WO2020256431A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2020256431A1
WO2020256431A1 PCT/KR2020/007902 KR2020007902W WO2020256431A1 WO 2020256431 A1 WO2020256431 A1 WO 2020256431A1 KR 2020007902 W KR2020007902 W KR 2020007902W WO 2020256431 A1 WO2020256431 A1 WO 2020256431A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
layer
hole transport
host
Prior art date
Application number
PCT/KR2020/007902
Other languages
French (fr)
Korean (ko)
Inventor
박호철
김영모
송효범
정승은
김근형
한송이
김태형
Original Assignee
두산솔루스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산솔루스 주식회사 filed Critical 두산솔루스 주식회사
Publication of WO2020256431A1 publication Critical patent/WO2020256431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an organic electroluminescent device that simultaneously exhibits high luminous efficiency, low driving voltage, and long life.
  • organic electroluminescent device when a current or voltage is applied to two electrodes, holes are injected into the organic material layer from the anode, and electrons are injected into the organic material layer from the cathode. do. When the injected holes and electrons meet, excitons are formed, and these excitons fall to the ground state to emit light.
  • organic EL devices can be classified into a fluorescent EL device in which singlet excitons contribute to light emission and a phosphorescent EL device in which triplet excitons contribute to light emission according to the type of electron spin of the excitons.
  • Fluorescent EL devices may theoretically have an internal quantum efficiency of up to 25% depending on the generation rate, whereas a phosphorescent EL device may have an internal quantum efficiency of up to 100%.
  • the triplet and the singlet are involved in the internal quantum efficiency, so that high internal quantum efficiency can be obtained.
  • a fluorescent EL device has a maximum internal quantum efficiency of a quarter of that of phosphorescence because only a singlet transition occurs. In this way, the phosphorescent EL device theoretically has higher luminous efficiency than the fluorescent EL device.
  • blue phosphorescent EL devices are not commercially available due to low levels of development for a phosphorescent dopant having deep blue color purity and high efficiency, and a host having a wide energy gap. Accordingly, a blue fluorescent EL element is used instead of the blue phosphorescent EL.
  • the development of an organic EL device having high efficiency and long life is required.
  • the high resolution of the display can be implemented when more pixels are formed in the same area.
  • the light-emitting area of the organic EL element decreases, and further, the decrease in the light-emitting area serves as a cause of shortening the life of the organic EL element.
  • the present invention provides an organic electroluminescent device in which the emission layer includes a plurality of hosts and a dopant, but includes one of the plurality of hosts as a material for the hole transport auxiliary layer to exhibit effects such as low driving voltage, high luminous efficiency, and long lifespan. It aims to do.
  • the present invention is a positive electrode; A cathode disposed opposite to the anode; An organic material layer interposed between the anode and the cathode and including a hole transport region, a light emitting layer, and an electron transport region sequentially disposed on the anode, and the hole transport region is sequentially disposed on the anode A hole injection layer, a hole transport layer, and a hole transport auxiliary layer, wherein the emission layer includes a plurality of hosts and a dopant, and the plurality of hosts includes a first host; And a second host different from the first host and the same as the material of the hole transport auxiliary layer.
  • a light emitting layer including a plurality of hosts and a dopant is provided, and by applying one of the plurality of hosts as a material for a hole transport auxiliary layer, an organic electroluminescent device having low driving voltage, high luminous efficiency and long lifespan characteristics is provided. Can provide.
  • the organic electroluminescent device of the present invention to a display panel, it is possible to provide a display panel with improved performance and lifetime.
  • FIG. 1 is a cross-sectional view showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of an organic electroluminescent device according to another embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship of the highest occupied molecular orbital (HOMO) energy level between a hole transport layer, a hole transport auxiliary layer, and an emission layer according to an embodiment of the present invention.
  • HOMO highest occupied molecular orbital
  • 3 is a graph showing a relationship between a lower unoccupied molecular orbital (LUMO) energy level between a hole transport auxiliary layer and a light emitting layer according to an embodiment of the present invention.
  • LUMO lower unoccupied molecular orbital
  • 300 organic material layer
  • 310 hole transport region
  • 311 hole injection layer
  • 312 hole transport layer
  • 313 hole transport auxiliary layer
  • 320 light emitting layer
  • 332 electron injection layer
  • 333 electron transport auxiliary layer
  • the organic electroluminescent device comprises: an anode; A negative electrode disposed opposite to the positive electrode; And one or more organic material layers interposed between the anode and the cathode and including a hole transport region, a light emitting layer, and an electron transport region, and one of a plurality of hosts in the light emitting layer is a hole transport auxiliary layer in the hole transport region. It is applied as a material of. Accordingly, the organic electroluminescent device of the present invention may have a low driving voltage, high luminous efficiency, and long life.
  • the emission layer includes a plurality of hosts, such as a first host and a second host that are different from each other, thereby improving the recombination efficiency of holes and electrons, and excitons transferred from the host to the dopant are It is possible to prevent the phenomenon of reversing back to the host.
  • the present invention forms a hole transport auxiliary layer between the hole transport layer and the light emitting layer by using the same material as any one of the plurality of hosts. Accordingly, the present invention not only lowers the hole injection barrier between the hole transport layer and the light emitting layer, but also exhibits a barrier-free effect between the light emitting layer and the hole transport auxiliary layer, so that holes injected from the hole transport layer are smoothly supplied to the light emitting layer through the hole transport auxiliary layer. Can be. Accordingly, in the organic electroluminescent device of the present invention, the luminous efficiency is improved, the driving voltage is decreased, and the lifespan characteristics can be significantly improved.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic light-emitting device according to an embodiment
  • FIG. 2 is a cross-sectional view schematically showing the structure of an organic light-emitting device according to another embodiment.
  • the organic light-emitting device includes an anode 100, one or more organic material layers 300, and a cathode 200 in sequence, and the organic material layer 300 transports holes.
  • a region 310, a light emitting layer 320, and an electron transport region 330 are included.
  • the organic light-emitting device may further include a capping layer (not shown) disposed on the second electrode 200.
  • the organic electroluminescent device of the present invention includes an anode 100.
  • the anode 100 is disposed on a substrate and is electrically connected to a driving thin film transistor to receive a driving current from the driving thin film transistor. Since the anode 100 is formed of a material having a relatively high work function, holes are injected into the adjacent organic material layer, that is, the hole transport region 310 (eg, the hole injection layer 311).
  • the material forming such an anode is not particularly limited, and conventional materials known in the art may be used.
  • Metals such as vanadium, chromium, copper, zinc, and gold; Alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al and SnO 2 :Sb; Conductive polymers such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, and polyaniline; And carbon black, but are not limited thereto.
  • the method of manufacturing the positive electrode is not particularly limited, and may be manufactured through a conventional method known in the art. For example, it may be formed by coating the anode material on a substrate through a known thin film forming method such as a sputtering method, an ion plating method, a vacuum deposition method, and a spin coating method.
  • a known thin film forming method such as a sputtering method, an ion plating method, a vacuum deposition method, and a spin coating method.
  • the substrate is a plate-shaped member supporting the organic electroluminescent device, and includes, for example, a silicon wafer, quartz, glass plate, metal plate, plastic film and sheet, but is not limited thereto.
  • the cathode 200 is disposed opposite to the anode, and specifically disposed on the electron transport region 330. Since the cathode 200 is made of a material having a relatively low work function, electrons are injected into the adjacent organic material layer, that is, the electron transport region 330 (eg, the electron injection layer 332).
  • the material forming the negative electrode is not particularly limited, and a conventional material known in the art may be used.
  • metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver (Ag), tin, and lead; Alloys thereof;
  • multi-layered materials such as LiF/Al and LiO 2 /Al, but are not limited thereto.
  • the method of manufacturing the negative electrode is not particularly limited, and like the positive electrode, it may be manufactured through a conventional method known in the art.
  • the cathode material may be formed by coating the cathode material on one or more organic material layers 300 below, specifically an electron transport region, for example, an electron injection layer 332 through the aforementioned thin film formation method.
  • one or more organic material layers 300 are disposed between the anode 100 and the cathode 200.
  • the organic material layer 300 includes a hole transport region 310, an emission layer 320 and an electron transport region 330.
  • one or more organic material layers 300 are a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially disposed on the anode 100.
  • An emission layer 320, an electron transport layer 331, and an electron injection layer 332 may be included.
  • one or more organic material layers 300 may include a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially disposed on the anode 100. ), a light emitting layer 320, an electron transport auxiliary layer 333, an electron transport layer 331, and an electron injection layer 332.
  • the hole transport region 310 is a part of the organic material layer 300 disposed on the anode 100, and holes injected from the anode 100 are adjacent to another organic layer, specifically It serves to move to the light emitting layer 320.
  • the hole transport region 310 includes a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially stacked on the anode 100.
  • the material constituting the hole injection layer 311 and the hole transport layer 312 of the present invention is not particularly limited as long as it is a material having a low hole injection barrier and high hole mobility, and the hole injection layer/transport layer material used in the art is used. Can be used without restrictions. In this case, the material forming the hole injection layer 311 and the hole transport layer 312 may be the same or different from each other.
  • the hole injection layer 311 includes a hole injection material known in the art.
  • the hole injection material include phthalocyanine compounds such as copper phthalocyanine; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4' ,4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris(N,-(2 -naphthyl)-N-phenylamino ⁇ -triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Pol
  • the hole transport layer 312 includes a hole transport material known in the art.
  • the hole transport material include carbazole derivatives such as N-phenylcarbazole and polyvinylcarbazole; Fluorene derivatives; Amine derivatives; TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N Triphenylamine derivatives such as -carbazolyl)triphenylamine); NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis (4-methylphenyl)benzenamine]), and the like, and these may be used alone or in combination of two or more.
  • the hole transport auxiliary layer 313 can prevent the electrons injected into the light emitting layer 320 from moving to the hole transport layer 312 while easily moving holes from the hole transport layer 312 to the light emitting layer 320 .
  • the material forming the hole transport auxiliary layer 313 is not particularly limited as long as it has a low hole injection barrier and a high hole mobility, and materials known in the art may be used without limitation.
  • one of the plurality of hosts in the light emitting layer in particular, a material having a low hole injection barrier and high hole mobility, is included as a material of the hole transport auxiliary layer. do. Accordingly, in the organic electroluminescent device of the present invention, holes injected from the hole transport layer are smoothly supplied to the light emitting layer through the hole transport auxiliary layer, thereby increasing the binding rate between holes and electrons, thereby significantly increasing the number of excitons. have. For this reason, in the present invention, high-efficiency light emission characteristics can be exhibited, and while driving voltage is lowered, life characteristics can be significantly improved.
  • the hole transport auxiliary layer 313 in order to exhibit a barrier-free effect between the hole transport auxiliary layer 313 and the light emitting layer 320, as well as to lower the hole injection barrier between the hole transport auxiliary layer 313 and the hole transport layer 312, the hole transport auxiliary layer
  • the material of 313 needs to be selected in consideration of physical properties such as differences in HOMO energy levels or differences in LUMO energy levels between the hole transport auxiliary layer 313 and the hole transport layer 312 and the light emitting layer 320.
  • the material of the hole transport auxiliary layer is selected so that the hole transport auxiliary layer 313 of the present invention satisfies the following relational expression 1 (see FIG. 3).
  • HOMO HTL is the HOMO energy level of the hole transport layer
  • HOMO aHTL is the HOMO energy level of the hole transport auxiliary layer
  • HOMO EL is the HOMO energy level of the light emitting layer.
  • a difference between the HOMO energy level of the hole transport auxiliary layer 313 and the HOMO energy level of the hole transport layer 312 may be in the range of more than about 0 eV to less than 1.0 eV.
  • a difference between the HOMO energy level of the hole transport auxiliary layer 313 and the HOMO energy level of the light emitting layer 320 may be in the range of more than about 0 eV to less than 1.0 eV.
  • the HOMO energy level of the hole transport auxiliary layer 313 is between the HOMO energy level of the hole transport layer 312 and the HOMO energy level of the light emitting layer 320, the HOMO energy level has a stepwise arrangement, and the anode Holes injected from may be smoothly injected from the hole transport layer to the light emitting layer.
  • the material of the hole transport auxiliary layer is selected so that the hole transport auxiliary layer 313 of the present invention satisfies the following relational expression 2 (see FIG. 4).
  • LUMO aHTL is the LUMO energy level of the hole transport auxiliary layer
  • LUMO EL is the LUMO energy level of the light emitting layer.
  • a difference between the LUMO energy level of the hole transport auxiliary layer and the LUMO energy level of the emission layer may be in the range of more than 0 eV to less than 1.0 eV.
  • the hole transport auxiliary layer 313 of the present invention may have a triplet energy (T1) in the range of about 2.0 eV or more, specifically about 2.0 to 3.0 eV.
  • T1 triplet energy
  • excitons formed in the light emitting layer are prevented from moving to the hole transport auxiliary layer, thereby contributing to improvement of the lifespan and efficiency of the device.
  • Any material having physical properties such as the aforementioned HOMO energy level and LUMO energy level may be used as the hole transport auxiliary layer material of the present invention.
  • the material of the auxiliary hole transport layer 313 of the present invention may be a compound represented by Formula 1 below.
  • Y 1 and Y 2 are the same as or different from each other, each independently a single bond, or is selected from the group consisting of NR 3 , O, S, and CR 4 R 5 , provided that both Y 1 and Y 2 are single bonds Is excluded,
  • NR 3 when NR 3 is plural, the plurality of NR 3 is the same or different from each other, and when CR 4 R 5 is plural, the plurality of CR 4 R 5 are the same or different from each other;
  • n are each independently an integer of 0 to 4.
  • R 1 to R 5 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, 3 to 40 nuclear atoms heterocycloalkyl group, C 6 ⁇ C 60 aryl group, 5 to 60 nuclear atoms heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ aryl of C 60 boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C aryl phosphine oxide 60 group and a C 6 ⁇ , or selected from the group consist
  • a boron group, a phosphine group, a phosphine oxide group, and an arylamine group are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group , C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group
  • the compound represented by Formula 1 has a carbazole-based moiety or an oxanthrene-based moiety having a large electron donating group (EDG) property, or Or, it includes a dibenzo-based moiety (eg, dibenzofuran-based moiety, dibenzothiophene-based moiety, etc.) having excellent carrier transport ability due to excellent amphoteric properties of electrons and holes.
  • Various kinds of substituents are introduced on one or both sides of the moiety.
  • the compound of Formula 1 may have various characteristics. For example, when the substituent is an electron donor (EDG) known in the art, the compound of Formula 1 may have excellent hole characteristics.
  • the glass transition temperature is high, thus improving the thermal stability of the organic electroluminescent device. It not only improves, but also has an effect of inhibiting crystallization of the organic material layer, and thus durability and life characteristics of the device can be greatly improved.
  • the compound represented by Formula 1 may have various structures according to Y 1 and Y 2 .
  • the compound represented by Formula 1 may be a compound represented by any one of Formulas 2 to 15 below, but is not limited thereto.
  • R 1 to R 5 , m, and n are each as defined in Formula 1.
  • n are each independently an integer of 0 to 4, and specifically may be an integer of 0 to 2, respectively.
  • R 1 and n are each 0, it means that hydrogen is not substituted with R 1 and R 2 , respectively, and when m and n are each an integer of 1 to 4, at least one R 1 and at least one R 2 are each The same or different, each independently a substituent excluding hydrogen, specifically as defined in Formula 1 (however, excluding hydrogen), more specifically deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms and a C 6 ⁇ C 60 arylamine group selected from the group consisting of, or adjacent groups (eg, other R 1 or R 2 ) may form a condensed aromatic ring of C 5 to C 60 or a condensed heteroaromatic ring of 5 to 60 members by bonding with R 2 ).
  • the heterocycloalkyl group, heteroaryl group, and condensed heteroaromatic ring each contain at least one hetero
  • R 3 to R 5 are the same as or different from each other, and each independently hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, and Selected from the group consisting of C 6 ⁇ C 60 arylamine groups, or adjacent groups (eg, R 4 and R 5 ) are bonded to each other to form a C 5 ⁇ C 60 fused aromatic ring or a 5 to 60 membered condensed heteroaromatic Can form a ring.
  • the heterocycloalkyl group, heteroaryl group, and condensed heteroaromatic ring each contain at least one hetero atom selected from the group consisting of N, S, O, and Se.
  • the compound represented by Formula 1 may be a compound represented by any one of Formulas 16 to 41 below, but is not limited thereto.
  • R 1 to R 5 are each the same as defined in Formula 1,
  • a is an integer of 0 to 4, specifically a is 0 or 1,
  • R 6 to R 9 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 nuclear atom heterocycloalkyl group, C 6 to C 60 aryl group, 5 to 60 nuclear atom heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C group of 60 arylboronic, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine is selected from the pin oxide groups and the group consisting of C 6 ⁇ with an aryl
  • At least one of R 1 to R 5 may be a substituent represented by any one selected from the group consisting of the following structural formulas S1 to S5.
  • the substituents of the structural formulas S1 to S4 are electron donor groups (EDG) having electron donation, and when introduced into at least one of R 1 to R 5 , the compound of Formula 1 may have excellent hole characteristics.
  • L 1 is a single bond, or is selected from the group consisting of a C 6 to C 30 arylene group and a heteroarylene group having 5 to 30 nuclear atoms, and may be specifically a single bond, a phenylene group, or a biphenylene group;
  • X 1 is selected from the group consisting of NAr 3 , O and S;
  • Ar 1 to Ar 3 are the same or different from each other, each independently selected from the group consisting of hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms, , Specifically, it may be selected from the group consisting of a phenyl group, a biphenyl group, a monovalent dimethylfluorene group, a monovalent dibenzofuran group, a monovalent dibenzothiophene group, and a monovalent carbazole group;
  • b and c are each 0 or 1;
  • the alkyl group, aryl group and heteroaryl group of Ar 1 to Ar 3 are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 to C 40 alkyl boron group, C group of 6 to arylboronic of C 60, C 6 to C 60 aryl phosphine group, substituted with one substituent at least one selected from the group consisting of an aryl amine of the C 6 to C 60 aryl pho
  • R 7 is the same as described in the definition section of R 1 to R 5 .
  • the compound represented by the above formula 1 may be embodied as the following compounds 1 to 20, but is not limited thereto.
