WO2020260785A1 - Dispositif de fabrication additive et sa mise en oeuvre - Google Patents

Dispositif de fabrication additive et sa mise en oeuvre Download PDF

Info

Publication number
WO2020260785A1
WO2020260785A1 PCT/FR2020/050980 FR2020050980W WO2020260785A1 WO 2020260785 A1 WO2020260785 A1 WO 2020260785A1 FR 2020050980 W FR2020050980 W FR 2020050980W WO 2020260785 A1 WO2020260785 A1 WO 2020260785A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
vibration
plate
bed
front face
Prior art date
Application number
PCT/FR2020/050980
Other languages
English (en)
Inventor
Jean-Paul Garandet
Jérôme LAURENT
Jean-Daniel PENOT
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2020260785A1 publication Critical patent/WO2020260785A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the technical field of additive manufacturing, and more particularly that of additive techniques based on the use of powder beds.
  • these processes there are in particular those where the powder is locally melted and resolidified, designated as powder bed fusion or by the acronym “PBF” for “Powder Bed Fusion”.
  • PBF processes include the processes implementing a complete fusion of the powder grains (eg SLM TM for “Selective Laser Melting” according to Anglo-Saxon terminology or “EBM” for “Electron Beam Melting” according to Anglo-Saxon terminology) .
  • PBF is used for processes where the cohesion of the material is ensured by sintering of the material (“SLS” processes for “Selective Laser Sintering” according to Anglo-Saxon terminology). Also within the scope of powder bed processes are those based on the local injection of a binder on the bed, this is called a binder jet process (“Binder Jetting” according to Anglo-Saxon terminology).
  • the present application aims to propose a device and a method making it possible to control the phenomena of layering of the successive powder beds necessary for the production of parts by additive manufacturing.
  • a localized melting or sintering step intended to define a layer of the part during manufacture.
  • Steps i) and ii) are then repeated as many times as necessary for the production of the part.
  • Step i) of forming the powder bed comprises in particular the spreading of the powder with a layering system, such as for example a doctor blade or a roller (hereinafter “doctor blade”).
  • the merged zones commonly exhibit prominences (eg due to expansion or thermal stresses) liable to cause degradation of the layering system which has repercussions on the quality of the bed. powder.
  • such degradation can be the source of the formation of a groove on the surface of the bed of powder which generates defects in the part being manufactured. It also happens that such contact, single or repeated, tilts or even tears the part in the powder bed.
  • the layering time can be significant, reducing the productivity of the equipment.
  • Squeegee-type layering devices do not make it possible to obtain significant compactness due to the absence of vertical force on the powder bed. In this regard, a large amount of air or gas between the powder grains causes more frequent porosities.
  • doctor blade due to repeated contact with the powder intended to form the powder bed, as well as with the large-sized ejecta resulting from the instabilities of the molten bath in techniques involving passage through a liquid phase, s' uses and makes the control of step i) complicated and requires frequent maintenance operations.
  • the additive manufacturing devices based on the formation of a powder bed generally include a small-sized plate, in particular a side size of less than 50 cm, and correspondingly limit the size of the parts likely to be manufactured with this type. device.
  • the difficulty in controlling the formation of the powder beds is one of the factors which limit the increase in the size of the plates.
  • An aim of the present invention is therefore to provide an additive manufacturing device making it possible to better control the formation of a homogeneous powder bed, or even to obtain greater compactness.
  • Another object of the present invention is to provide an additive manufacturing device for which the phenomena of wear by contact with the powder for the purpose of forming the powder bed remain limited.
  • Another aim of the present invention is to provide a manufacturing device allowing more efficient control of additive manufacturing processes.
  • the aims of the present invention are, at least in part, achieved by an additive manufacturing device for the manufacture of objects by successive addition of layers comprising:
  • - vibration means configured to set the plate in vibration at a frequency v between 10 Hz and 10,000 Hz, advantageously between 100 Hz and 1000 Hz, and a vibration amplitude between 1 pm and 2 mm, preferably between 10 pm and 500 ⁇ m, even more preferably between 50 ⁇ m and 200 ⁇ m.
  • the plate has side edges configured to confine the successive powder beds.
  • the device further comprises one or more distribution means configured to pour a controlled quantity of powder onto the front face of the plate.
  • one or more distribution means comprises at least one of the elements chosen from: nozzle, hopper, sieve.
  • the powder can in particular be deposited as a pile of sand (source point) or by rain (by passing through sieves). By passing, for example, through several sieves (by adjusting the mesh and the distance between sieves), the powder can be distributed over almost the entire surface in an almost homogeneous manner before making it vibrate.
  • the vibration means are configured to set the plate in vibration in a direction perpendicular to the front face.
  • the vibration means are configured to set the plate in vibration in at least one direction contained in the plane defined by the front face.
  • the vibration means comprise at least one vibrating pot, advantageously arranged facing a face of the plate opposite to the front face.
  • the device comprises at least one energy source configured to locally cause the melting or the sintering of the powder bed.
  • the energy source comprises at least one of the elements chosen from: a laser, a plasma source, an electron beam source.
  • the device also comprises a means for shaping the bed of powder, advantageously this means comprises a doctor blade or a roller.
  • the device also comprises an additional element making it possible to improve the quality of the bed of powders.
  • the additional element can be configured to discharge an excess amount of powder.
  • the additional element advantageously comprises a doctor blade, or even a roller.
  • the additional element can also be configured to perform additional compaction of the bed of powders, in which case the additional element advantageously comprises a roller.
  • the device is also provided with a weir configured to recover the unused powder.
  • the plate has a characteristic dimension greater than 50 cm, or even advantageously greater than 1 m.
  • the invention also relates to a method of manufacturing a part implementing the device according to the present invention.
  • the method comprises the following steps:
  • steps a) and b) being repeated so as to form the part by stacking fused layers.
  • step a) comprises the following steps:
  • step a2) a step which consists in spreading the powder in the form of a powder bed by imposing at least one vibration cycle on the plate at a frequency v between 10 Hz and 10,000 Hz, advantageously between 100 Hz and 1000 Hz, and an amplitude of vibration between 1 ⁇ m and 2 mm, preferably between 10 ⁇ m and 500 ⁇ m, even more preferably between 50 ⁇ m and 200 ⁇ m.
  • step a2) is executed for a period of between 1 second and 60 seconds, advantageously between 2 seconds and 30 seconds, even more advantageously between 5 seconds and 10 seconds.
  • the at least one vibration cycle comprises a first sequence executed at a first frequency vi and a first vibration amplitude, followed by a second sequence executed at a second frequency V2 and a second amplitude of vibration, so that the acceleration induced by the second vibration sequence is less than the acceleration induced by the first vibration sequence.
  • acceleration is conventionally meant the product of the vibration amplitude times the square of the vibration frequency.
  • step a2) is followed by step a3) intended to compact the bed of powder and / or to remove excess of said powder.
  • This step a3) therefore improves the quality of the powder bed.
  • the powder grains forming the powder bed have a D50 of between 5 ⁇ m and 100 ⁇ m, advantageously between 10 ⁇ m and 40 ⁇ m.
  • Figure la is a schematic representation of the device according to the present invention, in particular, Figure la shows the device with a pile of powder deposited on the front face of the tray;
  • FIG. 1b is a schematic representation of the device according to the present invention, in particular, FIG. 1b represents the device with a bed of powder formed on the front face of the plate, and the energy source facing the bed of powder;
  • Figure 2a is a schematic representation of the device according to the present invention, in particular, Figure 2a shows the device with a control system. layering and a mechanical actuator for vertical translation of the plate and the vibration system positioned under the mechanical actuator;
