WO2020259011A1 - 一种功率转换模块、车载充电机和电动汽车 - Google Patents

一种功率转换模块、车载充电机和电动汽车 Download PDF

Info

Publication number
WO2020259011A1
WO2020259011A1 PCT/CN2020/084869 CN2020084869W WO2020259011A1 WO 2020259011 A1 WO2020259011 A1 WO 2020259011A1 CN 2020084869 W CN2020084869 W CN 2020084869W WO 2020259011 A1 WO2020259011 A1 WO 2020259011A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
interface
bridge arm
circuit
converter
Prior art date
Application number
PCT/CN2020/084869
Other languages
English (en)
French (fr)
Inventor
梁永涛
刘卫平
苏逢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20811506.3A priority Critical patent/EP3790179B1/en
Publication of WO2020259011A1 publication Critical patent/WO2020259011A1/zh
Priority to US17/139,613 priority patent/US11532978B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/006Supplying electric power to auxiliary equipment of vehicles to power outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • This application relates to the field of electronics, in particular to a power conversion module, an on-board charger and an electric vehicle.
  • the methods of charging the batteries of electric vehicles mainly include fast charging and slow charging.
  • fast charging is the direct current charging pile to directly charge the battery pack
  • slow charging is the direct connection of alternating current (AC) to the electric vehicle through the vehicle.
  • AC alternating current
  • the battery pack is charged.
  • a power factor correction (PFC) module and a direct current-direct current converter (DC-DC) device are provided in the on-board charger, and the PFC module converts the connected AC power into a DC bus. After the voltage is applied, the DC-DC converter converts the DC bus voltage into high-voltage DC power and then charges the battery pack.
  • PFC power factor correction
  • DC-DC direct current-direct current converter
  • the battery pack configured on an electric vehicle can carry a large amount of electricity, it can theoretically release a large amount of electricity carried by the battery pack to supply power to other devices, such as one electric vehicle charging another electric vehicle (vehicle to vehicle, V2V) ), for example, electric vehicles supply power to household electrical equipment such as rice cookers (vehicle to load, V2L), etc.; battery packs can also be used as energy storage batteries to connect to the grid, charge when the grid is in a low state, and deliver to the grid when the grid is in a peak state Electricity (vehicle to grid, V2G) to undertake the functions of peak shaving and valley filling of the grid. Due to the application value of V2V, V2L, and V2G, many car companies have put forward functional requirements for on-board chargers that can realize inverter discharge.
  • V2V electric vehicle to vehicle
  • V2G peak state Electricity
  • the embodiments of the present application provide a power conversion module, an on-board charger, and an electric vehicle, which are used to bypass the diode in the PFC module, and combine part of the bridge arms in the primary circuit of the DC-DC converter with the inductor in the PFC module. Coupling with capacitance to form an inverter module to realize the inverter discharge function.
  • an embodiment of the present application provides a power conversion module that can be used in the field of new energy vehicles.
  • the power conversion module may include: a power factor correction PFC module and a first DC-DC DC-DC converter.
  • the PFC module may include a single-phase rectifier circuit, a three-phase rectifier circuit, or other multi-phase rectifier circuits, which can specifically represent For the Vienna rectifier circuit, the first DC-DC converter is a bidirectional isolated converter, which can be expressed as a bidirectional resonant conversion CLLC circuit; among them, the PFC module has a first interface, a second interface and a bus capacitor, and the first interface is connected There is a first inductor, the first interface and the second interface include a neutral interface and a live interface.
  • the first interface can be a neutral interface
  • the second interface can be a fire interface
  • the second interface can be a neutral interface.
  • One interface is a live wire interface
  • the first DC-DC converter includes a first primary circuit and a first secondary circuit
  • the first primary circuit includes a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm
  • the power conversion module further includes a first switch, a second switch, a third switch and a fourth switch.
  • the first switch is arranged between the first bridge arm and the first inductor
  • the second switch is arranged between the third bridge arm and the second interface.
  • the third switch is arranged between the first bridge arm and the second bridge arm
  • the fourth switch is arranged between the third bridge arm and the fourth bridge arm; both the first switch and the second switch are in the off state , And the third switch and the fourth switch are both in the on state, the PFC module and the first DC-DC converter are used for forward charging; when the first switch and the second switch are both in the on state, and the first switch
  • the first bridge arm is coupled with the first inductance
  • the third bridge arm is coupled with the second interface to form a second DC-DC converter and inverter module
  • the second primary circuit of the second DC-DC converter is the first secondary circuit of the first DC-DC converter
  • the second secondary circuit of the second DC-DC converter includes a second bridge arm and a fourth bridge arm
  • the inverter module includes a first bridge arm, a third bridge arm, a first inductor and a bus capacitor.
  • the power conversion module provided in this implementation includes a PFC module and a first DC-DC converter, which can convert alternating current into direct current and then charge the battery pack.
  • the first primary circuit of the first DC-DC converter has The first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm.
  • a first switch is provided between the first bridge arm and the inductance at the interface of the PFC module, and the third bridge A second switch is set between the arm and the other interface of the PFC module. When the first switch and the second switch are turned on, the secondary circuit of the first DC-DC converter can realize the primary of the second DC-DC converter.
  • the function of the circuit, the second bridge arm and the fourth bridge arm can realize the function of the secondary circuit of the second DC-DC converter, the first bridge arm and the third bridge arm, the inductance of the PFC module and the capacitance of the PFC module can be formed
  • the inverter module, thereby bypassing the diodes in the PFC module, the DC power output by the battery pack can be converted to AC power output after passing through the second DC-DC converter and the inverter module.
  • the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm may each include two switching tubes, four switching tubes, six switching tubes, or other An even number of switching tubes, etc.; in the case where the first to fourth bridge arms include two switching tubes, one end of the first switch is connected between the two switching tubes of the first bridge arm, and the first switch The other end is coupled with the first inductance; one end of the second switch is connected between the two switch tubes of the third bridge arm, the other end of the second switch is coupled with the second interface; one end of the third switch is connected to the first bridge arm The other end of the third switch is connected between the two switching tubes of the second bridge arm; one end of the fourth switch is connected between the two switching tubes of the third bridge arm, and the fourth switch The other end of is connected between the two switch tubes of the fourth bridge arm.
  • a specific connection manner of the first switch to the fourth switch is provided, which improves the feasibility of the solution.
  • the first switch and the third switch are the same first switch, and the second switch and the fourth switch are the same second switch.
  • one switch is used to realize the functions of two switches, which not only helps reduce the circuit complexity of the power conversion module, but also because one switch can only be in one state at the same time, that is, the first switch in this embodiment The third switch and the third switch will not be in the on state at the same time, thereby further reducing the probability of circuit failure of the power conversion module.
  • the PFC module includes a three-phase rectifier circuit, the three-phase rectifier circuit includes three live wire interfaces and a neutral wire interface, and the first interface is any one of the three live wire interfaces.
  • the three firewire interfaces also include a third interface, which is any one of the three firewire interfaces except the first interface;
  • the power conversion module also includes a fifth switch , One end of the fifth switch is connected to the second interface, and the other end of the fifth switch is coupled to the second switch; when the first switch, the second switch, and the fifth switch are all in the conducting state, the second interface bypasses Drop the third interface and couple with the third bridge arm.
  • the second interface when the second interface is a neutral interface, only a fifth switch needs to be added to the power conversion module, and the second interface can be connected to the branch circuit where the third interface is located through the fifth switch, thereby achieving
  • the coupling with the third bridge arm not only improves the feasibility of this solution, but also improves the utilization rate of the existing components in the power conversion module; in addition, try to avoid adding other components in this implementation, thereby avoiding adding circuits Complexity.
  • the three-phase rectifier circuit includes three branch circuits, the three branch circuits have a first branch circuit and a second branch circuit, and the first interface is the input interface of the first branch circuit , The third interface is the input interface of the second branch circuit; when the third switch, the fourth switch and the fifth switch are all in the on state, the second interface bypasses the third interface and connects to the second branch
  • the circuit forms a single-phase rectifier circuit.
  • the single-phase rectifier circuit and the first DC-DC converter are used for forward charging.
  • the single-phase rectifier circuit includes a first branch circuit, a third branch circuit and a bus capacitor, and the third branch circuit It includes the second interface and the components of the second branch circuit except the third interface.
  • the existing three-phase rectifier circuit is used to realize the function of the single-phase rectifier circuit, so that the power conversion module provided in the embodiment of the present application can realize three-phase input and single-phase input at the same time, which broadens the application scenarios of this solution. Improve the comprehensiveness of this program.
  • the second inductor is connected to the third interface
  • one end of the fifth switch is connected to the second interface
  • the other end of the fifth switch can be connected to the third interface and the second inductor. It can also be connected between the second inductor and the second switch.
  • the connection mode of the fifth switch provided in this implementation manner improves the implementability of the solution.
  • the PFC module is a Vienna rectifier circuit
  • the first DC-DC converter is a bidirectional resonant converter CLLC circuit
  • the power conversion module further includes a third DC-DC converter, and a third DC-DC converter.
  • the DC converter can be a unidirectional isolated conversion circuit, or a bidirectional isolated conversion circuit, and can be specifically represented as a resonant conversion LLC circuit.
  • the third DC-DC converter includes a third primary circuit and a third secondary circuit. , The first primary circuit and the first secondary circuit are connected through a first transformer, and the third primary circuit and the third secondary circuit are connected through a second transformer; the third primary circuit is connected in series with the first primary circuit, and the third The secondary circuit is connected in parallel with the first secondary circuit.
  • the power conversion module can also be provided with a third DC-DC converter, and the primary circuits of the first DC-DC converter and the third DC-DC converter are connected in series, and the secondary circuits are connected in parallel, which is beneficial to reduce the first DC -The number of voltages borne by each switch tube in the DC converter and the third DC-DC converter not only reduces the damage probability of the components in the first DC-DC converter and the third DC-DC converter, but also increases The maximum charging power output by the power conversion module.
  • all the switch tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm are MOS tubes, triodes, silicon carbide SiC transistors or insulated gates. Bipolar transistor IGBT.
  • This implementation provides specific implementations of the switch tubes included in the first bridge arm to the fourth bridge arm, which improves the practicability of the solution and helps reduce the total area of the power conversion module. The operation is simple and easy to implement. , It also helps reduce product costs.
  • an embodiment of the present application also provides a vehicle-mounted charger, including: an electromagnetic compatibility EMI filter module, a power factor correction PFC module, and a first DC-DC DC-DC converter;
  • the PFC module has a first interface, The second interface and the bus capacitor, the first interface is connected with the first inductor;
  • the first DC-DC converter includes a first primary circuit and a first secondary circuit, the first primary circuit includes a first bridge arm and a second bridge arm , The third bridge arm and the fourth bridge arm;
  • the power conversion module further includes a first switch, a second switch, a third switch and a fourth switch, the first switch is arranged between the first bridge arm and the first inductor, and the second The switch is arranged between the third bridge arm and the second interface, the third switch is arranged between the first bridge arm and the second bridge arm, and the fourth switch is arranged between the third bridge arm and the fourth bridge arm;
  • the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm all include two switch tubes; one end of the first switch is connected to the first bridge arm Between the two switch tubes, the other end of the first switch is coupled with the first inductance; one end of the second switch is connected between the two switch tubes of the third bridge arm, and the other end of the second switch is coupled with the second interface; One end of the third switch is connected between the two switch tubes of the first bridge arm, the other end of the third switch is connected between the two switch tubes of the second bridge arm; one end of the fourth switch is connected to the third bridge arm Between the two switch tubes of the fourth switch, the other end of the fourth switch is connected between the two switch tubes of the fourth bridge arm.
  • the first switch and the third switch are the same first switch, and the second switch and the fourth switch are the same second switch.
  • the PFC module includes a three-phase rectifier circuit, the three-phase rectifier circuit includes three live wire interfaces and a neutral wire interface, the first interface is any one of the three live wire interfaces, and the second The second interface is a neutral interface, the three firewire interfaces also include a third interface, and the third interface is any one of the three firewire interfaces except the first interface; the power conversion module also includes a fifth switch and a fifth switch One end of the is connected to the second interface, and the other end of the fifth switch is coupled to the second switch; when the first switch, the second switch and the fifth switch are all in the on state, the second interface bypasses the third interface , Coupled with the third bridge arm.
  • the three-phase rectifier circuit has a first branch circuit and a second branch circuit, the first interface is the input interface of the first branch circuit, and the third interface is the input interface of the second branch circuit. Interface; when the third switch, the fourth switch and the fifth switch are all on, the second interface bypasses the third interface and connects to the second branch circuit to form a single-phase rectifier circuit; among them, single-phase
  • the rectifier circuit includes a first branch circuit, a third branch circuit and a bus capacitor, and the third branch circuit includes a second interface and elements other than the third interface in the second branch circuit.
  • the second inductor is connected to the third interface, one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected between the third interface and the second inductor .
  • the PFC module is a Vienna rectifier circuit
  • the first DC-DC converter is a CLLC circuit
  • the power conversion module further includes a third DC-DC converter, and a third DC-DC converter
  • the third DC-DC converter includes a third primary circuit and a third secondary circuit; the third primary circuit is connected in series with the first primary circuit, and the third secondary circuit is connected in parallel with the first secondary circuit.
  • all the switching tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm are MOS tubes, triodes, silicon carbide SiC transistors, or insulated gates.
  • Bipolar transistor IGBT Bipolar transistor IGBT.
  • inventions of the present application also provide an electric vehicle, including: an on-board charger and a battery pack.
  • the on-board charger includes an electromagnetic compatibility EMI filter module, a power factor correction PFC module, and a first DC-DC DC-DC conversion
  • the PFC module has a first interface, a second interface and a bus capacitor, and a first inductor is connected to the first interface;
  • the first DC-DC converter includes a first primary circuit and a first secondary circuit, the first primary circuit It includes a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm;
  • the power conversion module also includes a first switch, a second switch, a third switch, and a fourth switch, the first switch is arranged on the first bridge Between the arm and the first inductor, the second switch is disposed between the third bridge arm and the second interface, the third switch is disposed between the first bridge arm and the second bridge arm, and the fourth switch is disposed on the third bridge arm.
  • the fourth bridge arm when the first switch and the second switch are both in the off state, and the third switch and the fourth switch are both in the on state, the EMI filter module, the PFC module and the first DC- The DC converter is used for forward charging; when the first switch and the second switch are both in the on state, and the third switch and the fourth switch are in the off state, the first bridge arm is coupled with the first inductance, The third bridge arm is coupled with the second interface to form a second DC-DC converter and an inverter module; wherein, the second primary circuit of the second DC-DC converter is the first secondary circuit of the first DC-DC converter Circuit, the second secondary circuit of the second DC-DC converter includes a second bridge arm and a fourth bridge arm, and the inverter module includes a first bridge arm, a third bridge arm, a first inductor and a bus capacitor.
  • the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm all include two switch tubes; one end of the first switch is connected to the first bridge arm Between the two switch tubes, the other end of the first switch is coupled with the first inductance; one end of the second switch is connected between the two switch tubes of the third bridge arm, and the other end of the second switch is coupled with the second interface; One end of the third switch is connected between the two switch tubes of the first bridge arm, the other end of the third switch is connected between the two switch tubes of the second bridge arm; one end of the fourth switch is connected to the third bridge arm Between the two switch tubes of the fourth switch, the other end of the fourth switch is connected between the two switch tubes of the fourth bridge arm.
  • the first switch and the third switch are the same first switch, and the second switch and the fourth switch are the same second switch.
  • the PFC module includes a three-phase rectifier circuit
  • the three-phase rectifier circuit includes three live wire interfaces and a neutral wire interface
  • the first interface is any one of the three live wire interfaces
  • the first The second interface is a neutral interface
  • the three firewire interfaces also include a third interface
  • the third interface is any one of the three firewire interfaces except the first interface
  • the power conversion module also includes a fifth switch and a fifth switch One end of the is connected to the second interface, and the other end of the fifth switch is coupled to the second switch; when the first switch, the second switch and the fifth switch are all in the on state, the second interface bypasses the third interface , Coupled with the third bridge arm.
  • the three-phase rectifier circuit has a first branch circuit and a second branch circuit, the first interface is the input interface of the first branch circuit, and the third interface is the input interface of the second branch circuit. Interface; when the third switch, the fourth switch and the fifth switch are all on, the second interface bypasses the third interface and connects to the second branch circuit to form a single-phase rectifier circuit; among them, single-phase
