WO2020258011A1 - 数据自适应重传方法、遥控装置、飞行器和可移动平台 - Google Patents

数据自适应重传方法、遥控装置、飞行器和可移动平台 Download PDF

Info

Publication number
WO2020258011A1
WO2020258011A1 PCT/CN2019/092698 CN2019092698W WO2020258011A1 WO 2020258011 A1 WO2020258011 A1 WO 2020258011A1 CN 2019092698 W CN2019092698 W CN 2019092698W WO 2020258011 A1 WO2020258011 A1 WO 2020258011A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
remote control
terminal
expected delay
delay data
Prior art date
Application number
PCT/CN2019/092698
Other languages
English (en)
French (fr)
Inventor
饶雄斌
戴劲
王焱
赵巍
张志鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980012304.0A priority Critical patent/CN111758231A/zh
Priority to PCT/CN2019/092698 priority patent/WO2020258011A1/zh
Publication of WO2020258011A1 publication Critical patent/WO2020258011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • This specification relates to the field of data communication technology, in particular to a data adaptive retransmission method, a remote control device, an aircraft and a movable platform.
  • the wireless channel through which the remote control terminal sends remote control data to the controlled terminal usually has more interference; while the transmission of remote control data is usually more sensitive to delay and less sensitive to packet loss.
  • One of the existing remote control data transmission methods is that the remote control end sends the remote control data to the controlled end only once, and then sends new remote control data, that is, no retransmission, but this method has poor anti-interference/anti-path loss capabilities .
  • the second method of the existing remote control data transmission is that when the remote control data demodulation fails, the remote control end retransmits the remote control data to the controlled end many times; however, in some scenarios, the retransmission multiple times will increase the remote control delay.
  • the existing remote control data transmission method cannot achieve a balance between anti-interference ability and remote control delay.
  • this manual provides a data adaptive retransmission method, remote control device, aircraft, movable platform and storage medium, aiming to solve the problem that the existing remote control data transmission method cannot achieve the balance between anti-interference ability and remote control delay And other technical issues.
  • this specification provides a data adaptive retransmission method for the remote control terminal, including:
  • remote control data is sent to the controlled end through an uplink channel.
  • this specification provides a data adaptive retransmission method for the controlled end, including:
  • the remote control sensitivity data and the actual delay data are sent to the remote control terminal through the downlink channel, so that the remote control terminal determines the expected delay data according to the remote control sensitivity data, and according to the expected delay data and the actual delay of the remote control data Data adjustment and retransmission constraint information.
  • this specification provides a data adaptive retransmission method, including:
  • the controlled terminal obtains the actual delay data of the remote control data transmission, and sends the actual delay data to the remote control terminal;
  • the remote control terminal sends remote control data to the controlled terminal according to the adjusted retransmission restriction information, and the controlled terminal receives the remote control data.
  • this specification provides a remote control device, which includes a memory and a processor
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program, and when executing the computer program, implement the following steps:
  • remote control data is sent to the controlled end through an uplink channel.
  • this specification provides a movable platform, which includes a memory and a processor
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program, and when executing the computer program, implement the following steps:
  • the remote control sensitivity data and the actual delay data are sent to the remote control terminal through the downlink channel, so that the remote control terminal determines the expected delay data according to the remote control sensitivity data, and according to the expected delay data and the actual delay of the remote control data Data adjustment and retransmission constraint information.
  • this specification provides an aircraft including flight components, a memory, and a processor
  • the flight component is used for flight
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program, and when executing the computer program, implement the following steps:
  • the remote control sensitivity data and the actual delay data are sent to the remote control terminal through the downlink channel, so that the remote control terminal determines the expected delay data according to the remote control sensitivity data, and according to the expected delay data and the actual delay of the remote control data Data adjustment and retransmission constraint information.
  • this specification provides a computer-readable storage medium that stores a computer program, and the computer program can be used by a processor to implement the above-mentioned method.
  • the embodiments of this specification provide a data adaptive retransmission method, a remote control device, an aircraft, a movable platform, and a storage medium.
  • the retransmission constraint information of the remote control data is adaptively adjusted through the actual delay data and the expected delay data of the remote control data, Then based on the adjusted retransmission constraint information, the remote control data is sent to the controlled end through the uplink channel; the adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, and can take into account the lower delay of remote control and remote control data
  • the anti-interference ability and reliability of the transmission effectively improve the user's performance experience of controlling the controlled terminal through the remote control terminal, and guarantee the safe operation of the controlled terminal.
  • FIG. 1 is a schematic flowchart of a data adaptive retransmission method provided by an embodiment of this specification
  • Figure 2 is a schematic diagram of data transmission between the remote control terminal and the controlled terminal
  • FIG. 3 is a schematic flowchart of an embodiment of the data adaptive retransmission method in FIG. 1;
  • Fig. 4 is a schematic diagram of a sub-flow of an embodiment of remote control data transmission in Fig. 1;
  • FIG. 5 is a schematic diagram of a sub-flow of an embodiment of adjusting the retransmission restriction information of remote control data in FIG. 1;
  • FIG. 6 is a schematic diagram of a sub-flow of an embodiment of obtaining expected delay data in FIG. 1;
  • FIG. 7 is a schematic diagram of a sub-flow of another implementation manner for obtaining expected delay data in FIG. 1;
  • FIG. 8 is a schematic flowchart of a data adaptive retransmission method according to another embodiment of this specification.
  • FIG. 9 is a schematic diagram of a sub-flow of an embodiment of receiving remote control data in FIG. 8;
  • FIG. 10 is a schematic flowchart of a data adaptive retransmission method according to still another embodiment of this specification.
  • Figure 11 is a schematic diagram of the interaction between the remote control terminal and the controlled terminal
  • FIG. 12 is a schematic flowchart of an embodiment of the data adaptive retransmission method in FIG. 10;
  • FIG. 13 is a schematic block diagram of a remote control device according to an embodiment of this specification.
  • FIG. 14 is a schematic block diagram of a movable platform provided by an embodiment of this specification.
  • Fig. 15 is a schematic block diagram of an aircraft according to an embodiment of the present specification.
  • FIG. 1 is a schematic flowchart of a data adaptive retransmission method according to an embodiment of this specification.
  • the data adaptive retransmission method can be applied to the remote control terminal or the controlled terminal to manage the process of data transmission between the remote control terminal and the controlled terminal;
  • the remote control terminal can be a mobile phone, a tablet computer, a notebook computer, or a desktop Computers, personal digital assistants, wearable devices, remote controls, etc.;
  • the controlled end can be a mobile platform such as robots, robotic vehicles, and aircraft.
  • the aircraft may be a rotary-wing UAV, such as a four-rotor UAV, a six-rotor UAV, an eight-rotor UAV, or a fixed-wing UAV.
  • the remote control data is transmitted between the remote control terminal and the controlled terminal through a wireless channel.
  • the upstream channel for the remote control terminal to send data to the controlled terminal, it can send continuous command packets, so that even if the packet is lost, if there are remote control data packets that can reach the controlled terminal, it will have little effect on the entire controlled terminal. From this perspective, the upstream channel is not sensitive to upstream channel packet loss.
  • the wireless channel from the controlled terminal to the remote control terminal is called a downlink channel, which is used to transmit data collected by the controlled terminal, such as videos, pictures, sensor data, and the controlled terminal, such as Telemetry data such as the status information (OSD) of the drone.
  • data collected by the controlled terminal such as videos, pictures, sensor data
  • Telemetry data such as the status information (OSD) of the drone.
  • the wireless channel from the controlled terminal to the remote control terminal is called a downlink channel, which is used to transmit data collected by the controlled terminal, such as videos, pictures, sensor data, and the controlled terminal, such as Telemetry data such as the status information (OSD) of the drone.
  • data collected by the controlled terminal such as videos, pictures, sensor data
  • Telemetry data such as the status information (OSD) of the drone.
  • the wireless channel from the remote control terminal to the controlled terminal is called the uplink channel, which is used to transmit remote control data; for example, when the controlled terminal is an aircraft, the uplink channel is used to transmit flight control instructions and take photos, Control instructions such as video recording and return home.
  • the remote control data adaptive retransmission method of this embodiment includes steps S110 to S130.
  • the delay time of each remote control data transmitted in the past preset time period is counted, and then the average delay of the remote control data transmission within the preset time period is calculated, and the average delay is used as the actual delay data.
  • the wireless communication module in the controlled terminal is responsible for counting the average delay Td of remote control data transmission, and sending the average delay Td to the remote control terminal, and the remote control terminal uses the received average delay Td as the actual delay data.
  • the expected delay data is used to indicate that in order to ensure the quality of the remote control operation, the delay of the remote control data needs to be restricted; for example, to ensure the quality of the remote control operation, the delay of the control data needs to be less than or equal to, that is, not greater than the value of the expected delay data.
  • the expected delay data can be formulated by the user according to the wireless communication quality between the remote control terminal and the controlled terminal, the requirements for the reaction speed of the remote control operation, etc., and the formulated expected delay data can be input to the remote control terminal and/or the controlled terminal end.
  • the remote control terminal and/or the controlled terminal evaluate at least one of the user's operating sensitivity to the remote control terminal, the sensitivity of the controlled terminal's attitude control, and the communication parameters between the remote control terminal and the controlled terminal, etc., to obtain the remote control data transmission The expected delay data.
  • step S110 when the data adaptive retransmission method is applied to the remote control terminal, step S110 includes step S101 and step S102.
  • the controlled terminal counts the delay time of each remote control data received from the remote control terminal within a preset time period in the past, then calculates the average delay of the remote control data within the preset time period, and sends the average delay as the actual delay data to the remote control end.
  • the controlled terminal obtains remote control sensitivity data based on the remote control data received from the remote control terminal, and sends the remote control sensitivity data to the remote control terminal.
  • the remote control sensitivity data may be determined by at least one of the sensitivity of the user to the operation of the remote control terminal, the sensitivity of the attitude control of the controlled terminal, and the communication parameters between the remote control terminal and the controlled terminal.
  • S102 Determine expected delay data for remote control data transmission according to the remote control sensitivity data.
  • the higher the value of the remote control sensitivity data the higher the influence of the remote control delay on the remote control operation, and therefore the smaller the value of the expected delay data determined by the remote control terminal.
  • S120 Adjust retransmission restriction information according to the expected delay data and the actual delay data of the remote control data.
  • the uplink channel from the remote control terminal to the controlled terminal is more sensitive to delay when transmitting remote control data. For example, if the delay from receiving a control command from the remote control terminal to the actual operation of the controlled terminal (such as a drone) is too large, the user will obviously feel that the operation of the controlled terminal is lagging, which will deteriorate the actual flight control experience , And even affect the security of the accused.
  • the uplink channel from the remote control terminal to the controlled terminal is less sensitive to packet loss when transmitting remote control data.
  • the remote control terminal will continuously monitor the control commands of the joystick and continuously send the remote control data corresponding to the control commands to the controlled terminal. Since the actions of people operating the remote control terminal are continuous, even if there is one or more control commands corresponding to the remote control data transmission failure, if there are remote control data corresponding to the control commands can reach the controlled terminal, for the normal operation of the entire controlled terminal, Such as flying is of little influence.
  • the retransmission restriction information indicates data used to restrict the remote control data retransmission strategy, and includes, for example, data used to limit the number of retransmissions and/or the retransmission time interval.
  • the adjusting retransmission constraint information according to the expected delay data and the actual delay data of the remote control data includes:
  • the maximum number of retransmissions of remote control data is adjusted according to the expected delay data and the actual delay data, and the maximum number of retransmissions is used to restrict the number of repeated transmissions of remote control data.
  • the maximum number of retransmissions is used to restrict the maximum number of times that the controlled terminal can repeatedly send each remote control data. For example, adjusting the maximum number of retransmissions of remote control data to cnt_max_harq according to the expected delay data and the actual delay data.
  • the maximum number of retransmissions may be adjusted to a lower value to reduce the delay of remote control data transmission.
  • the adjusting the retransmission constraint information according to the expected delay data and the actual delay data of the remote control data includes:
  • the retransmission interval of the remote control data can be adjusted to a lower value to reduce the delay of the remote control data transmission.
  • the remote control data transmission between the remote control terminal and the controlled terminal is realized.
  • the transmission of remote control data is performed according to the adjusted retransmission times and retransmission interval requirements.
  • the wireless communication of remote control data between the remote control terminal and the controlled terminal uses the ISM frequency band, such as the 2.4G or 5.8G frequency band, which has more interference.
  • step S130 when the data adaptive retransmission method is applied to the remote control terminal, step S130 includes step S103.
  • the remote control data is sent to the controlled terminal through an uplink frame, and the controlled terminal receives and demodulates the uplink frame. If the controlled end demodulates successfully, it sends an ACK indication indicating that the demodulation is successful to the remote end, so that the remote end continues to send new remote control data to the controlled end according to the ACK indication; if the controlled end fails to demodulate, Then, the NACK indication used to indicate the failure of demodulation is sent to the remote control terminal, and the remote control terminal is requested to retransmit the remote control data corresponding to the NACK indication.
  • the remote control terminal receives the NACK indication fed back by the controlled terminal, and the number of times the remote control terminal sends the corresponding remote control data of the NACK indication does not exceed the maximum number of retransmissions cnt_max_harq, the remote control data is sent to the controlled terminal again, and the remote control data can also be suspended first Send the newly generated remote control data; if the remote control terminal sends the NACK indicating that the number of times the corresponding remote control data has reached or exceeds the maximum number of retransmissions cnt_max_harq, it will give up retransmitting the remote control data and send new remote control data to the controlled terminal.
  • the remote control data adaptive retransmission method provided in this embodiment adaptively adjusts the retransmission constraint information of the remote control data through the actual delay data and expected delay data transmitted by the remote control data, and then performs remote control data retransmission according to the adjusted retransmission constraint information Transmission; adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, which can take into account the lower delay of remote control and the anti-interference ability and reliability of remote control data transmission, effectively improving the performance experience of the user through the remote control terminal , To ensure the safe operation of the accused terminal.
  • step S130 after step S130 performs remote control data transmission according to the adjusted retransmission restriction information, it further includes: in response to a periodic adjustment trigger instruction, returning to the acquisition of the actual delay data of the remote control data transmission, and acquiring the remote control data For the expected delay data to be transmitted, the retransmission constraint information is adjusted according to the expected delay data and the actual delay data of the remote control data, and the step of transmitting remote control data according to the adjusted retransmission constraint information is continued.
  • the method when the data adaptive retransmission method is applied to the remote control terminal, after the step S103 sends remote control data to the controlled terminal through the uplink channel based on the adjusted retransmission restriction information, the method further includes: responding to periodic The adjustment trigger instruction is returned to the actual delay data and remote control sensitivity data obtained from the controlled end through the downlink channel, the expected delay data of the remote control data is determined according to the remote control sensitivity data, and the expected delay data is determined according to the expected delay data and the The actual delay data of the remote control data adjusts the retransmission restriction information, and based on the adjusted retransmission restriction information, the step of sending the remote control data to the controlled end through the uplink channel is continued.
  • the above steps S110 to S130 are performed periodically, or the above steps S101, S102, S120, and S103 are performed periodically; for example, the expected delay data and data of a remote control data transmission are acquired at the end of each period.
  • the actual delay data and the retransmission constraint information of the remote control data are adjusted once according to the expected delay data and the actual delay data, and then the remote control data is transmitted according to the adjusted retransmission constraint information in the next cycle.
  • the periodic dynamic adjustment of the retransmission constraint information is realized, so that the actual delay situation can keep up with the expected delay configuration as soon as possible, and the adaptability of the retransmission constraint information and the remote control data retransmission strategy to the remote control environment is further improved.
  • the expected delay data can be acquired by the remote control terminal and/or the controlled terminal
  • the actual delay data can be acquired by the remote control terminal and/or the controlled terminal
  • the expected delay data or the actual delay data can be acquired at the remote control terminal through a wireless channel.
  • the step of adjusting the retransmission restriction information can be performed by the remote control terminal or the controlled end; when the retransmission restriction information is adjusted by the controlled end, the controlled end can transfer the adjusted retransmission restriction information Send to the remote control terminal, so that the remote control terminal sends remote control data to the controlled terminal according to the retransmission restriction information.
  • the wireless communication module in the controlled terminal sends the acquired actual delay data to the remote control terminal, the remote control terminal obtains the expected delay data, and then the remote control terminal adjusts the remote control data according to the expected delay data and the actual delay data received from the controlled terminal According to the adjusted retransmission constraint information, the remote control data is sent to the controlled terminal.
