WO2020258532A1 - 一种步进式检测装置及系统 - Google Patents

一种步进式检测装置及系统 Download PDF

Info

Publication number
WO2020258532A1
WO2020258532A1 PCT/CN2019/106217 CN2019106217W WO2020258532A1 WO 2020258532 A1 WO2020258532 A1 WO 2020258532A1 CN 2019106217 W CN2019106217 W CN 2019106217W WO 2020258532 A1 WO2020258532 A1 WO 2020258532A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
hole
detection device
electrode
detection
Prior art date
Application number
PCT/CN2019/106217
Other languages
English (en)
French (fr)
Inventor
钟成
曹燚
王璐璐
鲁艺
潘苏婉
王立平
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2020258532A1 publication Critical patent/WO2020258532A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors

Definitions

  • the embodiment of the present invention relates to the field of medical equipment, for example, to a stepping detection device and system.
  • Neuroelectrophysiology has been developed for more than 200 years since it was first discovered by the Italian doctor Luigi Galvani (Galvani). Now people have realized that neurons, the most basic unit in the nervous system, transmit signals mainly by the conduction of electrical signals. During these two centuries of development, a powerful technology like patch clamp that can clamp the voltage on a small piece of membrane to record the current of one or several ion channels has been produced.
  • the two multi-channel recording electrodes sold most on the market are Utah electrodes and Michigan electrodes. They all have their own advantages and scope of application. The former is suitable for the study of the superficial areas of the brain, and the latter is suitable for signal acquisition of the discharge of neurons in different layers of the deeper nucleus.
  • the electrodes must be disassembled, adjusted in length, and then reinstalled on the organism. This method of recording bioelectric signals at different positions is very inconvenient.
  • the embodiment of the invention discloses a step-by-step detection device and system to adjust electrode movement to collect bioelectric signals at different positions.
  • an embodiment of the present invention discloses a step-by-step detection device, including:
  • a support module the support module includes a through hole, the support module is configured to be fixed to a support surface
  • the detection electrode includes a first end configured to collect bioelectric signals and a second end opposite to the first end;
  • a movable module that wraps and fixes the second end of the detection electrode, the movable module is at least partially disposed in the through hole and movable along the through hole;
  • the stepping control module is arranged on the outer wall of the movable module, and the bottom of the stepping control module is configured to be in contact with the upper surface of the supporting module, so as to measurably adjust the movable module to enter the through hole And adjust the length of the first end protruding from the through hole.
  • an embodiment of the present invention discloses a step-by-step detection system, including:
  • the electrode connector is electrically connected to the second end of the detection electrode, and the electrode connector has at least one hole configured to accommodate the detection electrode.
  • FIG. 1 is a schematic structural diagram of a step-by-step detection device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the stepping control module provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of before and after stepping provided by the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another step-by-step detection device provided by the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a supporting module provided in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a structure including a plurality of electrodes provided by the second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a step-by-step detection system provided by Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a step-by-step detection system provided by Embodiment 3 of the present invention.
  • first”, second, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • first speed difference may be referred to as the second speed difference
  • second speed difference may be referred to as the first speed difference. Both the first speed difference and the second speed difference are speed differences, but they are not the same speed difference.
  • the terms “first”, “second”, etc. cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “multiple” and “batch” mean at least two, such as two, three, etc., unless otherwise specifically defined.
  • FIG. 1 is a schematic structural diagram of a step-by-step detection device provided in Embodiment 1 of the present invention. This embodiment is applicable to the composition of the step-by-step detection device and the situation of collecting brain electrical signals.
  • the first embodiment provides a stepping detection device, including a supporting module 110 configured to be fixed to a supporting surface, the supporting module 110 includes a through hole 111; a detection electrode 120, including a configured A first end 121 for collecting bioelectric signals and a second end 122 opposite to the first end 121; a movable module 130, which wraps and fixes the second end 122 of the detection electrode 120, and the movable module 130 is at least partially disposed on Inside the through hole 111 and movable along the through hole 111; the step control module 140 is arranged on the outer wall of the movable module 130 and is used to quantify the movement of the movable module 130 into the through hole 111 To adjust the length of the first end 121 protruding from the through hole 111.
  • the lower surface 112 of the supporting module 110 is in contact with the supporting surface, and the supporting surface may be the surface of the skull or other surfaces that need to be supported when collecting electrical signals.
  • the lower surface 112 of the supporting module 110 is in contact with the supporting surface. Therefore, the part above the lower surface 112 of the supporting module 110 is exposed to the air, so that it is also convenient for personnel to operate the movable module 130.
  • a through hole 111 is opened in the middle part of the supporting module 110, and the shape of the through hole 111 may be a square shape or a cylindrical shape.
  • the shape of the through hole 111 may be a cylindrical hole, which can facilitate the movement of the movable module 130 in the through hole 111.
  • the shape of the movable module 130 corresponds to the shape of the through hole 111.
  • the shape of the through hole 111 is a square shape, and the movable module 130 also corresponds to a rectangular parallelepiped.
  • the shape of the through hole 111 is a cylinder.
  • the movable module 130 also corresponds to a cylinder.