  • FIG. 2b is a schematic representation of the device according to the present invention, in particular, FIG. 2b represents the device with a part in the course of manufacture surrounded by powders not transformed in the preceding steps, a pile of powder corresponding to the bed to be formed at the step in progress as well as a system for discharging excess powder;
  • FIG. 2c is a schematic representation of the device according to the present invention, in particular, FIG. 2c represents the device with a vibration system positioned directly on the rear face of the plate.
  • the present invention relates to an additive manufacturing device for the manufacture of objects by successive addition of layers ( Figures la, lb, 2a to 2c).
  • the device 10 comprises, in particular, a plate 20 optionally mounted on a mechanical actuator 30 (FIGS. 2a to 2c), for example and without limitation a jack or a motorized system with linear guidance, intended to adjust the height of said plate 20 according to a ZZ 'axis.
  • a mechanical actuator 30 for example and without limitation a jack or a motorized system with linear guidance, intended to adjust the height of said plate 20 according to a ZZ 'axis.
  • the plate 20 comprises a face, called the front face 20a.
  • the tray may have side edges 21 to confine the powder beds (FIG. La).
  • the height of the edges 21 of the plate is preferably chosen to be at least equal to that of the part of greater height to be produced on said plate.
  • the edges 21 are integral with the plate ( Figures la and lb). According to another embodiment, the edges 21 are removable and can be removed at the end of the manufacturing process ( Figures 2a to 2c).
  • the mechanical actuator 30 may be integral with a support 31 on one side of which the plate 20 rests (FIG. 2a to 2c).
  • the device 10 further comprises one or more distribution means 40, for example a single distribution means, configured to discharge powder onto the front face 20a of the plate 20.
  • One or more distribution means 40 can in particular comprise at least one of the elements chosen from: nozzle, hopper, sieve.
  • the device according to the present invention also comprises vibration means 50 configured to set the plate in vibration at a frequency v of between 10 Hz and 10,000 Hz, advantageously between 100 Hz and 1000 Hz, and a vibration amplitude of between 1 ⁇ m and 2 mm, preferably between 10 ⁇ m and 500 ⁇ m, even more preferably between 50 ⁇ m and 200 ⁇ m.
  • vibration means 50 are implemented to form the powder bed after pouring the powder onto the front face 20a of the plate 20.
  • the vibration may preferably be applied in a direction perpendicular to the front face 20a.
  • the alignment of the plate 20 relative to the at least one energy source 60 (described in the remainder of the description) is only slightly or not affected.
  • the energy source 60 is in particular configured to locally cause the melting or the sintering of the powder bed.
  • a vibration of the plate 20 in at least one direction of the plane defined by the front face 20a can also be considered.
  • the vibration means 50 comprise at least one vibrating pot, advantageously arranged opposite a face of the plate opposite to the front face 20a.
  • a vibrating pot, or exciter, or vibrator is a device for vibrating a structure in a controlled manner.
  • the vibrating pot may include a coil intended to be traversed by a magnetic field.
  • the vibrating pot is chosen according to the total mass (in addition to the powder deposited in the current step, the plate 20 and the part being manufactured with the powders (100) not transformed in the previous steps, the support 31 and the 'mechanical actuator 30, Figure 2b) intended to be set in vibration.
  • the vibrating pot can in particular be adapted to put in vibration masses of up to 1000 kg.
  • the implementation of the vibration means 50 according to the terms of the present invention makes it possible to obtain a uniform distribution of the powder grains in the powder bed.
  • the inventors have however been able to observe, under certain conditions of frequency and amplitude of vibration mentioned above, that it is possible to form a relatively homogeneous powder bed in terms of solid fraction in the bed.
  • one or more piles of powders can be deposited by one or more nozzles, hoppers or sieves, and the whole transformed into a bed of powder with a solid fraction controlled by setting the plate in vibration.
  • the device 10 can comprise at least one energy source 60 configured to locally cause the melting or the sintering of the powder bed.
  • the energy source can comprise at least one of the elements chosen from: a laser, a plasma source, an electron beam source.
  • the energy source is associated with a scanning system 61 of the energy beam 60a, moving the point of impact of the energy beam to the powder bed surface (FIG. 1b).
  • the element or elements 40 must be positioned so as not to obstruct the beam during its sweeping of the surface of the powder bed.
  • the device can also include an additional element 70 making it possible to improve the quality of the bed of powders.
  • the additional element is advantageously a doctor blade, or even a roller.
  • the additional element 70 can be implemented to carry out additional compaction of the bed of powders, in which case the additional element is advantageously a roller.
  • the additional element 70 (doctor blade or roller) is implemented after formation of the powder bed.
  • the device can also be provided with a weir 80 configured to recover unused powder (Figure 2b).
  • the vibration means according to the terms of the present invention make it possible to envisage a large plate, and in particular with a characteristic dimension greater than 50 cm, advantageously greater than 1 m.
  • the characteristic dimension of a tray can be associated with the length of a side if it is a polygon such as a square or a rectangle, or a diameter if it is a disk.
  • the invention also relates to the implementation of the additive manufacturing device for the manufacture of an object.
  • the method comprises a step a) of forming a bed of powder on the front face 20a of the plate 20.
  • Step a) can comprise a first step a1) which consists in pouring powder onto the front face 20a of the plate 20.
  • the powder can be discharged by means of one or more hoppers or nozzles under one or more piles of powder (figure la).
  • the quantity of powder poured onto the front face 20a of the plate 20 is generally calculated so as to obtain a bed of powder with a thickness between 20 ⁇ m and 100 ⁇ m.
  • the powder grains forming the powder bed can have a D50 of between 5 ⁇ m and 100 ⁇ m, advantageously between 10 ⁇ m and 40 ⁇ m.
  • D50 the quantity of powder discharged can be adjusted so as to form a powder bed with a thickness close to 50%. pm.
  • Step a) can also comprise a second step a2) of spreading the pile (s) of powder on the front face 20a of the plate 20 (FIG. Lb).
  • the second step a2) is intended to impose at least one cycle of vibration on the plate at a frequency v of between 10 Hz and 10,000 Hz, advantageously between 100 Hz and 1000 Hz, and a vibration amplitude of between 1 pm and 2 mm, preferably between 10 ⁇ m and 500 ⁇ m, even more preferentially between 50 ⁇ m and 200 ⁇ m (FIGS. 1b and 2c).
  • the plate may be subjected to a vibration in a direction perpendicular to the front face 20a, and / or in a direction contained in the plane defined by said front face 20a.
  • Step a2) can be performed for a period of between 1 second and 60 seconds, advantageously between 2 seconds and 30 seconds, even more advantageously between 5 seconds and 10 seconds.
  • the at least one vibration cycle can comprise a first sequence executed at a first frequency vi and a first vibration amplitude, followed by a second sequence executed at a second frequency V2 and a second vibration amplitude, so that the acceleration induced by the second vibration sequence (conventionally measured as the product of the amplitude by the square of the frequency) is less than the acceleration induced by the first vibration sequence.
  • the first sequence thus makes it possible to carry out a first coarse mixing of the powder grains, and leads to the shaping of the powder bed.
  • the second sequence makes it possible to homogenize and increase the density (solid fraction) of the powder bed.
  • Step a) can, optionally, comprise a third step a3), carried out after the second step a2), of final shaping of the powder bed.
  • the third step a3) can in particular comprise the implementation of a roller.
  • the uniform distribution of grains in the form of a powder bed obtained at the end of the second step a2) allows compaction, via contact with a roller, without movement of grains, and reduced abrasion of the tool used for compaction.
  • step a) is followed by a step b) of melting or localized sintering of the powder bed.
  • the fusion or localized sintering draws a stratum of the object being manufactured 90 (FIG. 2b).
  • Steps a) and b) are repeated as many times as necessary to form the object by stacking layers.
  • step b) can be replaced by a binder projection step (“Binder Jetting” according to Anglo-Saxon terminology), intended to be debonded during a subsequent step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

