WO2020260325A1 - Architecture de traction a repartition vectorielle de couple securisee - Google Patents

Architecture de traction a repartition vectorielle de couple securisee Download PDF

Info

Publication number
WO2020260325A1
WO2020260325A1 PCT/EP2020/067566 EP2020067566W WO2020260325A1 WO 2020260325 A1 WO2020260325 A1 WO 2020260325A1 EP 2020067566 W EP2020067566 W EP 2020067566W WO 2020260325 A1 WO2020260325 A1 WO 2020260325A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotary electric
machine
rotating electrical
rotating
Prior art date
Application number
PCT/EP2020/067566
Other languages
English (en)
Inventor
Paul Armiroli
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Publication of WO2020260325A1 publication Critical patent/WO2020260325A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0295Inhibiting action of specific actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/038Limiting the input power, torque or speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a traction architecture with secure torque vector distribution.
  • the invention finds a particularly advantageous, but not exclusive, application with rotary electrical machines for motor vehicles.
  • traction architectures may include differentials with torque vectoring (known as "torque vectoring" technology) capable of imposing a different torque on each of the driving wheels of a motor vehicle.
  • the device For example, during a phase of driving in a corner, the device provides high torque to the outer wheel to help registration in the curve.
  • the system's computer seeks to counteract the effect of oversteer and helps re-acceleration by distributing the torque to the other wheel.
  • This system generally uses mechanical devices based on epicyclic gear assemblies and / or hydraulic systems.
  • a known electrical device uses two rotating electrical machines each associated with a wheel of a train. These electric machines are able to apply a specific distribution of torque to one and the other wheel of the propulsion train according to the driving conditions of the vehicle.
  • the present invention aims to effectively remedy this drawback by proposing a traction architecture for a motor vehicle comprising:
  • the invention thus makes it possible, thanks to the connection provided between the two rotating electrical machines, to inform the other electrical machine almost instantaneously of the presence of a fault in order to be able to reconfigure the traction system. as quickly as possible. This avoids the risk of losing control of the motor vehicle in a bend in particular.
  • the link is constituted by a direct wire link between the first rotary electric machine and the second rotary electric machine.
  • direct link is meant a link between the electrical machines without going through a vehicle communication network.
  • the link makes it possible to transmit the information acquired from either side of the link.
  • the link does not participate in the detection of malfunction.
  • the fact that the link is dedicated to detecting a malfunction does not mean that the link participates in the detection as such.
  • the first machine may include a fault sensor.
  • the first machine can include a fault sensor. This allows faults to be detected.
  • the link is constituted by a dedicated link on a communication network between the first rotating electrical machine and the second rotating electrical machine.
  • said traction architecture is configured in such a way that in the event of detection of a fault in a rotating electrical machine, a short-circuiting of the first rotating electrical machine and of the second electrical machine rotating is suitable for control.
  • said traction architecture is configured such that in the event of detection of a fault in a rotating electric machine, a short-circuiting of the faulty rotary electric machine is able to be controlled and a torque of the other rotating electric machine is able to be adapted as a function of driving conditions.
  • the first rotary electric machine and the second rotary electric machine are each associated with a separate differential.
  • the first rotary electric machine and the second rotary electric machine are associated with a common differential.
  • the first rotary electric machine and the second rotary electric machine are arranged on the same train of the motor vehicle.
  • the first rotary electric machine and the second rotary electric machine are arranged on two different trains of the motor vehicle.
  • the first rotary electric machine and the second rotary electric machine each have an operating voltage of less than 60 volts, and preferably equal to 48 volts.
  • Figure 1 is a schematic representation of a motor vehicle architecture according to the invention in which the electrical machines of a train are each associated with a differential;
  • Figure 2 is a schematic representation of a motor vehicle architecture according to the invention in which the electrical machines of a train are connected to a common differential.