  • the outer diameter of the movable module 130 is larger than the inner diameter of the through hole 111 to achieve an interference fit. Therefore, the outer wall of the movable module 130 and the through hole 111 need to be relatively smooth, and can be elastically deformed. Through the squeezing force and friction force, the movable module 130 can be kept in place when it does not need to be moved. More convenient to proceed.
  • the materials of the movable module 130 and the supporting module 110 are both ceramics, so that the movable module 130 can move in the through hole 111 and it is not easy to affect the organism.
  • the detection electrode 120 includes a first end 121 and a second end 122, and the first end 121 is configured to be inserted into a biological body, such as the brain of the biological body, so as to collect brain bioelectric signals.
  • the first end 122 is fixed on the movable module 130 and can be connected with other components.
  • the first end 121 and the second end 122 are only used to distinguish the two ends of the detection electrode 120, and do not represent a specific end.
  • the end configured to collect bioelectric signals may also be the second end, and the other end is the second end.
  • the detection electrode 120 is fixed on the movable module 130.
  • the detection electrode 120 follows the movable module 130 to move along the through hole 111 in the through hole 111. Since the lower surface 112 of the support module 110 is in contact with the support surface, the portion from the first end 121 of the detection electrode 120 to the lower surface 112 of the support module 110 is inside the living body, such as the upper brain region in the skull.
  • the movable module 130 has a hole larger than the diameter of the detection electrode 120 so that the detection electrode 120 can extend to the support module 110 through the hole.
  • a brittle solid glue can be used to fix the detection electrode 120 on the movable module 130, so that the movable module 130 wraps and fixes the second end 122 of the detection electrode 120, so the detection electrode 120 can follow the movement.
  • the modules 130 move together.
  • the step control module 140 is disposed on the outer wall of the movable module 130, and is close to the outer wall. In some embodiments, the bottom of the step control module 140 is configured to contact the upper surface 113 of the support module 110. Referring to FIG. 2, when the electrode position needs to be adjusted, the distance to be adjusted is converted into the length of the step control module 140 in advance, so as to intercept this length. After the length is intercepted, as shown in FIG.
  • the bottom of the stepping control module 140 that intercepts the certain length is no longer in contact with the upper surface 113 of the support module 110, but there is an H between the upper surface 113 of the support module 110 Height difference, at this time move the movable module 130, the detection electrode 120, and the step control module 140 can also move accordingly. For example, when the movable module 130 is pressed toward the support module 110, the bottom of the step control module 140 reaches the bottom of the support module 110 again. On the upper surface, the distance moved by the detection electrode 120 at this time is the desired distance.
  • Figure 3 which is a schematic diagram after stepping. Obviously, after stepping, the height H is lower than before stepping.
  • the length converted into the step control module 140 is 500 ⁇ m. Then, a length of 500 ⁇ m starts to be cut at the bottom of the step control module 140, and at this time, the bottom of the step control module 140 is no longer in contact with the upper surface of the support module 110. Press the movable module 130 toward the supporting module 110, and when the bottom of the stepping control module 140 contacts the upper surface 113 of the supporting module 110 again, the moving length of the detection electrode 120 at this time is exactly 100 ⁇ m. In this embodiment, the moving length of the detection electrode 120 is the descending height.
  • the length of the intercepting step control module 140 can be achieved by a microscope and high-precision tweezers.
  • Figure 4 is a schematic structural diagram of a step-by-step detection device provided in the second embodiment of the present invention.
  • the technical solution provided in this embodiment is refined on the basis of the above-mentioned technical solution, and is suitable for the composition of the step-by-step detection device and the collection of brain electricity. Signal scene.
  • the second embodiment provides another stepping detection device, which includes a supporting module 210 configured to be fixed to a supporting surface.
  • the supporting module 210 includes a through hole 211; and the detection electrode 220 includes a The first end 221 and the second end 222 opposite to the first end 221 are configured to collect bioelectric signals; the movable module 230 wraps and fixes the second end 222 of the detection electrode 220, and the movable module 230 is at least partially arranged Inside the through hole 211 and movable along the through hole 211; the step control module 240 is arranged on the outer wall of the movable module 230, and is used to quantify the movement of the movable module 230 into the through hole To adjust the length of the first end 221 extending from the through hole 211.
  • the functional module 250 includes a third end 251 configured to input biostimulus and a fourth end 252 opposite to the third end 251.
  • the wrapping module 260 is arranged on the outer wall of the support module 210 and wraps the support module 210. In order to better display the shape of the wrapping module 260, the wrapping module 260 is distinguished from the supporting module 210, and the actual through hole depth of the supporting module 210 and the axial height of the wrapping module 260 may be equal.
  • the supporting module 210 further includes a slit 214, which penetrates the supporting module 210 along the axial direction of the through hole 211. Since the through hole 211 of the movable module 230 and the supporting module 210 is an interference fit, when the movable module 230 moves axially along the through hole 211, through the slit 214, the outer diameter of the supporting module 210 can also be appropriately deformed, This makes relative movement easier.
  • the number of detection electrodes 220 can be one or more, which can be set as required, such as single electrode, double electrode, or four electrode. Wherein, if the number of detection electrodes 220 is greater than 1, optionally, each detection electrode 220 is arranged in parallel and spaced apart from each other. Wherein, the diameter of the cross section of each detection electrode 220 is 5 ⁇ m-50 ⁇ m. Optionally, the diameter of the cross section of each detection electrode 220 is the same, and the accuracy of detecting the bioelectric signal is higher.
