WO2020258280A1 - 除颤仪 - Google Patents

除颤仪 Download PDF

Info

Publication number
WO2020258280A1
WO2020258280A1 PCT/CN2019/093815 CN2019093815W WO2020258280A1 WO 2020258280 A1 WO2020258280 A1 WO 2020258280A1 CN 2019093815 W CN2019093815 W CN 2019093815W WO 2020258280 A1 WO2020258280 A1 WO 2020258280A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
unit
energy storage
discharge
switching
Prior art date
Application number
PCT/CN2019/093815
Other languages
English (en)
French (fr)
Inventor
陈大兵
袁博
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/093815 priority Critical patent/WO2020258280A1/zh
Priority to CN201980069023.9A priority patent/CN112867535B/zh
Publication of WO2020258280A1 publication Critical patent/WO2020258280A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators

Definitions

  • This application relates to the technical field of medical devices, and in particular to a defibrillator.
  • Heart diseases such as cardiac arrest are one of the main causes of human death. About 85 to 90% of patients with cardiac arrest in the early stage are ventricular fibrillation.
  • the main way to treat ventricular fibrillation is to use a defibrillator to defibrillate the patient. Because the voltage required to defibrillate a patient is relatively high, the electrical stress on the device in the path where the defibrillator releases the defibrillation voltage to the electrode pads is relatively large, which makes the reliability of the device worse, and even leads to The defibrillator is not working properly.
  • the defibrillator includes an energy storage and discharge module, a switch module, a first electrode sheet, and a second electrode sheet.
  • the energy storage and discharge module communicates with the first electrode sheet and the second electrode sheet through the switch module Electrically connected
  • the switch module includes a plurality of switch units; at least one of the plurality of switch units includes a switch device and at least one auxiliary device for shunting connected in parallel with the switch device; or the plurality of At least one of the switching units includes a plurality of switching devices connected in series.
  • the switch module of the defibrillator of the present application includes a plurality of switch units, and at least one switch unit of the plurality of switch units includes a switch device and at least one auxiliary device for shunting in parallel with the switch device. In parallel with the switching device, the auxiliary device will shunt the switching device connected in parallel.
  • At least one switch unit in the switch unit of the present application includes multiple switch devices connected in series, and multiple switch devices are connected in series. Due to the series voltage division, the voltage on each switch device is reduced, thereby reducing the load on each switch device. The received electrical stress is beneficial to improve the stability of the switching device and ensure the normal operation of the defibrillator.
  • FIG. 1 is a schematic diagram of the circuit framework of the defibrillator provided by the first embodiment of the application.
  • FIG. 2 is a schematic circuit diagram of a switch unit in the defibrillator provided in FIG. 1.
  • Fig. 3 is a schematic circuit diagram of another switch unit in the defibrillator provided in Fig. 1.
  • FIG. 4 is a schematic diagram of the circuit framework of the defibrillator provided by the second embodiment of the application.
  • FIG. 5 is a schematic diagram of the circuit structure of the defibrillator provided by the first embodiment of the application.
  • Fig. 6 is a schematic diagram of the first switch unit in Fig. 5.
  • FIG. 7 is a schematic diagram of the circuit structure of the defibrillator provided by the second embodiment of the application.
  • Fig. 8 is a schematic diagram of the first switch unit in Fig. 7.
  • FIG. 9 is a schematic diagram of the circuit structure of the defibrillator provided by the third embodiment of the application.
  • Fig. 10 is a schematic diagram of the first switch unit in Fig. 9.
  • FIG. 11 is a schematic diagram of a second switch unit provided by an embodiment.
  • FIG. 12 is a schematic diagram of a second switch unit provided by another embodiment.
  • FIG. 13 is a schematic diagram of the circuit structure of the defibrillator provided by the fourth embodiment of this application.
  • Fig. 14 is a schematic diagram of a control switch circuit in Fig. 13.
  • FIG. 15 is a schematic diagram of another control switch circuit in FIG. 13.
  • FIG. 16 is a schematic diagram of a third switch unit provided by an embodiment.
  • FIG. 17 is a schematic diagram of a third switch unit provided by another embodiment.
  • FIG. 18 is a schematic diagram of a fourth switch unit provided by an embodiment.
  • FIG. 19 is a schematic diagram of a fourth switch unit provided by another embodiment.
  • Figure 20 is a schematic diagram of the current limiting module in the defibrillator.
  • FIG. 21 is a schematic diagram of the circuit structure of the defibrillator provided by the fifth embodiment of this application.
  • FIG. 1 is a schematic diagram of the circuit framework of the defibrillator provided by the first embodiment of the application;
  • FIG. 2 is a schematic diagram of the circuit of a switch unit in the defibrillator provided in FIG. 1.
  • the defibrillator 1 includes an energy storage and discharge module 10, a switch module 20, a first electrode sheet 40, and a second electrode sheet 50.
  • the energy storage and discharge module 10 is electrically connected to the first electrode sheet 40 and the second electrode sheet 50 through the switch module 20, and the switch module 20 includes a plurality of switch units 200; the plurality of switch units At least one switching unit 200 in 200 includes a switching device 210 and at least one auxiliary device 220 for shunting in parallel with the switching device 210.
  • FIG. 3 is a schematic circuit diagram of another switch unit in the defibrillator provided in FIG. 1.
  • At least one of the plurality of switching units 200 includes a plurality of switching devices 210 connected in series.
  • the number of auxiliary devices 220 in one switch unit 200 is taken as an example for illustration.
  • one switching unit 200 includes two switching devices 210 connected in series as an example for illustration.
  • the auxiliary device 220 includes at least one or more of a resistor, a capacitor, and a series of resistors and capacitors.
  • the first electrode pad 40 and the second electrode pad 50 are attached to the body of the target object.
  • the first electrode sheet 40 can be attached to the 2 to 3 intercostal spaces (bottom of the heart) of the right sternum of the target object
  • the second electrode sheet 50 can be attached to the fifth side of the left anterior axillary line of the target object. Intercostal (the apex of the heart).
  • the processing module 60 controls the energy storage and discharge module 10 to discharge the first electrode plate 40 and the second electrode plate 50 To treat the target object.
  • the switch module 20 in the defibrillator 1 of the present application includes a plurality of switch units 200. At least one of the switch units 200 includes a switch device 210 and at least one of the switch devices in parallel with the switch device 210 for shunting. Since the auxiliary device 220 is connected in parallel with the switching device 210, the auxiliary device 220 will shunt the switching device 210 connected in parallel.
  • At least one switch unit 200 in the switch unit 200 of the present application includes a plurality of switch devices 210 connected in series, and the multiple switch devices 210 are connected in series. Due to the series voltage division, the voltage on each switch device 210 is reduced, thereby reducing each switch device 210. The electrical stress on each switching device 210 is beneficial to improve the stability of the switching device 210 and ensure the normal operation of the defibrillator 1.
  • the defibrillator also includes a heart rate detection module 30 and a processing module 60.
  • the heart rate detection module 30 may be a heart rate detection sensor, and the heart rate detection module 30 is electrically connected to the first electrode sheet 40 and the second electrode sheet 50 respectively.
  • the heart rate detection module 30 senses the heart activity of the target object through the first electrode sheet 40 and the second electrode sheet 50 to obtain a corresponding electrocardiograph (ECG) signal.
  • ECG electrocardiograph
  • the processing module 60 analyzes the ECG signal to determine whether the target object meets the electric shock condition.
  • the heart rate of the target object When it is determined based on the ECG signal that the heart rate of the target object includes at least one of ventricular fibrillation, ventricular tachycardia, and ventricular flutter, it can be determined that the heart rate of the target object is shockable. When the heart rate of the target object is judged from any one of bradycardia, electromechanical separation, ventricular spontaneous heart rate, and normal heart rate based on the ECG signal, it can be determined that the heart rate of the target object is not shockable.
  • FIG. 5 is a schematic diagram of the circuit structure of the defibrillator according to the first embodiment of the application;
  • FIG. 6 is a schematic diagram of the first switch unit in FIG. 5.
  • the energy storage and discharge module 10 includes a first energy storage and discharge unit 1a, the switch module 20 includes a first switch unit SW1, and the defibrillator 1 further includes a first relay K1.
  • the first energy storage and discharge unit 1a is electrically connected to the first relay K1 via the first switch unit SW1, and the first relay K1 is electrically connected to the first electrode sheet 40 and the second electrode sheet, respectively 50;
  • the first switching unit SW1 includes a first switching device 210a and at least one auxiliary device 220 connected in parallel with the first switching device 210a.
  • the auxiliary device 220 includes a resistor R1, a resistor R2 and a capacitor C as an example for illustration.
  • the resistor R1 is connected in parallel with the first switching device 210a
  • the second resistor R2 is connected in series with the capacitor C
  • the branch after the second resistor R2 is connected in series with the capacitor C is connected in parallel with the first switching device 210a .
  • the first switching unit SW1 in this embodiment includes a first switching device 210a and at least one auxiliary device 220 connected in parallel with the first switching device 210a.
  • the auxiliary device 220 shunts the first switching device 210a connected in parallel, thereby reducing
  • the electrical stress of the first switching device 210a is reduced, which is beneficial to improve the stability of the first switching device 210a, and to ensure the normal operation of the defibrillator 1.
  • FIG. 7 is a schematic diagram of the circuit structure of the defibrillator provided by the second embodiment of the application;
  • FIG. 8 is a schematic diagram of the first switch unit in FIG. 7.
  • the energy storage and discharge module 10 includes a first energy storage and discharge unit 1a
  • the switch module 20 includes a first switch unit SW1
