importants gains de masse, des développements ont été menés pour produire de tels ressorts en matériaux composites.
[0004] De tels ressorts composites sont ainsi réalisés à partir d’une corde composite, formée d’une pluralité de couches fibreuses imprégnées de résine, enroulées les unes autour des autres, mise en forme puis solidifiée par polymérisation de la résine. Dans certains procédés, la corde passe dans un bain de résine après l’enroulement de chaque nouvelle couche fibreuse. Dans d’autres procédés plus récents, les rubans fibreux enroulés autour de la corde en cours de fabrication sont pré-imprégnés de résine.
[0005] Dans les procédés de fabrication décrits ci-dessus, une fois que la corde
composite est formée, elle est déplacée vers un poste de mise en forme puis vers un four de cuisson. A cette occasion, il est utile de confiner la corde composite afin de maintenir et de comprimer les fibres et la résine au cours de la cuisson : ceci permet une polymérisation maîtrisée de la résine et l’obtention d’un corps composite final ayant les propriétés physiques attendues.
[0006] Une option proposée pour assurer ce confinement est de mettre en place une gaine élastique autour de la corde composite avant sa mise en forme et sa cuisson. Cette méthode est efficace mais nécessite une étape et un poste de travail supplémentaire, ce qui entraîne un coût industriel plus élevé.
[0007] Il existe donc un besoin pour un outil de confinement et un procédé de
fabrication permettant de remédier au moins en partie aux inconvénients inhérents à la méthode connue précitée.
Exposé de l’invention
[0008] Le présent exposé concerne un outil de confinement pour fabriquer un corps composite, comprenant
un support, possédant une surface externe présentant une gorge configurée pour recevoir au moins une partie d’une corde composite imprégnée, et
un couvercle, prévu pour être rapporté sur le support et maintenu contre ce dernier, possédant une surface interne pouvant pour être plaquée contre la surface externe du support et configurée pour épouser le contour de la portion de la corde composite imprégnée dépassant hors de la gorge du support.
[0009] Grâce à un tel outil, il est possible de réaliser le confinement et la mise en forme de la corde composite en une seule étape, à l’aide du même outil.
[0010] En effet, il est possible de donner à la gorge du support la géométrie du corps composite final. Ainsi, l’installation de la corde composite dans la gorge du support permet de la mettre en forme selon la géométrie souhaitée pour le corps composite final, cette géométrie étant figée après cuisson de la corde composite.
[0011 ] Une fois la corde composite installée dans la gorge du support, et donc mise en forme, la mise en place du couvercle sur le support permet de maintenir fermement et de confiner la corde composite. La corde composite est ainsi enserrée, sans jeu ou pratiquement sans jeu, entre les parois de la gorge du support d’une part et la surface interne du couvercle venant épouser le contour de portion de la corde composite imprégnée dépassant hors de la gorge du support. Ce confinement permet de maintenir et de comprimer les fibres et la résine de la corde composite au cours de la solidification de cette dernière : le réseau de fibres et/ou la matrice réticulée de la corde composite sont alors moins poreux et plus denses, ce qui améliore les propriétés mécanique du corps composite obtenu.
[0012] L’outil de confinement enfermant la corde composite peut alors être chauffé, dans un four ou par des moyens intrinsèques par exemple, afin de réaliser la cuisson de la corde composite ainsi mise en forme et confinée : la solidification de la corde composite aboutit alors au corps composite final.
[0013] Ainsi, un tel outil de confinement rend inutile la mise en place préalable d’une gaine de confinement, souvent fastidieuse. Cet outil de confinement offre donc des économies en termes de coûts, de temps de cycle et de compacité de la ligne de production. De plus, en l’absence de gaine, il est possible d’obtenir un corps composite brut dont l’esthétique peut être préférée à un corps revêtu d’une gaine.
[0014] Par ailleurs, un tel outil de confinement facilite la manipulation de la corde composite après sa mise en forme et avant sa cuisson. En effet, grâce à cet outil de confinement, la corde est enfermée de telle sorte que sa géométrie est verrouillée : il est donc possible de manipuler librement l’outil de confinement, pour le transférer par exemple entre un poste de mise en forme et un poste de cuisson, sans risque de laisser échapper la corde composite et donc de perdre sa mise en forme.