  • the stepping control module 240 includes a wire fixed on the outer wall of the movable module 230 in a spiral winding manner, and the wire is configured to block the wound portion of the movable module 230 from entering the through hole 211.
  • the wire is evenly wound on the movable module 230.
  • the bottom end of the wire serves as the bottom of the step control module 240 and is in contact with the upper surface 213 of the support module 210. Then the part wrapped around the movable module 230 cannot enter the supporting module 210.
  • the wire is a metal wire.
  • the diameter of the wire affects the accuracy of the step control module 240. The smaller the diameter, the higher the accuracy, but the smaller the diameter, the easier it is to break.
  • the diameter of the wire is 100 ⁇ m-200 ⁇ m, which can be intercepted by a microscope and high-precision tweezers.
  • the functional module 250 may be an optical fiber used for light stimulation, or a micro-drug tube used for drug delivery, or other functional components that can be stimulated for testing.
  • the third end 251 of the functional module 250 for inputting biostimulation directly acts on the organism, so that the organism generates a bioelectric signal
  • the fourth end 252 is an interface for the experimenter to stimulate.
  • the experimenter inputs a stimulating agent or emits a stimulating signal from the fourth terminal 252, which is transmitted by the functional module 250 to the third terminal 251, and the third terminal 251 directly stimulates the organism.
  • the functional module 250 and the detection electrode 220 can be fixed in one aperture or in different apertures.
  • the functional module 250 and the detection electrode 220 are fixed in one aperture at intervals.
  • the functional module 250 can also be arranged in a cylindrical shape and bound into a bundle in a certain arrangement.
  • the optical fiber and all the detection electrodes 220 are arranged parallel to each other, and then bound into a bundle and fixed on the movable module 230.
  • the end of the optical fiber used for stimulation and the end points of the first ends 221 of all the detection electrodes 220 are on the same plane.
  • the optical fiber and the detection electrode 220 can be encapsulated with polyethylene glycol. When the optical fiber is not needed, the polyethylene glycol can be dissolved to take out the optical fiber.
  • the supporting module 210 is exposed to the atmosphere.
  • some particles or impurities in the air easily enter the through hole 211 of the supporting module 210 from the crack.
  • the smoothness of the through hole 211 of the supporting module 210 and the movable module 230 is relatively high, and particles or magazines will affect the smoothness of the movable module 230 and the through hole 211.
  • the wrapping module 260 is arranged on the outer wall of the support module 210 to wrap the support module 210 so that particles or magazines in the air will not enter the through hole 211, and will not affect the space between the movable module 230 and the through hole 211. The smoothness.
  • the wrapping module 260 must also have a certain shrinkage capability.
  • the wrapping module 260 tightly fits the supporting module 210 and cannot move relative to each other.
  • the material of the wrapping module 260 is plastic, and the shape matches the shape of the outer diameter of the supporting module 210.
  • the radial lengths of the movable module 230, the supporting module 210 and the wrapping module 260 are the same.
  • the technical effect of precisely controlling the movement distance of the detection electrode is achieved.
  • a functional module is added, which can directly stimulate the organism through the detection device to obtain the required bioelectric signal.
  • FIG. 7 is a schematic structural diagram of a step-by-step detection system provided in the third embodiment of the present invention.
  • the technical solution provided in this embodiment is refined on the basis of the above-mentioned technical solution, and is suitable for the composition of the step-by-step detection system and the collection of brain electricity. Signal scene.
  • the third embodiment provides a step-by-step detection system, which includes a supporting module 310 configured to be fixed to a supporting surface.
  • the supporting module 310 includes a through hole 311; and the detection electrode 320 includes a configured A first end 321 for collecting bioelectric signals and a second end 322 opposite to the first end 321; a movable module 330, which wraps and fixes the second end 322 of the detection electrode 320, and the movable module 330 is at least partially disposed at
  • the through hole 311 is movable along the through hole 311; the step control module 340 is arranged on the outer wall of the movable module 330 and is used to quantify the amount of the movable module 330 entering the through hole.
  • An electrode connector 350 The electrode connector 350 has at least one hole for accommodating the detection electrode 320 and is electrically connected to the second end 322 of the detection electrode 320; a reference line 360, the reference line 360 Fixed on the electrode connector 350 and electrically connected to the electrode connector 350; ground wire 370, the ground wire being fixed on the electrode connector 350 and electrically connected to the electrode connector 350.
  • the reference line 360 may be a wire with an impedance of less than 0.01 milliohm (Mohm), usually a bare wire with no insulating layer made of the same material as the recording electrode wire, placed beside the electrode array.
  • the ground wire 370 can be a long silver wire wound on the skull nail contacting the dura mater, and is mainly used to eliminate external interference.
  • the shape of the electrode connector 350 may be a square.
  • the electrode connector 350 may have multiple holes for connecting the detection electrode 320, the reference line 360 and the ground line 370. If there is a functional module 380 in the stepping detection system, the electrode connector 350 also has a through hole, and the functional module protrudes from the top of the electrode connector 350.
  • the part of the detection electrode at the bottom of the electrode connector 350 and the upper surface 331 of the movable module 330 is exposed, and this part can also be encapsulated to achieve the effect of moisture and interference prevention.
  • step-by-step detection device provided in any embodiment of this document can be used to improve the step-by-step detection system, and has the technical effects provided by any embodiment of this document.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种步进式检测装置及系统,包括:支撑模块(110),支撑模块(110)包括一通孔(111),支撑模块(110)被配置为固定至支撑表面;检测电极(120),包括第一端(121)以及和第一端(121)相对的第二端(122);活动模块(130),包裹和固定检测电极(120)的第二端(122),活动模块(130)至少部分设置于通孔(111)内且可沿通孔(111)移动;步进控制模块(140),设置于活动模块(130)的外壁,步进控制模块(140)的底部被配置为与支撑模块(110)的上表面接触,以调整第一端(121)伸出通孔(111)的长度。