  • the defibrillator 1 further includes a first relay K1.
  • the first energy storage and discharge unit 1a is electrically connected to the first relay K1 via the first switch unit SW1, and the first relay K1 is electrically connected to the first electrode sheet 40 and the second electrode sheet, respectively 50;
  • the first switching unit SW1 includes a plurality of first switching devices 210a connected in series.
  • the first switching unit SW1 includes two first switching devices 210a connected in series as an example.
  • the first switching unit SW1 in this embodiment includes a plurality of first switching devices 210a connected in series. Due to the series voltage division, the voltage on each first switching device 210a is reduced, thereby reducing each first switching device.
  • the electrical stress on 210a is beneficial to improve the stability of the first switching device 210a and to ensure the normal operation of the defibrillator 1.
  • FIG. 9 is a schematic diagram of the circuit structure of the defibrillator provided by the third embodiment of the application
  • FIG. 10 is a schematic diagram of the first switch unit in FIG. 9.
  • the circuit structure of the defibrillator 1 provided in the third embodiment is basically the same as the circuit structure of the defibrillator 1 provided in the second embodiment. The difference is that in this embodiment, when the first switch unit SW1 is When a plurality of first switching devices 210a are connected in series, the first switching unit SW1 further includes an auxiliary device 220 connected in parallel with at least one first switching device 210a.
  • the auxiliary device 220 includes at least one or more of a resistor, a capacitor, and a series of resistors and capacitors.
  • the auxiliary device 220 includes a combination of a resistor R1, a resistor R2, and a capacitor C in series for illustration.
  • the first switching unit SW1 includes two first switching devices 210a connected in series, and each first switching device 210a is connected in parallel with an auxiliary device 220 as an example for illustration.
  • the auxiliary device 220 includes a resistor R1, a resistor R2, and a capacitor C as an example for illustration.
  • the resistor R1 is connected in parallel with the first switching device 210a, the second resistor R2 is connected in series with the capacitor C, and the branch after the second resistor R2 is connected in series with the capacitor C is connected in parallel with the first switching device 210a .
  • the first energy storage and discharge unit 1a includes a first capacitor C1 and a first diode D1.
  • the anode of the first diode D1 is electrically connected to the cathode of the first capacitor C1, and the cathode of the first diode D1 is electrically connected to the anode of the first capacitor C1.
  • the first diode D1 is used to rectify the voltage output by the first capacitor C1.
  • the switch module 20 further includes a second switch unit SW3.
  • the first energy storage and discharge unit 1a is also electrically connected to the first relay K1 via the second switch unit SW3.
  • the first relay K1 When the first relay K1 is closed, the first switch unit SW1 is electrically connected to the The first electrode sheet 40, the second switch unit SW3 is electrically connected to the second electrode sheet 50, and the first energy storage and discharge unit 1a passes through the first switch unit SW1, the second switch unit SW3, and
  • the first relay K1 performs a first type of discharge to the first electrode sheet 40 and the second electrode sheet 50.
  • FIG. 11 is a schematic diagram of a second switch unit provided by an embodiment.
  • the second switching unit SW3 includes a second switching device 210b and at least one auxiliary device 220 connected in parallel with the second switching device 210b.
  • the auxiliary device 220 includes a resistor R1, a resistor R2, and a capacitor C as an example for illustration.
  • the resistor R1 is connected in parallel with the first switching device 210a
  • the second resistor R2 is connected in series with the capacitor C
  • the branch after the second resistor R2 is connected in series with the capacitor C is connected in parallel with the second switching device 210b .
  • the second switching unit SW3 in this embodiment includes a second switching device 210b and at least one auxiliary device 220 connected in parallel with the second switching device 210b.
  • the auxiliary device 220 shunts the second switching device 210b in parallel, thereby reducing
  • the reduction of the electrical stress of the second switching device 210b is beneficial to improve the stability of the second switching device 210b, and to ensure the normal operation of the defibrillator 1.
  • FIG. 12 is a schematic diagram of a second switch unit provided by another embodiment.
  • the second switching unit SW3 includes a plurality of second switching devices 210b connected in series.
  • the second switch unit SW3 includes two second switch devices 210b connected in series as an example for illustration.
  • the second switching unit SW3 in this embodiment includes a plurality of second switching devices 210b connected in series. Due to the series voltage division, the voltage on each second switching device 210b is reduced, thereby reducing each second switching device.
  • the electrical stress on 210b is beneficial to improve the stability of the second switching device 210b and ensure the normal operation of the defibrillator 1.
  • the first switching device 210a in the first switching unit SW1 is a metal-oxide-semiconductor field effect transistor (Metal-Oxide-Semiconductor Feild-Efficet Transistor, MOSFET) or an insulated gate bipolar transistor ( Insulated Gate Bipolar Transistor, IGBT),
  • MOSFET Metal-Oxide-Semiconductor Feild-Efficet Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the second switching device 210b in the second switching unit SW3 is a MOSFET or an IGBT
  • the first switching device 210a and the second switching device 210b are directly connected to the first The energy storage and discharge unit 1a is connected.
  • FIG. 5, FIG. 7 and FIG. 9 the first switching device 210a and the second switching device 210b are directly connected to the first energy storage and discharge unit 1a as examples for illustration.
  • MOSFET and IGBT can be turned on or off under the control of a control signal. Therefore, when the first switching device 210a is a MOSFET or an IGBT, and when the second switching device 210b is a MOSFET or an IGBT, the first switch The device 210a and the second switching device 210b can be connected to the first energy storage and discharge unit 1a. When the first switching device 210a and the second switching device 210b are both closed, and the first relay K1 When closed, the first energy storage and discharge unit 1 a is electrically connected to the first electrode sheet 40 and the second electrode sheet 50.
  • FIG. 13 is a schematic diagram of the circuit structure of the defibrillator according to the fourth embodiment of this application.
  • the first switching device 210a in the first switching unit SW1 is a silicon controlled rectifier (SCR), and the silicon controlled rectifier is also called a thyristor.
  • the second switch device 210b in the second switch unit SW3 is an SCR, and the first switch device 210a and the second switch device 210b are connected to the first energy storage and discharge unit 1a through the control switch SW5, When the control switch SW5 is turned off, the path between the first energy storage and discharge unit 1a and the first switch unit SW1 and the second switch unit SW3 is disconnected. After the SCR is turned on, it cannot be turned off.
  • the present application is connected to the first energy storage and discharge unit 1a through the control switch SW5, so When the control switch SW5 is turned off, the path between the first energy storage and discharge unit 1a and the first switch unit SW1 is disconnected, so that the first energy storage and discharge unit 1a and the first The path between the electrode sheet 40 and the second electrode sheet 50 is disconnected, thereby ensuring the normal operation of the defibrillator 1.
  • FIG. 14 is a schematic diagram of a control switch circuit in FIG. 13.
  • the control switch SW5 includes a control switch device 230 and at least one auxiliary device 220 connected in parallel with the control switch device 230.
  • the auxiliary device 220 includes at least one or more of a resistor, a capacitor, and a series of resistors and capacitors.
  • the auxiliary device 220 includes a combination of a resistor R1, a resistor R2 and a capacitor C in series for illustration.
  • the control switch SW5 in this embodiment includes a control switch device 230 and at least one auxiliary device 220 connected in parallel with the control switch device 230.
  • the auxiliary device 220 shunts the parallel control switch device 230, thereby reducing the control
  • the electrical stress of the switching device 230 is beneficial to improve the stability of the control switching device 230 and to ensure the normal operation of the defibrillator 1.
  • FIG. 15 is a schematic diagram of another control switch circuit in FIG. 13.
  • the control switch SW5 includes a plurality of control switch devices 230 connected in series. Further, when the control switch SW5 includes multiple control switch devices 230 connected in series, the control switch SW5 further includes an auxiliary device 220 connected in parallel with at least one control switch device 230.
  • the control switch device 230 includes two control switch devices 230, and the auxiliary device 220 includes a combination of a resistor R1, a resistor R2, and a capacitor C in series for illustration.
  • the control switch SW5 in this embodiment includes a plurality of control switch devices 230 connected in series.
  • each control switch device 230 Due to the series voltage divider, the voltage on each control switch device 230 is reduced, thereby reducing the load on each control switch device 230.
  • the electrical stress is beneficial to improve the stability of the control switching device 230 and ensure the normal operation of the defibrillator 1.
  • the energy storage and discharge module 10 further includes a second energy storage and discharge unit 1b.
  • the first energy storage and discharge unit 1a and the second energy storage and discharge unit 1b cooperate with each other to perform a second type of discharge.
  • the second energy storage and discharge unit 1b includes a second capacitor C2 and a second diode D2.
  • the anode of the second diode D2 is electrically connected to the cathode of the second capacitor C2, and the cathode of the second diode D2 is electrically connected to the anode of the second capacitor C2.
  • the switch module 20 further includes a third switch unit SW2.
  • the second energy storage and discharge unit 1b is electrically connected to the first relay K1 via the third switch unit SW2.
  • the energy storage and discharge module 10 includes a second energy storage and discharge unit 1b
  • the switch module 20 includes a third switch unit SW2 combined into FIGS. 5, 7, 9, 11, and 13 to perform Gesture.
  • FIG. 16 is a schematic diagram of a third switch unit provided by an embodiment.
  • the third switching unit SW2 includes a third switching device 210c and at least one auxiliary device 220 connected in parallel with the third switching device 210c.