  • the hole transport region 310 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
  • the emission layer 320 is a part of the organic material layer 300 interposed between the anode 100 and the cathode 200, and specifically, a hole transport auxiliary layer of the hole transport region 310 It is placed on 313.
  • the emission layer 320 is a layer in which holes and electrons injected from the anode and the cathode are combined to form excitons, and the color of light emitted by the organic electroluminescent device may vary depending on the material forming the emission layer 320. have.
  • the light emitting layer 320 of the present invention includes a plurality of hosts and dopants. At this time, any one of the plurality of hosts is the same as the material for forming the aforementioned hole transport auxiliary layer (hereinafter, “hole transport auxiliary layer material”).
  • the plurality of hosts may include: a first host identical to the material of the auxiliary hole transport layer; And a second host different from the first host.
  • a first host identical to the material of the auxiliary hole transport layer
  • a second host different from the first host.
  • the first host of the present invention is the same material as that of the hole transport auxiliary layer.
  • the first host may be a compound represented by Formula 1, more specifically, may be a compound represented by any one of Formulas 2 to 15, and more specifically represented by any one of Formulas 16 to 41. It can be a compound.
  • the first host of the present invention may be one of Compounds 1 to 20.
  • the second host is a host different from the first host, and is not particularly limited as long as it is known in the art, and non-limiting examples thereof include an alkali metal complex; Alkaline earth metal complexes; Or condensed aromatic ring derivatives.
  • examples of the second host include aluminum complexes, beryllium complexes, iridium compounds, anthracene derivatives, pyrene derivatives, triphenylene derivatives, carbazole derivatives, and dibenzofuran that can increase the luminous efficiency and lifespan of an organic electroluminescent device. It may be a derivative, a dibenzothiophene derivative, a fluorene derivative, a nitrogen-containing heterocyclic derivative, or a combination of one or more thereof.
  • the second host may be a material satisfying the following relations 3 and 4.
  • LUMO host-1 is the LUMO energy level of the first host
  • LUMO host-2 is the LUMO energy level of the second host
  • HOMO host-1 is the HOMO energy level of the first host
  • HOMO host-2 is the HOMO energy level of the second host.
  • the ratio of use of the first host and the second host is not particularly limited, and may be, for example, a weight ratio of 30:70 to 90:10. If the ratio of use of the first host and the second host is the above-described ratio, the barrier-free effect between the light emitting layer and the hole transport auxiliary layer is further increased, and the inversion of exciton from the dopant to the host is more efficiently prevented. can do.
  • the light emitting layer of the present invention may further include one or more other hosts (eg, a third host) different from the first host and the second host described above.
  • a third host e.g., a third host
  • the example of the third host is the same as the example of the second host, it is omitted.
  • the dopant is not particularly limited as long as it is commonly known in the art. Such dopants may be classified into fluorescent dopants and phosphorescent dopants.
  • the phosphorescent dopant may be an organometallic complex including Ir, Pt, Os, Re, Ti, Zr, Hf, or a combination of two or more thereof, but is limited thereto. no.
  • the dopant may be classified into a red dopant, a green dopant, and a blue dopant, and red dopants, green dopants, and blue dopants commonly known in the art may be used without particular limitation.
  • red dopant examples include PtOEP (Pt(II) octaethylporphine: Pt(II) octaethylporphine), Ir(piq) 3 (tris(2-phenylisoquinoline)iridium: tris(2-phenyliso).
  • non-limiting examples of the green dopant include Ir (ppy) 3 (tris (2-phenylpyridine) iridium: tris (2-phenylpyridine) iridium), Ir (ppy) 2 (acac) (Bis (2-phenylpyridine) (Acetylacetonato)iridium(III): bis(2-phenylpyridine)(acetylaceto) iridium(III)), Ir(mppy) 3 (tris(2-(4-tolyl)phenylpiridine)iridium: tris(2-(4) -Tolyl)phenylpyridine) iridium), C545T (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [ 6,7,8-ij]-quinolizin-11-one: 10-(2-benzothiazolyl)-1,1,7,7-te
  • non-limiting examples of the blue dopant include F 2 Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): bis[3,5-difluoro- 2-(2-pyridyl)phenyl(picolinato) iridium(III)), (F 2 ppy) 2 Ir(tmd), Ir(dfppz) 3 , DPVBi (4,4'-bis(2,2' -diphenylethen-1-yl)biphenyl: 4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl), DPAVBi (4,4'-Bis[4-(diphenylamino)styryl] biphenyl: 4,4'-bis(4-diphenylaminostyryl)biphenyl), TBPe (2,5,8,11-tetra-tert-butyl perylene
  • the content of such a dopant is not particularly limited, and may be appropriately adjusted within a range known in the art.
  • a plurality of hosts and dopants may be included in a weight ratio of 70:30 to 99.9:0.1 based on the total amount of the emission layer.
  • the emission layer 320 is blue fluorescence, green fluorescence, or red fluorescence
  • a plurality of hosts and dopants may be included in a weight ratio of 80:20 to 99.9:0.1.
  • the emission layer 320 is blue fluorescence, green fluorescence, or red phosphorescence
  • a plurality of hosts and dopants may be included in a weight ratio of 70:30 to 99:1.
  • the content of the dopant may range from about 0.1 to 30 parts by weight based on 100 parts by weight of the total amount of the first host and the second host.
  • the above-described light emitting layer 320 may be a single layer, or may be formed of a plurality of layers of two or more layers.
  • the organic electroluminescent device may emit light of various colors.
  • the present invention can provide an organic electroluminescent device having a mixed color by providing in series a plurality of light-emitting layers made of different materials.
  • the driving voltage of the device is increased, while the current value in the organic electroluminescent device is constant, thereby providing an organic EL device having improved luminous efficiency by the number of emission layers.
  • the light emitting layer 320 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
  • the electron transport region 330 is an organic material layer disposed on the emission layer 320 and moves electrons injected from the cathode 200 to the emission layer 320.
  • the electron transport region 330 may include at least one selected from the group consisting of an electron transport auxiliary layer 333, an electron transport layer 331, and an electron injection layer 331.
  • the electron transport region 330 when considering the characteristics of the organic electroluminescent device, the electron transport region 330 includes the electron transport layer 331 and the electron injection layer 332 described above, as illustrated in FIG. 1, or illustrated in FIG. 2. As described above, it is preferable to include all of the electron transport auxiliary layer 333, the electron transport layer 331, and the electron injection layer 332.
  • the electron injection layer 331 may use an electron injection material having easy electron injection and high electron mobility without limitation.
  • the electron injection material that can be used include the above bipolar compounds, anthracene derivatives, heteroaromatic compounds, and alkali metal complex compounds.
  • metal halides such as RbCl and RbI, and these may be used alone or in combination of two or more.
  • the electron transport region 330 may be co-deposited with an n-type dopant to facilitate injection of electrons from the cathode.
  • an alkali metal complex compound known in the art may be used without limitation, and examples thereof include an alkali metal, an alkaline earth metal, or a rare earth metal.
  • the electron transport auxiliary layer 333 may prevent excitons or holes generated in the emission layer 320 from diffusing into the electron transport region.
  • the electron transport auxiliary layer 333 may be formed of a material having conventional electron transport characteristics known in the art without limitation. For example, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives (eg, BCP), heterocyclic derivatives containing nitrogen, and the like may be included.
  • the electron transport region 330 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
  • the organic electroluminescent device 100 of the present invention may further include a light emission auxiliary layer (not shown) disposed between the hole transport region 310 and the emission layer 320.
  • a light emission auxiliary layer (not shown) disposed between the hole transport region 310 and the emission layer 320.
  • the light emission auxiliary layer serves to control the thickness of the organic material layer 300 while transporting holes moved from the hole transport region 310 to the emission layer 320 or blocking movement of electrons and/or excitons.
  • the light-emitting auxiliary layer has a high LUMO value to prevent electrons from moving to the hole transport layer 312, and has a high triplet energy to prevent excitons of the light-emitting layer 320 from diffusing to the hole transport layer 312.
  • This light emission auxiliary layer may include a hole transport material, and may be made of the same material as the hole transport region. Further, the auxiliary light emitting layers of the red, green, and blue organic light emitting devices may be made of the same material.
  • the material for the light-emitting auxiliary layer is not particularly limited, and examples thereof include carbazole derivatives and arylamine derivatives.
  • examples of the light emitting auxiliary layer include NPD (N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD (N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl) -benzidine), s-TAD, MTDATA(4, 4', 4′′-Tris(N-3-methylphenyl-Nphenyl-amino)-triphenylamine), and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • the light emitting auxiliary layer may further include a p-type dopant in addition to the above-described material.
  • a p-type dopant usable in the present invention, any known p-type dopant generally used in the art may be used without particular limitation.
  • the content of the P-type dopant may be appropriately adjusted within a range known in the art, and may be, for example, about 0.5 to 50 parts by weight based on 100 parts by weight of the hole transport material.
  • the light emission auxiliary layer is a vacuum deposition method, a spin coating method, a cast method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, and a laser induced thermal imaging method (LITI). It may be formed by, but is not limited thereto.
  • the organic electroluminescent device 100 of the present invention may further include a capping layer (not shown) disposed on the above-described cathode 200.
  • the capping layer serves to protect the organic electroluminescent device and help light generated from the organic material layer to be efficiently emitted to the outside.
  • the capping layer is tris-8-hydroxyquinoline aluminum (Alq 3 ), ZnSe, 2,5-bis(6′- (2′,2′′-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole , 4′-bis[N-(1-napthyl)-N-phenyl-amion] biphenyl ( ⁇ -NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′ -biphenyl-4,4'-diamine (TPD), 1,1'-bis (di-4-tolylaminophenyl) cyclohexane (TAPC) may contain at least one selected from the group consisting of.
  • the material forming such a capping layer is inexpensive compared to materials of other layers of the organic electroluminescent device.
  • Such a capping layer may be a single layer, but may include two or more layers having different refractive indices, so that the refractive index gradually changes while passing through the two or more layers.
  • the capping layer may be manufactured by a conventional method known in the art, and for example, various methods such as a vacuum deposition method, a spin coating method, a cast method, or a Langmuir-Blodgett (LB) method may be used.
  • various methods such as a vacuum deposition method, a spin coating method, a cast method, or a Langmuir-Blodgett (LB) method may be used.
  • the organic electroluminescent device according to the present invention has a structure in which an anode 100, an organic material layer 300, and a cathode 200 are sequentially stacked.
  • an insulating layer (not shown) or an adhesive layer (not shown) may be further included between the anode 100 and the organic material layer 300 or between the cathode 200 and the organic material layer 300.
  • the organic electroluminescent device according to the present invention may have excellent lifespan characteristics because the life time of initial brightness increases while maintaining maximum luminous efficiency when voltage and current are applied.
  • the organic electroluminescent device of the present invention described above may be manufactured according to a conventional method known in the art. For example, after vacuum depositing an anode material on a substrate, an organic light-emitting device may be manufactured by vacuum-depositing a material of a hole transport area material, a light emitting layer material, an electron transport area material, and a cathode material on the anode in order. .
  • the following compounds 1 to 20 were prepared as the first host and hole transport auxiliary layer material of the present invention, and their HOMO, LUMO, and triplet energies were measured by methods known in the art, respectively, and are shown in Table 1 below. At this time, as controls, ADN, NPB and compound B were used. For reference, compound B is as described in Comparative Example 2.
  • the HOMO energy level of each compound was measured by CV (cyclic voltammetry) method.
  • the LUMO energy level was calculated as the difference between the bandgap energy and the HOMO energy level.
  • Each compound was prepared by dissolving it in 2-Methyltetrahydrofuran (2-methylTHF) solvent at a concentration of 10 -4 M, and then the phosphorescence spectrum was measured with a QuantaMaster 30 Spectrofluorometer (PTI) at 77K low temperature using liquid nitrogen.
  • 2-Methyltetrahydrofuran (2-methylTHF) solvent at a concentration of 10 -4 M
  • PTI QuantaMaster 30 Spectrofluorometer
  • a blue organic electroluminescent device was manufactured according to the following procedure.
  • ITO Indium tin oxide
  • the glass substrate was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonically clean with a solvent such as isopropyl alcohol, acetone, methanol, etc., dry, transfer to a UV OZONE cleaner (Power Sonic 405, Hwashin Tech), and clean the substrate for 5 minutes using UV And transferred the substrate to a vacuum evaporator.
  • a hole injection layer, a hole transport layer, a hole transport auxiliary layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode were sequentially stacked to manufacture an organic electroluminescent device.
  • the structure of the manufactured device is shown in Table 2 below.
  • NPB, ADN and Alq 3 used in the above are as follows.
  • each compound (a) shown in Table 3 was used, and the compound 1 used as the first host in the formation of the light emitting layer was replaced with each of the following Table 3 Except for the use of the compound (a') of, it was carried out in the same manner as in Example 1 to prepare the blue organic electroluminescent device of Examples 2 to 20.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound 1 used as the first host was not used when forming the emission layer of Example 1.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound B was used instead of Compound 1 as the first host used to form the emission layer of Example 1.
  • the structure of compound B used at this time is as follows.
  • the blue organic electroluminescent devices of Examples 1 to 20 including one of a plurality of hosts in the emission layer as a material for a hole transport auxiliary layer according to the present invention include a single host and an emission layer containing a dopant. While, the blue organic electroluminescent device of Comparative Example 1 including a hole transport auxiliary layer and a plurality of hosts in the light emitting layer were all current efficiency, emission peak, and It was found that it exhibits excellent performance in terms of driving voltage.

Abstract

The present invention relates to an organic electroluminescent element in which a light-emitting layer includes a plurality of hosts and dopants, wherein one of the plurality of hosts is applied as a material for a hole transport auxiliary layer in a hole transport region, thereby simultaneously exhibiting effects such as high luminous efficiency, low driving voltage, and a long lifespan.

Description

유기 전계 발광 소자Organic electroluminescent device
본 발명은 높은 발광효율, 낮은 구동전압 및 장수명 등을 동시에 발휘하는 유기 전계 발광 소자에 관한 것이다.The present invention relates to an organic electroluminescent device that simultaneously exhibits high luminous efficiency, low driving voltage, and long life.
일반적으로 유기 전계 발광 소자(electroluminescent, EL)(이하, '유기 EL 소자'라 함)는 두 전극에 전류, 또는 전압을 인가해 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어져 빛을 내게 된다.In general, in an organic electroluminescent device (hereinafter referred to as'organic EL device'), when a current or voltage is applied to two electrodes, holes are injected into the organic material layer from the anode, and electrons are injected into the organic material layer from the cathode. do. When the injected holes and electrons meet, excitons are formed, and these excitons fall to the ground state to emit light.
이러한 유기 EL 소자는 엑시톤의 전자 스핀 종류에 따라 일중항 엑시톤이 발광에 기여하는 형광 EL 소자와 삼중항 엑시톤이 발광에 기여하는 인광 EL 소자로 구분할 수 있다. These organic EL devices can be classified into a fluorescent EL device in which singlet excitons contribute to light emission and a phosphorescent EL device in which triplet excitons contribute to light emission according to the type of electron spin of the excitons.
형광 EL 소자는 생성 비율에 따라 이론적으로 내부 양자 효율이 최대 25%인 반면, 인광 EL 소자는 내부 양자 효율이 최대 100 %일 수 있다. 인광 EL 소자의 경우, 삼중항과 일중항이 내부 양자 효율에 관여하여 높은 내부 양자 효율을 얻을 수 있다. 반면, 형광 EL 소자는 일중항 천이만 일어나기 때문에 최대 내부 양자 효율이 인광의 4분의 1 수준이다. 이와 같이 인광 EL 소자는 이론적으로 발광효율이 형광 EL 소자보다 높다.Fluorescent EL devices may theoretically have an internal quantum efficiency of up to 25% depending on the generation rate, whereas a phosphorescent EL device may have an internal quantum efficiency of up to 100%. In the case of a phosphorescent EL device, the triplet and the singlet are involved in the internal quantum efficiency, so that high internal quantum efficiency can be obtained. On the other hand, a fluorescent EL device has a maximum internal quantum efficiency of a quarter of that of phosphorescence because only a singlet transition occurs. In this way, the phosphorescent EL device theoretically has higher luminous efficiency than the fluorescent EL device.
그러나, 녹색, 적색 인광 EL 소자와 달리, 청색 인광 EL 소자는 진청색의 색순도 및 고효율을 갖는 인광 도펀트 및 넓은 에너지 갭을 갖는 호스트에 대한 개발 수준이 낮아 상용화되지 못하고 있다. 이에, 청색 인광 EL 대신 청색 형광 EL 소자가 사용되고 있다.However, unlike green and red phosphorescent EL devices, blue phosphorescent EL devices are not commercially available due to low levels of development for a phosphorescent dopant having deep blue color purity and high efficiency, and a host having a wide energy gap. Accordingly, a blue fluorescent EL element is used instead of the blue phosphorescent EL.
다만, 최근 디스플레이의 대형화 및 고해상도화 추세에 따라 고효율화 및 장수명을 갖는 유기 EL 소자의 개발이 요구되고 있다. 특히, 디스플레이의 고해상도는 동일 면적에서 더 많은 화소가 형성될 때 구현될 수 있다. 이로 인해, 유기 EL 소자의 발광 면적은 감소하고, 나아가 발광 면적의 감소는 유기 EL 소자의 수명을 단축시키는 원인으로 작용하고 있다.However, according to the recent trend of increasing the size and resolution of the display, the development of an organic EL device having high efficiency and long life is required. In particular, the high resolution of the display can be implemented when more pixels are formed in the same area. For this reason, the light-emitting area of the organic EL element decreases, and further, the decrease in the light-emitting area serves as a cause of shortening the life of the organic EL element.
따라서, 유기 EL 소자의 특성을 향상시키기 위해 다양한 연구가 진행되고 있으나, 현재까지 만족할 만한 결과를 얻지 못하였다.Therefore, various studies are being conducted to improve the characteristics of the organic EL device, but satisfactory results have not been obtained until now.