Description

一种步进式检测装置及系统
本公开要求在2019年06月25日提交中国专利局、申请号为201910556089.2的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本发明实施例涉及医疗器械领域,例如涉及一种步进式检测装置及系统。
背景技术
神经电生理从最初由意大利医生Luigi Galvani(伽伐尼)发现到现在已经经历了200多年的发展。现在人们已经认识到神经元——这种神经系统中最基本的单元,其传递信号主要是靠电信号的传导来发挥作用的。在这长达两个世纪的发展中,已经产生了像膜片钳这种可以将小小的一块膜片上的电压钳制住,从而记录到一个或几个离子通道的电流情况的强大技术。
针对多通道电生理记录技术研发的电极不在少数,目前市场上销售的最多的两种多通道记录电极是犹他电极和密歇根电极。他们都有各自的优点和使用范围,前者适合大脑浅层区域的研究,后者适宜较深核团不同层神经元放电的信号采集。但是目前的电极,需要采集不同位置的生物电信号时,都要将电极拆卸下来,调整长度后再重新安装至生物体上,这种记录不同位置的生物电信号方式非常不方便。
发明内容
本发明实施例公开了一种步进式检测装置及系统,以实现调整电极移动从而采集不同位置的生物电信号。
第一方面,本发明实施例公开了一种步进式检测装置,包括:
支撑模块,所述支撑模块包括一通孔,所述支撑模块被配置为固定至支撑 表面;
检测电极,包括被配置为采集生物电信号的第一端以及和第一端相对的第二端;
活动模块,包裹和固定所述检测电极的第二端,所述活动模块至少部分设置于所述通孔内且可沿所述通孔移动;
步进控制模块,设置于所述活动模块的外壁,所述步进控制模块的底部被配置为与所述支撑模块的上表面接触,以可度量地调整所述活动模块进入所述通孔内的深度,并调整所述第一端伸出所述通孔的长度。
第二方面,本发明实施例公开了一种步进式检测系统,包括:
本文任一实施例所述的步进式检测装置;
电极连接器,与所述检测电极的第二端电连接,所述电极连接器上有至少一个被配置为容纳所述检测电极的孔。
附图说明
图1是本发明实施例一提供的一种步进式检测装置的结构示意图;
图2是本发明实施例一提供的截取步进控制模块后的示意图;
图3是本发明实施例一提供的步进前以及步进后的示意图;
图4是本发明实施例二提供的另一种步进式检测装置的结构示意图;
图5是本发明实施例二提供的支撑模块的结构示意图;
图6是本发明实施例二提供的包括多个电极的结构示意图;
图7是本发明实施例三提供的一种步进式检测系统的结构示意图;
图8是本发明实施例三提供的一种步进式检测系统的结构示意图。
具体实施方式
下面结合附图和实施例对本文作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本文,而非对本文的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本文相关的部分而非全部。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一速度差值为第二速度差值,且类似地,可将第二速度差值称为第一速度差值。第一速度差值和第二速度差值两者都是速度差值,但其不是同一速度差值。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本文的描述中,“多个”、“批量”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例一
图1是本发明实施例一提供的步进式检测装置的结构示意图,本实施例可适用于步进式检测装置的组成以及采集大脑电信号的情况。
如图1所示,本实施例一提供了一种步进式检测装置,包括支撑模块110,被配置为固定至支撑表面,所述支撑模块110包括一通孔111;检测电极120,包括被配置为采集生物电信号的第一端121以及和第一端121相对的第二端122;活动模块130,包裹和固定所述检测电极120的第二端122,所述活动模块130至少部分设置于所述通孔111内且可沿所述通孔111移动;步进控制模块140, 设置于所述活动模块130的外壁,用于可度量地调整所述活动模块130进入所述通孔111内的深度,以调整所述第一端121伸出所述通孔111的长度。
在一些实施例中,支撑模块110的下表面112是和支撑表面接触的,支撑表面可以是颅骨表面,或其他采集电信号时需要进行支撑的表面。支撑模块110的下表面112与支撑表面接触,因此,支撑模块110下表面112以上的部分是暴露在空气中,因此也方便人员对活动模块130进行操作。支撑模块110中间部分有开设一个通孔111,通孔111的形状可以是方形状,也可以是圆柱状。通孔111的形状可选为圆柱孔,可以方便活动模块130在通孔111内移动。活动模块130的形状与通孔111的形状相对应,在一些实施例中,通孔111的形状为方形状,活动模块130也对应为长方体,在一些实施例中,通孔111的形状为圆柱状,活动模块130也对应为圆柱体。在一些实施例中,活动模块130的外径大于通孔111的内径,以实现过盈配合。因此,活动模块130的外壁与通孔111需要比较光滑,且能发生弹性形变,通过挤压力和摩擦力,在不需要移动时使活动模块130保持在原位,光滑使得在需要移动时能更方便的进行。可选的,活动模块130和支撑模块110的材料均为陶瓷,以便活动模块130在通孔111内进行移动,并且还不容易影响生物体。