  • the auxiliary device 220 includes a combination of a resistor R1, a resistor R2 and a capacitor C in series for illustration.
  • FIG. 17, is a schematic diagram of a third switch unit provided by another embodiment.
  • the third switching unit SW2 includes a plurality of third switching devices 210c connected in series.
  • the third switch unit SW2 includes two third switch devices 210c connected in series as an example for illustration.
  • the third switch device 210c in at least one third switch unit SW2 of the plurality of third switch units SW2 is also connected in parallel Auxiliary device 220.
  • the third switching unit SW2 in this embodiment includes a third switching device 210c and at least one auxiliary device 220 connected in parallel with the third switching device 210c.
  • the auxiliary device 220 shunts the third switching device 210c in parallel, thereby reducing The electrical stress of the third switching device 210c is reduced, which is beneficial to improve the stability of the third switching device 210c, and guarantees the normal operation of the defibrillator 1.
  • the switch module 20 further includes a fourth switch unit SW4 (please refer to FIG. 5, FIG. 7, FIG. 9, and FIG. 13 together).
  • the second energy storage and discharge unit 1b is also electrically connected to the first relay K1 via the fourth switch unit SW4.
  • the third switch unit SW2 is electrically connected to the first electrode sheet 40
  • the fourth switch unit SW4 is electrically connected to the second electrode sheet 50
  • the first The energy storage and discharge unit 1a and the second energy storage and discharge unit 1b are connected to the first electrode sheet 40 and the first electrode sheet 40 and the first relay K1 via the third switch unit SW2, the fourth switch unit SW4, and the first relay K1.
  • the two electrode plates 50 perform the second type of discharge. Please also refer to FIG.
  • the fourth switch unit SW4 includes a fourth switch device 210d and at least one auxiliary device 220 connected in parallel with the fourth switch device 210d.
  • the auxiliary device 220 includes a combination of a resistor R1, a resistor R2 and a capacitor C in series for illustration.
  • the fourth switching unit SW4 in this embodiment includes a fourth switching device 210d and at least one auxiliary device 220 connected in parallel with the fourth switching device 210d.
  • the auxiliary device 220 shunts the fourth switching device 210d in parallel, thereby reducing The electrical stress of the fourth switching device 210d is reduced, which is beneficial to improve the stability of the fourth switching device 210d, and to ensure the normal operation of the defibrillator 1.
  • FIG. 19 is a schematic diagram of a fourth switch unit provided by another embodiment.
  • the fourth switch unit SW4 includes a plurality of fourth switch devices 210d connected in series.
  • the fourth switch unit SW4 includes two fourth switch devices 210d connected in series as an example for illustration.
  • the fourth switch device 210d in at least one fourth switch unit SW4 of the plurality of fourth switch units SW4 is also connected in parallel Auxiliary device 220.
  • the fourth switch unit SW4 in this embodiment includes a plurality of fourth switch devices 210d connected in series. Due to the series voltage division, the voltage on each fourth switch device 210d is reduced, thereby reducing each fourth switch device.
  • the electrical stress borne on 210d is beneficial to improve the stability of the fourth switching device 210d and ensure the normal operation of the defibrillator 1.
  • the defibrillator 1 further includes a current limiting module 70 (please refer to FIGS. 5, 7, 9, and 13 together).
  • the current limiting module 70 is used to limit the discharge current when the energy storage and discharge module 10 discharges to the first electrode sheet 40 and the second electrode sheet 50.
  • the current limiting module 70 includes a current limiting resistor Rs. Further, the current limiting module 70 further includes a current limiting inductor L, and a third diode D3 or a plurality of third diodes D3 connected in series, and the current limiting inductor L is connected in series with the current limiting resistor Rs. The third diode D3 is used to clamp and protect the current limiting resistor Rs and the current limiting inductor L.
  • the current-limiting resistor Rs is used to limit the current when the energy storage and discharge module 10 discharges to the first electrode sheet 40 and the second electrode sheet 50, so as not to flow to the first electrode sheet 40 and the second electrode sheet 50.
  • the current-limiting inductor L can limit the rising speed of the current at the beginning of the discharge of the energy storage and discharge module 10 to the first electrode sheet 40 and the second electrode sheet 50, so as to prevent the instantaneous current from rising too fast and causing damage
  • the switch module 20 may damage the first electrode sheet 40 and the second electrode sheet 50, or damage the target object that needs to be treated.
  • FIG. 21 is a schematic diagram of the circuit structure of the defibrillator provided by the fifth embodiment of this application.
  • the defibrillator 1 further includes a processing module 60, a second relay K2, and a bleeding module 90.
  • the processing module 60, the second relay K2, and the bleeding module 90 are combined into the defibrillator shown in FIG. 5 as an example for illustration. It is understandable that the processing module 60, the second relay K2, and the bleeding module
  • the amplifier module 90 can also be integrated into the defibrillator provided in any of the foregoing embodiments.
  • the second relay K2 is electrically connected to the discharge module 90.
  • the processing module 60 controls The second relay K2 is closed, and the energy storage and discharge module 10 discharges to the discharge module 90 via the second relay K2. Further, the bleeding module 90 includes a resistor.
  • auxiliary device 220 in each of the foregoing embodiments may include at least one or more of resistors, capacitors, resistors, and capacitors in series, as long as the function of shunting the switching devices in the corresponding switching unit is achieved. can.
  • the structure of the auxiliary device 220 in each switch unit may be the same or different.
  • the basic working principle of the defibrillator 1 provided in the present application when treating a target object is described as follows.
  • the rescuer involved in the rescue of the target object attaches the first electrode sheet 40 and the second electrode sheet 50 to the target object.
  • the processing module 60 in the defibrillator 1 controls the The energy storage and discharge module 10 discharges the first electrode sheet 40 and the second electrode sheet 50 to treat a target object.
  • the processing module 60 controls the first switch unit SW1 and the second switch unit SW3 to close and controls the first relay K1 to close (if the defibrillator 1 also includes a control switch At SW5, the control switch SW5 is also closed) and the third switch unit SW2 and the fourth switch unit SW4 are controlled to be opened.
  • the first switch unit SW1, the second switch unit SW3, and the first relay K1 are turned on, and the third switch unit SW2 and the fourth switch unit SW4 are not turned on.
  • the positive electrode of the first energy storage and discharge unit 1a, the first switch unit SW1, the first relay K1, the target object, the second switch unit SW3 to the negative electrode of the first energy storage and discharge unit 1a are formed
  • the processing module 60 controls the first energy storage and discharge unit 1a to perform the first type of discharge to the target object via the path. After performing the first type of discharge to the target object, at an interval of a preset time (for example, 5 microseconds), the processing module 60 is controlling the first switching unit SW1 and the second switching unit SW3 to turn off, and The third switch unit SW2 and the fourth switch unit SW4 are controlled to be closed (if the defibrillator 1 also includes a control switch SW5, the control switch SW5 is also closed).
  • the first switch unit SW1 and the The second unit SW3 is not turned on, and the third switch unit SW2 and the fourth switch unit SW4 are turned on.
  • the second energy storage and discharge unit 1b, the third switch unit SW3, the first relay K1, the target object, the fourth switch unit SW4, and the first energy storage and discharge unit 1a form a path
  • the processing module 60 controls the first energy storage and discharge unit 1a and the second energy storage and discharge unit 1b to perform a second type of discharge to the target object through the path.
  • the current of the first type of discharge is opposite to that of the second type of discharge, and the current of the first type of discharge is greater than that of the second type of discharge.
  • the processing module 60 controls the first relay K1 to open, and controls the second relay K2 to close, the first energy storage and discharge unit 1a and the second energy storage and discharge unit 1b
  • the electric energy on the electric energy is discharged through the discharge module 90 to prevent the residual electric energy on the first energy storage and discharge unit 1a and the second energy storage and discharge unit 1b from affecting the first energy storage and discharge unit 1a and the second Damage to the energy storage and discharge unit 1b, or avoid damage to the user when the residual electric energy on the first energy storage and discharge unit 1a and the second energy storage and discharge unit 1b leaks due to various reasons.
  • the wire between the second energy storage and discharge unit 1b and the second switch unit SW2 is named the first wire 13 (illustrated in FIG. 5), and the first energy storage and discharge unit 1a is connected to the
  • the node between the second energy storage and discharge unit 1b is named A
  • the wire between the first switch unit SW1 and the node A is named the second wire 14.
  • the magnitude of the voltage loaded on the first wire 13 is the sum of the voltages of the first energy storage discharge unit 1a and the second energy storage discharge unit 1b, and the voltage loaded on the second wire 14
  • the voltage level is the voltage level of the first energy storage and discharge unit 1a.
  • the voltage endurance capability of the first wire 13 in the defibrillator 1 provided by the present application is greater than the voltage endurance capability of the second wire 14.
  • the voltage endurance capability of the first wire 13 is equal to the voltage endurance capability of the second wire 14, provided that the voltage endurance capability of the first wire 13 satisfies the load on the first wire 13 The magnitude of the voltage is sufficient, as long as the voltage withstand capability of the second wire 14 meets the magnitude of the voltage loaded on the second wire 14.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种除颤仪(1),包括储能放电模块(10)、开关模块(20)、第一电极片(40)、及第二电极片(50),储能放电模块(10)通过开关模块(20)与第一电极片(40)及第二电极片(50)电连接,开关模块(20)包括多个开关单元(200);多个开关单元(200)中的至少一个开关单元(200)包括开关器件(210)及与开关器件(210)并联的至少一个用于分流的辅助器件(220);或者多个开关单元(200)中的至少一个开关单元(200)包括串联的多个开关器件(210)。该除颤仪(1)中每个开关器件(210)上所承受的电应力较小,有利于提升开关器件(210)的稳定性,保障除颤仪(1)正常工作。

