WO2020257955A1 - 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统 - Google Patents

基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统 Download PDF

Info

Publication number
WO2020257955A1
WO2020257955A1 PCT/CN2019/000188 CN2019000188W WO2020257955A1 WO 2020257955 A1 WO2020257955 A1 WO 2020257955A1 CN 2019000188 W CN2019000188 W CN 2019000188W WO 2020257955 A1 WO2020257955 A1 WO 2020257955A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
temperature
temperature sensor
iot
charging
Prior art date
Application number
PCT/CN2019/000188
Other languages
English (en)
French (fr)
Inventor
章礼道
Original Assignee
章礼道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章礼道 filed Critical 章礼道
Priority to CN201980096176.2A priority Critical patent/CN113905924A/zh
Publication of WO2020257955A1 publication Critical patent/WO2020257955A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electric passenger vehicle intelligent battery management system based on 5G-IoT high-precision temperature sensor, which relates to an array application of a high-precision temperature sensor based on 5G-IoT satellite timing, which coordinates the measurement of terminal voltage and current of each series battery pack.
  • Control, edge computing, and cloud computing together form an electric passenger vehicle on-board intelligent battery management system to prevent catastrophic accidents such as spontaneous combustion of the power battery system of electric passenger vehicles, and extend the service life of electric passenger vehicle power batteries and the full life of power batteries The cruising range improves the residual use value of the power battery after retirement.
  • the international practical temperature scale is based on some reproducible specified temperature values in the equilibrium state (defining a fixed point), and standard interpolation instruments indexed on these fixed points of the international practical temperature scale.
  • the international practical temperature scale was divided into three temperature zones. Standard platinum resistance thermometers, standard platinum rhodium (10%) platinum thermocouples and Planck's law of radiation were used to define the temperature values in these temperature zones.
  • the core component of the prior art quartz crystal thermometer is a resonant quartz crystal oscillator. Its working mechanism is different from traditional temperature sensors (platinum resistance thermometers, thermocouple thermometers, etc.). Its working mechanism is “resonance” instead of molecular The “resistance” or “electromotive force” produced by thermal motion.
  • the frequency-temperature characteristic of the prior art quartz crystal oscillator is a cubic polynomial curve that is quite close to a straight line; a, b, and c are the coefficients of the first, second, and third polynomials, respectively, and are related to the cutting type and vibration mode of the quartz wafer related.
  • the prior art quartz crystal thermometer has at least two quartz crystal oscillators, one is a reference quartz crystal oscillator with a temperature of 0 °C, and the other is a quartz crystal oscillator used as a sensor for measuring temperature. The frequency difference between the two is obtained. Temperature measurement; In order to reduce the frequency drift of the reference quartz crystal oscillator, the reference quartz crystal oscillator is usually placed in a temperature-controlled oven; even so, there is still a non-negligible reference frequency drift.
  • the prior art quartz crystal The resolution of the thermometer can be 0.001K ⁇ 0.0001K, but its accuracy can only be 0.1K ⁇ 0.05K.
  • High-precision temperature sensor supporting NB-IoT uses the Internet of Things as a technical means to achieve high-precision temperature measurement Internet industrial applications, but its volume is large and the delay is large, and it cannot be arranged in an array. In the limited space of electric passenger cars, each power battery is monitored and a good low-latency experience is obtained.
  • the power battery system of electric passenger vehicles mostly uses dozens of single cells in parallel to form a battery pack, and the battery packs are connected in series to form a power battery system; each battery pack is arranged with 3 or 4 temperature measurement points for sampling. The ability to collect the actual working temperature of each single battery;
  • Lithium-ion batteries especially ternary lithium-ion batteries
  • battery cells with large internal resistance may be slightly overcharged or over-discharged each time they are charged and discharged; battery inconsistency causes the weakest battery to lose active lithium ions or form Micro-lithium dendrites are the most serious every time, accelerating their aging process and accelerating the process of increasing their internal resistance.
  • Battery inconsistency causes the weakest battery to lose active lithium ions or form
  • Micro-lithium dendrites are the most serious every time, accelerating their aging process and accelerating the process of increasing their internal resistance.
  • their self-discharge current and working temperature are also the highest; when a battery short circuit causes a car’s spontaneous combustion accident, BMS often simultaneously Burned, the accident investigation process is lengthy, and lack of real data support, lack of persuasiveness.
  • GTO Gate-Turn-Off Thyristor
  • 5G-IoT 5G Internet of Things 5G-Internet of Things
  • 5G-Internet of Things is a cellular-based IoT technology with extremely low latency.
  • 5G routers High-bandwidth, low-latency routers are enough to support thousands of IoT sensors to access 5G networks with extremely low latency.
  • Edge computing is a mesh network of micro data centers. Combined with 5G networks, it can process or store key data locally, and push all received data to cloud data centers or cloud storage libraries. Edge computing can process and Analyze the data closer to the source of the generated data, with lower latency.
  • BMS Battery Management System
  • SOC System On a Chip
  • the GPS time-served quartz crystal thermometer that becomes an additional function of GPS navigators and GPS smart navigation phones and “the Beidou time-served quartz crystal thermometer that becomes an additional function of Beidou navigators and Beidou smart navigation phones”
  • the GPS time service quartz crystal thermometer with additional functions and the Beidou time service quartz crystal thermometer as an additional function of the Beidou navigator and the Beidou smart navigation mobile phone have excessive functional redundancy and high cost.
  • High-precision temperature sensor supporting NB-IoT uses the Internet of Things as a technical means to achieve high-precision temperature measurement Internet industrial applications, but its volume is large and the delay is large, and it cannot be arranged in an array. In the limited space of electric passenger cars, each battery is monitored and a good low-latency experience is obtained.
  • the prior art BMS with temperature monitoring function uses thermal semiconductors, thermistors or infrared probes, which not only has low measurement accuracy, large zero point drift, and large time delay, but also requires analog-to-digital conversion for large-scale data processing and data storage.
  • the monitoring object of the BMS with temperature monitoring function in the prior art is the "battery pack".
  • the "battery pack" may be composed of dozens of battery cells packaged in parallel, but the temperature measurement points are only 3 and 4 points.
  • the prior art BMS with temperature monitoring function can not change the initial setting of the charge and discharge control threshold of the lithium battery, and it lacks an abnormal diagnosis of the aging of the single battery
  • the dynamic change of the BMS control threshold the negative feedback mechanism that effectively controls the accelerated aging of the weakest battery cell makes it difficult to prevent catastrophic accidents such as spontaneous combustion of the power battery of electric passenger vehicles.
  • the intelligent battery management system for electric passenger cars of the present invention based on the 5G-IoT high-precision temperature sensor adopts a completely different technical route from the prior art: the vehicle power battery system is changed from "parallel first and then serial" to "first parallel and then parallel” ; Use the charging bus and the charging isolation GTO to effectively isolate the backflow between the power battery packs (22) in the charging state; use the discharging bus and the discharging isolation GTO to effectively isolate the power battery packs (22) in the series in the discharging state It also provides the necessary isolation conditions for real-time and accurate measurement of the real-time operating temperature of each single power battery, and it is clear that the operating temperature of each single power battery characterizes the internal resistance of the battery in the state of charging and discharging.