La divulgation concerne un dispositif (10) de fabrication additive pour la fabrication d'objets par addition successive de couches fusionnées comprenant: - un plateau (20) sur une face duquel, dite face avant (20a), un lit de poudre est destiné à être formé; - des moyens de vibration (50) configurés pour mettre le plateau en vibration selon une fréquence v comprise entre 10 Hz et 10000 Hz, et une amplitude de vibration comprise entre 1 µm et 2 mm.

Description

Description
Titre : DISPOSITIF DE FABRICATION ADDITIVE ET SA MISE EN ŒUVRE DOMAINE TECHNIQUE
La présente demande concerne le domaine technique de la fabrication additive, et plus particulièrement celui des techniques additives basées sur la mise en œuvre de lits de poudre. Parmi ces procédés, on trouve en particulier ceux où la poudre est fondue et resolidifiée localement, désignés comme fusion sur lit de poudres ou par l'acronyme anglais « PBF » pour « Powder Bed Fusion ». Les procédés dits PBF incluent les procédés mettant en œuvre une fusion complète des grains de poudre (e.g. SLM™ pour « Sélective Laser Melting » selon la terminologie Anglo-Saxonne ou « EBM » pour « Electron Beam Melting » selon la terminologie Anglo-Saxonne). Par abus de langage, l'acronyme PBF est utilisé pour les procédés où la cohésion de la matière est assurée par frittage du matériau (procédés « SLS » pour « Sélective Laser Sintering » selon la terminologie Anglo- Saxonne). Rentrent également dans le cadre des procédés lits de poudre ceux basés sur l'injection locale d'un liant sur le lit, on parle alors de procédé à jet de liant (« Binder Jetting » selon la terminologie Anglo-Saxonne).
Notamment, la présente demande vise à proposer un dispositif et un procédé permettant de contrôler les phénomènes de mise en couche des lits de poudres successifs nécessaires à l'élaboration des pièces par fabrication additive.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les procédés de fabrication additive basés sur la mise en œuvre d'un lit de poudre connus de l'état de la technique comprennent en général les étapes suivantes :
i) une étape de formation d'un lit de poudre sur une face avant d'un plateau,
ii) pour les procédés PBF, une étape de fusion ou de frittage localisée destinée à définir une couche de la pièce en cours de fabrication.
Les étapes i) et ii) sont alors répétées autant de fois que nécessaire pour la réalisation de la pièce. L'étape i) de formation du lit de poudre comprend notamment l'étalement de la poudre avec un système de mise en couche, comme par exemple une racle ou un rouleau (ci-après « racle »).
Toutefois, un tel mode de mise en œuvre n'est pas satisfaisant.
En effet, les systèmes de mise en couche sont extrêmement sensibles aux aspérités de surface.
Notamment, dans les procédés PBF, les zones fusionnées présentent, de manière courante, des proéminences (e.g. en raison de dilatation ou de contraintes thermiques) susceptibles d'occasionner une dégradation du système de mise en couche qui se répercute sur la qualité du lit de poudre.
En particulier, une telle dégradation peut être à la source de la formation d'un sillon en surface du lit de poudre générateur de défauts dans la pièce en cours de fabrication. Il arrive également qu'un tel contact, unique ou répété, incline voire arrache la pièce dans le lit de poudre.
Par ailleurs, les systèmes de mise en couche requièrent un alignement très fin, complexe à obtenir.
En outre, selon les systèmes, le temps de mise en couche peut être non négligeable, réduisant la productivité des équipements.
Les dispositifs de mise en couche de type racle, ne permettent pas d'obtenir d'importantes compacités en raison de l'absence de force verticale sur le lit de poudre. A cet égard, une grande quantité d'air ou de gaz entre les grains de poudre engendre des porosités plus fréquentes.
Par ailleurs, la racle, du fait de contacts répétés avec la poudre destinée à former le lit de poudre, ainsi qu'avec les éjectas de grande dimension issus des instabilités du bain fondu dans les techniques impliquant le passage par une phase liquide, s'use et rend la maîtrise de l'étape i) compliquée et impose des opérations de maintenance fréquentes.
Notamment, ces phénomènes d'usure se traduisent par des irrégularités de la surface de la racle susceptible de laisser une empreinte reste visible en surface du lit de poudre. Ce manque de contrôle de formation du lit de poudre conduit généralement à des hétérogénéités de répartition, voire à des manques de matière, avec pour conséquence la formation de porosités ou de défauts dans la pièce en cours de fabrication susceptible de rendre cette dernière défectueuse, voire inutilisable.
Les dispositifs de fabrication additive basés sur la formation de lit de poudre comprennent généralement un plateau de petite dimension, notamment d'une taille inférieure à 50 cm de côté, et limitent d'autant la taille des pièces susceptibles d'être fabriquées avec ce type de dispositif. La difficulté de contrôler la formation des lits de poudres est un des facteurs qui limitent l'augmentation de la taille des plateaux.
Un but de la présente invention est donc de proposer un dispositif de fabrication additive permettant de mieux maîtriser la formation d'un lit de poudre homogène, voire d'obtenir des compacités supérieures.
Un autre but de la présente invention est de proposer un dispositif de fabrication additive pour lequel les phénomènes d'usure par contact avec la poudre en vue de la formation du lit de poudre restent limités.
Un autre but de la présente invention est de proposer un dispositif de fabrication permettant un contrôle plus efficace des procédés de fabrication additive. EXPOSÉ DE L'INVENTION