본 발명은 발광층이 복수의 호스트 및 도펀트를 포함하되, 복수의 호스트 중 하나를 정공수송 보조층의 재료로 포함하여 낮은 구동 전압, 높은 발광 효율 및 장수명 등의 효과를 발휘하는 유기 전계 발광 소자를 제공하는 것을 목적으로 한다. The present invention provides an organic electroluminescent device in which the emission layer includes a plurality of hosts and a dopant, but includes one of the plurality of hosts as a material for the hole transport auxiliary layer to exhibit effects such as low driving voltage, high luminous efficiency, and long lifespan. It aims to do.
전술한 목적을 달성하기 위하여, 본 발명은 양극; 상기 양극에 대향 배치된 음극; 상기 양극과 음극 사이에 개재(介在)되고, 상기 양극 상에 순차적으로 배치된 정공 수송 영역, 발광층, 및 전자 수송 영역을 포함하는 유기물층을 포함하고, 상기 정공 수송 영역은 상기 양극 상에 순차적으로 배치된 정공 주입층, 정공 수송층, 및 정공수송 보조층을 포함하며, 상기 발광층은 복수의 호스트, 및 도펀트를 포함하고, 상기 복수의 호스트는 제1 호스트; 및 상기 제1 호스트와 상이하고, 상기 정공수송 보조층의 재료와 동일한 제2 호스트를 포함하는, 유기 전계 발광 소자를 제공한다.In order to achieve the above object, the present invention is a positive electrode; A cathode disposed opposite to the anode; An organic material layer interposed between the anode and the cathode and including a hole transport region, a light emitting layer, and an electron transport region sequentially disposed on the anode, and the hole transport region is sequentially disposed on the anode A hole injection layer, a hole transport layer, and a hole transport auxiliary layer, wherein the emission layer includes a plurality of hosts and a dopant, and the plurality of hosts includes a first host; And a second host different from the first host and the same as the material of the hole transport auxiliary layer.
본 발명에서는 복수의 호스트 및 도펀트를 포함하는 발광층을 구비하되, 상기 복수의 호스트 중 하나를 정공수송 보조층의 재료로 적용함으로써, 낮은 구동전압, 높은 발광효율 및 장수명 특성을 갖는 유기 전계 발광 소자를 제공할 수 있다. In the present invention, a light emitting layer including a plurality of hosts and a dopant is provided, and by applying one of the plurality of hosts as a material for a hole transport auxiliary layer, an organic electroluminescent device having low driving voltage, high luminous efficiency and long lifespan characteristics is provided. Can provide.
또, 본 발명의 유기 전계 발광 소자를 디스플레이 패널에 적용함에 따라 성능 및 수명이 향상된 디스플레이 패널을 제공할 수 있다.In addition, by applying the organic electroluminescent device of the present invention to a display panel, it is possible to provide a display panel with improved performance and lifetime.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타낸 단면도이다.1 is a cross-sectional view showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
도 2는 본 발명의 다른 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타낸 단면도이다.2 is a cross-sectional view showing the structure of an organic electroluminescent device according to another embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따라 정공수송층과 정공수송 보조층과 발광층 사이의 HOMO(highest occupied molecular orbital) 에너지 준위 관계를 나타내는 그래프이다. FIG. 2 is a graph showing the relationship of the highest occupied molecular orbital (HOMO) energy level between a hole transport layer, a hole transport auxiliary layer, and an emission layer according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 정공수송 보조층과 발광층 사이의 LUMO(lowest unoccupied molecular orbital) 에너지 준위 관계를 나타내는 그래프이다.3 is a graph showing a relationship between a lower unoccupied molecular orbital (LUMO) energy level between a hole transport auxiliary layer and a light emitting layer according to an embodiment of the present invention.
** 부호의 설명 **** Explanation of sign **
100: 양극, 200: 음극,100: anode, 200: cathode,
300: 유기물층, 310: 정공 수송 영역,300: organic material layer, 310: hole transport region,
311: 정공 주입층, 312: 정공 수송층,311: hole injection layer, 312: hole transport layer,
313: 정공수송 보조층, 320: 발광층,313: hole transport auxiliary layer, 320: light emitting layer,
330: 전자 수송 영역, 331: 전자 수송층, 330: electron transport region, 331: electron transport layer,
332: 전자 주입층, 333: 전자수송 보조층332: electron injection layer, 333: electron transport auxiliary layer
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 따라서, 몇몇 실시예에서, 잘 알려진 공정 단계들, 잘 알려진 소자 구조 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, only these embodiments make the disclosure of the present invention complete, and common knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to those who have, and the invention is only defined by the scope of the claims. Accordingly, in some embodiments, well-known process steps, well-known device structures, and well-known techniques have not been described in detail in order to avoid obscuring interpretation of the present invention. The same reference numerals refer to the same components throughout the specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.
본 발명에 따른 유기 전계 발광 소자는, 양극; 상기 양극과 대향 배치된 음극; 및 상기 양극과 음극 사이에 개재(介在)되고, 정공 수송 영역, 발광층 및 전자 수송 영역을 포함하는 1층 이상의 유기물층을 포함하고, 상기 발광층 내 복수의 호스트 중 하나를 정공 수송 영역 내 정공수송 보조층의 재료로 적용한다. 이로써, 본 발명의 유기 전계 발광 소자는 낮은 구동전압, 높은 발광효율 및 장수명 특성을 가질 수 있다.The organic electroluminescent device according to the present invention comprises: an anode; A negative electrode disposed opposite to the positive electrode; And one or more organic material layers interposed between the anode and the cathode and including a hole transport region, a light emitting layer, and an electron transport region, and one of a plurality of hosts in the light emitting layer is a hole transport auxiliary layer in the hole transport region. It is applied as a material of. Accordingly, the organic electroluminescent device of the present invention may have a low driving voltage, high luminous efficiency, and long life.
구체적으로, 본 발명의 유기 전계 발광 소자에서, 발광층은 복수의 호스트, 예컨대 서로 상이한 제1 호스트 및 제2 호스트를 포함함으로써, 정공과 전자의 재결합 효율을 향상시키면서, 호스트에서 도펀트로 전이된 엑시톤이 다시 호스트로 역전이되는 현상을 방지할 수 있다.Specifically, in the organic electroluminescent device of the present invention, the emission layer includes a plurality of hosts, such as a first host and a second host that are different from each other, thereby improving the recombination efficiency of holes and electrons, and excitons transferred from the host to the dopant are It is possible to prevent the phenomenon of reversing back to the host.
이때, 본 발명은 복수의 호스트 중 어느 하나와 동일한 재료를 이용하여 정공수송층과 발광층 사이에 정공수송 보조층을 형성한다. 이로써, 본 발명은 정공수송층과 발광층 간의 정공 주입 장벽이 낮아짐은 물론, 발광층과 정공수송 보조층 간에 Barrier-free 효과가 발휘되어 정공 수송층에서 주입된 정공이 정공수송 보조층을 통해 발광층으로 원활하게 공급될 수 있다. 따라서, 본 발명의 유기 전계 발광소자는 발광효율이 향상되고, 구동전압이 낮아지면서, 수명 특성이 유의적으로 개선될 수 있다.In this case, the present invention forms a hole transport auxiliary layer between the hole transport layer and the light emitting layer by using the same material as any one of the plurality of hosts. Accordingly, the present invention not only lowers the hole injection barrier between the hole transport layer and the light emitting layer, but also exhibits a barrier-free effect between the light emitting layer and the hole transport auxiliary layer, so that holes injected from the hole transport layer are smoothly supplied to the light emitting layer through the hole transport auxiliary layer. Can be. Accordingly, in the organic electroluminescent device of the present invention, the luminous efficiency is improved, the driving voltage is decreased, and the lifespan characteristics can be significantly improved.
이하, 첨부된 도면을 참조하여 본 발명에 따른 유기 전계 발광 소자의 바람직한 실시형태를 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the organic electroluminescent device according to the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 1은 일 실시예에 따른 유기 발광 소자의 구조를 개략적으로 나타낸 단면도이고, 도 2는 다른 실시예에 따른 유기 발광 소자의 구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing the structure of an organic light-emitting device according to an embodiment, and FIG. 2 is a cross-sectional view schematically showing the structure of an organic light-emitting device according to another embodiment.
도 1 및 도 2를 참조하면, 유기 발광 소자는 양극(anode)(100), 1층 이상의 유기물층(300) 및 음극(cathode)(200)을 순차적으로 포함하고, 상기 유기물층(300)은 정공 수송 영역(310), 발광층(320), 및 전자 수송 영역(330)을 포함한다. 선택적으로, 상기 유기 발광 소자는 제2 전극(200) 상에 배치된 캡핑층(도시되지 않음)을 더 포함할 수 있다.1 and 2, the organic light-emitting device includes an anode 100, one or more organic material layers 300, and a cathode 200 in sequence, and the organic material layer 300 transports holes. A region 310, a light emitting layer 320, and an electron transport region 330 are included. Optionally, the organic light-emitting device may further include a capping layer (not shown) disposed on the second electrode 200.
이하, 본 발명에 따른 유기 발광 소자의 각 구성에 대하여 구체적으로 살펴보도록 하겠다.Hereinafter, each configuration of the organic light emitting device according to the present invention will be described in detail.
(1) 양극(1) anode
본 발명의 유기 전계 발광 소자는 양극(anode)(100)을 포함한다. 상기 양극(100)은 기판 상에 배치되는 것으로, 구동 박막 트랜지스터와 전기적으로 연결되어 구동 박막 트랜지스터로부터 구동 전류를 공급받을 수 있다. 이러한 양극(100)은 상대적으로 일함수가 높은 물질로 형성되기 때문에, 정공(hole)을 인접한 유기물층, 즉 정공 수송 영역(310)[예, 정공 주입층(311)] 내부로 주입한다. The organic electroluminescent device of the present invention includes an anode 100. The anode 100 is disposed on a substrate and is electrically connected to a driving thin film transistor to receive a driving current from the driving thin film transistor. Since the anode 100 is formed of a material having a relatively high work function, holes are injected into the adjacent organic material layer, that is, the hole transport region 310 (eg, the hole injection layer 311).
이러한 양극을 형성하는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 예를 들어, 바나듐, 크롬, 구리, 아연, 금 등의 금속; 이들의 합금; 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO) 등의 금속 산화물; ZnO:Al, SnO2:Sb 등의 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤, 폴리아닐린 등의 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지 않는다.The material forming such an anode is not particularly limited, and conventional materials known in the art may be used. Metals such as vanadium, chromium, copper, zinc, and gold; Alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al and SnO 2 :Sb; Conductive polymers such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, and polyaniline; And carbon black, but are not limited thereto.
상기 양극을 제조하는 방법은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 방법을 통해 제조될 수 있다. 예를 들어, 스퍼터링법, 이온 플레이팅법, 진공 증착법, 스핀 코트법 등의 공지된 박막 형성방법을 통해 기판 위에 상기 양극 물질을 코팅하여 형성할 수 있다. The method of manufacturing the positive electrode is not particularly limited, and may be manufactured through a conventional method known in the art. For example, it may be formed by coating the anode material on a substrate through a known thin film forming method such as a sputtering method, an ion plating method, a vacuum deposition method, and a spin coating method.
상기 기판은 유기 전계 발광 소자를 지지하는 판 형상의 부재로서, 예를 들어 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있는데, 이에 한정되지 않는다.The substrate is a plate-shaped member supporting the organic electroluminescent device, and includes, for example, a silicon wafer, quartz, glass plate, metal plate, plastic film and sheet, but is not limited thereto.
(2) 음극(2) cathode
본 발명의 유기 전계 발광 소자에서, 음극(cathode)(200)은 양극에 대향 배치되어 있으며, 구체적으로 전자 수송 영역(330) 상에 배치된다. 이러한 음극(200)은 상대적으로 일함수가 낮은 물질로 이루어지기 때문에, 전자(electron)를 인접한 유기물층, 즉 전자 수송 영역(330)[예, 전자 주입층(332)] 내로 주입한다. In the organic electroluminescent device of the present invention, the cathode 200 is disposed opposite to the anode, and specifically disposed on the electron transport region 330. Since the cathode 200 is made of a material having a relatively low work function, electrons are injected into the adjacent organic material layer, that is, the electron transport region 330 (eg, the electron injection layer 332).
이러한 음극을 형성하는 물질은 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 것을 사용할 수 있다. 예컨대, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은(Ag), 주석, 납 등의 금속; 이들의 합금; 및 LiF/Al, LiO2/Al 등의 다층 구조 물질 등이 있는데, 이에 한정되지 않는다.The material forming the negative electrode is not particularly limited, and a conventional material known in the art may be used. For example, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver (Ag), tin, and lead; Alloys thereof; And multi-layered materials such as LiF/Al and LiO 2 /Al, but are not limited thereto.
상기 음극을 제조하는 방법은 특별히 한정되지 않으며, 양극과 마찬가지로, 당 업계에 알려진 통상적인 방법을 통해 제조될 수 있다. 예를 들어, 전술한 박막 형성 방법을 통해 상기 음극 물질을 하기 1층 이상의 유기물층(300), 구체적으로 전자 수송 영역, 예컨대 전자 주입층(332) 상에 코팅하여 형성할 수 있다.The method of manufacturing the negative electrode is not particularly limited, and like the positive electrode, it may be manufactured through a conventional method known in the art. For example, the cathode material may be formed by coating the cathode material on one or more organic material layers 300 below, specifically an electron transport region, for example, an electron injection layer 332 through the aforementioned thin film formation method.
(3) 유기물층(3) organic material layer
본 발명의 유기 전계 발광 소자에서, 1층 이상의 유기물층(300)은 양극(100)과 음극(200) 사이에 배치된다. In the organic electroluminescent device of the present invention, one or more organic material layers 300 are disposed between the anode 100 and the cathode 200.
이러한 유기물층(300)은 정공 수송 영역(310), 발광층(320) 및 전자 수송 영역(330)을 포함한다. The organic material layer 300 includes a hole transport region 310, an emission layer 320 and an electron transport region 330.
일례에 따르면, 도 1에 도시된 바와 같이, 1층 이상의 유기물층(300)은 양극(100) 상에 순차적으로 배치된 정공 주입층(311), 정공 수송층(312), 정공수송 보조층(313), 발광층(320), 전자 수송층(331), 전자 주입층(332)을 포함할 수 있다. According to an example, as shown in FIG. 1, one or more organic material layers 300 are a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially disposed on the anode 100. , An emission layer 320, an electron transport layer 331, and an electron injection layer 332 may be included.
다른 일례에 따르면, 도 2에 도시된 바와 같이, 1층 이상의 유기물층(300)은 양극(100) 상에 순차적으로 배치된 정공 주입층(311), 정공 수송층(312), 정공수송 보조층(313), 발광층(320), 전자수송 보조층(333), 전자 수송층(331), 전자 주입층(332)을 포함할 수 있다. According to another example, as shown in FIG. 2, one or more organic material layers 300 may include a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially disposed on the anode 100. ), a light emitting layer 320, an electron transport auxiliary layer 333, an electron transport layer 331, and an electron injection layer 332.
이하, 각 유기물층에 대하여 설명한다.Hereinafter, each organic material layer will be described.
1) 정공 수송 영역1) hole transport area
본 발명의 유기 발광 소자(100)에서, 정공 수송 영역(310)은 양극(100) 상에 배치된 유기물층(300)의 일 부분으로, 양극(100)에서 주입되는 정공을 인접한 다른 유기층, 구체적으로 발광층(320)으로 이동시키는 역할을 한다. 이러한 정공 수송 영역(310)은 양극(100) 상에 순차적으로 적층된 정공 주입층(311), 정공 수송층(312) 및 정공수송 보조층(313)을 포함한다.In the organic light emitting diode 100 of the present invention, the hole transport region 310 is a part of the organic material layer 300 disposed on the anode 100, and holes injected from the anode 100 are adjacent to another organic layer, specifically It serves to move to the light emitting layer 320. The hole transport region 310 includes a hole injection layer 311, a hole transport layer 312, and a hole transport auxiliary layer 313 sequentially stacked on the anode 100.
본 발명의 정공 주입층(311) 및 정공 수송층(312)을 이루는 물질은, 정공 주입 장벽이 낮고, 정공 이동도가 큰 물질이라면 특별히 한정하지 않으며, 당 업계에서 사용되는 정공 주입층/수송층 물질을 제한없이 사용할 수 있다. 이때, 정공주입층(311)과 정공수송층(312)을 이루는 물질은 서로 동일하거나 또는 상이할 수 있다.The material constituting the hole injection layer 311 and the hole transport layer 312 of the present invention is not particularly limited as long as it is a material having a low hole injection barrier and high hole mobility, and the hole injection layer/transport layer material used in the art is used. Can be used without restrictions. In this case, the material forming the hole injection layer 311 and the hole transport layer 312 may be the same or different from each other.
구체적으로, 상기 정공 주입층(311)은 당해 기술분야에서 공지된 정공 주입 물질을 포함한다. 상기 정공 주입 물질의 비제한적인 예로는 구리프탈로시아닌(copper phthalocyanine) 등의 프탈로시아닌(phthalocyanine) 화합물; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris{N,-(2-naphthyl)-N-phenylamino}-triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Polyaniline/Dodecylbenzenesulfonic acid), PANI/CSA(Polyaniline/Camphor sulfonicacid), PANI/PSS((Polyaniline)/Poly(4-styrenesulfonate)) 등이 있고, 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다. Specifically, the hole injection layer 311 includes a hole injection material known in the art. Non-limiting examples of the hole injection material include phthalocyanine compounds such as copper phthalocyanine; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4' ,4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris(N,-(2 -naphthyl)-N-phenylamino}-triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), PANI/DBSA(Polyaniline/Dodecylbenzenesulfonic acid), PANI/CSA(Polyaniline/Camphor) sulfonicacid), PANI/PSS((Polyaniline)/Poly(4-styrenesulfonate)), and the like, and these may be used alone or in combination of two or more.
상기 정공 수송층(312)은 당해 기술분야에서 공지된 정공 수송 물질을 포함한다. 상기 정공 수송 물질의 비제한적인 예로는 N-페닐카바졸, 폴리비닐카바졸 등의 카바졸계 유도체; 플루오렌(fluorene)계 유도체; 아민계 유도체; TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine) 등과 같은 트리페닐아민계 유도체; NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]) 등이 있고, 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다. The hole transport layer 312 includes a hole transport material known in the art. Non-limiting examples of the hole transport material include carbazole derivatives such as N-phenylcarbazole and polyvinylcarbazole; Fluorene derivatives; Amine derivatives; TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N Triphenylamine derivatives such as -carbazolyl)triphenylamine); NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis (4-methylphenyl)benzenamine]), and the like, and these may be used alone or in combination of two or more.