  • the remote control terminal when the remote control terminal performs step S110 to obtain the actual delay data of the remote control data transmission, it includes: the remote control terminal obtains from the controlled terminal the average delay time of the remote control data received by the controlled terminal within a preset time period, so as to delay the average Time is used as the actual delay data.
  • the preset duration may be the duration of the period of executing the above step S110 to step S130.
  • step S103 sends remote control data to the controlled end through an uplink channel based on the adjusted retransmission restriction information, including step S131 and step S132.
  • the remote control data is sent to the controlled terminal through an uplink frame, and the controlled terminal receives and demodulates the uplink frame. If the controlled end demodulates successfully, it sends an ACK indication indicating that the demodulation is successful to the remote end; if the controlled end fails to demodulate, it sends a NACK indication indicating that the demodulation failed to the remote end.
  • the remote control terminal receives the NACK indication fed back by the controlled terminal, and the number of times the remote control terminal sends the remote control data corresponding to the NACK indication is less than the maximum number of retransmissions cnt_max_harq, the remote control data is sent to the controlled terminal again, and at the same time First pause sending the newly generated remote control data.
  • step S103 based on the adjusted retransmission restriction information, sending remote control data to the controlled end through an uplink channel, further includes step S133.
  • the remote control terminal has sent the maximum number of retransmissions cnt_max_harq, it can give up retransmitting the remote control data and send new remote control data to the controlled terminal. . Since the actions of people operating the remote control terminal are continuous, even if one or more remote control data transmission fails, if there are remote control data that can reach the controlled terminal, it will not affect the normal operation of the controlled terminal, such as flying.
  • step S103 based on the adjusted retransmission restriction information, sending remote control data to the controlled end through an uplink channel, further includes step S134.
  • the controlled terminal If the controlled terminal successfully demodulates certain remote control data, it sends an ACK indication to the remote control terminal to indicate that the demodulation is successful; if the remote control terminal receives the demodulation success information fed back by the controlled terminal, it acquires the newly generated remote control data , Sending the remote control data to the controlled end through an uplink channel.
  • the probability that the controlled terminal demodulates the remote control data can be increased, so that there is a higher probability of not losing packets, the anti-interference performance of remote control data transmission can be improved, and the stability of remote control data transmission on the uplink channel can be improved. Also based on the adjusted maximum number of retransmissions, the remote control data that failed to be retransmitted during demodulation is abandoned in a timely manner, so that new remote control data can be sent to the controlled end faster, reducing the delay of new remote control data.
  • the controlled terminal can combine and demodulate the soft bit information obtained by demodulating the retransmitted remote control data and the soft bit information obtained by demodulating the remote control data before.
  • Combined demodulation can achieve better demodulation performance, which is conducive to resisting greater path loss or having stronger anti-interference ability, thereby having a higher probability of not losing packets.
  • the adjustment of the maximum number of retransmissions of remote control data according to the expected delay data and the actual delay data includes step S121 and step S122.
  • the remote control terminal stores information used to determine whether to adjust and how to adjust the retransmission constraints, such as preset adjustment conditions for the maximum number of retransmissions; and also stores the preset adjustment conditions corresponding to the preset adjustment conditions used to specify how to adjust the retransmission constraints Information, such as the preset adjustment strategy for the maximum number of retransmissions.
  • the preset adjustment constraints such as preset adjustment conditions for the maximum number of retransmissions
  • the preset adjustment constraints Information such as the preset adjustment strategy for the maximum number of retransmissions.
  • the adjusting the maximum number of retransmissions of remote control data according to the expected delay data and the actual delay data includes:
  • the maximum number of retransmissions may not be adjusted.
  • the actual delay data meeting the preset adjustment condition corresponding to the expected delay data includes:
  • the actual delay data is greater than the upper threshold corresponding to the expected delay data.
  • the actual delay data is expressed as Td
  • the expected delay data is expressed as Te
  • the upper threshold corresponding to the expected delay data is expressed as Ti; if Td is greater than Ti, it is determined that the actual delay data meets the expected delay corresponding to the expected delay data.
  • the upper threshold Ti corresponding to the expected delay data is equal to the sum of the expected delay data Te and the preset upper limit difference ⁇ T1. If Td is greater than Te+ ⁇ T1, it is determined that the actual delay data meets the preset adjustment condition corresponding to the expected delay data.
  • the actual delay data meeting the preset adjustment condition corresponding to the expected delay data includes:
  • the difference of the actual delay data minus the expected delay data is greater than the upper limit difference.
  • the difference between the actual delay data Td minus the expected delay data Te is greater than the upper limit difference ⁇ T1, it is determined that the actual delay data meets the preset adjustment condition corresponding to the expected delay data.
  • the adjusting the maximum number of retransmissions of remote control data using a preset adjustment strategy includes:
  • the maximum number of retransmissions is greater than the lower limit of the number of retransmissions; if it is determined that the maximum number of retransmissions is greater than the lower limit of the number of retransmissions, the maximum number of retransmissions is adjusted lower.
  • the lower limit of retransmission times is used to indicate the minimum retransmission times of remote control data, that is, no matter how the maximum retransmission times are adjusted, it cannot be less than the lower limit of retransmission times.
  • the lower limit of the number of retransmissions is 1.
  • the actual delay data meeting the preset adjustment condition corresponding to the expected delay data includes:
  • the actual delay data is less than the lower threshold corresponding to the expected delay data.
  • the lower threshold corresponding to the expected delay data is represented as Tj; if the actual delay data Td is less than Tj, it is determined that the actual delay data meets the preset adjustment condition corresponding to the expected delay data.
  • the lower limit threshold Tj corresponding to the expected delay data is equal to the expected delay data Te minus the preset lower limit difference ⁇ T2. If Td is less than Te- ⁇ T2, it is determined that the actual delay data meets the preset adjustment condition corresponding to the expected delay data.
  • ⁇ T2 may be equal to ⁇ T1 or unequal to ⁇ T1.
  • the actual delay data meeting the preset adjustment condition corresponding to the expected delay data includes:
  • the difference of the expected delay data minus the actual delay data is greater than the lower limit difference.
  • the difference between the expected delay data Te minus the actual delay data Td is greater than the lower limit difference ⁇ T2, it is determined that the actual delay data meets the preset adjustment condition corresponding to the expected delay data.
  • the adjusting the maximum number of retransmissions of remote control data using a preset adjustment strategy includes:
  • the maximum number of retransmissions is less than the upper limit of the number of retransmissions; if it is determined that the maximum number of retransmissions is less than the upper limit of the number of retransmissions, the maximum number of retransmissions is increased.
  • the upper limit of the number of retransmissions is used to indicate the maximum number of retransmissions of remote control data, that is, no matter how the maximum number of retransmissions is adjusted, it cannot be greater than the upper limit of the number of retransmissions.
  • the upper limit of the number of retransmissions is MAX_HARQ.
  • adjusting the maximum number of retransmissions of the remote control data by the preset adjustment strategy includes: if the actual delay data is greater than the expected delay data The upper threshold corresponding to the delayed data or the difference between the actual delayed data minus the expected delayed data is greater than the upper limit difference, and the maximum number of retransmissions is greater than the lower limit of the number of retransmissions, then the maximum number of retransmissions is lowered; if the actual delayed data is If it is less than the lower limit threshold corresponding to the expected delay data or the difference between the expected delay data minus the actual delay data is greater than the lower limit difference, and the maximum number of retransmissions is less than the upper limit of the number of retransmissions, the maximum number of retransmissions is increased.
  • the maximum number of retransmissions of remote control data cnt_max_harq is adjusted by the preset adjustment strategy, which is specifically implemented according to the following formula.
  • the maximum number of retransmissions in the uplink when the actual delay exceeds the expected delay by more than the upper limit difference ⁇ T1, try to reduce the maximum number of uplink retransmissions of the remote control data; when the actual delay is lower than the expected delay by the lower limit difference ⁇ T2, try to increase the remote control data
  • the maximum number of retransmissions in the uplink otherwise, the maximum number of retransmissions cnt_max_harq remains unchanged, for example, if the maximum number of retransmissions is already the lower limit of the number of retransmissions, the maximum number of retransmissions will not be lowered, if the maximum number of retransmissions is already the upper limit of the number of retransmissions Do not increase the maximum number of retransmissions when MAX_HARQ.
  • obtaining expected delay data of remote control data transmission in step S110 includes: obtaining remote control sensitivity data, and determining the expected delay data of remote control data transmission according to the remote control sensitivity data.
  • the remote control sensitivity data may be determined by at least one of the sensitivity of the user to the operation of the remote control terminal, the sensitivity of the attitude control of the controlled terminal, and the communication parameters between the remote control terminal and the controlled terminal.
  • the higher the value of the remote control sensitivity data the higher the influence of the remote control delay on the remote control operation, and therefore the smaller the value of the determined expected delay data.
  • the adjusted retransmission constraint can adapt to the user's sensitivity to the operation of the remote control terminal, the sensitivity of the controlled terminal attitude control, and the remote control terminal Communication parameters with the controlled terminal, etc., further improve the adaptability of the retransmission strategy to the remote control environment.
  • the acquisition of remote control sensitivity data includes step S111 and step S112.
  • control amount feature of the remote control terminal is used to indicate the user's sensitivity to the operation of the remote control terminal
  • action feature of the controlled terminal is used to indicate the sensitivity of the controlled terminal's attitude control.
  • the characteristics of the control quantity and the action characteristics can reflect the requirements of the user or the controlled terminal for the transmission time delay of the remote control data; for example, under the same delay condition, the higher the user's sensitivity to the operation of the remote control terminal, the higher the user's sensitivity to the remote control data The more sensitive the transmission delay is; under the same delay condition, the higher the sensitivity of the attitude control of the controlled end, the more the attitude change lag of the controlled end due to the remote control data delay will be.
  • the acquiring the characteristics of the control amount of the remote control terminal includes: calculating the frequency of the change in the amount of the remote control terminal according to the stick amount data generated in response to a user operation within a preset time period.
  • the remote control data includes lever amount data.
  • the remote control terminal includes a control stick.
  • the remote control terminal When the user operates the control stick, the remote control terminal generates stick amount data in response to the action of the control stick, and sends the stick amount data to the controlled terminal through the uplink channel; the controlled terminal according to the remote control data The lever amount data in the posture control and other operations.
  • the remote control terminal calculates the rod amount change frequency of the remote control terminal according to the rod amount data generated in response to the user operation within a preset time in the past; for example, if the value of the rod amount data changes more frequently, the rod amount changes frequently The greater the degree.
  • the action characteristic of the controlled terminal includes the frequency of the posture change of the controlled terminal.
  • the controlled end can determine the attitude change frequency according to the amount of change in the attitude of the controlled end within a preset time period in the past. For example, if the flight height and steering angle of the controlled end change more frequently, the frequency of attitude changes is greater.
  • the remote control terminal can obtain the action characteristics of the controlled terminal, such as the frequency of posture changes, from the controlled terminal.
  • the acquiring remote control sensitivity data according to the control amount characteristic and/or the action characteristic includes:
  • the remote control sensitivity data is acquired according to the control amount feature and/or the action feature.
  • the remote control sensitivity data is divided into multiple different levels, such as ⁇ L1, L2,..., Li, Lj,..., Ln ⁇ , where j is greater than i, and compared to the remote control sensitivity data as Li, the remote control
  • the sensitivity data is Lj
  • the amount of stick that the user operates the remote end changes more frequently, and the control sensitivity of the controlled end is higher.
  • the remote control terminal pre-stores the mapping relationship between the remote control sensitivity data and the control quantity feature and/or the action feature, such as ⁇ the control quantity feature of the remote control terminal, the action feature of the controlled terminal ⁇ to ⁇ L1, L2,..., Li , Lj,..., Ln ⁇ ; according to the control quantity characteristics and/or action characteristics acquired at the current moment, the remote control sensitivity data corresponding to the current moment can be acquired.
  • mapping relationship between remote control sensitivity data and control quantity characteristics and/or action characteristics can be determined according to offline big data analysis and statistics.
  • the characteristic of the control amount includes the frequency of the change of the amount of the lever of the remote control terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of the change of the amount of the lever; specifically, the higher the frequency of the change of the amount of the lever, it means Users have higher requirements for remote control sensitivity.
  • the action feature includes the frequency of attitude changes of the controlled terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of attitude changes; specifically, the higher the frequency of attitude changes, the more the controlled terminal The higher the requirements for handling sensitivity.
  • the remote controlled terminal when the user constantly adjusts the controlled terminal, such as the attitude of the aircraft, for example, the remote controlled terminal turns back and forth, and stops at a large attitude, the value of the remote control sensitivity data is relatively large.
  • the remote control sensitivity data is determined according to the control quantity characteristics and/or the action characteristics, so that when adjusting the retransmission constraint information, the characteristics of the user's operation of the remote control terminal and/or the attitude change characteristics of the controlled terminal are considered in the adjustment of the retransmission strategy to improve The adaptability of the retransmission strategy to different users, different operating characteristics and/or the attitude change characteristics of the controlled end.
  • the acquiring remote control sensitivity data includes: acquiring remote control sensitivity data from a controlled terminal.
  • the remote control sensitivity data is obtained by the controlled terminal according to the action characteristics of the controlled terminal and/or the control quantity characteristics of the remote control terminal.
  • the characteristic of the control amount of the remote control terminal includes the frequency of the change of the stick amount; the controlled terminal receives the stick amount data from the remote control terminal, and calculates the frequency of the change of the stick amount of the remote control terminal according to the stick amount data within a preset time period in the past.
  • the action characteristic of the controlled terminal includes the frequency of the posture change of the controlled terminal.
  • the controlled end can determine the attitude change frequency according to the amount of change in the attitude of the controlled end within a preset time period in the past. For example, if the flight height and steering angle of the controlled end change more frequently, the frequency of attitude changes is greater.
  • the remote control sensitivity data is sent to the remote control terminal.
  • the controlled terminal obtains remote control sensitivity data according to the control amount characteristics and/or the action characteristics based on the mapping relationship between the remote control sensitivity data and the control amount characteristics and/or the action characteristics.
  • the computing resources of the remote control terminal can be saved; so that the remote control terminal responds to the user's operation more quickly to better control the controlled terminal.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data includes step S113.
  • the higher the value of the remote control sensitivity data the higher the influence of the remote control delay on the remote control operation, and therefore the smaller the value of the determined expected delay data.
  • the relationship between expected delay data and remote control sensitivity data is shown in Table 1.
  • Table 1 The relationship between expected delay data and remote control sensitivity data
  • L1 ⁇ L2 ⁇ ... ⁇ Ln, and Te(L1) ⁇ Te(L2) ⁇ ... ⁇ Te(Ln), that is, the expected delay data and the remote control sensitivity data are positively correlated.
  • the expected delay data of remote control data transmission is determined according to the actual remote control sensitivity data.
  • determining the expected delay data of remote control data transmission according to the remote control sensitivity data includes step S114.
  • S114 Determine expected delay data for remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel.
  • the wireless data transmission between the remote control terminal and the controlled terminal is implemented according to a preset modulation and coding strategy.
  • different modulation and coding strategies have different code streams, different signal-to-noise ratio (SNR) requirements for the channel, and different anti-interference capabilities or anti-path loss capabilities.
  • SNR signal-to-noise ratio
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes:
  • the expected delay data for remote control data transmission is determined according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel.
  • the expected delay data can be made more accurate.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes:
  • the expected delay data for remote control data transmission is determined according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel .
  • the higher the anti-interference ability of the uplink channel through which the remote control terminal sends remote control data to the controlled terminal the larger the expected delay data.
  • the expected delay data can be made more accurate.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes:
  • the expected delay data of the remote control data transmission is queried according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel.
  • the expected delay data can be obtained more quickly.
  • the relationship between expected delay data, remote control sensitivity data, and modulation and coding strategy is shown in Table 2.
  • Table 2 The relationship between expected delay data, remote control sensitivity data, and modulation and coding strategy
  • the modulation and coding strategy can be the modulation and coding (MCS) gear set by the remote control terminal.
  • MCS_0 represents the lowest modulation and coding gear for uplink wireless transmission of the remote control terminal, with the lowest code stream, the lowest SNR requirement on the channel, and resistance to interference or path loss The maximum capacity.