  • the intelligent battery management system for electric passenger vehicles based on the 5G-IoT high-precision temperature sensor of the present invention includes a cloud computing center (13), a 5G router (14), a vehicle touch-sensitive display control screen (15), and a current and voltage GTO status display control interface ( 16), on-board cooling system, on-board fire protection system, site fire control system charging pile control interface (17), data exchange interface with cloud computing center vehicle owner's mobile phone repair center (18), edge computing module (19), charging isolation GTO (20), discharge Isolated GTO (21), 5G-IoT high-precision temperature sensor group (23), acceleration sensor (24), current sensor and voltage sensor of the power battery pack (22) connected in series; the charging bus and the charging isolation GTO (20) are effective Isolate the backflow between the power battery packs (22) in series in the charged state; use the discharge bus and the discharge isolation GTO (21) to effectively isolate the backflow between the power battery packs (22) in the series in the discharged state; for real-time accuracy Measuring and controlling the real-time operating temperature of
  • each single power battery characterizes the internal resistance of the battery in the charging and discharging state, and characterizes the power battery's internal resistance in the parking state.
  • Internal leakage current each 5G-IoT high-precision temperature sensor group (23) continuously collects high-precision temperature sensors in close contact with each power battery in the driving state, charging state, and parking state of the electric passenger car
  • the edge computing module (19) transmits all the data to the edge computing module (19), monitor in real time and graphically display the temperature of each power battery and the temperature change rate of each power battery through the on-board tactile display control screen (15) ;
  • the on-board tactile display control screen displays real-time power batteries whose temperature exceeds the limit and the temperature change rate exceeds the limit; the edge
  • 5G-IoT high-precision temperature sensor group (23) includes satellite navigation system antenna ( 1) Satellite navigation system module (2), CPU (3), memory (4), temperature sensor data bus (5), register (6), counter (7), oscillator (8), quartz crystal probe (9) ), second pulse distributor (10), 5G antenna (11), 5G-IoT module (12); oscillator (8) and quartz crystal probe (9) are connected through connectors to form a quartz crystal oscillator; quartz crystal probe (9) The DC withstand voltage between the stainless steel protective shell and the quartz crystal oscillator and the lead wire is greater than 1kV.
  • the stainless steel protective shell and the quartz crystal oscillator are filled with helium to enhance heat transfer; the quartz crystal oscillator outputs a sine wave, sine wave The frequency of the wave changes with the temperature of the quartz crystal probe (9); the pulse shaping circuit at the front end of the counter (7) converts the sine wave into a narrow pulse of the same frequency; the satellite navigation system antenna (1) receives the satellite navigation system timing signal, The satellite navigation system module (2) outputs high-precision second pulses.
  • the second pulses are distributed to the registers (6) and counters (7) of each temperature sensor through the second pulse distributor (10); the second pulses are the data of the counter (7)
  • the instruction pulse transferred to the register (6) also clears the counter (7) and restarts the instruction pulse for a new one-second count;
  • the CPU (3) scans the registers (6) through the temperature sensor data bus (5)
  • the temperature curve of the narrow-tip pulse number of the universal quartz crystal probe (9) is called out from the memory (4), the temperature of each temperature sensor is calculated by the CPU (3), and the time scale is added Stored in the memory (4);
  • the time stamp is the calendar time, stepped synchronously with the high-precision second pulse;
  • the CPU (3) outputs the time stamp of each single power battery through the 5G-IoT module (12) and the 5G antenna (11) Temperature signal, measurement accuracy is 10mK;
  • CPU (3), temperature sensor data bus (5), register (6), counter (7), oscillator (8), second pulse distributor (10) are integrated into SOC (
  • the error introduced by the timing accuracy can be controlled to not exceed 0.009mK
  • each series battery pack shares the same second pulse source;
  • the second pulse source is provided by the satellite navigation system antenna and satellite navigation system module;
  • ⁇ 5G-IoT high-precision temperature sensor provides a high resolution, high accuracy, high stability, small size, light weight, low power consumption, low latency, and easy clustering that can be used in the environment of passenger electric vehicles Temperature sensor array using array, massive interconnection, and signal sharing;
  • the 5G-IoT high-precision temperature sensor array provides a method of sorting and dividing series groups according to the temperature rise of the single battery on the lithium-ion battery production line according to the constant current series charging test bench, which can improve The thermal consistency of the series-connected lithium-ion battery pack can extend the service life of the battery pack and significantly enhance safety;
  • the narrow-tip pulse number of the universal quartz crystal probe-temperature curve can be used, which greatly improves the universal interchangeability of the quartz crystal probe and is convenient for the quartz crystal probe Use of cluster array;
  • the intelligent battery management system for electric passenger cars based on the 5G-IoT high-precision temperature sensor provides an uninterrupted collection of high precision for each rechargeable battery in the driving state, charging state, and parking state of the electric passenger car
  • the temperature signal is used to monitor the temperature of each power battery and the temperature change rate of each power battery in real time through edge computing; when the average temperature of the power battery is higher than 20°C, the on-board cooling system is activated; when the average temperature of the power battery is lower than 10°C , Start the on-board heating system; real-time display of power batteries with over-limit temperature and battery temperature change rate over-limit; real-time limit of vehicle speed and/or removal of safety-critical series battery packs; real-time limit of charging current and/or removal of safety-critical series battery packs ; Early detection of abnormal self-discharge of batteries and/or removal of safety-critical series battery packs, alarm to vehicle owners, charging service personnel, and fire service personnel, and directly activate the on-board fire fighting system and parking lot fire fighting system when necessary;
  • the intelligent battery management system for electric passenger cars based on the 5G-IoT high-precision temperature sensor is powered by a dedicated battery pack, which is charged at the same time as the vehicle power battery system. It can work for 30 days without interruption when fully charged; and has excellent fire protection, Anti-collision protection has become a “black box” for vehicles;
  • the intelligent battery management system for electric passenger cars based on the 5G-IoT high-precision temperature sensor provides an uninterrupted control of each power battery connected in series in the driving state, charging state, and parking state of the electric passenger car
  • the discharge current, charging current, terminal voltage, and the no-load terminal voltage drop caused by self-discharge are measured, recorded and uploaded to the cloud system to eliminate catastrophic accidents in the bud;
  • the intelligent battery management system for electric passenger cars based on the 5G-IoT high-precision temperature sensor compares with the historical charge and discharge data stored in the edge computing module (19) to evaluate the current charge, discharge, and battery pack life loss ; Evaluate the maximum cruising range at economic vehicle speed after this charge; evaluate the maximum vehicle speed allowed after this charge; evaluate the maximum allowable charging current value for the next charge, extending the battery life of electric passenger cars and battery life mileage;
  • the intelligent battery management system for electric passenger cars based on 5G-IoT high-precision temperature sensors can also retrieve historical data and manufacturer data stored in the cloud computing center, as well as historical data, fault records, and repairs of the same batch of products and vehicles Record and form a good ecology of technological progress;
  • Figure 1 is a system diagram of a smart battery management system for electric passenger vehicles based on 5G-IoT high-precision temperature sensors.
  • Figure 2 is a system architecture diagram of a 5G-IoT high-precision temperature sensor group based on a series battery pack
  • Vehicle-mounted touch sensor display control screen 16 current and voltage GTO status display control interface,
  • the intelligent battery management system for electric passenger vehicles based on the 5G-IoT high-precision temperature sensor of the present invention includes a cloud computing center (13), a 5G router (14), a vehicle touch-sensitive display control screen (15), and a current and voltage GTO status display control interface ( 16), on-board cooling system, on-board fire protection system, site fire control system charging pile control interface (17), data exchange interface with cloud computing center vehicle owner's mobile phone repair center (18), edge computing module (19), charging isolation GTO (20), discharge Isolated GTO (21), 5G-IoT high-precision temperature sensor group (23), acceleration sensor (24), current sensor and voltage sensor of the power battery pack (22) connected in series; the charging bus and the charging isolation GTO (20) are effective Isolate the backflow between the power battery packs (22) in series in the charged state; use the discharge bus and the discharge isolation GTO (21) to effectively isolate the backflow between the power battery packs (22) in the series in the discharged state; for real-time accuracy Measuring and controlling the real-time operating temperature of