  • the rectifier circuit includes a first branch circuit, a third branch circuit and a bus capacitor, and the third branch circuit includes a second interface and elements other than the third interface in the second branch circuit.
  • the second inductor is connected to the third interface, one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected between the third interface and the second inductor .
  • the PFC module is a Vienna rectifier circuit
  • the first DC-DC converter is a CLLC circuit
  • the power conversion module further includes a third DC-DC converter, and a third DC-DC converter
  • the third DC-DC converter includes a third primary circuit and a third secondary circuit; the third primary circuit is connected in series with the first primary circuit, and the third secondary circuit is connected in parallel with the first secondary circuit.
  • all the switch tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm are MOS tubes, triodes, silicon carbide SiC transistors or insulated gates.
  • Bipolar transistor IGBT Bipolar transistor IGBT.
  • FIG. 1 is a schematic diagram of a structure of an electric vehicle provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a structure of an on-board charger provided by an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a power conversion module provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an equivalent circuit of a power conversion module provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another equivalent circuit of a power conversion module provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another structure of a power conversion module provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another structure of a power conversion module provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of still another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of still another structure of the power conversion module provided by an embodiment of the application.
  • FIG. 11 is another schematic structural diagram of the power conversion module provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of another structure of a power conversion module provided by an embodiment of the application.
  • 15 is a schematic diagram of another equivalent circuit of the power conversion module provided by the embodiment of the application.
  • FIG. 16 is a schematic diagram of another structure of a power conversion module provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of another equivalent circuit of the power conversion module provided by an embodiment of the application.
  • the embodiments of the present application provide a power conversion module, an on-board charger, and an electric vehicle, which are used to bypass the diode in the PFC module, and combine part of the bridge arms in the primary circuit of the DC-DC converter with the inductor in the PFC module. Coupling with capacitance to form an inverter module to realize the inverter discharge function.
  • the power conversion module provided in the embodiments of the present application can be applied to chargers installed on machine equipment.
  • the machine equipment can be electric vehicles, large-scale machine tools, or other machines and equipment with built-in chargers. It should be understood that the embodiments of the present application Only use the power conversion module in electric vehicles as an example for illustration.
  • Figure 1 is a schematic structural diagram of an electric vehicle provided by an embodiment of this application.
  • the electric vehicle includes at least an on-board charger and a battery pack.
  • Figure 2 is provided by this embodiment of the application.
  • the on-board charger may include an electromagnetic compatibility (EMI) filter module 1 and a power conversion module 2.
  • EMI electromagnetic compatibility
  • the power conversion module 2 includes a PFC module 10 and a DC-DC conversion module 20; Yes, the EMI filter module 1 can also be referred to as the "power supply EMI filter module", which is used to filter out the frequency point of a specific frequency in the power supply or the frequency outside the frequency point to obtain a power signal of a specific frequency, or The power signal after a specific frequency is eliminated; the PFC module 10 in the power conversion module 2 is used to convert the power AC after the filtering operation is performed into the bus DC; the isolated DC-DC conversion module 20 in the power conversion module 2 is used After the busbar DC is converted into high-voltage DC, the battery pack is charged.
  • the EMI filter module 1 can also be referred to as the "power supply EMI filter module”, which is used to filter out the frequency point of a specific frequency in the power supply or the frequency outside the frequency point to obtain a power signal of a specific frequency, or The power signal after a specific frequency is eliminated; the PFC module 10 in the power conversion module 2 is used to convert the power AC after the
  • an embodiment of the present application provides a power conversion module 2 that can be applied to the on-board charger shown in FIG. 2 Please refer to Figures 3 to 7.
  • Figures 3 to 7 respectively show three different structural schematic diagrams of power conversion modules provided by embodiments of the present application.
  • the power conversion modules 2 all include The PFC module 10 and the first DC-DC converter 200, that is, the DC-DC conversion module 20 includes the first DC-DC converter 200.
  • the PFC module 10 may include a rectifier circuit and a PFC circuit.
  • the rectifier circuit is used to convert the input AC power into the busbar DC power, which may be specifically represented as a single-phase rectifier circuit, a three-phase rectifier circuit, or other multi-phase rectifier circuits, etc.
  • the PFC circuit corresponds to the rectifier circuit and is used to improve the power factor of the rectifier circuit; when the rectifier circuit is a three-phase rectifier circuit, the PFC module 10 can be represented as a Vienna rectifier circuit, a three-phase six Switching rectifier circuit or three single-phase parallel rectifier circuits, etc.; when the rectifier circuit is a single-phase rectifier circuit, the PFC module 10 can also be expressed as other circuits, etc.
  • the specific presentation form of the PFC module 10 is not limited here .
  • the first DC-DC converter 200 is a bidirectional isolated converter, which is used for isolating and transforming the direct current of the busbar into a direct current that can be used to charge the battery pack. Specifically, it can be expressed as a bidirectional resonant converter (capacitor-inductor-inductor-capacitor, CLLC) circuits, bidirectional active full bridge (DAB) circuits or other types of bidirectional isolated DC-DC converters, etc., are not limited here. It should be understood that, in this embodiment, only the PFC module 10 is shown as a Vienna rectifier circuit, and the first DC-DC converter 200 is shown as a CLLC circuit as an example. When the PFC module 10 selects other types of rectifier circuits and PFC When the circuit is used, or when the first DC-DC converter 200 selects other types of isolated conversion circuits, the solutions provided in this embodiment can be referred to, which will not be described here.
  • CLLC capacitor-inductor-inductor-capacitor
  • DAB active full bridge
  • the PFC module 10 has a first interface, a second interface, and a bus capacitor, and a first inductor is connected to the first interface;
  • the first DC-DC converter 200 includes a first primary circuit and a first secondary circuit.
  • the first primary circuit includes a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm;
  • the power conversion module 2 also includes a first switch, a second switch, a third switch, and a fourth switch.
  • a switch is arranged between the first bridge arm and the first inductor, the second switch is arranged between the third bridge arm and the second interface, and the third switch is arranged between the first bridge arm and the second bridge arm.
  • the switch is arranged between the third bridge arm and the fourth bridge arm; when the first switch and the second switch are both in the off state, and the third switch and the fourth switch are both in the on state, the PFC module 10 and The first DC-DC converter 200 is used for forward charging; when the first switch and the second switch are both in the on state, and the third switch and the fourth switch are both in the off state, the first bridge arm Coupled with the first inductance, the third bridge arm is coupled with the second interface to form a second DC-DC converter 40 and an inverter module 50; wherein, the second primary circuit of the second DC-DC converter 40 is the first DC -The first secondary circuit of the DC converter 200, the second secondary circuit of the second DC-DC converter 40 includes a second bridge arm and a fourth bridge arm, and the inverter module 50 includes a first bridge arm and a third bridge Arm, first inductance and bus capacitance.
  • the PFC module 10 includes three branch circuits, a neutral interface N and a bus capacitor.
  • Each branch circuit has a live wire interface.
  • the three live wire interfaces of the three branch circuits are L1, L2, and L3.
  • Each live wire interface can be connected to an inductor.
  • the live wire interface L1 is connected to an inductor L4
  • the live wire interface L2 is connected to an inductor L5
  • the live wire interface L3 can be connected to an inductor L6.
  • each live wire interface is connected to an inductor, the embodiment of the application does not limit the inductance.
  • the number of inductors can also be two or more at each live wire interface.
  • Each branch circuit can also include a diode and a switch tube.
  • the branch circuit where the live wire interface L1 is located can also include diodes D1 and D2. , Switch tube Q1 and switch tube Q2.
  • the diode D1 and the diode D2 have opposite polarities. When the diode D1 is turned on, the diode D2 is blocked; when the diode D1 is blocked, the diode D2 is turned on.
  • the diode D1 may be a PNP diode.
  • the diode D1 and the diode D2 shown in FIG. 3 are both a diode, the number of diodes is not limited in the embodiment of the application .
  • the switching tube Q1 and the switching tube Q2 can be turned on and turned off at the same time, because the switching tube Q1 and the switching tube Q2 can be controlled to be turned on and off by an external control circuit.
  • the polarity relationship between the switching tube Q1 and the switching tube Q2 is not limited.
  • Both the switching tube Q1 and the switching tube Q2 can be expressed as a triode, a silicon carbide (SiC) transistor, or an insulated gate bipolar transistor (insulated gate bipolar transistor (IGBT) or metal-oxide-semiconductor (MOS) can also be referred to as "MOS transistor” for short.
  • SiC silicon carbide
  • IGBT insulated gate bipolar transistor
  • MOS transistor metal-oxide-semiconductor
  • diode D3 and diode D4 have opposite polarities
  • diode D5 and diode D6 have opposite polarities
  • diode D3, diode D5 and diode D1 can have the same polarity
  • diode D4, diode D6 and diode D2 can have the same polarity
  • diode D3, diode D5, and diode D1 can be similar, and the specific manifestations of diode D4, diode D6, and diode D2 can be similar.
  • the specific manifestations of diode D3, diode D5, diode D4, and diode D6 are not discussed here.
  • the expression form is introduced. It should be understood that the number of diodes D3, diodes D5, diodes D4, and diodes D6 are not limited in the embodiments of the present application.
  • the embodiment of the application does not limit the polarity relationship between the switching tube Q3 and the switching tube Q4, and the switching tube Q5 and the switching tube Q6.
  • the switching tube Q1 and the switching tube Q2 are Q3 and switching tube Q4, as well as switching tube Q5 and switching tube Q6 can be turned on and off at the same time.
  • the switching tubes Q3, Q4, Q5, and Q6 please refer to the descriptions of the switching tubes Q1 and Q2, which will not be given as examples here. It should be understood that there is no limitation in the embodiments of this application.
  • the number of switching tubes Q3, switching tubes Q4, switching tubes Q5, and switching tubes Q6 are no limitation in the embodiments of this application. The number of switching tubes Q3, switching tubes Q4, switching tubes Q5, and switching tubes Q6.
  • the bus capacitor is a capacitor set on the bus, and it can be one capacitor or at least two capacitors.
  • the bus capacitor is the capacitor C1 and the capacitor C2 as an example.
  • the diode D1 is connected in series with the capacitor C1
  • the diode D2 is connected in series with the capacitor C2
  • the switch tube Q1 and the switch tube Q2 are connected in series
  • the switch tube Q1 and the switch tube Q2 are connected in parallel.
  • One side of the diode D1 and the capacitor C1, the diode D2 and the capacitor C2, the switch tube Q1 and the switch tube Q2 connected in parallel is connected to the inductor L4 and the live wire interface L1, and the other side can be connected to the neutral wire interface N through the bus.
  • the diode D3 is in series with the capacitor C1
  • the diode D4 is in series with the capacitor C2
  • the switch Q3 and the switch Q4 are in series
  • the switch Q3 and the switch Q4 are connected in parallel with each other
  • One side of the diode D3 and the capacitor C1, the diode D4 and the capacitor C2, the switching tube Q3 and the switching tube Q4 connected in parallel is connected to the inductor L5 and the live wire interface L2, and the other side can be connected to the neutral wire interface N through the bus.
  • the diode D5 is connected in series with the capacitor C1, the diode D6 is connected in series with the capacitor C2, the switch Q5 and the switch Q6 are connected in series, the diode D5 and the capacitor C1, the diode D6 and the capacitor C2, and the switch Q5 and the switch Q6 are connected in parallel with each other.
  • One side of the diode D5 and the capacitor C1, the diode D6 and the capacitor C2, the switch tube Q5 and the switch tube Q6 is connected to the inductor L6 and the live wire interface L3, and the other side can be connected to the neutral wire interface N through the bus.
  • the first DC-DC converter 200 may include a first primary circuit, a first secondary circuit, and a transformer T1.
  • the first primary circuit and the first secondary circuit pass through the transformer T1. connection.
  • the first primary circuit may include a first bridge arm, a second bridge arm, a third bridge arm, a fourth bridge arm, a capacitor C3 and an inductor L7. It should be understood that although four bridges are shown in the first primary circuit in FIG. 3 However, in actual products, the first primary circuit can also include six bridge arms, eight bridge arms, etc., as long as the first primary circuit includes at least four bridge arms, the number of specific bridge arms can be combined with the actual situation. It is flexible to determine, and there is no restriction here.
  • Each of the four bridge arms of the first secondary circuit may include two switching tubes symmetrical to each other, specifically including switching tubes Q7, switching tubes Q8, switching tubes Q9, switching tubes Q10, switching tubes Q11, and switching tubes Q12, switching tube Q13, and switching tube Q14. It should be understood that although each bridge arm in the example of FIG. 3 includes two symmetrical switching tubes, in actual products, each bridge arm may also include four symmetrical switches. The number of switching tubes in each bridge arm included in the first primary circuit is not limited here.
  • the switching tube Q7, the switching tube Q8, the switching tube Q9, the switching tube Q10, the switching tube Q11, the switching tube Q12, the switching tube Q13, and the switching tube Q14 can all be expressed as a triode, MOS tube, SiC transistor, IGBT or other types
  • the switch tube, etc., are not limited here.
  • the switching tube Q7 and the switching tube Q9 are connected in parallel
  • the switching tube Q12 and the switching tube Q14 are connected in parallel
  • the switching tube Q8 and the switching tube Q10 are connected in parallel
  • the switching tube Q11 and the switching tube Q13 are connected in parallel.
  • the switch tube Q7, the switch tube Q8, the switch tube Q9, the switch tube Q10, the switch tube Q11, the switch tube Q12, the switch tube Q13 and the switch tube Q14 can all be turned on and off by means of an external control circuit.
  • the switching tube Q7, the switching tube Q9, the switching tube Q12 and the switching tube Q14 can be turned on and off at the same time, and the switching tube Q8, the switching tube Q10, the switching tube Q11 and the switching tube Q13 can be turned on at the same time And turn off, specifically, when the switching tube Q7, the switching tube Q9, the switching tube Q12 and the switching tube Q14 are turned on, the switching tube Q8, the switching tube Q10, the switching tube Q11 and the switching tube Q13 are turned off; when the switching tube Q7, When the switching tube Q9, the switching tube Q12, and the switching tube Q14 are turned off, the switching tube Q8, the switching tube Q10, the switching tube Q11, and the switching tube Q13 are turned on.
  • a capacitor C3 is connected in series before the switching tube Q7 and the switching tube Q9 connected in parallel with the switching tube Q12 and the switching tube Q14 connected in parallel.
  • Inductance L7 and transformer T1; when the switching tube Q8, the switching tube Q10, the switching tube Q11 and the switching tube Q13 are turned on, the switching tube Q8 and the switching tube Q10 connected in parallel and the switching tube Q11 and the switching tube Q13 connected in parallel A capacitor C3, an inductor L7, and a transformer T1 are connected in series.
  • the first secondary circuit may also include four bridge arms, a capacitor C4 and an inductor L8.
  • Each of the four bridge arms included in the first secondary circuit may include two switch tubes, and the four bridge arms include 8
  • the two switching tubes are respectively the switching tube Q15, the switching tube Q16, the switching tube Q17, the switching tube Q18, the switching tube Q19, the switching tube Q20, the switching tube Q21, and the switching tube Q22.
  • the specific expression form of the switching tube Q15 to the switching tube Q22 can be Please refer to the above description of the switching transistors Q7 to Q13, which will not be repeated here.
  • the first secondary circuit can include two bridge arms, six bridge arms, eight bridge arms, or other number of bridge arms. At least two bridge arms must be included in the first secondary circuit. The bridge arms are sufficient.
  • the specific number of bridge arms included in the first secondary circuit is not limited here; in addition, each bridge arm may also include four switching tubes, six switching tubes, etc.
  • the number of switch tubes in each bridge arm included in the first secondary circuit
  • the switching tube Q15 and the switching tube Q17 are connected in parallel
  • the switching tube Q19 and the switching tube Q21 are connected in parallel
  • the switching tube Q16 and the switching tube Q18 are connected in parallel
  • the switching tube Q20 and the switching tube Q22 are connected in parallel.
  • the switching tube Q15 to the switching tube Q22 can be turned on and off by an external control circuit.
  • the switching tube Q15, the switching tube Q17, the switching tube Q19 and the switching tube Q21 can be Turn on and off at the same time
  • the switching tube Q16, the switching tube Q18, the switching tube Q20 and the switching tube Q22 can be turned on and off at the same time.
  • the switching tube Q15, the switching tube Q17, the switching tube Q19, and the switching tube Q21 are turned on, the switching tube Q15 and the switching tube Q17 connected in parallel are connected in series before the switching tube Q19 and the switching tube Q21 are connected in series with a capacitor C4 , Inductance L8 and transformer T1; when the switching tube Q16, the switching tube Q18, the switching tube Q20 and the switching tube Q22 are turned on, between the switching tube Q16 and the switching tube Q18 connected in parallel and the switching tube Q20 and Q22 connected in parallel A capacitor C4, an inductor L8 and a transformer T1 are connected in series.
  • the power conversion module may further include a first switch, a second switch, a third switch, and a fourth switch.
  • the first switch is disposed between the first bridge arm and the first inductor
  • the second switch is disposed on the first switch.
  • the third switch is arranged between the first bridge arm and the second bridge arm
  • the fourth switch is arranged between the third bridge arm and the fourth bridge arm.
  • the first interface and the second interface include a live wire interface and a neutral wire interface.
  • the first interface is connected to the first inductor. Since the first inductor can be connected to the neutral wire interface, that is, the first interface is a neutral wire interface.
  • Figures 3 to 9 respectively show that the first interface is a FireWire interface and the first interface is a neutral interface. In this case, there are multiple connection modes of the first switch and the second switch.
  • the first interface is the live interface and the second interface is the neutral interface.
  • the first interface can be L1, L2 and L3. Any one of the FireWire interfaces. In Figures 3 to 7, only the first interface is the L1 FireWire interface for illustration.
  • the first switch is the switch J1 and the second switch is the switch in Figures 3 to 7 J2