  • MCS_K represents the highest modulation and coding gear of the uplink wireless transmission of the remote control terminal, the highest code stream, the highest requirement for the signal-to-noise ratio SNR of the channel, and the least resistance to interference or path loss.
  • the values of expected delay data corresponding to different remote control sensitivity data and different modulation and coding strategies can be obtained through offline training.
  • the lower the modulation coding (MCS) gear of the remote control terminal is, the greater the expected allowable delay Te; as shown in Table 2, the expected delay data in the same row, from From left to right, there is a trend of getting smaller, such as Te(MCS_0, Ln)>Te(MCS_1,Ln)>...>Te(MCS_K,Ln).
  • the controlled terminal when the modulation and coding level of the remote control terminal is higher, the controlled terminal is generally in a near field environment at this time, the channel quality is higher, and the signal-to-noise ratio SNR is higher; at this time, the user's fluency in the controlled terminal's control The requirement is higher, that is, the required delay is smaller; based on the smaller expected delay data, the maximum number of retransmissions can be adjusted smaller.
  • the modulation code position of the remote control terminal is very low, it means that the controlled terminal is far away from the remote control terminal at this time, the channel quality condition is poor, and the signal-to-noise ratio is low.
  • the controlled terminal may have an uplink wireless link.
  • the link is broken and the remote control data cannot be obtained for a long time, causing the controlled end to lose control; therefore, at this time, it is inclined to adjust the maximum retransmission times to improve the uplink anti-path loss or anti-interference ability, and increase the probability of the controlled end receiving remote control data normally. , To protect the accused from losing control.
  • the expected delay data Te (MCS_0, L1) in the upper left corner is the largest, and the expected delay data Te (MCS_K, Ln) in the lower right corner is the smallest.
  • the expected delay data of the remote control data transmission is not less than the scheduling duration corresponding to the uplink scheduling transmission period.
  • the expected delay data determined according to the remote control sensitivity data and the modulation and coding strategy cannot be less than the scheduling duration corresponding to the uplink scheduling transmission period.
  • the smallest expected delay data Te(MCS_K, Ln) is not less than the scheduling duration corresponding to the scheduling transmission period, and includes:
  • TTI represents the duration of the uplink scheduled transmission period, for example, TTI is equal to 5 milliseconds, and ⁇ T3 represents the first guard interval.
  • the expected delay data of the remote control data transmission is not greater than the upper limit of transmission delay, and the upper limit of transmission delay is determined according to the product of the uplink scheduled transmission period and the upper limit of the number of retransmissions.
  • the expected delay data determined according to the remote control sensitivity data and the modulation and coding strategy cannot be greater than the upper limit of the transmission delay at most.
  • MAX_HARQ represents the upper limit of the number of retransmissions
  • TTI represents the duration of the uplink scheduled transmission cycle
  • ⁇ T4 represents the second guard interval
  • MAX_HARQ ⁇ TTI+ ⁇ T4 represents the upper limit of transmission delay, that is, the maximum transmission delay of the uplink channel.
  • the second guard interval ⁇ T4 may be equal to or unequal to the first guard interval ⁇ T3, and may be a number equal to or greater than zero.
  • the range of the expected delayed data is determined, so that the adjusted maximum retransmission times can always meet the requirements of the uplink channel for remote control data transmission.
  • the remote control data adaptive retransmission method provided in this embodiment adaptively adjusts the retransmission constraint information of the remote control data through the actual delay data and expected delay data transmitted by the remote control data, and then performs remote control data retransmission according to the adjusted retransmission constraint information Transmission; adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, which can take into account the lower delay of remote control and the anti-interference ability and reliability of remote control data transmission, effectively improving the performance experience of the user through the remote control terminal , To ensure the safe operation of the accused terminal.
  • FIG. 8 is a schematic flowchart of a remote control data adaptive retransmission method according to another embodiment of the present application.
  • the remote control data adaptive retransmission method can be applied to the controlled terminal to manage the process of data transmission between the remote control terminal and the controlled terminal;
  • the controlled terminal can be a mobile platform such as a robot, a robot, an aircraft, etc. .
  • the aircraft may be a rotary-wing UAV, such as a four-rotor UAV, a six-rotor UAV, an eight-rotor UAV, or a fixed-wing UAV.
  • the remote control data adaptive retransmission method of this embodiment includes steps S210 to S240.
  • S210 Receive remote control data sent by the remote control terminal based on the retransmission restriction information through the uplink channel.
  • the controlled terminal receives remote control data sent by the remote control terminal through an uplink channel with the remote control terminal, so as to perform corresponding operations based on the remote control data, such as changing the movement posture.
  • the retransmission restriction information indicates data used to restrict the remote control data retransmission strategy, and includes data used to limit the number of retransmissions and/or the retransmission time interval, for example.
  • the remote control terminal sends remote control data to the controlled terminal based on the retransmission restriction information, such as controlling the number and time interval of remote control data transmission according to the maximum retransmission times and/or retransmission interval in the retransmission restriction information.
  • the uplink channel from the remote control terminal to the controlled terminal is more sensitive to delay and less sensitive to packet loss.
  • the probability that the controlled end will demodulate the remote control data can be increased, so that there is a higher probability of not losing packets; but when the retransmission strategy is not good enough, for example, when the number of retransmissions is too large, it may cause
  • the delay of remote control data transmission is increased, for example, the delay of the uplink flight control is too large, which causes the remote control experience to decline.
  • step S210 receives remote control data sent by the remote control terminal based on the retransmission restriction information through an uplink channel, including steps S211 to S213.
  • the remote control data is sent to the controlled terminal through an uplink frame, and the controlled terminal receives and demodulates the uplink frame.
  • an ACK indication indicating that the demodulation is successful is sent to the remote control terminal; if the remote control terminal receives the demodulation success information fed back by the controlled terminal, it acquires the newly generated remote control Data, sending the remote control data to the controlled end through an uplink channel.
  • the controlled terminal if it fails to demodulate, it sends a NACK indication indicating that the demodulation failed to the remote control terminal. If the remote control terminal receives the demodulation failure information fed back by the controlled terminal, and the number of retransmissions of the remote control data is less than the maximum number of retransmissions, the remote control terminal retransmits the remote control data to the controlled terminal; If the terminal receives the demodulation failure information fed back by the controlled terminal, and the number of retransmissions of the remote control data is not less than the maximum number of retransmissions, the remote control terminal abandons the retransmission of the remote control data and sends a new message to the controlled terminal. Remote control data.
  • the probability that the controlled end will demodulate the remote control data can be increased, so that there is a higher probability of not losing packets; it is also based on the adjusted maximum retransmission times to give up retransmission of the remote control data that has failed demodulation. This enables new remote control data to be sent to the controlled end faster, reducing the delay of new remote control data.
  • the demodulating the remote control data includes: acquiring soft bit information corresponding to the remote control data received each time; The soft bit information is combined to obtain combined information; the combined information is decoded to obtain the demodulation result of the remote control data.
  • the controlled terminal performs channel equalization on the remote control data received for the first time and then demodulates the soft bit information.
  • soft bit information is also called log likelihood information (Log Likehood Ratio, LLR); then FEC decoding is performed on the soft bit information corresponding to the remote control data received for the first time, and the decoded data is checked by CRC The correctness of this reception.
  • the controlled terminal verifies that the data is received correctly through CRC, the buffered soft bit information is cleared, and the demodulation success information is sent to the remote control terminal; if the controlled terminal checks out the data reception error through CRC, then the The remote control terminal sends the demodulation failure information so that the remote control terminal sends the remote control data again.
  • the controlled terminal demodulates to obtain the corresponding soft bit information every time it receives it; if the number of times of receiving a certain remote control data is at least twice, then it will receive and demodulate the data each time.
  • the soft bit information obtained from the remote control data is merged to obtain merged information; specifically, there are two main merge methods, which are tracking merge (Chase Combine, CC merge) and Maximum Rate Combine (MRC merge). Afterwards, FEC decoding is performed on the combined information to obtain the demodulation result of the remote control data.
  • Combined demodulation has better demodulation performance, which is beneficial to resist greater path loss or stronger rigid interference capability, so that there is a higher probability of not losing packets.
  • step S220 obtains remote control sensitivity data based on the remote control data, including: the controlled terminal obtains the action feature of the controlled terminal and/or the control amount feature of the remote control terminal, according to the action feature and/or the control amount Features determine remote control sensitivity data.
  • the action feature of the controlled terminal includes the action feature of the controlled terminal in response to the remote control data
  • the control amount feature of the remote control terminal includes the control amount feature of the remote control terminal in the remote control data
  • control amount feature of the remote control terminal is used to indicate the user's sensitivity to the operation of the remote control terminal
  • action feature of the controlled terminal is used to indicate the sensitivity of the controlled terminal's attitude control.
  • the characteristics of the control quantity and the action characteristics can reflect the requirements of the user or the controlled terminal for the transmission time delay of the remote control data; for example, under the same delay condition, the higher the user's sensitivity to the operation of the remote control terminal, the higher the user's sensitivity to the remote control data The more sensitive the transmission delay is; under the same delay condition, the higher the sensitivity of the attitude control of the controlled end, the more the attitude change lag of the controlled end due to the remote control data delay will be.
  • control amount feature includes the change frequency of the stick amount of the remote control terminal, and the value of the remote control sensitivity data is positively correlated with the change frequency of the stick amount.
  • the acquiring the characteristics of the control amount of the remote control terminal includes: calculating the frequency of the change in the amount of the remote control terminal according to the stick amount data in the remote control data received from the remote control terminal within a preset time period.
  • the remote control data includes lever amount data.
  • the remote control terminal includes a control stick.
  • the remote control terminal When the user operates the control stick, the remote control terminal generates stick amount data in response to the user's operation of the control stick, and sends the stick amount data to the controlled terminal through the uplink channel;
  • the lever amount data in the remote control data is used for gesture control and other operations, and the lever amount data in the remote control data received from the remote control terminal within a preset time period can also be used to calculate the change frequency of the lever amount of the remote control terminal; The more frequently the value of the data changes, the greater the frequency of changes in the lever amount.
  • the action feature of the controlled terminal includes the frequency of attitude change of the controlled terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of attitude change.
  • the controlled end can determine the attitude change frequency according to the amount of change in the attitude of the controlled end within a preset time period in the past. For example, if the flight height and steering angle of the controlled end change more frequently, the frequency of attitude changes is greater.
  • the determining remote control sensitivity data according to the action characteristic and/or the control amount characteristic includes:
  • the remote control sensitivity data is acquired according to the action feature and/or the control amount feature.
  • the controlled terminal pre-stores the mapping relationship between the remote control sensitivity data and the control quantity feature and/or the action feature, such as ⁇ the control quantity feature of the remote control terminal, the action feature of the controlled terminal ⁇ to ⁇ L1, L2,..., The mapping between Li, Lj,..., Ln ⁇ ; the controlled end can obtain the remote control sensitivity data corresponding to the current time according to the control amount characteristics and/or action characteristics obtained at the current time.
  • the characteristic of the control amount includes the frequency of the change of the amount of the lever of the remote control terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of the change of the amount of the lever; specifically, the higher the frequency of the change of the amount of the lever, it means Users have higher requirements for remote control sensitivity.
  • the action feature includes the frequency of attitude changes of the controlled terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of attitude changes; specifically, the higher the frequency of attitude changes, the more the controlled terminal The higher the requirements for handling sensitivity.
  • the delay time of each remote control data transmitted in the past preset time period is counted, and then the average delay of the remote control data transmission within the preset time period is calculated, and the average delay is used as the actual delay data.
  • obtaining the actual delay data of the remote control data in step S230 includes:
  • the wireless communication module in the controlled terminal is responsible for counting the average delay Td of remote control data transmission, and sending the average delay Td as the actual delay data to the remote control terminal.
  • S240 Send the remote control sensitivity data and actual delay data to the remote control terminal through a downlink channel, so that the remote control terminal determines expected delay data according to the remote control sensitivity data, and according to the expected delay data and the remote control data
  • the actual delayed data adjusts the retransmission constraint information.
  • the expected delay data of the remote control data transmission is determined according to the remote control sensitivity data.
  • the remote control terminal determines the expected delay data of remote control data transmission based on the positive correlation between expected delay data and remote control sensitivity data according to the remote control sensitivity data.
  • the remote control terminal determines the expected delay data for remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel.
  • the remote control terminal determines the remote control sensitivity data according to the control amount characteristics and/or the action characteristics, so that when adjusting the retransmission restriction information, the characteristics of the user's operation of the remote control terminal and/or the attitude change characteristics of the controlled terminal are considered in the retransmission strategy. During the adjustment, the adaptability of the retransmission strategy to different users, different operating characteristics, and/or the attitude change characteristics of the controlled terminal is improved.
  • the remote control terminal adjusting the retransmission constraint information according to the expected delay data and the actual delay data of the remote control data includes: the remote control terminal adjusts the maximum weight of the remote control data according to the expected delay data and the actual delay data.
  • the number of transmissions, the maximum number of retransmissions is used to restrict the number of repeated transmissions of remote control data.
  • the remote control terminal Lower the maximum number of retransmissions; if the actual delay data is less than the lower threshold corresponding to the expected delay data or the difference between the expected delay data minus the actual delay data is greater than the lower limit difference, and the maximum number of retransmissions is less than the retransmission If the upper limit of the number of times, the remote control terminal will increase the maximum number of retransmissions.
  • the remote control terminal adjusts the maximum number of retransmissions of the remote control data cnt_max_harq according to the expected delay data and the actual delay data, which is specifically implemented according to the following formula.
  • the maximum number of retransmissions in the uplink when the actual delay exceeds the expected delay by more than the upper limit difference ⁇ T1, try to reduce the maximum number of uplink retransmissions of the remote control data; when the actual delay is lower than the expected delay by the lower limit difference ⁇ T2, try to increase the remote control data
  • the maximum number of retransmissions in the uplink otherwise, the maximum number of retransmissions cnt_max_harq remains unchanged, for example, if the maximum number of retransmissions is already the lower limit of the number of retransmissions, the maximum number of retransmissions will not be lowered, if the maximum number of retransmissions is already the upper limit of the number of retransmissions Do not increase the maximum number of retransmissions when MAX_HARQ.
  • the remote control data adaptive retransmission method provided in this embodiment adaptively adjusts the retransmission constraint information of the remote control data through the actual delay data and expected delay data transmitted by the remote control data, and then performs remote control data retransmission according to the adjusted retransmission constraint information Transmission; adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, which can take into account the lower delay of remote control and the anti-interference ability and reliability of remote control data transmission, effectively improving the performance experience of the user through the remote control terminal , To ensure the safe operation of the accused terminal.
  • FIG. 10 is a schematic flowchart of a method for adaptive retransmission of remote control data according to another embodiment of the present application.
  • the remote control data adaptive retransmission method can be applied to the controlled terminal and the remote control terminal to manage processes such as data transmission between the remote control terminal and the controlled terminal.
  • the remote control data adaptive retransmission method of this embodiment includes steps S310 to S330.
  • the controlled terminal obtains the actual delay data of the remote control data transmission, and sends the actual delay data to the remote control terminal.
  • acquiring the actual delay data of remote control data transmission by the controlled terminal includes: the controlled terminal acquires the delay time of the remote control data received from the remote control terminal within a preset time period, and calculates the average delay time.
  • the wireless communication module in the controlled terminal is responsible for counting the average delay Td of remote control data transmission, and sending the average delay Td to the remote control terminal, and the remote control terminal uses the received average delay Td as the actual delay data.
  • the remote control terminal obtains expected delay data of remote control data transmission, and adjusts retransmission restriction information according to the expected delay data and the actual delay data.
  • acquiring the expected delay data of remote control data transmission by the remote control terminal includes: the remote control terminal acquiring remote control sensitivity data, and determining the expected delay data of remote control data transmission according to the remote control sensitivity data.
  • acquiring the remote control sensitivity data by the remote control terminal includes: the remote control terminal acquires the control quantity characteristic of the remote control terminal and/or the action characteristic of the controlled terminal; the remote control terminal acquires the control quantity characteristic and/or the action characteristic of the controlled terminal.
  • the motion characteristics are used to obtain remote control sensitivity data.