또, 정공수송 보조층(313)은 정공수송층(312)에서 발광층(320)으로 정공을 용이하게 이동시키면서, 발광층(320)에 주입된 전자가 정공수송층(312)으로 이동하는 것을 저지할 수 있다. 이러한 정공수송 보조층(313)을 이루는 물질 또한 정공 주입 장벽이 낮고 정공 이동도가 큰 물질이라면 특별히 한정되지 않으며, 당 분야에 공지된 물질을 제한 없이 사용할 수 있다.In addition, the hole transport auxiliary layer 313 can prevent the electrons injected into the light emitting layer 320 from moving to the hole transport layer 312 while easily moving holes from the hole transport layer 312 to the light emitting layer 320 . The material forming the hole transport auxiliary layer 313 is not particularly limited as long as it has a low hole injection barrier and a high hole mobility, and materials known in the art may be used without limitation.
다만, 본 발명에서는 발광층과 정공수송 보조층 간의 barrier-free 효과를 발휘하기 위해서, 발광층 내 복수의 호스트 중 하나, 특히 정공 주입 장벽이 낮고 정공 이동도가 큰 물질을 정공수송 보조층의 재료로 포함한다. 따라서, 본 발명의 유기 전계 발광소자는 정공 수송층에서 주입된 정공이 정공수송 보조층을 통해 발광층으로 원활하게 공급됨으로써, 정공과 전자 간의 결합율이 높아져 엑시톤(exciton)의 수가 유의적으로 증가될 수 있다. 이 때문에, 본 발명은 고효율의 발광특성이 발휘될 수 있고, 또한 구동전압이 낮아지면서, 수명 특성이 유의적으로 개선될 수 있다.However, in the present invention, in order to exhibit a barrier-free effect between the light emitting layer and the hole transport auxiliary layer, one of the plurality of hosts in the light emitting layer, in particular, a material having a low hole injection barrier and high hole mobility, is included as a material of the hole transport auxiliary layer. do. Accordingly, in the organic electroluminescent device of the present invention, holes injected from the hole transport layer are smoothly supplied to the light emitting layer through the hole transport auxiliary layer, thereby increasing the binding rate between holes and electrons, thereby significantly increasing the number of excitons. have. For this reason, in the present invention, high-efficiency light emission characteristics can be exhibited, and while driving voltage is lowered, life characteristics can be significantly improved.
특히, 정공수송 보조층(313)과 발광층(320) 간의 barrier-free 효과를 발휘함은 물론, 정공수송 보조층(313)과 정공수송층(312) 간의 정공 주입 장벽을 낮추기 위해서, 정공수송 보조층(313)의 재료는 정공수송 보조층(313)과 정공수송층(312) 및 발광층(320) 간의 HOMO 에너지 준위 차이나 LUMO 에너지 준위 차이 등과 같은 물성 관계를 고려하여 선택할 필요가 있다.In particular, in order to exhibit a barrier-free effect between the hole transport auxiliary layer 313 and the light emitting layer 320, as well as to lower the hole injection barrier between the hole transport auxiliary layer 313 and the hole transport layer 312, the hole transport auxiliary layer The material of 313 needs to be selected in consideration of physical properties such as differences in HOMO energy levels or differences in LUMO energy levels between the hole transport auxiliary layer 313 and the hole transport layer 312 and the light emitting layer 320.
일례에 따르면, 본 발명의 정공수송 보조층(313)이 하기 관계식 1을 만족하도록, 정공수송 보조층의 재료를 선택한다(도 3 참조).According to an example, the material of the hole transport auxiliary layer is selected so that the hole transport auxiliary layer 313 of the present invention satisfies the following relational expression 1 (see FIG. 3).
[관계식 1][Relationship 1]
Figure PCTKR2020007902-appb-I000001
Figure PCTKR2020007902-appb-I000001
(상기 식에서,(In the above formula,
HOMOHTL은 정공수송층의 HOMO 에너지 준위이고, HOMO HTL is the HOMO energy level of the hole transport layer,
HOMOaHTL은 정공수송 보조층의 HOMO 에너지 준위이며,HOMO aHTL is the HOMO energy level of the hole transport auxiliary layer,
HOMOEL은 발광층의 HOMO 에너지 준위임).HOMO EL is the HOMO energy level of the light emitting layer).
구체적으로, 정공수송 보조층(313)의 HOMO 에너지 준위와 정공수송층(312)의 HOMO 에너지 준위 간의 차이는 약 0 eV 초과 내지 1.0 eV 이하 범위일 수 있다. 또, 상기 정공수송 보조층(313)의 HOMO 에너지 준위와 상기 발광층(320)의 HOMO 에너지 준위 간의 차이는 약 0 eV 초과 내지 1.0 eV 이하 범위일 수 있다.Specifically, a difference between the HOMO energy level of the hole transport auxiliary layer 313 and the HOMO energy level of the hole transport layer 312 may be in the range of more than about 0 eV to less than 1.0 eV. In addition, a difference between the HOMO energy level of the hole transport auxiliary layer 313 and the HOMO energy level of the light emitting layer 320 may be in the range of more than about 0 eV to less than 1.0 eV.
이와 같이, 정공수송 보조층(313)의 HOMO 에너지 준위가 정공수송층(312)의 HOMO 에너지 준위와 발광층(320)의 HOMO 에너지 준위의 사이에 존재할 경우, HOMO 에너지 준위가 계단식 배열을 갖게 되어, 양극에서 주입된 정공이 정공수송층으로부터 발광층까지 원활하게 주입될 수 있다. In this way, when the HOMO energy level of the hole transport auxiliary layer 313 is between the HOMO energy level of the hole transport layer 312 and the HOMO energy level of the light emitting layer 320, the HOMO energy level has a stepwise arrangement, and the anode Holes injected from may be smoothly injected from the hole transport layer to the light emitting layer.
다른 일례에 따르면, 본 발명의 정공수송 보조층(313)이 하기 관계식 2를 만족하도록, 정공수송 보조층의 재료를 선택한다(도 4 참조).According to another example, the material of the hole transport auxiliary layer is selected so that the hole transport auxiliary layer 313 of the present invention satisfies the following relational expression 2 (see FIG. 4).
[관계식 2][Relationship 2]
Figure PCTKR2020007902-appb-I000002
Figure PCTKR2020007902-appb-I000002
(상기 식에서,(In the above formula,
LUMOaHTL은 정공수송 보조층의 LUMO 에너지 준위이고,LUMO aHTL is the LUMO energy level of the hole transport auxiliary layer,
LUMOEL은 발광층의 LUMO 에너지 준위임).LUMO EL is the LUMO energy level of the light emitting layer).
구체적으로, 정공수송 보조층의 LUMO 에너지 준위와 상기 발광층의 LUMO 에너지 준위 간의 차이는 0 eV 초과 내지 1.0 eV 이하 범위일 수 있다.Specifically, a difference between the LUMO energy level of the hole transport auxiliary layer and the LUMO energy level of the emission layer may be in the range of more than 0 eV to less than 1.0 eV.
이와 같이, 정공수송 보조층(313)의 LUMO 에너지 준위의 절대값이 발광층(320)의 LUMO 에너지 준위의 절대값보다 작을 경우, 발광층에 존재하는 전자가 정공수송 보조층의 에너지 장벽에 막혀 정공수송 보조층으로 이동하는 것이 방지되고, 따라서 발광층 내에서 전자와 정공의 결합이 증가될 수 있다. In this way, when the absolute value of the LUMO energy level of the hole transport auxiliary layer 313 is less than the absolute value of the LUMO energy level of the light emitting layer 320, electrons present in the light emitting layer are blocked by the energy barrier of the hole transport auxiliary layer and transport holes. It is prevented from moving to the auxiliary layer, and thus binding of electrons and holes in the light emitting layer can be increased.
또 다른 일례에 따르면, 본 발명의 정공수송 보조층(313)은 약 2.0 eV 이상, 구체적으로 약 2.0 내지 3.0 eV 범위인 삼중항 에너지(T1)를 가질 수 있다. 이 경우, 발광층에서 형성된 엑시톤이 정공수송 보조층으로 이동하는 것이 방지되어 소자의 수명 및 효율 향상에 기여할 수 있다.According to another example, the hole transport auxiliary layer 313 of the present invention may have a triplet energy (T1) in the range of about 2.0 eV or more, specifically about 2.0 to 3.0 eV. In this case, excitons formed in the light emitting layer are prevented from moving to the hole transport auxiliary layer, thereby contributing to improvement of the lifespan and efficiency of the device.
전술한 HOMO 에너지 준위, LUMO 에너지 준위 등의 물성을 갖는 재료라면, 본 발명의 정공수송 보조층 재료로 이용될 수 있다. Any material having physical properties such as the aforementioned HOMO energy level and LUMO energy level may be used as the hole transport auxiliary layer material of the present invention.
일례에 따르면, 본 발명의 정공수송 보조층(313)의 재료는 하기 화학식 1로 표시되는 화합물일 수 있다.According to an example, the material of the auxiliary hole transport layer 313 of the present invention may be a compound represented by Formula 1 below.
Figure PCTKR2020007902-appb-C000001
Figure PCTKR2020007902-appb-C000001
상기 화학식 1에서, In Formula 1,
Y1 및 Y2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 단일결합이거나, 또는 NR3, O, S, 및 CR4R5로 이루어진 군에서 선택되고, 다만 Y1과 Y2가 모두 단일결합인 경우는 배제되며, Y 1 and Y 2 are the same as or different from each other, each independently a single bond, or is selected from the group consisting of NR 3 , O, S, and CR 4 R 5 , provided that both Y 1 and Y 2 are single bonds Is excluded,
이때, NR3이 복수인 경우, 복수의 NR3은 서로 동일하거나 상이하고, 또 CR4R5가 복수인 경우, 복수의 CR4R5은 서로 동일하거나 상이하며;In this case, when NR 3 is plural, the plurality of NR 3 is the same or different from each other, and when CR 4 R 5 is plural, the plurality of CR 4 R 5 are the same or different from each other;
m 및 n은 각각 독립적으로 0 내지 4의 정수이며;m and n are each independently an integer of 0 to 4;
R1 내지 R5는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합고리를 형성할 수 있으며;R 1 to R 5 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, 3 to 40 nuclear atoms heterocycloalkyl group, C 6 ~ C 60 aryl group, 5 to 60 nuclear atoms heteroaryl group, C 1 ~ C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, C 6 ~ aryl of C 60 boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C aryl phosphine oxide 60 group and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, or adjacent groups bonded to the condensation of Can form a ring;
상기 R1 내지 R5의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 포스핀기, 포스핀옥사이드기, 및 아릴아민기는, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.The alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, heterocycloalkyl group, arylamine group, alkylsilyl group, alkyl boron group, aryl of the R 1 to R 5 A boron group, a phosphine group, a phosphine oxide group, and an arylamine group are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group , C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 ~ C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, arylboronic group of C 6 ~ C 60, C 6 ~ C 60 of the aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group and one substituent at least one selected from the group consisting of an aryl amine of the C 6 ~ C 60 of Substituted or unsubstituted, in this case, when the substituents are plural, they may be the same or different from each other.
상기 화학식 1로 표시되는 화합물은 전자 공여성이 큰 전자주게기(electron donating group, EDG) 특성을 갖는 카바졸계(carbazole-based) 모이어티 또는 옥산트렌계(oxanthrene-based) 모이어티를 갖거나, 혹은 전자 및 정공의 양쪽성 성질이 우수하여 캐리어(carrier) 수송 능력이 우수한 디벤조계 모이어티(예, 디벤조퓨란계 모이어티, 디벤조티오펜계 모이어티 등)를 포함한다. 이러한 모어이티를 중심으로 일측 또는 양측에 다양한 종류의 치환체가 도입된다. 이러한 치환체의 특성에 따라 상기 화학식 1의 화합물은 다양한 특성을 가질 수 있다. 예를 들어, 상기 치환체가 당 분야에 공지된 전자 주게기(EDG)일 경우, 화학식 1의 화합물은 우수한 정공 특성을 가질 수 있다. 이러한 화학식 1의 화합물이 정공수송 보조층의 재료 및 발광층의 일 호스트로 동시에 적용될 경우, 양극으로부터 주입되는 정공을 정공수송층에서 발광층으로 원활히 전달할 수 있으며, 이에 따라 유기 전계 발광 소자의 구동전압을 낮추고, 고효율 및 장수명을 유도할 수 있다. The compound represented by Formula 1 has a carbazole-based moiety or an oxanthrene-based moiety having a large electron donating group (EDG) property, or Or, it includes a dibenzo-based moiety (eg, dibenzofuran-based moiety, dibenzothiophene-based moiety, etc.) having excellent carrier transport ability due to excellent amphoteric properties of electrons and holes. Various kinds of substituents are introduced on one or both sides of the moiety. Depending on the characteristics of these substituents, the compound of Formula 1 may have various characteristics. For example, when the substituent is an electron donor (EDG) known in the art, the compound of Formula 1 may have excellent hole characteristics. When the compound of Formula 1 is applied simultaneously as a material of the hole transport auxiliary layer and a host of the light emitting layer, holes injected from the anode can be smoothly transferred from the hole transport layer to the light emitting layer, thereby lowering the driving voltage of the organic electroluminescent device, It can induce high efficiency and long life.
또한, 상기 화학식 1로 표시되는 화합물은 전술한 모이어티에 도입되는 다양한 치환체 종류 및 도입 위치를 조절함에 따라 화합물의 분자량이 유의적으로 증대되기 때문에, 유리전이온도가 높아 유기 전계 발광 소자의 열적 안정성을 향상시킬 뿐만 아니라, 유기물층의 결정화 억제 효과도 있으므로, 소자의 내구성 및 수명 특성을 크게 향상시킬 수 있다.In addition, since the molecular weight of the compound of the compound represented by Formula 1 is significantly increased by controlling the types and locations of various substituents introduced into the moiety described above, the glass transition temperature is high, thus improving the thermal stability of the organic electroluminescent device. It not only improves, but also has an effect of inhibiting crystallization of the organic material layer, and thus durability and life characteristics of the device can be greatly improved.
상기 화학식 1로 표시되는 화합물은 Y1 및 Y2에 따라 다양한 구조를 가질 수 있다. 예를 들어, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 15 중 어느 하나로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.The compound represented by Formula 1 may have various structures according to Y 1 and Y 2 . For example, the compound represented by Formula 1 may be a compound represented by any one of Formulas 2 to 15 below, but is not limited thereto.
Figure PCTKR2020007902-appb-C000002
Figure PCTKR2020007902-appb-C000002
Figure PCTKR2020007902-appb-C000003
Figure PCTKR2020007902-appb-C000003
Figure PCTKR2020007902-appb-C000004
Figure PCTKR2020007902-appb-C000004
Figure PCTKR2020007902-appb-C000005
Figure PCTKR2020007902-appb-C000005
Figure PCTKR2020007902-appb-C000006
Figure PCTKR2020007902-appb-C000006
Figure PCTKR2020007902-appb-C000007
Figure PCTKR2020007902-appb-C000007
Figure PCTKR2020007902-appb-C000008
Figure PCTKR2020007902-appb-C000008
Figure PCTKR2020007902-appb-C000009
Figure PCTKR2020007902-appb-C000009
Figure PCTKR2020007902-appb-C000010
Figure PCTKR2020007902-appb-C000010
Figure PCTKR2020007902-appb-C000011
Figure PCTKR2020007902-appb-C000011
Figure PCTKR2020007902-appb-C000012
Figure PCTKR2020007902-appb-C000012
Figure PCTKR2020007902-appb-C000013
Figure PCTKR2020007902-appb-C000013
Figure PCTKR2020007902-appb-C000014
Figure PCTKR2020007902-appb-C000014
Figure PCTKR2020007902-appb-C000015
Figure PCTKR2020007902-appb-C000015
상기 화학식 2 내지 15에서, In Formulas 2 to 15,
R1 내지 R5, m, 및 n은 각각 화학식 1에서 정의한 바와 같다.R 1 to R 5 , m, and n are each as defined in Formula 1.
또, 상기 화학식 1에서, m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 구체적으로 각각 0 내지 2의 정수일 수 있다. In addition, in Formula 1, m and n are each independently an integer of 0 to 4, and specifically may be an integer of 0 to 2, respectively.
여기서, m 및 n이 각각 0인 경우, 수소가 각각 R1 및 R2로 치환되지 않는 것을 의미하고, m 및 n이 각각 1 내지 4의 정수인 경우, 하나 이상의 R1 및 하나 이상의 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소를 제외한 치환기이고, 구체적으로 화학식 1에서 정의한 바와 같고(단, 수소를 제외함), 더 구체적으로 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예, 다른 R1 또는 R2)와 결합하여 C5~C60의 축합 방향족 고리 또는 5원~60원의 축합 헤테로방향족 고리를 형성할 수 있다. 여기서, 상기 헤테로시클로알킬기, 헤테로아릴기 및 축합 헤테로방향족고리는 각각 N, S, O 및 Se로 이루어진 군에서 선택된 1개 이상의 헤테로 원자를 포함한다.Here, when m and n are each 0, it means that hydrogen is not substituted with R 1 and R 2 , respectively, and when m and n are each an integer of 1 to 4, at least one R 1 and at least one R 2 are each The same or different, each independently a substituent excluding hydrogen, specifically as defined in Formula 1 (however, excluding hydrogen), more specifically deuterium, halogen group, cyano group, nitro group, amino group, C 1 ~ C 40 alkyl group, C 6 ~ C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms and a C 6 ~ C 60 arylamine group selected from the group consisting of, or adjacent groups (eg, other R 1 or R 2 ) may form a condensed aromatic ring of C 5 to C 60 or a condensed heteroaromatic ring of 5 to 60 members by bonding with R 2 ). Here, the heterocycloalkyl group, heteroaryl group, and condensed heteroaromatic ring each contain at least one hetero atom selected from the group consisting of N, S, O, and Se.