Les buts de la présente invention sont, au moins en partie, atteints par un dispositif de fabrication additive pour la fabrication d'objets par addition successive de couches comprenant :
- un plateau sur une face duquel, dite face avant, un lit de poudre est destiné à être formé ;
- des moyens de vibration configurés pour mettre le plateau en vibration selon une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm.
Selon un mode de mise en œuvre, le plateau comporte des bords latéraux configurés pour confiner les lits de poudres successifs. Selon un mode de mise en œuvre, le dispositif comprend en outre un ou plusieurs moyens de distribution configurés pour déverser une quantité contrôlée de poudre sur la face avant du plateau.
Selon un mode de mise en œuvre, l'un ou plusieurs moyens de distribution comprend au moins un des éléments choisis parmi : buse, trémie, tamis.
La poudre peut être en particulier déposée comme un tas de sable (point source) ou par pluviation (en passant à travers des tamis). En passant, par exemple, à travers plusieurs tamis (en jouant sur la maille et sur la distance entre tamis), la poudre peut être répartie sur quasi toute la surface de façon quasi homogène avant de faire vibrer.
Selon un mode de mise en œuvre, les moyens de vibration sont configurés pour mettre le plateau en vibration selon une direction perpendiculaire à la face avant.
Selon un mode de mise en œuvre, les moyens de vibration sont configurés pour mettre le plateau en vibration selon au moins une direction contenue dans le plan défini par la face avant.
Selon un mode de mise en œuvre, les moyens de vibration comprennent au moins un pot vibrant, avantageusement disposé en regard d'une face du plateau opposée à la face avant.
Selon un mode de mise en œuvre pour les technologies PBF, le dispositif comprend au moins une source d'énergie configurée pour provoquer localement la fusion ou le frittage du lit de poudre.
Selon un mode de mise en œuvre, la source d'énergie comprend au moins un des éléments choisis parmi : un laser, une source plasma, une source à faisceau d'électrons.
Selon un mode de mise en œuvre, le dispositif comprend également un moyen de mise en forme du lit de poudre, avantageusement ce moyen comprend une racle ou un rouleau.
Selon un mode de mise en œuvre, le dispositif comprend également un élément supplémentaire permettant d'améliorer la qualité du lit de poudres. Par exemple l'élément supplémentaire peut être configuré pour évacuer une quantité de poudre en excès. Dans ce cas de figure, l'élément supplémentaire comprend avantageusement une racle, voire un rouleau. De manière alternative ou complémentaire, l'élément supplémentaire peut également être configuré pour réaliser une compaction additionnelle du lit de poudres, auquel cas l'élément supplémentaire comprend avantageusement un rouleau.
Selon un mode de mise en œuvre, le dispositif est également pourvu d'un déversoir configuré pour récupérer la poudre non utilisée.
Selon un mode de mise en œuvre, le plateau présente une dimension caractéristique supérieure à 50 cm, voire avantageusement supérieure à 1 m.
L'invention concerne également un procédé de fabrication d'une pièce mettant en œuvre le dispositif selon la présente invention.
Selon un mode de mise en œuvre, le procédé comprend les étapes suivantes :
a) une étape de formation d'un lit de poudre sur la face avant du plateau ;
b) pour les technologies PBF, une fusion ou un frittage localisé du lit de poudre ;
les étapes a) et b) étant répétées de manière à former la pièce par empilage de couches fusionnées.
Selon un mode de mise en œuvre, l'étape a) comprend les étapes suivantes :
al) une étape qui consiste à déverser de la poudre sur la face avant du plateau ;
a2) une étape qui consiste à étaler la poudre sous forme de lit de poudre en imposant au moins un cycle de vibration au plateau à une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm. Selon un mode de mise en œuvre, l'étape a2) est exécutée pendant une durée comprise entre 1 seconde et 60 secondes, avantageusement comprise entre 2 secondes et 30 secondes, encore plus avantageusement entre 5 secondes et 10 secondes.
Selon un mode de mise en œuvre, l'au moins un cycle de vibration comprend une première séquence exécutée à une première fréquence vi et une première amplitude de vibration, suivie d'une deuxième séquence exécutée à une seconde fréquence V2 et une deuxième amplitude de vibration, de sorte que l'accélération induite par la seconde séquence de vibration soit inférieure à l'accélération induite par la première séquence de vibration.
Par « accélération », on entend conventionnellement le produit de l'amplitude de vibration par le carré de la fréquence de vibration.
Selon un mode de mise en œuvre, l'étape a2) est suivie d'une étape a3) destinée à compacter le lit de poudre et/ou évacuer un excès de ladite poudre.
Cette étape a3) permet donc d'améliorer la qualité du lit de poudre.
Selon un mode de mise en œuvre, les grains de poudre formant le lit de poudre présentent un D50 compris entre 5 pm et 100 pm, avantageusement compris entre 10 pm et 40 pm.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un dispositif de fabrication additive, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
La figure la est une représentation schématique du dispositif selon la présente invention, notamment, la figure la représente le dispositif avec un tas de poudre déposé sur la face avant du plateau ;
La figure lb est une représentation schématique du dispositif selon la présente invention, notamment, la figure lb représente le dispositif avec un lit de poudre formé sur la face avant du plateau, et la source d'énergie en regard du lit de poudre ;