  • each single power battery characterizes the internal resistance of the battery in the charging and discharging state, and characterizes the power battery's internal resistance in the parking state.
  • Internal leakage current each 5G-IoT high-precision temperature sensor group (23) continuously collects high-precision temperature sensors in close contact with each power battery in the driving state, charging state, and parking state of the electric passenger car
  • the edge computing module (19) transmits all the data to the edge computing module (19), monitor in real time and graphically display the temperature of each power battery and the temperature change rate of each power battery through the on-board tactile display control screen (15) ;
  • the on-board tactile display control screen displays real-time power batteries whose temperature exceeds the limit and the temperature change rate exceeds the limit; the edge
  • the 5G router (14) supports 72 sets of power battery packs in series (22) Measurement and control requirements; the intelligent battery management system for electric passenger cars based on 5G-IoT high-precision temperature sensors is powered by a dedicated battery pack, which is charged at the same time as the vehicle power battery system, and can work without interruption when fully charged.30 It has excellent fire protection and anti-collision protection, becoming a vehicle-mounted "black box”; historical data and manufacturer data stored in the cloud computing center (13) as well as historical data and fault records of the same batch of products and vehicles can be retrieved , Maintenance records, and forming a good ecosystem of technological progress; 5G-IoT high-precision temperature sensor group (23) includes satellite navigation system antenna (1), satellite navigation system module (2), CPU (3), memory (4), temperature Sensor data bus (5), register (6), counter (7), oscillator (8), quartz crystal probe (9), second pulse distributor (10), 5G antenna (11), 5G-IoT module (12) ); The oscillator (8) and the quartz crystal probe (9) are connected
  • 96 sets are shared, and the temperature of 96 single power batteries connected in series is measured and controlled respectively; quartz
  • the DC withstand voltage between the stainless steel protective shell of the crystal probe (9) and the quartz crystal oscillator and the lead wire is greater than 1kV.
  • the stainless steel protective shell and the quartz crystal oscillator are filled with helium to enhance heat transfer; the quartz crystal oscillator outputs a sine wave , The frequency of the sine wave changes with the temperature of the quartz crystal probe (9); the pulse shaping circuit at the front end of the counter (7) converts the sine wave into a narrow pulse of the same frequency; the satellite navigation system antenna (1) receives the time service of the satellite navigation system Signal, the satellite navigation system module (2) outputs the high-precision second pulse, and the second pulse is distributed to the register (6) and counter (7) of each temperature sensor by the second pulse distributor (10); the second pulse is the counter (7) The data is transferred to the instruction pulse in the register (6), which also clears the counter (7) and restarts the instruction pulse for a new one-second count; the CPU (3) scans through the temperature sensor data bus (5) to read each register ( 6), and call out the narrow pulse number of the universal quartz crystal probe (9) from the memory (4)—temperature curve, calculate the temperature of each temperature sensor by the CPU (3), and add the time After the mark is stored in
  • the data exchange between the edge computing module (19) and the cloud computing center (13) will be compatible with 4G networks, and 4G networks will be the main ones.
  • the intelligent battery management system for electric passenger vehicles based on the 5G-IoT high-precision temperature sensor of the present invention includes a cloud computing center (13), a 5G router (14), a vehicle touch-sensitive display control screen (15), and a current and voltage GTO status display control interface ( 16), on-board cooling system, on-board fire protection system, site fire control system charging pile control interface (17), data exchange interface with cloud computing center vehicle owner's mobile phone repair center (18), edge computing module (19), charging isolation GTO (20), discharge Isolated GTO (21), 5G-IoT high-precision temperature sensor group (23), acceleration sensor (24), current sensor and voltage sensor of the power battery pack (22) connected in series; the charging bus and the charging isolation GTO (20) are effective Isolate the backflow between the power battery packs (22) in series in the charged state; use the discharge bus and the discharge isolation GTO (21) to effectively isolate the backflow between the power battery packs (22) in the series in the discharged state; for real-time accuracy Measuring and controlling the real-time operating temperature of
  • each single power battery characterizes the internal resistance of the battery in the charging and discharging state, and characterizes the power battery's internal resistance in the parking state.
  • Internal leakage current each 5G-IoT high-precision temperature sensor group (23) continuously collects high-precision temperature sensors in close contact with each power battery in the driving state, charging state, and parking state of the electric passenger car
  • the edge computing module (19) transmits all the data to the edge computing module (19), monitor in real time and graphically display the temperature of each power battery and the temperature change rate of each power battery through the on-board tactile display control screen (15) ;
  • the on-board tactile display control screen displays real-time power batteries whose temperature exceeds the limit and the temperature change rate exceeds the limit; the edge
  • the 5G router (14) supports 8 sets of power battery packs (22) in series. ) Measurement and control requirements; the intelligent battery management system for electric passenger cars based on 5G-IoT high-precision temperature sensors is powered by a dedicated battery pack, which is charged at the same time with the vehicle power battery system, and can work for 30 days without interruption when fully charged; It also has excellent fire protection and anti-collision protection, becoming a vehicle-mounted "black box”; historical data and manufacturer data stored in the cloud computing center (13) as well as historical data, fault records, and maintenance of the same batch of products and vehicles can be retrieved Record and form a good ecology of technological progress; 5G-IoT high-precision temperature sensor group (23) including satellite navigation system antenna (1), satellite navigation system module (2), CPU (3), memory (4), temperature sensor data Bus (5), register (6), counter (7), oscillator (8), quartz crystal probe (9), second pulse distributor (10), 5G antenna (11), 5G-IoT module (12); The oscillator (8) and the quartz crystal probe (9)
  • 96 sets are shared to measure and control the temperature of 96 single power batteries in series; the quartz crystal probe (9)
  • the DC withstand voltage between the stainless steel protective shell and the quartz crystal oscillator and the lead wire is greater than 1kV.
  • the stainless steel protective shell and the quartz crystal oscillator are filled with helium to enhance heat transfer; the quartz crystal oscillator outputs a sine wave, sine wave The frequency of the wave changes with the temperature of the quartz crystal probe (9); the pulse shaping circuit at the front end of the counter (7) converts the sine wave into a narrow pulse of the same frequency; the satellite navigation system antenna (1) receives the satellite navigation system timing signal, The satellite navigation system module (2) outputs high-precision second pulses.
  • the second pulses are distributed to the registers (6) and counters (7) of each temperature sensor through the second pulse distributor (10); the second pulses are the data of the counter (7)
  • the instruction pulse transferred to the register (6) also clears the counter (7) and restarts the instruction pulse for a new one-second count;
  • the CPU (3) scans the registers (6) through the temperature sensor data bus (5)
  • the temperature curve of the narrow-tip pulse number of the universal quartz crystal probe (9) is called out from the memory (4), the temperature of each temperature sensor is calculated by the CPU (3), and the time scale is added Stored in the memory (4);
  • the time stamp is the calendar time, stepped synchronously with the high-precision second pulse;
  • the CPU (3) outputs the time stamp of each single power battery through the 5G-IoT module (12) and the 5G antenna (11) Temperature signal, measurement accuracy is 10mK;
  • the data bus (5), register (6), counter (7), oscillator (8), and second pulse distributor (10) are integrated into
  • the data exchange between the edge computing module (19) and the cloud computing center (13) will be compatible with 4G networks, and 4G networks will be the main ones.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统以及一种基于5G物联网的卫星授时的高精度温度传感器的阵列应用,协同各串联电池组的端电压、电流的测量、控制以及边缘计算、云计算,共同构成电动乘用车车载智能电池管理系统,防止有关电动乘用车动力电池系统自燃等灾难性事故,延长电动乘用车动力电池使用寿命和动力电池全寿命续航里程,提高动力电池退役后的残余使用价值。