  • the remote control terminal acquiring remote control sensitivity data according to the control amount characteristic and/or the action characteristic includes: the remote control terminal based on the mapping relationship between the remote control sensitivity data and the control amount characteristic and/or the action characteristic , Acquiring remote control sensitivity data according to the control amount characteristic and/or the action characteristic.
  • control amount feature includes the change frequency of the stick amount of the remote control terminal, and the value of the remote control sensitivity data is positively correlated with the change frequency of the stick amount.
  • acquiring the control amount characteristics of the remote control terminal by the remote control terminal includes: the remote control terminal calculates the frequency of the change in the amount of the remote control terminal according to the stick amount data generated in response to a user operation within a preset time period.
  • the action feature includes the frequency of posture change of the controlled terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of posture change.
  • the acquiring remote control sensitivity data by the remote control terminal includes: the remote control terminal acquiring remote control sensitivity data from the controlled terminal.
  • the remote control terminal before the remote control terminal acquires the remote control sensitivity data, it includes: the controlled terminal acquires the remote control sensitivity data, and sends the remote control sensitivity data to the remote control terminal.
  • the obtaining of remote control sensitivity data by the controlled end includes: the controlled end obtaining the action feature of the controlled end and/or the control amount feature of the remote control end, and determining according to the action feature and/or the control amount feature Remote control sensitivity data.
  • the controlled end determining remote control sensitivity data based on the action feature and/or the control amount feature includes: the controlled end based on the relationship between the remote control sensitivity data and the action feature and/or control amount feature The mapping relationship is used to obtain remote control sensitivity data according to the action feature and/or the control amount feature.
  • control amount feature includes the change frequency of the stick amount of the remote control terminal, and the value of the remote control sensitivity data is positively correlated with the change frequency of the stick amount.
  • the controlled terminal acquiring the characteristics of the control amount of the remote control terminal includes: the controlled terminal calculates the change in the amount of the remote control terminal according to the lever amount data in the remote control data received from the remote control terminal within a preset time period Frequency.
  • the action feature includes the frequency of posture change of the controlled terminal, and the value of the remote control sensitivity data is positively correlated with the frequency of posture change.
  • the remote control terminal determines the expected delay data of remote control data transmission according to the remote control sensitivity data, including: the remote control terminal determines the expected delay data of the remote control data transmission based on the positive correlation between the expected delay data and the remote control sensitivity data, according to the remote control sensitivity data Determine the expected delay data for remote control data transmission.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data includes: determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation coding strategy of the uplink channel.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes: based on the positive correlation between the expected delay data and the remote control sensitivity data and the expected delay data and the modulation and coding strategy Corresponding to the negative correlation of the code stream, the expected delay data of the remote control data transmission is determined according to the remote control sensitivity data and the modulation coding strategy of the uplink channel.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes: based on the positive correlation between the expected delay data and the remote control sensitivity data and the expected delay data and the modulation and coding strategy Corresponding to the positive correlation of the anti-interference ability, the expected delay data of the remote control data transmission is determined according to the remote control sensitivity data and the modulation coding strategy of the uplink channel.
  • the determining the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation and coding strategy of the uplink channel includes: based on the mapping relationship between the expected delay data and the remote control sensitivity data and the modulation and coding strategy of the uplink channel Query the expected delay data of remote control data transmission according to the remote control sensitivity data and the modulation coding strategy of the uplink channel.
  • the expected delay data of the remote control data transmission is not less than the scheduling duration corresponding to the uplink scheduling transmission period.
  • the expected delay data of the remote control data transmission is not greater than the upper limit of transmission delay, and the upper limit of transmission delay is determined according to the product of the uplink scheduled transmission period and the upper limit of the number of retransmissions.
  • the remote control terminal in step S320 adjusts the retransmission constraint information according to the expected delay data and the actual delay data, including:
  • the remote control terminal adjusts the maximum number of retransmissions of remote control data according to the expected delay data and the actual delay data, and the maximum number of retransmissions is used to restrict the number of repeated transmissions of remote control data.
  • the remote control terminal adjusting the maximum number of retransmissions of remote control data according to the expected delay data and the actual delay data includes: if the actual delay data meets the preset adjustment condition corresponding to the expected delay data, The remote control terminal adjusts the maximum number of retransmissions of remote control data according to a preset adjustment strategy.
  • the remote control terminal adjusting the maximum number of retransmissions of remote control data according to the expected delay data and the actual delay data includes: if the actual delay data does not meet the preset adjustment conditions corresponding to the expected delay data, The remote control terminal keeps the maximum number of retransmissions unchanged.
  • the actual delay data satisfies a preset adjustment condition corresponding to the expected delay data includes: the actual delay data is greater than an upper threshold corresponding to the expected delay data.
  • the actual delay data meeting the preset adjustment condition corresponding to the expected delay data includes: the difference between the actual delay data minus the expected delay data is greater than the upper limit difference.
  • the remote control terminal adjusts the maximum number of retransmissions of remote control data using a preset adjustment strategy, including: if the maximum number of retransmissions is greater than the lower limit of the number of retransmissions, the remote control terminal lowers the maximum number of retransmissions.
  • the maximum number of retransmissions is greater than the lower limit of the number of retransmissions; If the maximum number of retransmissions is greater than the lower limit of the number of retransmissions, the maximum number of retransmissions is lowered.
  • the actual delay data satisfies a preset adjustment condition corresponding to the expected delay data includes: the actual delay data is less than a lower threshold corresponding to the expected delay data.
  • the actual delay data satisfies the preset adjustment condition corresponding to the expected delay data includes: the difference between the expected delay data minus the actual delay data is greater than the lower limit difference.
  • adjusting the maximum number of retransmissions of remote control data by the remote control terminal using a preset adjustment strategy includes: if the maximum number of retransmissions is less than the upper limit of the number of retransmissions, the remote control terminal increases the maximum number of retransmissions.
  • the maximum number of retransmissions is less than the upper limit of the number of retransmissions; If the maximum number of retransmissions is less than the upper limit of the number of retransmissions, the maximum number of retransmissions is increased.
  • the remote control terminal sends remote control data to the controlled terminal according to the adjusted retransmission restriction information, and the controlled terminal receives the remote control data.
  • the remote control terminal sends remote control data to the controlled terminal according to the adjusted retransmission restriction information, and the controlled terminal receives the remote control data, including: the remote control terminal obtains the pending information The remote control data sent by the controlled end sends the remote control data to the controlled end through the uplink channel; the controlled end receives the remote control data sent by the remote control end and demodulates the remote control data; if the controlled end If the terminal successfully demodulates the remote control data, it sends demodulation success information to the remote control terminal; if the controlled terminal fails to demodulate the remote control data, it sends demodulation failure information to the remote control terminal.
  • the method includes: if the remote control terminal receives feedback from the controlled terminal If the demodulation failure information of the remote control data is less than the maximum number of retransmissions, the remote control data is retransmitted.
  • the method includes: if the remote control terminal receives feedback from the controlled terminal The demodulation failure information of the remote control data, and the number of retransmissions of the remote control data is not less than the maximum number of retransmissions, return to the remote control terminal to obtain the remote control data to be sent to the controlled terminal, and send it to the controlled terminal through the uplink channel The steps of remote control data continue to be executed.
  • the method includes: if the demodulation feedback from the controlled terminal is received successfully Information, return to the remote control terminal to obtain the remote control data to be sent to the controlled terminal, and continue to execute the step of sending the remote control data to the controlled terminal through the uplink channel.
  • the demodulating the remote control data includes: the controlled terminal obtains the software corresponding to the remote control data received each time. Bit information; the controlled end combines the soft bit information corresponding to each of the remote control data to obtain combined information; the controlled end decodes the combined information to obtain the demodulation result of the remote control data.
  • the remote control terminal sends remote control data to the controlled terminal according to the adjusted retransmission restriction information, and after the controlled terminal receives the remote control data, the method includes:
  • Figure 11 is a schematic diagram of the scene structure where the controlled terminal and the remote control terminal interact.
  • the interactive system shown in Figure 11 includes a controlled terminal, a remote control terminal, and an air interface wireless link.
  • the wireless link from the remote control terminal to the controlled terminal is an uplink channel or uplink, and the wireless link from the controlled terminal to the remote control terminal
  • the link is a downlink channel or downlink.
  • the controlled terminal includes a first wireless communication module and a flight control module, wherein the flight control module includes a behavior analysis sub-module; the remote control terminal includes a rod amount collection module and a second wireless communication module, wherein, The lever amount collecting module is used to collect the lever amount data generated in response to the user operating the remote control terminal, and send the lever amount data to the controlled terminal through the second wireless communication module.
  • the remote control data adaptive retransmission method includes steps S401 to S409.
  • the first wireless communication module of the controlled terminal receives the lever amount data from the remote control terminal.
  • the first wireless communication module reports the rod amount data to the flight control module.
  • the behavior analysis sub-module in the flight control module analyzes the remote control sensitivity data based on information such as the frequency of the attitude change of the controlled end and the frequency of the stick amount change.
  • the remote control sensitivity data L is divided into multiple different levels, such as ⁇ L1, L2,..., Li, Lj,..., Ln ⁇ , where j is greater than i, and compared to the remote control sensitivity data as Li,
  • the sensitivity data is Lj
  • the amount of stick that the user operates the remote end changes more frequently, and the control sensitivity of the controlled end is higher.
  • the controlled terminal pre-stores the mapping relationship between remote control sensitivity data and attitude change frequency and/or stick amount change frequency, such as ⁇ attitude change frequency, stick amount change frequency ⁇ to ⁇ L1, L2 ,...,Li,Lj,...,Ln ⁇ ; according to the change frequency of the attitude and/or the change frequency of the stick amount obtained at the current time, the remote control sensitivity data corresponding to the current time can be obtained.
  • the mapping relationship between remote control sensitivity data and attitude change frequency and/or stick amount change frequency such as ⁇ attitude change frequency, stick amount change frequency ⁇ to ⁇ L1, L2 ,...,Li,Lj,...,Ln ⁇
  • mapping relationship between remote control sensitivity data and control quantity characteristics and/or action characteristics can be determined according to offline big data analysis and statistics.
  • the flight control module sends the remote control sensitivity data L to the first wireless communication module.
  • the first wireless communication module counts the average delay Td of uplink data packet transmission in the past period T.
  • the first wireless communication module sends the remote control sensitivity data L and the average delay Td of uplink data packet transmission to the second wireless communication module of the remote control terminal.
  • the second wireless communication module of the remote control terminal queries the current expected delay data Te based on the remote control sensitivity data L fed back by the controlled terminal and the current modulation coding gear MCS of the current uplink operation.
  • the current expected delay data Te(MCS, L) is queried.
  • the second wireless communication module compares the current average delay Td of the uplink data packet transmission with the current expected delay data Te(MCS, L), and adjusts the maximum number of retransmissions.
  • the maximum number of retransmissions is lowered; if the actual delay data is less than the lower threshold corresponding to the expected delay data or the difference between the expected delay data minus the actual delay data is greater than the lower limit difference, and the maximum number of retransmissions is less than the upper limit of the number of retransmissions, Then increase the maximum number of retransmissions.
  • the second wireless communication module updates the uplink configuration according to the adjusted maximum number of retransmissions, and sets the maximum number of retransmissions as the maximum allowable number of uplink retransmissions in the new period T.
  • step S408 return to step S401 to implement periodic statistical remote control sensitivity data, average delay Td, and periodic transmission of remote control sensitivity data L, modulation coding gear MCS, and uplink data packets.
  • the average delay Td dynamically adjusts the maximum number of retransmissions in the next cycle to ensure that the actual delay can keep up with the expected delay configuration as soon as possible.
  • the remote control data adaptive retransmission method provided in this embodiment adaptively adjusts the retransmission constraint information of the remote control data through the actual delay data and expected delay data transmitted by the remote control data, and then performs remote control data retransmission according to the adjusted retransmission constraint information Transmission; adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, which can take into account the lower delay of remote control and the anti-interference ability and reliability of remote control data transmission, effectively improving the performance experience of the user through the remote control terminal , To ensure the safe operation of the charged end.
  • FIG. 13 is a schematic block diagram of a remote control device 600 according to an embodiment of the present specification.
  • the remote control device 600 includes a processor 601 and a memory 602, and the processor 601 and the memory 602 are connected by a bus 603, which is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 601 may be a micro-controller unit (MCU), a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 601 is configured to run a computer program stored in the memory 602, and implement the aforementioned data adaptive retransmission method for the remote control terminal when the computer program is executed.
  • the processor 601 is configured to run a computer program stored in the memory 602, and implement the following steps when executing the computer program:
  • remote control data is sent to the controlled end through an uplink channel.
  • the embodiments of this specification also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation Example provides the steps of the data adaptive retransmission method for the remote control terminal.
  • the computer-readable storage medium may be the internal storage unit of the remote control device described in any of the foregoing embodiments, such as the hard disk or memory of the remote control device.
  • the computer-readable storage medium may also be an external storage device of the remote control device, such as a plug-in hard disk equipped on the remote control device, a Smart Media Card (SMC), or Secure Digital (SD). ) Card, Flash Card, etc.
  • SMC Smart Media Card
  • SD Secure Digital
  • FIG. 14 is a schematic block diagram of a movable platform 700 according to an embodiment of the present specification.
  • the mobile platform 700 includes a processor 701 and a memory 702.
  • the processor 701 and the memory 702 are connected by a bus 703, which is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (MCU), a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the aforementioned data adaptive retransmission method for the controlled end when the computer program is executed.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the following steps when executing the computer program:
  • the remote control sensitivity data and the actual delay data are sent to the remote control terminal through the downlink channel, so that the remote control terminal determines the expected delay data according to the remote control sensitivity data, and according to the expected delay data and the actual delay of the remote control data Data adjustment and retransmission constraint information.
  • FIG. 15 is a schematic block diagram of an aircraft 800 according to an embodiment of the present specification.
  • the aircraft 800 includes a processor 801 and a memory 802, and the processor 801 and the memory 802 are connected through a bus 803.
  • the aircraft 800 also includes a flight component 804, which is used for flight.
  • the processor 801 is configured to run a computer program stored in the memory 802, and implement the aforementioned data adaptive retransmission method for the controlled end when the computer program is executed.
  • the processor 801 is configured to run a computer program stored in the memory 802, and implement the following steps when executing the computer program:
  • the remote control sensitivity data and the actual delay data are sent to the remote control terminal through the downlink channel, so that the remote control terminal determines the expected delay data according to the remote control sensitivity data, and according to the expected delay data and the actual delay of the remote control data Data adjustment and retransmission constraint information.
  • the embodiments of this specification also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation
  • This example provides the steps of the data adaptive retransmission method for the controlled end.
  • the computer-readable storage medium may be the removable platform described in any of the foregoing embodiments, such as an internal storage unit of an aircraft, such as a hard disk or memory of the removable platform.
  • the computer-readable storage medium may also be an external storage device of the removable platform, such as a plug-in hard disk, a smart media card (SMC), or a secure digital (Secure Digital) equipped on the removable platform. , SD) card, flash card (Flash Card), etc.
  • the remote control device, movable platform, aircraft, and computer-readable storage medium provided in the above-mentioned embodiments of this specification adaptively adjust the retransmission constraint information of the remote control data through the actual delay data and expected delay data transmitted by the remote control data, and then according to the adjusted Retransmission constraint information for remote control data transmission; adaptively adjusted retransmission constraint information can achieve a better retransmission strategy, which can take into account the lower delay of remote control and the anti-interference ability and reliability of remote control data transmission, effectively improving users Control the performance experience of the controlled terminal through the remote control terminal to ensure the safe operation of the controlled terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本说明书公开了一种数据自适应重传方法、遥控装置、飞行器和可移动平台,包括:被控端获取遥控数据的实际延迟数据,将实际延迟数据向遥控端发送(S310);遥控端获取遥控数据传输的预期延迟数据,根据预期延迟数据和实际延迟数据调整重传约束信息(S320);遥控端根据调整后的重传约束信息向被控端发送遥控数据,被控端接收遥控数据(S330)。