  • Figures 1 and 2 show a traction architecture 10 for a motor vehicle comprising a train 1 1 having a first wheel 12.1 and a second wheel 12.2.
  • a first rotating electric machine 13.1 is able to supply a torque to the first wheel 12.1.
  • a second rotating electric machine 13.2 is able to supply a torque to the second wheel 12.2.
  • the first rotary electrical machine 13.1 comprises a first control inverter 15.1.
  • the second rotary electrical machine 13.2 comprises a second control inverter 15.2.
  • the control inverters 15.1, 15.2 can be placed inside the same box and share common components, such as a heat sink, filtering components, or connectors. It will also be possible to use a standard control inverter intended for a six-phase machine and to use three phases with each of the three-phase machines 13.1, 13.2.
  • the electric machines 13.1, 13.2 are advantageously of the reversible type, that is to say they are able to operate in a motor mode to apply a motor torque to the wheels 12.1, 12.2 from the electric energy of the battery, and in a generator mode for recharging a battery from a mechanical power taken from the wheels 12.1, 12.2.
  • the electric machines 13.1, 13.2 have an operating voltage of less than 60 volts, and preferably 48 volts. Typically, the torque supplied by an electric machine 13.1, 13.2 is between 300 and 500Nm. A electric machine 13.1, 13.2 has for example a power of between 15kW and 30kW.
  • the first rotary electric machine 13.1 and the second rotary electric machine 13.2 are each associated with a separate differential 16.1, 16.2.
  • the first differential 16.1 is thus associated with the first electric machine 13.1, while the second differential
  • first rotary electric machine 13.1 and the second rotary electric machine 13.2 are associated with a common differential 16.
  • a supervisor 18 is able to apply a specific torque distribution to one and the other electric machine 13.1, 13.2 depending on the driving conditions of the motor vehicle. These driving conditions are defined in particular by the speed of rotation of the wheels, the curvature of the road (straight line or bend) which can be detected using one or more sensors located on the steering wheel and / or the wheels of the vehicle, and if applicable the type of braking (normal braking or emergency braking).
  • the control of the electric machines 13.1, 13.2 by the supervisor 18 may be carried out via a communication network, in particular of the CAN type, for “Controller Area Network” in English.
  • the link 19 may be constituted by a direct wired link between the two rotating electrical machines 13.1, 13.2.
  • direct link is meant a link between the rotating electrical machines 13.1, 13.2 without going through a vehicle communication network.
  • the link 19 is constituted by a dedicated link on the communication network between the first rotary electric machine 13.1 and the second rotary electric machine 13.2.
  • the traction architecture 10 is configured such that in the event of detection of a fault in a rotary electric machine 13.1, 13.2, a short-circuiting of the first rotary electric machine 13.1 and of the second 13.2 rotating electric machine is ordered.
  • the short-circuit control of the phases of the rotating electrical machines 13.1, 13.2 may be carried out by a control unit integrated into each of the electrical machines 13.1, 13.2 or common to these electrical machines 13.1, 13.2.
  • the traction architecture 10 is configured such that in the event of detection of a fault in a rotating electric machine 13.1, 13.2, a short-circuiting of the faulty rotary electric machine 13.1, 13.2 is controlled and the torque of the other electric machine 13.1, 13.2 is adapted according to the driving conditions of the motor vehicle. For example, in the event of a fault detected in a bend, it may be useful to keep a non-zero torque in motor mode on the electric machine 13.1, 13.2 which is still active to allow the bend to continue. In the event of driving in a straight line, it is possible to maintain an engine torque on the electric machine 13.1, 13.2 which is always active, this making it possible to continue driving in a safe manner until a stop zone of the motor vehicle.
  • the first rotary electric machine 13.1 and the second rotary electric machine 13.2 are arranged in this case on the same train 1 1 of the motor vehicle which may be the front axle or the rear axle.
  • the first rotary electric machine 13.1 and the second rotary electric machine 13.2 are arranged on two trains 1 1 different from the motor vehicle.
  • a first electric machine 13.1 can be installed on the front axle and a second electric machine 13.2 on the rear axle.
  • an electric machine 13.1, 13.2 is faulty, the other train will be able to provide the traction function in bends in particular.
  • more than two electric machines 13.1, 13.2 can be distributed in the motor vehicle, in particular four electric machines each associated with a wheel or two groups of two electric machines with a group associated with each train of the vehicle.
  • the motor vehicle may also include a heat engine.