Description

基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统 (一)技术领域:
本发明基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统涉及一种基于5G物联网的卫星授时的高精度温度传感器的阵列应用,协同各串联电池组的端电压、电流的测量、控制以及边缘计算、云计算,共同构成电动乘用车车载智能电池管理系统,防止有关电动乘用车动力电池系统自燃等灾难性事故,延长电动乘用车动力电池使用寿命和动力电池全寿命续航里程,提高动力电池退役后的残余使用价值。
(二)背景技术:
国际实用温标是以一些可复现的平衡态(定义固定点)的温度指定值,以及在国际实用温标这些固定点上分度的标准内插仪器作为基础的。1968年国际实用温标分成三个温区,分别用标准铂电阻温度计、标准铂铑(10%)铂热电偶和普朗克辐射定律来定义这些温区内的温度数值。
现有技术的石英晶体温度计的核心部件是谐振式石英晶体振荡器,其工作机制与传统的温度传感器(铂电阻温度计、热电偶温度计等)不同,其工作机制是“谐振”,不是靠分子的热运动产生的“电阻”或“电动势”。
现有技术的石英晶体振荡器,其频率——温度特性是一条颇接近直线的三次多项式曲线;a、b、c分别为一、二、三次多项式的系数,与石英晶片的切割类型及振型有关。
现有技术的石英晶体温度计至少有2个石英晶体振荡器,一个是温度为0℃的基准石英晶体振荡器,一个是用作测定温度的传感器石英晶体振荡器,由两者的频差获得被测温度;为减少基准石英晶体振荡器的频率漂移,通常把基准石英晶体振荡器置于精确控制温度的恒温箱中;即使如此,仍然有不可忽略的的基准频率漂移,现有技术的石英晶体温度计分辨率可以做到0.001K~0.0001K,但其精确度只能做到0.1K~0.05K。
现有技术的“支持NB-IoT的高精度温度传感器”以物联网为技术手段,可以实现高精度的温度测量的互联网工业应用,但其体积较大,时延较大,无法以阵列方式布置在电动乘用车的有限空间内,对每一节动力电池实施监控并获得良好的低时延体验。
现有技术电动乘用车动力电池系统多采用数十节单体电池并联组成电池包,电池包再串联组成动力电池系统;每个电池包布置有3个、4个温度测点采样,不具有对每一节单体电池实际工作温度的采集能力;
先并后串的动力电池系统,当并联电池包内某节单体动力电池自放电电流非正常增大时,温度升高,包内其他电池会通过该节单体电池放电,使其温度进一步升高,形成一种正反馈过程,当该节单体电池达到临界爆燃温度时,就成为引爆该电池包的“雷管”;现有技术电动乘用车动力电池系统还不能完全消除电池内部短路引发汽车自燃的技术问题;
锂离子电池,特别是三元锂离子电池,内阻偏大的的电池单元在每次充、放电时可能略微过充、过放;电池不一致性导致最弱的电池在损失活性锂离子或形成微锂枝晶方面每次都最严重,加速了其老化过程,加速了其内阻增大过程,通常其自放电电流和工作温度也是最高的;当电池短路引发汽车自燃事故时,BMS往往同时烧毁,事故调查过程冗长,且缺乏真 实数据支持,缺少说服力。
GTO(Gate-Turn-Off Thyristor)门极可关断晶闸管是一种具有自关断能力和晶闸管特性的晶闸管。如果在阳极加正向电压时,门极加上正向触发电流,GTO就导通。在导通的情况下,门极加上足够大的反向触发脉冲电流,GTO就由导通转为阻断。
5G-IoT(5G Internet of Things 5G-物联网)是基于蜂窝的具有极低时延的物联网技术。
5G路由器高带宽、低时延的路由器,足以支持数以千计的物联网传感器,以极低时延的方式接入5G网络。
边缘计算(Edge computing)是一个微型数据中心的网状网络,与5G网络结合可在本地处理或存储关键数据,并将所有接收的数据推送到云数据中心或云存储库,边缘计算可以处理和分析更靠近生成数据源的数据,具有更低的时延。
BMS(Battery Management System)电池管理系统。
SOC(System On a Chip)系统级芯片。
(三)发明内容:
所要解决的技术问题:
解决现有技术的“成为GPS导航仪和GPS智能导航手机的附加功能的GPS授时的石英晶体温度计”和“成为北斗导航仪和北斗智能导航手机的附加功能的北斗授时的石英晶体温度计”的功耗较高,智能手机待机时间短,在低环境温度和高环境温度下工作可能不正常;对于多数在工业、科研环境下作为温度传感器的阵列集群应用,“成为GPS导航仪和GPS智能导航手机的附加功能的GPS授时的石英晶体温度计”和“成为北斗导航仪和北斗智能导航手机的附加功能的北斗授时的石英晶体温度计”的功能冗余过多,造价过高。
现有技术的“支持NB-IoT的高精度温度传感器”以物联网为技术手段,可以实现高精度的温度测量的互联网工业应用,但其体积较大,时延较大,无法以阵列方式布置在电动乘用车的有限空间内,对每一节电池实施监控并获得良好的低时延体验。
现有技术带有温度监测功能的BMS使用热敏半导体、热敏电阻或者红外探头,不仅测量精度低、零点漂移大、时延大,并且需要经模数转换才能进行大规模数据处理、数据存储;现有技术带有温度监测功能的BMS的监控对象是“电池包”,所述的“电池包”可能由数十只电池单体并联封装组成,但温度测点只有3点、4点,明显不具备针对每一只电池单体的测控能力;现有技术带有温度监测功能的BMS对锂电池的充放电控制阈值初始设定没法更迭,缺乏一个对单体电池老化出现异常的诊断,进而通过对BMS控制阈值的动态改变有效控制最弱电池单元加速老化的负反馈机制,难以防止有关电动乘用车动力电池自燃等灾难性事故的发生。
解决其技术问题采用的技术方案:
本发明基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统采取与现有技术完全不同的技术路线:车用动力电池系统由“先并后串”改为“先串后并”;采用充电母线和充电隔离GTO有效隔离充电状态的各串联的动力电池组(22)之间的回流;采用放电母 线和放电隔离GTO有效隔离放电状态的各串联的动力电池组(22)之间的回流;也为实时精确测量各单体动力电池的实时工作温度提供了必要的隔离条件,明确各单体动力电池的工作温度在充、放电状态下表征了该电池的内阻,在停车状态表征了该电池的内部泄漏电流;提供一种在电动乘用车行驶状态、充电状态、车库内停用状态中不间断地对每一节动力电池采集高精度温度信号,通过边缘计算(Edge computing)实时监察各节动力电池温度和各节动力电池温度变化速率;实时显示温度超限和电池温度变化速率超限的动力电池;实时限制车速和/或切除危及安全的串联的动力电池组(22);实时限制充电电流和/或切除危及安全的串联的动力电池组(22);早期发现自放电异常的单体动力电池和/或切除危及安全的串联的动力电池组(22);及时向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;每次充电前提出改进各串联的动力电池组(22)安全性能的建议报告,包括但不限于:需要更换的危及安全的落后动力电池清单,以恢复对应的串联的动力电池组(22)的工作能力;优化各串联的动力电池组(22)的配对组成,提出使关键参数重新回到阈值内的可执行的措施;评估经济车速下的最大续航里程,评估各串联的动力电池组(22)的寿命损耗,评估允许最高车速,评估最大充电电流允许值;边缘计算模块由单独电池供电,且具有优良的防火、防冲撞能力,成为车载“黑匣子”;还可以调取贮存在云端的历史数据和制造厂数据以及同一型号产品、同一批车辆的历史数据,形成技术进步的良好生态;详尽而完整的每一节动力电池的历史数据,有效提高了退役动力电池组用作储能墙的安全性;也提高了退役动力电池组的使用残值。
本发明基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统包括云计算中心(13)、5G路由器(14)、车载触感显示控制屏(15)、电流电压GTO状态显示控制接口(16)、车载冷却系统车载消防系统场地消防系统充电桩控制接口(17)、与云计算中心车主手机维修中心数据交换接口(18)、边缘计算模块(19)、充电隔离GTO(20)、放电隔离GTO(21)、5G-IoT高精度温度传感器组(23)、加速度传感器(24)、串联的动力电池组(22)的电流传感器和电压传感器;采用充电母线和充电隔离GTO(20)有效隔离充电状态的各串联的动力电池组(22)之间的回流;采用放电母线和放电隔离GTO(21)有效隔离放电状态的各串联的动力电池组(22)之间的回流;为实时精确测量、控制各单体动力电池的实时工作温度提供了必要的隔离条件,明确各单体动力电池的工作温度在充、放电状态表征了该电池的内阻,在停车状态表征了该动力电池的内部泄漏电流;在电动乘用车行驶状态、充电状态、车库内停用状态中各5G-IoT高精度温度传感器组(23)不间断地采集与每一节动力电池紧密接触的高精度温度传感器的温度信号,通过5G路由器(14)将全部数据传送到边缘计算模块(19),实时监察并通过车载触感显示控制屏(15)图形化显示各节动力电池温度和各节动力电池温度变化速率;当动力电池平均温度高于20℃,通过车载冷却/升温系统车载消防系统场地消防系统充电桩接口(17)启动车载冷却系统;当动力电池平均温度低于10℃,启动车载升温系统;通过车载触感显示控制屏(15)实时显示温度超限和温度变化速率超限的动力电池;边缘计算模块(19)通过控制放电隔离GTO(21)、实时限制车速和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)通过控制充电隔离GTO(20)实时限制充电电流和/或切除危及安全的串联的动力电池组(22);边缘计算 