Description

数据自适应重传方法、遥控装置、飞行器和可移动平台 技术领域
本说明书涉及数据通信技术领域,尤其涉及一种数据自适应重传方法、遥控装置、飞行器和可移动平台。
背景技术
遥控端向被控端发送遥控数据的无线信道,通常存在较多的干扰;而遥控数据的传输通常对延迟较为敏感,对丢包较为不敏感。
现有的遥控数据传输方式之一是遥控端将遥控数据只向被控端发送一次,然后发送新的遥控数据,即无重传方式,但是这种方式的抗干扰/抗路损能力较差。
现有的遥控数据传输方式之二是在遥控数据解调失败时,遥控端将遥控数据向被控端重传多次;但是有些场景下重传多次会导致遥控延迟增加。
因此现有的遥控数据传输方式无法实现抗干扰能力和遥控延迟之间的平衡。
发明内容
基于此,本说明书提供了一种数据自适应重传方法、遥控装置、飞行器、可移动平台和存储介质,旨在解决现有的遥控数据传输方法无法实现抗干扰能力和遥控延迟之间的平衡等技术问题。
第一方面,本说明书提供了一种数据自适应重传方法,用于遥控端,包括:
通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据;
根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据;
根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息;
基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据。
第二方面,本说明书提供了一种数据自适应重传方法,用于被控端,包括:
通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
基于所述遥控数据获得遥控灵敏度数据;
获取所述遥控数据的实际延迟数据;
通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
第三方面,本说明书提供了一种数据自适应重传方法,包括:
被控端获取遥控数据传输的实际延迟数据,将所述实际延迟数据向遥控端发送;
所述遥控端获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述实际延迟数据调整重传约束信息;
所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据。
第四方面,本说明书提供了一种遥控装置,所述遥控装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据;
根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据;
根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息;
基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据。
第五方面,本说明书提供了一种可移动平台,所述可移动平台包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
基于所述遥控数据获得遥控灵敏度数据;
获取所述遥控数据的实际延迟数据;
通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使 所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
第六方面,本说明书提供了一种飞行器,所述飞行器包括飞行组件、存储器和处理器;
所述飞行组件用于飞行;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
基于所述遥控数据获得遥控灵敏度数据;
获取所述遥控数据的实际延迟数据;
通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
第七方面,本说明书提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被处理器以实现上述的方法。
本说明书实施例提供了一种数据自适应重传方法、遥控装置、飞行器、可移动平台和存储介质,通过遥控数据的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运行。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书的公开内容。
附图说明
为了更清楚地说明本说明书实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1是本说明书一实施例提供的一种数据自适应重传方法的流程示意图;
图2是遥控端和被控端之间进行数据传输的示意图;
图3是图1中数据自适应重传方法一实施方式的流程示意图;
图4是图1中进行遥控数据的传输一实施方式的子流程示意图;
图5是图1中调整遥控数据的重传约束信息一实施方式的子流程示意图;
图6是图1中获取预期延迟数据一实施方式的子流程示意图;
图7是图1中获取预期延迟数据另一实施方式的子流程示意图;
图8是本说明书另一实施例提供的一种数据自适应重传方法的流程示意图;
图9为图8中接收遥控数据的一实施方式的子流程示意图;
图10是本说明书再一实施例提供的一种数据自适应重传方法的流程示意图;
图11是遥控端和被控端之间进行交互的场景示意图;
图12是图10中数据自适应重传方法一实施方式的流程示意图;
图13是本说明书一实施例提供的一种遥控装置的示意性框图;
图14是本说明书一实施例提供的一种可移动平台的示意性框图;
图15是本说明书一实施例提供的一种飞行器的示意性框图。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本说明书的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本说明书一实施例提供的一种数据自适应重传方法的 流程示意图。所述数据自适应重传方法可以应用在遥控端或被控端中,用于管理遥控端和被控端之间数据的传输等过程;其中遥控端可以为手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等;被控端可以为机器人、机器车、飞行器等可移动平台。进一步而言,飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
进一步而言,遥控端和被控端之间通过无线信道传输遥控数据。作为遥控端向被控端发送数据的上行信道,可以发送连续指令包,这样即使丢包,如果后面还有遥控数据包能够抵达被控端,对于整个被控端是影响不大的。从这个角度来说,上行信道对于上行信道丢包并不敏感。
示例性的,如图2所示,从被控端到遥控端的无线信道,称为下行信道,用于传输被控端采集到的数据,例如视频、图片、传感器数据、以及被控端,如无人机的状态信息(OSD)等遥测数据。
示例性的,如图2所示,从被控端到遥控端的无线信道,称为下行信道,用于传输被控端采集到的数据,例如视频、图片、传感器数据、以及被控端,如无人机的状态信息(OSD)等遥测数据。
示例性的,如图2所示,从遥控端到被控端的无线信道,称为上行信道,用于传输遥控数据;例如被控端为飞行器时,上行信道用于传输飞控指令以及拍照、录像、返航等控制指令。
如图1所示,本实施例遥控数据自适应重传方法包括步骤S110至步骤S130。
S110、获取遥控数据传输的实际延迟数据,获取遥控数据传输的预期延迟数据。
示例性的,通过统计过去预设时长内所传输的各遥控数据的延迟时间,然后计算该预设时长内遥控数据传输的平均延迟,将该平均延迟作为实际延迟数据。
示例性的,被控端中的无线通信模块负责统计遥控数据传输的平均延迟Td,并将平均延迟Td发送给遥控端,遥控端将接收到的平均延迟Td作为实际延迟数据。
预期延迟数据用于表示为了保证遥控操作的质量,需要对遥控数据的延迟进行的限制;例如为了保证遥控操作的质量,需要控数据的延迟小于或等于, 即不大于预期延迟数据的值。
示例性的,预期延迟数据可以由用户根据遥控端和被控端之间的无线通信质量、对遥控操作反应速度的要求等进行制定,并将制定的预期延迟数据输入遥控端和/或被控端。
示例性的,遥控端和/或被控端根据用户对遥控端的操作灵敏度、被控端姿态控制的灵敏度、遥控端和被控端之间的通信参数等至少一项进行评估,得到遥控数据传输的预期延迟数据。
在一些实施方式中,如图3所示,数据自适应重传方法用于遥控端时,步骤S110包括步骤S101和步骤S102。
S101、通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据。
示例性的,被控端通过统计过去预设时长内从遥控端接收的各遥控数据的延迟时间,然后计算该预设时长内遥控数据的平均延迟,将该平均延迟作为实际延迟数据发送给遥控端。
示例性的,被控端基于从遥控端接收到的遥控数据获得遥控灵敏度数据,将该遥控灵敏度数据发送给遥控端。
示例性的,遥控灵敏度数据可以由用户对遥控端操作的灵敏度、被控端姿态控制的灵敏度、遥控端和被控端之间的通信参数等中的至少一项确定。
S102、根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
示例性的,遥控灵敏度数据的值越高,表示遥控延迟对遥控操作的影响越高,因此遥控端所确定的预期延迟数据的值越小。
S120、根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
在本实施例中,遥控端到被控端的上行信道传输遥控数据时,对延迟较为敏感。例如,如果从遥控端接收到控制指令到被控端(如无人机)实际做出相应的操作的延迟过大,则用户会明显感觉到被控端的操作滞后,会恶化实际的飞行操控体验,甚至影响被控端的安全。
在本实施例中,遥控端到被控端的上行信道传输遥控数据时,对丢包较为不敏感。例如,遥控端会不停的监测摇杆的控制指令并将控制指令对应的遥控数据持续的发往被控端。由于人操作遥控端的动作是连续的,所以即便有一次 或多次控制指令对应的遥控数据传输失败,如果后面还有控制指令对应的遥控数据能够抵达被控端,对于整个被控端的正常操作,如飞行是影响不大的。
通过遥控数据的重传,可以提高被控端解调出遥控数据的概率,从而有更高的概率不丢包;但是当重传的策略不够好,例如重传次数过大时,可能会造成遥控数据传输的延迟增大,例如造成上行的飞控延迟过大,造成遥控体验下降。重传约束信息表示用于约束遥控数据重传策略的数据,例如包括用于限制重传次数和/或重传时间间隔的数据。
在一些实施方式中,所述根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,包括:
根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,所述最大重传次数用于约束遥控数据重复传输的次数。
具体的,最大重传次数用于约束被控端可以重复发送各遥控数据的次数的最大值。例如,根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数为cnt_max_harq。
示例性的,若实际延迟数据的值大于预期延迟数据的值,可以将最大重传次数调整为较低的值,以降低遥控数据传输的延迟。
在另一些实施方式中,所述根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,包括:
根据所述预期延迟数据和所述实际延迟数据调整遥控数据的重传间隔。
示例性的,若实际延迟数据的值大于预期延迟数据的值,可以将遥控数据的重传间隔调整为较低的值,以降低遥控数据传输的延迟。
S130、根据调整后的重传约束信息进行遥控数据的传输。
具体的,根据调整后的重传约束信息对应的重传策略,实现遥控端和被控端之间遥控数据的传输。例如根据调整后的重传次数要求、重传间隔要求等进行遥控数据的传输。
示例性的,遥控端与被控端之间遥控数据的无线通信使用的是ISM频段,例如2.4G或5.8G的频段,该频段存在较多的干扰。
在一些实施方式中,如图3所示,数据自适应重传方法用于遥控端时,步骤S130包括步骤S103。
S103、基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控 数据。
示例性的,遥控端生成某遥控数据后将遥控数据通过上行帧向被控端发送,被控端接收并解调该上行帧。如果被控端解调成功,则向遥控端发送用于表示解调成功的ACK指示,以使遥控端根据该ACK指示继续向被控端发送新的遥控数据;如果被控端解调失败,则向遥控端发送用于表示解调失败的NACK指示,请求遥控端重传NACK指示对应的遥控数据。
若遥控端接收到被控端反馈的NACK指示,且遥控端发送该NACK指示对应的遥控数据的次数不超过最大重传次数cnt_max_harq,则再次向被控端发送该遥控数据,同时还可以先暂停发送新生成的遥控数据;如果遥控端发送该NACK指示对应的遥控数据的次数已经达到或超过最大重传次数cnt_max_harq,则放弃重传该遥控数据,而向被控端发送新的遥控数据。
本实施例提供的遥控数据自适应重传方法,通过遥控数据传输的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后根据调整后的重传约束信息进行遥控数据的传输;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运行。
在一些实施例中,步骤S130根据调整后的重传约束信息进行遥控数据的传输之后,还包括:响应于周期性的调整触发指令,返回所述获取遥控数据传输的实际延迟数据,获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,根据调整后的重传约束信息进行遥控数据的传输的步骤继续执行。
在一些实施方式中,数据自适应重传方法用于遥控端时,步骤S103基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据之后,还包括:响应于周期性的调整触发指令,返回所述通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据,根据所述遥控灵敏度数据确定遥控数据的预期延迟数据,根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据的步骤继续执行。
示例性的,周期性的执行上述步骤S110至步骤S130,或者周期性的执行 上述步骤S101、步骤S102、步骤S120和步骤S103;例如在每个周期结束时获取一次遥控数据传输的预期延迟数据和实际延迟数据,以及根据所述预期延迟数据和所述实际延迟数据调整一次遥控数据的重传约束信息,然后在下一周期根据调整后的重传约束信息进行遥控数据的传输。从而实现了重传约束信息的周期性动态调节,可以使得实际的延迟情况可以尽快跟上预期的延迟配置,进一步提高了重传约束信息和遥控数据重传策略对遥控环境的适应性。
在本实施例中,预期延迟数据可以由遥控端和/或被控端获取,实际延迟数据可以由遥控端和/或被控端获取,预期延迟数据或者实际延迟数据可以通过无线信道在遥控端和被控端之间进行传输,调整重传约束信息的步骤可以由遥控端或者被控端执行;当重传约束信息由被控端调整后,被控端可以将调整后的重传约束信息发送给遥控端,以由遥控端根据重传约束信息向被控端发送遥控数据。
示例性的,被控端中的无线通信模块将获取的实际延迟数据发送给遥控端,遥控端获取预期延迟数据,然后遥控端根据预期延迟数据和从被控端接收的实际延迟数据调整遥控数据的重传约束信息,并根据调整后的重传约束信息将遥控数据向被控端发送。
例如,遥控端端执行步骤S110获取遥控数据传输的实际延迟数据时,包括:遥控端从被控端获取所述被控端在预设时长内所接收遥控数据的平均延迟时间,以将平均延迟时间作为实际延迟数据时。示例性的,该预设时长可以为执行上述步骤S110至步骤S130的周期的时长。
在一些实施方式中,如图4所示,步骤S103基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,包括步骤S131和步骤S132。
S131、获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据。
具体的,遥控端生成某遥控数据后将遥控数据通过上行帧向被控端发送,被控端接收并解调该上行帧。如果被控端解调成功,则向遥控端发送用于表示解调成功的ACK指示,如果被控端解调失败,则向遥控端发送用于表示解调失败的NACK指示。
S132、若接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数小于所述最大重传次数,重发所述遥控数据。
具体的,若遥控端接收到被控端反馈的NACK指示,且遥控端发送该NACK指示对应的遥控数据的次数小于最大重传次数cnt_max_harq,则再次向被控端发送该遥控数据,同时还可以先暂停发送新生成的遥控数据。
示例性的,如图4所示,步骤S103基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,还包括步骤S133。
S133、若接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数不小于所述最大重传次数,返回所述获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
具体的,虽然接收到所述被控端反馈的解调失败信息,但是遥控端以将发送过最大重传次数cnt_max_harq,则可以放弃重传该遥控数据,而向被控端发送新的遥控数据。由于人操作遥控端的动作是连续的,所以即便有一次或多次遥控数据传输失败,如果后面还有遥控数据能够抵达被控端,对于被控端的正常操作,如飞行是影响不大的。
示例性的,如图4所示,步骤S103基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,还包括步骤S134。
S134、若接收到所述被控端反馈的解调成功信息,返回所述获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
如果被控端解调某遥控数据成功,则向遥控端发送用于表示解调成功的ACK指示;若遥控端接收到所述被控端反馈的解调成功信息,则获取新生成的遥控数据,通过上行信道向所述被控端发送所述遥控数据。
通过遥控数据的重传,可以提高被控端解调出遥控数据的概率,从而有更高的概率不丢包,可以提高遥控数据传输的抗干扰性能,提高上行信道传输遥控数据的稳定性。还基于调整后的最大重传次数适时放弃重传解调失败的遥控数据,使得新的遥控数据可以较快向被控端发送,降低新的遥控数据的延迟。
示例性的,被控端接收到遥控端重传的遥控数据后,可以将重传的遥控数据解调得到的软比特信息,和之前解调该遥控数据得到的软比特信息进行合并解调。合并解调可以实现更好的解调性能,有利于抵抗更大的路损或者有更强的抗干扰能力,从而有更高的概率不丢包。
在一些实施方式中,如图5所示,所述根据所述预期延迟数据和所述实际 延迟数据调整遥控数据的最大重传次数,包括步骤S121和步骤S122。
S121、若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,以预设调整策略调整遥控数据的最大重传次数。
示例性的,遥控端存储了用于判断是否调整,以及如何调整重传约束信息,如最大重传次数的预设调整条件;还存储了预设调整条件对应的用于规定如何调整重传约束信息,如最大重传次数的预设调整策略。以实现在合适时机以合适的方式调整重传约束信息,如最大重传次数。
示例性的,所述根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:
S122、若所述实际延迟数据不满足所述预期延迟数据对应的预设调整条件,保持所述最大重传次数不变。
示例性的,如果某时刻遥控端和被控端之间遥控数据传输的实际延迟数据能够满足预期,则可以不调整最大重传次数。
在一些实施方式中,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
所述实际延迟数据大于所述预期延迟数据对应的上限阈值。
示例性的,实际延迟数据表示为Td,预期延迟数据表示为Te,所述预期延迟数据对应的上限阈值表示为Ti;如果Td大于Ti,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。
示例性的,预期延迟数据对应的上限阈值Ti等于预期延迟数据Te和预设的上限差值ΔT1之和。如果Td大于Te+ΔT1,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。
在一些实施方式中,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
所述实际延迟数据减去所述预期延迟数据的差大于上限差值。
示例性的,若实际延迟数据Td减去预期延迟数据Te的差大于上限差值ΔT1,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。
示例性的,所述以预设调整策略调整遥控数据的最大重传次数,包括:
若最大重传次数大于重传次数下限,将所述最大重传次数调低。
具体的,若实际延迟数据大于所述预期延迟数据对应的上限阈值,或者实 际延迟数据减去所述预期延迟数据的差大于上限差值,则判断最大重传次数是否大于重传次数下限;如果判定最大重传次数大于重传次数下限,则将所述最大重传次数调低。
重传次数下限用于表示遥控数据的最少重传次数,即不论最大重传次数如何调整,均不能小于重传次数下限。示例性的,重传次数下限为1。
在一些实施方式中,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
所述实际延迟数据小于所述预期延迟数据对应的下限阈值。
示例性的,所述预期延迟数据对应的下限阈值表示为Tj;如果实际延迟数据Td小于Tj,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。
示例性的,预期延迟数据对应的下限阈值Tj等于预期延迟数据Te减去预设的下限差值ΔT2。如果Td小于Te-ΔT2,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。ΔT2可以与ΔT1相等,也可以与ΔT1不相等。