Abstract

L'invention porte principalement sur une architecture de traction (10) pour véhicule automobile comportant: - une première machine électrique tournante (13.1) apte à fournir un couple à une première roue (12.1 ), et - une deuxième machine électrique tournante (13.2) apte à fournir un couple à une deuxième roue (12.2), - une liaison (19) entre la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) dédiée à une détection de dysfonctionnement d'une des deux machines électriques tournantes (13.1, 13.2) étant apte à transmettre un signal de défaut relatif à un disfonctionnement émis par une machine électrique tournante (13.1, 13.2) défaillante à destination de l'autre machine électrique tournante (13.1, 13.2).

Description

Description
Titre de l'invention : ARCHITECTURE DE TRACTION A REPARTITION
VECTORIELLE DE COUPLE SECURISEE
[0001 ] La présente invention porte sur une architecture de traction à répartition vectorielle de couple sécurisée. L'invention trouve une application particulièrement avantageuse, mais non exclusive, avec les machines électriques tournantes pour véhicules automobiles.
[0002] De façon connue en soi, les architectures de traction peuvent comporter des différentiels à répartition vectorielle de couple (dite technologie de "Torque vectoring" en anglais) aptent à imposer un couple différent à chacune des roues motrices d’un véhicule automobile.
[0003] Par exemple, lors d'une phase de roulage en virage, le dispositif fournit un couple élevé à la roue extérieure pour aider à l’inscription dans la courbe. En sortie de virage, le calculateur du système cherche à contrecarrer l'effet de survirage et aide à la ré-accélération en répartissant le couple sur l’autre roue. Ce système met généralement en oeuvre des dispositifs mécaniques basés sur des ensembles à trains épicycloïdaux et/ou des systèmes hydrauliques.
[0004] Un dispositif électrique connu met en oeuvre deux machines électriques tournantes associées chacune à une roue d'un train. Ces machines électriques sont aptes à appliquer une répartition spécifique de couple sur l’une et l’autre roue du train de propulsion en fonction des conditions de roulage du véhicule.
[0005] En cas de défaut détecté sur une machine électrique ou l'onduleur, la machine électrique défaillante est mise en court-circuit. Dans le cas de deux machines électriques indépendantes utilisées chacune avec son propre réducteur, lorsqu'un défaut est constaté sur une machine, l’information relative au défaut remontant vers un dispositif de contrôle via un système de communication, notamment de type CAN (pour "Controller Area Network" en anglais) ou autre, n’est pas assez rapide pour éviter des écarts de couple importants entre les roues par rapport aux consignes de la régulation. [0006] Il existe donc un risque de perte de contrôle du véhicule, en particulier lors d’une phase de roulage dans un virage.
[0007] La présente invention vise à remédier efficacement à cet inconvénient en proposant une architecture de traction pour véhicule automobile comportant:
- une première machine électrique tournante apte à fournir un couple à une première roue, et
- une deuxième machine électrique tournante apte à fournir un couple à une deuxième roue,
- une liaison entre la première machine électrique tournante et la deuxième machine électrique tournante dédiée à une détection de dysfonctionnement d'une des deux machines électriques tournantes étant apte à transmettre un signal de défaut relatif à un disfonctionnement émis par une machine électrique tournante défaillante vers l'autre machine électrique tournante.
[0008] L’invention permet ainsi, grâce à la liaison prévue entre les deux machines électriques tournantes, d'informer de façon quasi-instantanée l'autre machine électrique de la présence d'un défaut afin de pouvoir reconfigurer le système de traction le plus rapidement possible. On évite ainsi le risque de perte de contrôle du véhicule automobile dans un virage notamment.
[0009] Selon une réalisation, la liaison est constituée par une liaison filaire directe entre la première machine électrique tournante et la deuxième machine électrique tournante. Par "liaison directe", on entend une liaison entre les machines électriques sans passer par un réseau de communication du véhicule.
[0010] Au sens de la demande, la liaison permet de transmettre les informations acquises de part et d’autre de la liaison. La liaison ne participe pas à la détection de dysfonctionnement. Le fait que la liaison soit dédiée à une détection de dysfonctionnement ne veut pas dire que la liaison participe à la détection en tant que telle.
[0011 ] Selon l’invention, la première machine peut comporter un capteur de défaut.