또, 구체적으로 R3 내지 R5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 수소, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기들(예, R4와 R5)이 서로 결합하여 C5~C60의 축합 방향족 고리 또는 5원~60원의 축합 헤테로방향족 고리를 형성할 수 있다. 여기서, 상기 헤테로시클로알킬기, 헤테로아릴기 및 축합 헤테로방향족고리는 각각 N, S, O 및 Se로 이루어진 군에서 선택된 1개 이상의 헤테로 원자를 포함한다.In addition, specifically R 3 to R 5 are the same as or different from each other, and each independently hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, and Selected from the group consisting of C 6 ~ C 60 arylamine groups, or adjacent groups (eg, R 4 and R 5 ) are bonded to each other to form a C 5 ~ C 60 fused aromatic ring or a 5 to 60 membered condensed heteroaromatic Can form a ring. Here, the heterocycloalkyl group, heteroaryl group, and condensed heteroaromatic ring each contain at least one hetero atom selected from the group consisting of N, S, O, and Se.
이러한 m, n, 및 R1 내지 R5에 따라, 상기 화학식 1로 표시되는 화합물은 하기 화학식 16 내지 화학식 41 중 어느 하나로 표시되는 화합물일 수 있는데, 이에 한정되지 않는다.According to these m, n, and R 1 to R 5 , the compound represented by Formula 1 may be a compound represented by any one of Formulas 16 to 41 below, but is not limited thereto.
Figure PCTKR2020007902-appb-C000016
Figure PCTKR2020007902-appb-C000016
Figure PCTKR2020007902-appb-C000017
Figure PCTKR2020007902-appb-C000017
Figure PCTKR2020007902-appb-C000018
Figure PCTKR2020007902-appb-C000018
Figure PCTKR2020007902-appb-C000019
Figure PCTKR2020007902-appb-C000019
Figure PCTKR2020007902-appb-C000020
Figure PCTKR2020007902-appb-C000020
Figure PCTKR2020007902-appb-C000021
Figure PCTKR2020007902-appb-C000021
Figure PCTKR2020007902-appb-C000022
Figure PCTKR2020007902-appb-C000022
Figure PCTKR2020007902-appb-C000023
Figure PCTKR2020007902-appb-C000023
Figure PCTKR2020007902-appb-C000024
Figure PCTKR2020007902-appb-C000024
Figure PCTKR2020007902-appb-C000025
Figure PCTKR2020007902-appb-C000025
Figure PCTKR2020007902-appb-C000026
Figure PCTKR2020007902-appb-C000026
Figure PCTKR2020007902-appb-C000027
Figure PCTKR2020007902-appb-C000027
Figure PCTKR2020007902-appb-C000028
Figure PCTKR2020007902-appb-C000028
Figure PCTKR2020007902-appb-C000029
Figure PCTKR2020007902-appb-C000029
Figure PCTKR2020007902-appb-C000030
Figure PCTKR2020007902-appb-C000030
Figure PCTKR2020007902-appb-C000031
Figure PCTKR2020007902-appb-C000031
Figure PCTKR2020007902-appb-C000032
Figure PCTKR2020007902-appb-C000032
Figure PCTKR2020007902-appb-C000033
Figure PCTKR2020007902-appb-C000033
Figure PCTKR2020007902-appb-C000034
Figure PCTKR2020007902-appb-C000034
Figure PCTKR2020007902-appb-C000035
Figure PCTKR2020007902-appb-C000035
Figure PCTKR2020007902-appb-C000036
Figure PCTKR2020007902-appb-C000036
Figure PCTKR2020007902-appb-C000037
Figure PCTKR2020007902-appb-C000037
Figure PCTKR2020007902-appb-C000038
Figure PCTKR2020007902-appb-C000038
Figure PCTKR2020007902-appb-C000039
Figure PCTKR2020007902-appb-C000039
Figure PCTKR2020007902-appb-C000040
Figure PCTKR2020007902-appb-C000040
Figure PCTKR2020007902-appb-C000041
Figure PCTKR2020007902-appb-C000041
상기 화학식 16 내지 41에서, In Formulas 16 to 41,
R1 내지 R5은 각각 화학식 1에서 정의한 바와 같고,R 1 to R 5 are each the same as defined in Formula 1,
a는 0 내지 4의 정수이며, 구체적으로 a는 0 또는 1이고,a is an integer of 0 to 4, specifically a is 0 or 1,
R6 내지 R9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 구체적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 및 C6~C60의 아릴아민기로 이루어진 군에서 선택될 수 있다.R 6 to R 9 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 nuclear atom heterocycloalkyl group, C 6 to C 60 aryl group, 5 to 60 nuclear atom heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, C 6 ~ C group of 60 arylboronic, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine is selected from the pin oxide groups and the group consisting of C 6 ~ with an aryl amine of the C 60 of, specifically, hydrogen, deuterium, halogen The group consisting of a group, a cyano group, a nitro group, an amino group, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, and a C 6 to C 60 arylamine group Can be chosen from
또, 상기 화학식 1로 표시되는 화합물에서, R1 내지 R5 중 적어도 어느 하나는 하기 구조식 S1 내지 S5로 이루어진 군에서 선택된 어느 하나로 표시되는 치환체일 수 있다. 이때, 구조식 S1 내지 S4의 치환체는 전자공여성을 갖는 전자주게기(EDG)로, R1 내지 R5 중 적어도 어느 하나에 도입될 경우, 화학식 1의 화합물은 우수한 정공 특성을 가질 수 있다.In addition, in the compound represented by Formula 1, at least one of R 1 to R 5 may be a substituent represented by any one selected from the group consisting of the following structural formulas S1 to S5. At this time, the substituents of the structural formulas S1 to S4 are electron donor groups (EDG) having electron donation, and when introduced into at least one of R 1 to R 5 , the compound of Formula 1 may have excellent hole characteristics.
Figure PCTKR2020007902-appb-I000003
Figure PCTKR2020007902-appb-I000003
상기 구조식 S1 내지 S5에서, In the above structural formulas S1 to S5,
*는 화학식 1과 결합이 이루어지는 부분을 의미하며;* Refers to a portion in which a bond with Formula 1 is formed;
L1은 단일결합이거나, 또는 C6~C30의 아릴렌기 및 핵원자수 5 내지 30의 헤테로아릴렌기로 이루어진 군에서 선택되고, 구체적으로 단일결합이거나, 페닐렌기 또는 비페닐렌기일 수 있으며;L 1 is a single bond, or is selected from the group consisting of a C 6 to C 30 arylene group and a heteroarylene group having 5 to 30 nuclear atoms, and may be specifically a single bond, a phenylene group, or a biphenylene group;
X1는 NAr3, O 및 S로 이루어진 군에서 선택되고;X 1 is selected from the group consisting of NAr 3 , O and S;
Ar1 내지 Ar3는 서로 동일하거나 상이하며, 각각 독립적으로 수소, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며, 구체적으로 페닐기, 비페닐기, 1가의 디메틸플루오렌기, 1가의 디벤조퓨란기, 1가의 디벤조티오펜기 및 1가의 카바졸기로 이루어진 군에서 선택될 수 있고;Ar 1 to Ar 3 are the same or different from each other, each independently selected from the group consisting of hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms, , Specifically, it may be selected from the group consisting of a phenyl group, a biphenyl group, a monovalent dimethylfluorene group, a monovalent dibenzofuran group, a monovalent dibenzothiophene group, and a monovalent carbazole group;
b 및 c는 각각 0 또는 1이고;b and c are each 0 or 1;
상기 Ar1 내지 Ar3의 알킬기, 아릴기 및 헤테로아릴기는 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.The alkyl group, aryl group and heteroaryl group of Ar 1 to Ar 3 are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 to C 40 alkyl boron group, C group of 6 to arylboronic of C 60, C 6 to C 60 aryl phosphine group, substituted with one substituent at least one selected from the group consisting of an aryl amine of the C 6 to C 60 aryl phosphine oxide group, and a C 6 to C 60 of Or unsubstituted, and in this case, when the substituents are plural, they may be the same as or different from each other.
또한, 상기 구조식 S1 내지 S5에 구체적으로 표시되지 않았으나, 당 분야에서 공지된 치환기 R7이 적어도 하나 이상 치환될 수 있다. 구체적으로, R7은 R1~R5의 정의부에 기재된 바와 동일하다.In addition, although not specifically shown in the structural formulas S1 to S5, at least one or more substituents R 7 known in the art may be substituted. Specifically, R 7 is the same as described in the definition section of R 1 to R 5 .
전술한 화학식 1로 표시되는 화합물은 하기 화합물 1 내지 20으로 구체화될 수 있는데, 이에 한정되지 않는다.The compound represented by the above formula 1 may be embodied as the following compounds 1 to 20, but is not limited thereto.
Figure PCTKR2020007902-appb-I000004
Figure PCTKR2020007902-appb-I000004
상기 정공 수송 영역(310)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.The hole transport region 310 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
2) 발광층2) light emitting layer
본 발명의 유기 전계 발광 소자에서, 발광층(320)은 양극(100)과 음극(200) 사이에 개재되는 유기물층(300)의 일 부분으로, 구체적으로 상기 정공 수송 영역(310)의 정공수송 보조층(313) 상에 배치된다. 이러한 발광층(320)은 양극과 음극으로부터 각각 주입된 정공과 전자가 결합하여 엑시톤(exciton)이 형성되는 층으로, 발광층(320)을 이루는 물질에 따라 유기 전계 발광 소자가 내는 빛의 색이 달라질 수 있다.In the organic electroluminescent device of the present invention, the emission layer 320 is a part of the organic material layer 300 interposed between the anode 100 and the cathode 200, and specifically, a hole transport auxiliary layer of the hole transport region 310 It is placed on 313. The emission layer 320 is a layer in which holes and electrons injected from the anode and the cathode are combined to form excitons, and the color of light emitted by the organic electroluminescent device may vary depending on the material forming the emission layer 320. have.
본 발명의 발광층(320)은 복수의 호스트 및 도펀트를 포함한다. 이때, 복수의 호스트 중 어느 하나가 전술한 정공수송 보조층을 형성하는 재료(이하, '정공수송 보조층 재료')와 동일하다.The light emitting layer 320 of the present invention includes a plurality of hosts and dopants. At this time, any one of the plurality of hosts is the same as the material for forming the aforementioned hole transport auxiliary layer (hereinafter, “hole transport auxiliary layer material”).
일례에 따르면, 복수의 호스트는 상기 정공수송 보조층 재료와 동일한 제1 호스트; 및 상기 제1 호스트와 상이한 제2 호스트를 포함한다. 이와 같이, 복수의 호스트 중 하나가 정공수송 보조층의 재료와 동일할 경우, 발광층과 정공수송 보조층 간의 barrier-free 효과가 발휘되어 소자의 낮은 구동전압, 높은 발광효율 및 장수명 특성을 구현할 수 있다.According to an example, the plurality of hosts may include: a first host identical to the material of the auxiliary hole transport layer; And a second host different from the first host. As described above, when one of the plurality of hosts is the same as the material of the hole transport auxiliary layer, the barrier-free effect between the light emitting layer and the hole transport auxiliary layer is exerted, so that low driving voltage, high luminous efficiency, and long life characteristics of the device can be realized. .
본 발명의 제1 호스트는 전술한 정공수송 보조층의 재료와 동일한 재료이다. 구체적으로, 제1 호스트는 상기 화학식 1로 표시되는 화합물일 수 있고, 더 구체적으로 상기 화학식 2 내지 15 중 어느 하나로 표시되는 화합물일 수 있으며, 보다 더 구체적으로 상기 화학식 16 내지 41 중 어느 하나로 표시되는 화합물일 수 있다. 일례에 따르면, 본 발명의 제1 호스트는 상기 화합물 1 내지 20 중 하나일 수 있다.The first host of the present invention is the same material as that of the hole transport auxiliary layer. Specifically, the first host may be a compound represented by Formula 1, more specifically, may be a compound represented by any one of Formulas 2 to 15, and more specifically represented by any one of Formulas 16 to 41. It can be a compound. According to an example, the first host of the present invention may be one of Compounds 1 to 20.
또, 제2 호스트는 상기 제1 호스트와 상이한 호스트로서, 당 업계에 공지된 것이라면 특별히 한정되지 않으며, 이의 비제한적인 예로는 알칼리 금속 착화합물; 알칼리토금속 착화합물; 또는 축합 방향족환 유도체 등이 있다. 구체적으로, 제2 호스트의 예로는 유기 전계 발광 소자의 발광효율 및 수명을 높일 수 있는 알루미늄 착화합물, 베릴륨 착화합물, 이리듐 화합물, 안트라센 유도체, 파이렌 유도체, 트리페닐렌 유도체, 카바졸 유도체, 디벤조퓨란 유도체, 디벤조싸이오펜 유도체, 플루오렌 유도체, 함질소복소환 유도체 또는 이들의 1종 이상의 조합 등일 수 있다. In addition, the second host is a host different from the first host, and is not particularly limited as long as it is known in the art, and non-limiting examples thereof include an alkali metal complex; Alkaline earth metal complexes; Or condensed aromatic ring derivatives. Specifically, examples of the second host include aluminum complexes, beryllium complexes, iridium compounds, anthracene derivatives, pyrene derivatives, triphenylene derivatives, carbazole derivatives, and dibenzofuran that can increase the luminous efficiency and lifespan of an organic electroluminescent device. It may be a derivative, a dibenzothiophene derivative, a fluorene derivative, a nitrogen-containing heterocyclic derivative, or a combination of one or more thereof.
다만, 본 발명에서는 발광층 내 엑시톤의 수를 유의적으로 증가시키면서, 엑시톤의 역전이 현상을 방지하기 위해서, 제2 호스트를 선택할 때, 제1 호스트와의 HOMO 에너지 준위 차이나 LUMO 에너지 준위 차이 등과 같은 물성 차이를 고려할 필요가 있다.However, in the present invention, in order to significantly increase the number of excitons in the emission layer and to prevent the reverse transition of excitons, when selecting the second host, physical properties such as the difference in HOMO energy level or difference in LUMO energy level with the first host You need to consider the difference.
일례에 따르면, 제2 호스트는 하기 관계식 3 및 4를 만족하는 재료일 수 있다. According to an example, the second host may be a material satisfying the following relations 3 and 4.
[관계식 3][Relationship 3]
Figure PCTKR2020007902-appb-I000005
Figure PCTKR2020007902-appb-I000005
[관계식 4][Relationship 4]
Figure PCTKR2020007902-appb-I000006
Figure PCTKR2020007902-appb-I000006
상기 식에서, In the above formula,
LUMOhost-1은 제1 호스트의 LUMO 에너지 준위이고,LUMO host-1 is the LUMO energy level of the first host,
LUMOhost-2는 제2 호스트의 LUMO 에너지 준위이며,LUMO host-2 is the LUMO energy level of the second host,
HOMOhost-1은 제1 호스트의 HOMO 에너지 준위이고,HOMO host-1 is the HOMO energy level of the first host,
HOMOhost-2는 제2 호스트의 HOMO 에너지 준위이다.HOMO host-2 is the HOMO energy level of the second host.
이러한 제1 호스트와 제2 호스트의 사용 비율은 특별히 한정되지 않으며, 예컨대 30:70 ~ 90:10 중량 비율일 수 있다. 만약, 제1 호스트와 제2 호스트의 사용 비율이 전술한 비율일 경우, 발광층과 정공수송 보조층과의 barrier-free 효과를 더 증가시키면서, 도펀트에서 호스트로의 엑시톤 역전이 현상을 더 효율적으로 방지할 수 있다.The ratio of use of the first host and the second host is not particularly limited, and may be, for example, a weight ratio of 30:70 to 90:10. If the ratio of use of the first host and the second host is the above-described ratio, the barrier-free effect between the light emitting layer and the hole transport auxiliary layer is further increased, and the inversion of exciton from the dopant to the host is more efficiently prevented. can do.
선택적으로, 본 발명의 발광층은 전술한 제1 호스트 및 제2 호스트와 상이한 다른 호스트(예, 제3 호스트)를 1개 이상 더 포함할 수 있다. 이때, 제3 호스트의 예는 제2 호스트의 예와 동일한 바, 생략한다.Optionally, the light emitting layer of the present invention may further include one or more other hosts (eg, a third host) different from the first host and the second host described above. In this case, since the example of the third host is the same as the example of the second host, it is omitted.
본 발명의 발광층에서, 도펀트는 당해 기술분야에 통상적으로 공지된 것이라면 특별히 한정되지 않는다. 이러한 도펀트는 형광 도펀트와 인광 도펀트로 분류될 수 있는데, 인광 도펀트는, Ir, Pt, Os, Re, Ti, Zr, Hf 또는 이들 중 2 이상의 조합을 포함한 유기 금속 착체일 수 있으나, 이에 한정되는 것은 아니다. In the light emitting layer of the present invention, the dopant is not particularly limited as long as it is commonly known in the art. Such dopants may be classified into fluorescent dopants and phosphorescent dopants. The phosphorescent dopant may be an organometallic complex including Ir, Pt, Os, Re, Ti, Zr, Hf, or a combination of two or more thereof, but is limited thereto. no.
한편, 상기 도펀트는 적색 도펀트, 녹색 도펀트 및 청색 도펀트로 분류될 수 있는데, 당해 기술 분야에 통상적으로 공지된 적색 도펀트, 녹색 도펀트 및 청색 도펀트는 특별히 제한 없이 사용될 수 있다.Meanwhile, the dopant may be classified into a red dopant, a green dopant, and a blue dopant, and red dopants, green dopants, and blue dopants commonly known in the art may be used without particular limitation.
구체적으로, 상기 적색 도펀트의 비제한적인 예로는 PtOEP(Pt(II) octaethylporphine: Pt(II) 옥타에틸포르핀), Ir(piq)3 (tris(2-phenylisoquinoline)iridium: 트리스(2-페닐이소퀴놀린)이리듐), Btp2Ir(acac) (bis(2-(2'-benzothienyl)-pyridinato-N,C3')iridium(acetylacetonate): 비스(2-(2'-벤조티에닐)-피리디나토-N,C3')이리듐(아세틸아세토네이트)) 등이 있고, 이는 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.Specifically, non-limiting examples of the red dopant include PtOEP (Pt(II) octaethylporphine: Pt(II) octaethylporphine), Ir(piq) 3 (tris(2-phenylisoquinoline)iridium: tris(2-phenyliso). Quinoline) iridium), Btp 2 Ir(acac) (bis(2-(2'-benzothienyl)-pyridinato-N,C3')iridium(acetylacetonate): bis(2-(2'-benzothienyl)-pyridina To-N, C3') iridium (acetylacetonate)), and the like, which may be used alone or in combination of two or more.