Description

除颤仪 技术领域
本申请涉及医疗器械技术领域,尤其涉及一种除颤仪。
背景技术
心脏骤停等心脏疾病是导致人类死亡的主要原因之一。心脏骤停病人早期约有85~90%是室颤,治疗室颤主要的方式是采用除颤仪对病人进行电击除颤。由于对病人进行除颤时所需要的电压较高,因此,除颤仪释放除颤电压至电极片的路径中的器件所承受的电应力较大,从而使得器件的可靠性变差,甚至导致除颤仪不能正常工作。
发明内容
本申请提供一种除颤仪。所述除颤仪包括储能放电模块、开关模块、第一电极片、及第二电极片,所述储能放电模块通过所述开关模块与所述第一电极片及所述第二电极片电连接,所述开关模块包括多个开关单元;所述多个开关单元中的至少一个开关单元包括开关器件及与所述开关器件并联的至少一个用于分流的辅助器件;或者所述多个开关单元中的至少一个开关单元包括串联的多个开关器件。
当除颤仪在对目标对象进行治疗时,储能放电模块向所述第一电极片及所述第二电极片放电的电压通常较高,那么位于放电回路中的开关模块通常要承受较高的电应力。本申请的除颤仪中开关模块包括多个开关单元,所述多个开关单元中的至少一个开关单元包括开关器件及与所述开关器件并联的至少一个用于分流的辅助器件,由于辅助器件与开关器件并联,那么辅助器件会对与之并联的开关器件进行分流,那么,相较于未并联辅助器件的开关器件而言,并联了辅助器件的开关器件上所承受的电流降低,从而减小了所述开关器件上所承受的电应力,有利于提升所述开关器件的稳定性,保障所述除颤仪正常工作。本申请的开关单元中至少一个开关单元包括串联的多个开关器件,多个开关器件串联,由于串联分压作用,每个开关器件上承受的电压降低,从而减小了每个开关器件上所承受的电应力,有利于提升所述开关器件的稳定性,保障所述除颤仪正常工作。
附图说明
为了更清楚地阐述本发明的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的除颤仪的电路框架示意图。
图2为图1中提供的除颤仪中一种开关单元的电路示意图。
图3为图1中提供的除颤仪中另一种开关单元的电路示意图。
图4为本申请第二实施方式提供的除颤仪的电路框架示意图。
图5为本申请第一实施方式提供的除颤仪的电路结构示意图。
图6为图5中第一开关单元的示意图。
图7为本申请第二实施方式提供的除颤仪的电路结构示意图。
图8为图7中第一开关单元的示意图。
图9为本申请第三实施方式提供的除颤仪的电路结构示意图。
图10为图9中第一开关单元的示意图。
图11为一实施方式提供的第二开关单元的示意图。
图12为另一实施方式提供的第二开关单元的示意图。
图13为本申请第四实施方式提供的除颤仪的电路结构示意图。
图14为图13中一种控制开关电路示意图。
图15为图13中另一种控制开关电路示意图。
图16为一实施方式提供的第三开关单元的示意图。
图17为另一实施方式提供的第三开关单元的示意图。
图18为一实施方式提供的第四开关单元的示意图。
图19为另一实施方式提供的第四开关单元的示意图。
图20为除颤仪中限流模块的示意图。
图21为本申请第五实施方式提供的除颤仪的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提供一种除颤仪1,除颤仪1通常被放置在公共场合,比如,机场,火车站,高铁站,商场等人流密集的场合。除颤仪1用于对心脏病发作的目标对象进行救治。为了使本发明实施例提供的技术方案更加清楚,下面结合附图对本申请提供的除颤仪进行详细描述。请一并参阅图1、及图2,图1为本申请第一实施方式提供的除颤仪的电路框架示意图;图2为图1中提供的除颤仪中一种开关单元的电路示意图。所述除颤仪1包括储能放电模块10、开关模块20、第一电极片40、及第二电极片50。所述储能放电模块10通过所述开关模块20与所述第一电极片40及所述第二电极片50电连接,所述开关模块20包括多个开关单元200;所述多个开关单元200中的至少一个开关单元200包括开关器件210及与所述开关器件210并联的至少一个用于分流的辅助器件220。或者,请一并参阅图1、及图3,图3为图1中提供的除颤仪中另一种开关单元的电路示意图。所述多个开关单元200中的至少一个开关单元200包括串联的多个开关器件210。在图3中以其中的一个开关单元200中辅助器件220的数量为一个为例进行示意。在图4中以其中的一个开关单元200包括两个串联的开关器件210为例进行示意。
所述辅助器件220包括电阻、电容、电阻与电容串联中的至少一个或多个。
当所述除颤仪1应用于救治目标对象时,所述第一电极片40及所述第二电极片50被贴附于目标对象的身上。通常而言,所述第一电极片40可被贴附目标对象的胸骨右缘2~3肋间(心脏底部),第二电极片50可被贴附在目标对象的左腋前线内第5肋间(心脏心尖部)。当所述第一电极片40及所述第二电极片50被贴附于所述目标对象的身上时,所述储能放电模块10、所述开关模块20、所述第一电极片40、目标对象、所述第二电极片50之间形成一个放电回路。当所述储能放电模块10与所述目标对象之间的放电回路正常、所 述第一电极片40及所述第二电极片50被贴附于目标对象身上正确的位置且所述目标对象的心率为可电击心率时,所述除颤仪1中的处理模块60(请参阅图21)控制所述储能放电模块10向所述第一电极片40及所述第二电极片50放电,以对目标对象进行治疗。
当除颤仪1在对目标对象进行治疗时,储能放电模块10向所述第一电极片40及所述第二电极片50放电的电压通常较高,那么位于放电回路中的开关模块20通常要承受较高的电应力。本申请的除颤仪1中开关模块20包括多个开关单元200,所述多个开关单元200中的至少一个开关单元200包括开关器件210及与所述开关器件210并联的至少一个用于分流的辅助器件220,由于辅助器件220与开关器件210并联,那么辅助器件220会对与之并联的开关器件210进行分流,那么,相较于未并联辅助器件220的开关器件210而言,并联了辅助器件220的开关器件210上所承受的电流降低,从而减小了所述开关器件210上所承受的电应力,有利于提升所述开关器件210的稳定性,保障所述除颤仪1正常工作。本申请的开关单元200中至少一个开关单元200包括串联的多个开关器件210,多个开关器件210串联,由于串联分压作用,每个开关器件210上承受的电压降低,从而减小了每个开关器件210上所承受的电应力,有利于提升所述开关器件210的稳定性,保障所述除颤仪1正常工作。
请参阅图4,图4为本申请第二实施方式提供的除颤仪的电路框架示意图。所述除颤仪还包括心率检测模块30、及处理模块60。所述心率检测模块30可以是心率检测传感器,所述心率检测模块30分别电连接所述第一电极片40及所述第二电极片50。所述心率检测模块30通过所述第一电极片40及所述第二电极片50感测目标对象的心脏活动,以得到对应的心电图(Electrocardiograph,ECG)信号。所述处理模块60对ECG信号进行分析以判断目标对象是否满足电击条件。当根据ECG信号判断目标对象的心率包括心室颤动、室性心动过速及心室扑动中的至少一种时,则可判定目标对象的心率为可电击心率。当根据ECG信号判断目标对象的心率为心动过缓、电机械分离、室性自主心率和正常的心率中的任意一种时,则可判定目标对象的心率为不可电击心率。
进一步地,请一并参阅图5、及图6,图5为本申请第一实施方式提供的除颤仪的电路结构示意图;图6为图5中第一开关单元的示意图。所述储能放电模块10包括第一储能放电单元1a,所述开关模块20包括第一开关单元SW1,所述除颤仪1还包括第一继电器K1。所述第一储能放电单元1a经由所述第一开关单元SW1电连接至所述第一继电器K1,所述第一继电器K1分别电连接所述第一电极片40及所述第二电极片50;所述第一开关单元SW1包括第一开关器件210a及与所述第一开关器件210a并联的至少一个辅助器件220。在图6中以所述辅助器件220包括电阻R1、电阻R2以及电容C为例进行示意。电阻R1与所述第一开关器件210a并联,所述第二电阻R2与所述电容C串联,所述第二电阻R2与所述电容C串联之后的支路与所述第一开关器件210a并联。本实施方式中的第一开关单元SW1包括第一开关器件210a及与所述第一开关器件210a并联的至少一个辅助器件220,辅助器件220会对并联的第一开关器件210a进行分流,从而减小了所述第一开关器件210a的电应力,有利益提升所述第一开关器件210a的稳定性,保障所述除颤仪1正常工作。