模块(19)早期发现自放电异常的电池和/或切除危及安全的串联的动力电池组(22),同时通过与云计算中心车主手机维修中心数据交换接口(18)向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;当电动乘用车遭遇巨大负加速度时,加速度传感器(24)动作,边缘计算模块(19)能够在2ms内关断全部放电隔离GTO(21);通过与存储在边缘计算模块(19)中的历史充、放电数据比较,可以评估本次充、放电,电池组的寿命损耗;评估本次充电后,经济车速下的最大续航里程;评估本次充电后,允许最高车速;评估下一次充电时,最大充电电流允许值;5G路由器(14)的带宽和时延足以支持99组串联的动力电池组(22)的测量、控制需求;基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;且具有优良的防火、防冲撞保护,成为车载“黑匣子”;可以调取储存在云计算中心(13)的历史数据和制造厂数据以及同一批产品、同一批车辆的历史数据、故障记录、维修记录、形成技术进步的良好生态;5G-IoT高精度温度传感器组(23)包括卫星导航系统天线(1)、卫星导航系统模块(2)、CPU(3)、存储器(4)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、石英晶体探头(9)、秒脉冲分配器(10)、5G天线(11)、5G-IoT模块(12);振荡器(8)和石英晶体探头(9)通过接插件连接,组成石英晶体振荡器;石英晶体探头(9)的不锈钢保护外壳与石英晶体振子和引出线之间的直流耐压大于1kV,不锈钢保护外壳与石英晶体振子之间充有氦气以增强传热;石英晶体振荡器输出正弦波,正弦波的频率随石英晶体探头(9)的温度而变化;计数器(7)前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲;卫星导航系统天线(1)接收卫星导航系统授时信号,卫星导航系统模块(2)输出高精度秒脉冲,经秒脉冲分配器(10)分配秒脉冲到各温度传感器的寄存器(6)和计数器(7);该秒脉冲既是将计数器(7)的数据转入寄存器(6)中的指令脉冲,也是将计数器(7)清零,重新开始新一秒计数的指令脉冲;CPU(3)通过温度传感器数据总线(5)扫描读取各寄存器(6)中的数据,并从存储器(4)中调出通用的石英晶体探头(9)的窄尖脉冲数——温度曲线,经CPU(3)计算出各温度传感器的温度,再加上时标后存入存储器(4);时标为日历时间,与高精度秒脉冲同步步进;CPU(3)经5G-IoT模块(12)和5G天线(11)输出带有时标的各单体动力电池的温度信号,测量精度为10mK;CPU(3)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、秒脉冲分配器(10)整合成为SOC(System On a Chip)的一部分,一片SOC最多支持128支5G-IoT高精度温度传感器。
发明的有益效果:
●以易于获取的具有极高精度的卫星授时信号取代基准石英晶体振荡器使5G-IoT高精度温度传感器由于授时精度引入的温度测量误差可以控制在不超过0.1PPM(PPM百万分之一);
●对一只量程为-50℃到250℃的卫星授时的5G-IoT高精度温度传感器由于授时精度引入的误差可以控制在不超过0.009mK;
●以易于获取的具有极高精度的卫星授时信号取代基准石英晶体振荡器使本发明的5G-IoT高精度温度传感器的精确度达到1mK(1968年国际实用温标使用标准铂电阻温度计 分度,分度精度优于0.1mK);
●整车5G-IoT高精度温度传感器可能多达数千个,通过秒脉冲分配器,每个串联电池组共享同一个秒脉冲源;秒脉冲源由卫星导航系统天线和卫星导航系统模块提供;
●整车5G-IoT高精度温度传感器可能多达数千个,由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;
●5G-IoT高精度温度传感器提供了一种可以在乘用电动车环境下使用的高分辨率、高精确度、高稳定性、体积小、重量轻、低功耗、低延时、便于集群阵列使用、海量互联、共享信号的温度传感器阵列;
●5G-IoT高精度温度传感器阵列提供了一种在锂离子电池生产线上,按恒流串联充电试验台上的单节电池的温升,精细按温升排序和划分串联组的方法,可以提高串联锂离子电池组的热一致性,延长电池组使用寿命和显著增强安全性;
●如果将5G-IoT高精度温度传感器的测量精度适当放宽到10mK,可以使用通用的石英晶体探头的窄尖脉冲数——温度曲线,大大提高石英晶体探头的通用互换性,方便石英晶体探头的集群阵列使用;
●基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统提供一种在电动乘用车行驶状态、充电状态、车库内停用状态中不间断地对每一节充电电池采集高精度温度信号,通过边缘计算(Edge computing)实时监察各节动力电池温度和各节动力电池温度变化速率;当动力电池平均温度高于20℃,启动车载冷却系统;当动力电池平均温度低于10℃,启动车载升温系统;实时显示温度超限和电池温度变化速率超限的动力电池;实时限制车速和/或切除危及安全的串联电池组;实时限制充电电流和/或切除危及安全的串联电池组;早期发现自放电异常的电池和/或切除危及安全的串联电池组,向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;
●基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;且具有优良的防火、防冲撞保护,成为车载“黑匣子”;
●基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统提供了一种在电动乘用车行驶状态、充电状态、车库内停用状态中,不间断地对每一串联的动力电池组的放电电流、充电电流、端电压、自放电引起的空载端电压下降进行测量、记录并上传到云端的系统,将灾难性事故消灭在萌芽状态;
●基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统通过与存储在边缘计算模块(19)中的历史充、放电数据比较,可以评估本次充、放电,电池组的寿命损耗;评估本次充电后,经济车速下的最大续航里程;评估本次充电后,允许最高车速;评估下一次充电时,最大充电电流允许值,延长电动乘用车电池使用寿命和电池全寿命续航里程;
●基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统还可以调取储存在云计算中心的历史数据和制造厂数据以及同一批产品、同一批车辆的历史数据、故障记录、维修记录、形成技术进步的良好生态;
●详尽而完整的每一节动力电池的历史数据,有效提高了退役动力电池组用作储能墙的安全性;也提高了退役动力电池组的使用残值。
(四)附图说明:
图1为基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统的系统图。
图2为串联电池组的基于5G-IoT高精度温度传感器组的系统架构图
在图1和图2中:
1 石英晶体探头、                     2 卫星导航系统天线、
3 CPU、                              4 存储器、
5 温度传感器数据总线、               6 寄存器、
7 计数器、                           8 振荡器、
9 石英晶体探头、                     10 秒脉冲分配器、
11 5G天线、                          12 5G-IoT模块、
13 云计算中心、                      14 5G路由器、
15 车载触感显示控制屏、              16 电流 电压GTO状态显示控制接口、
17 车载冷却/升温系统车载消防系统场地消防系统充电桩接口、
18 与云计算中心车主手机维修中心数据交换接口、
19 边缘计算模块、                    20充电隔离GTO、
21 放电隔离GTO、                     22串联的动力电池组、
23 5G-IoT高精度温度传感器组、        24加速度传感器。
(五)具体实施方式:
实施例1:
现结合 图1和图2以一台使用21700圆柱形三元锂电池的电动乘用车为例说明实现本发明的优选方式。