在一些实施例中,检测电极120包括第一端121和第二端122,第一端121被配置为插入生物体,例如生物体的脑部,从而采集脑部生物电信号。第一端122固定在活动模块130上且可以和其他部件连接。第一端121和第二端122仅仅是为了区分检测电极120两端,并不代表具体一端,替代实施例中被配置为采集生物电信号的一端也可以为第二端,那么另一端就是第一端。检测电极120固定在活动模块130上,当活动模块130在通孔111内进行移动时,检测电极120也就跟随着活动模块130在通孔111内沿通孔111进行移动。由于支撑模块 110的下表面112是与支撑表面接触的,因此检测电极120的第一端121直到支撑模块110下表面112的这部分在生物体的内部,例如在颅骨内的上脑区。
在一些实施例中,活动模块130上有一个大于检测电极120的直径的孔,以使检测电极120可以通过该孔延伸到支撑模块110。此外,在孔的顶部,可以使用脆性固体胶将检测电极120固定在活动模块130上,以实现活动模块130包裹和固定所述检测电极120的第二端122,因此检测电极120就能跟随活动模块130一起移动。
在一些实施例中,步进控制模块140设置在活动模块130的外壁,紧贴外壁。在一些实施例中,步进控制模块140的底部被配置为与支撑模块110的上表面113接触。参考图2,当需要调整电极位置时,预先将需要调整的距离,换算成步进控制模块140的长度,从而截取此长度。截取长度后,如图2所示,截取此一定长度的步进控制模块140的底部不再与支撑模块110的上表面113接触,而是与支撑模块110的上表面113之间有了H的高度落差,此时移动活动模块130,检测电极120,步进控制模块140也可进行相应移动,例如当朝向支撑模块110按压活动模块130,使得步进控制模块140的底部再次到达支撑模块110的上表面时,此时检测电极120移动的距离就是想要移动的距离。参考图3,图3为步进后的示意图。明显看到,步进后比步进前下降了高度H。
示例性地,当需要检测电极120下降高度H为100μm时,假设换算成步进控制模块140的长度是500μm。那么在步进控制模块140的底部开始截取500μm的长度,此时步进控制模块140的底部不再与支撑模块110的上表面接触。朝向支撑模块110按压活动模块130,当步进控制模块140的底部再次与支撑模块110的上表面113接触时,此时检测电极120移动的长度刚好为100μm。在本实施例中,检测电极120移动的长度为下降的高度。可选的,截取步进控制模块 140的长度可以通过显微镜和高精密度的镊子实现。
本实施例通过从步进控制模块的底部截取一定长度,再移动活动模块使检测电极跟随移动,直到步进控制模块的底部再次接触支撑模块,达到了精确控制检测电极移动距离的技术效果。
实施例二
图4是本发明实施例二提供的步进式检测装置的结构示意图,本实施例提供的技术方案是在上述技术方案的基础上细化,适用于步进式检测装置的组成以及采集大脑电信号的场景。
如图4所示,本实施例二提供了另一种步进式检测装置,包括支撑模块210,被配置为固定至支撑表面,所述支撑模块210包括一通孔211;检测电极220,包括被配置为采集生物电信号的第一端221以及和第一端221相对的第二端222;活动模块230,包裹和固定所述检测电极220的第二端222,所述活动模块230至少部分设置于所述通孔211内且可沿所述通孔211移动;步进控制模块240,设置于所述活动模块230的外壁,用于可度量地调整所述活动模块230进入所述通孔内的深度,以调整所述第一端221伸出所述通孔211的长度。功能模块250,包括被配置为输入生物刺激的第三端251以及和第三端251相对的第四端252。包裹模块260,设置于所述支撑模块210的外壁,包裹所述支撑模块210。为了更好地展示包裹模块260的形状,把包裹模块260和支撑模块210区分开,实际支撑模块210的通孔深度和包裹模块260的轴向高度可以是相等。
在一些实施例中,如图5所示,支撑模块210上还包括一裂缝214,裂缝214沿通孔211的轴向贯通支撑模块210。由于活动模块230和支撑模块210的通孔211是过盈配合,因此当活动模块230沿通孔211轴向移动时,通过该裂缝214,支撑模块210可以的外径也可以进行适当的形变,从而更轻易地进行相 对移动。
如图6所示,检测电极220的数量可以为一个或多个,可以根据需要设置,例如单电极、双电极或四电极等。其中,如果检测电极220数量大于1,可选地,每个检测电极220之间相互平行间隔设置。其中,每个检测电极220的横截面的直径为5μm-50μm,可选地,每个检测电极220的横截面的直径一致,检测生物电信号的精度更高。
在一些实施例中,步进控制模块240包括以螺旋缠绕方式固定在所述活动模块230的外壁的丝线,丝线被配置为阻挡被缠绕的活动模块230的部分进入所述通孔211。丝线在活动模块230上均匀缠绕。丝线的底端作为步进控制模块240的底部,是与支撑模块210的上表面213接触的。则缠绕在活动模块230这部分就无法进入到支撑模块210中。相应地,当需要下降检测电极220的高度时,通过换算成丝线的长度,再截取此长度,移动活动模块230直到丝线的底端再次接触支撑模块210的上表面213,此时检测电极220移动的距离刚好就是下降的高度。可选地,丝线为金属丝。丝线的直径影响步进控制模块240的精度,直径越小,精度越高,但是直径越小也越容易断裂。可选地,丝线的直径为100μm-200μm,可以通过显微镜和高精度的镊子进行截取。