[0015] Dans certains modes de réalisation, le support est un noyau et le couvercle est une coque rapportée autour du support. Ainsi, la coque forme un contour fermé une fois rapportée autour du support. Le couvercle peut ainsi enserrer fermement le support. Une telle configuration est également utile pour fabriquer des géométries tridimensionnelles.
[0016] Dans certains modes de réalisation, la surface externe du support fait le tour du support. Une telle configuration est notamment utile pour fabriquer des corps composites possédant une ou plusieurs boucles s’enroulant autour d’une direction principale du support. [0017] Dans certains modes de réalisation, la surface externe du support est dépourvue d’arêtes. Autrement dit, la surface externe du support est dérivable en tout point. Ceci permet d’obtenir pour le corps composite des géométries elles aussi continues et dérivables.
[0018] Toutefois, dans d’autres modes de réalisation, la surface externe du support peut présenter une ou plusieurs arêtes. Ceci permet d’obtenir un corps composite dont certaines portions sont angulaires.
[0019] Dans certains modes de réalisation, la surface externe du support est une surface cylindrique ou conique. Ces géométries sont notamment utiles pour fabriquer des ressorts. Il s’agit toutefois de préférence d’une surface cylindrique de révolution.
[0020] Dans certains modes de réalisation, le support est un mandrin cylindrique à symétrie axiale. Une telle configuration permet par exemple de fabriquer des ressorts hélicoïdaux.
[0021 ] Dans certains modes de réalisation, le support est configuré pour pouvoir s’effacer sous la corde composite. On entend ici que la surface externe du support peut reculer pour libérer le corps composite après solidification. Il peut aussi bien s’agir d’un recul mécanique, à l’aide de pièces mobiles par exemple, que d’un recul physique par disparition de tout ou partie du support, par changement d’état physique ou altération chimique par exemple.
[0022] Dans certains modes de réalisation, le support est fusible à une température inférieure à 180°C, de préférence inférieure à 1500. Toutefois, de préférence, sa température de fusion est supérieure à 1 10°C, depréférence supérieure à 130°C. Ainsi, le support maintient la corde composte au moins en début de cuisson de cette dernière puis fond à l’issue de la cuisson ou après une étape spécifique de fusion du support.
[0023] Dans certains modes de réalisation, le support est réalisé dans un matériau eutectique, par exemple un mélange étain-bismuth ou plomb-étain-bismuth.
[0024] Dans certains modes de réalisation, la gorge du support s’étend selon une courbe gauche, c’est-à-dire une courbe qui n’est pas contenue dans un plan. Il est ainsi possible de fabriquer un corps composite s’étendant dans l’espace, non limité à un plan donné. [0025] Dans certains modes de réalisation, la gorge est hélicoïdale. Ceci permet notamment de fabriquer des ressorts hélicoïdaux.
[0026] Dans certains modes de réalisation, la gorge du support possède une
profondeur constante.
[0027] Dans certains modes de réalisation, le profil de la gorge du support est
constant. On se place ici dans un plan transverse à la direction, éventuellement curviligne, d’extension de la gorge.
[0028] Dans certains modes de réalisation, le profil de la gorge du support est semi- circulaire. La gorge reçoit ainsi la moitié interne de la corde composite.
[0029] Dans certains modes de réalisation, le profil de la gorge du support est en forme de U. La corde composite s’enfonce ainsi plus profondément dans la gorge : la portion de la corde composite dépassant hors de la gorge est ainsi plus réduite que sa moitié externe.
[0030] Dans certains modes de réalisation, le profil de la gorge du support possède une portion elliptique non circulaire. Une section elliptique du corps composite confère de meilleures propriétés mécaniques pour certaines applications, notamment pour les ressorts hélicoïdaux.
[0031 ] Dans certains modes de réalisation, la gorge du support possède une
profondeur comprise entre 50% et 90% de sa largeur, de préférence comprise entre 60% et 80% de sa largeur. Une profondeur de 50% est préférable lorsque la géométrie de la surface interne du couvercle est fixe. En revanche, une profondeur plus importante est possible, et éventuellement préférée selon les applications, lorsque la géométrie de la surface interne du couvercle est variable.