Cela permet de détecter les défauts. Selon l’invention, la première machine peut comporter un capteur de défaut. Cela permet de détecter les défauts. [0012] Selon une réalisation, la liaison est constituée par une liaison dédiée sur un réseau de communication entre la première machine électrique tournante et la deuxième machine électrique tournante.
[0013] Selon une réalisation, ladite architecture de traction est configurée de telle façon, qu'en cas de détection de défaut d’une machine électrique tournante, une mise en court-circuit de la première machine électrique tournante et de la deuxième machine électrique tournante est apte à être commandée.
[0014] Selon une réalisation, ladite architecture de traction est configurée de telle façon qu'en cas de détection de défaut d’une machine électrique tournante, une mise en court-circuit de la machine électrique tournante défaillante est apte à être commandée et un couple de l’autre machine électrique tournante est apte à être adapté en fonction de conditions de roulage.
[0015] Selon une réalisation, la première machine électrique tournante et la deuxième machine électrique tournante sont associées chacune à un différentiel distinct.
[0016] Selon une réalisation, la première machine électrique tournante et la deuxième machine électrique tournante sont associées à un différentiel commun.
[0017] Selon une réalisation, la première machine électrique tournante et la deuxième machine électrique tournante sont disposées sur un même train du véhicule automobile.
[0018] Selon une réalisation, la première machine électrique tournante et la deuxième machine électrique tournante sont disposées sur deux trains différents du véhicule automobile.
[0019] Selon une réalisation, la première machine électrique tournante et la deuxième machine électrique tournante présentent chacune une tension de fonctionnement inférieure à 60 Volts, et valant de préférence 48 Volts.
[0020] L’invention sera mieux comprise à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. Ces figures ne sont données qu’à titre illustratif mais nullement limitatif de l’invention. [0021 ] [Figure 1 ] La figure 1 est une représentation schématique d’une architecture de véhicule automobile selon l'invention dans laquelle les machines électriques d’un train sont associées chacune à un différentiel;
[0022] [Figure 2] La figure 2 est une représentation schématique d’une architecture de véhicule automobile selon l'invention dans laquelle les machines électriques d’un train sont connectées à un différentiel commun.
[0023] Les éléments identiques, similaires, ou analogues conservent la même référence d’une figure à l’autre.
[0024] Les figures 1 et 2 montrent une architecture de traction 10 pour véhicule automobile comportant un train 1 1 ayant une première roue 12.1 et une deuxième roue 12.2. Une première machine électrique tournante 13.1 est apte à fournir un couple à la première roue 12.1 . Une deuxième machine électrique tournante 13.2 est apte à fournir un couple à la deuxième roue 12.2.
[0025] La première machine électrique tournante 13.1 comporte un premier onduleur de commande 15.1 . La deuxième machine électrique tournante 13.2 comporte un deuxième onduleur de commande 15.2. Les onduleurs de commande 15.1 , 15.2 pourront être disposés à l'intérieur d'un même boîtier et partager des composants communs, tels qu'un dissipateur thermique, des composants de filtrage, ou des connecteurs. Il sera possible également d’utiliser un onduleur de commande standard prévu pour une machine à six phases et d’utiliser trois phases avec chacune des machines triphasées 13.1 , 13.2.
[0026] Les machines électriques 13.1 , 13.2 sont avantageusement de type réversible, c’est-à-dire qu'elles sont aptes à fonctionner dans un mode moteur pour appliquer un couple moteur aux roues 12.1 , 12.2 à partir de l'énergie électrique de la batterie, et dans un mode générateur pour recharger une batterie à partir d'une puissance mécanique prélevée aux roues 12.1 , 12.2.
[0027] Les machines électriques 13.1 , 13.2 présentent une tension de fonctionnement inférieure à 60 Volts, et valant de préférence 48 Volts. Typiquement, le couple fourni par une machine électrique 13.1 , 13.2 est compris entre 300 et 500Nm. Une machine électrique 13.1 , 13.2 présente par exemple une puissance comprise entre 15kW et 30kW.
[0028] Dans le mode de réalisation de la figure 1 , la première machine électrique tournante 13.1 et la deuxième machine électrique tournante 13.2 sont associées chacune à un différentiel distinct 16.1 , 16.2. Le premier différentiel 16.1 est ainsi associé à la première machine électrique 13.1 , tandis que le deuxième différentiel