La figure 2a est une représentation schématique du dispositif selon la présente invention, notamment, la figure 2a représente le dispositif avec un système de mise en couche et un actionneur mécanique de translation verticale du plateau et le système de mise en vibration positionné sous l'actionneur mécanique ;
La figure 2b est une représentation schématique du dispositif selon la présente invention, notamment, la figure 2b représente le dispositif avec une pièce en cours de fabrication entourée de poudres non transformées aux étapes précédentes, un tas de poudre correspondant au lit à former à l'étape en cours ainsi qu'un système de déversoir de l'excès de poudre ;
La figure 2c est une représentation schématique du dispositif selon la présente invention, notamment, la figure 2c représente le dispositif avec un système de mise en vibration positionné directement sur la face arrière du plateau.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
La présente invention concerne un dispositif de fabrication additive pour la fabrication d'objets par addition successive de couches (figures la, lb, 2a à 2c).
Le dispositif 10 comprend, notamment, un plateau 20 éventuellement monté sur un actionneur mécanique 30 (figures 2a à 2c), par exemple et sans caractère limitatif un vérin ou un système motorisé avec guidage linéaire, destiné à ajuster la hauteur dudit plateau 20 selon un axe ZZ'.
Le plateau 20 comprend une face, dite face avant 20a. Le plateau peut comporter des bords 21 latéraux pour confiner les lits de poudres (figure la). Dans ce cas, la hauteur des bords 21 du plateau est préférentiellement choisie pour être au moins égale à celle de la pièce de plus grande hauteur à élaborer sur ledit plateau.
Selon un mode de réalisation, les bords 21 sont solidaires du plateau (figures la et lb). Selon un autre mode de réalisation les bords 21 sont amovibles et peuvent être retirés en fin de procédé de fabrication (figures 2a à 2c).
L'actionneur mécanique 30 peut être solidaire d'un support 31 sur une face duquel repose le plateau 20 (figure 2a à 2c).
Le dispositif 10 comprend en outre un ou plusieurs moyens de distribution 40, par exemple un seul moyen de distribution, configurés pour déverser de la poudre sur la face avant 20a du plateau 20. L'un ou plusieurs moyens de distribution 40 peut notamment comprendre au moins un des éléments choisis parmi : buse, trémie, tamis.
Le dispositif selon la présente invention comprend par ailleurs des moyens de vibration 50 configurés pour mettre le plateau en vibration selon une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm.
Ces moyens de vibration 50 sont mis en œuvre pour former le lit de poudre après déversement de la poudre sur la face avant 20a du plateau 20.
La vibration peut être préférablement appliquée selon une direction perpendiculaire à la face avant 20a. Ainsi, l'alignement du plateau 20 par rapport à l'au moins une source d'énergie 60 (décrite dans la suite de la description) n'est que peu ou pas affectée.
Dans les technologies PBF, la source d'énergie 60 est notamment configurée pour provoquer localement la fusion ou le frittage du lit de poudre.
Toutefois, une vibration du plateau 20 selon au moins une direction du plan défini par la face avant 20a peut également être envisagée.
Selon un mode de mise en œuvre avantageux, les moyens de vibration 50 comprennent au moins un pot vibrant, avantageusement disposé en regard d'une face du plateau opposée à la face avant 20a.
Un pot vibrant, ou excitateur, ou vibrateur, est un appareil permettant de faire vibrer une structure de façon contrôlée.
Le pot vibrant peut comprendre une bobine destinée à être traversée par un champ magnétique.
Le pot vibrant est choisi en fonction de la masse totale (outre la poudre déposée à l'étape en cours, le plateau 20 et la pièce en cours de fabrication avec les poudres (100) non transformées aux étapes précédentes, le support 31 et l'actionneur mécanique 30, figure 2b) destinée à être mise en vibration. Le pot vibrant peut notamment être adapté pour mettre en vibration des masses pouvant aller jusqu'à 1000 Kg. Alternativement au pot vibrant on peut également utiliser un dispositif de mise en vibration basé sur un empilement de couches faites d'un matériau piézoélectrique.
La mise en œuvre des moyens de vibration 50 selon les termes de la présente invention permet d'obtenir une répartition uniforme des grains de poudre dans le lit de poudre.
Cet effet reste néanmoins inattendu, et la mise en œuvre des moyens de vibration contre intuitive. En effet, pour les lits de poudres minces, une ségrégation des grains de poudre est généralement observée quand le plateau sur lequel ils reposent est mis en vibration. Cette ségrégation peut notamment prendre la forme de figures de Chladni.
Les inventeurs ont pu cependant observer, sous certaines conditions de fréquence et d'amplitude de vibration cités ci-avant, qu'il est possible de former un lit de poudre relativement homogène en termes de fraction solide dans le lit.
La formation d'un lit de poudre par mise en vibration du plateau évite le besoin d'une racle ou d'un rouleau pour l'étalement de la poudre. La mise en œuvre d'un tel moyen n'est toutefois pas exclue pour améliorer encore la qualité du lit (élimination d'un éventuel excès de poudre ou compaction additionnelle du lit de poudres).
En pratique, un ou plusieurs tas de poudres peuvent être déposés par une ou plusieurs buses, trémies ou tamis, et l'ensemble transformé en lit de poudre à fraction solide contrôlée par mise en vibration du plateau.
Dès lors qu'une technologie PBF est considérée, le dispositif 10 peut comprendre au moins une source d'énergie 60 configurée pour provoquer localement la fusion ou le frittage du lit de poudre.