[0032] Dans certains modes de réalisation, l’espace défini entre la gorge du support et la surface interne du couvercle est hermétique une fois le couvercle rapporté sur le support. Autrement dit, cet espace dans lequel est enfermée la corde composite ne débouche pas à l’extérieur de l’outil de confinement.
[0033] Dans certains modes de réalisation, la surface interne et/ou la surface externe est revêtue d’une poudre, de préférence de talc. Ce poudrage réduit le risque que la corde composite n’adhère à la surface interne et/ou la surface externe et réduit donc le risque que des fibres ou des fragments de résine ne soient arrachés à la corde composite. Cela facilite également le nettoyage de l’outil de confinement entre deux cycles de fabrication, voire rend ce nettoyage superflu.
[0034] Dans certains modes de réalisation, le couvercle comprend au moins deux parties, de préférence exactement deux parties, assemblables.
[0035] Dans certains modes de réalisation, les parties du couvercle se raboutent selon une interface non linéaire, de préférence crénelée. Une telle interface non linéaire facilite et assure l’alignement des différentes parties du couvercle.
[0036] Dans certains modes de réalisation, la surface interne du couvercle présente une gorge s’étendant en vis-à-vis de la gorge du support. Dans un tel cas, la gorge du couvercle et la gorge du support se complètent pour former un espace aux dimensions de la corde composite et possédant la géométrie voulue pour la mise en forme de la corde composite. La mise en forme de la corde composite peut ainsi être contrôlée très précisément.
[0037] Dans certains modes de réalisation, la gorge du couvercle possède une
profondeur constante.
[0038] Dans certains modes de réalisation, la gorge du couvercle possède une
profondeur sensiblement égale à la profondeur de la gorge du support. Par sensiblement égal on entend que la différence de profondeur est inférieure à 5% de la plus grande des profondeurs. Ainsi, chaque gorge coopère avec une moitié de la corde composite.
[0039] Dans certains modes de réalisation, le couvercle comprend une garniture élastique définissant la surface interne du couvercle. Dans un tel cas, la surface interne du couvercle est élastique et peut ainsi se déformer pour épouser le contour de la corde composite, même en l’absence de gorge sur la surface interne. Grâce à une telle configuration, il est possible d’utiliser un même couvercle pour plusieurs diamètres de cordes composites ou pour plusieurs géométries de corps composites.
[0040] Dans certains modes de réalisation, la garniture élastique est réalisée en élastomère.
[0041 ] Dans certains modes de réalisation, la garniture élastique présente une
rugosité de surface. [0042] Le présent exposé concerne également un procédé de fabrication d’un corps composite, en particulier un élément pour suspension de véhicule, le corps composite ayant une forme donnée, le procédé comprenant les étapes suivantes :
fourniture d’une corde composite imprégnée ;
fourniture d’un outil de confinement selon l’un quelconque des modes de réalisation précédents ;
installation de la corde composite imprégnée dans la gorge du support de l’outil de confinement de façon à obtenir ladite forme donnée ;
mise en place du couvercle de l’outil de confinement sur le support ; et cuisson de l’ensemble ainsi mis en forme, de façon à durcir la corde composite imprégnée et ainsi obtenir le corps composite.
[0043] Comme cela a été expliqué en référence à l’outil de confinement, ce procédé de fabrication offre des économies en termes de coûts, de temps de cycle et de compacité de la ligne de production. Il bénéficie également de tous les autres avantages évoqués liés à l’utilisation de l’outil de confinement selon l’exposé.
[0044] Dans certains modes de réalisation, la corde composite imprégnée comprend des fibres imprégnées à l’aide d’une résine. Il peut par exemple s’agir de fibres de verre imprégnées à l’aide d’une résine époxy.
[0045] Dans certains modes de réalisation, le diamètre de la gorge du support est strictement inférieur au diamètre de la corde composite imprégnée fournie. Ceci permet de comprimer la corde composite au sein de la gorge afin de mieux contrôler sa cuisson et ainsi obtenir des meilleures propriétés mécaniques.
[0046] Le présent exposé concerne également un corps composite obtenu par le procédé selon l’un quelconque des modes de réalisation précédents.
[0047] Grâce à l’utilisation de ce procédé, utilisant notamment l’outil de confinement selon l’exposé, le corps composite bénéficie d’une forme et d’une structure interne plus précise, ce qui lui confère de meilleures propriétés mécaniques.