16.2 est associé à la deuxième machine électrique 13.2.
[0029] Dans le mode de réalisation de la figure 2, la première machine électrique tournante 13.1 et la deuxième machine électrique tournante 13.2 sont associées à un différentiel commun 16.
[0030] Un superviseur 18 est apte à appliquer une répartition de couple spécifique sur l’une et l’autre machine électrique 13.1 , 13.2 en fonction des conditions de roulage du véhicule automobile. Ces conditions de roulage sont définies notamment par la vitesse de rotation des roues, la courbure de la route (ligne droite ou virage) qui pourra être détectée à l'aide d'un ou plusieurs capteurs implantés sur le volant et/ou les roues du véhicule, et le cas échéant le type de freinage (freinage normal ou freinage d'urgence). Le pilotage des machines électriques 13.1 , 13.2 par le superviseur 18 pourra être réalisé via un réseau de communication notamment de type CAN pour "Controller Area Network" en anglais.
[0031 ] En outre, une liaison 19 entre les deux machines électriques tournantes 13.1 ,
13.2 dédiée à une détection de dysfonctionnement d'une des deux machines électriques tournantes 13.1 , 13.2 est apte à transmettre un signal de défaut relatif à un disfonctionnement émis par une machine électrique tournante 13.1 , 13.2 défaillante à destination de l'autre machine électrique tournante 13.1 , 13.2.
[0032] La liaison 19 pourra être constituée par une liaison filaire directe entre les deux machines électriques tournantes 13.1 , 13.2. Par "liaison directe", on entend une liaison entre les machines électriques tournantes 13.1 , 13.2 sans passer par un réseau de communication du véhicule. [0033] Alternativement, la liaison 19 est constituée par une liaison dédiée sur le réseau de communication entre la première machine électrique tournante 13.1 et la deuxième machine électrique tournante 13.2.
[0034] L'architecture de traction 10 est configurée de telle façon, qu'en cas de détection de défaut d’une machine électrique tournante 13.1 , 13.2, une mise en court-circuit de la première machine électrique tournante 13.1 et de la deuxième machine électrique tournante 13.2 est commandée. Le pilotage en court-circuit des phases des machines électriques tournantes 13.1 , 13.2 pourra être réalisé par une unité de commande intégrée à chacune des machines électriques 13.1 , 13.2 ou commune à ces machines électriques 13.1 , 13.2.
[0035] En variante, l'architecture de traction 10 est configurée de telle façon qu'en cas de détection de défaut d’une machine électrique tournante 13.1 , 13.2, une mise en court-circuit de la machine électrique tournante 13.1 , 13.2 défaillante est commandée et le couple de l’autre machine électrique 13.1 , 13.2 est adapté en fonction des conditions de roulage du véhicule automobile. Par exemple, en cas de défaut détecté dans un virage, il peut être utile de conserver un couple non nul en mode moteur sur la machine électrique 13.1 , 13.2 toujours active pour permettre de continuer à prendre le virage. En cas de roulage en ligne droite, il est possible de conserver un couple moteur sur la machine électrique 13.1 , 13.2 qui est toujours active, ceci permettant de continuer à rouler de façon sécurisée jusqu'à une zone d'arrêt du véhicule automobile.
[0036] La première machine électrique tournante 13.1 et la deuxième machine électrique tournante 13.2 sont disposées en l'occurrence sur un même train 1 1 du véhicule automobile qui pourra être le train avant ou le train arrière.
[0037] En variante, la première machine électrique tournante 13.1 et la deuxième machine électrique tournante 13.2 sont disposées sur deux trains 1 1 différents du véhicule automobile. Ainsi, on pourra installer une première machine électrique 13.1 sur le train avant et une deuxième machine électrique 13.2 sur le train arrière. Dans ce cas, si une machine électrique 13.1 , 13.2 est défaillante, l’autre train pourra assurer la fonction de motricité dans les virages notamment. [0038] En variante, plus de deux machines électriques 13.1 , 13.2 pourront être réparties dans le véhicule automobile, notamment quatre machines électriques associées chacune à une roue ou deux groupes de deux machines électriques avec un groupe associé à chaque train du véhicule. Dans une application hybride, le véhicule automobile pourra comporter également un moteur thermique.
[0039] Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents.
[0040] En outre, les différentes caractéristiques, variantes, et/ou formes de réalisation de la présente invention peuvent être associées les unes avec les autres selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.