请一并参阅图7及图8,图7为本申请第二实施方式提供的除颤仪的电路结构示意图;图8为图7中第一开关单元的示意图。在本实施方式中,所述储能放电模块10包括第一储能放电单元1a,所述开关模块20包括第一开关单元SW1,所述除颤仪1还包括第一继电器K1。所述第一储能放电单元1a经由所述第一开关单元SW1电连接至所述第一继电器K1,所述第一继电器K1分别电连接所述第一电极片40及所述第二电极片50;所述第一开关单元SW1中包括串联的多个第一开关器件210a。在图8中,以所述第一开关单元SW1包括串联的两个第一开关器件210a为例进行示意。本实施方式中的第一开关单元SW1包括串联的多个第一开关器件210a,由于串联分压作用,每个第一开关器件210a上承受的电 压降低,从而减小了每个第一开关器件210a上所承受的电应力,有利于提升所述第一开关器件210a的稳定性,保障所述除颤仪1正常工作。
进一步地,请一并参阅图9及图10,图9为本申请第三实施方式提供的除颤仪的电路结构示意图;图10为图9中第一开关单元的示意图。第三实施方式提供的除颤仪1的电路结构与第二实施方式提供的除颤仪1的电路结构基本相同,不同之处在于,在本实施方式中,当所述第一开关单元SW1中包括串联的多个第一开关器件210a时,所述第一开关单元SW1还包括与至少一个第一开关器件210a并联的辅助器件220。所述辅助器件220包括电阻、电容、电阻与电容串联中的至少一个或多个。在本实施方式中,以所述辅助器件220包括电阻R1、电阻R2和电容C串联的组合为例进行示意。在图10中以第一开关单元SW1包括两个串联的第一开关器件210a,且以每个第一开关器件210a均并联一个辅助器件220为例进行示意。在图10中以所述辅助器件220包括电阻R1、电阻R2以及电容C为例进行示意。电阻R1与所述第一开关器件210a并联,所述第二电阻R2与所述电容C串联,所述第二电阻R2与所述电容C串联之后的支路与所述第一开关器件210a并联。
进一步地,所述第一储能放电单元1a包括第一电容C1及第一二极管D1。所述第一二极管D1的正极电连接所述第一电容C1的负极,所述第一二极管D1的负极电连接所述第一电容C1的正极。所述第一二极管D1用于对所述第一电容C1输出的电压整流。
进一步地,结合前述任意实施方式提供的除颤仪1,所述开关模块20还包括第二开关单元SW3。所述第一储能放电单元1a还经由所述第二开关单元SW3电连接至所述第一继电器K1,当所述第一继电器K1闭合时,所述第一开关单元SW1电连接至所述第一电极片40,所述第二开关单元SW3电连接至所述第二电极片50,所述第一储能放电单元1a经由所述第一开关单元SW1、所述第二开关单元SW3及所述第一继电器K1向所述第一电极片40及所述第二电极片50进行第一类型放电。请参阅图11,图11为一实施方式提供的第二开关单元的示意图。所述第二开关单元SW3包括第二开关器件210b及与所述第二开关器件210b并联的至少一个辅助器件220。在图11中以所述辅助器件220包括电阻R1、电阻R2以及电容C为例进行示意。电阻R1与所述第一开关器件210a并联,所述第二电阻R2与所述电容C串联,所述第二电阻R2与所述电容C串联之后的支路与所述第二开关器件210b并联。本实施方式中的第二开关单元SW3包括第二开关器件210b及与所述第二开关器件210b并联的至少一个辅助器件220,辅助器件220会对并联的第二开关器件210b进行分流,从而减小了所述第二开关器件210b的电应力,有利益提升所述第二开关器件210b的稳定性,保障所述除颤仪1正常工作。
请参阅图12,图12为另一实施方式提供的第二开关单元的示意图。所述第二开关单元SW3包括串联的多个第二开关器件210b。在图12中以所述第二开关单元SW3包括串联的两个第二开关器件210b为例进行示意。本实施方式中的第二开关单元SW3包括串联的多个第二开关器件210b,由于串联分压作用,每个第二开关器件210b上承受的电压降低,从而减小了每个第二开关器件210b上所承受的电应力,有利于提升所述第二开关器件210b的稳定性,保障所述除颤仪1正常工作。
进一步地,所述所述第一开关单元SW1中的第一开关器件210a为金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Feild-Efficet Transistor,MOSFET)或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT),所述第二开关单元SW3中的所述第二开关器件210b为MOSFET或IGBT,所述第一开关器件210a及所述第二开关器件210b直接与所述第一储能放电单元1a相连。在图5、图7及图9中均以所述第一开关器件210a及所述第二开关器件210b直接与所述第一储能放电单元1a相连为例进行示意。MOSFET及IGBT可在控制信号的控制下闭合或断开,因此,当所述第一开关器件210a为MOSFET或者IGBT时,当所述第二开关器件210b为MOSFET或IGBT时,所述第一开关器件210a 及所述第二开关器件210b可与所述第一储能放电单元1a相连,当所述第一开关器件210a及所述第二开关器件210b均闭合时,且所述第一继电器K1闭合时,所述第一储能放电单元1a与所述第一电极片40及所述第二电极片50电连接。
进一步地,请参阅图13,图13为本申请第四实施方式提供的除颤仪的电路结构示意图。所述第一开关单元SW1中的所述第一开关器件210a为可控硅整流器(Silicon Controlled Rectifier,SCR),可控硅整流器也称为晶闸管。所述第二开关单元SW3中的所述第二开关器件210b为SCR,所述第一开关器件210a及所述第二开关器件210b通过控制开关SW5与所述第一储能放电单元1a相连,当所述控制开关SW5断开时所述第一储能放电单元1a与所述第一开关单元SW1及所述第二开关单元SW3之间的路径断开。由于SCR导通后,不可关断,因此,当所述第一开关器件210a为SCR且第二开关器件210b为SCR时,为了保证所述第一储能放电单元1a与所述第一电极片40之间可断开,以及为了保证所述第一储能放电单元1a与所述第二电极片50可断开,本申请通过控制开关SW5与所述第一储能放电单元1a相连,所述控制开关SW5断开时,以使得所述第一储能放电单元1a与所述第一开关单元SW1之间的路径断开,进而使所述第一储能放电单元1a与所述第一电极片40及所述第二电极片50之间的路径断开,从而保证了所述除颤仪1的正常工作。
进一步地,请一并参阅图14,图14为图13中一种控制开关电路示意图。所述控制开关SW5包括控制开关器件230及与所述控制开关器件230并联的至少一个辅助器件220。所述辅助器件220包括电阻、电容、电阻与电容串联中的至少一个或多个。在图14中以所述辅助器件220包括电阻R1、电阻R2和电容C串联的组合为例进行示意。本实施方式中的控制开关SW5包括控制开关器件230及与所述控制开关器件230并联的至少一个辅助器件220,辅助器件220会对并联的控制开关器件230进行分流,从而减小了所述控制开关器件230的电应力,有利益提升所述控制开关器件230的稳定性,保障所述除颤仪1正常工作。
进一步地,请一并参阅图15,图15为图13中另一种控制开关电路示意图。所述控制开关SW5包括串联的多个控制开关器件230。进一步地,所述控制开关SW5包括多个串联的多个控制开关器件230时,所述控制开关SW5还包括与至少一个控制开关器件230并联的辅助器件220。在图15中以所述控制开关器件230包括两个控制开关器件230,且以所述辅助器件220包括电阻R1、电阻R2和电容C串联的组合为例进行示意。本实施方式中的控制开关SW5包括串联的多个控制开关器件230,由于串联分压作用,每个控制开关器件230上承受的电压降低,从而减小了每个控制开关器件230上所承受的电应力,有利于提升所述控制开关器件230的稳定性,保障所述除颤仪1正常工作。