在一些实施方式中,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
所述预期延迟数据减去所述实际延迟数据的差大于下限差值。
示例性的,若预期延迟数据Te减去实际延迟数据Td的差大于下限差值ΔT2,则判定实际延迟数据满足所述预期延迟数据对应的预设调整条件。
示例性的,所述以预设调整策略调整遥控数据的最大重传次数,包括:
若最大重传次数小于重传次数上限,将所述最大重传次数调高。
具体的,若实际延迟数据小于所述预期延迟数据对应的下限阈值,或者预期延迟数据减去所述实际延迟数据的差大于下限差值,则判断最大重传次数是否小于重传次数上限;如果判定最大重传次数小于重传次数上限,则将所述最大重传次数调高。
重传次数上限用于表示遥控数据重传次数的最大值,即不论最大重传次数如何调整,均不能大于重传次数上限。示例性的,重传次数上限为MAX_HARQ。
在一些实施方式中,步骤S121若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,以预设调整策略调整遥控数据的最大重传次数包括:若 实际延迟数据大于所述预期延迟数据对应的上限阈值或者实际延迟数据减去所述预期延迟数据的差大于上限差值,且最大重传次数大于重传次数下限,则将所述最大重传次数调低;若实际延迟数据小于所述预期延迟数据对应的下限阈值或者预期延迟数据减去所述实际延迟数据的差大于下限差值,且最大重传次数小于重传次数上限,则将所述最大重传次数调高。
示例性的,若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,以预设调整策略调整遥控数据的最大重传次数cnt_max_harq,具体根据下式实现。
Figure PCTCN2019092698-appb-000001
具体的,当实际的延迟比预期延迟超过上限差值ΔT1,则尝试减少遥控数据的上行最大重传次数;当实际的延迟比预期延迟还有下限差值ΔT2的差距时,则尝试增加遥控数据的上行最大重传次数;其他情况保持最大重传次数cnt_max_harq不变,例如如果最大重传次数已经是重传次数下限时不将最大重传次数下调,如果最大重传次数已经是重传次数上限MAX_HARQ时不将最大重传次数上调。
在一些实施方式中,步骤S110中的获取遥控数据传输的预期延迟数据,包括:获取遥控灵敏度数据,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
示例性的,遥控灵敏度数据可以由用户对遥控端操作的灵敏度、被控端姿态控制的灵敏度、遥控端和被控端之间的通信参数等中的至少一项确定。
示例性的,遥控灵敏度数据的值越高,表示遥控延迟对遥控操作的影响越高,因此确定的预期延迟数据的值越小。
通过根据实际延迟数据和由遥控灵敏度数据确定的预期延迟数据对重传约束信息进行调整,使得调整后的重传约束可以适应用户对遥控端操作的灵敏度、被控端姿态控制的灵敏度、遥控端和被控端之间的通信参数等,进一步提高重传策略对遥控环境的适应性。
在一些实施方式中,如图6所示,所述获取遥控灵敏度数据,包括步骤S111和步骤S112。
S111、获取遥控端的控制量特征和/或被控端的动作特征。
具体的,遥控端的控制量特征用于表示用户对遥控端操作的灵敏度,被控端的动作特征用于表示被控端姿态控制的灵敏度。所述控制量特征和动作特征均可体现对用户或被控端对遥控数据传输时延的要求;例如,在相同的延迟条件下,用户对遥控端操作的灵敏度越高,则用户对遥控数据传输的延迟越敏感;在相同的延迟条件下,被控端姿态控制的灵敏度越高,则被控端因为遥控数据时延产生的姿态变化滞后会越多。
示例性的,所述获取遥控端的控制量特征,包括:根据预设时长内响应于用户操作生成的杆量数据,计算所述遥控端的杆量变化频度。
示例性的,遥控数据包括杆量数据。具体的,遥控端包括控制杆,用户在操作控制杆时,遥控端会响应于控制杆的动作生成杆量数据,并将杆量数据通过上行信道向被控端发送;被控端根据遥控数据中的杆量数据进行姿态控制等操作。
示例性的,遥控端根据过去的预设时长内响应于用户操作生成的杆量数据,计算所述遥控端的杆量变化频度;例如若杆量数据的值变化越频繁,则杆量变化频度越大。
示例性的,被控端的动作特征包括所述被控端的姿态变化频度。被控端可以根据过去的预设时长内被控端姿态的变化量确定姿态变化频度,例如,若被控端的飞行高度、转向角度的变化越频繁,则姿态变化频度越大。
具体的,遥控端可以从被控端获取被控端的动作特征,如姿态变化频度。
S112、根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
在一些实施方式中,所述根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据,包括:
基于遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系,根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
示例性的,将遥控灵敏度数据分为多个不同的等级,例如{L1,L2,…,Li,Lj,…,Ln},其中,j大于i,且相较于遥控灵敏度数据为Li,遥控灵敏度数据为Lj时用户操作遥控端的杆量变化频度更高,对被控端操控灵敏度的要求更高。
示例性的,遥控端预先存储了遥控灵敏度数据与控制量特征和/或动作特征 之间的映射关系,如{遥控端的控制量特征,被控端的动作特征}到{L1,L2,…,Li,Lj,…,Ln}之间的映射;根据当前时刻获取的控制量特征和/或动作特征,可以获取当前时刻对应的遥控灵敏度数据。
具体的,可以根据离线大数据分析和统计的方式确定遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系。
示例性的,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关;具体的,杆量变化频度越高,表示用户对遥控灵敏度的要求越高。
示例性的,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关;具体的,姿态变化频度越高,表示被控端对操控灵敏度的要求越高。
示例性的,当用户不停地调整被控端,如飞行器的姿态,例如遥控被控端前后左右来回折返,大姿态刹停等的情况下,遥控灵敏度数据的值比较大。
根据控制量特征和/或所述动作特征确定遥控灵敏度数据,使得在调整重传约束信息时,将用户操作遥控端的特性和/或被控端的姿态变化特性考虑在重传策略的调整中,提高重传策略对不同用户、不同操作特性和/或被控端的姿态变化特性的适应性。
在另一些实施方式中,所述获取遥控灵敏度数据,包括:从被控端获取遥控灵敏度数据。
具体的,所述遥控灵敏度数据是由所述被控端根据被控端的动作特征和/或遥控端的控制量特征获取的。
示例性的,遥控端的控制量特征包括杆量变化频度;被控端从遥控端接收杆量数据,根据过去的预设时长内的杆量数据计算所述遥控端杆量变化频度。
示例性的,被控端的动作特征包括所述被控端的姿态变化频度。被控端可以根据过去的预设时长内被控端姿态的变化量确定姿态变化频度,例如,若被控端的飞行高度、转向角度的变化越频繁,则姿态变化频度越大。
被控端根据被控端的动作特征和/或遥控端的控制量特征获取遥控灵敏度数据之后,将遥控灵敏度数据发送给遥控端。示例性的,被控端基于遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系,根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
通过被控端确定遥控灵敏度数据,可以节省遥控端的计算资源;以便遥控端更快响应用户的操作以更好的对被控端进行控制。
在一些实施方式中,如图6所示,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括步骤S113。
S113、基于预期延迟数据与遥控灵敏度数据的正相关关系,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
示例性的,遥控灵敏度数据的值越高,表示遥控延迟对遥控操作的影响越高,因此确定的预期延迟数据的值越小。
在一些实施方式中,预期延迟数据与遥控灵敏度数据之间的关系如表1所示。
表1预期延迟数据与遥控灵敏度数据之间的关系
遥控灵敏度数据 L1 L2 Ln
预期延迟数据 Te(L1) Te(L2) Te(Ln)
其中,L1<L2<…<Ln,且Te(L1)<Te(L2)<…<Te(Ln),即预期延迟数据与遥控灵敏度数据为正相关关系。
示例性的,基于查询表1,根据实际的遥控灵敏度数据确定遥控数据传输的预期延迟数据。
在一些实施方式中,如图7所示,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括步骤S114。
S114、根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
示例性的,遥控端和被控端之间的无线数据传输根据预设的调制编码策略实现。例如,不同的调制编码策略码流不同、对信道的信号噪声比率(signal-to-noise ratio,SNR)要求不同,抵抗干扰能力或者抗路损能力不同。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应码流的负相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
具体的,在遥控灵敏度数据相同的情况下,调制编码策略对应码流越高,如遥控端向被控端发送遥控数据的上行信道单位时间可以发送数据的数量越多,则预期延迟数据越低。
通过将遥控端上行信道的码率因素融合至预期延迟数据的确定中,可以使得预期延迟数据更准确。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应抗干扰能力的正相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
具体的,在遥控灵敏度数据相同的情况下,调制编码策略对应的抗干扰能力越高,如遥控端向被控端发送遥控数据的上行信道的抗干扰能力越高,则预期延迟数据越大。
通过将遥控端上行信道的抗干扰能力因素融合至预期延迟数据的确定中,可以使得预期延迟数据更准确。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
基于预期延迟数据与遥控灵敏度数据和上行信道的调制编码策略之间的映射关系,根据所述遥控灵敏度数据和上行信道的调制编码策略查询遥控数据传输的预期延迟数据。
根据预先存储的预期延迟数据与遥控灵敏度数据和上行信道的调制编码策略之间的映射关系,可以更快速的得到预期延迟数据。
在一些实施方式中,预期延迟数据与遥控灵敏度数据、调制编码策略之间的关系如表2所示。
表2预期延迟数据与遥控灵敏度数据、调制编码策略之间的关系
L\MCS MCS_0 MCS_1 MCS_K
L1 Te(MCS_0,L1) Te(MCS_1,L1) Te(MCS_K,L1)
Ln Te(MCS_0,Ln) Te(MCS_1,Ln) Te(MCS_K,Ln)
其中,L表示遥控灵敏度数据,其值可以为L1、L2、…、Ln;MCS表示调制编码策略,其值可以为MCS_0、MCS_1、MCS_2、…、MCS_K。n、K均为自然数;Te(MCS_0,L1)至Te(MCS_K,Ln)表示对应于相应遥控灵敏度数据和相应调制编码策略对应的预期延迟数据。
示例性的,调制编码策略可以为遥控端设置的调制编码(MCS)档位,MCS_0表示遥控端的上行无线传输最低调制编码档位,码流最低,对信道的SNR要求最低,抵抗干扰或者路损的能力最大。MCS_K表示遥控端的上行无线传输最高调制编码档位,码流最高,对信道的信噪比SNR要求最高,抵抗干扰或者路损的能力最小。
示例性的,不同遥控灵敏度数据和不同调制编码策略对应的预期延迟数据的值,可以通过离线训练的方式训练得到。
具体的,相同遥控灵敏度数据L的情况下,遥控端工作的调制编码(MCS)档位越低,则预期允许的延迟Te越大;如表2所示,同一行的预期延迟数据中,从左往右,呈现出变小的趋势,如Te(MCS_0,Ln)>Te(MCS_1,Ln)>…>Te(MCS_K,Ln)。
例如,当遥控端工作的调制编码档位越高的时候,这个时候一般被控端处于近场环境,信道质量较高,信噪比SNR较高;这个时候用户对于被控端操控的流畅度要求较高,即要求的延迟较小;基于较小的预期延迟数据,可以将最大重传次数调整的较小。当遥控端工作的调制编码档位非常低的时候,说明这个时候被控端距离遥控端距离很远,信道质量条件较差,信噪比较低,这个时候被控端可能会出现上行无线链路断链而长期无法得到遥控数据导致被控端失控;因此这个时候倾向于将最大重传次数调整的较高以提高上行抗路损或抗干扰能力,提高被控端正常接收遥控数据的概率,以保障被控端不失控。
具体的,相同调制编码(MCS)档位的情况下,遥控灵敏度数据L越高,则预期允许的延迟Te越小;如表2所示,同一列的预期延迟数据中,从上往下,呈现出变小的趋势,如Te(MCS_K,L1)>…>Te(MCS_K,Ln),即预期延迟数据与遥控灵敏度数据为正相关关系。
具体的,在表2中,左上角的预期延迟数据Te(MCS_0,L1)最大,右下角 的预期延迟数据Te(MCS_K,Ln)最小。
在一些实施方式中,所述遥控数据传输的预期延迟数据不小于上行调度传输周期对应的调度时长。
示例性的,根据遥控灵敏度数据和调制编码策略确定的预期延迟数据最小不能小于上行调度传输周期对应的调度时长。
具体的,最小的预期延迟数据Te(MCS_K,Ln)不小于调度传输周期对应的调度时长,有:
Te(MCS_K,Ln)≥TTI-ΔT3
其中,TTI表示上行调度传输周期的时长,例如TTI等于5毫秒,ΔT3表示第一保护间隔。
在一些实施方式中,所述遥控数据传输的预期延迟数据不大于传输延迟上限,所述传输延迟上限是根据上行调度传输周期与重传次数上限的乘积确定的。
示例性的,根据遥控灵敏度数据和调制编码策略确定的预期延迟数据最大不能大于传输延迟上限。
具体的,有:
Te(MCS_0,L1)≤MAX_HARQ×TTI+ΔT4
其中,MAX_HARQ表示重传次数上限,TTI表示上行调度传输周期的时长,ΔT4表示第二保护间隔;MAX_HARQ×TTI+ΔT4表示传输延迟上限,即上行信道的最大传输延迟。第二保护间隔ΔT4可以与第一保护间隔ΔT3相等也可以不相等,可以为等于0或大于0的数。
通过上行调度传输周期,如上行信道的空口传输延迟确定预期延迟数据的范围,使得调整后的最大重传次数可以始终满足上行信道传输遥控数据的要求。
本实施例提供的遥控数据自适应重传方法,通过遥控数据传输的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后根据调整后的重传约束信息进行遥控数据的传输;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运行。
请参阅图8,图8是本申请另一实施例提供的一种遥控数据自适应重传方法的流程示意图。所述遥控数据自适应重传方法可以应用在被控端中,用于管 理遥控端和被控端之间数据的传输等过程;其中被控端可以为机器人、机器车、飞行器等可移动平台。进一步而言,飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
如图8所示,本实施例遥控数据自适应重传方法包括步骤S210至步骤S240。
S210、通过上行信道接收遥控端基于重传约束信息发送的遥控数据。
示例性的,被控端通过与遥控端之间的上行信道接收遥控端发送的遥控数据,以根据遥控数据作出相应操作,如改变移动姿态等。
示例性的,重传约束信息表示用于约束遥控数据重传策略的数据,例如包括用于限制重传次数和/或重传时间间隔的数据。
具体的,遥控端基于重传约束信息向被控端发送遥控数据,如根据重传约束信息中的最大重传次数和/或重传间隔控制遥控数据发送的次数和时间间隔。
在本实施例中,遥控端到被控端的上行信道传输遥控数据时,对延迟较为敏感,对丢包较为不敏感。通过遥控数据的重传,可以提高被控端解调出遥控数据的概率,从而有更高的概率不丢包;但是当重传的策略不够好,例如重传次数过大时,可能会造成遥控数据传输的延迟增大,例如造成上行的飞控延迟过大,造成遥控体验下降。
在一些实施方式中,如图9所示,步骤S210通过上行信道接收遥控端基于重传约束信息发送的遥控数据,包括步骤S211至步骤S213。
S211、接收遥控端基于重传约束信息发送的遥控数据,解调所述遥控数据。
示例性的,遥控端生成某遥控数据后将遥控数据通过上行帧向被控端发送,被控端接收并解调该上行帧。
S212、若解调所述遥控数据成功,向所述遥控端发送解调成功信息。
示例性的,如果被控端解调成功,则向遥控端发送用于表示解调成功的ACK指示;若遥控端接收到所述被控端反馈的解调成功信息,则获取新生成的遥控数据,通过上行信道向所述被控端发送所述遥控数据。
S213、若解调所述遥控数据失败,向所述遥控端发送解调失败信息。
示例性的,如果被控端解调失败,则向遥控端发送用于表示解调失败的NACK指示。若遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数小于所述最大重传次数,则遥控端向被控端重发所述遥控数据;若遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数不 小于所述最大重传次数,则遥控端放弃重传该遥控数据,而向被控端发送新的遥控数据。
通过遥控数据的重传,可以提高被控端解调出遥控数据的概率,从而有更高的概率不丢包;还基于调整后的最大重传次数适时放弃重传解调失败的遥控数据,使得新的遥控数据可以较快向被控端发送,降低新的遥控数据的延迟。
示例性的,若接收所述遥控数据的次数大于一次,则所述解调所述遥控数据,包括:获取各次接收的所述遥控数据对应的软比特信息;将各所述遥控数据对应的软比特信息进行合并得到合并信息;对所述合并信息进行解码,得到所述遥控数据解调的结果。
示例性的,遥控端第一次将某个遥控数据发送给被控端后,被控端对第一次接收的遥控数据进行信道均衡后进行解调,并将解调出的软比特信息进行缓存,软比特信息也称为对数似然信息(Log Likehood Ratio,LLR);之后对第一次接收的遥控数据对应的软比特信息进行FEC解码,并对解码后的数据进行CRC校验本次接收的正确性。如果被控端通过CRC校验出数据接收正确,则清除缓存的软比特信息,并向所述遥控端发送解调成功信息;如果被控端通过CRC校验出数据接收错误,则向所述遥控端发送解调失败信息,以使遥控端再次发送这个遥控数据。
示例性的,对于一遥控数据,被控端在每次接收到之后均进行解调得到对应的软比特信息;如果接收某遥控数据的次数为至少两次,则将各次接收、解调该遥控数据得到的软比特信息进行合并得到合并信息;具体的,合并的方法主要有两种,分别是跟踪合并(Chase Combine,CC合并)和最大速率合并(Maximum Ratio Combine,MRC合并)。之后对合并信息进行FEC解码,得到所述遥控数据解调的结果。然后对解码后的数据进行CRC校验本次接收的正确性,如果被控端通过CRC校验出数据接收正确,则清除缓存的软比特信息,并向所述遥控端发送解调成功信息;如果被控端通过CRC校验出数据接收错误,则向所述遥控端发送解调失败信息,以使遥控端再次发送这个遥控数据。
合并解调有更好的解调性能,有利于抵抗更大的路损或者有更强的刚干扰能力,从而有更高的概率不丢包。
S220、基于所述遥控数据获得遥控灵敏度数据。
在一些实施方式中,步骤S220基于所述遥控数据获得遥控灵敏度数据,包 括:被控端获取被控端的动作特征和/或遥控端的控制量特征,根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据。
示例性的,被控端的动作特征包括被控端响应于遥控数据的动作特征,遥控端的控制量特征包括所述遥控数据中遥控端的控制量特征。
具体的,遥控端的控制量特征用于表示用户对遥控端操作的灵敏度,被控端的动作特征用于表示被控端姿态控制的灵敏度。所述控制量特征和动作特征均可体现对用户或被控端对遥控数据传输时延的要求;例如,在相同的延迟条件下,用户对遥控端操作的灵敏度越高,则用户对遥控数据传输的延迟越敏感;在相同的延迟条件下,被控端姿态控制的灵敏度越高,则被控端因为遥控数据时延产生的姿态变化滞后会越多。
示例性的,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
示例性的,所述获取遥控端的控制量特征,包括:根据预设时长内从所述遥控端所接收遥控数据中的杆量数据,计算所述遥控端的杆量变化频度。
示例性的,遥控数据包括杆量数据。具体的,遥控端包括控制杆,用户在操作控制杆时,遥控端会响应于用户操作控制杆的动作生成杆量数据,并将杆量数据通过上行信道向被控端发送;被控端根据遥控数据中的杆量数据进行姿态控制等操作,也可以根据预设时长内从所述遥控端所接收遥控数据中的杆量数据,计算所述遥控端的杆量变化频度;例如若杆量数据的值变化越频繁,则杆量变化频度越大。
示例性的,被控端的动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。被控端可以根据过去的预设时长内被控端姿态的变化量确定姿态变化频度,例如,若被控端的飞行高度、转向角度的变化越频繁,则姿态变化频度越大。
在一些实施方式中,所述根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据,包括:
基于遥控灵敏度数据与动作特征和/或控制量特征之间的映射关系,根据所述动作特征和/或所述控制量特征获取遥控灵敏度数据。
示例性的,被控端预先存储了遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系,如{遥控端的控制量特征,被控端的动作特征}到{L1,L2,…, Li,Lj,…,Ln}之间的映射;被控端根据当前时刻获取的控制量特征和/或动作特征,可以获取当前时刻对应的遥控灵敏度数据。
示例性的,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关;具体的,杆量变化频度越高,表示用户对遥控灵敏度的要求越高。