La source d'énergie peut comprendre au moins un des éléments choisis parmi : un laser, une source plasma, une source à faisceau d'électrons.
La source d'énergie est associée à un système de balayage 61 du faisceau d'énergie 60a, déplaçant le point d'impact du faisceau d'énergie à la surface de lit de poudre (figure lb). Le ou les éléments 40 doivent être positionnés de manière à ne pas obstruer le faisceau lors de son balayage de la surface du lit de poudre. Le dispositif peut également comprendre un élément supplémentaire 70 permettant d'améliorer la qualité du lit de poudres. Par exemple pour évacuer une quantité de poudre en excès, dans ce cas l'élément supplémentaire est avantageusement une racle, voire un rouleau. De manière alternative ou complémentaire, l'élément supplémentaire 70 peut être mis en œuvre pour réaliser une compaction additionnelle du lit de poudres, auquel cas l'élément supplémentaire est avantageusement un rouleau.
En d'autres termes, l'élément supplémentaire 70 (racle ou rouleau) est mis en œuvre après formation du lit de poudre.
Le dispositif peut également être pourvu d'un déversoir 80 configuré pour récupérer la poudre non utilisée (figure 2b).
Les moyens de vibration selon les termes de la présente invention permettent d'envisager un plateau de grande taille, et notamment d'une dimension caractéristique supérieure à 50 cm, avantageusement supérieure à 1 m.
La dimension caractéristique d'un plateau peut être associé à la longueur d'un côté s'il s'agit d'un polygone tel qu'un carré ou un rectangle, ou d'un diamètre s'il s'agit d'un disque.
L'invention concerne également la mise en œuvre du dispositif de fabrication additive pour la fabrication d'un objet.
Notamment, le procédé comprend une étape a) de formation d'un lit de poudre sur la face avant 20a du plateau 20.
L'étape a) peut comprendre une première étape al) qui consiste à déverser de la poudre sur la face avant 20a du plateau 20.
La poudre peut être déversée au moyen d'une ou plusieurs trémies ou buses sous d'un ou plusieurs tas de poudre (figure la).
La quantité de poudre déversée sur la face avant 20a du plateau 20 est généralement calculée de manière à obtenir un lit de poudre d'une épaisseur comprise entre 20 pm et 100 pm.
Les grains de poudre formant le lit de poudre peuvent présenter un D50 compris entre 5 pm et 100 pm, avantageusement compris entre 10 pm et 40 pm. Ainsi, pour un diamètre médian de gains D50 égale à 37 pm et en supposant une compacité du lit de poudre voisine de 50 %, la quantité de poudre déversée peut être ajustée de manière à former un lit de poudre d'une épaisseur voisine de 50 pm.
L'étape a) peut également comprendre une deuxième étape a2) d'étalement du ou des tas de poudre sur la face avant 20a du plateau 20 (figure lb).
La deuxième étape a2) est destinée à imposer au moins un cycle de vibration au plateau à une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm (figures lb et 2c).
Le plateau peut se voir imposer une vibration selon une direction perpendiculaire à la face avant 20a, et/ou selon une direction contenue dans le plan défini par ladite face avant 20a.
L'étape a2) peut être exécutée pendant une durée comprise entre 1 seconde et 60 secondes, avantageusement comprise entre 2 secondes et 30 secondes, encore plus avantageusement entre 5 secondes et 10 secondes.
De manière particulièrement avantageuse, l'au moins un cycle de vibration peut comprendre une première séquence exécutée à une première fréquence vi et une première amplitude de vibration, suivie d'une deuxième séquence exécutée à une seconde fréquence V2 et une deuxième amplitude de vibration, de sorte que l'accélération induite par la seconde séquence de vibration (mesurée conventionnellement comme le produit de l'amplitude par le carré de la fréquence) soit inférieure à l'accélération induite par la première séquence de vibration.
La première séquence permet ainsi d'effectuer un premier brassage grossier des grains de poudre, et conduit à la mise en forme du lit de poudre. La deuxième séquence permet quant à elle d'homogénéiser et d'augmenter la densité (fraction solide) du lit de poudre. L'étape a) peut, de manière optionnelle, comprendre une troisième étape a3), exécutée après la deuxième étape a2), de mise en forme finale du lit de poudre.
La troisième étape a3) peut notamment comprendre la mise en œuvre d'un rouleau. La répartition uniforme de grains sous forme de lit de poudre obtenue à l'issue de la deuxième étape a2) permet une compaction, via un contact avec un rouleau, sans déplacement de grains, et une abrasion réduite de l'outil mis en œuvre pour la compaction.
Par ailleurs, les moyens mis en œuvre tant pour la formation du lit de poudre que pour sa compaction ne sont pas affectés par ces opérations, de sorte qu'il est possible de former plusieurs lits de poudre présentant des propriétés équivalentes de manière répétable.
Dans les technologies PBF, l'étape a) est suivie d'une étape b) de fusion ou de frittage localisé du lit de poudre.
Plus particulièrement, la fusion ou le frittage localisé dessine une strate de l'objet en cours de fabrication 90 (figure 2b).
Les étapes a) et b) sont répétés autant de fois que nécessaire pour former l'objet par empilage de couches.
L'exposé de la présente invention a été centré sur les techniques PBF avec fusion (ou frittage) localisée des poudres. Cependant la présente invention n'est pas limitée à ce seul mode de mise en œuvre. En particulier, l'étape b), telle que décrite précédemment, peut être remplacée par une étape de projection de liant (« Binder Jetting » selon la terminologie Anglo-Saxonne), destiné à être délianté lors d'une étape ultérieure.