本发明基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统包括云计算中心(13)、5G路由器(14)、车载触感显示控制屏(15)、电流电压GTO状态显示控制接口(16)、车载冷却系统车载消防系统场地消防系统充电桩控制接口(17)、与云计算中心车主手机维修中心数据交换接口(18)、边缘计算模块(19)、充电隔离GTO(20)、放电隔离GTO(21)、5G-IoT高精度温度传感器组(23)、加速度传感器(24)、串联的动力电池组(22)的电流传感器和电压传感器;采用充电母线和充电隔离GTO(20)有效隔离充电状态的各串联的动力电池组(22)之间的回流;采用放电母线和放电隔离GTO(21)有效隔离放电状态的各串联的动力电池组(22)之间的回流;为实时精确测量、控制各单体动力电池的实时工作温度提供了必要的隔离条件,明确各单体动力电池的工作温度在充、放电状态表征了该电池的内阻,在停车状态表征了该动力电池的内部泄漏电流;在电动乘用车行驶状态、充电状态、车库内停用状态中各5G-IoT高精度温度传感器组(23)不间断地采集与每一节动力电池紧密接触的高精度温度传感器的温度信号,通过5G路由器(14)将全部数据传送到 边缘计算模块(19),实时监察并通过车载触感显示控制屏(15)图形化显示各节动力电池温度和各节动力电池温度变化速率;当动力电池平均温度高于20℃,通过车载冷却/升温系统车载消防系统场地消防系统充电桩接口(17)启动车载冷却系统;当动力电池平均温度低于10℃,启动车载升温系统;通过车载触感显示控制屏(15)实时显示温度超限和温度变化速率超限的动力电池;边缘计算模块(19)通过控制放电隔离GTO(21)、实时限制车速和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)通过控制充电隔离GTO(20)实时限制充电电流和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)早期发现自放电异常的电池和/或切除危及安全的串联的动力电池组(22),同时通过与云计算中心车主手机维修中心数据交换接口(18)向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;当电动乘用车遭遇巨大负加速度时,加速度传感器(24)动作,边缘计算模块(19)能够在2ms内关断全部放电隔离GTO(21);通过与存储在边缘计算模块(19)中的历史充、放电数据比较,可以评估本次充、放电,电池组的寿命损耗;评估本次充电后,经济车速下的最大续航里程;评估本次充电后,允许最高车速;评估下一次充电时,最大充电电流允许值;5G路由器(14)的带宽和时延足以支持99组串联的动力电池组(22)的测量、控制需求,在本实施例中5G路由器(14)支持,72组串联的动力电池组(22)的测量、控制需求;基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;且具有优良的防火、防冲撞保护,成为车载“黑匣子”;可以调取储存在云计算中心(13)的历史数据和制造厂数据以及同一批产品、同一批车辆的历史数据、故障记录、维修记录、形成技术进步的良好生态;5G-IoT高精度温度传感器组(23)包括卫星导航系统天线(1)、卫星导航系统模块(2)、CPU(3)、存储器(4)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、石英晶体探头(9)、秒脉冲分配器(10)、5G天线(11)、5G-IoT模块(12);振荡器(8)和石英晶体探头(9)通过接插件连接,组成石英晶体振荡器,在本实施例中共用了96套,分别测量控制96节串联的单体动力电池的温度;石英晶体探头(9)的不锈钢保护外壳与石英晶体振子和引出线之间的直流耐压大于1kV,不锈钢保护外壳与石英晶体振子之间充有氦气以增强传热;石英晶体振荡器输出正弦波,正弦波的频率随石英晶体探头(9)的温度而变化;计数器(7)前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲;卫星导航系统天线(1)接收卫星导航系统授时信号,卫星导航系统模块(2)输出高精度秒脉冲,经秒脉冲分配器(10)分配秒脉冲到各温度传感器的寄存器(6)和计数器(7);该秒脉冲既是将计数器(7)的数据转入寄存器(6)中的指令脉冲,也是将计数器(7)清零,重新开始新一秒计数的指令脉冲;CPU(3)通过温度传感器数据总线(5)扫描读取各寄存器(6)中的数据,并从存储器(4)中调出通用的石英晶体探头(9)的窄尖脉冲数——温度曲线,经CPU(3)计算出各温度传感器的温度,再加上时标后存入存储器(4);时标为日历时间,与高精度秒脉冲同步步进;CPU(3)经5G-IoT模块(12)和5G天线(11)输出带有时标的各单体动力电池的温度信号,测量精度为10mK;CPU(3)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、秒脉冲分配器(10)整合成为SOC(System On a Chip)的一部分,一片SOC最多支持128支5G-IoT高精度温度传感器,本实施例中使用了96支。
在5G网络普及和完善之前,边缘计算模块(19)与云计算中心(13)之间的数据交换,将兼容4G网络,并以4G网络为主。
实施例2:
现结合图1和图2以一台使用铝壳方形三元锂电池的电动乘用车为例说明实现本发明的优选方式。
本发明基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统包括云计算中心(13)、5G路由器(14)、车载触感显示控制屏(15)、电流电压GTO状态显示控制接口(16)、车载冷却系统车载消防系统场地消防系统充电桩控制接口(17)、与云计算中心车主手机维修中心数据交换接口(18)、边缘计算模块(19)、充电隔离GTO(20)、放电隔离GTO(21)、5G-IoT高精度温度传感器组(23)、加速度传感器(24)、串联的动力电池组(22)的电流传感器和电压传感器;采用充电母线和充电隔离GTO(20)有效隔离充电状态的各串联的动力电池组(22)之间的回流;采用放电母线和放电隔离GTO(21)有效隔离放电状态的各串联的动力电池组(22)之间的回流;为实时精确测量、控制各单体动力电池的实时工作温度提供了必要的隔离条件,明确各单体动力电池的工作温度在充、放电状态表征了该电池的内阻,在停车状态表征了该动力电池的内部泄漏电流;在电动乘用车行驶状态、充电状态、车库内停用状态中各5G-IoT高精度温度传感器组(23)不间断地采集与每一节动力电池紧密接触的高精度温度传感器的温度信号,通过5G路由器(14)将全部数据传送到边缘计算模块(19),实时监察并通过车载触感显示控制屏(15)图形化显示各节动力电池温度和各节动力电池温度变化速率;当动力电池平均温度高于20℃,通过车载冷却/升温系统车载消防系统场地消防系统充电桩接口(17)启动车载冷却系统;当动力电池平均温度低于10℃,启动车载升温系统;通过车载触感显示控制屏(15)实时显示温度超限和温度变化速率超限的动力电池;边缘计算模块(19)通过控制放电隔离GTO(21)、实时限制车速和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)通过控制充电隔离GTO(20)实时限制充电电流和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)早期发现自放电异常的电池和/或切除危及安全的串联的动力电池组(22),同时通过与云计算中心车主手机维修中心数据交换接口(18)向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;当电动乘用车遭遇巨大负加速度时,加速度传感器(24)动作,边缘计算模块(19)能够在2ms内关断全部放电隔离GTO(21);通过与存储在边缘计算模块(19)中的历史充、放电数据比较,可以评估本次充、放电,电池组的寿命损耗;评估本次充电后,经济车速下的最大续航里程;评估本次充电后,允许最高车速;评估下一次充电时,最大充电电流允许值;5G路由器(14)的带宽和时延足以支持99组串联的动力电池组(22)的测量、控制需求,在本实施例中5G路由器(14)支持8组串联的动力电池组(22)的测量、控制需求;基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;且具有优良的防火、防冲撞保护,成为车载“黑匣子”;可以调取储存在云计算中心(13)的历史数据和制造厂数据以及同一批产品、同一批车辆的历史数据、故障记录、维修记录、形成技术进步的良好生态;5G-IoT高精度温度传感器组(23) 包括卫星导航系统天线(1)、卫星导航系统模块(2)、CPU(3)、存储器(4)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、石英晶体探头(9)、秒脉冲分配器(10)、5G天线(11)、5G-IoT模块(12);振荡器(8)和石英晶体探头(9)通过接插件连接,组成石英晶体振荡器,在本实施例中共用了96套,分别测量控制96节串联的单体动力电池的温度;石英晶体探头(9)的不锈钢保护外壳与石英晶体振子和引出线之间的直流耐压大于1kV,不锈钢保护外壳与石英晶体振子之间充有氦气以增强传热;石英晶体振荡器输出正弦波,正弦波的频率随石英晶体探头(9)的温度而变化;计数器(7)前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲;卫星导航系统天线(1)接收卫星导航系统授时信号,卫星导航系统模块(2)输出高精度秒脉冲,经秒脉冲分配器(10)分配秒脉冲到各温度传感器的寄存器(6)和计数器(7);该秒脉冲既是将计数器(7)的数据转入寄存器(6)中的指令脉冲,也是将计数器(7)清零,重新开始新一秒计数的指令脉冲;CPU(3)通过温度传感器数据总线(5)扫描读取各寄存器(6)中的数据,并从存储器(4)中调出通用的石英晶体探头(9)的窄尖脉冲数——温度曲线,经CPU(3)计算出各温度传感器的温度,再加上时标后存入存储器(4);时标为日历时间,与高精度秒脉冲同步步进;CPU(3)经5G-IoT模块(12)和5G天线(11)输出带有时标的各单体动力电池的温度信号,测量精度为10mK;CPU(3)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、秒脉冲分配器(10)整合成为SOC(System On a Chip)的一部分,一片SOC最多支持128支5G-IoT高精度温度传感器,本实施例中使用了96支。
在5G网络普及和完善之前,边缘计算模块(19)与云计算中心(13)之间的数据交换,将兼容4G网络,并以4G网络为主。