  • the third switch is the switch J3
  • the fourth switch is the switch J4
  • the fifth switch is the switch J5
  • the first bridge arm is the bridge arm including the switch tube Q7 and the switch tube Q8, and the second bridge arm includes the switch
  • the bridge arm of the tube Q9 and the switching tube Q10, the third bridge arm is the bridge arm including the switching tube Q11 and the switching tube Q12, and the fourth bridge arm is the bridge arm including the switching tube Q13 and the switching tube Q14 as an example for description.
  • one end of the third switch ie, the switch J3 in FIGS. 3 and 6) is connected to the wire between the switching tube Q7 and the switching tube Q8, and the other end is connected to the switching tube Q9
  • one end of the fourth switch ie switch J4 in Figure 3 and Figure 6
  • the switch J4 in Figure 3 and Figure 6 is connected to the wire between the switching tube Q11 and the switching tube Q12, and the other end is connected to the wire between the switching tube Q11 and the switching tube Q12.
  • the first switch that is, the switch J1 in FIG. 3 and FIG. 6) is arranged between the first bridge arm and the first inductor.
  • one end of the first switch may be connected between the switching tube Q7 and the switching tube Q8, The other end of the first switch can be coupled to the first inductor.
  • the other end of the first switch can be directly connected to the first inductor; in another case, the The other end may also be connected between the switching tube Q1 and the switching tube Q2, so as to be connected to the first inductor through the switching tube Q1, etc.
  • the coupling manner between the other end of the first switch and the first inductance is not limited here.
  • the three Firewire interfaces of L1, L2, and L3 may also include a third interface.
  • the third interface is any one of the three Firewire interfaces of L1, L2, and L3 except the first interface.
  • the second inductor 106 is connected to the interface.
  • the third interface is the live wire interface L3 and the second inductor 106 is the inductor L6 as an example for illustration.
  • the power conversion module may also include a fifth switch (that is, FIG. 3 and FIG. 6 In switch J5), one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is coupled to the second switch 22.
  • the second interface ie, the neutral interface N
  • the third interface that is, the FireWire interface L3
  • the FireWire interface L3 can be bypassed and connected to the branch circuit where the FireWire interface L3 is located, so as to realize the coupling of the second interface and the third bridge arm.
  • the second interface is a neutral interface
  • only a fifth switch needs to be added to the power conversion module 2
  • the second interface can be connected to the branch circuit where the third interface is located through the fifth switch, thereby achieving
  • the coupling with the third bridge arm not only improves the feasibility of this solution, but also improves the utilization of existing components in the power conversion module; in addition, the implementation solution provided by this embodiment avoids adding other components as much as possible, thereby Avoid increasing the complexity of the circuit.
  • the specific implementation circuit may be that one end of the second switch is connected between the switching tube Q11 and the switching tube Q12, and the other end of the second switch is connected to the second Interface coupling, where, in one case, as shown in Figure 3, the other end of the second switch can be directly connected to the second interface through the fifth switch; in another case, one end of the second switch can be connected to The switching tube Q5 and the switching tube Q6 are connected to the second interface through the switching tube Q5 and the fifth switch, etc.
  • the coupling mode of the other end of the second switch and the second interface is not limited here.
  • Figures 3 and 6 respectively show two connection modes of the fifth switch.
  • One end of the fifth switch is connected to the second interface, and the other One end is connected to the wire between the second inductor 106 and the switch Q5. More specifically, when the first switch, the second switch, and the fifth switch are all in the off state, and the third switch and the fourth switch are all in the on state, the PFC module 10 and the first DC-DC converter 200 is used for forward charging.
  • the equivalent circuit of FIG. 3 may be as shown in FIG. 4.
  • FIG. 4 is a schematic diagram of a state of the power conversion module provided in an embodiment of the application.
  • the PFC module 10 is used to convert the input AC power into the bus DC
  • the first DC-DC converter then isolates and converts the DC voltage of the busbar, thereby outputting a stable DC voltage to charge the battery pack C5.
  • the PFC module of Figure 3 10 also includes a neutral interface N.
  • the neutral interface N is coupled with the bus.
  • FIG. 5 is a schematic diagram of another state of the power conversion module provided by an embodiment of the application.
  • the second DC-DC converter 40 includes a second primary circuit and a second primary circuit.
  • the second primary circuit is realized by the first secondary circuit of the first DC-DC converter 200.
  • the second secondary circuit may include a second bridge arm, a fourth bridge arm, a capacitor C3 and an inductor L6, the second bridge arm includes a switch tube Q9 and a switch tube Q10, and the fourth bridge arm includes a switch tube Q13 and a switch tube Q14.
  • the tube Q9, the switching tube Q10, the switching tube Q13 and the switching tube Q14 can all be turned on and off through an external control circuit.
  • the switching tube Q9 and the switching tube Q14 are turned on and off at the same time, and the switching tube Q10 and the switching tube Q13 are turned on and off at the same time. More specifically, when the switching tube Q9 and the switching tube Q14 When turned on, the switching tube Q10 and the switching tube Q13 are turned off, and the switching tube Q9, the capacitor C3, the inductor L6 and the switching tube Q14 are connected in series; when the switching tube Q9 and the switching tube Q14 are turned off, the switching tube Q10 and the switching tube Q13 are turned off. On, the switch tube Q10, the capacitor C3, the inductor L6 and the switch tube Q13 are connected in series.
  • the inverter module 50 includes a first bridge arm, a third bridge arm, a first inductor, and a bus capacitor (capacitor C1 and capacitor C2 in the example of FIG. 5).
  • the first bridge arm includes a switching tube Q7 and a switching tube Q8, and the third bridge
  • the arm includes a switching tube Q11 and a switching tube Q12.
  • the switching tube Q7, the switching tube Q8, the switching tube Q11 and the switching tube Q12 can all be turned on and off through an external control circuit.
  • the switching tube Q7 and the switching tube Q12 can be turned on and off at the same time, and the switching tube Q8 and the switching tube Q11 can be turned on and off at the same time.
  • the switching tube Q7 and the switching tube Q12 are turned on, the switching tube Q8 and The switching tube Q11 is turned off, and the switching tube Q7, the switching tube Q12, the bus capacitor and the first inductor (the inductor L4 in the example of Fig. 5) are connected in series; when the switching tube Q7 and the switching tube Q12 are turned off, the switching tube Q8 and the switching tube Q11 is turned on, and the switching tube Q8, the switching tube Q11, the bus capacitor and the first inductor are connected in series.
  • the switching tube Q3 and the switching tube Q4 need to be in the off state; in addition, the switching tube Q1 and/or the switching tube Q2 can be in In the off state, the switch Q5 and/or the switch Q6 may be in the off state.
  • the second DC-DC converter 40 is used to connect the DC voltage input by the battery pack C5, and perform isolation conversion to convert it into the bus DC voltage , And then through the inverter module 50 to convert the DC voltage of the busbar to AC voltage output from the live interface L1 (ie the first interface) and the neutral interface N (ie the second interface), when applied to the on-board charger, it can be realized Inverter discharge function of on-board charger.
  • one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected to the wire between the third interface and the second inductor 106.
  • This solution provides The connection mode of the fifth switch is simple in circuit and avoids increasing circuit complexity. Specifically, when the first switch, the second switch, and the fifth switch are all in the off state, and the third switch and the fourth switch are all in the on state, the PFC module 10 and the first DC-DC converter 200 For forward charging, the equivalent circuit of FIG. 6 is still FIG. 5. For the specific implementation, please refer to the above description of FIG. 5, which will not be repeated here.
  • FIG. 7 is Another state schematic diagram of the power conversion module provided by the application embodiment is similar to FIG. 5, the second DC-DC converter 40 in FIG. 7 includes a second primary circuit and a second secondary circuit, and the second primary circuit also passes through The first secondary circuit of the first DC-DC converter 200 is implemented, and the second secondary circuit shown in FIG. 7 is similar to the second secondary circuit shown in FIG. The description in 5 will not be repeated here.
  • the inverter module 50 shown in FIG. 7 includes a first bridge arm, a third bridge arm, a first inductor, and a bus capacitor (capacitor C1 and capacitor C2 in the example of FIG. 7), but also The second inductor 106 is included.
  • the switching tube Q7 and the switching tube Q12 are turned on, the switching tube Q8 and the switching tube Q11 are turned off, the switching tube Q7, the switching tube Q12, the bus capacitor, the first inductor (the inductor L4 in the example of FIG. 7), and the second inductor 106 (Inductor L6 in the example of Fig.
  • one end of J2 of the second switch when one end of J2 of the second switch is connected between the switching tube Q5 and the switching tube Q6, one end of the fifth switch may also be connected to the second interface, and the other end of the fifth switch may be Connected to the wire between the switching tube Q5 and the switching tube Q6, etc., it can be realized that when the first switch, the second switch and the fifth switch are in the conducting state, the second interface bypasses the third interface and the first switch.
  • the three bridges 20003 are coupled to form the second DC-DC converter 40 and the inverter module 50, and other implementation manners will not be given as examples here.
  • the first interface is the neutral interface and the second interface is the live wire interface as an example for illustration.
  • the second interface can be three live wires, L1, L2, and L3. Any one of the FireWire interfaces in the interface, the three FireWire interfaces of L1, L2 and L3 can also include a third interface, the third interface is connected to the inductor L6, and the third interface is L1, L2 and L3 except the second For any Firewire interface other than the interface, in Figures 8 and 9 only the first interface is the neutral interface N, the second interface is the Firewire interface L1, and the third interface is the Firewire interface L3 as an example.
  • the first interface is the neutral interface
  • the second interface is the Firewire interface L1
  • the third interface is the Firewire interface L3 as an example.
  • the power conversion module may further include a fifth switch, one end of the fifth switch is connected to the first interface (that is, the neutral interface N in FIG. 8), and the other end is connected to On the wire between the third interface (ie, the live wire interface L3 in FIG. 8) and the inductor L6, so as to realize that the first inductor is connected to the first interface (ie, the inductor L6 in FIG. 8).
  • a fifth switch one end of the fifth switch is connected to the first interface (that is, the neutral interface N in FIG. 8), and the other end is connected to On the wire between the third interface (ie, the live wire interface L3 in FIG. 8) and the inductor L6, so as to realize that the first inductor is connected to the first interface (ie, the inductor L6 in FIG. 8).
  • the first switch is the switch J2, the second switch is the switch J1, the third switch is the switch J4, the fourth switch is the switch J3, and the fifth switch is the switch J5;
  • the first bridge arm is The bridge arm including the switching tube Q11 and the switching tube Q12
  • the second bridge arm is the bridge arm including the switching tube Q13 and the switching tube Q14
  • the third bridge arm is the bridge arm including the switching tube Q7 and the switching tube Q8, and the fourth bridge arm Take the bridge arm including the switching tube Q9 and the switching tube Q10 as an example for description.
  • one end of the third switch that is, the switch J4 in FIG.
  • the realization circuit of the first switch arranged between the first bridge arm and the first inductor may be that one end of the first switch (that is, the switch J2 in FIG. 8) is connected between the switch tube Q11 and the switch tube Q12, and the first The other end of the switch is coupled to the first inductor.
  • the other end of the first switch is directly connected to the first inductor; in another case, it may also be the first inductor.
  • the other end of the switch is connected to the wire between the switching tube Q5 and the switching tube Q6, and the first switch is coupled to the first inductance through the switching tube Q5.
  • the realization circuit of the second switch ie switch J1 in FIG.
  • arranged between the third bridge arm and the second interface may be: one end of the second switch is connected to the wire between the switching tube Q7 and the switching tube Q8 , The other end of the second switch is coupled with the second interface. Specifically, in an implementation manner, as shown in FIG. 8, the other end of the second switch is directly connected with the second interface. More specifically, when the first switch, the second switch, and the fifth switch are all in the off state, and the third switch and the fourth switch are all in the on state, the PFC module 10 and the first DC-DC converter 200 is used for forward charging.
  • the equivalent circuit of FIG. 8 is similar to the equivalent circuit of FIG. 3. For details, please refer to the above description of FIG. 4, which will not be repeated here.
  • FIG. 9 is a schematic diagram of another state of the power conversion module provided by an embodiment of the application. Similar to FIG. 5, the second DC-DC converter 40 in FIG. The primary circuit and the second secondary circuit, the second primary circuit is also implemented by the first secondary circuit of the first DC-DC converter 200, and the second secondary circuit shown in FIG. 9 is the same as that shown in FIG. 5
  • the second secondary circuit of is also similar, and you can refer to the above description of FIG. 5, which will not be repeated here.
  • the first inductor included in the inverter module 50 shown in FIG. 9 is an inductor L6 connected to the neutral interface N.
  • the switching tube Q7 and the switching tube Q12 are turned on, the switching tube Q8 and the switching tube Q11 are turned off, and the switching tube Q7, the switching tube Q12, the bus capacitor, and the first inductor (inductance L6 in the example of Fig. 9) are connected in series;
  • the switching tube Q8 and the switching tube Q11 are turned on, and the switching tube Q8, the switching tube Q11, the bus capacitor, the first inductor and the second inductor 106 are connected in series.
  • one end of the second switch is connected to the wire between the switching tube Q7 and the switching tube Q8, and the other end of the second switch can be connected to the wire between the inductor L4 and the switching tube Q1; In yet another implementation manner, the other end of the second switch may be connected to the wire between the switch transistor Q1 and the switch transistor Q2. Since the equivalent circuits of the foregoing two implementation manners are similar to those in FIGS. 4 and 7, here The working principles of the foregoing two connection modes will not be repeated.
  • the first switch, the second switch, the third switch, and the fourth switch may be four independent switches; in another case, please refer to FIG. 10, which is an implementation of this application.
  • FIG. 10 Another structural diagram of the bidirectional control device provided in the example, the first switch and the third switch can be the same first switch 31 (that is, the switch J6 in FIG. 10), and the second switch and the fourth switch are the same second switch.
  • the switch 32 that is, the switch J7 in FIG. 10
  • the first switch and the second switch are turned on, the third switch and the fourth switch are turned off; when the first switch 31 and the second switch 32 are in the second state, that is, the switch J6 and the switch J7 are both on When the contact 2 is reached, the first switch and the second switch are turned off, and the third switch and the fourth switch are turned on.
  • the function of the two switches is realized by a switch, which is not only beneficial to reduce the circuit complexity of the power conversion module And because one switch can only be in one state at the same time, that is, the first switch and the third switch in this embodiment will not be in the on state at the same time, thereby further reducing the probability of circuit failure of the power conversion module. It should be understood 10, only the first switch and the third switch in FIG.
  • the switches in 8 can also be replaced correspondingly, and will not be described one by one here; in another case, the first switch, the second switch, the third switch, and the fourth switch can also be represented as one switch, the one
  • the switch includes two channels, which are respectively used to realize the on and off functions of the first switch, the second switch, the third switch, and the fourth switch.
  • the DC-DC conversion module 20 may further include a third DC-DC converter 210, and the third DC-DC converter 210 may be a unidirectional isolated converter, such as a resonant converter (inductor-inductor-capacitor, LLC) ) Circuit; the third DC-DC converter 210 may also be a bidirectional isolated converter, such as a CLLC circuit, etc., the third DC-DC converter 210 may include a third primary circuit, a third secondary circuit, and a transformer T2. The three primary circuit and the third secondary circuit are connected through a transformer T2. The third primary circuit is connected in series with the first primary circuit, and the third secondary circuit is connected in parallel with the first secondary circuit.
  • a third DC-DC converter 210 may be a unidirectional isolated converter, such as a resonant converter (inductor-inductor-capacitor, LLC) ) Circuit; the third DC-DC converter 210 may also be a bidirectional isolated converter, such as a CLLC circuit, etc.
  • a third DC-DC converter 210 may also be provided in the power conversion module 2.
  • the primary circuits of the first DC-DC converter 200 and the third DC-DC converter 210 are connected in series, and the secondary circuits are connected in parallel, which is beneficial to reduce the frequency of the first DC-DC converter 200 and the third DC-DC converter 210.
  • the number of voltages borne by each switch tube not only reduces the probability of damage to the components in the first DC-DC converter 200 and the third DC-DC converter 210, but also increases the maximum charging power output by the power conversion module.
  • the embodiment of the present application also provides FIG. 11, FIG. 14, and FIG. 16, respectively showing that the power conversion module includes the first DC-DC converter 200 and the second DC-DC converter.
  • the third DC-DC converter 210 is an LLC circuit as an example for description. More specifically, since the third primary circuit of the third DC-DC converter 210 is similar to the first primary circuit, the components included in the third DC-DC converter 210 and the connection relationship between the components can be Refer to the description of the first primary circuit, which will not be repeated here.
  • FIGS. 11 to 17 the third DC-DC converter 210 is an LLC circuit as an example for description. More specifically, since the third primary circuit of the third DC-DC converter 210 is similar to the first primary circuit, the components included in the third DC-DC converter 210 and the connection relationship between the components can be Refer to the description of the first primary circuit, which will not be repeated here.
  • the third secondary circuit may include four bridge arms, and each bridge arm may include two diodes.
  • the third secondary circuit includes diodes. Diode D7, Diode D8, Diode D9, Diode D10, Diode D11, Diode D12, Diode D13 and Diode D14, among which, Diode D7 and Diode Tube D9 is connected in parallel, diode D8 and diode D10 are connected in parallel, diode D11 and diode D13 are connected in parallel, and diode D12 and diode D14 are connected in parallel; more specifically, diode D7 and diode D9 Diode D12 and diode D14 can be turned on and off at the same time.
  • Diode D8 and diode D10 are turned on and off at the same time as diode D11 and diode D13.
  • the diode D8 and the diode D10 are blocked from the diode D11 and the diode D13, and the diode D7 and the diode D9 connected in parallel are connected in parallel
  • the connected diode D12 and the diode D14 and the transformer T2 are connected in series; when the diode D7 and the diode D9 are blocked with the diode D12 and the diode D14, the diode D8 and the diode D10 are The diode D11 and the diode D13 are turned on, and the diode D8 and the diode D10 connected in parallel are connected in series with the diode D11, the diode D13 and the transformer T2 connected in parallel.