示例性的,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关;具体的,姿态变化频度越高,表示被控端对操控灵敏度的要求越高。
S230、获取所述遥控数据的实际延迟数据。
示例性的,通过统计过去预设时长内所传输的各遥控数据的延迟时间,然后计算该预设时长内遥控数据传输的平均延迟,将该平均延迟作为实际延迟数据。
在一些实施例中,步骤S230获取所述遥控数据的实际延迟数据,包括:
获取预设时长内从所述遥控端所接收遥控数据的延迟时间,计算平均延迟时间。
示例性的,被控端中的无线通信模块负责统计遥控数据传输的平均延迟Td,并将平均延迟Td为实际延迟数据发送给遥控端。
S240、通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
在一些实施方式中,所述遥控端通过下行信道从被控端获取遥控灵敏度数据之后,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
示例性的,所述遥控端基于预期延迟数据与遥控灵敏度数据的正相关关系,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
示例性的,所述遥控端根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
所述遥控端根据控制量特征和/或所述动作特征确定遥控灵敏度数据,使得在调整重传约束信息时,将用户操作遥控端的特性和/或被控端的姿态变化特性考虑在重传策略的调整中,提高重传策略对不同用户、不同操作特性和/或被控端的姿态变化特性的适应性。
在一些实施方式中,所述遥控端根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息包括:遥控端根据预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,所述最大重传次数用于约束遥控数据重复传输的次数。
示例性的,若实际延迟数据大于所述预期延迟数据对应的上限阈值或者实际延迟数据减去所述预期延迟数据的差大于上限差值,且最大重传次数大于重传次数下限,则遥控端将所述最大重传次数调低;若实际延迟数据小于所述预期延迟数据对应的下限阈值或者预期延迟数据减去所述实际延迟数据的差大于下限差值,且最大重传次数小于重传次数上限,则遥控端将所述最大重传次数调高。
具体的,遥控端根据预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数cnt_max_harq,具体根据下式实现。
Figure PCTCN2019092698-appb-000002
具体的,当实际的延迟比预期延迟超过上限差值ΔT1,则尝试减少遥控数据的上行最大重传次数;当实际的延迟比预期延迟还有下限差值ΔT2的差距时,则尝试增加遥控数据的上行最大重传次数;其他情况保持最大重传次数cnt_max_harq不变,例如如果最大重传次数已经是重传次数下限时不将最大重传次数下调,如果最大重传次数已经是重传次数上限MAX_HARQ时不将最大重传次数上调。
本实施例提供的遥控数据自适应重传方法,通过遥控数据传输的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后根据调整后的重传约束信息进行遥控数据的传输;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运行。
请参阅图10,图10是本申请另一实施例提供的一种遥控数据自适应重传方法的流程示意图。所述遥控数据自适应重传方法可以应用在被控端和遥控端中,用于管理遥控端和被控端之间数据的传输等过程。
如图10所示,本实施例遥控数据自适应重传方法包括步骤S310至步骤S330。
S310、被控端获取遥控数据传输的实际延迟数据,将所述实际延迟数据向遥控端发送。
示例性的,所述被控端获取遥控数据传输的实际延迟数据,包括:所述被控端获取预设时长内从所述遥控端所接收遥控数据的延迟时间,计算平均延迟时间。
示例性的,被控端中的无线通信模块负责统计遥控数据传输的平均延迟Td,并将平均延迟Td发送给遥控端,遥控端将接收到的平均延迟Td作为实际延迟数据。
S320、所述遥控端获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述实际延迟数据调整重传约束信息。
示例性的,所述遥控端获取遥控数据传输的预期延迟数据,包括:所述遥控端获取遥控灵敏度数据,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
在一些实施方式中,所述遥控端获取遥控灵敏度数据,包括:所述遥控端获取遥控端的控制量特征和/或被控端的动作特征;所述遥控端根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
示例性的,所述遥控端根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据,包括:所述遥控端基于遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系,根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
示例性的,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
具体的,所述遥控端获取遥控端的控制量特征,包括:所述遥控端根据预设时长内响应于用户操作生成的杆量数据,计算所述遥控端的杆量变化频度。
示例性的,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。
在另一些实施方式中,所述遥控端获取遥控灵敏度数据,包括:所述遥控端从所述被控端获取遥控灵敏度数据。
具体的,所述遥控端获取遥控灵敏度数据之前,包括:所述被控端获取遥 控灵敏度数据,将所述遥控灵敏度数据向遥控端发送。
示例性的,所述被控端获取遥控灵敏度数据,包括:所述被控端获取被控端的动作特征和/或遥控端的控制量特征,根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据。
示例性的,所述被控端根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据,包括:所述被控端基于遥控灵敏度数据与动作特征和/或控制量特征之间的映射关系,根据所述动作特征和/或所述控制量特征获取遥控灵敏度数据。
示例性的,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
具体的,所述被控端获取遥控端的控制量特征,包括:所述被控端根据预设时长内从所述遥控端所接收遥控数据中的杆量数据,计算所述遥控端的杆量变化频度。
示例性的,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。
在一些实施方式中,所述遥控端根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:所述遥控端基于预期延迟数据与遥控灵敏度数据的正相关关系,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
在一些实施方式中,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应码流的负相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应抗干扰能力的正相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
示例性的,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:基于预期延迟数据与遥控灵敏度数据和上行信道的调制编码策略之间的映射关系,根据所述遥控灵敏度数据和上行信道的调制编码策略查询遥控数据传输的预期延迟数据。
在一些实施方式中,所述遥控数据传输的预期延迟数据不小于上行调度传输周期对应的调度时长。
在一些实施方式中,所述遥控数据传输的预期延迟数据不大于传输延迟上限,所述传输延迟上限是根据上行调度传输周期与重传次数上限的乘积确定的。
在一些实施方式中,步骤S320中的所述遥控端根据所述预期延迟数据和所述实际延迟数据调整重传约束信息,包括:
所述遥控端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,所述最大重传次数用于约束遥控数据重复传输的次数。
具体的,所述遥控端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,所述遥控端以预设调整策略调整遥控数据的最大重传次数。
具体的,所述遥控端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:若所述实际延迟数据不满足所述预期延迟数据对应的预设调整条件,所述遥控端保持所述最大重传次数不变。
示例性的,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:所述实际延迟数据大于所述预期延迟数据对应的上限阈值。
示例性的,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:所述实际延迟数据减去所述预期延迟数据的差大于上限差值。
具体的,所述遥控端以预设调整策略调整遥控数据的最大重传次数,包括:若最大重传次数大于重传次数下限,所述遥控端将所述最大重传次数调低。
例如,若实际延迟数据大于所述预期延迟数据对应的上限阈值,或者实际延迟数据减去所述预期延迟数据的差大于上限差值,则判断最大重传次数是否大于重传次数下限;如果判定最大重传次数大于重传次数下限,则将所述最大重传次数调低。
示例性的,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:所述实际延迟数据小于所述预期延迟数据对应的下限阈值。
示例性的,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:所述预期延迟数据减去所述实际延迟数据的差大于下限差值。
具体的,所述遥控端以预设调整策略调整遥控数据的最大重传次数,包括:若最大重传次数小于重传次数上限,所述遥控端将所述最大重传次数调高。
例如,若实际延迟数据小于所述预期延迟数据对应的下限阈值,或者预期延迟数据减去所述实际延迟数据的差大于下限差值,则判断最大重传次数是否小于重传次数上限;如果判定最大重传次数小于重传次数上限,则将所述最大重传次数调高。
S330、所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据。
在一些实施方式中,步骤S330所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据,包括:所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据;所述被控端接收所述遥控端发送的遥控数据,解调所述遥控数据;若所述被控端解调所述遥控数据成功,向所述遥控端发送解调成功信息;若所述被控端解调所述遥控数据失败,向所述遥控端发送解调失败信息。
示例性的,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:若所述遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数小于所述最大重传次数,重发所述遥控数据。
示例性的,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:若所述遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数不小于所述最大重传次数,返回所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
示例性的,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:若接收到所述被控端反馈的解调成功信息,返回所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
在一些实施方式中,若所述被控端接收所述遥控数据的次数大于一次,所 述解调所述遥控数据,包括:所述被控端获取各次接收的所述遥控数据对应的软比特信息;所述被控端将各所述遥控数据对应的软比特信息进行合并得到合并信息;所述被控端对所述合并信息进行解码,得到所述遥控数据解调的结果。
在一些实施方式中,所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据之后,包括:
响应于周期性的调整触发指令,返回所述遥控端获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述实际延迟数据调整重传约束信息,所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据的步骤继续执行。
如图11所示为被控端和遥控端进行交互的场景结构示意图。
如图11所示的交互系统,包括被控端、遥控端和空口无线链路,其中,从遥控端到被控端的无线链路为上行信道或上行链路,从被控端到遥控端的无线链路为下行信道或下行链路。
示例性的,如图11所示,被控端包括第一无线通信模块、飞控模块,其中飞控模块包括行为分析子模块;遥控端包括杆量收集模块和第二无线通信模块,其中,杆量收集模块用于收集响应于用户操作遥控端生成的杆量数据,并通过第二无线通信模块将杆量数据发送给被控端。
在一些实施方式中,如图12所示,遥控数据自适应重传方法包括步骤S401至步骤S409。
S401、被控端的第一无线通信模块接收来自遥控端的杆量数据。
S402、第一无线通信模块将杆量数据上报给飞控模块。
S403、飞控模块中的行为分析子模块基于被控端的姿态变化频度,杆量变化频度等信息分析遥控灵敏度数据。
具体的,将遥控灵敏度数据L分为多个不同的等级,例如{L1,L2,…,Li,Lj,…,Ln},其中,j大于i,且相较于遥控灵敏度数据为Li,遥控灵敏度数据为Lj时用户操作遥控端的杆量变化频度更高,对被控端操控灵敏度的要求更高。
示例性的,被控端预先存储了遥控灵敏度数据与姿态变化频度和/或杆量变化频度之间的映射关系,如{姿态变化频度,杆量变化频度}到{L1,L2,…,Li,Lj,…,Ln}之间的映射;根据当前时刻获取的姿态变化频度和/或杆量变化频 度,可以获取当前时刻对应的遥控灵敏度数据。
具体的,可以根据离线大数据分析和统计的方式确定遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系。
S404、飞控模块将遥控灵敏度数据L发送给第一无线通信模块。
S405、第一无线通信模块统计过去的周期时长T内上行数据包传输的平均延迟Td。
S406、第一无线通信模块将遥控灵敏度数据L以及上行数据包传输的平均延迟Td发送给遥控端的第二无线通信模块。
S407、遥控端的第二无线通信模块基于被控端反馈的遥控灵敏度数据L和当前上行工作的调制编码档位MCS,查询当前的预期延迟数据Te。
具体的,基于表2所示的预期延迟数据与遥控灵敏度数据、调制编码策略之间的关系,查询当前的预期延迟数据Te(MCS,L)。
S408、第二无线通信模块将当前的上行数据包传输的平均延迟Td和当前的预期延迟数据Te(MCS,L)进行比较,对最大重传次数进行调整。
具体的,若实际延迟数据大于所述预期延迟数据对应的上限阈值或者实际延迟数据减去所述预期延迟数据的差大于上限差值,且最大重传次数大于重传次数下限,则将所述最大重传次数调低;若实际延迟数据小于所述预期延迟数据对应的下限阈值或者预期延迟数据减去所述实际延迟数据的差大于下限差值,且最大重传次数小于重传次数上限,则将所述最大重传次数调高。
S409、第二无线通信模块根据调整后的最大重传次数更新上行配置,将最大重传次数作为新一周期T内最大允许的上行重传次数。
在一些实施方式中,在步骤S408之后,返回步骤S401,以实现周期性的统计遥控灵敏度数据、平均延迟Td,以及周期性的根据遥控灵敏度数据L、调制编码档位MCS以及上行数据包传输的平均延迟Td动态调整下一周期的最大重传次数,以保障实际的延迟情况可以尽快跟上预期的延迟配置。
本实施例提供的遥控数据自适应重传方法,通过遥控数据传输的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后根据调整后的重传约束信息进行遥控数据的传输;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运 行。
请参阅图13,图13是本说明书一实施例提供的遥控装置600的示意性框图。该遥控装置600包括处理器601和存储器602,处理器601和存储器602通过总线603连接,该总线603比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器601可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器602可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现前述的用于遥控端的数据自适应重传方法。
示例性的,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现如下步骤:
通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据;
根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据;
根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息;
基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据。
本说明书的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的用于遥控端的数据自适应重传方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的遥控装置的内部存储单元,例如所述遥控装置的硬盘或内存。所述计算机可读存储介质也可以是所述遥控装置的外部存储设备,例如所述遥控装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
请参阅图14,图14是本说明书一实施例提供的可移动平台700的示意性框图。该可移动平台700包括处理器701和存储器702,处理器701和存储器702通过总线703连接,该总线703比如为I2C(Inter-integrated Circuit) 总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现前述的用于被控端的数据自适应重传方法。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现如下步骤:
通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
基于所述遥控数据获得遥控灵敏度数据;
获取所述遥控数据的实际延迟数据;
通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
请参阅图15,图15是本说明书一实施例提供的一种飞行器800的示意性框图。
该飞行器800包括处理器801和存储器802,处理器801和存储器802通过总线803连接。该飞行器800还包括飞行组件804,飞行组件804用于飞行。
其中,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现前述的用于被控端的数据自适应重传方法。
示例性的,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现如下步骤:
通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
基于所述遥控数据获得遥控灵敏度数据;
获取所述遥控数据的实际延迟数据;
通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
本说明书的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的用于被控端的数据自适应重传方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台,如飞行器的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本说明书上述实施例提供的遥控装置、可移动平台、飞行器、计算机可读存储介质,通过遥控数据传输的实际延迟数据和预期的延迟数据自适应调整遥控数据的重传约束信息,然后根据调整后的重传约束信息进行遥控数据的传输;自适应调整的重传约束信息可以实现更好的重传策略,可以兼顾遥控的较低延迟以及遥控数据传输的抗干扰能力和可靠性,有效提高用户通过遥控端操控被控端的性能体验,保障被控端的安全运行。
应当理解,在此本说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本说明书。
还应当理解,在本说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本说明书的具体实施方式,但本说明书的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本说明书揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本说明书的保护范围之内。因此,本说明书的保护范围应以权利要求的保护范围为准。