또, 상기 녹색 도펀트의 비제한적인 예로는 Ir(ppy)3 (tris(2-phenylpyridine) iridium: 트리스(2-페닐피리딘) 이리듐), Ir(ppy)2(acac) (Bis(2-phenylpyridine)(Acetylacetonato)iridium(III): 비스(2-페닐피리딘)(아세틸아세토) 이리듐(III)), Ir(mppy)3 (tris(2-(4-tolyl)phenylpiridine)iridium: 트리스(2-(4-톨일)페닐피리딘) 이리듐), C545T (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one: 10-(2-벤조티아졸일)-1,1,7,7-테트라메틸-2,3,6,7,-테트라하이드로-1H,5H,11H-[1]벤조피라노 [6,7,8-ij]-퀴놀리진-11-온) 등이 있는데, 이는 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.In addition, non-limiting examples of the green dopant include Ir (ppy) 3 (tris (2-phenylpyridine) iridium: tris (2-phenylpyridine) iridium), Ir (ppy) 2 (acac) (Bis (2-phenylpyridine) (Acetylacetonato)iridium(III): bis(2-phenylpyridine)(acetylaceto) iridium(III)), Ir(mppy) 3 (tris(2-(4-tolyl)phenylpiridine)iridium: tris(2-(4) -Tolyl)phenylpyridine) iridium), C545T (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [ 6,7,8-ij]-quinolizin-11-one: 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7,-tetrahydro-1H, 5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one) and the like, which may be used alone or in combination of two or more.
또, 상기 청색 도펀트의 비제한적인 예로는 F2Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): 비스[3,5-디플루오로-2-(2-피리딜)페닐(피콜리나토) 이리듐(III)), (F2ppy)2Ir(tmd), Ir(dfppz)3, DPVBi (4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl: 4,4'-비스(2,2'-디페닐에텐-1-일)비페닐), DPAVBi (4,4'-Bis[4-(diphenylamino)styryl]biphenyl: 4,4'-비스(4-디페닐아미노스티릴)비페닐), TBPe (2,5,8,11-tetra-tert-butyl perylene: 2,5,8,11-테트라-터트-부틸 페릴렌) 등이 있는데, 이는 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.In addition, non-limiting examples of the blue dopant include F 2 Irpic (Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III): bis[3,5-difluoro- 2-(2-pyridyl)phenyl(picolinato) iridium(III)), (F 2 ppy) 2 Ir(tmd), Ir(dfppz) 3 , DPVBi (4,4'-bis(2,2' -diphenylethen-1-yl)biphenyl: 4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl), DPAVBi (4,4'-Bis[4-(diphenylamino)styryl] biphenyl: 4,4'-bis(4-diphenylaminostyryl)biphenyl), TBPe (2,5,8,11-tetra-tert-butyl perylene: 2,5,8,11-tetra-tert- Butyl perylene) and the like, which may be used alone or in combination of two or more.
이러한 도펀트의 함량은 특별히 한정되지 않으며, 당 분야에서 공지된 범위 내에서 적절히 조절할 수 있다. The content of such a dopant is not particularly limited, and may be appropriately adjusted within a range known in the art.
일례로, 발광층의 총량을 기준으로 복수의 호스트와 도펀트는 70:30 ~ 99.9:0.1 중량 비율로 포함될 수 있다. 구체적으로, 발광층(320)이 청색 형광, 녹색 형광 또는 적색 형광일 경우, 복수의 호스트와 도펀트는 80:20 ~ 99.9:0.1 중량 비율로 포함될 수 있다. 또, 발광층(320)이 청색 형광, 녹색 형광 또는 적색 인광일 경우, 복수의 호스트와 도펀트는 70:30 ~ 99:1 중량 비율로 포함될 수 있다.For example, a plurality of hosts and dopants may be included in a weight ratio of 70:30 to 99.9:0.1 based on the total amount of the emission layer. Specifically, when the emission layer 320 is blue fluorescence, green fluorescence, or red fluorescence, a plurality of hosts and dopants may be included in a weight ratio of 80:20 to 99.9:0.1. Further, when the emission layer 320 is blue fluorescence, green fluorescence, or red phosphorescence, a plurality of hosts and dopants may be included in a weight ratio of 70:30 to 99:1.
다른 일례로, 도펀트의 함량은 제1 호스트와 제2 호스트를 합한 총량 100 중량부를 기준으로 약 0.1 ~ 30 중량부 범위일 수 있다. As another example, the content of the dopant may range from about 0.1 to 30 parts by weight based on 100 parts by weight of the total amount of the first host and the second host.
전술한 발광층(320)은 단일층이거나, 또는 2층 이상의 복수층으로 이루어질 수 있다. 여기서, 발광층(320)이 복수 층일 경우, 유기 전계 발광 소자는 다양한 색의 빛을 낼 수 있다. 구체적으로, 본 발명은 이종(異種) 재료로 이루어진 복수의 발광층을 직렬로 구비하여 혼합색을 띠는 유기 전계 발광 소자를 제공할 수 있다. 또한, 복수의 발광층을 포함할 경우, 소자의 구동전압은 커지는 반면, 유기 전계 발광 소자 내의 전류값은 일정하게 되어 발광층의 수만큼 발광 효율이 향상된 유기 전계 발광 소자를 제공할 수 있다.The above-described light emitting layer 320 may be a single layer, or may be formed of a plurality of layers of two or more layers. Here, when the emission layer 320 is a plurality of layers, the organic electroluminescent device may emit light of various colors. Specifically, the present invention can provide an organic electroluminescent device having a mixed color by providing in series a plurality of light-emitting layers made of different materials. In addition, when a plurality of emission layers are included, the driving voltage of the device is increased, while the current value in the organic electroluminescent device is constant, thereby providing an organic EL device having improved luminous efficiency by the number of emission layers.
이러한 발광층(320)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.The light emitting layer 320 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
3) 전자 수송 영역3) electron transport area
본 발명에 따른 유기 전계 발광 소자에서, 전자 수송 영역(330)은 발광층(320) 상에 배치되는 유기물층으로, 음극(200)에서 주입된 전자를 발광층(320)으로 이동시킨다. In the organic electroluminescent device according to the present invention, the electron transport region 330 is an organic material layer disposed on the emission layer 320 and moves electrons injected from the cathode 200 to the emission layer 320.
이러한 전자 수송 영역(330)은, 전자수송 보조층(333), 전자 수송층(331) 및 전자 주입층(331)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이때, 유기 전계 발광 소자의 특성을 고려할 때, 전자 수송 영역(330)은 도 1에 도시된 바와 같이, 전술한 전자 수송층(331) 및 전자 주입층(332)을 포함하거나, 또는 도 2에 도시된 바와 같이, 전자수송 보조층(333), 전자 수송층(331) 및 전자 주입층(332)을 모두 포함하는 것이 바람직하다.The electron transport region 330 may include at least one selected from the group consisting of an electron transport auxiliary layer 333, an electron transport layer 331, and an electron injection layer 331. In this case, when considering the characteristics of the organic electroluminescent device, the electron transport region 330 includes the electron transport layer 331 and the electron injection layer 332 described above, as illustrated in FIG. 1, or illustrated in FIG. 2. As described above, it is preferable to include all of the electron transport auxiliary layer 333, the electron transport layer 331, and the electron injection layer 332.
본 발명에 따른 전자 수송 영역(330)에서, 전자 주입층(331)은 전자 주입이 용이하고 전자 이동도가 큰 전자 주입 물질을 제한 없이 사용할 수 있다. 사용 가능한 전자 주입 물질의 비제한적인 예로, 상기 양극성 화합물, 안트라센 유도체, 헤테로방향족 화합물, 알칼리 금속 착화합물 등이 있다. 구체적으로, LiF, Li2O, BaO, NaCl, CsF; Yb 등과 같은 란타넘족 금속; 또는 RbCl, RbI 등과 같은 할로겐화 금속 등이 있는데, 이들은 단독으로 사용되거나 2종 이상이 혼합되어 사용될 수 있다.In the electron transport region 330 according to the present invention, the electron injection layer 331 may use an electron injection material having easy electron injection and high electron mobility without limitation. Non-limiting examples of the electron injection material that can be used include the above bipolar compounds, anthracene derivatives, heteroaromatic compounds, and alkali metal complex compounds. Specifically, LiF, Li 2 O, BaO, NaCl, CsF; Lanthanum group metals such as Yb and the like; Alternatively, there are metal halides such as RbCl and RbI, and these may be used alone or in combination of two or more.
본 발명에 따른 전자 수송 영역(330), 구체적으로 전자 수송층(331) 및/또는 전자 주입층(332)은 음극으로부터 전자의 주입이 용이하도록 n형 도펀트와 공증착된 것을 사용할 수도 있다. 이때, n형 도펀트는 당 분야에 공지된 알칼리 금속 착화합물을 제한없이 사용할 수 있으며, 일례로 알칼리 금속, 알칼리 토금속 또는 희토류 금속 등을 들 수 있다.The electron transport region 330 according to the present invention, specifically, the electron transport layer 331 and/or the electron injection layer 332 may be co-deposited with an n-type dopant to facilitate injection of electrons from the cathode. At this time, as the n-type dopant, an alkali metal complex compound known in the art may be used without limitation, and examples thereof include an alkali metal, an alkaline earth metal, or a rare earth metal.
또. 전자수송 보조층(333)은 발광층(320)에서 생성된 엑시톤 또는 정공이 전자 수송 영역으로 확산되는 것을 방지할 수 있다. 이러한 전자수송 보조층(333)은 당 분야에 공지된 통상의 전자수송 특성을 가진 물질을 제한 없이 사용할 수 있다. 일례로, 옥사디아졸 유도체, 트리아졸 유도체, 페난트롤린 유도체(예, BCP), 질소를 포함하는 헤테로환 유도체 등을 포함할 수 있다.In addition. The electron transport auxiliary layer 333 may prevent excitons or holes generated in the emission layer 320 from diffusing into the electron transport region. The electron transport auxiliary layer 333 may be formed of a material having conventional electron transport characteristics known in the art without limitation. For example, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives (eg, BCP), heterocyclic derivatives containing nitrogen, and the like may be included.
상기 전자 수송 영역(330)은 당해 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있다. 예컨대, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등이 있는데, 이에 한정되지 않는다.The electron transport region 330 may be manufactured through a conventional method known in the art. For example, there are vacuum evaporation method, spin coating method, cast method, LB method (Langmuir-Blodgett), inkjet printing method, laser printing method, laser thermal imaging method (Laser Induced Thermal Imaging, LITI), and the like, but is not limited thereto.
4) 발광 보조층4) Light-emitting auxiliary layer
선택적으로, 본 발명의 유기 전계 발광 소자(100)는 상기 정공 수송 영역(310)과 발광층(320) 사이에 배치된 발광 보조층(미도시)을 더 포함할 수 있다. Optionally, the organic electroluminescent device 100 of the present invention may further include a light emission auxiliary layer (not shown) disposed between the hole transport region 310 and the emission layer 320.
발광 보조층은 정공 수송 영역(310)으로부터 이동되는 정공을 발광층(320)으로 수송하거나, 또는 전자 및/또는 엑시톤의 이동을 블로킹하면서, 유기물층(300)의 두께를 조절하는 역할을 한다. 특히, 발광 보조층은 높은 LUMO 값을 가져 전자가 정공 수송층(312)으로 이동하는 것을 막고, 높은 삼중항 에너지를 가져 발광층(320)의 엑시톤이 정공 수송층(312)으로 확산되는 것을 방지한다. The light emission auxiliary layer serves to control the thickness of the organic material layer 300 while transporting holes moved from the hole transport region 310 to the emission layer 320 or blocking movement of electrons and/or excitons. In particular, the light-emitting auxiliary layer has a high LUMO value to prevent electrons from moving to the hole transport layer 312, and has a high triplet energy to prevent excitons of the light-emitting layer 320 from diffusing to the hole transport layer 312.
이러한 발광 보조층은 정공 수송 물질을 포함할 수 있고, 정공 수송 영역과 동일한 물질로 만들어질 수 있다. 또한 적색, 녹색 및 청색 유기 발광 소자의 발광 보조층은 서로 동일한 재료로 만들어질 수 있다. This light emission auxiliary layer may include a hole transport material, and may be made of the same material as the hole transport region. Further, the auxiliary light emitting layers of the red, green, and blue organic light emitting devices may be made of the same material.
발광보조층 재료로는 특별히 제한되지 않으며, 예컨대 카바졸 유도체, 아릴아민 유도체 등이 있다. 구체적으로, 발광 보조층의 예로는 NPD(N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD(N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl)- benzidine), s-TAD, MTDATA(4, 4', 4″-Tris(N-3-methylphenyl-Nphenyl-amino)- triphenylamine) 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용되거나 또는 2종 이상이 혼합되어 사용될 수 있다. The material for the light-emitting auxiliary layer is not particularly limited, and examples thereof include carbazole derivatives and arylamine derivatives. Specifically, examples of the light emitting auxiliary layer include NPD (N, N-dinaphthyl-N, N'-diphenyl benzidine), TPD (N, N'-bis-(3-methylphenyl)-N, N'-bis(phenyl) -benzidine), s-TAD, MTDATA(4, 4', 4″-Tris(N-3-methylphenyl-Nphenyl-amino)-triphenylamine), and the like, but are not limited thereto. These may be used alone or in combination of two or more.
또한, 상기 발광 보조층은 전술한 물질 이외에, p형 도펀트를 더 포함할 수 있다. 본 발명에서 사용 가능한 p형 도펀트로는 당해 기술분야에서 일반적으로 사용되는 공지의 p형 도펀트라면 특별한 제한 없이 사용될 수 있다. 이때, P형 도펀트의 함량은 당해 기술분야에 공지된 범위 내에서 적절히 조절할 수 있으며, 예컨대 정공 수송 물질 100 중량부를 기준으로 약 0.5 내지 50 중량부일 수 있다.In addition, the light emitting auxiliary layer may further include a p-type dopant in addition to the above-described material. As the p-type dopant usable in the present invention, any known p-type dopant generally used in the art may be used without particular limitation. At this time, the content of the P-type dopant may be appropriately adjusted within a range known in the art, and may be, for example, about 0.5 to 50 parts by weight based on 100 parts by weight of the hole transport material.
상기 발광 보조층은 당해 기술분야에서 알려진 바와 같이, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등에 의해 형성될 수 있는데, 이에 한정되지 않는다.As known in the art, the light emission auxiliary layer is a vacuum deposition method, a spin coating method, a cast method, an LB method (Langmuir-Blodgett), an inkjet printing method, a laser printing method, and a laser induced thermal imaging method (LITI). It may be formed by, but is not limited thereto.
(4) 캡핑층(4) capping layer
선택적으로, 본 발명의 유기 전계 발광 소자(100)는 전술한 음극(200) 상에 배치된 캡핑층(미도시)을 더 포함할 수 있다. Optionally, the organic electroluminescent device 100 of the present invention may further include a capping layer (not shown) disposed on the above-described cathode 200.
상기 캡핑층은 유기 전계 발광 소자를 보호하면서, 유기물층에서 발생된 빛이 효율적으로 외부로 방출될 수 있도록 돕는 역할을 한다.The capping layer serves to protect the organic electroluminescent device and help light generated from the organic material layer to be efficiently emitted to the outside.
상기 캡핑층은 트리스-8-하이드록시퀴놀린알루미늄(Alq3), ZnSe, 2,5-bis(6′- (2′,2″-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, 4′-bis[N-(1-napthyl)-N- phenyl-amion] biphenyl (α-NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD), 1,1′-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이러한 캡핑층을 형성하는 물질은 유기 전계 발광 소자의 다른 층의 재료들에 비하여 저렴하다. The capping layer is tris-8-hydroxyquinoline aluminum (Alq 3 ), ZnSe, 2,5-bis(6′- (2′,2″-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole , 4′-bis[N-(1-napthyl)-N-phenyl-amion] biphenyl (α-NPD), N,N′-diphenyl-N,N′-bis(3-methylphenyl) -1,1′ -biphenyl-4,4'-diamine (TPD), 1,1'-bis (di-4-tolylaminophenyl) cyclohexane (TAPC) may contain at least one selected from the group consisting of. The material forming such a capping layer is inexpensive compared to materials of other layers of the organic electroluminescent device.
이러한 캡핑층은 단일층일 수도 있으나, 서로 다른 굴절률을 갖는 2 이상의 층을 포함하여, 상기 2 이상의 층을 통과하면서 점점 굴절률이 변화하도록 할 수 있다. Such a capping layer may be a single layer, but may include two or more layers having different refractive indices, so that the refractive index gradually changes while passing through the two or more layers.
상기 캡핑층은 당 기술분야에서 알려진 통상적인 방법을 통해 제조될 수 있으며, 일례로 진공증착법, 스핀코팅법, 캐스트법 또는 LB(Langmuir-Blodgett)법 등과 같은 다양한 방법을 이용할 수 있다.The capping layer may be manufactured by a conventional method known in the art, and for example, various methods such as a vacuum deposition method, a spin coating method, a cast method, or a Langmuir-Blodgett (LB) method may be used.
이상의 본 발명에 따른 유기 전계 발광 소자는 양극(100), 유기물층(300) 및 음극(200)이 순차적으로 적층된 구조를 갖는다. 경우에 따라, 상기 양극(100)과 유기물층(300) 사이, 또는 음극(200)과 유기물층(300) 사이에 절연층(미도시됨) 또는 접착층(미도시됨)을 더 포함할 수 있다. 이러한 본 발명의 유기 전계 발광 소자는 전압 및 전류 인가시 최대 발광효율을 유지하면서 초기 밝기의 반감시간(Life time)이 증가되기 때문에 수명 특성이 우수할 수 있다.The organic electroluminescent device according to the present invention has a structure in which an anode 100, an organic material layer 300, and a cathode 200 are sequentially stacked. In some cases, an insulating layer (not shown) or an adhesive layer (not shown) may be further included between the anode 100 and the organic material layer 300 or between the cathode 200 and the organic material layer 300. The organic electroluminescent device according to the present invention may have excellent lifespan characteristics because the life time of initial brightness increases while maintaining maximum luminous efficiency when voltage and current are applied.