进一步地,结合前述任意实施方式,所述储能放电模块10还包括第二储能放电单元1b。所述第一储能放电单元1a与所述第二储能放电单元1b相互配合以进行第二类型放电。进一步地,所述第二储能放电单元1b包括第二电容C2及第二二极管D2。所述第二二极管D2的正极电连接所述第二电容C2的负极,所述第二二极管D2的负极电连接所述第二电容C2的正极。所述开关模块20还包括第三开关单元SW2。所述第二储能放电单元1b经由所述第三开关单元SW2电连接至所述第一继电器K1。为了方便示意,所述储能放电模块10包括第二储能放电单元1b,所述开关模块20包括第三开关单元SW2结合到图5、图7、图9、图11、图13中以进行示意。进一步地,请一并参阅图16,图16为一实施方式提供的第三开关单元的示意图。所述第三开关单元SW2包括第三开关器件210c及与所述第三开关器件210c并联的至少一个辅助器件220。在图16中以所述辅助器件220包括电阻R1、电阻R2和电容C串联的组合为例进行示意。请一并参阅图17,图17为另一实施方式提供的第三开关单元的示意图。所述第三开关单元SW2包括串联的多个第三开关器件210c。在图17中以所述第三开关单元SW2包括两个串联的第三开关器件210c为例进行示 意。进一步地,当所述第三开关单元SW2包括串联的多个第三开关器件210c时,所述多个第三开关单元SW2中至少一个第三开关单元SW2中的第三开关器件210c还并联有辅助器件220。本实施方式中的第三开关单元SW2包括第三开关器件210c及与所述第三开关器件210c并联的至少一个辅助器件220,辅助器件220会对并联的第三开关器件210c进行分流,从而减小了所述第三开关器件210c的电应力,有利益提升所述第三开关器件210c的稳定性,保障所述除颤仪1正常工作。
进一步地,所述开关模块20还包括第四开关单元SW4(请一并参阅图5、图7、图9、及图13)。所述第二储能放电单元1b还经由所述第四开关单元SW4电连接至第一继电器K1。当所述第一继电器K1闭合时,所述第三开关单元SW2电连接至所述第一电极片40,所述第四开关单元SW4电连接至所述第二电极片50,所述第一储能放电单元1a及所述第二储能放电单元1b经由所述第三开关单元SW2、所述第四开关单元SW4及所述第一继电器K1向所述第一电极片40及所述第二电极片50进行第二类型放电。请一并参阅图18,图18为一实施方式提供的第四开关单元的示意图。所述第四开关单元SW4包括第四开关器件210d及与所述第四开关器件210d并联的至少一个辅助器件220。在图16中以所述辅助器件220包括电阻R1、电阻R2和电容C串联的组合为例进行示意。本实施方式中的第四开关单元SW4包括第四开关器件210d及与所述第四开关器件210d并联的至少一个辅助器件220,辅助器件220会对并联的第四开关器件210d进行分流,从而减小了所述第四开关器件210d的电应力,有利益提升所述第四开关器件210d的稳定性,保障所述除颤仪1正常工作。
请一并参阅图19,图19为另一实施方式提供的第四开关单元的示意图。所述第四开关单元SW4包括串联的多个第四开关器件210d。在图19中以所述第四开关单元SW4包括两个串联的第四开关器件210d为例进行示意。进一步地,当所述第四开关单元SW4包括串联的多个第四开关器件210d时,所述多个第四开关单元SW4中至少一个第四开关单元SW4中的第四开关器件210d还并联有辅助器件220。本实施方式中的第四开关单元SW4包括串联的多个第四开关器件210d,由于串联分压作用,每个第四开关器件210d上承受的电压降低,从而减小了每个第四开关器件210d上所承受的电应力,有利于提升所述第四开关器件210d的稳定性,保障所述除颤仪1正常工作。
进一步地,结合前述任一实施方式提供的除颤仪1,所述除颤仪1还包括限流模块70(请一并参阅图5、图7、图9、及图13)。所述限流模块70用于限制所述储能放电模块10向所述第一电极片40及所述第二电极片50放电时的放电电流。
进一步地,请参阅图20,图20为除颤仪中限流模块的示意图。所述限流模块70包括限流电阻Rs。进一步地,所述限流模块70还包括限流电感L、及一个第三二极管D3或串联的多个第三二极管D3,所述限流电感L与所述限流电阻Rs串联,所述第三二极管D3用于对所述限流电阻Rs及限流电感L进行嵌位和保护。所述限流电阻Rs用于限制储能放电模块10向所述第一电极片40及所述第二电极片50放电时的电流大小,以免向所述第一电极片40及所述第二电极片50放电时的电流过大而伤到需要救治的目标对象。所述限流电感L可限制所述储能放电模块10向所述第一电极片40及所述第二电极片50放电开始瞬间电流的上升速度,以免瞬时电流的上升速度过快而损伤到开关模块20或者损伤到第一电极片40、第二电极片50,或伤到需要救治的目标对象。
进一步地,请参阅图21,图21为本申请第五实施方式提供的除颤仪的电路结构示意图。所述除颤仪1还包括处理模块60、第二继电器K2、及泄放模块90。在图21中,处理模块60、第二继电器K2及泄放模块90为结合到图5所示的除颤仪中为例进行示意,可以理解地,处理模块60及第二继电器K2、及泄放模块90还可以结合到前述任意实施方式提 供的除颤仪中。所述第二继电器K2与所述泄放模块90电连接,当所述储能放电模块10向所述第一电极片40及所述第二电极片50放电完毕时,所述处理模块60控制所述第二继电器K2闭合,所述储能放电模块10经由所述第二继电器K2向所述泄放模块90放电。进一步地,所述泄放模块90包括电阻。
可以理解地,前面各个实施方式中的所述辅助器件220包括电阻、电容、电阻与电容串联中的至少一个或多个均可,只要实现对相应的开关单元中的开关器件实现分流的作用即可。各个开关单元中的辅助器件220的结构可以相同也可以不同。
结合前面各个实施方式提供的除颤仪,对本申请提供的除颤仪1对目标对象进行救治时的基本工作原理描述如下。首先,参与救治目标对象的救治人员将第一电极片40及第二电极片50贴附于目标对象的身上,当所述储能放电模块10与所述目标对象之间的放电回路正常、所述第一电极片40及所述第二电极片50被贴附于目标对象身上正确的位置且所述目标对象的心率为可电击心率时,所述除颤仪1中的处理模块60控制所述储能放电模块10向所述第一电极片40及所述第二电极片50放电,以对目标对象进行治疗。具体地,当所述储能放电模块10与所述目标对象之间的放电回路正常、所述第一电极片40及所述第二电极片50被贴附于目标对象身上正确的位置且所述目标对象的心率为可电击心率时,所述处理模块60控制所述第一开关单元SW1及所述第二开关单元SW3闭合且控制第一继电器K1闭合(倘若除颤仪1还包括控制开关SW5时,控制开关SW5也闭合)且控制所述第三开关单元SW2及所述第四开关单元SW4断开。此时,所述第一开关单元SW1、所述第二开关单元SW3及第一继电器K1导通,所述第三开关单元SW2及第四开关单元SW4不导通。所述第一储能放电单元1a的正极、所述第一开关单元SW1、所述第一继电器K1、目标对象、所述第二开关单元SW3至所述第一储能放电单元1a的负极形成一个通路,所述处理模块60控制所述第一储能放电单元1a经由所述通路向目标对象进行第一类型放电。向目标对象进行第一类型放电之后,间隔预设时间(比如,5微秒),所述处理模块60在控制所述所述第一开关单元SW1及所述第二开关单元SW3断开,且控制所述第三开关单元SW2及所述第四开关单元SW4闭合(倘若除颤仪1还包括控制开关SW5时,控制开关SW5也闭合),此时,所述第一开关单元SW1及所述第二单元SW3不导通,所述第三开关单元SW2及所述第四开关单元SW4导通。所述第二储能放电单元1b、所述第三开关单元SW3、所述第一继电器K1、所述目标对象、所述第四开关单元SW4、所述第一储能放电单元1a形成一个通路,所述处理模块60控制所述第一储能放电单元1a及所述第二储能放电单元1b经由所述通路想所述目标对象进行第二类型放电。其中,所述第一类型放电与所述第二类型放电时的电流相反,且第一类型放电的电流大小大于所述第二类型放电的电流大小。当对目标对象进行治疗完毕,所述处理模块60控制所述第一继电器K1断开,且控制第二继电器K2闭合,所述第一储能放电单元1a及所述第二储能放电单元1b上的电能经由所述泄放模块90泄放,以避免所述第一储能放电单元1a及所述第二储能放电单元1b上的残余电能对第一储能放电单元1a及对第二储能放电单元1b的损伤,或者,避免第一储能放电单元1a及所述第二储能放电单元1b上的残余电能由于种种原因泄露时对用户的损伤。