在一些实施例中,功能模块250可以是用于光刺激的光纤,也可以是用于给药的微量给药管,或其他可以进行刺激从而进行试验的功能组件都可以代替。功能模块250中输入生物刺激的第三端251是直接作用于生物体,从而使生物体产生生物电信号,而第四端252是给实验人员发生刺激的接口。示例性地,实验人员从第四端252输入刺激药剂或发射刺激信号,通过功能模块250的传输后到达第三端251,第三端251直接刺激生物体。功能模块250与检测电极220可以固定在一个孔径内,也可以固定在不同孔径内,可选地,功能模块250 和检测电极220间隔固定在一个孔径内。功能模块250也可以设置为圆柱状,以一定排布方式绑定成束状,以光纤为例,光纤和所有检测电极220相互平行设置,然后绑定成束状,固定在活动模块230上。可选地,光纤用于刺激的一端与所有检测电极220的第一端221的端点都处于同一平面上。可选地,光纤和检测电极220可以用聚乙二醇封装,当不需要使用光纤时,可以将聚乙二醇溶解,从而取出光纤。
在一些实施例中,支撑模块210是暴露在大气中的,当支撑模块210上有裂缝时,空气中的一些颗粒或者是杂质容易从该裂缝进入到支撑模块210的通孔211中。对于活动模块230和支撑模块210的配合移动,对于支撑模块210的通孔211和活动模块230的光滑度要求比较高,颗粒或者杂志会影响活动模块230和通孔211的光滑度。将包裹模块260设置于支撑模块210的外壁,包裹住所述支撑模块210,空气中的颗粒或者杂志就不会进入到该通孔211中,也就不会影响活动模块230和通孔211之间的光滑度。另外,由于支撑模块210中有裂缝,在与活动模块230进行相对移动时,支撑模块210会发生形变,导致外径略微变大,因此,包裹模块260也要有一定的收缩能力。可选地,包裹模块260牢固地套紧支撑模块210,且两者之间不能相对移动。可选地,包裹模块260的材料为塑料,形状与支撑模块210的外径形状匹配。可选地,活动模块230、支撑模块210与包裹模块260的径向长度一致。
在另一代替实施例中,也可以只有功能模块250而没有包裹模块260,也可以只有包裹模块260而没有功能模块250。
本实施例通过从步进控制模块的底部截取一定长度,再移动活动模块使检测电极跟随移动,直到步进控制模块的底部再次接触支撑模块,达到了精确控制检测电极移动距离的技术效果。另外,增加了功能模块,可以直接通过检测 装置对生物体进行刺激,以获取需要的生物电信号。
实施例三
图7是本发明实施例三提供的步进式检测系统的结构示意图,本实施例提供的技术方案是在上述技术方案的基础上细化,适用于步进式检测系统的组成以及采集大脑电信号的场景。
如图7所示,本实施例三提供了一种步进式检测系统,包括支撑模块310,被配置为固定至支撑表面,所述支撑模块310包括一通孔311;检测电极320,包括被配置为采集生物电信号的第一端321以及和第一端321相对的第二端322;活动模块330,包裹和固定所述检测电极320的第二端322,所述活动模块330至少部分设置于所述通孔311内且可沿所述通孔311移动;步进控制模块340,设置于所述活动模块330的外壁,用于可度量地调整所述活动模块330进入所述通孔内的深度,以调整所述第一端321伸出所述通孔311的长度。电极连接器350,所述电极连接器350上至少有一个孔,用于容纳所述检测电极320,且与所述检测电极320的第二端322电连接;参考线360,所述参考线360固定在所述电极连接器350上,与所述电极连接器350电连接;地线370,所述地线固定在所述电极连接器350上,与所述电极连接器350电连接。示例性地,参考线360可以是把一根阻抗低于0.01毫欧姆(Mohm)的丝,通常是同记录电极丝材质的无绝缘层的裸丝,置于电极阵列旁。这样当在线记录中发现难以消除的噪音时,可以选择以这个参考线360得到的信号为参考,因为这个参考线360得到的信号与记录电极得到的噪音更为相似,以它为参考后能够消除大部分噪音。而地线370可以是一根长长的银丝缠绕在接触硬脑膜的颅骨颅钉上面,主要用于排除外界干扰。
如图8所示,在一些实施例中,电极连接器350的形状可以为方形。且电 极连接器350可以有多个孔,用于连接检测电极320、参考线360以及地线370。如果步进式检测系统中有功能模块380,那么电极连接器350还有一个通孔,功能模块伸出电极连接器350的顶部。可选地,电极连接器350底部和活动模块330上表面331这部分检测电极为裸露的,也可以将此部分封装,已达到防潮防干扰的作用。
可选的,还可以包括包裹模块。本文任一实施例提供的步进式检测装置,都可以用于该步进式检测系统中改进,拥有本文任一实施例提供的技术效果。
本实施例通过从步进控制模块的底部截取一定长度,再移动活动模块使检测电极跟随移动,直到步进控制模块的底部再次接触支撑模块,达到了精确控制检测电极移动距离的技术效果。
本文中,通过在活动模块外壁设置步进控制模块,解决了每次调整采集位置都需要拆卸检测装置的问题,克服了精准控制电极移动距离的技术缺陷,达到了不需要拆卸检测装置就能调整电极伸出的长度,从而采集不同位置生物电信号的技术效果。