Claims

Revendications
1. Dispositif (10) de fabrication additive pour la fabrication d'objets par addition successive de couches comprenant :
- un plateau (20) sur une face duquel, dite face avant (20a), un lit de poudre est destiné à être formé ;
- des moyens de vibration (50) configurés pour mettre le plateau en vibration selon une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm.
2. Dispositif selon la revendication 1, dans lequel le plateau comporte des bords (21) latéraux configurés pour confiner les lits de poudres successifs.
3. Dispositif selon la revendication 1 ou 2, dans lequel le dispositif comprend en outre un ou plusieurs moyens de distribution (40) configurés pour déverser une quantité contrôlée de poudre sur la face avant (20a) du plateau (20).
4. Dispositif selon la revendication 3, dans lequel l'un ou plusieurs moyens de distribution (40) comprend au moins un des éléments choisis parmi : buse, trémie, tamis.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel les moyens de vibration (50) sont configurés pour mettre le plateau (20) en vibration selon une direction perpendiculaire à la face avant.
6. Dispositif selon l'une des revendications 1 à 4, dans lequel les moyens de vibration (50) sont configurés pour mettre le plateau (20) en vibration selon au moins une direction contenue dans le plan défini par la face avant (20a).
7. Dispositif selon l'une des revendications 1 à 6, dans lequel les moyens de vibration (50) comprennent au moins un pot vibrant, avantageusement disposé en regard d'une face du plateau (20) opposée à la face avant (20a).
8. Dispositif selon l'une des revendications 1 à 7, dans lequel le dispositif (10) comprend au moins une source d'énergie configurée pour provoquer localement la fusion ou le frittage du lit de poudre.
9. Dispositif selon la revendication 8, dans lequel la source d'énergie comprend au moins un des éléments choisis parmi : un laser, une source plasma, une source à faisceau d'électrons.
10. Dispositif selon l'une des revendications 1 à 9, dans lequel le dispositif (10) comprend également un moyen de mise en forme du lit de poudre, avantageusement ce moyen comprend une racle ou un rouleau.
11. Dispositif selon l'une des revendications 1 à 10, dans lequel le dispositif est également pourvu d'un déversoir configuré pour récupérer la poudre non utilisée.
12. Dispositif selon l'une des revendications 1 à 11, dans lequel le plateau présente une dimension caractéristique supérieure à 50 cm, avantageusement supérieure à 1 m.
13. Procédé de fabrication d'une pièce mettant en œuvre le dispositif selon l'une des revendications 1 à 12.
14. Procédé selon la revendication 13 qui comprend les étapes suivantes : a) une étape de formation d'un lit de poudre sur la face avant (20a) du plateau (20) ;
b) une fusion ou un frittage localisé du lit de poudre ; les étapes a) et b) étant répétés de manière à former la pièce par empilage de couches fusionnées.
15. Procédé selon la revendication 14, dans lequel l'étape a) comprend les étapes suivantes :
al) une étape qui consiste à déverser de la poudre sur la face avant du plateau ;
a2) une étape qui consiste à étaler la poudre sous forme de lit de poudre en imposant au moins un cycle de vibration au plateau à une fréquence v comprise entre 10 Hz et 10000 Hz, avantageusement entre 100 Hz et 1000 Hz, et une amplitude de vibration comprise entre 1 pm et 2 mm, préférentiellement entre 10 pm et 500 pm, encore plus préférentiellement entre 50 pm et 200 pm.
16. Procédé selon la revendication 15, dans lequel l'étape a2) est exécutée pendant une durée comprise entre 1 seconde et 60 secondes, avantageusement comprise entre 2 secondes et 30 secondes, encore plus avantageusement entre 5 secondes et 10 secondes.
17. Procédé selon la revendication 15 ou 16, dans lequel l'au moins un cycle de vibration comprend une première séquence exécutée à une première fréquence vi et une première amplitude de vibration, suivie d'une deuxième séquence exécutée à une seconde fréquence V2 et une deuxième amplitude de vibration de sorte que l'accélération induite par la seconde séquence de vibration soit inférieure à l'accélération induite par la première séquence de vibration, l'accélération induite correspondant au produit d'une amplitude de vibration par le carré d'une fréquence de vibration.
18. Procédé selon l'une des revendications 15 à 17, dans lequel l'étape a2) est suivie d'une étape a3) destinée à compacter le lit de poudre et/ou évacuer un excès de ladite poudre.
19. Procédé selon l'une des revendications 14 à 18, dans lequel les grains de poudre formant le lit de poudre présentent un D50 compris entre 5 pm et 100 pm, avantageusement compris entre 10 pm et 40 pm.
PCT/FR2020/050980 2019-06-27 2020-06-09 Dispositif de fabrication additive et sa mise en oeuvre WO2020260785A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1907022A FR3097798B1 (fr) 2019-06-27 2019-06-27 dispositif de fabrication additive et sa mise en œuvre
FRFR1907022 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020260785A1 true WO2020260785A1 (fr) 2020-12-30