Claims

Revendications
[Revendication 1 ] Architecture de traction (10) pour véhicule automobile comportant:
- une première machine électrique tournante (13.1 ) apte à fournir un couple à une première roue (12.1 ), et
- une deuxième machine électrique tournante (13.2) apte à fournir un couple à une deuxième roue (12.2),
caractérisée en ce qu'une liaison (19) entre la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) dédiée à une détection de dysfonctionnement d'une des deux machines électriques tournantes (13.1 , 13.2) est apte à transmettre un signal de défaut relatif à un disfonctionnement émis par une machine électrique tournante (13.1 , 13.2) défaillante vers l'autre machine électrique tournante (13.1 , 13.2).
[Revendication 2] Architecture de traction selon la revendication 1 , caractérisée en ce que la liaison (19) est constituée par une liaison filaire directe entre la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2).
[Revendication 3] Architecture de traction selon la revendication 1 , caractérisée en ce que la liaison (19) est constituée par une liaison dédiée sur un réseau de communication entre la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2).
[Revendication 4] Architecture de traction selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle est configurée de telle façon, qu'en cas de détection de défaut d’une machine électrique tournante (13.1 , 13.2), une mise en court-circuit de la première machine électrique tournante (13.1 ) et de la deuxième machine électrique tournante (13.2) est apte à être commandée.
[Revendication 5] Architecture de traction selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle est configurée de telle façon qu'en cas de détection de défaut d’une machine électrique tournante (13.1 , 13.2), une mise en court-circuit de la machine électrique tournante (13.1 , 13.2) défaillante est apte à être commandée et un couple de l’autre machine électrique tournante (13.1 , 13.2) est apte à être adapté en fonction de conditions de roulage.
[Revendication 6] Architecture de traction selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) sont associées chacune à un différentiel distinct (16.1 , 16.2).
[Revendication 7] Architecture de traction selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) sont associées à un différentiel commun (16).
[Revendication 8] Architecture de traction selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) sont disposées sur un même train (1 1 ) du véhicule automobile.
[Revendication 9] Architecture de traction selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) sont disposées sur deux trains (1 1 ) différents du véhicule automobile.
[Revendication 10] Architecture de traction selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la première machine électrique tournante (13.1 ) et la deuxième machine électrique tournante (13.2) présentent chacune une tension de fonctionnement inférieure à 60 Volts, et valant de préférence 48 Volts.
PCT/EP2020/067566 2019-06-26 2020-06-23 Architecture de traction a repartition vectorielle de couple securisee WO2020260325A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1906963 2019-06-26
FR1906963A FR3097812B1 (fr) 2019-06-26 2019-06-26 Architecture de traction a repartition vectorielle de couple securisee