  • the third secondary circuit includes four bridge arms, and each bridge arm includes two diodes, but in reality, the third secondary circuit can also include two bridge arms and six bridge arms. Etc., each bridge arm may also include four diodes, six diodes, etc.
  • Fig. 11, Fig. 14 and Fig. 16 are only for facilitating the understanding of the solution, and are not used to limit the solution.
  • first interface is the live interface L1
  • the second interface is the neutral interface N
  • the second interface passes through the fifth switch and the third bridge arm (that is, the switch tube is included in Figure 11).
  • Q11 is coupled to the bridge arm of the switching tube Q12
  • one end of the fifth switch is connected to the second interface
  • the other end of the fifth switch is connected to the wire between the inductor L6 and the switching tube Q5 as an example for description.
  • the first switch 31 that is, the switch J6 in FIG. 11
  • the second switch 32 that is, the switch J7 in FIG. 11
  • the fifth switch that is, the switch J7 in FIG.
  • the switch J5) When the switch J5) is in the off state, that is, when the first switch, the second switch, and the fifth switch are all in the off state, and the third switch and the fourth switch are all in the on state, the PFC module 10.
  • the first DC-DC converter 200 and the third DC-DC converter 210 are used for forward charging.
  • the equivalent circuit diagram of FIG. 11 may be FIG. 12, which is a schematic diagram of the power conversion module provided by an embodiment of the application. Another state diagram.
  • the circuit diagram shown in FIG. 12 is similar to the circuit diagram shown in FIG. 4, except that the DC-DC converter in FIG. 4 only includes the first DC-DC converter 200; the DC-DC converter in FIG.
  • the first primary circuit and the second primary circuit 600 are connected in series, and the first secondary circuit and the second secondary circuit 610 are connected in parallel.
  • the first DC-DC converter 200 isolates and converts the DC voltage of the bus bar, thereby outputting a stable DC voltage to charge the battery pack C5; and the circuit diagram shown in FIG. 12,
  • the first DC-DC converter 200 and the third DC-DC converter 210 with the primary circuit in series and the secondary circuit in parallel isolate and convert the DC voltage of the bus bar, thereby outputting a stable DC voltage to charge the battery pack C5, as shown in FIG. 12
  • the specific implementation principle in the circuit diagram shown in FIG. 4 is similar to the implementation principle in the circuit diagram shown in FIG. 4, and will not be repeated here.
  • the equivalent circuit diagram of FIG. 11 can be as shown in FIG. 13.
  • the circuit diagram shown in FIG. 13 is similar to the circuit diagram shown in FIG. 5, except that in FIG. 5
  • the bus capacitors include capacitors C1 and C2, while the bus capacitors in FIG. 13 only include capacitors C1.
  • FIG. 13 please refer to the foregoing introduction to the implementation principle of FIG. 5, which will not be repeated here.
  • the first interface is the live interface L1
  • the second interface is the neutral interface N
  • the second interface passes through the fifth switch and the third bridge arm (that is, Figure 14 includes the switch tube Q11 and the switch The bridge arm of the tube Q12) is coupled, one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected to the third interface (that is, the live wire interface L3 in FIG. 14) and the second inductor 106 (that is, Take the wire between the inductor L6) in 14 as an example.
  • the first switch 31 that is, the switch J6 in FIG. 14
  • the second switch 32 that is, the switch J7 in FIG.
  • FIG. 14 is both set to contact 2, and the fifth switch (that is, the switch J7 in FIG. 14) When the switch J5) is in the off state, the equivalent circuit of Fig. 14 can be shown in Fig. 12, which will not be described here; when the first switch 31 and the second switch 32 are both set to contact 1, and the fifth switch When the switch is in the on state, the equivalent circuit of Fig. 14 is shown in Fig. 15.
  • the circuit diagram shown in Fig. 15 is similar to the circuit diagram shown in Fig. 7, except that the bus capacitor in Fig. 7 includes capacitor C1 and capacitor C2. , And the bus capacitor in FIG. 15 only includes the capacitor C1.
  • the bus capacitor in FIG. 15 only includes the capacitor C1.
  • the first interface is the neutral interface N
  • the second interface is the live interface L1.
  • the first interface passes through the fifth switch and the first bridge arm (that is, the switch tube Q11 and the switch are included in Figure 16).
  • the bridge arm of the tube Q12 is coupled, one end of the fifth switch is connected to the first interface, and the other end of the fifth switch is connected to the third interface (that is, the live wire interface L3 in Figure 16) and the first inductor (that is, Figure 16 On the wire between the inductor L6), the second switch (that is, the switch J1 in FIG. 16) is directly connected to the second interface as an example for description.
  • the first switch 31 that is, the switch J7 in FIG.
  • the equivalent circuit of FIG. 16 can be as shown in FIG. 12, which will not be described here; when the first switch 31 and the second switch 32 are both set to contact 1, and the fifth switch When the switch is in the on state, the equivalent circuit of Fig. 16 is shown in Fig. 17.
  • the circuit diagram shown in Fig. 17 is similar to the circuit diagram shown in Fig. 9, except that the bus capacitor in Fig. 9 includes capacitor C1 and capacitor C2. , And the bus capacitor in FIG. 17 only includes the capacitor C1.
  • the first switch and the third switch are shown as the same first switch 31, and the second switch and the fourth switch are shown as the same second switch 32 as examples.
  • the first switch, the second switch, the third switch, and the fourth switch are all shown as independent switches.
  • the switch can be directly replaced and applied.
  • the first switch, the second switch, the third switch and the first switch are no longer applied here. The situation where the four switches all behave as independent switches will be described one by one.
  • each of the PFC module 10 includes three branch circuits, and the three branch circuits may include a first branch circuit and a second branch circuit, where: The first interface is the input interface of the first branch circuit, and the third interface is the input interface of the second branch circuit.
  • the first switch and the second switch are in the off state, and the fifth switch is in the on state, the first The second interface can bypass the third interface and connect to the second branch circuit to form a single-phase rectifier circuit 60.
  • the single-phase rectifier circuit 60 includes a first branch circuit, a third branch circuit, and a bus capacitor.
  • the third branch circuit Including the second interface and components other than the third interface in the second branch circuit.
  • the PFC module 10 when the PFC module 10 includes a three-phase rectifier circuit, the first switch and the second switch are turned off, and the third When the switch, the fourth switch, and the fifth switch are turned on, a single-phase rectifier circuit 60 can be formed, that is, the function of the single-phase rectifier circuit 60 is realized by using the existing three-phase rectifier circuit, so that the embodiment of the present application provides
  • the power conversion module can realize three-phase input and single-phase input at the same time, which broadens the application scenarios of this scheme and improves the comprehensiveness of this scheme.
  • the first interface is the Firewire interface L1
  • the second interface is the neutral interface N
  • the third interface is the Firewire interface L3 as examples for description.
  • the first branch circuit may include the Firewire interface. Interface L1, inductor L4, diode D1, diode D2, switch tube Q1, and diode Q2.
  • the second branch circuit may include a live wire interface L3, inductor L6, diode D5, diode D6, switch tube Q5, and diode Q6, because the first branch circuit
  • the equivalent circuit diagram of FIG. 6 may be as shown in FIG. 18.
  • 18 is a schematic diagram of a state of the power conversion module provided by an embodiment of the application.
  • the second interface that is, the zero in FIGS. 6 and 18
  • the line interface N can bypass the third interface (that is, the Firewire interface L3 in Figure 6) and connect to the second branch circuit to form a third branch circuit.
  • the third branch circuit may include the second interface and the second branch circuit.
  • the components other than the third interface may include a neutral interface N, an inductor L6, a diode D5, a diode D6, a switch Q5, and a diode Q6 to form a single-phase rectifier circuit 60. More specifically, the diode D1 and the diode D6 are turned on and blocked at the same time, and the diode D2 and the diode D5 are turned on and blocked at the same time.
  • the first interface that is, the live wire interface L1 in Figure 6 and Figure 18
  • the tube Q3, the switching tube Q4, the inductor L6 and the second interface are connected in series; when the switching tube Q1, the switching tube Q2, the switching tube Q3 and the switching tube Q4 are turned off, and the diode D1 and the diode D6 are turned on, the diode D2 and the diode D5 Blocking, the first interface, the inductor L4, the diode D1, the bus capacitor (that is, the capacitor C1 and the capacitor C2 in Figure 18), the diode D6, the inductor L6 and the second interface are connected in series; when the switching tube Q1, the switching tube Q2, When the switch Q3 and the switch Q4 are turned off, and the diode D1 and the diode D6 are blocked, the diode D2
  • the single-phase rectifier circuit 60 can convert the input AC power into the DC bus voltage, and then after the DC voltage of the bus is converted into the high voltage DC voltage by the first DC-DC converter 200, the battery pack C5 is charged.
  • the first DC-DC converter 200 has been described in detail in the description of FIG. 3 above, and will not be repeated here. It should be noted that when the power conversion module provided in the embodiment of the present application is charged through the single-phase rectifier circuit 60, the neutral interface N and the bus will not be directly connected.
  • the equivalent circuit diagram of FIG. 14 may be 19.
  • the connection structure and the working principle of each element included in the single-phase rectifier circuit 60 in the circuit shown in FIG. 19 and the single-phase rectifier circuit 60 in the circuit shown in FIG. 18 are the same as those shown in FIG. 18
  • the circuit is similar, and the single-phase rectifier circuit 60 shown in FIG. 19 can be understood with reference to the above-mentioned introduction of the single-phase rectifier circuit 60 in FIG. 18, which will not be repeated here.
  • FIG. 19 As shown in FIG.
  • the DC bus voltage can be converted into high voltage by the first DC-DC converter 200 and the third DC-DC converter 210.
  • the DC voltage is used to charge the battery pack C5. Since the first DC-DC converter 200 and the third DC-DC converter 210 have been described in detail in the description of FIG. 11, they will not be repeated here.
  • the embodiment of the application also provides a vehicle-mounted charger.
  • the vehicle-mounted charger includes an EMI filter module 1 and a power conversion module 2.
  • the power conversion module 2 includes a PFC module 10 and a DC-DC converter 20, wherein the DC-DC converter 20 may include a first DC-DC converter 200; the PFC module has a first interface, a second interface and a bus capacitor, and a first inductor is connected to the first interface; the first DC-DC converter 200 includes a first primary circuit And the first secondary circuit, the first primary circuit includes a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm; the power conversion module 2 also includes a first switch, a second switch, a third switch and The fourth switch, the first switch is arranged between the first bridge arm and the first inductor, the second switch is arranged between the third bridge arm and the second interface, and the third switch is arranged between the first bridge arm and the second bridge arm In between, the fourth switch is arranged between the third bridge arm and the fourth bridge
  • the first bridge arm is coupled with the first inductance
  • the third bridge arm is coupled with the second interface to form the second DC-DC converter 40 and the inverter module 50; wherein, the second DC-DC converter
  • the second primary circuit of 40 is the first secondary circuit of the first DC-DC converter 200
  • the second secondary circuit of the second DC-DC converter 40 includes a second bridge arm and a fourth bridge arm
  • an inverter module 50 includes a first bridge arm, a third bridge arm, a first inductor, and a bus capacitor.
  • the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm all include two switch tubes; one end of the first switch is connected to the two switch tubes of the first bridge arm The other end of the first switch is coupled with the first inductance; one end of the second switch is connected between the two switch tubes of the third bridge arm, and the other end of the second switch is coupled with the second interface; One end is connected between the two switch tubes of the first bridge arm, the other end of the third switch is connected between the two switch tubes of the second bridge arm; one end of the fourth switch is connected to the two switches of the third bridge arm Between the tubes, the other end of the fourth switch is connected between the two switch tubes of the fourth bridge arm.
  • the first switch and the third switch are the same first switch 31, and the second switch and the fourth switch are the same second switch 32.
  • the PFC module includes a three-phase rectifier circuit, and the three-phase rectifier circuit includes three live wire interfaces and a neutral wire interface.
  • the first interface is any one of the three live wire interfaces, and the second interface is zero.
  • the three firewire interfaces also include a third interface, which is any one of the three firewire interfaces except the first interface;
  • the power conversion module 2 also includes a fifth switch, one end of which is connected to The second interface is connected, and the other end of the fifth switch is coupled with the second switch; when the first switch, the second switch, and the fifth switch are all in the on state, the second interface bypasses the third interface and connects with the first switch.
  • Three bridge arms are coupled.
  • the three-phase rectifier circuit has a first branch circuit and a second branch circuit, the first interface is the input interface of the first branch circuit, and the third interface is the input interface of the second branch circuit;
  • the second interface bypasses the third interface and connects to the second branch circuit to form a single-phase rectifier circuit 60; among them, the single-phase rectifier circuit 60 It includes a first branch circuit, a third branch circuit, and a bus capacitor.
  • the third branch circuit includes a second interface and elements in the second branch branch 108 except for the third interface.
  • the second inductor 106 is connected to the third interface, one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected between the third interface and the second inductor 106.
  • the PFC module is a Vienna rectifier circuit
  • the first DC-DC converter is a CLLC circuit
  • the power conversion module 2 further includes a third DC-DC converter 210
  • the third DC-DC converter 210 is LLC circuit
  • the third DC-DC converter 210 includes a third primary circuit and a third secondary circuit; the third primary circuit is connected in series with the first primary circuit, and the third secondary circuit is connected in parallel with the first secondary circuit.
  • all the switch tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm are MOS transistors, triodes, SiC transistors or IGBTs.
  • the embodiment of the application also provides an electric vehicle.
  • the electric vehicle includes an on-board charger and a battery pack.
  • the on-board charger includes an EMI filter module 1 and a power conversion module 2, and the power conversion module 2 includes a PFC module 10 and a DC-DC converter.
  • the DC-DC converter 20 may include a first DC-DC converter 200; the PFC module has a first interface, a second interface and a bus capacitor, and a first inductor is connected to the first interface; a first DC-
  • the DC converter 200 includes a first primary circuit and a first secondary circuit.
  • the first primary circuit includes a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm;
  • the power conversion module 2 also includes a first switch , The second switch, the third switch and the fourth switch, the first switch is arranged between the first bridge arm and the first inductor, the second switch is arranged between the third bridge arm and the second interface, and the third switch is arranged between Between the first bridge arm and the second bridge arm, the fourth switch is arranged between the third bridge arm and the fourth bridge arm; the first switch and the second switch are both in the off state, and the third switch and the fourth switch When the switches are in the on state, the EMI filter module 1, the PFC module 10 and the first DC-DC converter 200 are used for forward charging; when the first switch and the second switch are both in the on state, and the first switch When the three switches and the fourth switch are both in the off state, the first bridge arm is coupled with the first inductance, and the third bridge arm is coupled with the second interface to form the second DC-DC converter 40 and the invert
  • the inverter module 50 includes a first bridge arm, a third bridge arm, a first inductor and a bus capacitor; the battery pack is used to store the power input by the on-board charger, and is also used for inverter through the on-board charger Discharge.
  • the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm all include two switch tubes; one end of the first switch is connected to the two switch tubes of the first bridge arm The other end of the first switch is coupled with the first inductance; one end of the second switch is connected between the two switch tubes of the third bridge arm, and the other end of the second switch is coupled with the second interface; One end is connected between the two switch tubes of the first bridge arm, the other end of the third switch is connected between the two switch tubes of the second bridge arm; one end of the fourth switch is connected to the two switches of the third bridge arm Between the tubes, the other end of the fourth switch is connected between the two switch tubes of the fourth bridge arm.
  • the first switch and the third switch are the same first switch 31, and the second switch and the fourth switch are the same second switch 32.
  • the PFC module includes a three-phase rectifier circuit, and the three-phase rectifier circuit includes three live wire interfaces and a neutral wire interface.
  • the first interface is any one of the three live wire interfaces, and the second interface is zero.
  • the three firewire interfaces also include a third interface, which is any one of the three firewire interfaces except the first interface;
  • the power conversion module 2 also includes a fifth switch, one end of which is connected to The second interface is connected, and the other end of the fifth switch is coupled with the second switch; when the first switch, the second switch, and the fifth switch are all in the on state, the second interface bypasses the third interface and connects with the first switch.
  • Three bridge arms are coupled.
  • the three-phase rectifier circuit has a first branch circuit and a second branch circuit, the first interface is the input interface of the first branch circuit, and the third interface is the input interface of the second branch circuit;
  • the second interface bypasses the third interface and connects to the second branch circuit to form a single-phase rectifier circuit 60; among them, the single-phase rectifier circuit 60 It includes a first branch circuit, a third branch circuit, and a bus capacitor.
  • the third branch circuit includes a second interface and elements in the second branch branch 108 except for the third interface.
  • the second inductor 106 is connected to the third interface, one end of the fifth switch is connected to the second interface, and the other end of the fifth switch is connected between the third interface and the second inductor 106.
  • the PFC module is a Vienna rectifier circuit
  • the first DC-DC converter is a CLLC circuit
  • the power conversion module 2 further includes a third DC-DC converter 210
  • the third DC-DC converter 210 is LLC circuit
  • the third DC-DC converter 210 includes a third primary circuit and a third secondary circuit; the third primary circuit is connected in series with the first primary circuit, and the third secondary circuit is connected in parallel with the first secondary circuit.
  • all the switch tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm are MOS transistors, triodes, SiC transistors or IGBTs.
  • the disclosed apparatus and equipment may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种功率转换模块、车载充电机和电动汽车,可用于新能源汽车领域中,功率转换模块中包括功率因素校正PFC模块和第一直流-直流DC-DC变换器,第一DC-DC变换器的第一初级电路中有第一桥臂、第二桥臂、第三桥臂和第四桥臂,在第一桥臂和PFC模块的接口处的电感之间设置了第一开关,在第三桥臂和PFC模块的另一接口之间设置了第二开关,在第一开关和第二开关导通时,第一DC-DC变换器的次级电路可以实现第二DC-DC变换器的初级电路的功能,第二桥臂和第四桥臂可以实现第二DC-DC变换器的次级电路的功能,第一桥臂和第三桥臂、PFC模块的电感以及PFC模块的电容可以形成逆变模块,从而可以实现逆变放电功能。