[0048] Dans certains modes de réalisation, le corps composite possède une section non circulaire, de préférence elliptique ou quasi-elliptique. En particulier, la section du corps composite ne possède pas nécessairement une symétrie centrale. Toutefois, le contour de cette section reste continu et dérivable en tout point.
[0049] Les caractéristiques et avantages précités, ainsi que d'autres, apparaîtront à la lecture de la description détaillée qui suit, d'exemples de réalisation de l’outil de confinement, du procédé de fabrication et du corps composite proposés. Cette description détaillée fait référence aux dessins annexés.
Brève description des dessins
[0050] Les dessins annexés sont schématiques et visent avant tout à illustrer les principes de l’exposé.
[0051 ] Sur ces dessins, d’une figure à l’autre, des éléments (ou parties d’élément) identiques sont repérés par les mêmes signes de référence. En outre, des éléments (ou parties d'élément) appartenant à des exemples de réalisation différents mais ayant une fonction analogue sont repérés sur les figures par des références numériques incrémentées de 100, 200, etc.
[0052] [Fig. 1 ] La figure 1 est une vue en perspective d’un premier exemple d’outil de confinement.
[0053] [Fig. 2] La figure 2 est une vue en perspective du support du premier exemple d’outil de confinement.
[0054] [Fig. 3] La figure 3 est une vue en perspective du couvercle du premier
exemple d’outil de confinement.
[0055] [Fig. 4] La figure 4 est une vue en perspective du premier exemple d’outil de confinement dans lequel a été installée une corde composite.
[0056] [Fig. 5A-5B] La figure 5A est une vue en coupe illustrant l’installation de la corde composite dans le support du premier exemple. La figure 5B est une vue en coupe illustrant la mise en place du couvercle sur le support.
[0057] [Fig. 6] La figure 6 est une vue en perspective d’un deuxième exemple d’outil de confinement.
[0058] [Fig. 7] La figure 7 est une vue en perspective du couvercle du deuxième exemple d’outil de confinement. [0059] [Fig. 8A-8B] La figure 8A est une vue en coupe illustrant l’installation de la corde composite dans le support du deuxième exemple. La figure 8B est une vue en coupe illustrant la mise en place du couvercle sur le support.
[0060] [Fig. 9] La figure 9 représente les différentes étapes d’un exemple de procédé de fabrication.
[0061 ] [Fig. 10] La figure 10 est une vue en perspective d’un exemple de corps
composite.
Description des modes de réalisation
[0062] Afin de rendre plus concret l’exposé, des exemples d’outils de confinement, de procédé de fabrication et de corps composite sont décrits en détail ci-après, en référence aux dessins annexés. Il est rappelé que l'invention ne se limite pas à ces exemples.
[0063] La Figure 1 illustre un premier exemple d’outil de confinement 1 selon
l’exposé. Il comprend un support 10 et un couvercle 20. Dans cet exemple, l’outil de confinement 1 est conçu pour fabriquer un ressort hélicoïdal 90 en matériau composite tel celui représenté sur la Figure 10.
[0064] La Figure 2 illustre le support 10 isolément. Le support 10 comprend une
surface externe 1 1 dans lequel est pratiquée une gorge 12. Le support 10 est réalisé dans un matériau métallique eutectique, par exemple un mélange étain- bismuth, lui conférant un point de fusion relativement bas.
[0065] La gorge 12 s’étend selon une courbe unidirectionnelle, sans
embranchement. La gorge 12 s’étend entre deux extrémités 12a, 12b fermées et contenues dans la surface externe 1 1 ; autrement dit, la gorge 12 ne débouche pas hors de la surface externe 1 1.
[0066] Dans cet exemple, le support 10 prend la forme d’un noyau, plus précisément d’un mandrin cylindrique, à base circulaire, d’axe principal A, de telle sorte que la surface externe 1 1 soit elle aussi cylindrique ; la gorge 12 s’étend pour sa part selon une spirale autour de l’axe A correspondant à la géométrie souhaitée pour le ressort 90. [0067] La gorge 12 possède un profil constant ; autrement dit, elle possède une section invariante depuis sa première extrémité 12a jusqu’à sa deuxième extrémité 12b. Comme cela est visible sur la Figure 5A, la section de la gorge 12 est semi-circulaire.