Claims (3)

  1. 一种基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统,其特征在于:包括云计算中心(13)、5G路由器(14)、车载触感显示控制屏(15)、电流电压GTO状态显示控制接口(16)、车载冷却系统车载消防系统场地消防系统充电桩控制接口(17)、与云计算中心车主手机维修中心数据交换接口(18)、边缘计算模块(19)、充电隔离GTO(20)、放电隔离GTO(21)、5G-IoT高精度温度传感器组(23)、加速度传感器(24)、串联的动力电池组(22)的电流传感器和电压传感器;采用充电母线和充电隔离GTO(20)有效隔离充电状态的各串联的动力电池组(22)之间的回流;采用放电母线和放电隔离GTO(21)有效隔离放电状态的各串联的动力电池组(22)之间的回流;为实时精确测量、控制各单体动力电池的实时工作温度提供了必要的隔离条件,明确各单体动力电池的工作温度在充、放电状态表征了该电池的内阻,在停车状态表征了该动力电池的内部泄漏电流;在电动乘用车行驶状态、充电状态、车库内停用状态中各5G-IoT高精度温度传感器组(23)不间断地采集与每一节动力电池紧密接触的高精度温度传感器的温度信号,通过5G路由器(14)将全部数据传送到边缘计算模块(19),实时监察并通过车载触感显示控制屏(15)图形化显示各节动力电池温度和各节动力电池温度变化速率;当动力电池平均温度高于20℃,通过车载冷却/升温系统车载消防系统场地消防系统充电桩接口(17)启动车载冷却系统;当动力电池平均温度低于10℃,启动车载升温系统;通过车载触感显示控制屏(15)实时显示温度超限和温度变化速率超限的动力电池;边缘计算模块(19)通过控制放电隔离GTO(21)、实时限制车速和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)通过控制充电隔离GTO(20)实时限制充电电流和/或切除危及安全的串联的动力电池组(22);边缘计算模块(19)早期发现自放电异常的电池和/或切除危及安全的串联的动力电池组(22),同时通过与云计算中心车主手机维修中心数据交换接口(18)向车主和充电服务人员、消防服务人员报警,必要时直接启动车载消防系统和停车场消防系统;当电动乘用车遭遇巨大负加速度时,加速度传感器(24)动作,边缘计算模块(19)能够在2ms内关断全部放电隔离GTO(21);通过与存储在边缘计算模块(19)中的历史充、放电数据比较,可以评估本次充、放电,电池组的寿命损耗;评估本次充电后,经济车速下的最大续航里程;评估本次充电后,允许最高车速;评估下一次充电时,最大充电电流允许值;5G路由器(14)的带宽和时延足以支持99组串联的动力电池组(22)的测量、控制需求;基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统由专用的电池组供电,与车用动力电池系统同时充电,充满电可以不间断地工作30天;且具有优良的防火、防冲撞保护,成为车载“黑匣子”;可以调取储存在云计算中心(13)的历史数据和制造厂数据以及同一批产品、同一批车辆的历史数据、故障记录、维修记录、形成技术进步的良好生态;5G-IoT高精度温度传感器组(23)包括卫星导航系统天线(1)、卫星导航系统模块(2)、CPU(3)、存储器(4)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、石英晶体探头(9)、秒脉冲分配器(10)、5G天线(11)、5G-IoT模块(12);振荡器(8)和石英晶体探头(9)通过接插件连接,组成石英晶体振荡器;石英晶体探头(9)的不锈钢保护外壳与石英晶体振子和引出线 之间的直流耐压大于1kV,不锈钢保护外壳与石英晶体振子之间充有氦气以增强传热;石英晶体振荡器输出正弦波,正弦波的频率随石英晶体探头(9)的温度而变化;计数器(7)前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲;卫星导航系统天线(1)接收卫星导航系统授时信号,卫星导航系统模块(2)输出高精度秒脉冲,经秒脉冲分配器(10)分配秒脉冲到各温度传感器的寄存器(6)和计数器(7);该秒脉冲既是将计数器(7)的数据转入寄存器(6)中的指令脉冲,也是将计数器(7)清零,重新开始新一秒计数的指令脉冲;CPU(3)通过温度传感器数据总线(5)扫描读取各寄存器(6)中的数据,并从存储器(4)中调出通用的石英晶体探头(9)的窄尖脉冲数——温度曲线,经CPU(3)计算出各温度传感器的温度,再加上时标后存入存储器(4);时标为日历时间,与高精度秒脉冲同步步进;CPU(3)经5G-IoT模块(12)和5G天线(11)输出带有时标的各单体动力电池的温度信号,测量精度为10mK;CPU(3)、温度传感器数据总线(5)、寄存器(6)、计数器(7)、振荡器(8)、秒脉冲分配器(10)整合成为SOC(System On a Chip)的一部分,一片SOC最多支持128支5G-IoT高精度温度传感器。
  2. 根据权利要求1所述的基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统,其特征是所述的边缘计算模块(19)与云计算中心(13)之间的数据交换,在5G网络普及和完善之前,将兼容4G网络,并以4G网络为主。
  3. 根据权利要求1所述的基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统,其特征是所述的边缘计算模块(19)与云计算中心(13)中存储的详尽而完整的每一节动力电池的历史数据,有效提高了退役动力电池组用作储能墙的安全性;也提高了退役动力电池组的使用残值。
PCT/CN2019/000188 2019-06-25 2019-09-24 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统 WO2020257955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980096176.2A CN113905924A (zh) 2019-06-25 2019-09-24 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910552127.7A CN110239394A (zh) 2019-06-25 2019-06-25 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统
CN201910552127.7 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020257955A1 true WO2020257955A1 (zh) 2020-12-30