Description

一种功率转换模块、车载充电机和电动汽车
本申请要求于2019年6月25日提交中国专利局、申请号为201910554830.1、发明名称为“一种功率转换模块、车载充电机和电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子领域,尤其涉及一种功率转换模块、车载充电机和电动汽车。
背景技术
目前给电动汽车的电池充电的方式主要包括快充和慢充,其中,快充为直流充电桩直接给电池包充电;慢充为将交流电(alternating current,AC)直接接入电动汽车,通过车载充电机将交流电转换为直流电之后,再给电池包充电。具体的,车载充电机中设置有功率因素矫正(power factor correction,PFC)模块和直流-直流变换(direct current-direct current converter,DC-DC)器,PFC模块将接入的交流电转换为直流母线电压之后,DC-DC变换器将直流母线电压转换为高压直流电之后,给电池包充电。
由于电动汽车上配置的电池包可以携带大量的电量,则理论上可以将电池包携带的大量电能释放出来给其他设备供电,例如一辆电动汽车给另外一辆电动汽车充电(vehicle to vehicle,V2V),再例如电动汽车给电饭煲等家用电气设备供电(vehicle to load,V2L)等;电池包还可以作为储能电池连接电网,在电网处于低谷状态时充电,在电网处于高峰状态时给电网输送电量(vehicle to grid,V2G),以承担电网的削峰填谷的功能等。由于V2V、V2L以及V2G等存在应用价值,因此很多车企已经对车载充电机提出了可以实现逆变放电的功能需求。
但由于现有技术提供的车载充电机的PFC模块存在二极管,而二极管的单向导通特性使得母线电压无法反向逆变至输入口,因此,一种能够实现车载充电机逆变放电的方案亟待推出。
发明内容
本申请实施例提供了一种功率转换模块、车载充电机和电动汽车,用于旁路掉PFC模块中的二极管,并将DC-DC变换器的初级电路中部分桥臂与PFC模块中的电感和电容耦合形成逆变模块,以实现逆变放电功能。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种功率转换模块,可用于新能源汽车领域中。功率转换模块可以包括:功率因素校正PFC模块和第一直流-直流DC-DC变换器,具体的,PFC模块可以包括单相整流电路、三相整流电路或其他多相整流电路,具体可以表现为维也纳整流电路,第一DC-DC变换器为双向型隔离变换器,可以表现为双向谐振变换CLLC电路;其中,PFC模块中有第一接口、第二接口和母线电容,第一接口处连接有第一电感,第一接口和第二接口中包括零线接口和火线接口,可以为第一接口为零线接口,第二接口为火 线接口,也可以为第二接口为零线接口,第一接口为火线接口;第一DC-DC变换器包括第一初级电路和第一次级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂,功率转换模块还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,PFC模块和第一DC-DC变换器用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器和逆变模块;其中,第二DC-DC变换器的第二初级电路为第一DC-DC变换器的第一次级电路,第二DC-DC变换器的第二次级电路包括第二桥臂和第四桥臂,逆变模块包括第一桥臂、第三桥臂、第一电感以及母线电容。
本实现方式中提供的功率转换模块中包括PFC模块和第一DC-DC变换器,可以将交流电转换为直流电之后给电池包充电,其中,第一DC-DC变换器的第一初级电路中有第一桥臂、第二桥臂、第三桥臂和第四桥臂,本申请实施例中在第一桥臂和PFC模块的接口处的电感之间设置了第一开关,在第三桥臂和PFC模块的另一接口之间设置了第二开关,则第一开关和第二开关导通时,第一DC-DC变换器的次级电路可以实现第二DC-DC变换器的初级电路的功能,第二桥臂和第四桥臂可以实现第二DC-DC变换器的次级电路的功能,第一桥臂和第三桥臂、PFC模块的电感以及PFC模块的电容可以形成逆变模块,从而旁路掉PFC模块中的二极管,电池包输出的直流电可以通过第二DC-DC变换器和逆变模块后转换为交流电输出,当前述电路应用于车载充电机上时,可以实现车载充电机的逆变放电功能。
在第一方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂和第四桥臂均可以包括两个开关管、四个开关管、六个开关管或其他偶数数量的开关管等;在第一桥臂至第四桥臂均包括两个开关管的情况下,第一开关的一端连接于第一桥臂的两个开关管之间,第一开关的另一端与第一电感耦合;第二开关的一端连接于第三桥臂的两个开关管之间,第二开关的另一端与第二接口耦合;第三开关的一端连接于第一桥臂的两个开关管之间,第三开关的另一端连接于第二桥臂的两个开关管之间;第四开关的一端连接于第三桥臂的两个开关管之间,第四开关的另一端连接于第四桥臂的两个开关管之间。本实现方式中提供了第一开关至第四开关的具体连接方式,提高了本方案的可实现性。
在第一方面的一种可能实现方式中,第一开关和第三开关为同一第一切换开关,第二开关和第四开关为同一第二切换开关。本实现方式中通过一个切换开关来实现两个开关的功能,不仅有利于降低功率转换模块的电路复杂度,而且由于一个切换开关同时只能处于一种状态,也即本实施例中第一开关和第三开关不会同时处于导通状态,从而进一步降低了功率转换模块出现电路故障的概率。
在第一方面的一种可能实现方式中,PFC模块中包括三相整流电路,三相整流电路中包括三个火线接口和零线接口,在第一接口为三个火线接口任一火线接口,第二接口为零线接口的情况下,三个火线接口还包括第三接口,第三接口为三个火线接口中除第一接口之外的任一火线接口;功率转换模块还包括第五开关,第五开关的一端与第二接口连接, 第五开关的另一端与第二开关耦合;在第一开关、第二开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,与第三桥臂耦合。本实现方式中,在第二接口为零线接口的情况下,功率转换模块中仅需可以增设第五开关,则第二接口可以通过第五开关接入第三接口所在的分支电路,进而实现与第三桥臂的耦合,不仅提高了本方案的可实现性,而且提高了功率转换模块中现有元件的利用率;此外,本实现方式中尽量避免增加其他元器件,从而避免了增加电路的复杂度。
在第一方面的一种可能实现方式中,三相整流电路中包括三个分支电路,三个分支电路中有第一分支电路和第二分支电路,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口;在在第三开关、第四开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,接入第二分支电路,形成单相整流电路,单相整流电路和第一DC-DC转换器用于进行正向充电,其中,单相整流电路包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口和第二分支电路中除第三接口之外的元件。本实现方式中利用现有的三相整流电路实现了单相整流电路的功能,从而本申请实施例提供的功率转换模块可以同时实现三相输入和单相输入,拓宽了本方案的应用场景,提高了本方案的全面性。
在第一方面的一种可能实现方式中,第三接口处连接有第二电感,第五开关的一端与第二接口连接,第五开关的另一端可以接于第三接口与第二电感之间,也可以接于第二电感与第二开关之间。本实现方式中提供的第五开关的连接方式,提高了本方案的可执行性,当第五开关的另一端可以接于第三接口与第二电感之间时,电路简单,避免提高电路复杂度。
在第一方面的一种可能实现方式中,PFC模块为维也纳整流电路,第一DC-DC变换器为双向谐振变换CLLC电路;功率转换模块还包括第三DC-DC变换器,第三DC-DC变换器可以为单向型隔离变换电路,也可以为双向型隔离变换电路,具体可以表现为谐振变换LLC电路,第三DC-DC变换器包括第三初级电路和第三次级电路,其中,第一初级电路与第一次级电路之间通过第一变压器连接,第三初级电路与第三次级电路之间通过第二变压器连接;第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联。本实现方式中功率转换模块还可以设置第三DC-DC变换器,且第一DC-DC变换器和第三DC-DC变换器的初级电路串联,次级电路并联,有利于降低第一DC-DC变换器和第三DC-DC变换器中每个开关管承担的电压数,既降低了第一DC-DC变换器和第三DC-DC变换器中元器件的损坏几率,又提高了功率转换模块输出的最大充电功率。
在第一方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的所有开关管均为MOS管、三极管、碳化硅SiC晶体管或绝缘栅双极型晶体管IGBT。本实现方式中提供了第一桥臂至第四桥臂中包括的开关管的具体实现方式,提高了本方案的可执行性,且有利于降低功率转换模块的总面积,操作简单、容易实现,还有利于降低产品成本。
第二方面,本申请实施例还提供一种车载充电机,包括:电磁兼容EMI滤波模块、功率因素校正PFC模块和第一直流-直流DC-DC变换器;PFC模块中有第一接口、第二接口和母线电容,第一接口处连接有第一电感;第一DC-DC变换器包括第一初级电路和第一次 级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;功率转换模块还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,EMI滤波模块、PFC模块和第一DC-DC变换器用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器和逆变模块;其中,第二DC-DC变换器的第二初级电路为第一DC-DC变换器的第一次级电路,第二DC-DC变换器的第二次级电路包括第二桥臂和第四桥臂,逆变模块包括第一桥臂、第三桥臂、第一电感以及母线电容。
在第二方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂和第四桥臂均包括两个开关管;第一开关的一端连接于第一桥臂的两个开关管之间,第一开关的另一端与第一电感耦合;第二开关的一端连接于第三桥臂的两个开关管之间,第二开关的另一端与第二接口耦合;第三开关的一端连接于第一桥臂的两个开关管之间,第三开关的另一端连接于第二桥臂的两个开关管之间;第四开关的一端连接于第三桥臂的两个开关管之间,第四开关的另一端连接于第四桥臂的两个开关管之间。
在第二方面的一种可能实现方式中,第一开关和第三开关为同一第一切换开关,第二开关和第四开关为同一第二切换开关。
在第二方面的一种可能实现方式中,PFC模块中包括三相整流电路,三相整流电路中包括三个火线接口和零线接口,第一接口为三个火线接口任一火线接口,第二接口为零线接口,三个火线接口还包括第三接口,第三接口为三个火线接口中除第一接口之外的任一火线接口;功率转换模块还包括第五开关,第五开关的一端与第二接口连接,第五开关的另一端与第二开关耦合;在第一开关、第二开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,与第三桥臂耦合。
在第二方面的一种可能实现方式中,三相整流电路中有第一分支电路和第二分支电路,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口;在第三开关、第四开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,接入第二分支电路,形成单相整流电路;其中,单相整流电路包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口和第二分支电路中除第三接口之外的元件。
在第二方面的一种可能实现方式中,第三接口处连接有第二电感,第五开关的一端与第二接口连接,第五开关的另一端接于第三接口与第二电感之间。
在第二方面的一种可能实现方式中,PFC模块为维也纳整流电路,第一DC-DC变换器为CLLC电路;功率转换模块还包括第三DC-DC变换器,第三DC-DC变换器为LLC电路,第三DC-DC变换器包括第三初级电路和第三次级电路;第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联。
在第二方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的所有开关管均为MOS管、三极管、碳化硅SiC晶体管或绝缘栅双极型晶体管IGBT。
本申请第二方面提供的电子组件中包含的各个部件的具体实现方式和有益效果可以参 考第一方面,此处不再一一赘述。
第三方面,本申请实施例还提供一种电动汽车,包括:车载充电机和电池包,车载充电机包括电磁兼容EMI滤波模块、功率因素校正PFC模块和第一直流-直流DC-DC变换器;PFC模块中有第一接口、第二接口和母线电容,第一接口处连接有第一电感;第一DC-DC变换器包括第一初级电路和第一次级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;功率转换模块还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,EMI滤波模块、PFC模块和第一DC-DC变换器用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器和逆变模块;其中,第二DC-DC变换器的第二初级电路为第一DC-DC变换器的第一次级电路,第二DC-DC变换器的第二次级电路包括第二桥臂和第四桥臂,逆变模块包括第一桥臂、第三桥臂、第一电感以及母线电容。
在第三方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂和第四桥臂均包括两个开关管;第一开关的一端连接于第一桥臂的两个开关管之间,第一开关的另一端与第一电感耦合;第二开关的一端连接于第三桥臂的两个开关管之间,第二开关的另一端与第二接口耦合;第三开关的一端连接于第一桥臂的两个开关管之间,第三开关的另一端连接于第二桥臂的两个开关管之间;第四开关的一端连接于第三桥臂的两个开关管之间,第四开关的另一端连接于第四桥臂的两个开关管之间。
在第三方面的一种可能实现方式中,第一开关和第三开关为同一第一切换开关,第二开关和第四开关为同一第二切换开关。
在第三方面的一种可能实现方式中,PFC模块中包括三相整流电路,三相整流电路中包括三个火线接口和零线接口,第一接口为三个火线接口任一火线接口,第二接口为零线接口,三个火线接口还包括第三接口,第三接口为三个火线接口中除第一接口之外的任一火线接口;功率转换模块还包括第五开关,第五开关的一端与第二接口连接,第五开关的另一端与第二开关耦合;在第一开关、第二开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,与第三桥臂耦合。
在第三方面的一种可能实现方式中,三相整流电路中有第一分支电路和第二分支电路,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口;在第三开关、第四开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,接入第二分支电路,形成单相整流电路;其中,单相整流电路包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口和第二分支电路中除第三接口之外的元件。
在第三方面的一种可能实现方式中,第三接口处连接有第二电感,第五开关的一端与第二接口连接,第五开关的另一端接于第三接口与第二电感之间。
在第三方面的一种可能实现方式中,PFC模块为维也纳整流电路,第一DC-DC变换器为CLLC电路;功率转换模块还包括第三DC-DC变换器,第三DC-DC变换器为LLC电路, 第三DC-DC变换器包括第三初级电路和第三次级电路;第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联。
在第三方面的一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的所有开关管均为MOS管、三极管、碳化硅SiC晶体管或绝缘栅双极型晶体管IGBT。
本申请第三方面的提供的通信设备中包含的电子组件的各个部件的具体实现方式和有益效果可以参考第一方面,此处不再一一赘述。
附图说明
图1为本申请实施例提供的电动汽车的一种结构示意图;
图2为本申请实施例提供的车载充电机的一种结构示意图;
图3为本申请实施例提供的功率转换模块的一种结构示意图;
图4为本申请实施例提供的功率转换模块的一种等效电路示意图;
图5为本申请实施例提供的功率转换模块的另一种等效电路示意图;
图6为本申请实施例提供的功率转换模块的另一种结构示意图;
图7为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图8为本申请实施例提供的功率转换模块的又一种结构示意图;
图9为本申请实施例提供的功率转换模块的再一种等效电路示意图;
图10为本申请实施例提供的功率转换模块的再一种结构示意图;
图11为本申请实施例提供的功率转换模块的又一种结构示意图;
图12为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图13为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图14为本申请实施例提供的功率转换模块的又一种结构示意图;
图15为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图16为本申请实施例提供的功率转换模块的又一种结构示意图;
图17为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图18为本申请实施例提供的功率转换模块的又一种等效电路示意图;
图19为本申请实施例提供的功率转换模块的又一种等效电路示意图。
具体实施方式
本申请实施例提供了一种功率转换模块、车载充电机和电动汽车,用于旁路掉PFC模块中的二极管,并将DC-DC变换器的初级电路中部分桥臂与PFC模块中的电感和电容耦合形成逆变模块,以实现逆变放电功能。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,以便包括一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
下面将结合本申请实施例中的附图,对本申请进行进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本申请实施例提供的功率转换模块可以应用于机器设备上设置的充电机中,所述机器设备可以为电动汽车、大型机床或其它内置有充电机的机器设备中,应当理解,本申请实施例中仅以功率转换模块应用于电动汽车中为例进行说明。
请参阅图1,图1为本申请实施例提供的电动汽车的一种结构示意图,电动汽车中至少包括车载充电机和电池包,具体的,请参见图2,图2位本申请实施例提供的车载充电机的一种结构示意图,车载充电机可以包括电磁兼容(electromagnetic compatibility,EMI)滤波模块1和功率转换模块2,功率转换模块2包括PFC模块10和DC-DC变换模块20;更具体的,EMI滤波模块1又可以称为“电源EMI滤波模块”,用于对电源中特定频率的频点或该频点之外的频率进行滤除操作,从而得到一个特定频率的电源信号,或消除一个特定频率后的电源信号;功率转换模块2中的PFC模块10用于将进行了滤除操作之后的电源交流电转换为母线直流电;功率转换模块2中的隔离DC-DC变换模块20用于将母线直流电转换为高压直流电后,给电池包充电。
为了使得所述车载充电机不仅有充电功能,还可以实现逆变放电功能,本申请实施例提供了一种功率转换模块2,所述功率转换模块2可以应用于图2示出的车载充电机中,请参阅图3至图7,图3至图7分别示出了本申请实施例提供的功率转换模块的三种不同的结构示意图,在图3至图7中,功率转换模块2均包括PFC模块10和第一DC-DC变换器200,也即DC-DC变换模块20包括第一DC-DC变换器200。具体的,PFC模块10中可以包括整流电路和PFC电路,所述整流电路用于将输入的交流电转换为母线直流电,具体可以表现为单相整流电路、三相整流电路或其他多相整流电路等等;PFC电路与所述整流电路对应,用于提高所述整流电路的功率因数;当所述整流电路为三相整流电路时,PFC模块10可以表现为维也纳(vienna)整流电路、三相六开关整流电路或三个单相并联整流电路等;当所述整流电路为单相整流电路时,PFC模块10还可以表现为其他电路等等,具体PFC模块10的展现形式,此处不做限定。第一DC-DC变换器200为双向型隔离变换器,用于将母线直流电进行隔离变换,转变为可以给电池包充电的直流电,具体可以表现为双向谐振变换(capacitor-inductor-inductor-capacitor,CLLC)电路、双向有源全桥(DAB)电路或其他类型的双向型隔离DC-DC变换器等等,此处不做限定。应当理解,本实施例中仅以PFC模块10表现为维也纳(vienna)整流电路,第一DC-DC变换器200表现为CLLC电路为例进行说明,当PFC模块10选择其他类型的整流电路和PFC电路时,或者第一DC-DC变换器200选择其他类型的隔离变换电路时,均可以参考本实施例中提供的方案,此处不再一一进行介绍。