进一步地,所述第二储能放电单元1b与所述第二开关单元SW2之间的导线命名为第一导线13(以图5进行示意),所述第一储能放电单元1a与所述第二储能放电单元1b之间的节点命名为A,所述第一开关单元SW1与所述节点A之间的导线命名为第二导线14。在进行第二类型放电时,所述第一导线13上加载的电压大小为第一储能放电单元1a与第二储能放电单元1b的电压之和,而所述第二导线14上加载的电压大小为第一储能放电单元1a的电压大小,由此可见,在第二类型放电时,所述第一导线13上加载的电压大小大于第二导线14上加载的电压大小。因此,可选地,本申请提供的除颤仪1中第一导线13 的电压承受能力大于所述第二导线14的电压承受能力。在其他实施方式中,所述第一导线13的电压承受能力与所述第二导线14的电压承受能力相等,只要满足所述第一导线13的电压承受能力满足第一导线13上所加载的电压大小即可,也只要满足所述第二导线14的电压承受能力满足所述第二导线14上加载的电压的大小即可。换句话说,所述第一导线13的电压承受能力与所述第二导线14的电压承受能力之间可以没有限定关系,是要满足所述第一导线13的电压承受能力满足第一导线13上所加载的电压大小即可,也只要满足所述第二导线14的电压承受能力满足所述第二导线14上加载的电压的大小即可。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种除颤仪,其特征在于,所述除颤仪包括储能放电模块、开关模块、第一电极片、及第二电极片,所述储能放电模块通过所述开关模块与所述第一电极片及所述第二电极片电连接,所述开关模块包括多个开关单元;所述多个开关单元中的至少一个开关单元包括开关器件及与所述开关器件并联的至少一个用于分流的辅助器件;或者所述多个开关单元中的至少一个开关单元包括串联的多个开关器件。
  2. 如权利要求1所述的除颤仪,其特征在于,所述储能放电模块包括第一储能放电单元,所述开关模块包括第一开关单元,所述除颤仪还包括第一继电器,所述第一储能放电单元经由所述第一开关单元电连接至所述第一继电器,所述第一继电器分别电连接所述第一电极片及所述第二电极片;所述第一开关单元包括第一开关器件及与所述第一开关器件并联的至少一个辅助器件;或者所述第一开关单元中包括串联的多个第一开关器件。
  3. 如权利要求1所述的除颤仪,其特征在于,所述辅助器件包括电阻、电容、电阻与电容串联中的至少一个或多个。
  4. 如权利要求2所述的除颤仪,其特征在于,当所述第一开关单元中包括串联的多个第一开关器件时,所述第一开关单元还包括与至少一个第一开关器件并联的辅助器件。
  5. 如权利要求2所述的除颤仪,其特征在于,所述第一储能放电单元包括第一电容及第一二极管,所述第一二极管的正极电连接所述第一电容的负极,所述第一二极管的负极电连接所述第一电容的正极。
  6. 如权利要求2-5任意一项所述的除颤仪,其特征在于,所述开关模块还包括第二开关单元,所述第一储能放电单元还经由所述第二开关单元电连接至所述第一继电器,当所述第一继电器闭合时,所述第一开关单元电连接至所述第一电极片,所述第二开关单元电连接至所述第二电极片,所述第一储能放电单元经由所述第一开关单元、所述第二开关单元及所述第一继电器向所述第一电极片及所述第二电极片进行第一类型放电;所述第二开关单元包括第二开关器件及与所述第二开关器件并联的至少一个辅助器件;或者所述第二开关单元包括串联的多个第二开关器件。
  7. 如权利要求6所述的除颤仪,其特征在于,所述第一开关器件为MOSFET或IGBT,所述第二开关器件为MOSFET或IGBT,所述第一开关器件及所述第二开关器件直接与所述第一储能放电单元相连。
  8. 如权利要求6所述的除颤仪,其特征在于,所述第一开关器件为SCR,所述第二开关器件为SCR,所述第一开关器件及所述第二开关器件通过控制开关与所述第一储能放电单元相连,当所述控制开关断开时所述第一储能放电单元与所述第一开关单元及所述第二开关单元之间的路径断开。
  9. 如权利要求8所述的除颤仪,其特征在于,所述控制开关包括控制开关器件及与所述控制开关器件并联的至少一个辅助器件;或者所述控制开关包括串联的多个控制开关器件。
  10. 如权利要求1所述的除颤仪,其特征在于,所述储能放电模块包括第一储能放电单元及第二储能放电单元,所述第一储能放电单元与所述第二储能放电单元相互配合以进行第二类型放电。
  11. 如权利要求10所述的除颤仪,其特征在于,所述第二储能放电单元包括第二电容及第二二极管,所述第二二极管的正极电连接所述第二电容的负极,所述第二二极管的负极电连接所述第二电容的正极。
  12. 如权利要求10所述的除颤仪,其特征在于,所述开关模块还包括第三开关单元, 所述第二储能放电单元经由所述第三开关单元电连接至所述第一继电器;所述第三开关单元包括第三开关器件及与所述第三开关器件并联的至少一个辅助器件;或者所述第三开关单元包括串联的多个第三开关器件。
  13. 如权利要求12所述的除颤仪,其特征在于,所述开关模块还包括第四开关单元,所述第二储能放电单元还经由所述第四开关单元电连接至第一继电器,当所述第一继电器闭合时,所述第三开关单元电连接至所述第一电极片,所述第四开关单元电连接至所述第二电极片,所述第一储能放电单元及所述第二储能放电单元经由所述第三开关单元、所述第四开关单元及所述第一继电器向所述第一电极片及所述第二电极片进行第二类型放电;所述第四开关单元包括第四开关器件及与所述第四开关器件并联的至少一个辅助器件;或者所述第四开关单元包括串联的多个第四开关器件。
  14. 如权利要求1所述的除颤仪,其特征在于,所述除颤仪还包括限流模块,所述限流模块用于限制所述储能放电模块向所述第一电极片及所述第二电极片放电时的放电电流。
  15. 如权利要求14所述的除颤仪,其特征在于,所述限流模块包括限流电阻。
  16. 如权利要求15所述的除颤仪,其特征在于,所述限流模块还包括限流电感、及一个第三二极管或串联的多个第三二极管,所述限流电感与所述限流电阻串联,所述第三二极管用于对所述限流电阻及限流电感进行嵌位和保护。
  17. 如权利要求1所述的除颤仪,其特征在于,所述除颤仪还包括处理模块、第二继电器、及泄放模块,所述第二继电器与所述泄放模块电连接,当所述储能放电模块向所述第一电极片及所述第二电极片放电完毕时,所述处理模块控制所述第二继电器闭合,所述储能放电模块经由所述第二继电器向所述泄放模块放电。
  18. 如权利要求17所述的除颤仪,其特征在于,所述泄放模块包括电阻。
PCT/CN2019/093815 2019-06-28 2019-06-28 除颤仪 WO2020258280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/093815 WO2020258280A1 (zh) 2019-06-28 2019-06-28 除颤仪
CN201980069023.9A CN112867535B (zh) 2019-06-28 2019-06-28 除颤仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093815 WO2020258280A1 (zh) 2019-06-28 2019-06-28 除颤仪