전술한 본 발명의 유기 전계 발광 소자는 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 기판 상에 양극 물질을 진공 증착한 다음, 상기 양극 상에 정공 수송 영역 물질, 발광층 물질, 전자 수송 영역 물질, 및 음극 물질의 재료를 순서로 진공 증착하여 유기 발광 소자를 제조할 수 있다.The organic electroluminescent device of the present invention described above may be manufactured according to a conventional method known in the art. For example, after vacuum depositing an anode material on a substrate, an organic light-emitting device may be manufactured by vacuum-depositing a material of a hole transport area material, a light emitting layer material, an electron transport area material, and a cathode material on the anode in order. .
이하, 본 발명을 실시예를 통하여 상세히 설명하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples, but the following examples are only illustrative of the present invention, and the present invention is not limited by the following examples.
[준비예 1~20] 화합물 1~20의 HOMO, LUMO 및 삼중항 에너지 측정[Preparation Examples 1 to 20] HOMO, LUMO and triplet energy measurement of compounds 1 to 20
본 발명의 제1 호스트 및 정공수송 보조층 재료로 하기 화합물 1~20을 준비하였으며, 이들의 HOMO, LUMO, 삼중항에너지를 당 업계에 공지된 방법으로 각각 측정하여 하기 표 1에 나타내었다. 이때, 대조군으로, ADN, NPB 및 화합물 B를 사용하였다. 참고로, 화합물 B는 비교예 2에 기재된 바와 같다.The following compounds 1 to 20 were prepared as the first host and hole transport auxiliary layer material of the present invention, and their HOMO, LUMO, and triplet energies were measured by methods known in the art, respectively, and are shown in Table 1 below. At this time, as controls, ADN, NPB and compound B were used. For reference, compound B is as described in Comparative Example 2.
1)HOMO 에너지 레벨1)HOMO energy level
각 화합물의 HOMO 에너지 레벨을 CV(cyclic voltammetry) 법으로 측정하였다.The HOMO energy level of each compound was measured by CV (cyclic voltammetry) method.
2) LUMO 에너지 레벨2) LUMO energy level
각 화합물의 밴드갭 에너지를 UV 스펙트럼으로 구한 후, 밴드갭 에너지와 HOMO 에너지 레벨 간의 차이로 LUMO 에너지 레벨을 구하였다.After obtaining the bandgap energy of each compound by UV spectrum, the LUMO energy level was calculated as the difference between the bandgap energy and the HOMO energy level.
3) 삼중항 에너지3) triplet energy
각 화합물을 2-Methyltetrahydrofuran(2-methylTHF) 용매에 10-4 M 농도로 녹여 준비한 후, 액체 질소를 이용하여 77K 저온에서 QuantaMaster 30 Spectrofluorometer (PTI社) 기기로 인광 스펙트럼을 측정하였다.Each compound was prepared by dissolving it in 2-Methyltetrahydrofuran (2-methylTHF) solvent at a concentration of 10 -4 M, and then the phosphorescence spectrum was measured with a QuantaMaster 30 Spectrofluorometer (PTI) at 77K low temperature using liquid nitrogen.
Figure PCTKR2020007902-appb-I000007
Figure PCTKR2020007902-appb-I000007
HOMO 에너지 (eV)HOMO energy (eV) LUMO 에너지 (eV)LUMO energy (eV) 삼중항 에너지 (eV)Triplet energy (eV)
화합물 1Compound 1 5.445.44 2.282.28 2.62.6
화합물 2Compound 2 5.475.47 2.262.26 2.72.7
화합물 3Compound 3 5.295.29 2.222.22 2.62.6
화합물 4Compound 4 5.395.39 2.262.26 2.82.8
화합물 5Compound 5 5.325.32 2.032.03 2.52.5
화합물 6Compound 6 5.655.65 2.172.17 2.72.7
화합물 7Compound 7 5.695.69 2.182.18 2.62.6
화합물 8Compound 8 5.585.58 2.142.14 2.72.7
화합물 9Compound 9 5.755.75 2.252.25 2.52.5
화합물 10Compound 10 5.595.59 2.242.24 2.72.7
화합물 11Compound 11 5.585.58 2.152.15 2.72.7
화합물 12Compound 12 5.735.73 2.272.27 2.62.6
화합물 13Compound 13 5.615.61 2.182.18 2.62.6
화합물 14Compound 14 5.665.66 2.222.22 2.72.7
화합물 15Compound 15 5.565.56 2.172.17 2.62.6
화합물 16Compound 16 5.525.52 2.262.26 2.52.5
화합물 17Compound 17 5.385.38 2.252.25 2.42.4
화합물 18Compound 18 5.495.49 2.212.21 2.22.2
화합물 19Compound 19 5.515.51 2.192.19 2.32.3
화합물 20Compound 20 5.435.43 2.242.24 2.42.4
ADNADN 5.805.80 2.622.62 1.731.73
NPBNPB 5.035.03 1.451.45 2.52.5
화합물 BCompound B 5.795.79 2.612.61 1.721.72
[실시예 1] - 청색 유기 전계 발광 소자의 제조[Example 1]-Fabrication of blue organic electroluminescent device
준비예 1에서 준비된 화합물 1을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 아래의 과정에 따라 청색 유기 전계 발광 소자를 제작하였다.먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.After compound 1 prepared in Preparation Example 1 was subjected to high-purity sublimation purification by a conventionally known method, a blue organic electroluminescent device was manufactured according to the following procedure. First, ITO (Indium tin oxide) was coated with a thin film to a thickness of 1500 Å. The glass substrate was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonically clean with a solvent such as isopropyl alcohol, acetone, methanol, etc., dry, transfer to a UV OZONE cleaner (Power Sonic 405, Hwashin Tech), and clean the substrate for 5 minutes using UV And transferred the substrate to a vacuum evaporator.
상기와 같이 준비된 ITO 투명 전극 위에, 정공 주입층, 정공 수송층, 정공수송 보조층, 발광층, 전자 수송층, 전자 주입층 및 음극을 순차적으로 적층하여 유기 전계 발광 소자를 제조하였다. 제조된 소자의 구조는 하기 표 2와 같다.On the ITO transparent electrode prepared as described above, a hole injection layer, a hole transport layer, a hole transport auxiliary layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode were sequentially stacked to manufacture an organic electroluminescent device. The structure of the manufactured device is shown in Table 2 below.
화합물compound 두께 (㎚)Thickness (nm)
정공 주입층Hole injection layer DS-205 (㈜두산전자)DS-205 (Doosan Electronics) 8080
정공 수송층Hole transport layer NPBNPB 1515
정공수송 보조층Hole transport auxiliary layer 화합물 1(a)Compound 1(a) 55
발광층Emitting layer 화합물 1(a')+ ADN + 5 % DS-405 Compound 1(a')+ ADN + 5% DS-405 3030
전자 수송층Electron transport layer Alq3 Alq 3 3030
전자 주입층Electron injection layer LiFLiF 1One
음극 cathode AlAl 200200
상기에서 사용된 NPB, ADN 및 Alq3의 구조는 다음과 같다.The structures of NPB, ADN and Alq 3 used in the above are as follows.
Figure PCTKR2020007902-appb-I000008
Figure PCTKR2020007902-appb-I000008
[실시예 2~20] - 청색 유기 전계 발광 소자의 제조[Examples 2 to 20]-Preparation of blue organic electroluminescent device
실시예 1의 정공수송 보조층의 형성시 사용된 화합물 1 대신 하기 표 3에 기재된 각각의 화합물(a)을 사용하고, 발광층의 형성시 제1 호스트로 사용된 화합물 1 대신 하기 표 3에 기재된 각각의 화합물(a')을 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 실시예 2~20의 청색 유기 전계 발광 소자를 제조하였다.In place of the compound 1 used in the formation of the hole transport auxiliary layer of Example 1, each compound (a) shown in Table 3 was used, and the compound 1 used as the first host in the formation of the light emitting layer was replaced with each of the following Table 3 Except for the use of the compound (a') of, it was carried out in the same manner as in Example 1 to prepare the blue organic electroluminescent device of Examples 2 to 20.
[비교예 1] - 청색 유기 전계 발광 소자의 제조[Comparative Example 1]-Fabrication of blue organic electroluminescent device
실시예 1의 발광층 형성시 제1 호스트로 사용된 화합물 1을 사용하지 않는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다.A blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound 1 used as the first host was not used when forming the emission layer of Example 1.
[비교예 2] - 청색 유기 전계 발광 소자의 제조[Comparative Example 2]-Fabrication of blue organic electroluminescent device
실시예 1의 발광층 형성시 사용된 제1 호스트로 화합물 1 대신 하기 화합물 B를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다. 이때 사용된 화합물 B의 구조는 하기와 같다.A blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound B was used instead of Compound 1 as the first host used to form the emission layer of Example 1. The structure of compound B used at this time is as follows.
Figure PCTKR2020007902-appb-I000009
Figure PCTKR2020007902-appb-I000009
[평가예 1][Evaluation Example 1]
실시예 1 내지 20, 및 비교예 1~2에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 발광파장, 전류효율을 측정하였고, 그 결과를 하기 표 3에 나타내었다.For the organic electroluminescent devices prepared in Examples 1 to 20 and Comparative Examples 1 to 2, respectively, the driving voltage, emission wavelength, and current efficiency at a current density of 10 mA/cm 2 were measured, and the results are shown in Table 3 below. Indicated.
샘플Sample 정공수송 보조층 재료 (a)Hole transport auxiliary layer material (a) 발광층 재료Light emitting layer material 구동전압(V)Driving voltage (V) 발광피크(nm)Emission peak (nm) 전류효율(cd/A)Current efficiency (cd/A)
제1 호스트 (a')First host (a') 중량비(a':ADN:DS-405)Weight ratio (a':ADN:DS-405)
실시예 1Example 1 화합물 1Compound 1 화합물 1Compound 1 50 : 50 : 550: 50: 5 4.24.2 456456 7.57.5
실시예 2Example 2 화합물 2Compound 2 화합물 2Compound 2 50 : 50 : 550: 50: 5 4.24.2 452452 7.47.4
실시예 3Example 3 화합물 3Compound 3 화합물 3Compound 3 50 : 50 : 550: 50: 5 4.14.1 450450 7.37.3
실시예 4Example 4 화합물 4Compound 4 화합물 4Compound 4 50 : 50 : 550: 50: 5 4.14.1 452452 7.27.2
실시예 5Example 5 화합물 5Compound 5 화합물 5Compound 5 50 : 50 : 550: 50: 5 4.24.2 455455 7.27.2
실시예 6Example 6 화합물 6Compound 6 화합물 6Compound 6 50 : 50 : 550: 50: 5 4.34.3 452452 7.37.3
실시예 7Example 7 화합물 7Compound 7 화합물 7Compound 7 50 : 50 : 550: 50: 5 4.24.2 455455 7.47.4
실시예 8Example 8 화합물 8Compound 8 화합물 8Compound 8 50 : 50 : 550: 50: 5 4.14.1 455455 7.47.4
실시예 9Example 9 화합물 9Compound 9 화합물 9Compound 9 50 : 50 : 550: 50: 5 4.14.1 452452 7.27.2
실시예 10Example 10 화합물 10Compound 10 화합물 10Compound 10 50 : 50 : 550: 50: 5 4.04.0 455455 7.27.2
실시예 11Example 11 화합물 11Compound 11 화합물 11Compound 11 50 : 50 : 550: 50: 5 4.14.1 455455 7.37.3
실시예 12Example 12 화합물 12Compound 12 화합물 12Compound 12 50 : 50 : 550: 50: 5 4.04.0 458458 7.57.5
실시예 13Example 13 화합물 13Compound 13 화합물 13Compound 13 50 : 50 : 550: 50: 5 4.24.2 455455 7.57.5
실시예 14Example 14 화합물 14Compound 14 화합물 14Compound 14 50 : 50 : 550: 50: 5 4.24.2 456456 7.47.4
실시예 15Example 15 화합물 15Compound 15 화합물 15Compound 15 50 : 50 : 550: 50: 5 4.14.1 455455 7.47.4
실시예 16Example 16 화합물 16Compound 16 화합물 16Compound 16 50 : 50 : 550: 50: 5 4.14.1 458458 7.37.3
실시예 17Example 17 화합물 17Compound 17 화합물 17Compound 17 90 : 10 : 590: 10: 5 4.24.2 455455 7.17.1
실시예 18Example 18 화합물 18Compound 18 화합물 18Compound 18 30 : 70 : 530: 70: 5 4.24.2 456456 7.07.0
실시예 19Example 19 화합물 19Compound 19 화합물 19Compound 19 60 : 40 : 560: 40: 5 4.34.3 455455 7.27.2
실시예 20Example 20 화합물 20Compound 20 화합물 20Compound 20 90 : 10 : 590: 10: 5 4.34.3 458458 7.17.1
비교예 1Comparative Example 1 화합물 1Compound 1 -- 0 : 100 :50: 100: 5 4.84.8 458458 6.26.2
비교예 2Comparative Example 2 화합물 1Compound 1 BB 50 : 50 : 550: 50: 5 4.54.5 457457 6.46.4
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 발광층 내 복수의 호스트 중 하나를 정공수송 보조층 재료로 포함하는 실시예 1~20의 청색 유기 전계 발광 소자는 단독 호스트 및 도펀트를 함유하는 발광층을 포함하면서, 정공수송 보조층을 포함하는 비교예 1의 청색 유기 전계 발광 소자 및 발광층 내 복수의 호스트 모두가 정공수송 보조층 재료와 다른 비교예 2의 청색 유기 전계 발광 소자에 비해 전류 효율, 발광피크 및 구동전압 면에서 우수한 성능을 나타내는 것을 알 수 있었다.As shown in Table 1 above, the blue organic electroluminescent devices of Examples 1 to 20 including one of a plurality of hosts in the emission layer as a material for a hole transport auxiliary layer according to the present invention include a single host and an emission layer containing a dopant. While, the blue organic electroluminescent device of Comparative Example 1 including a hole transport auxiliary layer and a plurality of hosts in the light emitting layer were all current efficiency, emission peak, and It was found that it exhibits excellent performance in terms of driving voltage.

Claims (16)

  1. 양극;anode;
    상기 양극에 대향 배치된 음극;A cathode disposed opposite to the anode;
    상기 양극과 음극 사이에 개재(介在)되고, 상기 양극 상에 순차적으로 배치된 정공 수송 영역, 발광층, 및 전자 수송 영역을 포함하는 유기물층An organic material layer interposed between the anode and the cathode and including a hole transport region, a light emitting layer, and an electron transport region sequentially disposed on the anode
    을 포함하고,Including,
    상기 정공 수송 영역은 상기 양극 상에 순차적으로 배치된 정공 주입층, 정공 수송층, 및 정공수송 보조층을 포함하며, The hole transport region includes a hole injection layer, a hole transport layer, and a hole transport auxiliary layer sequentially disposed on the anode,
    상기 발광층은 복수의 호스트, 및 도펀트를 포함하고,The light emitting layer includes a plurality of hosts and a dopant,
    상기 복수의 호스트는 상기 정공수송 보조층의 재료와 동일한 제1 호스트; 및 상기 제1 호스트와 상이한 제2 호스트를 포함하는, 유기 전계 발광 소자.The plurality of hosts may include a first host identical to the material of the auxiliary hole transport layer; And a second host different from the first host.
  2. 제1항에 있어서, The method of claim 1,
    상기 정공수송 보조층은 하기 관계식 1을 만족하는, 유기 전계 발광 소자:The hole transport auxiliary layer satisfies the following relational formula 1, an organic electroluminescent device:
    [관계식 1][Relationship 1]
    Figure PCTKR2020007902-appb-I000010
    Figure PCTKR2020007902-appb-I000010
    (상기 식에서,(In the above formula,
    HOMOHTL은 정공수송층의 HOMO 에너지 준위이고, HOMO HTL is the HOMO energy level of the hole transport layer,
    HOMOaHTL은 정공수송 보조층의 HOMO 에너지 준위이며,HOMO aHTL is the HOMO energy level of the hole transport auxiliary layer,
    HOMOEL은 발광층의 HOMO 에너지 준위임).HOMO EL is the HOMO energy level of the light emitting layer).
  3. 제2항에 있어서,The method of claim 2,
    상기 정공수송 보조층의 HOMO 에너지 준위와 상기 정공수송층의 HOMO 에너지 준위 간의 차이는 0 eV 초과 내지 1.0 eV 이하 범위인, 유기 전계 발광 소자:The difference between the HOMO energy level of the hole transport auxiliary layer and the HOMO energy level of the hole transport layer is in the range of more than 0 eV to less than 1.0 eV, an organic electroluminescent device:
  4. 제2항에 있어서,The method of claim 2,
    상기 정공수송 보조층의 HOMO 에너지 준위와 상기 발광층의 HOMO 에너지 준위 간의 차이는 0 eV 초과 내지 1.0 eV 이하 범위인, 유기 전계 발광 소자.The difference between the HOMO energy level of the hole transport auxiliary layer and the HOMO energy level of the emission layer is in the range of more than 0 eV to less than 1.0 eV, the organic electroluminescent device.
  5. 제1항에 있어서,The method of claim 1,
    상기 정공수송 보조층은 하기 관계식 2를 만족하는, 유기 전계 발광 소자:The hole transport auxiliary layer satisfies the following relational formula 2, an organic electroluminescent device:
    [관계식 2][Relationship 2]
    Figure PCTKR2020007902-appb-I000011
    Figure PCTKR2020007902-appb-I000011
    (상기 식에서,(In the above formula,
    LUMOaHTL은 정공수송 보조층의 LUMO 에너지 준위이고,LUMO aHTL is the LUMO energy level of the hole transport auxiliary layer,
    LUMOEL은 발광층의 LUMO 에너지 준위임).LUMO EL is the LUMO energy level of the light emitting layer).