Family

ID=68343053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050980 WO2020260785A1 (fr) 2019-06-27 2020-06-09 Dispositif de fabrication additive et sa mise en oeuvre

Country Status (2)

Country Link
FR (1) FR3097798B1 (fr)
WO (1) WO2020260785A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219381A1 (en) * 2021-01-08 2022-07-14 Xerox Corporation Building an object with a three-dimensional printer using vibrational energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US20160228990A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Powder deposition process utilizing vibratory mechanical energy
JP2017078214A (ja) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 積層造形装置
DE102016202696A1 (de) * 2016-02-22 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur additiven Herstellung von dreidimensionalen Bauteilen
WO2019022767A1 (fr) * 2017-07-28 2019-01-31 Hewlett-Packard Development Company, L.P. Procédé et appareil de recyclage de matériau de construction 3d
US20190126543A1 (en) * 2016-10-11 2019-05-02 Hewlett Packard Development Company, L.P. Powder leveling in additive manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US20160228990A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Powder deposition process utilizing vibratory mechanical energy
JP2017078214A (ja) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 積層造形装置
DE102016202696A1 (de) * 2016-02-22 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur additiven Herstellung von dreidimensionalen Bauteilen
US20190126543A1 (en) * 2016-10-11 2019-05-02 Hewlett Packard Development Company, L.P. Powder leveling in additive manufacturing
WO2019022767A1 (fr) * 2017-07-28 2019-01-31 Hewlett-Packard Development Company, L.P. Procédé et appareil de recyclage de matériau de construction 3d

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219381A1 (en) * 2021-01-08 2022-07-14 Xerox Corporation Building an object with a three-dimensional printer using vibrational energy

Also Published As

Publication number Publication date
FR3097798A1 (fr) 2021-01-01
FR3097798B1 (fr) 2022-10-07

Similar Documents

Publication Publication Date Title
EP2454040B1 (fr) Dispositif de mise en couches minces et procédé d'utilisation d'un tel dispositif
CA2892840C (fr) Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
CA2917038C (fr) Procede de fabrication additive de pieces par fusion ou frittage de particules de poudre(s) au moyen d'un faisceau de haute energie avec des poudres adaptees au couple procede/materiau vise
EP2879818B1 (fr) Procede de realisation d'un objet tridimensionnel
EP2737964A1 (fr) Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
FR2980380A1 (fr) Strategie de fabrication d'une piece metallique par fusion selective d'une poudre
EP3416770A1 (fr) Procédé et dispositif de fabrication d'une pièce par dépôts successifs de couches
FR3068272B1 (fr) Procede de fabrication de pastilles de materiau fritte, notamment en carbure de bore
WO2013064767A1 (fr) Installation de fabrication de pièces par fusion sélective de poudre
WO2010060969A1 (fr) Dispositif et procede de depot d'un melange de poudres pour la formation d'un objet a gradients de composition
EP3174652A1 (fr) Procédé de fabrication additive à base de poudre d'une pièce, notamment d'une lamelle de garniture pour moule de pneumatiques
CA3119413A1 (fr) Procede de fabrication par addition de matiere d'un support inorganique de filtration a partir d'une composition thermofusible et membrane obtenue
WO2020260785A1 (fr) Dispositif de fabrication additive et sa mise en oeuvre
EP3986643A1 (fr) Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative
EP4051444B1 (fr) Equipement et procédé de dépôt de particules par ondes de choc laser
FR3073761A1 (fr) Outillage ameliore pour la fabrication additive
WO2015158631A2 (fr) Procédé de production de pièces d'horlogerie
WO2023194490A1 (fr) Procédé de fabrication additive d'un objet magnétique
FR3118430A1 (fr) Méthode et installation de fabrication additive
FR3053900A1 (fr) Dispositif de compactage de poudre metallique d'une machine de fabrication additive par lit de poudre
WO2020234526A1 (fr) Dispositif et procédé de fabrication additive par fusion laser sur lit de poudre
CH716026B1 (fr) Procédé de fabrication additive par faisceau laser d'une pièce mécanique à fonction technique et/ou décorative et pièce mécanique à fonction technique et/ou décorative.
FR3078502A3 (fr) Pastilleuse munie de poincons de compression
FR3068634A1 (fr) Procede de fabrication d'une poudre granulaire thermofusible, procede de fabrication d'une piece mecanique, poudre, piece mecanique, kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745251

Country of ref document: EP

Kind code of ref document: A1