Claims (10)

  1. 一种步进式检测装置,包括:
    支撑模块,所述支撑模块包括一通孔,所述支撑模块被配置为固定至支撑表面;
    检测电极,包括被配置为采集生物电信号的第一端以及和所述第一端相对的第二端;
    活动模块,包裹和固定所述检测电极的第二端,所述活动模块至少部分设置于所述通孔内且可沿所述通孔移动;
    步进控制模块,设置于所述活动模块的外壁,所述步进控制模块的底部被配置为与所述支撑模块的上表面接触,以可度量地调整所述活动模块进入所述通孔内的深度,并调整所述第一端伸出所述通孔的长度。
  2. 如权利要求1所述的步进式检测装置,其中,所述支撑模块还包括:
    一裂缝,所述裂缝沿所述通孔的轴向贯通所述支撑模块。
  3. 如权利要求2所述的步进式检测装置,其中,所述活动模块的外径大于所述通孔的内径。
  4. 如权利要求1所述的步进式检测装置,其中,所述检测电极为多个,多个所述检测电极相互平行间隔设置。
  5. 如权利要求1所述的步进式检测装置,其中,所述检测电极的横截面的直径为5μm-50μm。
  6. 如权利要求1所述的步进式检测装置,其中,所述步进控制模块包括以螺旋缠绕方式固定在所述活动模块的外壁的丝线,所述丝线被配置为阻挡被缠绕的所述活动模块的部分进入所述通孔。
  7. 如权利要求1所述的步进式检测装置,所述步进式检测装置还包括:
    功能模块,包括被配置为输入生物刺激的第三端以及和所述第三端相对的 第四端。
  8. 如权利要求2所述的步进式检测装置,所述步进式检测装置还包括:
    包裹模块,设置于所述支撑模块的外壁,且包裹所述支撑模块。
  9. 一种步进式检测系统,包括:
    步进式检测装置,所述步进式检测装置为如权利要求1-8任一项所述的步进式检测装置;
    电极连接器,与所述检测电极的第二端电连接,所述电极连接器上有至少一个被配置为容纳所述检测电极的孔。
  10. 如权利要求9所述的步进式检测系统,还包括:
    参考线,所述参考线固定在所述电极连接器上,与所述电极连接器电连接;
    地线,所述地线固定在所述电极连接器上,与所述电极连接器电连接。
PCT/CN2019/106217 2019-06-25 2019-09-17 一种步进式检测装置及系统 WO2020258532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910556089.2A CN110200595B (zh) 2019-06-25 2019-06-25 一种步进式检测装置及系统
CN201910556089.2 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258532A1 true WO2020258532A1 (zh) 2020-12-30

Family

ID=67794352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106217 WO2020258532A1 (zh) 2019-06-25 2019-09-17 一种步进式检测装置及系统

Country Status (2)