  6. 제5항에 있어서,The method of claim 5,
    상기 정공수송 보조층의 LUMO 에너지 준위의 절대값과 상기 발광층의 LUMO 에너지 준위의 절대값 간의 차이는 0 eV 초과 내지 1.0 eV 이하 범위인, 유기 전계 발광 소자.The difference between the absolute value of the LUMO energy level of the hole transport auxiliary layer and the absolute value of the LUMO energy level of the emission layer is in the range of more than 0 eV to less than 1.0 eV, the organic electroluminescent device.
  7. 제1항에 있어서, The method of claim 1,
    상기 정공수송 보조층의 삼중항 에너지(T1)는 2.0 eV 이상인, 유기 전계 발광 소자.The triplet energy (T1) of the hole transport auxiliary layer is 2.0 eV or more, an organic electroluminescent device.
  8. 제1항에 있어서,The method of claim 1,
    상기 제2 호스트는 하기 관계식 3 및 4를 만족하는 호스트인, 유기 전계 발광 소자:The second host is a host satisfying the following relations 3 and 4, an organic electroluminescent device:
    [관계식 3][Relationship 3]
    Figure PCTKR2020007902-appb-I000012
    Figure PCTKR2020007902-appb-I000012
    [관계식 4][Relationship 4]
    Figure PCTKR2020007902-appb-I000013
    Figure PCTKR2020007902-appb-I000013
    (상기 식에서, (In the above formula,
    LUMOhost-1은 제1 호스트의 LUMO 에너지 준위이고,LUMO host-1 is the LUMO energy level of the first host,
    LUMOhost-2는 제2 호스트의 LUMO 에너지 준위이며,LUMO host-2 is the LUMO energy level of the second host,
    HOMOhost-1은 제1 호스트의 HOMO 에너지 준위이고,HOMO host-1 is the HOMO energy level of the first host,
    HOMOhost-2는 제2 호스트의 HOMO 에너지 준위임).HOMO host-2 is the HOMO energy level of the second host).
  9. 제1항에 있어서,The method of claim 1,
    상기 정공수송 보조층의 재료 및 제1 호스트는 서로 동일하고, 하기 화학식 1로 표시되는 화합물을 포함하는, 유기 전계 발광 소자:The material of the hole transport auxiliary layer and the first host are the same and include a compound represented by the following formula (1), an organic electroluminescent device
    [화학식 1][Formula 1]
    Figure PCTKR2020007902-appb-I000014
    Figure PCTKR2020007902-appb-I000014
    (상기 화학식 1에서, (In Formula 1,
    Y1 및 Y2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 단일결합이거나, 또는 NR3, O, S, 및 CR4R5로 이루어진 군에서 선택되고, 다만 Y1과 Y2가 모두 단일결합인 경우는 배제되며, Y 1 and Y 2 are the same as or different from each other, each independently a single bond, or is selected from the group consisting of NR 3 , O, S, and CR 4 R 5 , provided that both Y 1 and Y 2 are single bonds Is excluded,
    R1 내지 R5는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합고리를 형성할 수 있으며;R 1 to R 5 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, 3 to 40 nuclear atoms heterocycloalkyl group, C 6 ~ C 60 aryl group, 5 to 60 nuclear atoms heteroaryl group, C 1 ~ C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, C 6 ~ aryl of C 60 boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C aryl phosphine oxide 60 group and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, or adjacent groups bonded to the condensation of Can form a ring;
    m 및 n은 각각 독립적으로 0 내지 4의 정수이며,m and n are each independently an integer of 0 to 4,
    상기 R1 내지 R5의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 포스핀기, 포스핀옥사이드기, 및 아릴아민기는, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.The alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, heterocycloalkyl group, arylamine group, alkylsilyl group, alkyl boron group, aryl of the R 1 to R 5 A boron group, a phosphine group, a phosphine oxide group, and an arylamine group are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group , C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 ~ C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, arylboronic group of C 6 ~ C 60, C 6 ~ C 60 of the aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group and one substituent at least one selected from the group consisting of an aryl amine of the C 6 ~ C 60 of Substituted or unsubstituted, and in this case, when the substituents are plural, they may be the same as or different from each other.
  10. 제9항에 있어서, The method of claim 9,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 15 중 어느 하나로 표시되는 화합물인, 유기 전계 발광 소자: The compound represented by Formula 1 is a compound represented by any one of the following Formulas 2 to 15, an organic electroluminescent device:
    [화학식 2][Formula 2]
    Figure PCTKR2020007902-appb-I000015
    Figure PCTKR2020007902-appb-I000015
    [화학식 3][Formula 3]
    Figure PCTKR2020007902-appb-I000016
    Figure PCTKR2020007902-appb-I000016
    [화학식 4][Formula 4]
    Figure PCTKR2020007902-appb-I000017
    Figure PCTKR2020007902-appb-I000017
    [화학식 5][Formula 5]
    Figure PCTKR2020007902-appb-I000018
    Figure PCTKR2020007902-appb-I000018
    [화학식 6][Formula 6]
    Figure PCTKR2020007902-appb-I000019
    Figure PCTKR2020007902-appb-I000019
    [화학식 7][Formula 7]
    Figure PCTKR2020007902-appb-I000020
    Figure PCTKR2020007902-appb-I000020
    [화학식 8][Formula 8]
    Figure PCTKR2020007902-appb-I000021
    Figure PCTKR2020007902-appb-I000021
    [화학식 9][Formula 9]
    Figure PCTKR2020007902-appb-I000022
    Figure PCTKR2020007902-appb-I000022
    [화학식 10][Formula 10]
    Figure PCTKR2020007902-appb-I000023
    Figure PCTKR2020007902-appb-I000023
    [화학식 11][Formula 11]
    Figure PCTKR2020007902-appb-I000024
    Figure PCTKR2020007902-appb-I000024
    [화학식 12][Formula 12]
    Figure PCTKR2020007902-appb-I000025
    Figure PCTKR2020007902-appb-I000025
    [화학식 13][Formula 13]
    Figure PCTKR2020007902-appb-I000026
    Figure PCTKR2020007902-appb-I000026
    [화학식 14][Formula 14]
    Figure PCTKR2020007902-appb-I000027
    Figure PCTKR2020007902-appb-I000027
    [화학식 15][Formula 15]
    Figure PCTKR2020007902-appb-I000028
    Figure PCTKR2020007902-appb-I000028
    (상기 화학식 2 내지 15에서, (In Formulas 2 to 15,
    R1 내지 R5, m, 및 n은 각각 제9항에서 정의된 바와 같음).R 1 to R 5 , m, and n are each as defined in claim 9).
  11. 제9항에 있어서,The method of claim 9,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 16 내지 화학식 41 중 어느 하나로 표시되는 화합물인, 유기 전계 발광 소자:The compound represented by Formula 1 is a compound represented by any one of the following Formulas 16 to 41, an organic electroluminescent device:
    [화학식 16][Formula 16]
    Figure PCTKR2020007902-appb-I000029
    Figure PCTKR2020007902-appb-I000029
    [화학식 17][Formula 17]
    Figure PCTKR2020007902-appb-I000030
    Figure PCTKR2020007902-appb-I000030
    [화학식 18][Formula 18]
    Figure PCTKR2020007902-appb-I000031
    Figure PCTKR2020007902-appb-I000031
    [화학식 19][Formula 19]
    Figure PCTKR2020007902-appb-I000032
    Figure PCTKR2020007902-appb-I000032
    [화학식 20][Formula 20]
    Figure PCTKR2020007902-appb-I000033
    Figure PCTKR2020007902-appb-I000033
    [화학식 21][Formula 21]
    Figure PCTKR2020007902-appb-I000034
    Figure PCTKR2020007902-appb-I000034
    [화학식 22][Formula 22]
    Figure PCTKR2020007902-appb-I000035
    Figure PCTKR2020007902-appb-I000035
    [화학식 23][Formula 23]
    Figure PCTKR2020007902-appb-I000036
    Figure PCTKR2020007902-appb-I000036
    [화학식 24][Formula 24]
    Figure PCTKR2020007902-appb-I000037
    Figure PCTKR2020007902-appb-I000037
    [화학식 25][Formula 25]
    Figure PCTKR2020007902-appb-I000038
    Figure PCTKR2020007902-appb-I000038
    [화학식 26][Formula 26]
    Figure PCTKR2020007902-appb-I000039
    Figure PCTKR2020007902-appb-I000039
    [화학식 27][Formula 27]
    Figure PCTKR2020007902-appb-I000040
    Figure PCTKR2020007902-appb-I000040
    [화학식 28][Formula 28]
    Figure PCTKR2020007902-appb-I000041
    Figure PCTKR2020007902-appb-I000041
    [화학식 29][Chemical Formula 29]
    Figure PCTKR2020007902-appb-I000042
    Figure PCTKR2020007902-appb-I000042
    [화학식 30][Formula 30]
    Figure PCTKR2020007902-appb-I000043
    Figure PCTKR2020007902-appb-I000043
    [화학식 31][Formula 31]
    Figure PCTKR2020007902-appb-I000044
    Figure PCTKR2020007902-appb-I000044
    [화학식 32][Formula 32]
    Figure PCTKR2020007902-appb-I000045
    Figure PCTKR2020007902-appb-I000045
    [화학식 33][Formula 33]
    Figure PCTKR2020007902-appb-I000046
    Figure PCTKR2020007902-appb-I000046
    [화학식 34][Formula 34]
    Figure PCTKR2020007902-appb-I000047
    Figure PCTKR2020007902-appb-I000047
    [화학식 35][Formula 35]
    Figure PCTKR2020007902-appb-I000048
    Figure PCTKR2020007902-appb-I000048
    [화학식 36][Formula 36]
    Figure PCTKR2020007902-appb-I000049
    Figure PCTKR2020007902-appb-I000049
    [화학식 37][Formula 37]
    Figure PCTKR2020007902-appb-I000050
    Figure PCTKR2020007902-appb-I000050
    [화학식 38][Formula 38]
    Figure PCTKR2020007902-appb-I000051
    Figure PCTKR2020007902-appb-I000051
    [화학식 39][Formula 39]
    Figure PCTKR2020007902-appb-I000052
    Figure PCTKR2020007902-appb-I000052
    [화학식 40][Formula 40]
    Figure PCTKR2020007902-appb-I000053
    Figure PCTKR2020007902-appb-I000053
    [화학식 41][Formula 41]
    Figure PCTKR2020007902-appb-I000054
    Figure PCTKR2020007902-appb-I000054
    상기 화학식 16 내지 41에서, In Formulas 16 to 41,
    R1 내지 R5은 각각 제9항에서 정의한 바와 같고,R 1 to R 5 are each as defined in claim 9,
    a는 0 내지 4의 정수이며,a is an integer from 0 to 4,
    R6 내지 R9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택됨).R 6 to R 9 are the same as or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 nuclear atom heterocycloalkyl group, C 6 to C 60 aryl group, 5 to 60 nuclear atom heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkylsilyl group, C 6 ~ C 60 arylsilyl group, C 1 ~ C 40 alkyl boron group, C 6 ~ C 60 arylboronic group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 aryl phosphine oxide group, and a C 6 ~ selected from the group consisting of an aryl amine of the C 60).
  12. 제9항에 있어서, The method of claim 9,
    상기 R1 내지 R5 중 적어도 어느 하나는 하기 구조식 S1 내지 S5로 이루어진 군에서 선택된 하나로 표시되는 치환체인, 유기 전계 발광 소자:At least one of the R 1 to R 5 is a substituent represented by one selected from the group consisting of the following structural formulas S1 to S5, an organic electroluminescent device:
    Figure PCTKR2020007902-appb-I000055
    Figure PCTKR2020007902-appb-I000055
    (상기 식에서, (In the above formula,
    *는 화학식 1과 결합이 이루어지는 부분을 의미하며, * Means the part where the bond with Formula 1 is formed,
    L1은 단일결합이거나, 또는 C6~C30의 아릴렌기 및 핵원자수 5 내지 30의 헤테로아릴렌기로 이루어진 군에서 선택되고,L 1 is a single bond, or is selected from the group consisting of an arylene group of C 6 to C 30 and a heteroarylene group of 5 to 30 nuclear atoms,
    X1는 NAr3, O 및 S로 이루어진 군에서 선택되고,X 1 is selected from the group consisting of NAr 3 , O and S,
    Ar1 내지 Ar3는 서로 동일하거나 상이하며, 각각 독립적으로 수소, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며,Ar 1 to Ar 3 are the same as or different from each other, each independently selected from the group consisting of hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a heteroaryl group having 5 to 60 nuclear atoms, ,
    b 및 c는 각각 0 또는 1이고, b and c are each 0 or 1,
    상기 Ar1 내지 Ar3의 알킬기, 아릴기 및 헤테로아릴기는 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있음).The alkyl group, aryl group, and heteroaryl group of Ar 1 to Ar 3 are each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 to C 40 alkyl boron group, C group of 6 to arylboronic of C 60, C 6 to C 60 aryl phosphine group, substituted with one substituent at least one selected from the group consisting of an aryl amine of the C 6 to C 60 aryl phosphine oxide group, and a C 6 to C 60 of Or unsubstituted, in which case, when the substituents are plural, they may be the same or different from each other).
  13. 제9항에 있어서,The method of claim 9,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 1 내지 20 중 어느 하나인, 유기 전계 발광 소자:The compound represented by Formula 1 is any one of the following compounds 1 to 20, an organic electroluminescent device:
    Figure PCTKR2020007902-appb-I000056
    .
    Figure PCTKR2020007902-appb-I000056
    .
  14. 제1항에 있어서,The method of claim 1,
    상기 제1 호스트 및 제2 호스트는 30:70 ~ 90:10 중량 비율로 포함되는, 유기 전계 발광 소자.The first host and the second host are included in a weight ratio of 30:70 to 90:10, an organic electroluminescent device.
  15. 제1항에 있어서,The method of claim 1,
    상기 전자 수송 영역은 상기 발광층 상에 배치된 전자 수송층; 및 상기 전자 수송층과 음극 사이에 배치된 전자 주입층을 포함하는, 유기 전계 발광 소자.The electron transport region may include an electron transport layer disposed on the emission layer; And an electron injection layer disposed between the electron transport layer and the cathode.
  16. 제15항에 있어서,The method of claim 15,
    상기 전자 수송 영역은 상기 발광층과 전자 수송층 사이에 배치된 전자수송 보조층을 더 포함하는, 유기 전계 발광 소자.The electron transport region further comprises an electron transport auxiliary layer disposed between the emission layer and the electron transport layer.
PCT/KR2020/007902 2019-06-21 2020-06-18 Organic electroluminescent element WO2020256431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0074164 2019-06-21
KR1020190074164A KR20200145313A (en) 2019-06-21 2019-06-21 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2020256431A1 true WO2020256431A1 (en) 2020-12-24

Family

ID=74040222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007902 WO2020256431A1 (en) 2019-06-21 2020-06-18 Organic electroluminescent element

Country Status (2)

Country Link
KR (1) KR20200145313A (en)
WO (1) WO2020256431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252052A1 (en) * 2021-05-31 2022-12-08 京东方科技集团股份有限公司 Quantum dot light-emitting diode and manufacturing method therefor, and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034586A (en) * 2015-09-21 2017-03-29 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20170127101A (en) * 2016-05-10 2017-11-21 삼성디스플레이 주식회사 Organic light emitting device
KR20180022325A (en) * 2016-08-24 2018-03-06 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR101878398B1 (en) * 2014-05-30 2018-07-13 제일모직 주식회사 Organic optoelectric device and display device
WO2018216903A1 (en) * 2017-05-22 2018-11-29 주식회사 엘지화학 Novel compound and organic light-emitting device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878398B1 (en) * 2014-05-30 2018-07-13 제일모직 주식회사 Organic optoelectric device and display device
KR20170034586A (en) * 2015-09-21 2017-03-29 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20170127101A (en) * 2016-05-10 2017-11-21 삼성디스플레이 주식회사 Organic light emitting device
KR20180022325A (en) * 2016-08-24 2018-03-06 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
WO2018216903A1 (en) * 2017-05-22 2018-11-29 주식회사 엘지화학 Novel compound and organic light-emitting device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252052A1 (en) * 2021-05-31 2022-12-08 京东方科技集团股份有限公司 Quantum dot light-emitting diode and manufacturing method therefor, and display device

Also Published As

Publication number Publication date
KR20200145313A (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2020027389A1 (en) Organic light-emitting compound and organic light-emitting element comprising same
WO2014017844A1 (en) Organic light-emitting compound comprising acridine derivatives, and organic light-emitting device comprising same
WO2011037429A2 (en) Compounds having 5-membered aryl-ring-condensed heterocyclic derivatives, organic electronic device using the compounds, and terminal comprising the organic electronic device
WO2010074422A1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2015099481A1 (en) Organic electroluminescent device
WO2011055933A9 (en) Composition for an organic photoelectric device, organic photoelectric device using same, and display device comprising same
WO2011149283A9 (en) Compound comprising a five-membered hetero ring, an organic electrical element using the same and a terminal thereof
WO2016064102A1 (en) Organic electroluminescent device
WO2011108901A2 (en) Spiro-carbazole compound comprising a spiro skeleton, and an organic electronic element using the same and a terminal thereof
WO2014123369A1 (en) Novel compound and organic electronic element using same
WO2021054640A1 (en) Organic electroluminescent device
WO2019045252A1 (en) Organic electroluminescent device
WO2011149284A2 (en) Hetero-atom-containing compound in which carbazole and fluorene are fused, an organic electrical element using the same and a terminal thereof
WO2021230451A1 (en) Organic electroluminescent device
WO2020060283A1 (en) Organic light emitting diode
WO2015194839A1 (en) Electron buffering material and organic electroluminescent device
WO2020122327A1 (en) Organic electroluminescent element and spiro compound for organic electroluminescent element
WO2010128745A1 (en) Compound for an organic photoelectric element, and an organic photoelectric element comprising the same
WO2017022983A1 (en) Compound for organic electrical element, organic electrical element using compound, and electronic device therefor
WO2018194278A2 (en) Organic electroluminescent device
WO2020256431A1 (en) Organic electroluminescent element
WO2015076601A1 (en) Novel light emission compound and organic light emitting device comprising same
WO2020262884A1 (en) Organic electroluminescent device
WO2020262885A1 (en) Organic electroluminescent device
WO2021025433A1 (en) Organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826295

Country of ref document: EP

Kind code of ref document: A1