Publications (1)

Publication Number Publication Date
WO2020258280A1 true WO2020258280A1 (zh) 2020-12-30

Family

ID=74061442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093815 WO2020258280A1 (zh) 2019-06-28 2019-06-28 除颤仪

Country Status (2)

Country Link
CN (1) CN112867535B (zh)
WO (1) WO2020258280A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968230B2 (en) * 2002-06-26 2005-11-22 Medtronic Physio-Control Manufacturing Corp H-bridge circuit for generating a high-energy biphasic and external pacing waveform in an external defibrillator
CN1887377A (zh) * 2006-07-27 2007-01-03 北京麦邦光电仪器有限公司 具有电压平衡和尖峰干扰吸收的除颤器用高压放电电路
CN102553074A (zh) * 2010-12-16 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 一种双相波除颤电路及除颤仪
CN203694408U (zh) * 2014-01-13 2014-07-09 沈坚 双向放电心脏除颤装置
CN104587602A (zh) * 2015-01-13 2015-05-06 深圳市科曼医疗设备有限公司 除颤放电保护系统及医疗设备
US20180159322A1 (en) * 2016-12-01 2018-06-07 Osypka Medical Gmbh Overvoltage protection device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745179A (zh) * 2008-11-28 2010-06-23 深圳迈瑞生物医疗电子股份有限公司 能量泄放电路、除颤设备和调压电路
CN102974037B (zh) * 2012-12-20 2015-11-11 久心医疗科技(苏州)有限公司 一种具有自放电复用功能的除颤放电电路
CN107831418A (zh) * 2017-10-27 2018-03-23 深圳迈瑞生物医疗电子股份有限公司 检测除颤仪的方法、系统和除颤仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968230B2 (en) * 2002-06-26 2005-11-22 Medtronic Physio-Control Manufacturing Corp H-bridge circuit for generating a high-energy biphasic and external pacing waveform in an external defibrillator
CN1887377A (zh) * 2006-07-27 2007-01-03 北京麦邦光电仪器有限公司 具有电压平衡和尖峰干扰吸收的除颤器用高压放电电路
CN102553074A (zh) * 2010-12-16 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 一种双相波除颤电路及除颤仪
CN203694408U (zh) * 2014-01-13 2014-07-09 沈坚 双向放电心脏除颤装置
CN104587602A (zh) * 2015-01-13 2015-05-06 深圳市科曼医疗设备有限公司 除颤放电保护系统及医疗设备
US20180159322A1 (en) * 2016-12-01 2018-06-07 Osypka Medical Gmbh Overvoltage protection device and method

Also Published As

Publication number Publication date
CN112867535A (zh) 2021-05-28
CN112867535B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Reddy et al. Biphasic transthoracic defibrillation causes fewer ECG ST-segment changes after shock
CA2098059C (en) Pulse generator for use in an implantable atrial defibrillator
US5741306A (en) Patient-worn energy delivery apparatus
RU2365389C2 (ru) Дефибриллятор с безопасным контуром разряда, содержащий мостовую электрическую схему н-образной формы
US6280461B1 (en) Patient-worn energy delivery apparatus
US6405081B1 (en) Damped biphasic energy delivery circuit for a defibrillator
US5484452A (en) Current leakage prevention mechanism for use in a defibrillator circuit
Bardy et al. Evaluation of electrode polarity on defibrillation efficacy
US6104953A (en) Method and apparatus for delivering defibrillation and pacing energy from a single power source
US6873874B2 (en) Method and apparatus for cardiac shock therapy
US8965501B2 (en) Sequential stacked capacitor defibrillator and waveform generated therefrom
US6230054B1 (en) Apparatus for controlling delivery of defibrillation energy
JP2008514331A (ja) 経皮ペーシングのためのスイッチモード電源を有する除細動器
US6253105B1 (en) Method for delivering defibrillation energy
US20040002736A1 (en) H-bridge circuit for generating a high-energy biphasic and external pacing waveform in an external defibrillator
US10238884B2 (en) Cardiac-safe electrotherapy method and apparatus
US20040044371A1 (en) Defibrillator with H-bridge output circuit referenced to common ground
WO2020258280A1 (zh) 除颤仪
Taylor et al. An investigation of inter-shock timing and electrode placement for double-sequential defibrillation
Zhang et al. Quadriphasic waveforms are superior to triphasic waveforms for transthoracic defibrillation in a cardiac arrest swine model with high impedance
Römers et al. Evolution of extravascular implantable cardioverter-defibrillator therapy for ventricular arrhythmias
CN112138282B (zh) 除颤仪
EP3525877B1 (en) System for cardiac pacing and defibrillation
Strickberger et al. Prospective randomized comparison of anodal monophasic shocks versus biphasic cathodal shocks on defibrillation energy requirements
van Dijk Vincent et al. Non-transvenous ICD therapy: current status and beyond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934778

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19934778

Country of ref document: EP

Kind code of ref document: A1