[0068] La Figure 3 illustre le couvercle 20 isolément. Le couvercle 20 comprend une surface interne 21 dans laquelle est pratiquée une gorge 22. Le couvercle 20 est réalisé en métal.
[0069] La géométrie de la gorge 22 est prévue pour correspondre exactement à la géométrie de la gorge 12 du support 10. Ainsi, lorsque le couvercle 20 est rapporté sur le support 10, la gorge 22 du couvercle 20 s’étend exactement le long et en vis-à-vis de la gorge 12 du support 10 depuis la première extrémité 12a jusqu’à la deuxième extrémité 12b. En particulier, les extrémités de la gorge 22 du couvercle 20 coïncident avec les extrémités 12a, 12b de la gorge 12 du support 10 et ne débouchent donc pas hors de la surface interne 21. De plus, la gorge 22 possède elle aussi un profil constant : comme cela est visible sur la Figure 5B, sa section est également semi-circulaire.
[0070] Ainsi, lorsque le couvercle 20 est rapporté sur le support 10, les gorges 12 et 22 se complètent pour former un espace clos, hermétique, ne débouchant pas à l’extérieur de l’outil de confinement 1 , destiné à recevoir une corde composite 30.
[0071 ] Dans cet exemple, le couvercle prend la forme d’une coque comprenant deux parties 20a, 20b semi-cylindriques capables de s’assembler afin d’entourer complètement le support 10. La surface interne 21 du couvercle 20 est donc formée par l’assemblage des surfaces internes de chacune des parties 20a, 20b du couvercle 20 : ainsi, une fois le couvercle 20 fermé, la surface interne 21 est cylindrique. De même, la gorge 22 du couvercle 20 est formée par l’assemblage des tronçons de gorge présents sur chacune des parties 20a, 20b du couvercle 20 : ainsi, une fois le couvercle 20 fermé, la gorge 22 est hélicoïdale.
[0072] Le diamètre interne de la surface interne 21 du couvercle 20 correspond au diamètre externe de la surface externe 11 du support 10 de telle sorte que, lorsque le couvercle 20 est fermé, la surface interne 21 du couvercle 20 soit plaquée contre la surface externe 1 1 du support 10. [0073] Bien que cela ne soit pas représenté sur les figures, il est à noter qu’il est possible, dans d’autres exemples, que les deux parties 20a, 20b du couvercle 20 s’assemblent non pas selon des interfaces linéaires mais selon des interfaces crénelées, permettant ainsi leur emboîtement dans une position précise.
[0074] Par ailleurs, il est à noter que le verrouillage du couvercle 20 sur le support 10 peut être réalisé de différentes manières. Par exemple, des colliers de serrages peuvent être rapportés autour du couvercle 20 une fois ses parties 20a, 20b assemblées autour du support 10. Selon un autre exemple, chaque partie 20a, 20b du couvercle 20 peut comprendre des brides de fixation.
[0075] Un exemple de procédé de fabrication d’un corps composite va maintenant être décrit en référence à la Figure 9.
[0076] Le procédé 80 comprend d’abord une étape de fourniture 81 d’une corde
composite imprégnée 30. Par « imprégnée », on entend ici que la corde 30 comprend un renfort fibreux imprégné d’une résine (ou matrice) organique.
[0077] La corde 30 peut être réalisée par tressage et/ou enroulement de rubans pré imprégnés. Les méthodes permettant de réaliser un tel tressage et/ou
enroulement sont bien connues en soi et ne sont donc pas décrites en détail ici. En alternative, la corde 30 peut être produite par imprégnation en ligne, c’est-à- dire que la résine ou matrice organique est apportée pendant le tressage et/ou l’enroulement des rubans fibreux de la corde 30.
[0078] Dans un exemple, les rubans comprennent un renfort de fibres de verres
imprégné d’une résine époxy. Chaque ruban prend par exemple la forme d’une bande de largeur et d’épaisseur constantes. En alternative, certains des rubans ou tous les rubans peuvent être de largeur et/ou d’épaisseur variables.
[0079] Le procédé 80 comprend ensuite une étape d’installation 82 dans laquelle on installe la corde 30 dans la gorge 12 du support 10 d’un outil de confinement 1 tel celui décrit ci-avant. A cette occasion, la corde 30 est mise en forme de façon à obtenir la forme du corps composite final 90. Cette étape d’installation 82 est représentée sur les Figures 4 et 5A.