Claims (73)

  1. 一种数据自适应重传方法,用于遥控端,其特征在于,包括:
    通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据;
    根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据;
    根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息;
    基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据。
  2. 根据权利要求1所述的数据自适应重传方法,其特征在于,所述根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,包括:
    根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,所述最大重传次数用于约束遥控数据重复传输的次数。
  3. 根据权利要求2所述的数据自适应重传方法,其特征在于,所述根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:
    若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,以预设调整策略调整遥控数据的最大重传次数。
  4. 根据权利要求3所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据大于所述预期延迟数据对应的上限阈值。
  5. 根据权利要求3所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据减去所述预期延迟数据的差大于上限差值。
  6. 根据权利要求4或5所述的数据自适应重传方法,其特征在于,所述以预设调整策略调整遥控数据的最大重传次数,包括:
    若最大重传次数大于重传次数下限,将所述最大重传次数调低。
  7. 根据权利要求3所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据小于所述预期延迟数据对应的下限阈值。
  8. 根据权利要求3所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述预期延迟数据减去所述实际延迟数据的差大于下限差值。
  9. 根据权利要求7或8所述的数据自适应重传方法,其特征在于,所述以预设调整策略调整遥控数据的最大重传次数,包括:
    若最大重传次数小于重传次数上限,将所述最大重传次数调高。
  10. 根据权利要求3所述的数据自适应重传方法,其特征在于,所述根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:
    若所述实际延迟数据不满足所述预期延迟数据对应的预设调整条件,保持所述最大重传次数不变。
  11. 根据权利要求1所述的数据自适应重传方法,其特征在于,所述遥控灵敏度数据是由所述被控端根据被控端的动作特征和/或遥控端的控制量特征获取的。
  12. 根据权利要求1所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
  13. 根据权利要求1所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:
    根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
  14. 根据权利要求13所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应码流的负相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
  15. 根据权利要求13所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应抗干扰能力的正相关关系,根据所述遥控灵敏度数据和上行信 道的调制编码策略确定遥控数据传输的预期延迟数据。
  16. 根据权利要求13所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据和上行信道的调制编码策略之间的映射关系,根据所述遥控灵敏度数据和上行信道的调制编码策略查询遥控数据传输的预期延迟数据。
  17. 根据权利要求13所述的数据自适应重传方法,其特征在于,所述遥控数据传输的预期延迟数据不小于上行调度传输周期对应的调度时长。
  18. 根据权利要求13所述的数据自适应重传方法,其特征在于,所述遥控数据传输的预期延迟数据不大于传输延迟上限,所述传输延迟上限是根据上行调度传输周期与重传次数上限的乘积确定的。
  19. 根据权利要求1-5、7-8、10-18中任一项所述的数据自适应重传方法,其特征在于,所述获取遥控数据的实际延迟数据,包括:
    获取所述被控端在预设时长内所接收遥控数据的平均延迟时间。
  20. 根据权利要求2-5、7-8、10中任一项所述的数据自适应重传方法,其特征在于,所述基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,包括:
    获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据;
    若接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数小于所述最大重传次数,重发所述遥控数据。
  21. 根据权利要求20所述的数据自适应重传方法,其特征在于,所述基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,包括:
    若接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数不小于所述最大重传次数,返回所述获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
  22. 根据权利要求20所述的数据自适应重传方法,其特征在于,所述基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据,包括:
    若接收到所述被控端反馈的解调成功信息,返回所述获取待向被控端发送 的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
  23. 根据权利要求1-5、7-8、10-18中任一项所述的数据自适应重传方法,其特征在于,所述基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据之后,包括:
    响应于周期性的调整触发指令,返回所述通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据,根据所述遥控灵敏度数据确定遥控数据的预期延迟数据,根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息,基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据的步骤继续执行。
  24. 一种数据自适应重传方法,用于被控端,其特征在于,包括:
    通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
    基于所述遥控数据获得遥控灵敏度数据;
    获取所述遥控数据的实际延迟数据;
    通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
  25. 根据权利要求24所述的数据自适应重传方法,其特征在于,所述基于所述遥控数据获得遥控灵敏度数据,包括:
    获取被控端的动作特征和/或遥控端的控制量特征,根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据。
  26. 根据权利要求25所述的数据自适应重传方法,其特征在于,所述根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据,包括:
    基于遥控灵敏度数据与动作特征和/或控制量特征之间的映射关系,根据所述动作特征和/或所述控制量特征获取遥控灵敏度数据。
  27. 根据权利要求25所述的数据自适应重传方法,其特征在于,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
  28. 根据权利要求27所述的数据自适应重传方法,其特征在于,所述获取遥控端的控制量特征,包括:
    根据预设时长内从所述遥控端所接收遥控数据中的杆量数据,计算所述遥 控端的杆量变化频度。
  29. 根据权利要求25所述的数据自适应重传方法,其特征在于,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。
  30. 根据权利要求24所述的数据自适应重传方法,其特征在于,所述获取遥控数据的实际延迟数据,包括:
    获取预设时长内从所述遥控端所接收遥控数据的延迟时间,计算平均延迟时间。
  31. 根据权利要求24-30中任一项所述的数据自适应重传方法,其特征在于,所述接收遥控端基于重传约束信息发送的遥控数据,包括:
    接收遥控端基于重传约束信息发送的遥控数据,解调所述遥控数据;
    若解调所述遥控数据成功,向所述遥控端发送解调成功信息;
    若解调所述遥控数据失败,向所述遥控端发送解调失败信息。
  32. 根据权利要求31所述的数据自适应重传方法,其特征在于,若接收所述遥控数据的次数大于一次,则所述解调所述遥控数据,包括:
    获取各次接收的所述遥控数据对应的软比特信息;
    将各所述遥控数据对应的软比特信息进行合并得到合并信息;
    对所述合并信息进行解码,得到所述遥控数据解调的结果。
  33. 一种数据自适应重传方法,其特征在于,包括:
    被控端获取遥控数据传输的实际延迟数据,将所述实际延迟数据向遥控端发送;
    所述遥控端获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述实际延迟数据调整重传约束信息;
    所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据。
  34. 根据权利要求33所述的数据自适应重传方法,其特征在于,所述根据所述预期延迟数据和所述实际延迟数据调整重传约束信息,包括:
    所述遥控端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,所述最大重传次数用于约束遥控数据重复传输的次数。
  35. 根据权利要求34所述的数据自适应重传方法,其特征在于,所述遥控 端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:
    若所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,所述遥控端以预设调整策略调整遥控数据的最大重传次数。
  36. 根据权利要求35所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据大于所述预期延迟数据对应的上限阈值。
  37. 根据权利要求35所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据减去所述预期延迟数据的差大于上限差值。
  38. 根据权利要求36或37所述的数据自适应重传方法,其特征在于,所述遥控端以预设调整策略调整遥控数据的最大重传次数,包括:
    若最大重传次数大于重传次数下限,所述遥控端将所述最大重传次数调低。
  39. 根据权利要求35所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述实际延迟数据小于所述预期延迟数据对应的下限阈值。
  40. 根据权利要求35所述的数据自适应重传方法,其特征在于,所述实际延迟数据满足所述预期延迟数据对应的预设调整条件,包括:
    所述预期延迟数据减去所述实际延迟数据的差大于下限差值。
  41. 根据权利要求39或40所述的数据自适应重传方法,其特征在于,所述遥控端以预设调整策略调整遥控数据的最大重传次数,包括:
    若最大重传次数小于重传次数上限,所述遥控端将所述最大重传次数调高。
  42. 根据权利要求35所述的数据自适应重传方法,其特征在于,所述遥控端根据所述预期延迟数据和所述实际延迟数据调整遥控数据的最大重传次数,包括:
    若所述实际延迟数据不满足所述预期延迟数据对应的预设调整条件,所述遥控端保持所述最大重传次数不变。
  43. 根据权利要求33-37、39-40、42中任一项所述的数据自适应重传方法,其特征在于,所述遥控端获取遥控数据传输的预期延迟数据,包括:
    所述遥控端获取遥控灵敏度数据,根据所述遥控灵敏度数据确定遥控数据 传输的预期延迟数据。
  44. 根据权利要求43所述的数据自适应重传方法,其特征在于,所述遥控端获取遥控灵敏度数据,包括:
    所述遥控端获取遥控端的控制量特征和/或被控端的动作特征;
    所述遥控端根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
  45. 根据权利要求44所述的数据自适应重传方法,其特征在于,所述遥控端根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据,包括:
    所述遥控端基于遥控灵敏度数据与控制量特征和/或动作特征之间的映射关系,根据所述控制量特征和/或所述动作特征获取遥控灵敏度数据。
  46. 根据权利要求44所述的数据自适应重传方法,其特征在于,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
  47. 根据权利要求44所述的数据自适应重传方法,其特征在于,所述遥控端获取遥控端的控制量特征,包括:
    所述遥控端根据预设时长内响应于用户操作生成的杆量数据,计算所述遥控端的杆量变化频度。
  48. 根据权利要求44所述的数据自适应重传方法,其特征在于,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。
  49. 根据权利要求43所述的数据自适应重传方法,其特征在于,所述遥控端获取遥控灵敏度数据之前,包括:
    所述被控端获取遥控灵敏度数据,将所述遥控灵敏度数据向遥控端发送;
    所述遥控端获取遥控灵敏度数据,包括:
    所述遥控端从所述被控端获取遥控灵敏度数据。
  50. 根据权利要求49所述的数据自适应重传方法,其特征在于,所述被控端获取遥控灵敏度数据,包括:
    所述被控端获取被控端的动作特征和/或遥控端的控制量特征,根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据。
  51. 根据权利要求50所述的数据自适应重传方法,其特征在于,所述被控端根据所述动作特征和/或所述控制量特征确定遥控灵敏度数据,包括:
    所述被控端基于遥控灵敏度数据与动作特征和/或控制量特征之间的映射关系,根据所述动作特征和/或所述控制量特征获取遥控灵敏度数据。
  52. 根据权利要求50所述的数据自适应重传方法,其特征在于,所述控制量特征包括所述遥控端的杆量变化频度,所述遥控灵敏度数据的值与所述杆量变化频度正相关。
  53. 根据权利要求52所述的数据自适应重传方法,其特征在于,所述被控端获取遥控端的控制量特征,包括:
    所述被控端根据预设时长内从所述遥控端所接收遥控数据中的杆量数据,计算所述遥控端的杆量变化频度。
  54. 根据权利要求50所述的数据自适应重传方法,其特征在于,所述动作特征包括所述被控端的姿态变化频度,所述遥控灵敏度数据的值与所述姿态变化频度正相关。
  55. 根据权利要求43所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系,根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据。
  56. 根据权利要求43所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据,包括:
    根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
  57. 根据权利要求56所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调制编码策略对应码流的负相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
  58. 根据权利要求56所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据的正相关关系以及预期延迟数据与调 制编码策略对应抗干扰能力的正相关关系,根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据。
  59. 根据权利要求56所述的数据自适应重传方法,其特征在于,所述根据所述遥控灵敏度数据和上行信道的调制编码策略确定遥控数据传输的预期延迟数据,包括:
    基于预期延迟数据与遥控灵敏度数据和上行信道的调制编码策略之间的映射关系,根据所述遥控灵敏度数据和上行信道的调制编码策略查询遥控数据传输的预期延迟数据。
  60. 根据权利要求56所述的数据自适应重传方法,其特征在于,所述遥控数据传输的预期延迟数据不小于上行调度传输周期对应的调度时长。
  61. 根据权利要求56所述的数据自适应重传方法,其特征在于,所述遥控数据传输的预期延迟数据不大于传输延迟上限,所述传输延迟上限是根据上行调度传输周期与重传次数上限的乘积确定的。
  62. 根据权利要求33所述的数据自适应重传方法,其特征在于,所述被控端获取遥控数据传输的实际延迟数据,包括:
    所述被控端获取预设时长内从所述遥控端所接收遥控数据的延迟时间,计算平均延迟时间。
  63. 根据权利要求34-37、39-40、42中任一项所述的数据自适应重传方法,其特征在于,所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据,包括:
    所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据;
    所述被控端接收所述遥控端发送的遥控数据,解调所述遥控数据;
    若所述被控端解调所述遥控数据成功,向所述遥控端发送解调成功信息;
    若所述被控端解调所述遥控数据失败,向所述遥控端发送解调失败信息。
  64. 根据权利要求63所述的数据自适应重传方法,其特征在于,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:
    若所述遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数小于所述最大重传次数,重发所述遥控数据。
  65. 根据权利要求64所述的数据自适应重传方法,其特征在于,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:
    若所述遥控端接收到所述被控端反馈的解调失败信息,且所述遥控数据的重发次数不小于所述最大重传次数,返回所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
  66. 根据权利要求64所述的数据自适应重传方法,其特征在于,所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据之后,包括:
    若接收到所述被控端反馈的解调成功信息,返回所述遥控端获取待向被控端发送的遥控数据,通过上行信道向所述被控端发送所述遥控数据的步骤继续执行。
  67. 根据权利要求63所述的数据自适应重传方法,其特征在于,若所述被控端接收所述遥控数据的次数大于一次,所述解调所述遥控数据,包括:
    所述被控端获取各次接收的所述遥控数据对应的软比特信息;
    所述被控端将各所述遥控数据对应的软比特信息进行合并得到合并信息;
    所述被控端对所述合并信息进行解码,得到所述遥控数据解调的结果。
  68. 根据权利要求33-37、39-40、42、62中任一项所述的数据自适应重传方法,其特征在于,所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据,所述被控端接收所述遥控数据之后,包括:
    响应于周期性的调整触发指令,返回所述遥控端获取遥控数据传输的预期延迟数据,根据所述预期延迟数据和所述实际延迟数据调整重传约束信息,所述遥控端根据调整后的重传约束信息向所述被控端发送遥控数据的步骤继续执行。
  69. 一种遥控装置,其特征在于,所述遥控装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    通过下行信道从被控端获取遥控数据的实际延迟数据和遥控灵敏度数据;
    根据所述遥控灵敏度数据确定遥控数据传输的预期延迟数据;
    根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息;
    基于调整后的重传约束信息,通过上行信道向所述被控端发送遥控数据。
  70. 一种可移动平台,其特征在于,所述可移动平台包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
    基于所述遥控数据获得遥控灵敏度数据;
    获取所述遥控数据的实际延迟数据;
    通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
  71. 一种飞行器,其特征在于,所述飞行器包括飞行组件、存储器和处理器;
    所述飞行组件用于飞行;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    通过上行信道接收遥控端基于重传约束信息发送的遥控数据;
    基于所述遥控数据获得遥控灵敏度数据;
    获取所述遥控数据的实际延迟数据;
    通过下行信道将所述遥控灵敏度数据和实际延迟数据向遥控端发送,以使所述遥控端根据所述遥控灵敏度数据确定预期延迟数据,并根据所述预期延迟数据和所述遥控数据的实际延迟数据调整重传约束信息。
  72. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被处理器执行以实现如权利要求1-23中任一项所述的方法。
  73. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被处理器执行以实现如权利要求24-32中任一项所述的方法。
PCT/CN2019/092698 2019-06-25 2019-06-25 数据自适应重传方法、遥控装置、飞行器和可移动平台 WO2020258011A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980012304.0A CN111758231A (zh) 2019-06-25 2019-06-25 数据自适应重传方法、遥控装置、飞行器和可移动平台
PCT/CN2019/092698 WO2020258011A1 (zh) 2019-06-25 2019-06-25 数据自适应重传方法、遥控装置、飞行器和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092698 WO2020258011A1 (zh) 2019-06-25 2019-06-25 数据自适应重传方法、遥控装置、飞行器和可移动平台

Publications (1)

Publication Number Publication Date
WO2020258011A1 true WO2020258011A1 (zh) 2020-12-30

Family

ID=72672802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092698 WO2020258011A1 (zh) 2019-06-25 2019-06-25 数据自适应重传方法、遥控装置、飞行器和可移动平台

Country Status (2)

Country Link
CN (1) CN111758231A (zh)
WO (1) WO2020258011A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588597A (zh) * 2009-07-01 2009-11-25 南京工业大学 一种基于Kalman滤波的无线流媒体自适应混合FEC/ARQ控制方法
CN102710401A (zh) * 2012-05-30 2012-10-03 陈日清 一种用于高清视频无线传输的跨层自适应失真调制方法
CN103327518A (zh) * 2013-06-24 2013-09-25 中国科学院信息工程研究所 一种基于链路质量的节点休眠调度方法
WO2017121660A1 (en) * 2016-01-11 2017-07-20 Philips Lighting Holding B.V. Method for operating a communication apparatus and communication apparatus
WO2018058803A1 (zh) * 2016-09-30 2018-04-05 瞬已网络科技(上海)有限公司 一种网络实时视频传输方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915477B2 (en) * 2001-12-28 2005-07-05 Lucent Technologies Inc. Delay sensitive adaptive quality control loop for rate adaptation
CN101150385A (zh) * 2006-09-19 2008-03-26 华为技术有限公司 一种数据传输方法及发射机
CN106982107A (zh) * 2016-01-15 2017-07-25 中兴通讯股份有限公司 调度方法、调度器及网络接入设备
CN109788571B (zh) * 2017-11-14 2021-04-23 大唐移动通信设备有限公司 一种数据处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588597A (zh) * 2009-07-01 2009-11-25 南京工业大学 一种基于Kalman滤波的无线流媒体自适应混合FEC/ARQ控制方法
CN102710401A (zh) * 2012-05-30 2012-10-03 陈日清 一种用于高清视频无线传输的跨层自适应失真调制方法
CN103327518A (zh) * 2013-06-24 2013-09-25 中国科学院信息工程研究所 一种基于链路质量的节点休眠调度方法
WO2017121660A1 (en) * 2016-01-11 2017-07-20 Philips Lighting Holding B.V. Method for operating a communication apparatus and communication apparatus
WO2018058803A1 (zh) * 2016-09-30 2018-04-05 瞬已网络科技(上海)有限公司 一种网络实时视频传输方法及装置

Also Published As

Publication number Publication date
CN111758231A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US20070280168A1 (en) Radio base station apparatus and scheduling method
US7454527B2 (en) Architecture and related methods for streaming media content through heterogeneous networks
EP2982074B1 (en) Communication in the presence of uplink-downlink configuration change
CN109644042B (zh) 用于遥控器和无人机的通信方法、装置及通信系统
CN107888342A (zh) 一种网络实时视频传输方法及装置
EP1266478B1 (en) Arq parameter negotiation in a data packet transmission system using link adaptation
CN101030942B (zh) 控制无线数据流传输系统的参数的方法和设备
US9203590B2 (en) Generalized outer loop link adaptation
US10660112B2 (en) Transmission rate regulation method
US20220006566A1 (en) Data transmission method and device
CN112995048B (zh) 数据中心网络的阻塞控制与调度融合方法及终端设备
KR20060121938A (ko) 무선 VoIP의 코덱 지원 용량 확장
WO2009020336A1 (en) Method and system for retransmitting data in a communication system
WO2010071835A1 (en) Method and apparatus for optimizing a retry limit for multimedia systems that are prone to errors
WO2020258011A1 (zh) 数据自适应重传方法、遥控装置、飞行器和可移动平台
CN101908953A (zh) 一种对重传数据进行调度的方法及装置
CN105262643B (zh) 一种基于td-lte移动网络传输特征的丢包区分方法
Zhang et al. Deadline-aware transmission control for real-time video streaming
US20080198803A1 (en) Apparatus and method for retransmitting data in a wireless communication system
US6910080B2 (en) Communication efficiency and performance in an unreliable communication environment
CN100358253C (zh) 调整自动重传请求系统的发射功率的方法
US20110243217A1 (en) Moving picture transmission apparatus, moving picture transmission system, moving picture transmission method, and program
CN111435860B (zh) 传输方法和终端
WO2023010356A1 (zh) 视频传输方法、装置、系统、终端设备、可移动平台和存储介质
WO2021057952A1 (zh) 调制与编码策略值的控制方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935437

Country of ref document: EP

Kind code of ref document: A1