Publications (1)

Publication Number Publication Date
WO2020260325A1 true WO2020260325A1 (fr) 2020-12-30

Family

ID=68211022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/067566 WO2020260325A1 (fr) 2019-06-26 2020-06-23 Architecture de traction a repartition vectorielle de couple securisee

Country Status (2)

Country Link
FR (1) FR3097812B1 (fr)
WO (1) WO2020260325A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255358A (ja) * 2012-06-07 2013-12-19 Jtekt Corp 車両用走行装置
CN107054036A (zh) * 2017-02-22 2017-08-18 吉林大学 一种纯电动汽车驱动装置及驱动方法
DE102016224199A1 (de) * 2016-12-06 2018-06-07 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255358A (ja) * 2012-06-07 2013-12-19 Jtekt Corp 車両用走行装置
DE102016224199A1 (de) * 2016-12-06 2018-06-07 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug
CN107054036A (zh) * 2017-02-22 2017-08-18 吉林大学 一种纯电动汽车驱动装置及驱动方法

Also Published As

Publication number Publication date
FR3097812A1 (fr) 2021-01-01
FR3097812B1 (fr) 2022-11-25

Similar Documents

Publication Publication Date Title
RU2519453C2 (ru) Устройство для перенаправления крутящего момента
FR2903072A1 (fr) Dispositif pour le deplacement autonome d'un aeronef au sol
CA2722402C (fr) Reseau de pilotage pour actionneurs mono ou multimoteurs, particulierement adapte a des applications aeronautiques telles que l'alimentation de moteurs de boitiers d'accrochage
FR2930743A1 (fr) Dispositif de propulsion ou de traction electrique d'un vehicule
EP3581416B1 (fr) Dispositif de transmission, notamment pour véhicule électrique
FR2844225A1 (fr) Boite transfert pour vehicules et procede pour repartir une force d'entrainement sur deux essieux
WO2006032819A1 (fr) Dispositif de transmission de puissance et procede mettant en oeuvre ce dispositif
EP2528764B1 (fr) Procede de repartition de couple entre le train avant et le train arriere d'un vehicule hybride
FR2997047A1 (fr) Dispositif de motorisation pour vehicule electrique
EP3176469B1 (fr) Systeme de pilotage a differentiel mecanique a faible encombrement
WO2019122553A1 (fr) Chaîne de traction améliorée de véhicule automobile comprenant deux machines électriques tournantes
FR3084622A1 (fr) Architecture de traction comportant des machines electriques basse tension integrees dans les roues d'un vehicule automobile
FR2746352A1 (fr) Vehicule automobile electrique avec moteur thermique d'appoint
EP3164285B1 (fr) Procede de commande de systeme de motorisation hybride, pour un vehicule hybride
WO2020260325A1 (fr) Architecture de traction a repartition vectorielle de couple securisee
FR3081395A1 (fr) Architecture de traction electrique basse tension pour vehicule automobile autonome
FR2778612A1 (fr) Procede d'alimentation electrique des moteurs des essieux avant et arriere d'un meme vehicule
FR2967620A1 (fr) Vehicule hybride a deux trains d'engrenages epicycloidaux a derivation de puissance et a efficacite energetique amelioree
FR3086912A1 (fr) Dispositif de traction pour un vehicule
FR3081391A1 (fr) Architecture de traction pour vehicule automobile a double machines electriques tournantes
EP1832460A1 (fr) Dispositif de transmission de puissance et procédé mettant en oeuvre ce dispositif
CA2963701A1 (fr) Vehicule hybride et procede d'hybridation d'un vehicule
FR2721265A1 (fr) Procédé de contrôle du freinage récupératif sur un véhicule électrique.
FR3083339A1 (fr) Procede de pilotage d'une machine electrique tournante pour compenser les oscillations de couple d'une chaine de traction de vehicule automobile
FR3084619A1 (fr) Architecture de traction pour vehicule automobile a repartition vectorielle de couple

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20734025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20734025

Country of ref document: EP

Kind code of ref document: A1