[0080] Le procédé 80 comprend ensuite une étape de fermeture 83 de l’outil de
confinement 1 au cours de laquelle le couvercle 20 est rapporté sur le support 10. Ainsi, à cette occasion, la corde composite 30 est enfermée entre la gorge 12 du support 10 et la gorge 22 du couvercle 20. Cette étape de fermeture est représentée sur la Figure 5B.
[0081 ] Le procédé 80 comprend ensuite une étape de cuisson 84 de l’ensemble formé par l’outil de confinement 1 et la corde composite 30 enfermée dans ce dernier. De façon connue, cette étape de cuisson 84 consiste à porter cet ensemble à une température suffisante et pendant un temps suffisant pour durcir la résine de la corde 30. Bien entendu, ladite température est aussi suffisamment basse pour ne pas endommager (par exemple par pyrolyse) la résine de la corde 30.
[0082] À l’issue de l’étape de cuisson 84, le procédé 80 comprend une étape
d’ouverture 85 de l’outil de confinement 1. Le couvercle 20 est ainsi retiré, ce qui révèle le corps composite final 90. Toutefois, dans le cas où le support 10 est un noyau autour duquel le corps composite 90 s’entoure au moins partiellement, ce qui est le cas du ressort hélicoïdal 90, le corps composite final 90 reste à ce stade prisonnier de la gorge 12 du support 10.
[0083] En conséquence, dans un tel cas, le procédé 80 comprend en outre une
étape de libération 86 du corps composite 90 : cette dernière est réalisée en chauffant le support 10 jusqu’à atteindre son point de fusion. Le support 10 se liquéfie alors, ce qui libère le corps composite 90.
[0084] Toutefois, dans d’autres exemples de procédé, cette liquéfaction du support 10 peut avoir lieu durant l’étape de cuisson 84, de préférence à la fin de cette dernière. Dans un tel cas, le corps composite 90 est libéré dès l’étape
d’ouverture 85 de l’outil de confinement 1.
[0085] La Figure 6 illustre un deuxième exemple d’outil de confinement 101 selon l’exposé. Il comprend un support 1 10 et un couvercle 120. Cet outil de
confinement 101 est conçu pour fabriquer le même ressort hélicoïdal 90 que le premier exemple.
[0086] Son support 110 est tout à fait analogue à celui du premier exemple sauf en ce qui concerne le profil de sa gorge 112. En effet, comme cela est visible sur la Figure 8A, la gorge 1 12 possède ici une forme en U possédant une portion semi- circulaire 1 13 prolongée par une portion rectiligne 114. Plus précisément, dans cet exemple, la profondeur de la gorge 112 est égale à 75% de sa largeur. [0087] Le couvercle 120, représenté sur la Figure 7, possède une forme générale analogue à celui du premier exemple : en particulier, il est ici aussi formé de deux parties 120a, 120b assemblables l’une avec l’autre.
[0088] En revanche, dans ce deuxième exemple, le couvercle comprend une base 123, rigide, réalisée en métal, et une garniture élastique 124, déformable, réalisée en élastomère. La surface interne 121 du couvercle 120 est alors formée par la surface de la garniture élastique 124. La surface interne 121 est ici dépourvue de gorge. De préférence, la surface interne 121 est rugueuse ; elle est également poudrée à l’aide de talc.
[0089] Ainsi, lorsque le couvercle 120 est rapporté sur le support 1 10, comme cela est représenté sur la Figure 8B, la pression exercée déforme légèrement la corde composite 130, cette dernière conservant une certaine souplesse avant cuisson, et plaque alors le contour de cette dernière contre les parois de la gorge 1 12 du support 1 10, forçant sa portion inférieure à épouser la forme en U de la gorge 112. La garniture élastique 124 se déforme elle aussi pour épouser la forme de la portion de la corde composite 130 dépassant hors de la gorge 112.
[0090] De cette manière, lorsque le couvercle 120 est fermement maintenu contre le support 1 10, la corde composite 130 est comprimée entre la gorge 1 12 du support 1 10 et la garniture élastique 124 du couvercle 120. Dans un tel cas, la section de la corde composite 130 n’est donc plus circulaire : elle est déformée, perd sa symétrie centrale et ne conserve qu’une symétrie axiale. Le corps composite final 90 hérite donc de cette forme particulière après solidification de la corde composite 130.