本申请实施例中,PFC模块10中有第一接口、第二接口和母线电容,第一接口处连接有第一电感;第一DC-DC变换器200包括第一初级电路和第一次级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;功率转换模块2还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均 处于导通状态的情况下,PFC模块10和第一DC-DC变换器200用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器40和逆变模块50;其中,第二DC-DC变换器40的第二初级电路为第一DC-DC变换器200的第一次级电路,第二DC-DC变换器40的第二次级电路包括第二桥臂和第四桥臂,逆变模块50包括第一桥臂、第三桥臂、第一电感以及母线电容。
具体的,在图3的示例中,PFC模块10中包括三个分支电路、一个零线接口N和母线电容。每个分支电路中有一个火线接口,三个分支电路中的三个火线接口分别为L1、L2和L3,每个火线接口处都可以连接有电感,其中,火线接口L1处连接有电感L4,火线接口L2处连接有电感L5,火线接口L3处可以连接有电感L6,应当理解,虽然图3的示例中,每个火线接口处连接的为一个电感,但本申请实施例中不限定电感的数量,每个火线接口处也可以两个或者多个电感,具体电感的数量可以结合实际产品情况确定。每个分支电路中还可以包括二极管和开关管,具体的,结合图3,首先介绍火线接口L1所在的分支电路为例进行说明,火线接口L1所在的分支电路中还可以包括二极管D1、二极管D2、开关管Q1以及开关管Q2。其中,二极管D1和二极管D2的极性相反,当二极管D1导通时,二极管D2阻断;当二极管D1阻断时,二极管D2导通,作为示例,例如可以为二极管D1为PNP型二极管,二极管D2为NPN型二极管,或者二极管D1为NPN型二极管,二极管D2为PNP型二极管等,虽然图3中示出的二极管D1和二极管D2均为一个二极管,但本申请实施例中不限定二极管的数量。当PFC模块10用于正向充电时,开关管Q1和开关管Q2可以同时导通,同时关断,由于可以通过外接控制电路的方式来控制开关管Q1和开关管Q2的导通和关断,本申请实施例中不限定开关管Q1和开关管Q2的极性关系,开关管Q1和开关管Q2均可以表现为三极管、碳化硅(silicon carbide,SiC)晶体管、绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)或者金属-氧气-半导体场效应晶体管(metal-oxide-semiconductor,MOS),也可以简称为“MOS管”,应当理解,虽然图3中示出开关管Q1和开关管Q2均为一个开关管,但也可以为三个或三个以上的开关管,具体此处不做限定。
对应的,火线接口L2所在的分支电路中还可以包括二极管D3、二极管D4、开关管Q3以及开关管Q4;火线接口L3所在的分支电路中还可以包括二极管D5、二极管D6、开关管Q5以及开关管Q6。其中,二极管D3和二极管D4的极性相反,二极管D5和二极管D6的极性相反,二极管D3、二极管D5和二极管D1的极性可以相同,二极管D4、二极管D6和二极管D2的极性可以相同,当功率转换模块用于进行三相充电时,在二极管D1导通的情况下,二极管D3和二极管D5导通,二极管D2、二极管D4和二极管D6阻断;在二极管D1阻断的情况下,二极管D3和二极管D5阻断,二极管D2、二极管D4和二极管D6导通。其中,二极管D3、二极管D5和二极管D1的具体表现形式可以类似,二极管D4、二极管D6和二极管D2的具体表现形式可以类似,此处不再对二极管D3、二极管D5、二极管D4和二极管D6的具体表现形式进行介绍,应当理解,本申请实施例中也不限定二极管D3、二极管D5、二极管D4和二极管D6的数量。
本申请实施例中也不限定开关管Q3和开关管Q4以及开关管Q5和开关管Q6的极性 关系,当功率转换模块用于进行三相充电时,开关管Q1和开关管Q2、开关管Q3和开关管Q4以及开关管Q5和开关管Q6可以同时导通和关断。开关管Q3、开关管Q4、开关管Q5和开关管Q6的具体表现形式可以参考开关管Q1和开关管Q2处的描述,此处也不再举例,应当理解,本申请实施例中也不限定开关管Q3、开关管Q4、开关管Q5和开关管Q6的数量。
母线电容为设置于母线上的电容,具体可以为一个电容,也可以为至少两个电容,图3中以母线电容为电容C1和电容C2两个电容为例进行说明。
进一步的,二极管D1与电容C1串联,二极管D2与电容C2串联,开关管Q1和开关管Q2串联,二极管D1和电容C1、二极管D2和电容C2以及开关管Q1和开关管Q2之间互相并联,并联连接的二极管D1和电容C1、二极管D2和电容C2以及开关管Q1和开关管Q2的一侧与电感L4以及火线接口L1连接,另一侧可以通过母线与零线接口N连接。
对应的,二极管D3与电容C1串联,二极管D4与电容C2串联,开关管Q3和开关管Q4串联,二极管D3和电容C1、二极管D4和电容C2以及开关管Q3和开关管Q4之间互相并联,并联连接的二极管D3和电容C1、二极管D4和电容C2以及开关管Q3和开关管Q4的一侧与电感L5以及火线接口L2连接,另一侧可以通过母线与零线接口N连接。
二极管D5与电容C1串联,二极管D6与电容C2串联,开关管Q5和开关管Q6串联,二极管D5和电容C1、二极管D6和电容C2以及开关管Q5和开关管Q6之间互相并联,并联连接的二极管D5和电容C1、二极管D6和电容C2以及开关管Q5和开关管Q6的一侧与电感L6以及火线接口L3连接,另一侧可以通过母线与零线接口N连接。
接下来介绍第一DC-DC变换器200,第一DC-DC变换器200中可以包括第一初级电路、第一次级电路以及变压器T1,第一初级电路和第一次级电路通过变压器T1连接。第一初级电路可以包括第一桥臂、第二桥臂、第三桥臂、第四桥臂、电容C3和电感L7,应当理解,虽然图3中第一初级电路中示出了四个桥臂,但实际产品中,第一初级电路中也可以包括六个桥臂、八个桥臂等,只要第一初级电路中包括至少四个桥臂即可,具体桥臂的数量可以结合实际情况灵活确定,此处不做限定。第一次级电路的四个桥臂中每个桥臂都可以包括互相对称的两个开关管,具体包括开关管Q7、开关管Q8、开关管Q9、开关管Q10、开关管Q11、开关管Q12、开关管Q13和开关管Q14,应当理解,虽然图3的示例中每个桥臂都包括对称的两个开关管,但实际产品中,每个桥臂中也可以包括对称的四个开关管、六个开关管等,此处对第一初级电路包括的每个桥臂中开关管的数量不做限定。具体的,开关管Q7、开关管Q8、开关管Q9、开关管Q10、开关管Q11、开关管Q12、开关管Q13、开关管Q14均可以表现为三极管、MOS管、SiC晶体管、IGBT或其他类型的开关管等,此处不做限定,通过前述方式,提供了开关管Q7至开关管Q14的具体实现方式,提高了本方案的可执行性,且有利于降低功率转换模块2的总面积,操作简单、容易实现,还有利于降低产品成本。
其中,开关管Q7和开关管Q9并联,开关管Q12和开关管Q14并联,开关管Q8和开关管Q10并联,开关管Q11和开关管Q13并联。开关管Q7、开关管Q8、开关管Q9、开关管Q10、开关管Q11、开关管Q12、开关管Q13和开关管Q14均可以通过外接控制电路的方式来实现导通可关断,当功率转换模块用于正向充电时,开关管Q7、开关管Q9、开 关管Q12和开关管Q14可以同时导通和关断,开关管Q8、开关管Q10、开关管Q11和开关管Q13可以同时导通和关断,具体的,当开关管Q7、开关管Q9、开关管Q12和开关管Q14导通时,开关管Q8、开关管Q10、开关管Q11和开关管Q13关断;当开关管Q7、开关管Q9、开关管Q12和开关管Q14关断时,开关管Q8、开关管Q10、开关管Q11和开关管Q13导通。
更具体的,当开关管Q7、开关管Q9、开关管Q12和开关管Q14导通时,并联连接的开关管Q7和开关管Q9与并联连接的开关管Q12和开关管Q14之前串联有电容C3、电感L7以及变压器T1;当开关管Q8、开关管Q10、开关管Q11和开关管Q13导通时,并联连接的开关管Q8和开关管Q10与并联连接的开关管Q11和开关管Q13之间串联有电容C3、电感L7以及变压器T1。
第一次级电路也可以包括四个桥臂、电容C4和电感L8,第一次级电路包括的四个桥臂中每个桥臂中可以包括两个开关管,四个桥臂包括的8个开关管分别为开关管Q15、开关管Q16、开关管Q17、开关管Q18、开关管Q19、开关管Q20、开关管Q21、开关管Q22,对于开关管Q15至开关管Q22的具体表现形式可以参见上述对开关管Q7至开关管Q13的描述,此处不再赘述。与第一初级电路类似,第一次级电路中可以为包括两个桥臂、六个桥臂、八个桥臂或其他数量的桥臂等,至少要第一次级电路中包括至少两个桥臂即可,具体第一次级电路中包括的桥臂数量,此处不做限定;此外,每个桥臂中还可以为包括四个开关管、六个开关管等等,此处对第一次级电路包括的每个桥臂中开关管的数量不做限定。
其中,开关管Q15和开关管Q17并联,开关管Q19和开关管Q21并联,开关管Q16和开关管Q18并联,开关管Q20和开关管Q22并联。开关管Q15至开关管Q22均可以通过外接控制电路的方式来实现导通可关断,当功率转换模块用于正向充电时,开关管Q15、开关管Q17、开关管Q19和开关管Q21可以同时导通和关断,开关管Q16、开关管Q18、开关管Q20和开关管Q22可以同时导通和关断,具体的,当开关管Q15、开关管Q17、开关管Q19和开关管Q21导通时,开关管Q16、开关管Q18、开关管Q20和开关管Q22关断;当开关管Q15、开关管Q17、开关管Q19和开关管Q21关断时,开关管Q16、开关管Q18、开关管Q20和开关管Q22导通。
更具体的,当开关管Q15、开关管Q17、开关管Q19和开关管Q21导通时,并联连接的开关管Q15和开关管Q17与并联连接的开关管Q19和开关管Q21之前串联有电容C4、电感L8以及变压器T1;当开关管Q16、开关管Q18、开关管Q20和开关管Q22导通时,并联连接的开关管Q16和开关管Q18与并联连接的开关管Q20和开关管Q22之间串联有电容C4、电感L8以及变压器T1。
本申请实施例中,功率转换模块还可以包括第一开关、第二开关、第三开关以及第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间。其中,第一接口和第二接口中包括火线接口和零线接口,第一接口处连接有第一电感,由于可以为在零线接口处连接第一电感,也即第一接口为零线接口;也可以为在火线接口处连接第一电感,也即第一接口为火线接口,因此,图3至图9分别示出了在第一接口为火线接口和第一接口为零线接口这两种情况下,第一开关和第二开关的多种连接方式。
请先参阅图3至图7,图3至图7中均以第一接口为火线接口,第二接口为零线接口为例进行说明,其中,第一接口可以为L1、L2和L3三个火线接口中任意一个火线接口,图3至图7中仅以第一接口为L1火线接口为例进行说明,此外,图3至图7中均以第一开关为开关J1、第二开关为开关J2、第三开关为开关J3、第四开关为开关J4且第五开关为开关J5;对应的,第一桥臂为包括开关管Q7和开关管Q8的桥臂、第二桥臂为包括开关管Q9和开关管Q10的桥臂、第三桥臂为包括开关管Q11和开关管Q12的桥臂且第四桥臂为包括开关管Q13和开关管Q14的桥臂为例进行说明。
具体的,参见图3至图7,第三开关(也即图3和图6中的开关J3)的一端连接于开关管Q7和开关管Q8之间的导线上,另一端连接于开关管Q9和开关管Q10之间的导线上;对应的,第四开关(也即图3和图6中的开关J4)的一端连接于开关管Q11和开关管Q12之间的导线上,另一端连接于开关管Q13和开关管Q14之间的导线上。第一开关(也即图3和图6中的开关J1)设置于第一桥臂与第一电感之间,具体的,第一开关的一端可以连接于开关管Q7和开关管Q8之间,第一开关的另一端可以和第一电感耦合,在一种情况下,如图3所示,第一开关的另一端可以与第一电感直接连接;在另一种情况下,第一开关的另一端也可以连接于开关管Q1和开关管Q2之间,从而通过开关管Q1与第一电感连接等等,此处不对第一开关的另一端与第一电感耦合方式进行限定。
本实施例中,L1、L2和L3三个火线接口中还可以包括第三接口,第三接口为L1、L2和L3三个火线接口中除第一接口之外的任一火线接口,第三接口处连接有第二电感106,图3中以第三接口为火线接口L3、第二电感106为电感L6为例进行说明,功率转换模块还可以包括第五开关(也即图3和图6中的开关J5),第五开关的一端与第二接口连接,第五开关的另一端与第二开关22耦合,则当第五开关处于导通状态时,第二接口(也即零线接口N)可以旁路掉第三接口(也即火线接口L3),接入到火线接口L3所在的分支电路中,以实现第二接口与第三桥臂的耦合。通过上述方式,在第二接口为零线接口的情况下,功率转换模块2中仅需可以增设第五开关,则第二接口可以通过第五开关接入第三接口所在的分支电路,进而实现与第三桥臂的耦合,不仅提高了本方案的可实现性,而且提高了功率转换模块中现有元件的利用率;此外,本实施例提供的实现方案中尽量避免增加其他元器件,从而避免了增加电路的复杂度。
则第二开关设置于第三桥臂和第二接口之间,具体的实现电路可以为,第二开关的一端连接于开关管Q11和开关管Q12之间,第二开关的另一端与第二接口耦合,其中,在一种情况下,如图3所示,第二开关的另一端可以通过第五开关与第二接口直接连接;在另一种情况下,第二开关的一端可以连接于开关管Q5和开关管Q6之间,从而通过开关管Q5以及第五开关与第二接口连接等等,此处也不对第二开关的另一端与第二接口的耦合方式进行限定。通过上述方式,提供了第一开关至第四开关的具体连接方式,提高了本方案的可实现性。
具体的,图3和图6分别示出了第五开关的两种连接方式,在一种实现方式中,请先参阅图3,第五开关的一端与第二接口连接,第五开关的另一端连接于第二电感106与开关管Q5之间的导线上。更具体的,当第一开关、第二开关和第五开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,PFC模块10和第一DC-DC变换器200 用于进行正向充电,图3的等效电路可以为图4,图4为本申请实施例提供的功率转换模块的一种状态示意图,PFC模块10用于将输入的交流电转化为母线直流电压,之后由第一DC-DC转换器将母线直流电压进行隔离转换,从而输出稳定的直流电压给电池包C5充电,需要说明的是,虽然图3中未示出,但图3的PFC模块10中也包括零线接口N,当PFC模块10和第一DC-DC变换器200用于通过维也纳整流电路进行正向充电时,零线接口N与母线耦合。
在第一开关、第二开关和第五开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器40和逆变模块50。具体的,图3的等效电路图可以为图5,图5为本申请实施例提供的功率转换模块的另一种状态示意图,第二DC-DC变换器40包括第二初级电路和第二次级电路,第二初级电路是通过第一DC-DC变换器200的第一次级电路实现的,对于第二初级电路包括哪些元件以及各个元件之间的连接关系的理解可以参见上述对第一次级电路的介绍,此处不再进行详细介绍。第二次级电路可以包括第二桥臂、第四桥臂、电容C3和电感L6,第二桥臂包括开关管Q9和开关管Q10,第四桥臂包括开关管Q13和开关管Q14,开关管Q9、开关管Q10、开关管Q13和开关管Q14均可以通过外接控制电路来实现导通和关断。当电池包C5进行逆变放电时,开关管Q9和开关管Q14同时导通和关断,开关管Q10和开关管Q13同时导通和关断,更具体的,当开关管Q9和开关管Q14导通时,开关管Q10和开关管Q13关断,开关管Q9、电容C3、电感L6和开关管Q14串联连接;当开关管Q9和开关管Q14关断时,开关管Q10和开关管Q13导通,开关管Q10、电容C3、电感L6和开关管Q13串联连接。
逆变模块50包括第一桥臂、第三桥臂、第一电感和母线电容(图5示例中的电容C1和电容C2),第一桥臂包括开关管Q7和开关管Q8,第三桥臂包括开关管Q11和开关管Q12,开关管Q7、开关管Q8、开关管Q11和开关管Q12均可以通过外接控制电路来实现导通和关断。开关管Q7和开关管Q12可以同时导通和关断,开关管Q8和开关管Q11可以同时导通和关断,更具体的,当开关管Q7和开关管Q12导通时,开关管Q8和开关管Q11关断,开关管Q7、开关管Q12、母线电容和第一电感(图5示例中的电感L4)串联连接;当开关管Q7和开关管Q12关断时,开关管Q8和开关管Q11导通,开关管Q8、开关管Q11、母线电容和第一电感串联连接。
进一步的,在第一开关、第二开关和第五开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,也即电池包C5进行逆变放电时,为了实现图3的电路与图5的电容等效,需要关断零线接口N与母线之间的连接;且由于图3中以第一接口为L1火线接口,第三接口为L3火线接口为例进行说明,则为了避免L2火线接口所在的分支电路对逆变模块20造成不良影响,需要使开关管Q3和开关管Q4均处于关断状态;此外,开关管Q1和/或开关管Q2可以处于关断状态,开关管Q5和/或开关管Q6可以处于关断状态。
更进一步的,请继续参阅图5,当电池包C5进行逆变放电时,第二DC-DC转换器40用于接入电池包C5输入的直流电压,并进行隔离变换,转换为母线直流电压,再通过逆变模块50将母线直流电压转换为交流电压从火线接口L1(也即第一接口)和零线接口N(也即第二接口)输出,当应用于车载充电机上时,可以实现车载充电机的逆变放电功能。
在另一种实现方式中,请参阅图6,第五开关的一端与第二接口连接,第五开关的另一端连接于第三接口与第二电感106之间的导线上,本方案中提供的第五开关的连接方式,电路简单,避免提高电路复杂度。具体的,当第一开关、第二开关和第五开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,PFC模块10和第一DC-DC变换器200用于进行正向充电,图6的等效电路还是图5,具体实现方式可以参见上述对图5中的描述,此处不再一一赘述。
在第一开关、第二开关和第五开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,图6的等效电路可以为图7,图7为本申请实施例提供的功率转换模块的另一种状态示意图,与图5类似,图7中的第二DC-DC变换器40包括第二初级电路和第二次级电路,第二初级电路也是通过第一DC-DC变换器200的第一次级电路实现的,且图7中示出的第二次级电路与图5中示出的第二次级电路也类似,均可以参考上述对图5中的描述,此处不再一一赘述。
与图5不同的是,图7示出的逆变模块50除了包括第一桥臂、第三桥臂、第一电感和母线电容(图7示例中的电容C1和电容C2)之外,还包括第二电感106。当开关管Q7和开关管Q12导通时,开关管Q8和开关管Q11关断,开关管Q7、开关管Q12、母线电容、第一电感(图7示例中的电感L4)以及第二电感106(图7示例中的电感L6)串联连接;当开关管Q7和开关管Q12关断时,开关管Q8和开关管Q11导通,开关管Q8、开关管Q11、母线电容、第一电感以及第二电感106串联连接。
在另一种实现方式中,当第二开关的J2的一端连接于开关管Q5和开关管Q6之间时,还可以为第五开关的一端与第二接口连接,第五开关的另一端可以连接于开关管Q5和开关管Q6之间的导线上等,均可以实现在第一开关、第二开关和第五开关处于导通状态的情况下,第二接口旁路掉第三接口与第三桥20003耦合,从而形成第二DC-DC转换器40和逆变模块50,此处不再对其他实现方式一一进行举例。
请再参阅图8和图9,图8和图9中以第一接口为零线接口,第二接口为火线接口为例进行说明,其中,第二接口可以为L1、L2和L3三个火线接口中任意一个火线接口,L1、L2和L3三个火线接口中还可以包括第三接口,第三接口处连接有电感L6,第三接口为L1、L2和L3三个火线接口中除第二接口之外的任一火线接口,图8和图9中仅以第一接口为零线接口N、第二接口为火线接口L1、第三接口为火线接口L3为例进行说明。此外,与图3至图7所示实施例类似,功率转换模块还可以包括第五开关,第五开关的一端与第一接口(也即图8中的零线接口N)连接,另一端连接于第三接口(也即图8中的火线接口L3)与电感L6之间的导线上,以实现第一接口处连接有第一电感(也即图8中的电感L6)。
图8和图9中以第一开关为开关J2、第二开关为开关J1、第三开关为开关J4、第四开关为开关J3且第五开关为开关J5;对应的,第一桥臂为包括开关管Q11和开关管Q12的桥臂、第二桥臂为包括开关管Q13和开关管Q14的桥臂、第三桥臂为包括开关管Q7和开关管Q8的桥臂且第四桥臂为包括开关管Q9和开关管Q10的桥臂为例进行说明。具体的,第三开关(也即图8中的开关J4)的一端连接于开关管Q11和开关管Q12之间的导线上,另一端连接于开关管Q13和开关管Q14之间的导线上;对应的,第四开关(也即图8中的开关J3)的一端连接于开关管Q7和开关管Q8之间的导线上,另一端连接于开关管Q9和 开关管Q10之间的导线上。
第一开关设置于第一桥臂与第一电感之间的实现电路可以为,第一开关(也即图8中的开关J2)的一端连接于开关管Q11和开关管Q12之间,第一开关的另一端与第一电感耦合,具体的,一种情况下,可以如图8所示的,第一开关的另一端与第一电感直接连接;另一种情况下,也可以为第一开关的另一端连接于开关管Q5和开关管Q6之间的导线上,则第一开关通过开关管Q5与第一电感耦合。第二开关(也即图8中的开关J1)设置于第三桥臂和第二接口之间的实现电路可以为,第二开关的一端连接于开关管Q7和开关管Q8之间的导线上,第二开关的另一端与第二接口耦合,具体的,在一种实现方式中,可以如图8所示的,第二开关的另一端与第二接口直接连接。更具体的,在第一开关、第二开关和第五开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,PFC模块10和第一DC-DC变换器200用于进行正向充电,图8的等效电路与图3的等效电路类似,具体可参阅上述对图4的描述,此处不再赘述。在第一开关、第二开关和第五开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器40和逆变模块50。图8的等效电路可以为图9,图9为本申请实施例提供的功率转换模块的又一种状态示意图,与图5类似,图9中的第二DC-DC变换器40包括第二初级电路和第二次级电路,第二初级电路也是通过第一DC-DC变换器200的第一次级电路实现的,且图9中示出的第二次级电路与图5中示出的第二次级电路也类似,均可以参考上述对图5中的描述,此处不再一一赘述。