Country Link
CN (1) CN110200595B (zh)
WO (1) WO2020258532A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110200595B (zh) * 2019-06-25 2021-11-05 中国科学院深圳先进技术研究院 一种步进式检测装置及系统
CN111437514A (zh) * 2020-03-31 2020-07-24 北京航空航天大学 用于同时实现深脑光刺激和脑电检测的光纤探头及制备方法
CN113108670B (zh) * 2021-04-16 2022-06-21 湖北通成高新材料有限公司 一种透明环保固体胶生产测试系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163393A (zh) * 2014-03-12 2016-11-23 尼尔森(美国)有限公司 采集和分析脑电图数据的方法和装置
KR101689769B1 (ko) * 2015-09-23 2016-12-26 포항공과대학교 산학협력단 생체 신호 측정을 위한 다채널 금속바늘 어레이 전극 및 그 제조방법.
CN106388816A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种新型磁电式微丝电极
CN106388815A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种用于提取大脑信号的微丝电极
CN106388817A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种新型气压式微丝电极
CN106618563A (zh) * 2016-11-09 2017-05-10 中国人民解放军第三军医大学 轻型可重复使用的微电极推进器及其埋置方法
CN107007280A (zh) * 2017-05-02 2017-08-04 臧大维 一种超微头皮电极阵列
CN110200595A (zh) * 2019-06-25 2019-09-06 中国科学院深圳先进技术研究院 一种步进式检测装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467773C2 (ru) * 2007-03-02 2012-11-27 Сапиенс Стиринг Брейн Стимьюлейшн Б.В. Система электродов для глубокой стимуляции головного мозга
US8255045B2 (en) * 2007-04-03 2012-08-28 Nuvasive, Inc. Neurophysiologic monitoring system
EP2135548A1 (en) * 2008-06-18 2009-12-23 Universiteit van Amsterdam Microdrive for use in neurophysiological research of animals
US8335551B2 (en) * 2008-09-29 2012-12-18 Chong Il Lee Method and means for connecting a large number of electrodes to a measuring device
CN104367319A (zh) * 2014-11-05 2015-02-25 中国科学院深圳先进技术研究院 用于进行慢性记录的电极装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163393A (zh) * 2014-03-12 2016-11-23 尼尔森(美国)有限公司 采集和分析脑电图数据的方法和装置
KR101689769B1 (ko) * 2015-09-23 2016-12-26 포항공과대학교 산학협력단 생체 신호 측정을 위한 다채널 금속바늘 어레이 전극 및 그 제조방법.
CN106618563A (zh) * 2016-11-09 2017-05-10 中国人民解放军第三军医大学 轻型可重复使用的微电极推进器及其埋置方法
CN106388816A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种新型磁电式微丝电极
CN106388815A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种用于提取大脑信号的微丝电极
CN106388817A (zh) * 2016-12-01 2017-02-15 科斗(苏州)脑机科技有限公司 一种新型气压式微丝电极
CN107007280A (zh) * 2017-05-02 2017-08-04 臧大维 一种超微头皮电极阵列
CN110200595A (zh) * 2019-06-25 2019-09-06 中国科学院深圳先进技术研究院 一种步进式检测装置及系统

Also Published As

Publication number Publication date
CN110200595B (zh) 2021-11-05
CN110200595A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020258532A1 (zh) 一种步进式检测装置及系统
Yang et al. Bioinspired neuron-like electronics
Ji et al. Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes
Xie et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
CN109171718A (zh) 微针电极阵列装置
Hetke et al. Silicon ribbon cables for chronically implantable microelectrode arrays
KR101317396B1 (ko) 피에이치 농도 측정이 가능한 탐침 구조체
JP4984102B2 (ja) 電極
WO2012053815A2 (ko) 액정폴리머 기반의 전광극 신경 인터페이스 및 그 제조 방법
Yoon et al. Intracellular neural recording with pure carbon nanotube probes
TW541433B (en) Extracellular recording multiple electrode
EP0938674A1 (de) Mikroelementenanordnung, verfahren zum kontaktieren von in einer flüssigen umgebung befindlichen zellen und verfahren zum herstellen einer mikroelementenanordnung
Terkan et al. Soft peripheral nerve interface made from carbon nanotubes embedded in silicone
WO2010103174A1 (en) A carbon fiber multichannel electrode for measuring electrical and chemical activity in biological tissue and a process for making the electrode
US9486641B2 (en) Incorporating an optical waveguide into a neural interface
Hejazi et al. High Fidelity Bidirectional Neural Interfacing with Carbon Fiber Microelectrodes Coated with Boron‐Doped Carbon Nanowalls: An Acute Study
Ma et al. A novel 3D-printed multi-drive system for synchronous electrophysiological recording in multiple brain regions
CN103479345B (zh) 可多次使用的多通道电极装置
CN105852855A (zh) 用于鼠类大脑初级视觉皮层脑电测量的植入式脑电极
Dong et al. Laser sharpening of carbon fiber microelectrode arrays for brain recording
Piironen et al. Ultrasmall and customizable multichannel electrodes for extracellular recordings
Marx Neurobiology: rethinking the electrode
Meneghetti et al. Opsin-free optical neuromodulation and electrophysiology enabled by a soft monolithic infrared multifunctional neural interface
DE3725597C2 (zh)
CN111000548B (zh) 可重复使用的慢性多通道电极装置及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935253

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19935253

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19935253

Country of ref document: EP

Kind code of ref document: A1