[0091 ] Le procédé de fabrication décrit plus avant peut utiliser de la même manière ce deuxième exemple d’outil de confinement 101.
[0092] Bien que la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et des
changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation
illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être
considérés dans un sens illustratif plutôt que restrictif.
[0093] Il est également évident que toutes les caractéristiques décrites en référence à un procédé sont transposables, seules ou en combinaison, à un dispositif, et inversement, toutes les caractéristiques décrites en référence à un dispositif sont transposables, seules ou en combinaison, à un procédé.

Claims

Revendications
[Revendication 1] Outil de confinement pour fabriquer un corps composite, comprenant
un support (10), possédant une surface externe (11) présentant une gorge (12) configurée pour recevoir au moins une portion d'une corde composite imprégnée (30), et
un couvercle (20), prévu pour être rapporté sur le support (10) et maintenu contre ce dernier, possédant une surface interne (21) pouvant pour être plaquée contre la surface externe (11) du support (10) et configurée pour épouser le contour de la portion de la corde composite imprégnée (30) dépassant hors de la gorge (11) du support (10),
dans lequel le couvercle (20) comprend une garniture élastique (24) définissant la surface interne (22) du couvercle (20).
[Revendication 2] Outil de confinement selon la revendication 1, dans lequel le support (10) est un noyau et le couvercle (20) est une coque rapportée autour du support (10).
[Revendication 3] Outil de confinement selon la revendication 1 ou 2, dans lequel la surface externe (11) du support (10) est une surface cylindrique.
[Revendication 4] Outil de confinement selon l'une quelconque des
revendications 1 à 3, dans lequel la gorge (12) du support (10) s'étend selon une courbe gauche, de préférence hélicoïdale.
[Revendication 5] Outil de confinement selon l'une quelconque des
revendications 1 à 4, dans lequel le profil de la gorge (12) du support (10) possède une portion elliptique non circulaire.
[Revendication 6] Outil de confinement selon l'une quelconque des
revendications 1 à 5, dans lequel la gorge (12) du support (10) possède une profondeur comprise entre 50% et 90% de sa largeur, de préférence comprise entre 60% et 80% de sa largeur.
[Revendication 7] Outil de confinement selon l'une quelconque des
revendications 1 à 6, dans lequel l'espace défini entre la gorge (12) du support (10) et la surface interne (24) du couvercle (20) est hermétique une fois le couvercle (20) rapporté sur le support (10).
[Revendication 8] Outil de confinement selon l'une quelconque des
revendications 1 à 7, dans lequel la surface interne (21) et/ou la surface externe (11) est revêtue d'une poudre, de préférence de talc.
[Revendication 9] Outil de confinement selon l'une quelconque des
revendications 1 à 8, dans lequel la garniture élastique (124) présente une rugosité de surface.
[Revendication 10] Outil de confinement pour fabriquer un corps composite, comprenant
un support (10), possédant une surface externe (11) présentant une gorge (12) configurée pour recevoir au moins une portion d'une corde composite imprégnée (30), et
un couvercle (20), prévu pour être rapporté sur le support (10) et maintenu contre ce dernier, possédant une surface interne (21) pouvant pour être plaquée contre la surface externe (11) du support (10) et configurée pour épouser le contour de la portion de la corde composite imprégnée (30) dépassant hors de la gorge (11) du support (10),
dans lequel le profil de la gorge (12) du support (10) possède une portion elliptique non circulaire.
[Revendication 11] Procédé de fabrication d'un corps composite, en
particulier un élément pour suspension de véhicule, le corps composite (90) ayant une forme donnée, le procédé (80) comprenant les étapes suivantes : fourniture (81) d'une corde composite imprégnée (30) ;
fourniture d'un outil de confinement (1) selon l'une quelconque des revendications 1 à 10 ;
installation (82) de la corde composite imprégnée (30) dans la gorge (11) du support (10) de l'outil de confinement (1) de façon à obtenir ladite forme donnée ;
mise en place (83) du couvercle (20) de l'outil de confinement (1) sur le support (10) ; et cuisson (84) de l'ensemble ainsi mis en forme, de façon à durcir la corde composite imprégnée (30) et ainsi obtenir le corps composite (90). [Revendication 12] Corps composite obtenu par le procédé (80) selon la revendication 11.