与图5不同的是,图9示出的逆变模块50中包括的第一电感为与零线接口N连接的电感L6。当开关管Q7和开关管Q12导通时,开关管Q8和开关管Q11关断,开关管Q7、开关管Q12、母线电容、第一电感(图9示例中的电感L6)串联连接;当开关管Q7和开关管Q12关断时,开关管Q8和开关管Q11导通,开关管Q8、开关管Q11、母线电容、第一电感以及第二电感106串联连接。
在另一种实现方式中,第二开关的一端连接于开关管Q7和开关管Q8之间的导线上,第二开关的另一端可以连接于电感L4与开关管Q1之间的导线上;在又一种实现方式中,第二开关的另一端可以连接于开关管Q1和开关管Q2之间的导线上,由于前述两种实现方式的等效电路分别与图4和图7类似,此处不对前述两种连接方式的工作原理再做赘述。
此外,在一种情况下,第一开关、第二开关、第三开关和第四开关可以分别为四个独立的开关;在另一种情况下,请参阅图10,图10为本申请实施例提供的双向控制装置的又一结构示意图,第一开关和第三开关可以为同一第一切换开关31(也即图10中的切换开关J6),第二开关和第四开关为同一第二切换开关32(也即图10中的切换开关J7),当第一切换开关31和第二切换开关32均处于第一状态,也即切换开关J6与切换开关J7均打到触点1上时,第一开关和第二开关导通,第三开关和第四开关关断;当第一切换开关31和第二切换开关32均处于第二状态,也即切换开关J6与切换开关J7均打到触点2上时,第一开关和第二开关关断,第三开关和第四开关导通,通过一个切换开关来实现两个开关的功能,不仅有利于降低功率转换模块的电路复杂度,而且由于一个切换开关同时只能处于一种状态,也即本实施例中第一开关和第三开关不会同时处于导通状态,从而进一步降低了功率转换模块出现电路故障的概率,应当理解,图10中示出的仅为将图6中的第一开 关和第三开关替换为第一切换开关31,以及将第二开关和第四开关替换为第二切换开关32,图3和图8中的开关也可以对应替换,此处不再一一进行说明;在又一种情况下,第一开关、第二开关、第三开关以及第四开关也可以表现为一个开关,所述一个开关中包括两个通道,分别用于实现第一开关、第二开关、第三开关以及第四开关的导通和关断功能等,本申请实施例中对上述各个开关的举例仅为方便理解本方案,不用于限定本方案。
可选的,DC-DC变换模块20还可以包括第三DC-DC变换器210,第三DC-DC变换器210可以为单向型隔离变换器,例如谐振变换(inductor-inductor-capacitor,LLC)电路;第三DC-DC变换器210也可以为双向型隔离变换器,例如CLLC电路等,第三DC-DC变换器210可以包括第三初级电路、第三次级电路以及变压器T2,第三初级电路和第三次级电路通过变压器T2连接。其中,第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联,本申请实施例中,功率转换模块2中还可以设置有第三DC-DC变换器210,且第一DC-DC变换器200和第三DC-DC变换器210的初级电路串联,次级电路并联,有利于降低第一DC-DC变换器200和第三DC-DC变换器210中每个开关管承担的电压数,既降低了第一DC-DC变换器200和第三DC-DC变换器210中元器件的损坏几率,又提高了功率转换模块输出的最大充电功率。
具体的,为了与图3、图6和图8对应,本申请实施例还提供了图11、图14和图16,分别展示了在功率转换模块同时包括第一DC-DC变换器200和第三DC-DC变换器210的情况下,功率转换模块的三种不同的结构示意图。图11至图17中均以第三DC-DC变换器210为LLC电路为例进行说明。更具体的,由于第三DC-DC变换器210的第三初级电路与第一初级电路类似,对于第三DC-DC变换器210中包括的元器件以及各个元器件之间的连接关系均可以参考对第一初级电路的描述,此处不再赘述。在图11、图14和图16中,第三次级电路可以包括四个桥臂,每个桥臂中可以包括两个二级管,具体的,第三次级电路包括的二级管可以为二级管D7、二级管D8、二级管D9、二级管D10、二级管D11、二级管D12、二级管D13和二级管D14,其中,二级管D7和二级管D9并联,二级管D8和二级管D10并联,二级管D11和二级管D13并联,二级管D12和二级管D14并联;更具体的,二级管D7和二级管D9与二级管D12和二级管D14可以同时导通和阻断,二极管D8和二级管D10与二级管D11和二级管D13同时导通和阻断,当二级管D7和二级管D9与二级管D12和二级管D14导通时,二极管D8和二级管D10与二级管D11和二级管D13阻断,并联连接的二级管D7和二级管D9与并联连接的二级管D12和二级管D14以及变压器T2串联连接;当二级管D7和二级管D9与二级管D12和二级管D14阻断时,二极管D8和二级管D10与二级管D11和二级管D13导通,并联连接的二级管D8和二级管D10与并联连接的二级管D11和二级管D13以及变压器T2串联连接,应当理解,虽然图11、图14和图16中,第三次级电路均包括四个桥臂,每个桥臂中包括两个二极管,但实际情况中,第三次级电路也可以包括两个桥臂、六个桥臂等,每个桥臂中也可以包括四个二极管、六个二极管等,图11、图14和图16中的示例仅为方便理解本方案,不用于限定本方案。
进一步的,首先介绍图11,图11中以第一接口为火线接口L1,第二接口为零线接口N,第二接口通过第五开关与第三桥臂(也即图11中包括开关管Q11和开关管Q12的桥臂) 耦合,第五开关的一端与第二接口连接,第五开关的另一端连接于电感L6与开关管Q5之间的导线上为例进行说明。在第一切换开关31(也即图11中的开关J6)和第二切换开关32(也即图11中的开关J7)均打到触点2,且第五开关(也即图11中的开关J5)处于关断状态的情况下,也即在第一开关、第二开关和第五开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,PFC模块10、第一DC-DC变换器200和第三DC-DC变换器210用于进行正向充电,图11的等效电路图可以为图12,图12为本申请实施例提供的功率转换模块的又一种状态示意图,图12所示的电路图与图4所示的电路图类似,区别在于,图4中的DC-DC变换器中只包括第一DC-DC变换器200;图12中的DC-DC变换器的初级电路中为第一初级电路和第二初级电路600串联,第一次级电路和第二次级电路610并联。对应的,在图4示出的电路图中,由第一DC-DC变换器200将母线直流电压进行隔离转换,从而输出稳定的直流电压给电池包C5充电;而图12示出的电路图中,由初级电路串联且次级电路并联的第一DC-DC变换器200和第三DC-DC变换器210将母线直流电压进行隔离转换,从而输出稳定的直流电压给电池包C5充电,图12所示电路图中的具体实现原理与图4所示电路图中的实现原理类似,此处也不再赘述。
在第一切换开关31和第二切换开关32均打到触点1,且第五开关处于导通状态的情况下,也即在第一开关、第二开关和第五开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,图11的等效电路图可以为图13,图13所示的电路图与图5所示的电路图类似,区别仅在于图5中的母线电容包括电容C1和电容C2,而图13中的母线电容只包括电容C1,具体图13的实现原理可以参照上述对图5的实现原理的介绍,此处不再一一赘述。
其次是图14,图14中以第一接口为火线接口L1,第二接口为零线接口N,第二接口通过第五开关与第三桥臂(也即图14中包括开关管Q11和开关管Q12的桥臂)耦合,第五开关的一端与第二接口连接,第五开关的另一端连接于第三接口(也即图14中的火线接口L3)与第二电感106(也即图14中的电感L6)之间的导线上为例进行说明。在第一切换开关31(也即图14中的开关J6)和第二切换开关32(也即图14中的开关J7)均打到触点2,且第五开关(也即图14中的开关J5)处于关断状态的情况下,图14的等效电路可以为图12,此处不再介绍;在第一切换开关31和第二切换开关32均打到触点1,且第五开关处于导通状态的情况下,图14的等效电路为图15,图15所示的电路图与图7所示的电路图类似,区别也仅在于图7中的母线电容包括电容C1和电容C2,而图15中的母线电容只包括电容C1,具体图15的实现原理可以参照上述对图7的实现原理的介绍,此处不再一一赘述。
再次是图16,图16中以第一接口为零线接口N,第二接口为火线接口L1,第一接口通过第五开关与第一桥臂(也即图16中包括开关管Q11和开关管Q12的桥臂)耦合,第五开关的一端与第一接口连接,第五开关的另一端连接于第三接口(也即图16中的火线接口L3)与第一电感(也即图16中的电感L6)之间的导线上,第二开关(也即图16中的开关J1)与第二接口直接连接为例进行说明。在第一切换开关31(也即图16中的开关J7)和第二切换开关32(也即图16中的开关J6)均打到触点2,且第五开关(也即图16中的开关J5)处于关断状态的情况下,图16的等效电路可以为图12,此处不再介绍;在第一 切换开关31和第二切换开关32均打到触点1,且第五开关处于导通状态的情况下,图16的等效电路为图17,图17所示的电路图与图9所示的电路图类似,区别也仅在于图9中的母线电容包括电容C1和电容C2,而图17中的母线电容只包括电容C1,具体图17的实现原理可以参照上述对图9的实现原理的介绍,此处不再一一赘述。
需要说明的是,图11至图17中均以第一开关和第三开关表现为同一第一切换开关31,第二开关和第四开关表现为同一第二切换开关32为例进行说明,对于第一开关、第二开关、第三开关和第四开关均表现为独立的开关的情况,可以直接对开关进行替换适用,此处不再对第一开关、第二开关、第三开关和第四开关均表现为独立的开关的情况进行一一赘述。
可选的,在图6和图14所示出的线路图中,PFC模块10中均包含三个分支电路,所述三个分支电路中可以包括第一分支电路和第二分支电路,其中,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口,在第一开关和第二开关处于关断状态,且第五开关处于导通状态的情况下,第二接口能够旁路掉第三接口,接入第二分支电路,能够形成单相整流电路60,其中,单相整流电路60包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口以及第二分支电路中除第三接口之外的元件,本申请实施例中,当PFC模块10中包含三相整流电路时,在第一开关和第二开关关断、第三开关、第四开关和第五开关导通的情况下,可以形成单相整流电路60,也即利用现有的三相整流电路实现了单相整流电路60的功能,从而本申请实施例提供的功率转换模块可以同时实现三相输入和单相输入,拓宽了本方案的应用场景,提高了本方案的全面性。
具体的,图6和图14中均以第一接口为火线接口L1、第二接口为零线接口N且第三接口为火线接口L3为例进行说明,对应的,第一分支电路可以包括火线接口L1、电感L4、二极管D1、二极管D2、开关管Q1和二极管Q2,第二分支电路可以包括火线接口L3、电感L6、二极管D5、二极管D6、开关管Q5和二极管Q6,由于第一分支电路和第二分支电路中各个元件的具体实现方式,以及各个元件之间的连接关系在上述对图3的描述中已经有详细介绍,此处不再一一赘述。
在一种情况下,针对图6所示出的电路图,在第一开关和第二开关处于关断状态,且第五开关处于导通状态的情况下,图6的等效电路图可以为图18,图18为本申请实施例提供的功率转换模块的一种状态示意图,如图18所示,当第五开关25处于导通状态时,第二接口(也即图6和图18中的零线接口N)能够旁路掉第三接口(也即图6中的火线接口L3)接入第二分支电路中,形成第三分支电路,第三分支电路可以包括第二接口和第二分支电路中除第三接口之外的元件,也即第三分支电路可以包括零线接口N、电感L6、二极管D5、二极管D6、开关管Q5和二极管Q6,进而形成单相整流电路60。更具体的,二极管D1和二极管D6同时导通和阻断,二极管D2和二极管D5同时导通和阻断。当开关管Q1、开关管Q2、开关管Q3和开关管Q4导通时,第一接口(也即图6和图18中的火线接口L1)、电感L4、开关管Q1、开关管Q2、开关管Q3、开关管Q4、电感L6和第二接口串联连接;当开关管Q1、开关管Q2、开关管Q3和开关管Q4关断,且二极管D1和二极管D6导通时,二极管D2和二极管D5阻断,第一接口、电感L4、二极管D1、母线电容(也即图18中的电容C1和电容C2)、二极管D6、电感L6和第二接口串联连接;当开关管Q1、开关管Q2、开关管Q3和开关管Q4关断,且二极管D1和二极管D6阻断时, 二极管D2和二极管D5导通,第一接口、电感L4、二极管D2、母线电容、二极管D5、电感L6和第二接口串联连接。通过前述方式,单相整流电路60可以将输入的交流电转换为母线直流电压,进而在通过第一DC-DC变换器200将母线直流电压转换为高压直流电压之后,为电池包C5充电,由于上述上述在对图3的描述中已经对第一DC-DC变换器200进行了详细介绍,此处不再赘述。需要说明的是,当本申请实施例中提供的功率转换模块通过单相整流电路60进行充电时,零线接口N与母线之间不会直接连接。
在另一种情况下,针对图14所示出的电路图,在第一开关和第二开关处于关断状态,且第五开关处于导通状态的情况下,图14的等效电路图可以为图19,图19所示出的电路中的单相整流电路60与图18所示出的电路中的单相整流电路60中包括的各个元件的连接结构以及电路工作原理与图18所示出的电路类似,可以参考上述对图18中的单相整流电路60的介绍来理解图19所示出的单相整流电路60,此处不再一一赘述。如图19所示,在通过单相整流电路60将输入的交流电转换为母线直流电压之后,可以通过第一DC-DC变换器200和第三DC-DC变换器210将母线直流电压转换为高压直流电压,以为电池包C5充电,由于上述在对图11的描述中已经对第一DC-DC变换器200和第三DC-DC变换器210进行了详细介绍,此处不再赘述。
本申请实施例还提供一种车载充电机,车载充电机包括EMI滤波模块1和功率装换模块2,功率转换模块2包括PFC模块10和DC-DC变换器20,其中,DC-DC变换器20可以包括第一DC-DC变换器200;PFC模块中有第一接口、第二接口和母线电容,第一接口处连接有第一电感;第一DC-DC变换器200包括第一初级电路和第一次级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;功率转换模块2还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,EMI滤波模块1、PFC模块10和第一DC-DC变换器200用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器40和逆变模块50;其中,第二DC-DC变换器40的第二初级电路为第一DC-DC变换器200的第一次级电路,第二DC-DC变换器40的第二次级电路包括第二桥臂和第四桥臂,逆变模块50包括第一桥臂、第三桥臂、第一电感以及母线电容。
在一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂和第四桥臂均包括两个开关管;第一开关的一端连接于第一桥臂的两个开关管之间,第一开关的另一端与第一电感耦合;第二开关的一端连接于第三桥臂的两个开关管之间,第二开关的另一端与第二接口耦合;第三开关的一端连接于第一桥臂的两个开关管之间,第三开关的另一端连接于第二桥臂的两个开关管之间;第四开关的一端连接于第三桥臂的两个开关管之间,第四开关的另一端连接于第四桥臂的两个开关管之间。
在一种可能实现方式中,第一开关和第三开关为同一第一切换开关31,第二开关和第四开关为同一第二切换开关32。
在一种可能实现方式中,PFC模块中包括三相整流电路,三相整流电路中包括三个火 线接口和零线接口,第一接口为三个火线接口任一火线接口,第二接口为零线接口,三个火线接口还包括第三接口,第三接口为三个火线接口中除第一接口之外的任一火线接口;功率转换模块2还包括第五开关,第五开关的一端与第二接口连接,第五开关的另一端与第二开关耦合;在第一开关、第二开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,与第三桥臂耦合。
在一种可能实现方式中,三相整流电路中有第一分支电路和第二分支电路,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口;在第三开关、第四开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,接入第二分支电路,形成单相整流电路60;其中,单相整流电路60包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口以及第二分支支路108中除第三接口之外的元件。
在一种可能实现方式中,第三接口处连接有第二电感106,第五开关的一端与第二接口连接,第五开关的另一端接于第三接口与第二电感106之间。
在一种可能实现方式中,PFC模块为维也纳整流电路,第一DC-DC变换器为CLLC电路;功率转换模块2还包括第三DC-DC变换器210,第三DC-DC变换器210为LLC电路,第三DC-DC变换器210包括第三初级电路和第三次级电路;第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联。
在一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的所有开关管均为MOS管、三极管、SiC晶体管或IGBT。
本申请实施例提供的车载充电机包含的各个电子元器件的形状、数量、位置、具体实现方式以及带来的有益效果,均可以参考图2至图19对应的实施例中的具体描述,此处不再一一赘述。
本申请实施例还提供一种电动汽车,电动汽车包括车载充电机和电池包,车载充电机包括EMI滤波模块1和功率装换模块2,功率转换模块2包括PFC模块10和DC-DC变换器20,其中,DC-DC变换器20可以包括第一DC-DC变换器200;PFC模块中有第一接口、第二接口和母线电容,第一接口处连接有第一电感;第一DC-DC变换器200包括第一初级电路和第一次级电路,第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;功率转换模块2还包括第一开关、第二开关、第三开关和第四开关,第一开关设置于第一桥臂与第一电感之间,第二开关设置于第三桥臂和第二接口之间,第三开关设置于第一桥臂和第二桥臂之间,第四开关设置于第三桥臂和第四桥臂之间;在第一开关和第二开关均处于关断状态,且第三开关和第四开关均处于导通状态的情况下,EMI滤波模块1、PFC模块10和第一DC-DC变换器200用于进行正向充电;在第一开关和第二开关均处于导通状态,且第三开关和第四开关均处于关断状态的情况下,第一桥臂与第一电感耦合,第三桥臂与第二接口耦合,形成第二DC-DC变换器40和逆变模块50;其中,第二DC-DC变换器40的第二初级电路为第一DC-DC变换器200的第一次级电路,第二DC-DC变换器40的第二次级电路包括第二桥臂和第四桥臂,逆变模块50包括第一桥臂、第三桥臂、第一电感以及母线电容;电池包用于存储车载充电机输入的电量,还用于通过车载充电机进行逆变放电。
在一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂和第四桥臂均包括两个开关 管;第一开关的一端连接于第一桥臂的两个开关管之间,第一开关的另一端与第一电感耦合;第二开关的一端连接于第三桥臂的两个开关管之间,第二开关的另一端与第二接口耦合;第三开关的一端连接于第一桥臂的两个开关管之间,第三开关的另一端连接于第二桥臂的两个开关管之间;第四开关的一端连接于第三桥臂的两个开关管之间,第四开关的另一端连接于第四桥臂的两个开关管之间。
在一种可能实现方式中,第一开关和第三开关为同一第一切换开关31,第二开关和第四开关为同一第二切换开关32。
在一种可能实现方式中,PFC模块中包括三相整流电路,三相整流电路中包括三个火线接口和零线接口,第一接口为三个火线接口任一火线接口,第二接口为零线接口,三个火线接口还包括第三接口,第三接口为三个火线接口中除第一接口之外的任一火线接口;功率转换模块2还包括第五开关,第五开关的一端与第二接口连接,第五开关的另一端与第二开关耦合;在第一开关、第二开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,与第三桥臂耦合。
在一种可能实现方式中,三相整流电路中有第一分支电路和第二分支电路,第一接口为第一分支电路的输入接口,第三接口为第二分支电路的输入接口;在第三开关、第四开关和第五开关均处于导通状态的情况下,第二接口旁路掉第三接口,接入第二分支电路,形成单相整流电路60;其中,单相整流电路60包括第一分支电路、第三分支电路和母线电容,第三分支电路包括第二接口以及第二分支支路108中除第三接口之外的元件。
在一种可能实现方式中,第三接口处连接有第二电感106,第五开关的一端与第二接口连接,第五开关的另一端接于第三接口与第二电感106之间。
在一种可能实现方式中,PFC模块为维也纳整流电路,第一DC-DC变换器为CLLC电路;功率转换模块2还包括第三DC-DC变换器210,第三DC-DC变换器210为LLC电路,第三DC-DC变换器210包括第三初级电路和第三次级电路;第三初级电路与第一初级电路串联,第三次级电路与第一次级电路并联。
在一种可能实现方式中,第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的所有开关管均为MOS管、三极管、SiC晶体管或IGBT。
本申请实施例提供的电动汽车中包含的各个电子元器件的形状、数量、位置、具体实现方式以及带来的有益效果,可以参考图1至图19对应的实施例中的具体描述,此处不再一一赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