Family

ID=67889185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000188 WO2020257955A1 (zh) 2019-06-25 2019-09-24 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统

Country Status (2)

Country Link
CN (2) CN110239394A (zh)
WO (1) WO2020257955A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702737A (zh) * 2021-08-25 2021-11-26 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN114062940A (zh) * 2021-09-26 2022-02-18 华能汕头海门发电有限责任公司 一种基于5g通信技术在线监测通信蓄电池组的管理系统
CN115980612A (zh) * 2023-03-21 2023-04-18 中国人民解放军火箭军工程大学 一种卫星电池组健康状态评估方法、系统及设备
CN118131057A (zh) * 2024-05-08 2024-06-04 山东理工职业学院 一种基于物联网的新能源汽车运维管理系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239394A (zh) * 2019-06-25 2019-09-17 章礼道 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统
CN111641236B (zh) * 2020-05-27 2023-04-14 上海电享信息科技有限公司 基于大数据ai的动态阈值动力电池充电电压状态判断方法
CN111934332B (zh) * 2020-07-01 2023-05-30 浙江华云信息科技有限公司 一种基于云边协同的储能电站系统
CN113093043A (zh) * 2021-04-01 2021-07-09 苏州睿锂物联科技有限公司 电池边缘计算终端、数据通信方法、存储介质及电子装置
CN113506463A (zh) * 2021-05-18 2021-10-15 广东三浦车库股份有限公司 立体车库的存取车方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160101704A1 (en) * 2014-10-09 2016-04-14 Paired Power, Inc. Electric vehicle charging systems and methods
CN106671785A (zh) * 2016-10-12 2017-05-17 西安科技大学 一种电动汽车电池管理系统及方法
CN107211015A (zh) * 2015-01-16 2017-09-26 三星电子株式会社 无线通信系统中的控制信息传输方法和装置
CN108593124A (zh) * 2018-04-17 2018-09-28 章礼道 支持NB-IoT的高精度温度传感器
CN108749607A (zh) * 2018-05-23 2018-11-06 清华大学深圳研究生院 一种基于云计算的电动汽车动力电池管理和监控系统
CN110239394A (zh) * 2019-06-25 2019-09-17 章礼道 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160101704A1 (en) * 2014-10-09 2016-04-14 Paired Power, Inc. Electric vehicle charging systems and methods
CN107211015A (zh) * 2015-01-16 2017-09-26 三星电子株式会社 无线通信系统中的控制信息传输方法和装置
CN106671785A (zh) * 2016-10-12 2017-05-17 西安科技大学 一种电动汽车电池管理系统及方法
CN108593124A (zh) * 2018-04-17 2018-09-28 章礼道 支持NB-IoT的高精度温度传感器
CN108749607A (zh) * 2018-05-23 2018-11-06 清华大学深圳研究生院 一种基于云计算的电动汽车动力电池管理和监控系统
CN110239394A (zh) * 2019-06-25 2019-09-17 章礼道 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702737A (zh) * 2021-08-25 2021-11-26 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN113702737B (zh) * 2021-08-25 2024-04-23 山东省计量科学研究院 一种充电桩和应用于充电桩的检验方法、装置及设备
CN114062940A (zh) * 2021-09-26 2022-02-18 华能汕头海门发电有限责任公司 一种基于5g通信技术在线监测通信蓄电池组的管理系统
CN115980612A (zh) * 2023-03-21 2023-04-18 中国人民解放军火箭军工程大学 一种卫星电池组健康状态评估方法、系统及设备
CN118131057A (zh) * 2024-05-08 2024-06-04 山东理工职业学院 一种基于物联网的新能源汽车运维管理系统

Also Published As

Publication number Publication date
CN110239394A (zh) 2019-09-17
CN113905924A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2020257955A1 (zh) 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理系统
EP4184188B1 (en) Lithium plating detection method and apparatus for lithium battery
CN106025405B (zh) 一种动力电池失效快速监测报警装置及方法
CN108432030B (zh) 电池组的温度监视装置和方法
CN102205800B (zh) 一种智能电动车电池管理系统
EP2952920B1 (en) Battery monitoring device, power storage system, and control system
TW201930910A (zh) 二次電池的異常檢測裝置、異常檢測方法以及程式
CN202749476U (zh) 智能电动车电池管理系统
CN203481890U (zh) 通信用锂电池管理系统
WO2023028789A1 (zh) 温度确定方法与电流阈值确定方法、电池管理系统
KR20230129953A (ko) 차량 배터리 셀 일관성 평가 방법, 장치, 기기 및 저장매체
CN103078150A (zh) 动力电池安全预警方法和装置
EP3657594A1 (en) Method and device for detecting a thermal runaway in a battery module
EP4202458A1 (en) Battery diagnosis device, battery system, and battery diagnosis method
CN108036873A (zh) 一种基于ntc温度检测的电池管理系统
CN114069064A (zh) 电能储存系统模块等级诊断
CN111342153A (zh) 一种锂离子动力电池安全预警系统
US20220268853A1 (en) Battery diagnosis system, power system and battery diagnosis method
JP2023516317A (ja) バッテリー管理装置、バッテリーパック、バッテリーシステム及びバッテリー管理方法
CN117665595A (zh) 电池状态监控方法、装置、电子设备和存储介质
KR20220039484A (ko) 배터리 저항 산출 장치 및 방법
CN206908325U (zh) 一种通过光耦隔离软硬件配合工作新型锂电组保护系统
WO2022188760A1 (zh) 动力电池包热量估计方法和装置
CN114006064A (zh) 一种基于电动自行车锂电池温度的动态温度监控系统
CN210337645U (zh) 电动汽车电池综合管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935625

Country of ref document: EP

Kind code of ref document: A1