PCT/FR2020/051120 2019-06-28 2020-06-26 Outil de confinement pour fabriquer un corps composite WO2020260839A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1907091A FR3097794A1 (fr) 2019-06-28 2019-06-28 Outil de confinement pour fabriquer un corps composite
FRFR1907091 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020260839A1 true WO2020260839A1 (fr) 2020-12-30

Family

ID=68281642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051120 WO2020260839A1 (fr) 2019-06-28 2020-06-26 Outil de confinement pour fabriquer un corps composite

Country Status (2)

Country Link
FR (1) FR3097794A1 (fr)
WO (1) WO2020260839A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021666A1 (en) * 2012-07-18 2014-01-23 Jun Yoshioka Composite coil spring
CN106671447A (zh) * 2016-12-22 2017-05-17 广东亚太新材料科技有限公司 一种碳纤维复合材料弹簧成型模具及成型方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021666A1 (en) * 2012-07-18 2014-01-23 Jun Yoshioka Composite coil spring
CN106671447A (zh) * 2016-12-22 2017-05-17 广东亚太新材料科技有限公司 一种碳纤维复合材料弹簧成型模具及成型方法

Also Published As

Publication number Publication date
FR3097794A1 (fr) 2021-01-01

Similar Documents

Publication Publication Date Title
CA2710547C (fr) Procede de fabrication d'une piece metallique renforcee de fibres ceramiques
EP2555201B1 (fr) Procédé de fabrication amelioré d'une pièce à geometrie tubulaire en matériau composite à matrice céramique
EP3215748B1 (fr) Dispositif de maintien destine a etre present a la surface d'une piece en materiau composite
WO2010149768A2 (fr) Procede de fabrication de bielles composites et bielles obtenues selon le procede
CA2827806C (fr) Piece en materiau composite munie de moyen d'attache
EP2640566A1 (fr) Procede de fabrication d'un ressort en materiau composite, tel qu'un ressort de suspension notamment pour vehicule automobile
EP2509773A1 (fr) Procede de fabrication d'une bielle en materiau composite comprenant une surepaisseur localisee
WO2010001069A2 (fr) Procédé de fabrication d'une pièce métallique renforcée de fibres céramiques
FR3047916A1 (fr) Procede de positionnement d'un outillage support a l'interieur d'une piece creuse de revolution
EP1798429A1 (fr) Bielle a tube en un materiau composite et procede de fabrication d'une telle bielle
FR3056439A1 (fr) Procede de fabrication d’une contrefiche et contrefiche ainsi formee
WO2020260839A1 (fr) Outil de confinement pour fabriquer un corps composite
EP2536874B1 (fr) Procede d'exploitation d'une machine de tressage de fibres renforcantes
EP3808546A1 (fr) Procede de fabrication d'une piece sous presse avec outil verrouillable en hauteur
CA2794411A1 (fr) Procede de fabrication d'un organe mecanique en materiau composite ayant une tenue mecanique accrue en traction-compression et en flexion
EP2389288B1 (fr) Procede de fabrication d'une piece composite, et piece obtenue
EP3661774B1 (fr) Procédé de fabrication d'un ensemble stabilisateur pour véhicule
FR2497302A1 (fr) Ensemble-broche de precision sur roulements
FR2787548A1 (fr) Flexible composite pour le transport de fluide et son procede de fabrication
CA2764774C (fr) Procede de fabrication d'une piece metallique incorporant un renfort annulaire fibreux
FR2935927A1 (fr) Roue a rayon demontable en materiau composite
FR3066948A1 (fr) Mandrin a bobinage superficiel
EP0606178A1 (fr) Procédé de réalisation d'un filetage sur une pièce, notamment une pièce en matériau composite et pièce filetée ainsi obtenue
EP0610103A1 (fr) Procédé de réalisation d'un bossage sur une canalisation de fluide en matériau composite et bossage ainsi obtenu
CA2229616A1 (fr) Garniture pour pneumatique du type increvable et procede de montage de cette garniture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747047

Country of ref document: EP

Kind code of ref document: A1