Claims (17)

  1. 一种功率转换模块,其特征在于,所述功率转换模块包括:功率因素校正PFC模块和第一直流-直流DC-DC变换器;
    所述PFC模块中有第一接口、第二接口和母线电容,所述第一接口处连接有第一电感;
    所述第一DC-DC变换器包括第一初级电路和第一次级电路,所述第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;
    所述功率转换模块还包括第一开关、第二开关、第三开关和第四开关,所述第一开关设置于所述第一桥臂与所述第一电感之间,所述第二开关设置于所述第三桥臂和所述第二接口之间,所述第三开关设置于所述第一桥臂和所述第二桥臂之间,所述第四开关设置于所述第三桥臂和所述第四桥臂之间;
    在所述第一开关和所述第二开关均处于关断状态,且所述第三开关和所述第四开关均处于导通状态的情况下,所述PFC模块和所述第一DC-DC变换器用于进行正向充电;
    在所述第一开关和所述第二开关均处于导通状态,且所述第三开关和所述第四开关均处于关断状态的情况下,所述第一桥臂与所述第一电感耦合,所述第三桥臂与所述第二接口耦合,形成第二DC-DC变换器和逆变模块;
    其中,所述第二DC-DC变换器的第二初级电路为所述第一DC-DC变换器的第一次级电路,所述第二DC-DC变换器的第二次级电路包括所述第二桥臂和所述第四桥臂,所述逆变模块包括所述第一桥臂、所述第三桥臂、所述第一电感以及所述母线电容。
  2. 根据权利要求1所述的功率转换模块,其特征在于,所述第一桥臂、所述第二桥臂、所述第三桥臂和所述第四桥臂均包括两个开关管;
    所述第一开关的一端连接于所述第一桥臂的两个开关管之间,所述第一开关的另一端与所述第一电感耦合;
    所述第二开关的一端连接于所述第三桥臂的两个开关管之间,所述第二开关的另一端与所述第二接口耦合;
    所述第三开关的一端连接于所述第一桥臂的两个开关管之间,所述第三开关的另一端连接于所述第二桥臂的两个开关管之间;
    所述第四开关的一端连接于所述第三桥臂的两个开关管之间,所述第四开关的另一端连接于所述第四桥臂的两个开关管之间。
  3. 根据权利要求1所述的功率转换模块,其特征在于,所述第一开关和所述第三开关为同一第一切换开关,所述第二开关和所述第四开关为同一第二切换开关。
  4. 根据权利要求1所述的功率转换模块,其特征在于,所述PFC模块中包括三相整流电路,所述三相整流电路中包括三个火线接口和零线接口,所述第一接口为所述三个火线接口任一火线接口,所述第二接口为所述零线接口,所述三个火线接口还包括第三接口,所述第三接口为所述三个火线接口中除所述第一接口之外的任一火线接口;
    所述功率转换模块还包括第五开关,所述第五开关的一端与所述第二接口连接,所述第五开关的另一端与所述第二开关耦合;
    在所述第一开关、所述第二开关和所述第五开关均处于导通状态的情况下,所述第二接口旁路掉所述第三接口,与所述第三桥臂耦合。
  5. 根据权利要求4所述的功率转换模块,其特征在于,所述三相整流电路中有第一分支电路和第二分支电路,所述第一接口为所述第一分支电路的输入接口,所述第三接口为所述第二分支电路的输入接口;
    在所述第三开关、所述第四开关和所述第五开关均处于导通状态的情况下,所述第二接口旁路掉所述第三接口,接入所述第二分支电路,形成单相整流电路;
    其中,所述单相整流电路包括所述第一分支电路、第三分支电路和所述母线电容,所述第三分支电路包括所述第二接口和所述第二分支电路中除所述第三接口之外的元件。
  6. 根据权利要求4或5所述的功率转换模块,其特征在于,所述第三接口处连接有第二电感,所述第五开关的一端与所述第二接口连接,所述第五开关的另一端接于所述第三接口与所述第二电感之间。
  7. 根据权利要求1至5任一项所述的功率转换模块,其特征在于,
    所述PFC模块为维也纳整流电路,所述第一DC-DC变换器为双向谐振变换CLLC电路;
    所述功率转换模块还包括第三DC-DC变换器,所述第三DC-DC变换器为谐振变换LLC电路,所述第三DC-DC变换器包括第三初级电路和第三次级电路;
    所述第三初级电路与所述第一初级电路串联,所述第三次级电路与所述第一次级电路并联。
  8. 根据权利要求1至5任一项所述的功率转换模块,其特征在于,所述第一桥臂、所述第二桥臂、所述第三桥臂以及所述第四桥臂中的所有开关管均为金属-氧气-半导体场效应晶体管MOS管、三极管、碳化硅SiC晶体管或绝缘栅双极型晶体管IGBT。
  9. 一种车载充电机,其特征在于,所述车载充电机包括电磁兼容EMI滤波模块、功率因素校正PFC模块和第一直流-直流DC-DC变换器;
    所述PFC模块中有第一接口、第二接口和母线电容,所述第一接口处连接有第一电感;
    所述第一DC-DC变换器包括第一初级电路和第一次级电路,所述第一初级电路包括第一桥臂、第二桥臂、第三桥臂和第四桥臂;
    所述功率转换模块还包括第一开关、第二开关、第三开关和第四开关,所述第一开关设置于所述第一桥臂与所述第一电感之间,所述第二开关设置于所述第三桥臂和所述第二接口之间,所述第三开关设置于所述第一桥臂和所述第二桥臂之间,所述第四开关设置于所述第三桥臂和所述第四桥臂之间;
    在所述第一开关和所述第二开关均处于关断状态,且所述第三开关和所述第四开关均处于导通状态的情况下,所述EMI滤波模块、所述PFC模块和所述第一DC-DC变换器用于进行正向充电;
    在所述第一开关和所述第二开关均处于导通状态,且所述第三开关和所述第四开关均处于关断状态的情况下,所述第一桥臂与所述第一电感耦合,所述第三桥臂与所述第二接口耦合,形成第二DC-DC变换器和逆变模块;
    其中,所述第二DC-DC变换器的第二初级电路为所述第一DC-DC变换器的第一次级电路,所述第二DC-DC变换器的第二次级电路包括所述第二桥臂和所述第四桥臂,所述逆变模块包括所述第一桥臂、所述第三桥臂、所述第一电感以及所述母线电容。
  10. 根据权利要求9所述的车载充电机,其特征在于,所述第一桥臂、所述第二桥臂、所述第三桥臂和所述第四桥臂均包括两个开关管;
    所述第一开关的一端连接于所述第一桥臂的两个开关管之间,所述第一开关的另一端与所述第一电感耦合;
    所述第二开关的一端连接于所述第三桥臂的两个开关管之间,所述第二开关的另一端与所述第二接口耦合;
    所述第三开关的一端连接于所述第一桥臂的两个开关管之间,所述第三开关的另一端连接于所述第二桥臂的两个开关管之间;
    所述第四开关的一端连接于所述第三桥臂的两个开关管之间,所述第四开关的另一端连接于所述第四桥臂的两个开关管之间。
  11. 根据权利要求9所述的车载充电机,其特征在于,所述第一开关和所述第三开关为同一第一切换开关,所述第二开关和所述第四开关为同一第二切换开关。
  12. 根据权利要求9所述的车载充电机,其特征在于,所述PFC模块中包括三相整流电路,所述三相整流电路中包括三个火线接口和零线接口,所述第一接口为所述三个火线接口任一火线接口,所述第二接口为所述零线接口,所述三个火线接口还包括第三接口,所述第三接口为所述三个火线接口中除所述第一接口之外的任一火线接口;
    所述功率转换模块还包括第五开关,所述第五开关的一端与所述第二接口连接,所述第五开关的另一端与所述第二开关耦合;
    在所述第一开关、所述第二开关和所述第五开关均处于导通状态的情况下,所述第二接口旁路掉所述第三接口,与所述第三桥臂耦合。
  13. 根据权利要求12所述的车载充电机,其特征在于,所述三相整流电路中有第一分支电路和第二分支电路,所述第一接口为所述第一分支电路的输入接口,所述第三接口为所述第二分支电路的输入接口;
    在所述第三开关、所述第四开关和所述第五开关均处于导通状态的情况下,所述第二接口旁路掉所述第三接口,接入所述第二分支电路,形成单相整流电路;
    其中,所述单相整流电路包括所述第一分支电路、第三分支电路和所述母线电容,所述第三分支电路包括所述第二接口和所述第二分支电路中除所述第三接口之外的元件。
  14. 根据权利要求12或13所述的车载充电机,其特征在于,所述第三接口处连接有第二电感,所述第五开关的一端与所述第二接口连接,所述第五开关的另一端接于所述第三接口与所述第二电感之间。
  15. 根据权利要求9至13任一项所述的车载充电机,其特征在于,
    所述PFC模块为维也纳整流电路,所述第一DC-DC变换器为双向谐振变换CLLC电路;
    所述功率转换模块还包括第三DC-DC变换器,所述第三DC-DC变换器为谐振变换LLC电路,所述第三DC-DC变换器包括第三初级电路和第三次级电路;
    所述第三初级电路与所述第一初级电路串联,所述第三次级电路与所述第一次级电路并联。
  16. 根据权利要求9至13任一项所述的车载充电机,其特征在于,所述第一桥臂、所 述第二桥臂、所述第三桥臂以及所述第四桥臂中的所有开关管均为金属-氧气-半导体场效应晶体管MOS管、三极管、碳化硅SiC晶体管或绝缘栅双极型晶体管IGBT。
  17. 一种电动汽车,其特征在于,所述电动汽车包括车载充电机和电池包,所述车载充电机为权利要求9至权利要求16任一项所述的车载充电机;
    所述电池包用于存储所述车载充电机输入的电量,还用于通过所述车载充电机进行逆变放电。
PCT/CN2020/084869 2019-06-25 2020-04-15 一种功率转换模块、车载充电机和电动汽车 WO2020259011A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20811506.3A EP3790179B1 (en) 2019-06-25 2020-04-15 Power conversion module, vehicle-mounted charger, and electric vehicle
US17/139,613 US11532978B2 (en) 2019-06-25 2020-12-31 Power conversion module, vehicle-mounted charger, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910554830.1 2019-06-25
CN201910554830.1A CN110350796B (zh) 2019-06-25 2019-06-25 一种功率转换模块、车载充电机和电动汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,613 Continuation US11532978B2 (en) 2019-06-25 2020-12-31 Power conversion module, vehicle-mounted charger, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2020259011A1 true WO2020259011A1 (zh) 2020-12-30

Family

ID=68182987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084869 WO2020259011A1 (zh) 2019-06-25 2020-04-15 一种功率转换模块、车载充电机和电动汽车

Country Status (4)

Country Link
US (1) US11532978B2 (zh)
EP (1) EP3790179B1 (zh)
CN (1) CN110350796B (zh)
WO (1) WO2020259011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117833705A (zh) * 2023-12-29 2024-04-05 江苏科曜能源科技有限公司 一种隔离双向三电平四桥臂储能装置及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350796B (zh) * 2019-06-25 2020-11-06 华为技术有限公司 一种功率转换模块、车载充电机和电动汽车
US11418125B2 (en) * 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
CN111409482B (zh) * 2020-03-30 2023-01-31 上海电气集团股份有限公司 车载充电机和电机控制器的集成电路、电动汽车
WO2021196309A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 双向能量传输装置、车载充电器及电动汽车
CN111446859A (zh) * 2020-04-13 2020-07-24 威睿电动汽车技术(宁波)有限公司 Cllc双向直流-直流变换器
US11088625B1 (en) * 2020-05-26 2021-08-10 Institute Of Electrical Engineering, Chinese Academy Of Sciences Three-phase CLLC bidirectional DC-DC converter and a method for controlling the same
CN111614267A (zh) * 2020-06-17 2020-09-01 深圳威迈斯新能源股份有限公司 适应宽输入电压的dcdc转换电路以及车载充电机
US11404966B2 (en) 2020-07-02 2022-08-02 Delta Electronics, Inc. Isolated multi-phase DC/DC converter with reduced quantity of blocking capacitors
CN112996688A (zh) * 2020-07-14 2021-06-18 深圳欣锐科技股份有限公司 三相充电和单相充电相互切换电路和相关装置
CN112532101A (zh) * 2020-12-17 2021-03-19 哈尔滨理工大学 一种新型双向高变比vienna整流器
KR102619173B1 (ko) * 2020-12-21 2024-01-03 현대모비스 주식회사 양방향 절연형 대용량 dc-dc 컨버터 및 그 제어방법
CN118554597A (zh) * 2022-03-24 2024-08-27 华为电动技术有限公司 一种充电机、车辆
CN116207811B (zh) * 2022-12-15 2024-04-05 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块
CN115765516B (zh) * 2023-01-09 2023-05-02 西安图为电气技术有限公司 双向储能变换器和双向电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134839A (zh) * 2017-05-11 2017-09-05 山东鲁能智能技术有限公司 一种基于全数字控制的高功率密度充电模块及方法
CN107310409A (zh) * 2017-05-10 2017-11-03 浙江大学 一种电动汽车双向充电器的切换及控制方法
WO2018130773A1 (fr) * 2017-01-12 2018-07-19 Renault Sas Chargeur de batterie d'accumulateurs électriques bidirectionnel
CN110350796A (zh) * 2019-06-25 2019-10-18 华为技术有限公司 一种功率转换模块、车载充电机和电动汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590495B2 (en) * 2011-08-26 2017-03-07 Futurewei Technologies, Inc. Holdup time circuit and method for bridgeless PFC converter
JP6024209B2 (ja) * 2012-05-29 2016-11-09 株式会社豊田自動織機 バッテリの充電器制御システム
CN105490551B (zh) * 2015-12-28 2018-07-03 华为技术有限公司 一种不间断电源的电路
CN107248814B (zh) * 2016-03-29 2019-09-13 比亚迪股份有限公司 单相交错式pfc电路和具有其的车载充电器及电动汽车
FR3060230B1 (fr) * 2016-12-14 2019-01-25 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
US11491883B2 (en) * 2018-04-10 2022-11-08 University Of Maryland, College Park Vehicle on-board charger for bi-directional charging of low/high voltage batteries
CN109728624A (zh) * 2018-12-27 2019-05-07 台达电子企业管理(上海)有限公司 车载充放电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130773A1 (fr) * 2017-01-12 2018-07-19 Renault Sas Chargeur de batterie d'accumulateurs électriques bidirectionnel
CN107310409A (zh) * 2017-05-10 2017-11-03 浙江大学 一种电动汽车双向充电器的切换及控制方法
CN107134839A (zh) * 2017-05-11 2017-09-05 山东鲁能智能技术有限公司 一种基于全数字控制的高功率密度充电模块及方法
CN110350796A (zh) * 2019-06-25 2019-10-18 华为技术有限公司 一种功率转换模块、车载充电机和电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3790179A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117833705A (zh) * 2023-12-29 2024-04-05 江苏科曜能源科技有限公司 一种隔离双向三电平四桥臂储能装置及系统

Also Published As

Publication number Publication date
EP3790179B1 (en) 2023-01-11
CN110350796A (zh) 2019-10-18
US20210122255A1 (en) 2021-04-29
CN110350796B (zh) 2020-11-06
EP3790179A4 (en) 2021-09-22
EP3790179A1 (en) 2021-03-10
US11532978B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2020259011A1 (zh) 一种功率转换模块、车载充电机和电动汽车
US20240246428A1 (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
US10367363B2 (en) Device for charging an energy store
US10283990B2 (en) Universal current charger
CA2983328C (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
JP7205428B2 (ja) 電源装置
CN112224057B (zh) 一种车辆及其能量转换装置与动力系统
CN106411164A (zh) 一种整流系统及其控制方法
CN116208062A (zh) 电机控制系统、电机控制系统的控制方法及车辆
CN201057634Y (zh) 三电平集成式中、高压变频器
CN110266018A (zh) 统一电能质量控制器及其控制方法和控制系统
US20240146096A1 (en) Charging apparatus, charging pile, and charging system
CN112224051B (zh) 一种车辆及其能量转换装置与动力系统
US11888389B1 (en) Variable-phase power converter
CN210724230U (zh) 车载充放电系统
CN113141048A (zh) 车载充电机电路、车载充电器和电动汽车
WO2013182064A1 (en) Charging systems for vehicle and battery, charging device, and vehicle comprising the same
CN221162254U (zh) 车载电路和车辆
CN110048625B (zh) 电动汽车充电及电机驱动复用型变流电路
US20240055858A1 (en) Method and circuit for an integrated dc converter in an ac battery
WO2023116417A1 (zh) 车辆、能量转换装置及其放电方法
CN111376759B (zh) 车载充电机及车辆
WO2023237962A1 (en) System for charging electric vehicles
CN111130377A (zh) 一种兼容离并网应用的双向交直流变换电路
WO2023237963A1 (en) System for charging electric vehicles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020811506

Country of ref document: EP

Effective date: 20201202

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20811506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE