WO2020256329A1 - 움직임 예측에 기반한 영상 코딩 방법 및 장치 - Google Patents

움직임 예측에 기반한 영상 코딩 방법 및 장치 Download PDF

Info

Publication number
WO2020256329A1
WO2020256329A1 PCT/KR2020/007458 KR2020007458W WO2020256329A1 WO 2020256329 A1 WO2020256329 A1 WO 2020256329A1 KR 2020007458 W KR2020007458 W KR 2020007458W WO 2020256329 A1 WO2020256329 A1 WO 2020256329A1
Authority
WO
WIPO (PCT)
Prior art keywords
current block
information
prediction
block
motion
Prior art date
Application number
PCT/KR2020/007458
Other languages
English (en)
French (fr)
Inventor
박내리
남정학
장형문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020256329A1 publication Critical patent/WO2020256329A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/53Multi-resolution motion estimation; Hierarchical motion estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Definitions

  • This document relates to an image coding technique, and more particularly, to a method and apparatus for coding an image based on motion prediction in an image coding system.
  • VR virtual reality
  • AR artificial reality
  • high-efficiency video/video compression technology is required in order to effectively compress, transmit, store, and reproduce information of high-resolution, high-quality video/video having various characteristics as described above.
  • the technical problem of this document is to provide a method and apparatus for increasing image coding efficiency.
  • Another technical problem of this document is to provide a method and apparatus for efficiently performing inter prediction.
  • Another technical problem of this document is to provide a method and apparatus for efficiently selecting an interpolation filter during inter prediction.
  • a decoding method performed by a decoding apparatus includes obtaining AMVR (adaptive motion vector resolution) related information from a bitstream, and obtaining the AMVR related information and motion information of a neighboring block for a current block. Deriving motion information of the current block based on the motion information of the current block, generating prediction samples of the current block using an interpolation filter based on the motion information of the current block, and reconstructing based on the prediction samples Generating a picture, wherein the AMVR-related information may include information indicating that MVD (motion vector difference) precision of 1/2 sample unit is used for the current block.
  • AMVR adaptive motion vector resolution
  • an encoding method performed by an encoding apparatus includes deriving motion information of the current block based on motion information of a neighboring block for the current block, and based on motion information of the current block. Generating prediction samples of the current block using an interpolation filter, and generating AMVR related information based on at least one of motion information of the neighboring block, motion information of the current block, and information about the interpolation filter Including, but the AMVR-related information may include information indicating that MVD precision of 1/2 sample unit is used for the current block.
  • a computer-readable digital storage medium wherein the digital storage medium includes information causing a decoding device to perform a decoding method, and the decoding method receives AMVR related information from a bitstream.
  • the digital storage medium includes information causing a decoding device to perform a decoding method, and the decoding method receives AMVR related information from a bitstream.
  • I can.
  • inter prediction can be efficiently performed.
  • an interpolation filter may be efficiently selected during inter prediction.
  • FIG. 1 schematically shows an example of a video/video coding system to which embodiments of this document can be applied.
  • FIG. 2 is a diagram schematically illustrating a configuration of a video/video encoding apparatus to which embodiments of the present document can be applied.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/image decoding apparatus to which embodiments of the present document can be applied.
  • FIG. 4 shows an example of a video/video encoding method based on inter prediction.
  • FIG. 5 shows an example of a video/video decoding method based on inter prediction.
  • 6 exemplarily shows an inter prediction procedure.
  • FIG. 7 is a diagram illustrating spatial candidates that can be used for inter prediction.
  • FIGS. 8 and 9 are diagrams illustrating temporal candidates that can be used for inter prediction.
  • FIG. 11 exemplarily shows an affine motion model in which motion vectors for three control points are used
  • FIG. 12 exemplarily shows an affine motion model in which motion vectors for two control points are used.
  • 13 exemplarily shows neighboring blocks of a current block for deriving an inherited affine candidate.
  • 15 and 16 are diagrams illustrating a subblock-based temporal motion vector prediction process.
  • 17 and 18 schematically illustrate an example of a video/video encoding method and related components including an inter prediction method according to an embodiment of the present document.
  • 19 and 20 schematically illustrate an example of a video/video decoding method and related components including an inter prediction method according to an embodiment of the present document.
  • FIG. 21 shows an example of a content streaming system to which embodiments disclosed in this document can be applied.
  • each of the components in the drawings described in the present document is independently illustrated for convenience of description of different characteristic functions, and does not mean that the components are implemented as separate hardware or separate software.
  • two or more of the configurations may be combined to form one configuration, or one configuration may be divided into a plurality of configurations.
  • Embodiments in which each configuration is integrated and/or separated are also included in the scope of the disclosure unless departing from the essence of the method disclosed in this document.
  • FIG. 1 schematically shows an example of a video/video coding system to which embodiments of this document can be applied.
  • a video/image coding system may include a first device (a source device) and a second device (a receiving device).
  • the source device may transmit the encoded video/image information or data in a file or streaming form to the receiving device through a digital storage medium or a network.
  • the source device may include a video source, an encoding device, and a transmission unit.
  • the receiving device may include a receiving unit, a decoding device, and a renderer.
  • the encoding device may be referred to as a video/image encoding device, and the decoding device may be referred to as a video/image decoding device.
  • the transmitter may be included in the encoding device.
  • the receiver may be included in the decoding device.
  • the renderer may include a display unit, and the display unit may be configured as a separate device or an external component.
  • the video source may acquire a video/image through a process of capturing, synthesizing, or generating a video/image.
  • the video source may include a video/image capturing device and/or a video/image generating device.
  • the video/image capturing device may include, for example, one or more cameras, a video/image archive including previously captured video/images, and the like.
  • the video/image generating device may include, for example, a computer, a tablet and a smartphone, and may (electronically) generate a video/image.
  • a virtual video/image may be generated through a computer or the like, and in this case, a video/image capturing process may be substituted as a process of generating related data.
  • the encoding device may encode the input video/video.
  • the encoding apparatus may perform a series of procedures such as prediction, transformation, and quantization for compression and coding efficiency.
  • the encoded data (encoded video/video information) may be output in the form of a bitstream.
  • the transmission unit may transmit the encoded video/video information or data output in the form of a bitstream to the reception unit of the receiving device through a digital storage medium or a network in a file or streaming form.
  • Digital storage media may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • the transmission unit may include an element for generating a media file through a predetermined file format, and may include an element for transmission through a broadcast/communication network.
  • the receiver may receive/extract the bitstream and transmit it to the decoding device.
  • the decoding device may decode the video/image by performing a series of procedures such as inverse quantization, inverse transformation, and prediction corresponding to the operation of the encoding device.
  • the renderer can render the decoded video/video.
  • the rendered video/image may be displayed through the display unit.
  • This document is about video/image coding.
  • the method/embodiment disclosed in this document can be applied to the method disclosed in the versatile video coding (VVC) standard.
  • VVC versatile video coding
  • the method/embodiment disclosed in this document is an EVC (essential video coding) standard, AV1 (AOMedia Video 1) standard, AVS2 (2nd generation of audio video coding standard) or next-generation video/image coding standard (ex. H.267). , H.268, etc.).
  • the quantized transform coefficient may be referred to as a transform coefficient.
  • the transform coefficient may be called a coefficient or a residual coefficient, or may still be called a transform coefficient for uniformity of expression.
  • the quantized transform coefficient and the transform coefficient may be referred to as a transform coefficient and a scaled transform coefficient, respectively.
  • the residual information may include information about the transform coefficient(s), and the information about the transform coefficient(s) may be signaled through a residual coding syntax.
  • Transform coefficients may be derived based on the residual information (or information about the transform coefficient(s)), and scaled transform coefficients may be derived through an inverse transform (scaling) of the transform coefficients.
  • Residual samples may be derived based on the inverse transform (transform) of the scaled transform coefficients. This may be applied/expressed in other parts of this document as well.
  • a video may mean a set of a series of images over time.
  • a picture generally refers to a unit representing one image in a specific time period, and a slice/tile is a unit constituting a part of a picture in coding.
  • a slice/tile may include one or more coding tree units (CTU).
  • CTU coding tree units
  • One picture may be composed of one or more slices/tiles.
  • One picture may consist of one or more tile groups.
  • One tile group may include one or more tiles.
  • a brick may represent a rectangular region of CTU rows within a tile in a picture.
  • a tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile. ).
  • a tile that is not partitioned into multiple bricks may be also referred to as a brick.
  • a brick scan may represent a specific sequential ordering of CTUs partitioning a picture
  • the CTUs may be arranged in a CTU raster scan within a brick
  • bricks in a tile may be sequentially arranged in a raster scan of the bricks of the tile.
  • tiles in a picture may be sequentially aligned by raster scan of the tiles of the picture
  • a brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick.
  • bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile
  • tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture).
  • a tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture.
  • the tile column is a rectangular region of CTUs, the rectangular region has a height equal to the height of the picture, and the width may be specified by syntax elements in a picture parameter set (The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set).
  • the tile row is a rectangular region of CTUs, the rectangular region has a width specified by syntax elements in a picture parameter set, and a height may be the same as the height of the picture (The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture).
  • a tile scan may represent a specific sequential ordering of CTUs that partition a picture, the CTUs may be sequentially arranged in a CTU raster scan in a tile, and tiles in a picture may be sequentially arranged in a raster scan of the tiles of the picture.
  • a tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture).
  • a slice may include an integer number of bricks of a picture, and the integer number of bricks may be included in one NAL unit (A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit).
  • a slice may consist of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile. ).
  • Tile groups and slices can be used interchangeably in this document.
  • the tile group/tile group header may be referred to as a slice/slice header.
  • a pixel or pel may mean a minimum unit constituting one picture (or image).
  • sample' may be used as a term corresponding to a pixel.
  • a sample may generally represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luma component, or may represent only a pixel/pixel value of a chroma component.
  • a unit may represent a basic unit of image processing.
  • the unit may include at least one of a specific area of a picture and information related to the corresponding area.
  • One unit may include one luma block and two chroma (ex. cb, cr) blocks.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may include samples (or sample arrays) consisting of M columns and N rows, or a set (or array) of transform coefficients.
  • the video encoding device may include an image encoding device.
  • the encoding device 200 includes an image partitioner 210, a predictor 220, a residual processor 230, an entropy encoder 240, and It may be configured to include an adder 250, a filter 260, and a memory 270.
  • the prediction unit 220 may include an inter prediction unit 221 and an intra prediction unit 222.
  • the residual processing unit 230 may include a transform unit 232, a quantizer 233, an inverse quantizer 234, and an inverse transformer 235.
  • the residual processing unit 230 may further include a subtractor 231.
  • the addition unit 250 may be referred to as a reconstructor or a recontructged block generator.
  • the image segmentation unit 210, the prediction unit 220, the residual processing unit 230, the entropy encoding unit 240, the addition unit 250, and the filtering unit 260 described above may include one or more hardware components (for example, it may be configured by an encoder chipset or a processor).
  • the memory 270 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 270 as an internal/external component.
  • the image segmentation unit 210 may divide an input image (or picture, frame) input to the encoding apparatus 200 into one or more processing units.
  • the processing unit may be referred to as a coding unit (CU).
  • the coding unit is recursively divided according to the QTBTTT (Quad-tree binary-tree ternary-tree) structure from a coding tree unit (CTU) or a largest coding unit (LCU).
  • QTBTTT Quad-tree binary-tree ternary-tree
  • CTU coding tree unit
  • LCU largest coding unit
  • one coding unit may be divided into a plurality of coding units of a deeper depth based on a quad tree structure, a binary tree structure, and/or a ternary structure.
  • a quad tree structure may be applied first, and a binary tree structure and/or a ternary structure may be applied later.
  • the binary tree structure may be applied first.
  • the coding procedure according to this document may be performed based on the final coding unit that is no longer divided. In this case, based on the coding efficiency according to the image characteristics, the maximum coding unit can be directly used as the final coding unit, or if necessary, the coding unit is recursively divided into coding units of lower depth to be optimal. A coding unit of the size of may be used as the final coding unit.
  • the coding procedure may include a procedure such as prediction, transformation, and restoration described later.
  • the processing unit may further include a prediction unit (PU) or a transform unit (TU).
  • the prediction unit and the transform unit may be divided or partitioned from the above-described final coding unit, respectively.
  • the prediction unit may be a unit of sample prediction
  • the transform unit may be a unit for inducing a transform coefficient and/or a unit for inducing a residual signal from the transform coefficient.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may represent a set of samples or transform coefficients consisting of M columns and N rows.
  • a sample may represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luminance component, or may represent only a pixel/pixel value of a saturation component.
  • a sample may be used as a term corresponding to one picture (or image) as a pixel or pel.
  • the encoding apparatus 200 subtracts the prediction signal (predicted block, prediction sample array) output from the inter prediction unit 221 or the intra prediction unit 222 from the input video signal (original block, original sample array) to make a residual.
  • a signal residual signal, residual block, residual sample array
  • a unit that subtracts the prediction signal (prediction block, prediction sample array) from the input image signal (original block, original sample array) in the encoder 200 may be referred to as a subtraction unit 231.
  • the prediction unit 200 may perform prediction on a block to be processed (hereinafter, referred to as a current block), and generate a predicted block including prediction samples for the current block.
  • the predictor 200 may determine whether intra prediction or inter prediction is applied in units of a current block or CU.
  • the prediction unit 220 may generate various information related to prediction, such as prediction mode information, and transmit the generated information to the entropy encoding unit 240 as described later in the description of each prediction mode.
  • the information on prediction may be encoded by the entropy encoding unit 240 and output in the form of a bitstream.
  • the intra prediction unit 222 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located away from each other according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the non-directional mode may include, for example, a DC mode and a planar mode (Planar mode).
  • the directional mode may include, for example, 33 directional prediction modes or 65 directional prediction modes according to a detailed degree of the prediction direction. However, this is an example, and more or less directional prediction modes may be used depending on the setting.
  • the intra prediction unit 222 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 221 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and the current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in a current picture and a temporal neighboring block existing in a reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be called a collocated reference block, a co-located CU (colCU), and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • the inter prediction unit 221 constructs a motion information candidate list based on neighboring blocks, and provides information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block. Can be generated. Inter prediction may be performed based on various prediction modes.
  • the inter prediction unit 221 may use motion information of a neighboring block as motion information of a current block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • the motion vector of the current block is calculated by using the motion vector of the neighboring block as a motion vector predictor and signaling a motion vector difference. I can instruct.
  • the prediction unit 220 may generate a prediction signal based on various prediction methods to be described later.
  • the prediction unit 200 may not only apply intra prediction or inter prediction to predict one block, but also simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may be based on an intra block copy (IBC) prediction mode or a palette mode to predict a block.
  • IBC intra block copy
  • the IBC prediction mode or the palette mode may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the palette mode can be viewed as an example of intra coding or intra prediction. When the palette mode is applied, a sample value in a picture may be signaled based on information about a palette table
  • the prediction signal generated through the prediction unit may be used to generate a reconstructed signal or may be used to generate a residual signal.
  • the transform unit 232 may generate transform coefficients by applying a transform technique to the residual signal.
  • the transformation technique may include at least one of Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), Graph-Based Transform (GBT), or Conditionally Non-linear Transform (CNT).
  • DCT Discrete Cosine Transform
  • DST Discrete Sine Transform
  • GBT Graph-Based Transform
  • CNT Conditionally Non-linear Transform
  • GBT refers to the transformation obtained from this graph when the relationship information between pixels is expressed in a graph.
  • CNT refers to a transformation obtained based on generating a prediction signal using all previously reconstructed pixels.
  • the conversion process may be applied to a pixel block having the same size of a square, or may be applied to a block of variable size other than a square.
  • the quantization unit 233 quantizes the transform coefficients and transmits it to the entropy encoding unit 240, and the entropy encoding unit 240 encodes the quantized signal (information on the quantized transform coefficients) and outputs it as a bitstream. have.
  • the information on the quantized transform coefficients may be called residual information.
  • the quantization unit 233 may rearrange the quantized transform coefficients in the form of blocks into a one-dimensional vector form based on a coefficient scan order, and the quantized transform coefficients in the form of the one-dimensional vector It is also possible to generate information about transform coefficients.
  • the entropy encoding unit 240 may perform various encoding methods such as exponential Golomb, context-adaptive variable length coding (CAVLC), and context-adaptive binary arithmetic coding (CABAC).
  • the entropy encoding unit 240 may encode together or separately information necessary for video/image reconstruction (eg, values of syntax elements) in addition to quantized transform coefficients.
  • the encoded information (eg, encoded video/video information) may be transmitted or stored in a bitstream format in units of network abstraction layer (NAL) units.
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • information and/or syntax elements transmitted/signaled from the encoding device to the decoding device may be included in the video/video information.
  • the video/video information may be encoded through the above-described encoding procedure and included in the bitstream.
  • the bitstream may be transmitted through a network or may be stored in a digital storage medium.
  • the network may include a broadcasting network and/or a communication network
  • the digital storage medium may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • a transmission unit for transmitting and/or a storage unit (not shown) for storing may be configured as an internal/external element of the encoding apparatus 200, or the transmission unit It may be included in the entropy encoding unit 240.
  • the quantized transform coefficients output from the quantization unit 233 may be used to generate a prediction signal.
  • a residual signal residual block or residual samples
  • the addition unit 250 adds the reconstructed residual signal to the prediction signal output from the inter prediction unit 221 or the intra prediction unit 222 to obtain a reconstructed signal (restored picture, reconstructed block, reconstructed sample array). Can be created.
  • the predicted block may be used as a reconstructed block.
  • the addition unit 250 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, and may be used for inter prediction of the next picture through filtering as described later.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 260 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 260 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 270, specifically, the DPB of the memory 270. Can be saved on.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the filtering unit 260 may generate a variety of filtering information and transmit it to the entropy encoding unit 240 as described later in the description of each filtering method.
  • the filtering information may be encoded by the entropy encoding unit 240 and output in the form of a bitstream.
  • the modified reconstructed picture transmitted to the memory 270 may be used as a reference picture in the inter prediction unit 221.
  • the encoding device may avoid prediction mismatch between the encoding device 200 and the decoding device, and may improve encoding efficiency.
  • the DPB of the memory 270 may store the modified reconstructed picture to be used as a reference picture in the inter prediction unit 221.
  • the memory 270 may store motion information of a block from which motion information in a current picture is derived (or encoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transferred to the inter prediction unit 221 in order to be used as motion information of spatial neighboring blocks or motion information of temporal neighboring blocks.
  • the memory 270 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 222.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/image decoding apparatus to which embodiments of the present document can be applied.
  • the decoding apparatus 300 includes an entropy decoder 310, a residual processor 320, a predictor 330, an adder 340, and a filtering unit. It may be configured to include (filter, 350) and memory (memory, 360).
  • the prediction unit 330 may include an inter prediction unit 331 and an intra prediction unit 332.
  • the residual processing unit 320 may include a dequantizer 321 and an inverse transformer 321.
  • the entropy decoding unit 310, the residual processing unit 320, the prediction unit 330, the addition unit 340, and the filtering unit 350 described above are one hardware component (for example, a decoder chipset or a processor). ) Can be configured.
  • the memory 360 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 360 as an internal/external component.
  • the decoding apparatus 300 may reconstruct an image in response to a process in which the video/image information is processed by the encoding apparatus of FIG. 2. For example, the decoding apparatus 300 may derive units/blocks based on block division related information obtained from the bitstream.
  • the decoding device 300 may perform decoding using a processing unit applied in the encoding device.
  • the processing unit of decoding may be, for example, a coding unit, and the coding unit may be divided from a coding tree unit or a maximum coding unit along a quad tree structure, a binary tree structure and/or a ternary tree structure.
  • One or more transform units may be derived from the coding unit.
  • the reconstructed image signal decoded and output through the decoding device 300 may be reproduced through the playback device.
  • the decoding apparatus 300 may receive a signal output from the encoding apparatus of FIG. 2 in the form of a bitstream, and the received signal may be decoded through the entropy decoding unit 310.
  • the entropy decoding unit 310 may parse the bitstream to derive information (eg, video/image information) necessary for image restoration (or picture restoration).
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • the decoding apparatus may further decode the picture based on the information on the parameter set and/or the general restriction information.
  • Signaled/received information and/or syntax elements described later in this document may be decoded through the decoding procedure and obtained from the bitstream.
  • the entropy decoding unit 310 decodes information in the bitstream based on a coding method such as exponential Golomb coding, context-adaptive variable length coding (CAVLC), or context-adaptive arithmetic coding (CABAC), and is required for image restoration.
  • a coding method such as exponential Golomb coding, context-adaptive variable length coding (CAVLC), or context-adaptive arithmetic coding (CABAC), and is required for image restoration.
  • a value of a syntax element and quantized values of a transform coefficient related to a residual may be output.
  • CABAC entropy decoding method a bin corresponding to each syntax element is received in a bitstream, and information about the syntax element to be decoded and decoding information of a block to be decoded and a neighbor or a symbol/bin decoded in a previous step A context model is determined using the information of, and a symbol corresponding to the value of each syntax element can be generated by performing arithmetic decoding of the bin by predicting the probability of occurrence of the bin according to the determined context model. have.
  • the CABAC entropy decoding method may update the context model using information of the decoded symbol/bin for the context model of the next symbol/bin after the context model is determined.
  • the entropy decoding unit 310 Among the information decoded by the entropy decoding unit 310, information about prediction is provided to a prediction unit (inter prediction unit 332 and intra prediction unit 331), and entropy decoding is performed by the entropy decoding unit 310.
  • the dual value that is, quantized transform coefficients and related parameter information may be input to the residual processing unit 320.
  • the residual processing unit 320 may derive a residual signal (a residual block, residual samples, and a residual sample array).
  • information about filtering among information decoded by the entropy decoding unit 310 may be provided to the filtering unit 350.
  • a receiver (not shown) for receiving a signal output from the encoding device may be further configured as an inner/outer element of the decoding device 300, or the receiver may be a component of the entropy decoding unit 310.
  • the decoding apparatus according to this document may be called a video/video/picture decoding apparatus, and the decoding apparatus can be divided into an information decoder (video/video/picture information decoder) and a sample decoder (video/video/picture sample decoder).
  • the information decoder may include the entropy decoding unit 310, and the sample decoder includes the inverse quantization unit 321, an inverse transform unit 322, an addition unit 340, a filtering unit 350, and a memory 360. ), an inter prediction unit 332 and an intra prediction unit 331 may be included.
  • the inverse quantization unit 321 may inverse quantize the quantized transform coefficients and output transform coefficients.
  • the inverse quantization unit 321 may rearrange the quantized transform coefficients in a two-dimensional block shape. In this case, the rearrangement may be performed based on the coefficient scan order performed by the encoding device.
  • the inverse quantization unit 321 may perform inverse quantization on quantized transform coefficients by using a quantization parameter (for example, quantization step size information) and obtain transform coefficients.
  • a quantization parameter for example, quantization step size information
  • the inverse transform unit 322 obtains a residual signal (residual block, residual sample array) by inverse transforming the transform coefficients.
  • the prediction unit 330 may perform prediction on the current block and generate a predicted block including prediction samples for the current block.
  • the prediction unit 330 may determine whether intra prediction or inter prediction is applied to the current block based on the information about the prediction output from the entropy decoding unit 310, and determine a specific intra/inter prediction mode. I can.
  • the prediction unit 330 may generate a prediction signal based on various prediction methods to be described later.
  • the prediction unit may apply intra prediction or inter prediction for prediction of one block, as well as simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may be based on an intra block copy (IBC) prediction mode or a palette mode to predict a block.
  • IBC intra block copy
  • the IBC prediction mode or the palette mode may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the palette mode can be viewed as an example of intra coding or intra prediction. When the palette mode is applied, information about a palette table and a palette index may be included in the video/video information and signale
  • the intra prediction unit 331 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located away from each other according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the intra prediction unit 331 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 332 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and the current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in a current picture and a temporal neighboring block existing in a reference picture.
  • the inter prediction unit 332 may construct a motion information candidate list based on neighboring blocks, and derive a motion vector and/or a reference picture index of the current block based on the received candidate selection information.
  • Inter prediction may be performed based on various prediction modes, and the information about the prediction may include information indicating a mode of inter prediction for the current block.
  • the addition unit 340 adds the obtained residual signal to the prediction signal (predicted block, prediction sample array) output from the prediction unit (including the inter prediction unit 332 and/or the intra prediction unit 331).
  • a reconstructed signal (a reconstructed picture, a reconstructed block, and a reconstructed sample array) can be generated.
  • the predicted block may be used as a reconstructed block.
  • the addition unit 340 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, may be output through filtering as described later, or may be used for inter prediction of the next picture.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 350 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 350 may generate a modified reconstructed picture by applying various filtering methods to the reconstructed picture, and the modified reconstructed picture may be converted to the memory 360, specifically, the DPB of the memory 360. Can be transferred to.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the (modified) reconstructed picture stored in the DPB of the memory 360 may be used as a reference picture in the inter prediction unit 332.
  • the memory 360 may store motion information of a block from which motion information in a current picture is derived (or decoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transmitted to the inter prediction unit 260 to be used as motion information of a spatial neighboring block or motion information of a temporal neighboring block.
  • the memory 360 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 331.
  • the embodiments described in the filtering unit 260, the inter prediction unit 221, and the intra prediction unit 222 of the encoding apparatus 100 are respectively the filtering unit 350 and the inter prediction of the decoding apparatus 300.
  • the same or corresponding to the unit 332 and the intra prediction unit 331 may be applied.
  • a predicted block including prediction samples for a current block as a coding target block may be generated.
  • the predicted block includes prediction samples in the spatial domain (or pixel domain).
  • the predicted block is derived equally from the encoding device and the decoding device, and the encoding device decodes information (residual information) about the residual between the original block and the predicted block, not the original sample value of the original block itself.
  • Video coding efficiency can be improved by signaling to the device.
  • the decoding apparatus may derive a residual block including residual samples based on the residual information, and generate a reconstructed block including reconstructed samples by summing the residual block and the predicted block. A reconstructed picture to be included can be generated.
  • the residual information may be generated through transformation and quantization procedures.
  • the encoding apparatus derives a residual block between the original block and the predicted block, and derives transform coefficients by performing a transformation procedure on residual samples (residual sample array) included in the residual block. And, by performing a quantization procedure on the transform coefficients, quantized transform coefficients may be derived, and related residual information may be signaled to a decoding apparatus (via a bitstream).
  • the residual information may include information such as value information of the quantized transform coefficients, position information, a transform technique, a transform kernel, and a quantization parameter.
  • the decoding apparatus may perform an inverse quantization/inverse transform procedure based on the residual information and derive residual samples (or residual blocks).
  • the decoding apparatus may generate a reconstructed picture based on the predicted block and the residual block.
  • the encoding apparatus may also inverse quantize/inverse transform quantized transform coefficients for reference for inter prediction of a picture to derive a residual block, and generate a reconstructed picture based on this.
  • the prediction unit of the encoding device/decoding device may derive a prediction sample by performing inter prediction in block units.
  • Inter prediction may represent a prediction derived in a method dependent on data elements (eg sample values, motion information, etc.) of a picture(s) other than the current picture (Inter prediction can be a prediction derived in a manner that is dependent on data elements (eg, sample values or motion information) of picture(s) other than the current picture).
  • a predicted block (prediction sample array) for the current block is derived based on a reference block (reference sample array) specified by a motion vector on a reference picture indicated by a reference picture index. I can.
  • motion information of the current block may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and current blocks.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction type (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be called a collocated reference block, a co-located CU (colCU), and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • a motion information candidate list may be constructed based on neighboring blocks of the current block, and a flag indicating which candidate is selected (used) to derive a motion vector and/or a reference picture index of the current block Alternatively, index information may be signaled.
  • Inter prediction may be performed based on various prediction modes. For example, in the case of a skip mode and a (normal) merge mode, motion information of a current block may be the same as motion information of a selected neighboring block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • a motion vector of a selected neighboring block is used as a motion vector predictor, and a motion vector difference may be signaled.
  • the motion vector of the current block may be derived using the sum of the motion vector predictor and the motion vector difference.
  • the video/video encoding procedure based on inter prediction may roughly include, for example, the following.
  • FIG. 4 shows an example of a video/video encoding method based on inter prediction.
  • the encoding device performs inter prediction on the current block (S400).
  • the encoding apparatus may derive the inter prediction mode and motion information of the current block and generate prediction samples of the current block.
  • the procedure of determining the inter prediction mode, deriving motion information, and generating prediction samples may be performed simultaneously, or one procedure may be performed before the other procedure.
  • the inter prediction unit of the encoding apparatus may include a prediction mode determination unit, a motion information derivation unit, and a prediction sample derivation unit.
  • the prediction mode determination unit determines a prediction mode for the current block, and the motion information derivation unit Motion information of the current block may be derived, and prediction samples of the current block may be derived by a prediction sample derivation unit.
  • the inter prediction unit of the encoding apparatus searches for a block similar to the current block within a certain area (search area) of reference pictures through motion estimation, and the difference with the current block is a minimum or a certain standard.
  • the following reference blocks can be derived. Based on this, a reference picture index indicating a reference picture in which the reference block is located may be derived, and a motion vector may be derived based on a position difference between the reference block and the current block.
  • the encoding apparatus may determine a mode applied to the current block among various prediction modes.
  • the encoding apparatus may compare rate-distortion (RD) costs for the various prediction modes and determine an optimal prediction mode for the current block.
  • RD rate-distortion
  • the encoding apparatus configures a merge candidate list to be described later, and is among the reference blocks indicated by merge candidates included in the merge candidate list. It is possible to derive a reference block whose difference from the current block is less than a minimum or a predetermined standard. In this case, a merge candidate associated with the derived reference block is selected, and merge index information indicating the selected merge candidate may be generated and signaled to the decoding apparatus. Motion information of the current block may be derived using motion information of the selected merge candidate.
  • the encoding device configures a (A)MVP candidate list to be described later, and among the mvp (motion vector predictor) candidates included in the (A)MVP candidate list
  • the motion vector of the selected mvp candidate may be used as the mvp of the current block.
  • a motion vector indicating a reference block derived by the above-described motion estimation may be used as a motion vector of the current block, and among the mvp candidates, the difference between the motion vector of the current block is the smallest.
  • An mvp candidate having a motion vector may be the selected mvp candidate.
  • a motion vector difference which is a difference obtained by subtracting the mvp from the motion vector of the current block may be derived.
  • information about the MVD may be signaled to the decoding device.
  • the value of the reference picture index may be separately signaled to the decoding device by configuring reference picture index information.
  • the encoding apparatus may derive residual samples based on the prediction samples (S410).
  • the encoding apparatus may derive the residual samples by comparing the original samples of the current block with the prediction samples.
  • the encoding apparatus encodes video information including prediction information and residual information (S420).
  • the encoding device may output the encoded image information in the form of a bitstream.
  • the prediction information is information related to the prediction procedure and may include information on prediction mode information (eg, skip flag, merge flag or mode index) and motion information.
  • the information on the motion information may include candidate selection information (eg, merge index, mvp flag or mvp index) that is information for deriving a motion vector.
  • the information on the motion information may include information on the MVD and/or reference picture index information described above. Further, the information on the motion information may include information indicating whether L0 prediction, L1 prediction, or bi prediction is applied.
  • the residual information is information on the residual samples.
  • the residual information may include information on quantized transform coefficients for the residual samples.
  • the output bitstream may be stored in a (digital) storage medium and transmitted to a decoding device, or may be transmitted to a decoding device through a network.
  • the encoding apparatus may generate a reconstructed picture (including reconstructed samples and a reconstructed block) based on the reference samples and the residual samples. This is because the encoding device derives the same prediction result as that performed in the decoding device, and coding efficiency can be improved through this. Accordingly, the encoding apparatus may store a reconstructed picture (or reconstructed samples, and a reconstructed block) in a memory and use it as a reference picture for inter prediction. As described above, an in-loop filtering procedure or the like may be further applied to the reconstructed picture.
  • the video/video decoding procedure based on inter prediction may roughly include, for example, the following.
  • FIG. 5 shows an example of a video/video decoding method based on inter prediction.
  • a decoding apparatus may perform an operation corresponding to an operation performed by the encoding apparatus.
  • the decoding apparatus may perform prediction on the current block and derive prediction samples based on the received prediction information.
  • the decoding apparatus may determine a prediction mode for the current block based on the received prediction information (S500).
  • the decoding apparatus may determine which inter prediction mode is applied to the current block based on prediction mode information in the prediction information.
  • the merge mode may be applied to the current block or the (A)MVP mode is determined based on the merge flag.
  • one of various inter prediction mode candidates may be selected based on the mode index.
  • the inter prediction mode candidates may include a skip mode, a merge mode, and/or (A)MVP mode, or may include various inter prediction modes to be described later.
  • the decoding apparatus derives motion information of the current block based on the determined inter prediction mode (S510). For example, when a skip mode or a merge mode is applied to the current block, the decoding apparatus may configure a merge candidate list to be described later, and select one merge candidate from among merge candidates included in the merge candidate list. The selection may be performed based on the above-described selection information (merge index). Motion information of the current block may be derived using motion information of the selected merge candidate. Motion information of the selected merge candidate may be used as motion information of the current block.
  • the decoding apparatus configures a (A)MVP candidate list to be described later, and among the mvp (motion vector predictor) candidates included in the (A)MVP candidate list
  • the motion vector of the selected mvp candidate may be used as the mvp of the current block.
  • the selection may be performed based on the above-described selection information (mvp flag or mvp index).
  • the MVD of the current block may be derived based on the information on the MVD
  • a motion vector of the current block may be derived based on the mvp of the current block and the MVD.
  • a reference picture index of the current block may be derived based on the reference picture index information.
  • a picture indicated by the reference picture index in the reference picture list for the current block may be derived as a reference picture referenced for inter prediction of the current block.
  • motion information of the current block may be derived without configuring a candidate list.
  • motion information of the current block may be derived according to a procedure disclosed in a prediction mode to be described later.
  • the configuration of the candidate list as described above may be omitted.
  • the decoding apparatus may generate prediction samples for the current block based on the motion information of the current block (S520).
  • the reference picture may be derived based on the reference picture index of the current block, and prediction samples of the current block may be derived using samples of a reference block indicated on the reference picture by the motion vector of the current block.
  • a prediction sample filtering procedure may be further performed on all or part of the prediction samples of the current block in some cases.
  • the inter prediction unit of the decoding apparatus may include a prediction mode determining unit, a motion information deriving unit, and a prediction sample deriving unit, and based on the prediction mode information received from the prediction mode determining unit, a prediction mode for the current block is determined. It determines, and derives motion information (motion vector and/or reference picture index, etc.) of the current block based on information on the motion information received from the motion information derivation unit, and predicts a prediction sample of the current block by the predictive sample derivation unit Can be derived.
  • motion information motion vector and/or reference picture index, etc.
  • the decoding apparatus generates residual samples for the current block based on the received residual information (S530).
  • the decoding apparatus may generate reconstructed samples for the current block based on the prediction samples and the residual samples, and generate a reconstructed picture based on the prediction samples (S540). Thereafter, as described above, an in-loop filtering procedure or the like may be further applied to the reconstructed picture.
  • 6 exemplarily shows an inter prediction procedure.
  • the inter prediction procedure may include determining an inter prediction mode, deriving motion information according to the determined prediction mode, and performing prediction based on the derived motion information (generating a prediction sample).
  • the inter prediction procedure may be performed in an encoding device and a decoding device as described above.
  • the coding device may include an encoding device and/or a decoding device.
  • the coding apparatus determines an inter prediction mode for a current block (S600).
  • Various inter prediction modes may be used for prediction of a current block in a picture.
  • modes such as merge mode, skip mode, motion vector prediction (MVP) mode, affine mode, sub-block merge mode, merge with MVD (MMVD) mode, and historical motion vector prediction (HMVP) mode.
  • MVP motion vector prediction
  • affine mode sub-block merge mode
  • MMVD merge with MVD
  • HMVP historical motion vector prediction
  • DMVR decoder side motion vector refinement
  • AMVR adaptive motion vector resolution
  • BCW Bi-prediction with CU-level weight
  • BDOF Bi-directional optical flow
  • the Matte mode may also be referred to as an affine motion prediction mode.
  • the MVP mode may also be called an advanced motion vector prediction (AMVP) mode.
  • AMVP advanced motion vector prediction
  • some modes and/or motion information candidates derived by some modes may be included as one of motion information related candidates of other modes.
  • the HMVP candidate may be added as a merge candidate of the merge/skip mode, or may be added as an mvp candidate of the MVP mode.
  • Prediction mode information indicating the inter prediction mode of the current block may be signaled from the encoding device to the decoding device.
  • the prediction mode information may be included in a bitstream and received by a decoding apparatus.
  • the prediction mode information may include index information indicating one of a plurality of candidate modes.
  • the inter prediction mode may be indicated through hierarchical signaling of flag information.
  • the prediction mode information may include one or more flags. For example, a skip flag is signaled to indicate whether to apply the skip mode, and when the skip mode is not applied, the merge flag is signaled to indicate whether to apply the merge mode, and when the merge mode is not applied, the MVP mode is indicated to be applied. Alternatively, a flag for additional classification may be further signaled.
  • the Rane mode may be signaled as an independent mode, or may be signaled as a mode dependent on a merge mode or an MVP mode.
  • the Rane mode may include an An Arte merge mode and an an MVP mode.
  • information on the inter prediction mode of the current block may be coded and signaled at a level such as CU (CU syntax), or may be implicitly determined according to a condition.
  • CU CU syntax
  • some modes may be explicitly signaled and others may be implicitly derived.
  • the CU syntax may carry information about (inter) prediction modes such as cu_skip_flag, pred_mode_flag, pred_mode_ibc_flag, pcm_flag, intra_mip_flag, intra_chroma_pred_mode, general_merge_flag, and the like.
  • cu_skip_flag may indicate whether the skip mode is applied to the current block CU.
  • pred_mode_flag If the value of pred_mode_flag is 0, it may indicate that the current coding unit is coded in the inter prediction mode. If the value of pred_mode_flag is 1, it may indicate that the current coding unit is coded in the intra prediction mode. (pred_mode_flag equal to 1 specifies that the current coding unit is coded in intra prediction mode.)
  • pred_mode_ibc_flag 1
  • pred_mode_ibc_flag 0
  • pcm_flag[x0][y0] 1
  • pcm_flag[x0][y0] 0
  • (pcm_flag[x0][y0] equal to 1 specifies that the pcm_sample() syntax structure is present and the transform_tree() syntax structure is not present in the coding unit including the luma coding block at the location (x0, y0).
  • pcm_flag [x0][y0] equal to 0 specifies that pcm_sample() syntax structure is not present.) That is, pcm_flag may indicate whether a pulse coding modulation (PCM) mode is applied to the current block. When the PCM mode is applied to the current block, prediction, transformation, quantization, etc. are not applied, and a value of an original sample in the current block may be coded and signaled.
  • PCM pulse coding modulation
  • intra_mip_flag[x0][y0] is 1, it may indicate that the intra prediction type for the luma sample is matrix-based intra prediction (MIP). If intra_mip_flag[x0][y0] is 0, it may indicate that the intra prediction type for the luma sample is not matrix-based intra prediction. (intra_mip_flag[x0][y0] equal to 1 specifies that the intra prediction type for luma samples is matrix-based intra prediction (MIP).
  • intra_mip_flag[x0][y0] 0 specifies that the intra prediction type for luma samples is not matrix-based intra prediction.) That is, intra_mip_flag may indicate whether the MIP prediction mode (type) is applied to the current block (a luma sample of).
  • intra_chroma_pred_mode[x0][y0] may indicate an intra prediction mode for chroma samples in the current block.
  • intra_chroma_pred_mode[x0][y0] specifies the intra prediction mode for chroma samples in the current block.
  • general_merge_flag[x0][y0] may indicate whether an inter prediction parameter for a current coding unit is derived from a neighboring inter prediction partition.
  • general_merge_flag[x0][y0] specifies whether the inter prediction parameters for the current coding unit are inferred from a neighboring inter-predicted partition.
  • general_merge_flag can indicate that a general merge is available, and the value of general_merge_flag is 1 day.
  • a regular merge mode, mmvd mode, and merge subblock mode subblock merge mode
  • the merge data syntax may be parsed from the encoded video/image information (or bitstream), and the merge data syntax is regular_merge_flag, mmvd_merge_flag, mmvd_cand_flag, mmvd_distance_idx, mmvd_direction_idx , merge_subblock_flag, merge_subblock_idx, ciip_flag, merge_triangle_idx0, merge_triangle_idx1, merge_idx, etc. may be configured/coded to include information.
  • regular_merge_flag[x0][y0] 1 specifies that regular merge mode is used to generate the inter prediction parameters of the current coding unit.
  • regular_merge_flag determines whether or not the merge mode (regular merge mode) is applied to the current block. Show.
  • mmvd_merge_flag[x0][y0] 1 specifies that merge mode with motion vector difference is used to generate the inter prediction parameters of the current coding unit. That is, mmvd_merge_flag indicates whether MMVD is applied to the current block.
  • mmvd_cand_flag[x0][y0] is whether the first (0) or second (1) candidate in the merge candidate list is used with the motion vector difference derived from mmvd_distance_idx[x0][y0] and mmvd_direction_idx[x0][y0] Can indicate whether or not.
  • mmvd_cand_flag[x0][y0] specifies whether the first (0) or the second (1) candidate in the merging candidate list is used with the motion vector difference derived from mmvd_distance_idx[x0][y0] and mmvd_direction_idx[x0][y0 ].
  • mmvd_distance_idx[x0][y0] may represent an index used to derive MmvdDistance[x0][y0]. (mmvd_distance_idx[x0][y0] specifies the index used to derive MmvdDistance[x0][y0].)
  • mmvd_direction_idx[x0][y0] may represent an index used to derive MmvdSign[x0][y0]. (mmvd_direction_idx[x0][y0] specifies index used to derive MmvdSign[x0][y0].)
  • merge_subblock_flag[x0][y0] may indicate a subblock-based inter prediction parameter for current coding. (merge_subblock_flag[x0][y0] specifies whether the subblock-based inter prediction parameters for the current coding.) That is, merge_subblock_flag may indicate whether a subblock merge mode (or affine merge mode) is applied to the current block.
  • merge_subblock_idx[x0][y0] may represent a merge candidate index of a subblock-based merge candidate list. (merge_subblock_idx[x0][y0] specifies the merging candidate index of the subblock-based merging candidate list.)
  • ciip_flag[x0][y0] may indicate whether the combined inter-picture merge and intra-picture prediction are applied to the current coding unit. (ciip_flag[x0][y0] specifies whether the combined inter-picture merge and intra-picture prediction is applied for the current coding unit.)
  • merge_triangle_idx0[x0][y0] may represent the first merge candidate index of the triangular shape-based motion compensation candidate list. (merge_triangle_idx0[x0][y0] specifies the first merging candidate index of the triangular shape based motion compensation candidate list.)
  • merge_triangle_idx1 [x0] [y0] may represent the second merge candidate index of the triangular shape-based motion compensation candidate list.
  • merge_triangle_idx1[x0][y0] specifies the second merging candidate index of the triangular shape based motion compensation candidate list.
  • merge_idx[x0][y0] may represent a merge candidate index of the merge candidate list. (merge_idx[x0][y0] specifies the merging candidate index of the merging candidate list.)
  • the CU syntax may further carry information about the prediction mode such as mvp_l0_flag, mvp_l1_flag, inter_pred_idc, sym_mvd_flag, ref_idx_l0, ref_idx_l1, inter_affine_flag, cu_affine_type_flag, amvr_flag, amvr_precision_flag, etc.
  • mvp_l0_flag[x0][y0] may represent the index of the motion vector predictor of list 0. (mvp_l0_flag[x0][y0] specifies the motion vector predictor index of list 0.) That is, mvp_l0_flag may indicate a candidate selected for deriving MVP of the current block from MVP candidate list 0 when the MVP mode is applied. .
  • mvp_l1_flag[x0][y0] has the same meaning as mvp_l0_flag, and l0 and list 0 may be replaced with l1 and list 1, respectively.
  • ref_idx_l1[x0][y0] has the same semantics as ref_idx_l0, with l0, L0 and list 0 replaced by l1, L1 and list 1, respectively.
  • inter_pred_idc[x0][y0] may indicate whether list 0, list 1, or bi-prediction is used for the current coding unit.
  • inter_pred_idc[x0][y0] specifies whether list0, list1, or bi-prediction is used for the current coding unit.
  • sym_mvd_flag[x0][y0] If the value of sym_mvd_flag[x0][y0] is 1, it represents the syntax elements ref_idx_l0[x0][y0] and ref_idx_l1[x0][y0], and mvd_coding(x0, y0, refList, cpIdx) syntax for the refList equal to 1 It may indicate that the structure does not exist.
  • sym_mvd_flag[x0][y0] 1 specifies that the syntax elements ref_idx_l0[x0][y0] and ref_idx_l1[x0][y0], and the mvd_coding(x0, y0, refList ,cpIdx) syntax structure for refList equal to 1 are not present.
  • sym_mvd_flag indicates whether symmetric MVD is used in mvd coding.
  • ref_idx_l0[x0][y0] may indicate the list 0 reference picture index for the current coding unit.
  • ref_idx_l0[x0][y0] specifies the list 0 reference picture index for the current coding unit.
  • ref_idx_l1[x0][y0] has the same meaning as ref_idx_l0, and l0, L0, and list 0 may be replaced with l1, L1, and list 1, respectively.
  • ref_idx_l1[x0][y0] has the same semantics as ref_idx_l0, with l0, L0 and list 0 replaced by l1, L1 and list 1, respectively.
  • inter_affine_flag[x0][y0] 1
  • inter_affine_flag[ x0 ][ y0] 1 specifies that for the current coding unit, when decoding a P or B slice, affine model based motion compensation is used to generate the prediction samples of the current coding unit.
  • cu_affine_type_flag[x0][y0] If the value of cu_affine_type_flag[x0][y0] is 1, it may indicate that a 6-parameter affine model-based motion compensation is used to generate a prediction sample of the current coding unit when decoding a P or B slice for the current coding unit. . If the value of cu_affine_type_flag[x0][y0] is 0, it may indicate that a 4-parameter affine model-based motion compensation is used to generate a prediction sample of the current coding unit.
  • cu_affine_type_flag[x0][y0] 1 specifies that for the current coding unit, when decoding a P or B slice, 6-parameter affine model based motion compensation is used to generate the prediction samples of the current coding unit.
  • cu_affine_type_flag[ x0][y0] 0 specifies that 4-parameter affine model based motion compensation is used to generate the prediction samples of the current coding unit.
  • amvr_flag[x0][y0] may represent the resolution of a motion vector difference.
  • the array indices x0 and y0 may represent positions (x0, y0) of the upper left luma sample of the coding block considered for the upper left luma sample of the picture. If the value of amvr_flag[x0][y0] is 0, it may indicate that the resolution of the motion vector difference is 1/4 of the luma sample. If the value of amvr_flag[x0][y0] is 1, it may indicate that the resolution of the motion vector difference is additionally indicated by amvr_precision_flag[x0][y0]. (amvr_flag[x0][y0] specifies the resolution of motion vector difference.
  • the array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.amvr_flag[x0][y0] equal to 0 specifies that the resolution of the motion vector difference is 1/4 of a luma sample.amvr_flag[x0][y0] equal to 1 specifies that the resolution of the motion vector difference is further specified by amvr_precision_flag[x0][y0].)
  • amvr_precision_flag[x0][y0] if the value of inter_affine_flag[x0][y0] is 0, it indicates that the resolution of the motion vector difference is one integer luma sample, otherwise it may indicate that it is 1/16 of the luma sample. have. If the value of amvr_precision_flag[x0][y0] is 1, when the value of inter_affine_flag[x0][y0] is 0, the resolution of the motion vector difference is 4 luma samples. Otherwise, it may indicate that it is one integer luma sample. .
  • the array indexes x0 and y0 may represent positions (x0, y0) of the upper left luma sample of the coding block considered for the upper left luma sample of the picture.
  • (amvr_precision_flag[x0][y0] equal to 0 specifies that the resolution of the motion vector difference is one integer luma sample if inter_affine_flag[x0][y0] is equal to 0, and 1/16 of a luma sample otherwise.
  • amvr_precision_flag[ x0][y0] equal to 1 specifies that the resolution of the motion vector difference is four luma samples if inter_affine_flag[x0][y0] is equal to 0, and one integer luma sample otherwise.
  • the array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.)
  • bcw_idx[x0][y0] may represent a weight index of bidirectional prediction using CU weights. (bcw_idx[x0][y0] specifies the weight index of bi-prediction with CU weights.)
  • the coding apparatus derives motion information for the current block based on the prediction mode (S610).
  • the coding apparatus may perform inter prediction using motion information of the current block.
  • the encoding apparatus may derive optimal motion information for the current block through a motion estimation procedure.
  • the encoding device may search for a similar reference block with high correlation using the original block in the original picture for the current block in units of fractional pixels within a predetermined search range in the reference picture, and derive motion information through this. I can.
  • the similarity of the block can be derived based on the difference between the phase-based sample values.
  • the similarity of blocks may be calculated based on the SAD between a current block (or a template of a current block) and a reference block (or a template of a reference block).
  • motion information may be derived based on the reference block having the smallest SAD in the search area.
  • the derived motion information may be signaled to the decoding apparatus according to various methods based on the inter prediction mode.
  • the coding apparatus When the motion information for the current block is derived, the coding apparatus performs inter prediction based on the motion information for the current block (S620). The coding apparatus may derive the prediction sample(s) for the current block based on the motion information.
  • the current block including the prediction samples may be referred to as a predicted block.
  • the encoding device may indicate motion information of the current block by transmitting flag information indicating that the merge mode is used and a merge index indicating which prediction block is used.
  • the merge mode may be referred to as a regular merge mode.
  • the coding apparatus searches for a merge candidate block used to induce motion information of the current block. For example, up to five merge candidate blocks may be used, but the present embodiment is not limited thereto. Further, information on the maximum number of merge candidate blocks may be transmitted in a slice header or a tile group header, but the present embodiment is not limited thereto. After finding the merge candidate blocks, the coding apparatus may generate a merge candidate list and select a merge candidate block having the lowest cost among them as a final merge candidate block.
  • FIG. 7 is a diagram illustrating spatial candidates that can be used for inter prediction.
  • This document provides various embodiments of merge candidate blocks constituting the merge candidate list.
  • the merge candidate list may include, for example, 5 merge candidate blocks.
  • four spatial merge candidates and one temporal merge candidate can be used.
  • blocks A 0 , A1, B 0 , B 1 , and B 2 illustrated in FIG. 7 may be used as spatial merge candidates.
  • the spatial merge candidate or the spatial MVP candidate to be described later may be referred to as an SMVP
  • the temporal merge candidate or the temporal MVP candidate to be described later may be referred to as TMVP.
  • the merge candidate list for the current block may be configured based on the following procedure, for example.
  • the coding device may insert spatial merge candidates derived by searching for spatial neighboring blocks of the current block into the merge candidate list.
  • the spatial neighboring blocks are a block around the lower left corner of the current block (A 0 ), a neighboring block on the left (A 1 ), a block around the upper right corner (B 0 ), an upper neighboring block (B 1 ), and It may include blocks B 2 around the side corners.
  • additional neighboring blocks such as a right peripheral block, a lower peripheral block, and a right lower peripheral block may be further used as the spatial neighboring blocks.
  • the coding apparatus may detect available blocks by searching the spatial neighboring blocks based on priority, and derive motion information of the detected blocks as the spatial merge candidates. For example, the encoding device and/or the decoding device searches the five blocks shown in FIG. 7 in the order of A 1 , B 1 , B 0 , A 0 , and B 2 , and sequentially indexes the available candidates to merge. It can be composed of a candidate list.
  • the coding apparatus may insert a temporal merge candidate derived by searching for a temporal neighboring block of the current block into the merge candidate list.
  • the temporal neighboring block may be located on a reference picture that is a picture different from the current picture in which the current block is located.
  • the reference picture in which the temporal neighboring block is located may be referred to as a collocated picture or a col picture.
  • the temporal neighboring block may be searched in an order of a lower right corner neighboring block and a lower right center block of a co-located block with respect to the current block on the col picture.
  • the coding apparatus may check whether the number of current merge candidates is smaller than the number of maximum merge candidates.
  • the number of maximum merge candidates may be defined in advance or may be signaled from the encoding device to the decoding device.
  • the encoding device may generate information on the number of the maximum merge candidates, encode, and transmit the information to the decoding device in the form of a bitstream. When the number of maximum merge candidates is filled, a subsequent candidate addition process may not be performed.
  • the coding apparatus may insert an additional merge candidate into the merge candidate list.
  • the additional merge candidates are, for example, history based merge candidate(s), pair-wise average merge candidate(s), ATMVP, combined bi-predictive merge candidate (the slice/tile group type of the current slice/tile group is B type. Case) and/or a zero vector merge candidate.
  • the coding apparatus may terminate the configuration of the merge candidate list.
  • the encoding apparatus may select an optimal merge candidate among merge candidates constituting the merge candidate list based on a rate-distortion (RD) cost, and decode selection information (ex. merge index) indicating the selected merge candidate. It can be signaled to the device.
  • the decoding apparatus may select the optimal merge candidate based on the merge candidate list and the selection information.
  • the motion information of the selected merge candidate may be used as motion information of the current block, and prediction samples of the current block may be derived based on the motion information of the current block.
  • the encoding device may derive residual samples of the current block based on the prediction samples, and may signal residual information about the residual samples to the decoding device.
  • the decoding apparatus may generate reconstructed samples based on residual samples derived based on the residual information and the prediction samples, and generate a reconstructed picture based on the residual samples.
  • motion information of the current block may be derived in the same manner as when the merge mode is applied previously. However, when the skip mode is applied, the residual signal for the corresponding block is omitted, and thus prediction samples can be directly used as reconstructed samples.
  • FIGS. 8 and 9 are diagrams illustrating temporal candidates that can be used for inter prediction.
  • the temporal candidate may represent the above-described temporal merge candidate.
  • a motion vector included in the temporal candidate may correspond to a temporal mvp candidate.
  • the scaled motion vector is a co-located CU belonging to a co-located reference picture (which may be referred to as colPic). It is derived based on (Particularly, in the derivation of this temporal merge candidate, a scaled motion vector is derived based on co-located CU belonging to the collocated reference picture (may be referred to as colPic).) Derivation of a co-located CU
  • the reference picture list used for is explicitly signaled in the slice header.
  • Temporal merge scaled from the motion vector of the co-located CU using the picture order count (POC) distance, tb and td The scaled motion vector for the candidate is obtained as shown by a dotted line in FIG. 8, where tb is defined as the difference between the reference picture of the current picture and the current picture, and td is the reference picture of the same position picture and the same position picture. It is defined as the difference between POCs.
  • the scaled motion vector for temporal merge candidate is obtained as illustrated by the dotted line in Figure 8, which is scaled from the motion vector of the co-located CU using the POC distances, tb and td, where tb is defined to be the POC difference between the reference picture of the current picture and the current picture and td is defined to be the POC difference between the reference picture of the co-located picture and the co-located picture.
  • the reference picture index of the time merge candidate is 0 Is set to (The reference picture index of temporal merge candidate is set equal to zero.)
  • the position of the temporal candidate is selected between candidates C 0 and C 1 as shown in FIG. 9. If the CU at the C 0 position cannot be used, the CU at the C 0 position is intra-coded, or is outside the row of the current CTU, the C 1 position is used. (The position for the temporal candidate is selected between candidates C 0 and C 1 , as depicted in Figure 9.If CU at position C 0 is not available, is intra coded, or is outside of the current row of CTUs, position C 1 is used.) Otherwise, the C 0 position is used for derivation of the temporal merge candidate. (Otherwise, position C0 is used in the derivation of the temporal merge candidate.)
  • the Motion Vector Prediction (MVP) mode may be referred to as an advanced motion vetor prediction (AMVP) mode.
  • AMVP advanced motion vetor prediction
  • a motion vector of a reconstructed spatial neighboring block for example, it may be a neighboring block in FIG. 7
  • a motion vector corresponding to a temporal neighboring block or Col block
  • mvp motion vector predictor
  • an mvp candidate list for deriving L0 motion information and an mvp candidate list for deriving L1 motion information may be separately generated and used.
  • the above-described prediction information may include selection information (ex. MVP flag or MVP index) indicating an optimal motion vector predictor candidate selected from among motion vector predictor candidates included in the list.
  • the prediction unit may select a motion vector predictor of the current block from among motion vector predictor candidates included in the motion vector candidate list using the selection information.
  • the prediction unit of the encoding apparatus may obtain a motion vector difference (MVD) between the motion vector of the current block and the motion vector predictor, encode the motion vector, and output the result in the form of a bitstream.
  • MVD motion vector difference
  • MVD may be obtained by subtracting the motion vector predictor from the motion vector of the current block.
  • the prediction unit of the decoding apparatus may obtain a motion vector difference included in the prediction information, and derive the motion vector of the current block by adding the motion vector difference and the motion vector predictor.
  • the prediction unit of the decoding apparatus may obtain or derive a reference picture index indicating a reference picture from the prediction information.
  • a reference picture index may be explicitly signaled.
  • a reference picture index for L0 prediction (refidxL0) and a reference picture index for L1 prediction (refidxL1) may be differentiated and signaled.
  • both information on refidxL0 and information on refidxL1 may be signaled.
  • information on the MVD derived from the encoding device may be signaled to the decoding device as described above.
  • the information on the MVD may include, for example, information indicating the absolute value of the MVD and the x and y components of the sign. In this case, information indicating whether the absolute MVD value is greater than 0 and greater than 1, and the remainder of the MVD may be signaled in stages. For example, information indicating whether the absolute MVD value is greater than 1 may be signaled only when the value of flag information indicating whether the absolute MVD value is greater than 0 is 1.
  • MVD (MVDL0) for L0 prediction and MVD (MVDL1) for L1 prediction may be differentiated and signaled, and the information on MVD may include information on MVDL0 and/or information on MVDL1.
  • the MVP mode is applied to the current block and BI prediction is applied, both information on the MVDLO and information on the MVDL1 may be signaled.
  • affine motion prediction method that is encoded using an affine motion model will be described.
  • a motion vector can be expressed in each pixel unit of a block using two, three, or four motion vectors.
  • the affine motion vector can express four motions.
  • the affine motion model that expresses three movements (translation, scale, and rotate) among the movements that the affine motion model can express is called a similarity (or simplified) affine motion model, and hereinafter, a similarity (or simplified) affine motion model It will be described based on However, this document is not limited to the motion model.
  • FIG. 11 exemplarily shows an affine motion model in which motion vectors for three control points are used
  • FIG. 12 exemplarily shows an affine motion model in which motion vectors for two control points are used.
  • affine motion prediction may determine a motion vector of a pixel location included in a block using two or more control point motion vectors CPMVs.
  • the set of motion vectors is referred to as an affine motion vector field (MVF), which can be determined by the following equation.
  • the motion vector at the sample position (x, y) in the block is derived by Equation 1
  • the motion vector at the sample position (x, y) in the block is derived by Equation 2.
  • Is the CPMV of the control point CP at the upper left corner of the coding block Is the CPMV of CP at the upper right corner, Is the CPMV of the CP at the lower left corner position.
  • W corresponds to the width of the current block
  • H corresponds to the height of the current block
  • the affine MVF may be determined in units of pixels or in units of predefined subblocks.
  • a motion vector is obtained based on each pixel value
  • the motion of the corresponding block is based on the pixel value of the center of the sub-block (the lower right of the center, i.e. Get a vector
  • the affine MVF is determined in units of 4x4 subblocks. However, this is for convenience of explanation, and the size of the subblock may be variously changed.
  • motion models applicable to the current block may include the following three types.
  • Translational motion model can represent a model in which an existing block unit motion vector is used
  • a 4-parameter affine motion model can represent a model in which two CPMVs are used
  • a 6-parameter affine motion model can represent a model in which three CPMVs are used. It can represent a model that is becoming.
  • Afine motion prediction may include an Ime MVP (or Arte inter) mode and an Matte merge.
  • affine motion prediction a motion vector of a current block may be derived in units of samples or sub-blocks.
  • the affine motion prediction may include affine MVP (or affine inter) mode and affine merge.
  • affine motion prediction motion vectors of a current block may be derived in a unit of sample or in a unit of sub-block.
  • the control point motion vector CPMV may be determined according to the Bennette motion model of the neighboring block coded by the Bennette motion prediction.
  • a control point motion vector (CPMV)s may be determined according to the affine motion model of the neighboring block coded as the affine motion prediction.
  • the neighboring blocks that are affine coded in search order are in affine merge mode. Can be used.
  • An affine coded neighboring block in a search order may be used for affine merge mode.
  • the current block may be coded with affine merge (AF_MERGE).
  • a current block can be coded as AF_MERGE when one or more of the neighboring blocks are coded as affine motion prediction.
  • the CPMVs of the current block can be derived using the CPMVs of the neighboring blocks.
  • the CPMVs of the neighboring block may be used as the CPMVs of the current block as they are, or the CPMVs of the neighboring block may be modified based on the size of the neighboring block and the size of the current block and used as CPMVs of the current block.
  • an affine merge in which a motion vector is derived in units of subblocks, it may be referred to as a subblock merge mode, which may be notified based on merge_subblock_flag (value 1).
  • an affine merging candidate list to be described later may be referred to as a subblock merging candidate list.
  • the subblock merge candidate list may further include a candidate derived by subblock-based temporal motion vector prediction (SbTMVP) to be described later.
  • SBTMVP subblock-based temporal motion vector prediction
  • an affine merge candidate list may be configured to derive CPMVs for a current block.
  • the affine merge candidate list may include at least one of, for example, inherited affine candidates, constructed affine candidates, and zero MVs candidates. .
  • the inherited affine candidate is a candidate derived based on the CPMVs of the neighboring block when the neighboring block is coded in the affine mode, and the constructed affine candidate constructs CPMVs based on the motion vector of the corresponding CP neighboring block in each CPMV unit. It is a candidate derived by (constructed), and the zero MVs candidate can represent a candidate composed of CPMVs whose value is 0.
  • the affine merging candidate list may be configured as follows, for example.
  • 13 exemplarily shows neighboring blocks of a current block for deriving an inherited affine candidate.
  • Up to two inherited affine candidates may be derived from the affine motion model of the neighboring block, one from left peripheral CUs, and the other from upper peripheral CUs. (There are maximum two inherited affine candidates, which are derived from affine motion model of the neighboring blocks, one from left neighboring CUs and one from above neighboring CUs.)
  • the candidate blocks shown in FIG. 7 may be used.
  • the scan order is A 1 -> A 0
  • the scan order is B 1 -> B 0 -> B 2 .
  • the scan order is A 1 -> A 0
  • the scan order is B 1 -> B 0 -> B 2 .
  • a pruning check is not performed between two inherited candidates. (No pruning check is performed between two inherited candidates.)
  • the control point motion vector is used to derive a CPMVP candidate from the affine merge list of the current CU.
  • its control point motion vectors are used to derive the CPMVP candidate in the affine merge list of the current CU.
  • the constructed affine candidate refers to a candidate formed by combining translational motion information around each control point.
  • Constructed affine candidate means the candidate is constructed by combining the neighbor translational motion information of each control point.
  • Motion information for the control point is derived from spatial neighbors and temporal neighbors shown in FIG. 14. (The motion information for the control points is derived from the specified spatial neighbors and temporal neighbor shown in Figure 14.)
  • the B2 -> B3 -> A2 block is checked and the motion vector of the first available block is used.
  • CPMV 1 the B2 -> B3 -> A2 blocks are checked and the MV of the first available block is used.
  • CPMV 2 the B1-> B0 block is checked, and for CPMV 3 , the A1-> A0 block is Is checked.
  • TMVP is used as CPMV 4 when available.
  • TMVP is used as CPMV 4 if it's available.
  • an affine merge candidate is formed based on the motion information. (After MVs of four control points are attained, affine merge candidates are constructed based on those motion information.)
  • the following control point motion vector combinations can be used in order to construct. (The following combinations of control point MVs are used to construct in order.)
  • the combination of three CPMVs constitutes a 6-parameter affine merge candidate, and the combination of two CPMVs constitutes a 4-parameter affine merge candidate.
  • the combination of 3 CPMVs constructs a 6-parameter affine merge candidate and the combination of 2 CPMVs constructs a 4-parameter affine merge candidate.
  • To avoid the motion scaling process if the reference indices of the control point are different, the control point motion vectors Related combinations are discarded. (To avoid motion scaling process, if the reference indices of control points are different, the related combination of control point MVs is discarded.)
  • the control point motion vector difference (CPMVD) corresponding to the difference value is transmitted from the encoding device to the decoding device.
  • an affine MVP mode may be applied when a value of an affine merge flag or a merge_subblock_flag is 0, an affine MVP mode may be applied.
  • the affine MVP mode may be referred to as an affine CP MVP mode.
  • the affine MVP mode may be referred to as an affine inter mode or an inter affine mode.
  • the mvp candidate list which will be described later, may be called a control point motion vectors predictor candidate list.
  • an affine mvp candidate list may be constructed to derive CPMVs for the current block.
  • the affine mvp candidate list includes, for example, an inherited affine mvp candidate, a constructed affine mvp candidate, an additional candidate, and a zero motion vector candidate.
  • MVs candidate may include at least one.
  • the affine mvp candidate list may include a maximum of n (ex. 2) candidates.
  • the inherited affine mvp candidate is derived from CPMVs of neighboring CUs. (Inherited affine mvp candidates that extrapolated from the CPMVs of the neighbor CUs.)
  • the constructed affine mvp candidate is derived using translational motion vectors of neighboring CUs. (Constructed affine mvp candidates CPMVPs that are derived using the translational MVs of the neighbor CUs.)
  • the additional candidate is based on translational motion vectors from surrounding CUs. (Additional candidates based on Translational MVs from neighboring CUs.)
  • the inherited affine mvp candidate is a candidate derived based on CPMVs of the neighboring block when the neighboring block is coded in the affine mode
  • the constructed affine mvp candidate (constructed affine mvp candidate) affine mvp candidate) is a candidate derived by constructing CPMVs based on the MV of the block adjacent to the CP in each CPMV unit
  • a zero motion vector candidate is a candidate consisting of CPMVs whose value is 0. Can represent.
  • the maximum number of candidates for the affine mvp candidate list is 2, the candidates 2 or less may be considered and added when the number of current candidates is less than 2.
  • the additional candidates may be derived in the following order.
  • CPMV0 is used as an affiliate MVP candidate. That is, the motion vectors of CP0, CP1, and CP2 all consider the same candidate as CPMV0 of the constructed candidate.
  • CPMV1 is used as an affine MVP candidate. That is, the motion vectors of CP0, CP1, and CP2 all consider the same candidate as CPMV1 of the constructed candidate.
  • (mv)__2 is used as an affine MVP candidate. That is, the motion vectors of CP0, CP1, and CP2 all consider the same candidate as CPMV2 of the constructed candidate.
  • TMVP Temporal Motion vector predictor or mvCol
  • a subblock-based temporal motion vector prediction (SbTMVP) method may be used.
  • SbTMVP subblock-based temporal motion vector prediction
  • SbTMVP uses the motion field of the co-located picture to predict and merge motion vectors for the CU of the current picture. Improve the mode.
  • TMVP temporal motion vector prediction
  • SbTMVP uses the motion field in the collocated picture to improve motion vector prediction and merge mode for CUs in the current picture.
  • the same positional picture used in TMVP is used for SbTVMP. do.
  • SbTMVP differs from TMVP in two main aspects: (SbTMVP differs from TMVP in the following two main aspects.)
  • TMVP predicts motion at the CU level, but SbTMVP predicts motion at the sub-CU level. (TMVP predicts motion at CU level but SbTMVP predicts motion at sub-CU level.)
  • TMVP fetches a temporal motion vector from a co-located block in a co-located picture (the co-located block is a lower-right or center (low-right center) block based on the current CU), while SbTMVP is from the co-located picture.
  • a motion shift here, the motion shift is obtained from a motion vector from one of the spatial neighboring blocks of the current CU is applied.
  • SbTMVP applies a motion shift before fetching the temporal motion information from the collocated picture, where the motion shift is obtained from the motion vector from one of the spatial neighboring blocks of the current CU.
  • 15 and 16 are diagrams illustrating a subblock-based temporal motion vector prediction process.
  • SbTMVP predicts a motion vector of a sub-CU in the current CU in two steps.
  • SbTMVP predicts the motion vectors of the sub-CUs within the current CU in two steps.
  • the spatial neighbor A1 of FIG. 15 is examined.
  • this motion vector temporary MV (tempVM) is used). May be referred to) is selected as the motion shift to be applied.
  • this motion vector (may be referred to as a temporal MV (tempVM)) is selected to be the motion shift to be applied.) If not identified, the motion shift is set to (0, 0). (If no such motion is identified, then the motion shift is set to (0, 0).)
  • the motion shift identified in the first step is applied (that is, added as a candidate of the current block) to obtain sub-CU level motion information (motion vector and reference index) from the co-located picture as shown in FIG. Acquire.
  • the motion shift identified in Step 1 is applied (ie added to the current block's coordinates) to obtain sub-CU-level motion information (motion vectors and reference indices) from the collocated picture as shown in Figure 16. )
  • the motion shift is set to the motion of block A1'.
  • the center sample may correspond to a lower right sample among four center samples in a sub-CU when the subblock has an even length and width.
  • the center sample (below right center sample) may correspond to a below-right sample among 4 central samples in the sub-CU when the sub-block has even length width and height.
  • the motion information of the co-located sub-CU After the motion information of the co-located sub-CU is identified, it is converted into a motion vector and a reference index of the current sub-CU in a manner similar to the TMVP process, where temporal motion scaling is applied to convert the reference picture of the temporal motion vector to the reference picture of the current CU. Placed in (After the motion information of the collocated sub-CU is identified, it is converted to the motion vectors and reference indices of the current sub-CU in a similar way as the TMVP process, where temporal motion scaling may be applied to align the reference pictures of the temporal motion vectors to those of the current CU.)
  • the combined subblock based merge list including both the SbTVMP candidate and the Rane merge candidate may be used for signaling of the Rane merge mode (which may be referred to as a subblock (based) merge mode).
  • a combined sub-block based merge list which contains both SbTVMP candidate and affine merge candidates may be used for the signaling of affine merge mode (may be referred to as sub-block (based) merge mode).
  • SbTVMP mode is SPS ( Sequence Parameter Set) flag to enable/disable.
  • the SbTVMP mode is enabled/disabled by a sequence parameter set (SPS) flag.
  • SPS sequence parameter set
  • the SbTMVP predictor is added as the first item of the subblock merge candidate list, and then the affine merge candidate is added.
  • the SbTMVP predictor is added as the first entry of the list of sub-block merge candidates, and followed by the affine merge candidates.
  • the maximum allowed size of the affine merge candidate list may be 5 . (The maximum allowed size of the affine merge candidate list may be 5.)
  • the size of the sub-CU used in SbTMVP can be fixed to 8x8, and as in the affine merge mode, the SbTMVP mode can only correspond to CUs with both width and height 8 or more.
  • the sub-CU size used in SbTMVP may be fixed to be 8x8, and as done for affine merge mode, SbTMVP mode may be only applicable to the CU with both width and height are larger than or equal to 8.
  • the encoding logic of the additional SbTMVP merge candidate is the same as other merge candidates, that is, for each CU of a P or B slice, an additional RD check may be performed to determine whether to use the SbTMVP candidate. (The encoding logic of the additional SbTMVP merge candidate is the same as for the other merge candidates, that is, for each CU in P or B slice, an additional RD check may be performed to decide whether to use the SbTMVP candidate.)
  • the motion vector difference (MVD) (between the motion vector of the CU and the predicted motion vector) is signaled in units of quarter-luma samples.
  • motion vector differences (MVDs) (between the motion vector and predicted motion vector of a CU) are signaled in units of quarter-luma-sample when use_integer_mv_flag is equal to 0 in the slice header.
  • An adaptive motion vector resolution (AMVR) scheme will be described. (In this document, a CU-level adaptive motion vector resolution (AMVR) scheme is introduced.)
  • AMVR allows the MVD of a CU to be coded in units of 1/4 luma samples, integer luma samples or 4 luma samples. (AMVR allows MVD of the CU to be coded in units of quarter-luma-sample, integer-luma-sample or four-luma-sample.).
  • the CU level MVD resolution indication is conditionally signaled when there is at least one non-zero MVD component in the current CU.
  • the CU-level MVD resolution indication is conditionally signaled if the current CU has at least one non-zero MVD component.
  • all MVD components i.e., horizontal and vertical MVD for reference list L0 and reference list L1
  • the quarter-luma sample MVD resolution is deduced. (If all MVD components (that is, both horizontal and vertical MVDs for reference list L0 and reference list L1) are zero, quarter-luma-sample MVD resolution is inferred.
  • a first flag may be signaled to indicate whether 1/4 luma sample MVD precision is used for the CU. (For a CU that has at least one non-zero MVD component, a first flag is signalled to indicate whether quarter-luma-sample MVD precision is used for the CU.) If the first flag is 0, no additional signal is required and currently A quarter luma sample MVD precision can be used for CU.
  • a subtract is made to indicate whether the MVD precision of integer luma samples or 4 luma samples is used. 2 flags can be signaled. (Otherwise, a second flag is signaled to indicate whether integer-luma-sample or four-luma-sample MVD precision is used.)
  • the reconstructed motion vector is the intended precision (quarter-luma-sample, integer-luma-sample, or 4 -Luma-sample), the motion vector predictor for the CU can be rounded with the same precision as the MVD.
  • the motion vector predictors for the CU will be rounded to the same precision as that of the MVD before being added together with the MVD.
  • the motion vector predictor is rounded to zero. (In other words, the motion vector predictors are rounded toward zero (that is, a negative motion vector predictor is rounded toward) positive infinity and a positive motion vector predictor is rounded toward negative infinity)).
  • the encoding device determines a motion vector resolution for the current CU using the RD check.
  • the encoder determines the motion vector resolution for the current CU using RD check.
  • the RD check of the 4 luma sample MVD resolution is called conditionally only. do.
  • the RD check of four-luma-sample MVD resolution is only invoked conditionally.
  • the RD cost of 1/4 luma sample MVD precision is calculated first. .
  • the RD cost of quarter-luma-sample MVD precision is computed first.
  • the RD cost of the integer-luma-sample MVD precision is compared with the RD cost of the quarter-luma-sample MVD precision, and the 4-luma-sample MVD Decide whether it is necessary to further check the RD cost of the precision.
  • the RD cost of integer-luma-sample MVD precision is compared to that of quarter-luma-sample MVD precision to decide whether it is necessary to further check the RD cost of four-luma-sample MVD precision.
  • the RD cost for luma-sample MVD precision is much smaller than the RD cost for integer-luma-sample MVD precision
  • the RD check of 4-luma-sample MVD precision is omitted.
  • the RD check of four-luma-sample MVD precision is skipped.
  • the above-described AMVR is applied to the inter (prediction) mode.
  • the inter mode includes the merge mode, skip mode, MVP mode, and affine mode described above.
  • the above-described AMVR includes an Agre merge mode and an
  • the inter mode includes the merge mode, skip mode, MVP mode, and affine mode described above.
  • the coding device When AMVR is applied to a block to which the inter mode (for example, MVP mode) is applied, the coding device rounds the MVP and/or MVD in 1/4, 1, or 4 samples (or pels) units to obtain signaling information of MVD. Can be reduced.
  • This can be similarly applied to a block to which the Matte mode is applied (hereinafter, it may be referred to as an An Matte block).
  • the coding device rounds CPMVP and/or CPMVD in units of, for example, 1/16, 1/4, or 1 sample By doing so, signaling information of CPMVD can be reduced.
  • the coding apparatus may further improve motion accuracy by applying a 1/2 sample unit precision to the AMVR mode for the affine block.
  • the same rounding is applied to the motion vector of each CP. That is, in general, when 3 CPs are available for one block, other rounding such as 1/4 sample unit rounding, 1 sample unit rounding, and 1 sample unit rounding cannot be applied to each of the 3 CPs. . In other words, in general, rounding is applied in the same sample unit for each CP in one block.
  • AMVR-related information for an affine block may be referred to as AMVR information (or affine AMVR information).
  • the AMVR information may also be referred to as AMVR precision information.
  • the AMVR information may include, for example, the aforementioned AMVR flag (amvr_flag) and AMVR precision flag (amvr_precision_flag).
  • the AMVR information may further include at least one of a half-pel flag (hpel_flag) and a filter index (filter_idx) to be described later.
  • 17 and 18 schematically illustrate an example of a video/video encoding method and related components including an inter prediction method according to an embodiment of the present document.
  • the encoding method disclosed in FIG. 17 may be performed by the encoding apparatus 200 disclosed in FIG. 2. Specifically, for example, S1700 to S1720 of FIG. 17 may be performed by the prediction unit 220 of the encoding device 200, and S1730 may be performed by the entropy encoding unit 240 of the encoding device 200. have.
  • the encoding method disclosed in FIG. 17 may include the embodiments described above in this document.
  • the prediction unit of the encoding apparatus may derive motion information of the current block based on motion information of a neighboring block with respect to the current block (S1700).
  • the current block may be an affine block to which the Rane mode is applied.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include information on an inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.).
  • the neighboring block may include a spatial neighboring block existing in a current picture and a temporal neighboring block existing in a reference picture.
  • the prediction unit of the encoding apparatus constructs a motion information candidate list based on neighboring blocks of the current block, and provides information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block.
  • the motion information candidate list may include a spatial merge candidate, a temporal merge candidate, an inherited affine candidate, a constructed affine candidate, a candidate derived from SbTMVP, and the like.
  • the prediction unit of the encoding device may perform inter prediction based on the prediction mode. For example, when the skip mode and/or the merge mode is applied to the current block, the prediction unit of the encoding apparatus may use the motion vector of the neighboring block as the motion vector of the current block. When the MVP mode is applied to the current block, the prediction unit of the encoding device may signal the MVD by using the motion vector of the neighboring block as the MVP. When the Matte merge mode is applied to the current block, the prediction unit of the encoding apparatus may derive the CPMVs of the current block by using the CPMVs of the neighboring blocks.
  • the prediction unit of the encoding device may use the CPMVs of the neighboring block as it is as the CPMVs of the current block, or may modify the CPMVs of the neighboring block based on the size of the neighboring block and the size of the current block.
  • the prediction unit of the encoding apparatus may signal CPMVDs for the CPMVs of the current block using CPMVs of the neighboring block.
  • the prediction unit of the encoding apparatus may generate prediction samples (prediction blocks) of the current block by using an interpolation filter based on the motion information of the current block (S1710).
  • AMVR-related information may be generated based on at least one of motion information of the neighboring block, motion information of the current block, and information about the interpolation filter (S1720).
  • the AMVR-related information may include information indicating that MVD precision in units of 1/2 sample is used for the current block.
  • the AMVR-related information includes first AMVR information indicating whether MVD precision in units of 1/4 samples is used for the current block, and whether MVD precision in units of 1/2 samples is used for the current block. It may include second AMVR information for indicating.
  • the first AMVR information may be an AMVR flag
  • the second AMVR information may be a half pel flag (hpel_flag).
  • the residual processing unit of the encoding apparatus may generate residual samples based on the prediction samples.
  • the residual processing unit of the encoding apparatus may generate residual samples based on original samples (original block) for the current block and prediction samples (prediction block) for the current block.
  • the encoding apparatus may derive information about residual samples based on the residual samples, and encode information about the residual samples, information related to the AMVR, and the like (S1730).
  • the encoded information may be output in the form of a bitstream.
  • the bitstream may be transmitted to a decoding device through a network or a storage medium.
  • the encoding device converts the input signal into a binary value through binarization when the input signal is a syntax element other than a binary value. If the input signal is already binary, it is bypassed without going through binarization.
  • each binary number 0 or 1 constituting the binary value is referred to as a bin.
  • each of 1, 1, and 0 is referred to as one bin.
  • the bin(s) for one syntax element may represent a value of a corresponding syntax element. For example, when the binary string of AMVR-related information is 0, the AMVR-related information may indicate that rounding is not applied in units of 1/16 samples (1/16-pel).
  • the binary string of AMVR related information when the binary string of the AMVR-related information is 10, the AMVR-related information may indicate that rounding is applied in 1/4 sample (1/4-pel) units. In other words, when the binary string of AMVR-related information is 10, this may indicate that the resolution of the MVD is 1/4 sample, and rounding is applied to the motion vector.
  • the binary string of AMVR-related information when the binary string of AMVR-related information is 10, this may indicate that rounding is applied in units of 1 sample (1-pel). In other words, when the binary string of AMVR-related information is 11, this may indicate that the resolution of the MVD is one sample and rounding is applied to the motion vector.
  • the encoding apparatus may further use a half-pel flag to indicate rounding in units of 1/2 sample.
  • the half-pel flag may be included in the AMVR related information.
  • the encoding device may signal by rounding the MVP and/or MPD in 1/2 sample units.
  • the encoding device may select 1/16, 1/4, or 1 sample rounding.
  • the encoding apparatus may select rounding such as 1/8 or 2-pel, and may consider one or two rounding of the current block. That is, a different sample unit rounding may be applied to each control point of the current block.
  • the AMVR related information may include information indicating whether MVD precision of 1/8 sample unit or 2 sample unit is used for the current block.
  • the encoding device when fractional samples are generated in the unit of 1/2 sample in the current block when generating prediction samples of the current block, for example, the encoding device is predefined in order to generate fractional samples in units of 1/2 sample.
  • Interpolation filters can be used.
  • the interpolation filter may be used to generate fractional samples in units of fractional samples (fractional pels) indicated by AMVR related information.
  • the reference block at the corresponding position may include fractional sample unit samples, and prediction samples of the current block may be derived based on this. I can.
  • the encoding apparatus may select an interpolation filter to be applied to the current block from among a plurality of interpolation filters, and signal information on a filter index indicating the interpolation filter. For example, when the current block is an affine block and generates fractional samples in units of 1/2 sample, the encoding device always performs motion compensation using a defined interpolation filter, or a plurality of interpolation filters (e.g., When generating the fractional samples among two or three), information (filter index) on the selected interpolation filter may be signaled.
  • the filter index is 0
  • existing interpolation filter coefficients are used, and if the filter index is 1, a Gaussian interpolation filter is used.
  • the number of taps of the interpolation filter used when generating fractional samples in a 1/2 sample unit may be 6 taps or 8 taps.
  • the coefficients of the existing interpolation filter may include ⁇ 3, -11, 40, 40, -11, 3 ⁇
  • the coefficients of the Gaussian interpolation filter may include ⁇ 3, 9, 20, 20, 9, 3 ⁇ . I can.
  • the CPMVs of the current block may be derived based on the CPMVs of the neighboring block, and at this time, a motion information candidate list for deriving CPMVs for the current block Can be configured.
  • the motion information candidate list may include a spatial candidate, a temporal candidate, and a constructed candidate.
  • the spatial candidate may include an inherited candidate derived based on control points of spatial neighboring blocks.
  • the temporal candidate may include an SbTMVP candidate.
  • the constructed candidate may be derived based on motion information (CPMVs) of neighboring blocks of each of the control points of the current block.
  • the filter index of the spatial merge candidate may be inherited from an adjacent block.
  • a filter index of the temporal candidate and/or the constructed candidate may be set to 0.
  • the filter index of the constructed candidate may be derived as follows.
  • the constructed candidate may be composed of a combination of upper left, upper right, lower left, and lower right control points, which may be referred to as CP0, CP1, CP2, and CP3, respectively.
  • the constructed candidate is generated by the following combination, and has a total of six sets as follows.
  • CP0, CP1, and CP2 are derived from spatial candidates, filter indexes can be derived from adjacent blocks, and since CP3 is derived from temporal candidates, they always have a value of 0.
  • the filter index IDX of each combination can be derived as shown in Equation 3 below.
  • CP0 is the filter index of the constructed candidate.
  • the filter index of is used, and other than that, the filter index of the corresponding constructed candidate may have a value of 0.
  • the filter index CP_0 for CP0 located at the upper left of the constructed candidate control points and the filter index CP_1 for CP1 located at the upper right are different from each other, the constructed candidate
  • the value of the filter index of may be set to 0. In this case, since most of CP_2 is derived from CP3, since it always has 0, it is possible not to compare separately for simplification.
  • CP_0 may always be used as a filter index of a corresponding constructed candidate to remove the comparison syntax. That is, as shown below, by using the filter index of the first CP of each combination as the filter index of the corresponding constructed candidate, it can be determined without comparison.
  • a 6-tap interpolation filter is applied to reduce memory bandwidth consumption due to the application of the 8-tap filter.
  • the motion vectors of all three CPs are the same, or in the case of the 4-parameter affine model, the motion vectors of CP0 and CP1 If is the same, motion compensation is performed in units of CU. Since this has a low correlation with memory bandwidth consumption, in the case of a corresponding block, compression performance can be improved by applying an 8-tap interpolation filter like a normal block.
  • the 8-tap interpolation filter may include ⁇ 3, 9, 20, 20, 9, 3 ⁇ as filter coefficients.
  • 19 and 20 schematically illustrate an example of a video/video decoding method and related components including an inter prediction method according to an embodiment of the present document.
  • the decoding method disclosed in FIG. 19 may be performed by the decoding apparatus 300 disclosed in FIGS. 3 and 20. Specifically, for example, S1900 to S1920 of FIG. 19 may be performed by the prediction unit 330 of the decoding apparatus 300, and S1930 may be performed by the adder 340 of the decoding apparatus 300.
  • the decoding method disclosed in FIG. 19 may include the embodiments described above in this document.
  • the decoding apparatus may acquire AMVR related information from the bitstream (S1900).
  • the entropy decoding unit 310 of the decoding apparatus may derive residual information and prediction related information by parsing a signal received in the form of a bitstream from the encoding apparatus of FIG. 2.
  • the prediction related information may include AMVR related information, motion information, and the like.
  • the residual processing unit 320 of the decoding apparatus may generate residual samples based on the residual information.
  • the prediction unit 330 of the decoding apparatus may derive motion information of the current block based on the AMVR-related information, motion information obtained from the bitstream, motion information of neighboring blocks for the current block, and the like (S1910).
  • the current block may be an affine block
  • motion information obtained from the bitstream may include a motion vector and a reference picture index.
  • the motion information obtained from the bitstream may further include information on an inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.).
  • the neighboring block may include a spatial neighboring block existing in a current picture and a temporal neighboring block existing in a reference picture.
  • the AMVR-related information indicates whether the MVD precision of the 1/4 sample unit is used for the current block and first AMVR information indicating whether the MVD precision of the 1/4 sample unit is used for the current block. It may include second AMVR information for.
  • the first AMVR information may be an AMVR flag
  • the second AMVR information may be a half pel flag (hpel_flag).
  • the decoding apparatus may generate fractional samples by rounding the MVP and/or MPD in 1/2 sample units.
  • the decoding apparatus may round the MVP and/or MVD in units of 1/16, 1/4, or 1 sample.
  • rounding such as 1/8 or 2-pel may be selected according to AMVR-related information, and one or two rounding may be applied to the current block. That is, a different sample unit rounding may be applied to each control point of the current block.
  • the prediction unit of the decoding device may construct a motion information candidate list based on neighboring blocks of the current block, and the motion vector of the current block based on candidate selection information received from the encoding device. And/or a reference picture index.
  • the motion information candidate list may include a spatial merge candidate, a temporal merge candidate, an inherited affine candidate, a constructed affine candidate, a candidate derived from SbTMVP, and the like.
  • the prediction mode information may use a motion vector of a neighboring block as a motion vector of a current block.
  • the prediction unit of the decoding apparatus may derive the motion information of the current block by using the motion vector of the neighboring block as the MVP.
  • the prediction unit of the decoding apparatus may derive CPMVs of the current block by using CPMVs of neighboring blocks.
  • the prediction unit of the decoding apparatus may use the CPMVs of the neighboring block as it is as the CPMVs of the current block, or correct the CPMVs of the neighboring block based on the size of the neighboring block and the size of the current block.
  • the prediction unit of the decoding apparatus may derive motion information of a current block based on CPMVs and CPMVDs of neighboring blocks.
  • the prediction unit of the decoding apparatus may generate prediction samples of the current block by using an interpolation filter based on the motion information of the current block (S1920).
  • the prediction unit of the decoding apparatus uses a predefined interpolation filter to generate fractional samples in units of 1/2 sample.
  • the prediction unit of the decoding apparatus may generate prediction samples by using an interpolation filter selected from among a plurality of interpolation filters based on information on a filter index included in the AMVR related information.
  • the decoding apparatus uses existing interpolation filter coefficients if the filter index is 0, and Gaussian (gaussian) if the filter index is 1 ) Interpolation filters can be used.
  • the number of taps of the interpolation filter used when generating fractional samples in a 1/2 sample unit may be 6 taps or 8 taps.
  • the coefficients of the existing interpolation filter may include ⁇ 3, -11, 40, 40, -11, 3 ⁇ , and the coefficients of the Gaussian interpolation filter are ⁇ 3, 9, 20, 20, 9, 3 ⁇ . Can include.
  • the prediction unit of the decoding apparatus may configure a motion information candidate list to derive CPMVs for the current block.
  • the motion information candidate list may include a spatial candidate, a temporal candidate, and a constructed candidate.
  • the spatial candidate may include an inherited candidate derived based on control points of spatial neighboring blocks.
  • the temporal candidate may include an SbTMVP candidate.
  • the constructed candidate may be derived based on motion information (CPMVs) of neighboring blocks of each of the control points of the current block.
  • the filter index of the spatial merge candidate may be inherited from an adjacent block.
  • a filter index of the temporal candidate and/or the constructed candidate may be set to 0.
  • the filter index of the constructed candidate is the same as the filter index of the CP located at the upper left of the constructed candidate and the filter index of the CP located at the upper right, the filter index of the CP located at the upper left It is derived as, and otherwise, a value of 0 can be derived as.
  • the prediction unit of the decoding apparatus may always use the filter index of the CP positioned at the upper left as the filter index of the constructed candidate.
  • the addition unit 340 of the decoding apparatus generates reconstructed samples based on the prediction samples generated by the prediction unit 330 and the residual samples generated by the residual processing unit 320, and generates a reconstructed picture based on the prediction samples.
  • in-loop filtering procedures such as deblocking filtering, SAO and/or ALF procedures may be applied to the reconstructed picture in order to improve subjective/objective quality.
  • the method according to the embodiments of the present document described above may be implemented in the form of software, and the encoding device and/or the decoding device according to the present document is, for example, an image such as a TV, computer, smartphone, set-top box, It may be included in the device that performs the processing.
  • the above-described method may be implemented as a module (process, function, etc.) performing the above-described functions.
  • the modules are stored in memory and can be executed by the processor.
  • the memory may be inside or outside the processor, and may be connected to the processor by various well-known means.
  • the processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and/or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and/or other storage device. That is, the embodiments described in this document may be implemented and performed on a processor, microprocessor, controller, or chip.
  • the functional units illustrated in each drawing may be implemented and executed on a computer, processor, microprocessor, controller, or chip. In this case, information for implementation (ex. information on instructions) or an algorithm may be stored in a digital storage medium.
  • the decoding device and the encoding device to which the embodiment(s) of the present document is applied include a multimedia broadcasting transmission/reception device, a mobile communication terminal, a home cinema video device, a digital cinema video device, a surveillance camera, a video chat device, and a video communication device.
  • Real-time communication device mobile streaming device, storage medium, camcorder, video-on-demand (VoD) service provider, OTT video (over the top video) device, internet streaming service provider, 3D (3D) video device, virtual reality (VR) ) Device, AR (argumente reality) device, video telephony video device, vehicle terminal (ex.
  • an OTT video (Over the top video) device may include a game console, a Blu-ray player, an Internet-connected TV, a home theater system, a smartphone, a tablet PC, and a digital video recorder (DVR).
  • a game console may include a game console, a Blu-ray player, an Internet-connected TV, a home theater system, a smartphone, a tablet PC, and a digital video recorder (DVR).
  • DVR digital video recorder
  • the processing method to which the embodiment(s) of this document is applied may be produced in the form of a program executed by a computer, and may be stored in a computer-readable recording medium.
  • Multimedia data having a data structure according to the embodiment(s) of this document may also be stored in a computer-readable recording medium.
  • the computer-readable recording medium includes all kinds of storage devices and distributed storage devices in which computer-readable data is stored.
  • the computer-readable recording medium includes, for example, Blu-ray disk (BD), universal serial bus (USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical It may include a data storage device.
  • the computer-readable recording medium includes media implemented in the form of a carrier wave (for example, transmission through the Internet).
  • the bitstream generated by the encoding method may be stored in a computer-readable recording medium or transmitted through a wired or wireless communication network.
  • embodiment(s) of this document may be implemented as a computer program product by program code, and the program code may be executed in a computer according to the embodiment(s) of this document.
  • the program code may be stored on a carrier readable by a computer.
  • FIG. 21 shows an example of a content streaming system to which embodiments disclosed in this document can be applied.
  • a content streaming system to which embodiments of the present document are applied may largely include an encoding server, a streaming server, a web server, a media storage device, a user device, and a multimedia input device.
  • the encoding server serves to generate a bitstream by compressing content input from multimedia input devices such as smartphones, cameras, camcorders, etc. into digital data, and transmits it to the streaming server.
  • multimedia input devices such as smartphones, cameras, camcorders, etc. directly generate bitstreams
  • the encoding server may be omitted.
  • the bitstream may be generated by an encoding method or a bitstream generation method to which the embodiments of the present document are applied, and the streaming server may temporarily store the bitstream while transmitting or receiving the bitstream.
  • the streaming server transmits multimedia data to a user device based on a user request through a web server, and the web server serves as an intermediary for notifying the user of a service.
  • the web server transmits it to the streaming server, and the streaming server transmits multimedia data to the user.
  • the content streaming system may include a separate control server, and in this case, the control server serves to control commands/responses between devices in the content streaming system.
  • the streaming server may receive content from a media storage and/or encoding server. For example, when content is received from the encoding server, the content may be received in real time. In this case, in order to provide a smooth streaming service, the streaming server may store the bitstream for a predetermined time.
  • Examples of the user device include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and Tablet PC, ultrabook, wearable device, for example, smartwatch, smart glass, head mounted display (HMD)), digital TV, desktop There may be computers, digital signage, etc.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • HMD head mounted display
  • TV desktop
  • desktop There may be computers, digital signage, etc.
  • Each server in the content streaming system may be operated as a distributed server, and in this case, data received from each server may be distributedly processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 문서에 따른 디코딩 장치에 의하여 수행되는 디코딩 방법은 비트스트림으로부터 AMVR(adaptive motion vector resolution) 관련 정보를 획득하는 단계, 상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 현재 블록의 움직임 정보를 기반으로 보간 필터(interpolation filter)를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계, 및 상기 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함한다. 여기서, 상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD(motion vector difference) 정밀도(precision)가 사용됨을 나타내는 정보를 포함할 수 있다.

Description

움직임 예측에 기반한 영상 코딩 방법 및 장치
본 문서는 영상 코딩 기술에 관한 것으로서, 보다 상세하게는 영상 코딩 시스템에서 움직임 예측(motion prediction)을 기반으로 영상을 코딩하는 방법 및 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(virtual reality), AR(artificial reality) 컨텐츠나 홀로그램 등의 실감 미디어(immersive media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 효율적으로 인터 예측(inter prediction)을 수행하는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 인터 예측 시 효율적으로 보간 필터(interpolation filter)를 선택하는 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 디코딩 방법은 비트스트림으로부터 AMVR(adaptive motion vector resolution) 관련 정보를 획득하는 단계, 상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 현재 블록의 움직임 정보를 기반으로 보간 필터(interpolation filter)를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계, 및 상기 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되, 상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD(motion vector difference) 정밀도(precision)가 사용됨을 나타내는 정보를 포함할 수 있다.
본 문서의 다른 실시예에 따르면, 인코딩 장치에 의하여 수행되는 인코딩 방법은 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 현재 블록의 움직임 정보를 기반으로 보간 필터를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계, 및 상기 주변 블록의 움직임 정보, 상기 현재 블록의 움직임 정보 및 상기 보간 필터에 대한 정보 중 적어도 하나를 기반으로 AMVR 관련 정보를 생성하는 단계를 포함하되, 상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD 정밀도가 사용됨을 나타내는 정보를 포함할 수 있다.
본 문서의 또 다른 실시예에 따르면, 컴퓨터 판독 가능한 디지털 저장 매체로서, 상기 디지털 저장 매체는 디코딩 장치에 의하여 디코딩 방법을 수행하도록 야기하는 정보를 포함하고, 상기 디코딩 방법은 비트스트림으로부터 AMVR 관련 정보를 획득하는 단계, 상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 현재 블록의 움직임 정보를 기반으로 보간 필터를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계, 및 상기 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되, 상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD 정밀도가 사용됨을 나타내는 정보를 포함할 수 있다.
본 문서의 일 실시예에 따르면 전반적인 영상/비디오 압축 효율을 향상시킬 수 있다.
본 문서의 일 실시예에 따르면 효율적으로 인터 예측을 수행할 수 있다.
본 문서의 일 실시예에 따르면 인터 예측 시 효율적으로 보간 필터를 선택할 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 7은 인터 예측에 사용될 수 있는 공간적 후보를 설명하는 도면이다.
도 8 및 도 9는 인터 예측에 사용될 수 있는 시간적 후보를 설명하는 도면이다.
도 10는 본 문서의 실시예들이 적용될 수 있는 어파인 움직임 모델을 통하여 표현되는 움직임을 예시적으로 나타낸다.
도 11은 3개의 컨트롤 포인트들에 대한 움직임 벡터들이 사용되는 어파인 움직임 모델을 예시적으로 나타내고, 도 12는 2개의 컨트롤 포인트들에 대한 움직임 벡터들이 사용되는 어파인 움직임 모델을 예시적으로 나타낸다.
도 13은 인헤리티드 어파인 후보를 도출하기 위한 현재 블록의 주변 블록들을 예시적으로 나타낸다.
도 14은 컨스트럭티드 어파인 머지 후보를 도출하기 위한 현재 블록의 주변 블록들을 예시적으로 나타낸다.
도 15 및 도 16은 서브블록 기반 시간적 움직임 벡터 예측 프로세스를 설명하는 도면이다.
도 17 및 도 18은 본 문서의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 19 및 도 20은 본 문서의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 21은 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
본 문서에서 제시된 방법은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 본 문서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서에서 제시된 방법의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, '적어도 하나의' 표현을 포함한다. 본 문서에서 "포함하다" 또는 "가지다" 등의 용어는 문서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면 상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서에서 개시된 방법의 본질에서 벗어나지 않는 한 본 문서의 개시범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 실시예들을 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스(video source), 인코딩 장치 및 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러(renderer)를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브(archive) 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
본 문서는 비디오(video)/영상(image) 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC(versatile video coding) 표준에 개시되는 방법에 적용될 수 있다. 또한, 이 문서에서 개시된 방법/실시예는 EVC(essential video coding) 표준, AV1(AOMedia Video 1) 표준, AVS2(2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267, H.268 등)에 개시되는 방법에 적용될 수 있다.
본 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들이 제시되며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
본 문서에서 양자화/역양자화 및/또는 변환/역변환 중 적어도 하나는 생략될 수 있다. 상기 양자화/역양자화가 생략되는 경우, 상기 양자화된 변환 계수는 변환 계수라고 불릴 수 있다. 상기 변환/역변환이 생략되는 경우, 상기 변환 계수는 계수 또는 레지듀얼 계수 라고 불릴 수도 있고, 또는 표현의 통일성을 위하여 변환 계수라고 여전히 불릴 수도 있다.
본 문서에서 양자화된 변환 계수 및 변환 계수는 각각 변환 계수 및 스케일링된(scaled) 변환 계수라고 지칭될 수 있다. 이 경우 레지듀얼 정보는 변환 계수(들)에 관한 정보를 포함할 수 있고, 상기 변환 계수(들)에 관한 정보는 레지듀얼 코딩 신택스를 통하여 시그널링될 수 있다. 상기 레지듀얼 정보(또는 상기 변환 계수(들)에 관한 정보)를 기반으로 변환 계수들이 도출될 수 있고, 상기 변환 계수들에 대한 역변환(스케일링)을 통하여 스케일링된 변환 계수들이 도출될 수 있다. 상기 스케일링된 변환 계수들에 대한 역변환(변환)을 기반으로 레지듀얼 샘플들이 도출될 수 있다. 이는 본 문서의 다른 부분에서도 마찬가지로 적용/표현될 수 있다.
본 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)은 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불릴 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. (In this document, the term "/" and "," should be interpreted to indicate "and/or." For instance, the expression "A/B" may mean "A and/or B." Further, "A, B" may mean "A and/or B." Further, "A/B/C" may mean "at least one of A, B, and/or C." Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 본 문서에서 "또는"는 "및/또는"으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A" 만을 의미하고, 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다. (Further, in the document, the term "or" should be interpreted to indicate "and/or." For instance, the expression "A or B" may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively.")
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽처, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(prediction unit, PU) 또는 변환 유닛(transform unit, TU)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부(200)는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(200)는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부(220)는 각 예측 모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbour)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighbouring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighbouring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부(200)는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction(CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부(인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다.
변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송하고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다.
엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(250)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS(luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(200)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270)의 DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memory, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱(parsing)하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC(context-adaptive variable length coding) 또는 CABAC(context-adaptive arithmetic coding) 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈(bin)을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다.
레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부(330)는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(330)는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(330)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbour)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighbouring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighbouring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331)를 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS(luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽처로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(100)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측이 수행된다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
현재 블록에 인터 예측이 적용되는 경우, 인코딩 장치/디코딩 장치의 예측부는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(e.g. 샘플값들, 또는 움직임 정보 등)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다(Inter prediction can be a prediction derived in a manner that is dependent on data elements (e.g., sample values or motion information) of picture(s) other than the current picture). 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighbouring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighbouring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 (노멀) 머지 모드의 경우에, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 같을 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 상기 현재 블록의 움직임 벡터를 도출할 수 있다
인터 예측에 기반한 비디오/영상 인코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
인코딩 장치는 현재 블록에 대한 인터 예측을 수행한다(S400). 인코딩 장치는 현재 블록의 인터 예측 모드 및 움직임 정보를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서 인터 예측 모드 결정, 움직임 정보 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 인코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 상기 현재 블록의 움직임 정보를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 인코딩 장치의 인터 예측부는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 상기 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 상기 참조 블록과 상기 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다. 인코딩 장치는 다양한 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 인코딩 장치는 상기 다양한 예측 모드들에 대한 RD(rate-distortion) 비용(cost)을 비교하고 상기 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다.
예를 들어, 인코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 상기 현재 블록과 중 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 디코딩 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다.
다른 예로, 인코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp(motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 이 경우, 예를 들어, 상술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 mvp 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 mvp 후보가 상기 선택된 mvp 후보가 될 있다. 상기 현재 블록의 움직임 벡터에서 상기 mvp를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 MVD에 관한 정보가 디코딩 장치로 시그널링될 수 있다. 또한, (A)MVP 모드가 적용되는 경우, 상기 참조 픽처 인덱스의 값은 참조 픽처 인덱스 정보 구성되어 별도로 상기 디코딩 장치로 시그널링될 수 있다.
인코딩 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S410). 인코딩 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다.
인코딩 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩한다(S420). 인코딩 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 정보에 관한 정보를 포함할 수 있다. 상기 움직임 정보에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 상술한 MVD에 관한 정보 및/또는 참조 픽처 인덱스 정보를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 L0 예측, L1 예측, 또는 쌍(bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 디코딩 장치로 전달될 수 있고, 또는 네트워크를 통하여 디코딩 장치로 전달될 수도 있다.
한편, 상술한 바와 같이 인코딩 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록 포함)를 생성할 수 있다. 이는 디코딩 장치에서 수행되는 것과 동일한 예측 결과를 인코딩 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 인코딩 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)을 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
인터 예측에 기반한 비디오/영상 디코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 5를 참조하면, 디코딩 장치는 상기 인코딩 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 디코딩 장치는 수신된 예측 정보를 기반으로 현재 블록에 예측을 수행하고 예측 샘플들을 도출할 수 있다.
구체적으로 디코딩 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S500). 디코딩 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 인터 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되는지 또는 (A)MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 인터 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 인터 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 (A)MVP 모드를 포함할 수 있고, 또는 후술하는 다양한 인터 예측 모드들을 포함할 수 있다.
디코딩 장치는 상기 결정된 인터 예측 모드를 기반으로 상기 현재 블록의 움직임 정보를 도출한다(S510). 예를 들어, 디코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 상술한 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다. 상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 이용될 수 있다.
다른 예로, 디코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp (motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 상기 선택은 상술한 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 mvp와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 또한, 상기 참조 픽처 인덱스 정보를 기반으로 상기 현재 블록의 참조 픽처 인덱스를 도출할 수 있다. 상기 현재 블록에 관한 참조 픽처 리스트 내에서 상기 참조 픽처 인덱스가 가리키는 픽처가 상기 현재 블록의 인터 예측을 위하여 참조되는 참조 픽처로 도출될 수 있다.
한편, 후술하는 바와 같이 후보 리스트 구성 없이 상기 현재 블록의 움직임 정보가 도출될 수 있으며, 이 경우 후술하는 예측 모드에서 개시된 절차에 따라 상기 현재 블록의 움직임 정보가 도출될 수 있다. 이 경우 상술한 바와 같은 후보 리스트 구성은 생략될 수 있다.
디코딩 장치는 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S520). 이 경우 상기 현재 블록의 참조 픽처 인덱스를 기반으로 상기 참조 픽처를 도출하고, 상기 현재 블록의 움직임 벡터가 상기 참조 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 이 경우 후술하는 바와 같이 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 디코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 수신된 움직임 정보에 관한 정보를 기반으로 상기 현재 블록의 움직임 정보(움직임 벡터 및/또는 참조 픽처 인덱스 등)를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
디코딩 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성한다(S530). 디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다(S540). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 6을 참조하면, 상술한 바와 같이 인터 예측 절차는 인터 예측 모드 결정 단계, 결정된 예측 모드에 따른 움직임 정보 도출 단계, 도출된 움직임 정보에 기반한 예측 수행(예측 샘플 생성) 단계를 포함할 수 있다. 상기 인터 예측 절차는 상술한 바와 같이 인코딩 장치 및 디코딩 장치에서 수행될 수 있다. 본 문서에서 코딩 장치라 함은 인코딩 장치 및/또는 디코딩 장치를 포함할 수 있다.
도 6을 참조하면, 코딩 장치는 현재 블록에 대한 인터 예측 모드를 결정한다(S600). 픽처 내 현재 블록의 예측을 위하여 다양한 인터 예측 모드가 사용될 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(Affine) 모드, 서브블록 머지 모드, MMVD(merge with MVD) 모드, HMVP(historical motion vector prediction) 모드 등 다양한 모드가 사용될 수 있다. DMVR(decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, BCW(Bi-prediction with CU-level weight), BDOF(Bi-directional optical flow) 등이 부수적인 모드로 더 혹은 대신 사용될 수 있다. 어파인 모드는 어파인 움직임 예측(affine motion prediction) 모드라고 불릴 수도 있다. MVP 모드는 AMVP(advanced motion vector prediction) 모드라고 불릴 수도 있다. 본 문서에서 일부 모드 및/또는 일부 모드에 의하여 도출된 움직임 정보 후보는 다른 모드의 움직임 정보 관련 후보들 중 하나로 포함될 수도 있다. 예를 들어, HMVP 후보는 상기 머지/스킵 모드의 머지 후보로 추가될 수 있고, 또는 상기 MVP 모드의 mvp 후보로 추가될 수도 있다.
현재 블록의 인터 예측 모드를 가리키는 예측 모드 정보가 인코딩 장치로부터 디코딩 장치로 시그널링될 수 있다. 상기 예측 모드 정보는 비트스트림에 포함되어 디코딩 장치에 수신될 수 있다. 상기 예측 모드 정보는 다수의 후보 모드들 중 하나를 지시하는 인덱스 정보를 포함할 수 있다. 또는, 플래그 정보의 계층적 시그널링을 통하여 인터 예측 모드를 지시할 수도 있다. 이 경우 상기 예측 모드 정보는 하나 이상의 플래그들을 포함할 수 있다. 예를 들어, 스킵 플래그를 시그널링하여 스킵 모드 적용 여부를 지시하고, 스킵 모드가 적용 안되는 경우에 머지 플래그를 시그널링하여 머지 모드 적용 여부를 지시하고, 머지 모드가 적용 안되는 경우에 MVP 모드 적용되는 것으로 지시하거나 추가적인 구분을 위한 플래그를 더 시그널링할 수도 있다. 어파인 모드는 독립적인 모드로 시그널링될 수도 있고, 또는 머지 모드 또는 MVP 모드 등에 종속적인 모드로 시그널링될 수도 있다. 예를 들어, 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드를 포함할 수 있다.
구체적으로 예를 들어, 현재 블록의 인터 예측 모드에 관한 정보는 CU(CU 신택스) 등의 레벨에서 코딩되어 시그널링되거나 혹은 조건에 따라 묵시적으로 결정될 수 있다. 이 경우 일부 모드에 대해서는 명시적으로 시그널링되고 나머지 일부 모드는 묵시적으로 도출될 수 있다.
예를 들어, CU 신택스는 cu_skip_flag, pred_mode_flag, pred_mode_ibc_flag, pcm_flag, intra_mip_flag, intra_chroma_pred_mode, general_merge_flag 등과 같은 (인터) 예측 모드에 관한 정보 등을 나를 수 있다.
여기서, cu_skip_flag는 현재 블록(CU)에 스킵 모드가 적용되는지 여부를 나타낼 수 있다.
pred_mode_flag의 값이 0이면, 현재 코딩 유닛이 인터 예측 모드로 코딩됨을 나타낼 수 있다. pred_mode_flag의 값이 1이면, 현재 코딩 유닛이 인트라 예측 모드로 코딩됨을 나타낼 수 있다. (pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred_mode_flag equal to 1 specifies that the current coding unit is coded in intra prediction mode.)
pred_mode_ibc_flag의 값이 1이면, 현재 코딩 유닛이 IBC 예측 모드에서 코딩됨을 나타낼 수 있다. pred_mode_ibc_flag의 값이 0이면, 현재 코딩 유닛이 IBC 예측 모드에서 코딩되지 않음을 나타낼 수 있다. (pred_mode_ibc_flag equal to 1 specifies that the current coding unit is coded in IBC prediction mode. pred_mode_ibc_flag equal to 0 specifies that the current coding unit is not coded in IBC prediction mode.)
pcm_flag[x0][y0]의 값이 1이면, pcm_sample( ) 구문 구조가 존재하고 transform_tree( ) 구문 구조가 (x0, y0) 위치의 루마 코딩 블록을 포함하는 코딩 단위에 존재하지 않음을 나타낼 수 있다. pcm_flag[x0][y0]가 0이면, pcm_sample( ) 구문 구조가 존재하지 않음을 나타낼 수 있다. (pcm_flag[x0][y0] equal to 1 specifies that the pcm_sample( ) syntax structure is present and the transform_tree( ) syntax structure is not present in the coding unit including the luma coding block at the location (x0, y0). pcm_flag[x0][y0] equal to 0 specifies that pcm_sample( ) syntax structure is not present.) 즉, pcm_flag는 현재 블록에 PCM(pulse coding modulation) 모드가 적용되는지 여부를 나타낼 수 있다. 현재 블록에 PCM 모드가 적용되는 경우, 예측, 변환, 양자화 등이 적용되지 않고, 현재 블록 내 원본 샘플의 값이 코딩되어 시그널링될 수 있다.
intra_mip_flag[x0][y0]의 값이 1이면, 루마 샘플에 대한 인트라 예측 타입이 매트릭스 기반 인트라 예측(MIP)임을 나타낼 수 있다. intra_mip_flag[x0][y0]가 0이면, 루마 샘플에 대한 인트라 예측 타입이 매트릭스 기반 인트라 예측이 아님을 나타낼 수 있다. (intra_mip_flag[x0][y0] equal to 1 specifies that the intra prediction type for luma samples is matrix-based intra prediction (MIP). intra_mip_flag[x0][y0] equal to 0 specifies that the intra prediction type for luma samples is not matrix-based intra prediction.) 즉, intra_mip_flag는 현재 블록(의 루마 샘플)에 MIP 예측 모드(타입)가 적용되는지 여부를 나타낼 수 있다.
intra_chroma_pred_mode[x0][y0]는 현재 블록에서 크로마 샘플들에 대한 인트라 예측 모드를 나타낼 수 있다. (intra_chroma_pred_mode[x0][y0] specifies the intra prediction mode for chroma samples in the current block.)
general_merge_flag[x0][y0]는 현재 코딩 유닛에 대한 인터 예측 파라미터가 이웃하는 인터 예측 된파티션으로부터 유도되는지 여부를 나타낼 수 있다. (general_merge_flag[x0][y0] specifies whether the inter prediction parameters for the current coding unit are inferred from a neighbouring inter-predicted partition.) 즉, general_merge_flag는 일반 머지가 가용함을 나타낼 수 있으며, general_merge_flag의 값이 1일 때 regular merge mode, mmvd mode 및 merge subblock mode(subblock merge mode)가 가용할 수 있다. 예를 들어, general_merge_flag의 값이 1일 때 머지 데이터 신택스(merge data syntax)가 인코딩된 비디오/이미지 정보(또는 비트스트림)로부터 파싱될 수 있으며, 머지 데이터 신택스는 regular_merge_flag, mmvd_merge_flag, mmvd_cand_flag, mmvd_distance_idx, mmvd_direction_idx, merge_subblock_flag, merge_subblock_idx, ciip_flag, merge_triangle_idx0, merge_triangle_idx1, merge_idx 등과 같은 정보를 포함하도록 구성/코딩될 수 있다.
여기서, regular_merge_flag[x0][y0]의 값이 1이면, 레귤러 머지 모드를 이용하여 현재 코딩 유닛의 인터 예측 파라미터를 생성함을 나타낼 수 있다. (regular_merge_flag[x0][y0] equal to 1 specifies that regular merge mode is used to generate the inter prediction parameters of the current coding unit.) 즉, regular_merge_flag는 머지 모드(레귤러 머지 모드)가 현재 블록에 적용되는지 여부를 나타낸다.
mmvd_merge_flag[x0][y0]의 값이 1이면, 움직임 벡터 차분을 갖는 머지 모드가 현재 코딩 유닛의 인터 예측 파라미터를 생성하는데 사용됨을 나타낼 수 있다. (mmvd_merge_flag[x0][y0] equal to 1 specifies that merge mode with motion vector difference is used to generate the inter prediction parameters of the current coding unit.) 즉, mmvd_merge_flag는 MMVD가 현재 블록에 적용되는지 여부를 나타낸다.
mmvd_cand_flag[x0][y0]는 머지 후보 리스트 내 첫 번째(0) 또는 두 번째(1) 후보가 mmvd_distance_idx[x0][y0] 및 mmvd_direction_idx[x0][y0]로부터 도출된 움직임 벡터 차분과 함께 사용되는지 여부를 나타낼 수 있다. (mmvd_cand_flag[x0][y0] specifies whether the first (0) or the second (1) candidate in the merging candidate list is used with the motion vector difference derived from mmvd_distance_idx[x0][y0] and mmvd_direction_idx[x0][y0].)
mmvd_distance_idx[x0][y0]는 MmvdDistance[x0][y0]를 도출하는데 사용되는 인덱스를 나타낼 수 있다. (mmvd_distance_idx[x0][y0] specifies the index used to derive MmvdDistance[x0][y0].)
mmvd_direction_idx[x0][y0]는 MmvdSign[x0][y0]을 도출하는데 사용되는 인덱스를 나타낼 수 있다. (mmvd_direction_idx[x0][y0] specifies index used to derive MmvdSign[x0][y0].)
merge_subblock_flag[x0][y0]는 현재 코딩에 대한 서브 블록 기반 인터 예측 파라미터를 나타낼 수 있다. (merge_subblock_flag[x0][y0] specifies whether the subblock-based inter prediction parameters for the current coding.) 즉, merge_subblock_flag는 현재 블록에 서브블록 머지 모드(또는 affine merge mode)가 적용되는지 여부를 나타낼 수 있다.
merge_subblock_idx[x0][y0]는 서브 블록 기반 머지 후보 리스트의 머지 후보 인덱스를 나타낼 수 있다. (merge_subblock_idx[x0][y0] specifies the merging candidate index of the subblock-based merging candidate list.)
ciip_flag[x0][y0]는 결합된 인터-픽처 머지 및 인트라-픽처 예측이 현재 코딩 유닛에 적용되는지를 나타낼 수 있다. (ciip_flag[x0][y0] specifies whether the combined inter-picture merge and intra-picture prediction is applied for the current coding unit.)
merge_triangle_idx0[x0][y0]은 삼각형 모양 기반 움직임 보상 후보 리스트의 첫 번째 머지 후보 인덱스를 나타낼 수 있다. (merge_triangle_idx0[x0][y0] specifies the first merging candidate index of the triangular shape based motion compensation candidate list.)
merge_triangle_idx1 [x0] [y0]는 삼각형 모양 기반 움직임 보상 후보 리스트의 두 번째 머지 후보 인덱스를 나타낼 수 있다. (merge_triangle_idx1[x0][y0] specifies the second merging candidate index of the triangular shape based motion compensation candidate list.)
merge_idx[x0][y0]는 머지 후보 리스트의 머지 후보 인덱스를 나타낼 수 있다. (merge_idx[x0][y0] specifies the merging candidate index of the merging candidate list.)
한편, CU 신택스는 mvp_l0_flag, mvp_l1_flag, inter_pred_idc, sym_mvd_flag, ref_idx_l0, ref_idx_l1, inter_affine_flag, cu_affine_type_flag, amvr_flag, amvr_precision_flag, bcw_idx 등과 같은 (인터) 예측 모드에 관한 정보 등을 더 나를 수 있다.
mvp_l0_flag[x0][y0]는 리스트 0의 움직임 벡터 예측자의 인덱스를 나타낼 수 있다. (mvp_l0_flag[x0][y0] specifies the motion vector predictor index of list 0.) 즉, mvp_l0_flag는 MVP 모드가 적용되는 경우, MVP 후보 리스트 0에서 상기 현재 블록의 MVP 도출을 위하여 선택되는 후보를 나타낼 수 있다.
mvp_l1_flag[x0][y0]는 mvp_l0_flag과 동일한 의미를 가지며, l0 및 리스트 0는 각각 l1 및 리스트 1로 대체될 수 있다. (ref_idx_l1[x0][y0] has the same semantics as ref_idx_l0, with l0, L0 and list 0 replaced by l1, L1 and list 1, respectively.)
inter_pred_idc[x0][y0]는 현재 코딩 유닛에 대하여 리스트 0, 리스트 1 또는 bi-prediction이 사용되는지 여부를 나타낼 수 있다. (inter_pred_idc[x0][y0] specifies whether list0, list1, or bi-prediction is used for the current coding unit.)
sym_mvd_flag[x0][y0]의 값이 1이면, 구문 요소 ref_idx_l0[x0][y0] 및 ref_idx_l1[x0][y0]을 나타내고, 1과 동일한 refList에 대한 mvd_coding(x0, y0, refList, cpIdx) 구문 구조가 존재하지 않음을 나타낼 수 있다. (sym_mvd_flag[x0][y0] equal to 1 specifies that the syntax elements ref_idx_l0[x0][y0] and ref_idx_l1[x0][y0], and the mvd_coding(x0, y0, refList ,cpIdx) syntax structure for refList equal to 1 are not present.) 즉, sym_mvd_flag는 mvd 코딩에 있어서 symmetric MVD가 사용되는지 여부를 나타낸다.
ref_idx_l0[x0][y0]는 현재 코딩 유닛에 대한 리스트 0 참조 픽처 인덱스를 나타낼 수 있다. (ref_idx_l0[x0][y0] specifies the list 0 reference picture index for the current coding unit.)
ref_idx_l1[x0][y0]는 ref_idx_l0과 동일한 의미를 가지며, l0, L0 및 리스트 0은 각각 l1, L1 및 리스트 1로 대체될 수 있다. (ref_idx_l1[x0][y0] has the same semantics as ref_idx_l0, with l0, L0 and list 0 replaced by l1, L1 and list 1, respectively.)
inter_affine_flag[x0][y0]의 값이 1이면, 현재 코딩 유닛에 대해 P 또는 B 슬라이스를 디코딩할 때, 현재 코딩 유닛의 예측 샘플을 생성하기 위해 어파인 모델 기반 움직임 보상이 사용됨을 나타낼 수 있다. (inter_affine_flag[ x0 ][ y0 ] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, affine model based motion compensation is used to generate the prediction samples of the current coding unit.)
cu_affine_type_flag[x0][y0]의 값이 1이면, 현재 코딩 유닛에 대해 P 또는 B 슬라이스를 디코딩할 때 6-파라미터 어파인 모델 기반 움직임 보상이 현재 코딩 유닛의 예측 샘플을 생성하는데 사용됨을 나타낼 수 있다. cu_affine_type_flag[x0][y0]의 값이 0이면, 현재 코딩 유닛의 예측 샘플을 생성하기 위해 4-파라미터 어파인 모델 기반 움직임 보상이 사용됨을 나타낼 수 있다. (cu_affine_type_flag[x0][y0] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, 6-parameter affine model based motion compensation is used to generate the prediction samples of the current coding unit. cu_affine_type_flag[x0][y0] equal to 0 specifies that 4-parameter affine model based motion compensation is used to generate the prediction samples of the current coding unit.)
amvr_flag[x0][y0]는 움직임 벡터 차분의 해상도를 나타낼 수 있다. 어레이 인덱스 x0, y0은 픽처의 좌상측 루마 샘플에 대해 고려된 코딩 블록의 좌상측 루마 샘플의 위치 (x0, y0)를 나타낼 수 있다. amvr_flag[x0][y0]의 값이 0이면, 움직임 벡터 차분의 해상도가 루마 샘플의 1/4임을 나타낼 수 있다. amvr_flag[x0][y0]의 값이 1이면, 움직임 벡터 차분의 해상도가 amvr_precision_flag[x0][y0]에 의해 추가로 나타내짐을 나타낼 수 있다. (amvr_flag[x0][y0] specifies the resolution of motion vector difference. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture. amvr_flag[x0][y0] equal to 0 specifies that the resolution of the motion vector difference is 1/4 of a luma sample. amvr_flag[x0][y0] equal to 1 specifies that the resolution of the motion vector difference is further specified by amvr_precision_flag[x0][y0].)
amvr_precision_flag[x0][y0]의 값이 0이면, inter_affine_flag[x0][y0]의 값이 0인 경우 움직임 벡터 차분의 해상도가 하나의 정수 루마 샘플임을 나타내고 그렇지 않으면 루마 샘플의 1/16임을 나타낼 수 있다. amvr_precision_flag[x0][y0]의 값이 1이면, inter_affine_flag[x0][y0]의 값이 0 인 경우 움직임 벡터 차분의 해상도가 4 개의 루마 샘플임을 나타내고 그렇지 않은 경우 하나의 정수 루마 샘플임을 나타낼 수 있다. 어레이 인덱스 x0, y0은 픽처의 좌상측 루마 샘플에 대해 고려된 코딩 블록의 좌상측 루마 샘플의 위치(x0, y0)를 나타낼 수 있다. (amvr_precision_flag[x0][y0] equal to 0 specifies that the resolution of the motion vector difference is one integer luma sample if inter_affine_flag[x0][y0] is equal to 0, and 1/16 of a luma sample otherwise. amvr_precision_flag[x0][y0] equal to 1 specifies that the resolution of the motion vector difference is four luma samples if inter_affine_flag[x0][y0] is equal to 0, and one integer luma sample otherwise. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.)
bcw_idx[x0][y0]는 CU 가중치를 사용하는 양방향 예측의 가중치 인덱스를 나타낼 수 있다. (bcw_idx[x0][y0] specifies the weight index of bi-prediction with CU weights.)
코딩 장치는 현재 블록에 대한 (인터) 예측 모드가 결정되면, 상기 예측 모드를 기반으로 상기 현재 블록에 대한 움직임 정보를 도출한다(S610).
코딩 장치는 현재 블록의 움직임 정보를 이용하여 인터 예측을 수행할 수 있다. 인코딩 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 인코딩 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 위상(phase) 기반 샘플 값들의 차를 기반으로 도출할 수 있다. 예를 들어, 블록의 유사성은 현재 블록(or 현재 블록의 템플릿)과 참조 블록(or 참조 블록의 템플릿) 간 SAD를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 디코딩 장치로 시그널링될 수 있다.
코딩 장치는 현재 블록에 대한 움직임 정보가 도출되면, 상기 현재 블록에 대한 움직임 정보를 기반으로 인터 예측을 수행한다(S620). 코딩 장치는 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플(들)을 도출할 수 있다. 상기 예측 샘플들을 포함하는 현재 블록은 예측된 블록이라고 불릴 수 있다.
인터 예측 시 머지 모드(merge mode)가 적용되는 경우, 현재 블록의 움직임 정보가 직접적으로 전송되지 않고, 주변 예측 블록의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보를 유도하게 된다. 따라서, 인코딩 장치는 머지 모드를 이용하였음을 나타내는 플래그 정보 및 주변의 어떤 예측 블록을 이용하였는지를 나타내는 머지 인덱스를 전송함으로써 현재 블록의 움직임 정보를 나타낼 수 있다. 상기 머지 모드는 레귤러 머지 모드(regular merge mode)라고 불릴 수 있다.
코딩 장치는 머지 모드를 수행하기 위해서 현재 블록의 움직임 정보를 유도하기 위해 이용되는 머지 후보 블록(merge candidate block)을 서치한다. 예를 들어, 상기 머지 후보 블록은 최대 5개까지 이용될 수 있으나, 본 실시예는 이에 한정되지 않는다. 그리고, 상기 머지 후보 블록의 최대 개수에 대한 정보는 슬라이스 헤더 또는 타일 그룹 헤더에서 전송될 수 있으나, 본 실시예는 이에 한정되지 않는다. 상기 머지 후보 블록들을 찾은 후, 코딩 장치는 머지 후보 리스트를 생성할 수 있고, 이들 중 가장 작은 비용을 갖는 머지 후보 블록을 최종 머지 후보 블록으로 선택할 수 있다.
도 7은 인터 예측에 사용될 수 있는 공간적 후보를 설명하는 도면이다.
본 문서는 상기 머지 후보 리스트를 구성하는 머지 후보 블록에 대한 다양한 실시예를 제공한다.
상기 머지 후보 리스트는 예를 들어 5개의 머지 후보 블록을 포함할 수 있다. 예를 들어, 4개의 공간적 머지 후보(spatial merge candidate)와 1개의 시간적 머지 후보(temporal merge candidate)를 이용할 수 있다. 구체적 예로, 공간적 머지 후보의 경우 도 7에 도시된 블록들(A0, A1, B0, B1, B2)을 공간적 머지 후보로 이용할 수 있다. 이하, 상기 공간적 머지 후보 또는 후술하는 공간적 MVP 후보는 SMVP로 불릴 수 있고, 상기 시간적 머지 후보 또는 후술하는 시간적 MVP 후보는 TMVP로 불릴 수 있다.
상기 현재 블록에 대한 머지 후보 리스트는 예를 들어 다음과 같은 절차를 기반으로 구성될 수 있다.
먼저 코딩 장치(인코딩 장치/디코딩 장치)는 현재 블록의 공간적 주변 블록들을 탐색하여 도출된 공간적 머지 후보들을 머지 후보 리스트에 삽입할 수 있다. 예를 들어, 상기 공간적 주변 블록들은 상기 현재 블록의 좌하측 코너 주변 블록(A0), 좌측 주변 블록(A1), 우상측 코너 주변 블록(B0), 상측 주변 블록(B1) 및 좌상측 코너 주변 블록(B2)들을 포함할 수 있다. 다만, 이는 예시로서 상술한 공간적 주변 블록들 이외에도 우측 주변 블록, 하측 주변 블록, 우하측 주변 블록 등 추가적인 주변 블록들이 상기 공간적 주변 블록들로서 더 사용될 수 있다. 코딩 장치는 상기 공간적 주변 블록들을 우선순위를 기반으로 탐색하여 가용한 블록들을 검출하고, 검출된 블록들의 움직임 정보를 상기 공간적 머지 후보들로 도출할 수 있다. 예를 들어, 인코딩 장치 및/또는 디코딩 장치는 도 7에 도시된 5개의 블록들을 A1, B1, B0, A0, B2의 순서대로 탐색하고, 가용한 후보들을 순차적으로 인덱싱함으로써 머지 후보 리스트로 구성할 수 있다.
또한 코딩 장치는 상기 현재 블록의 시간적 주변 블록을 탐색하여 도출된 시간적 머지 후보를 상기 머지 후보 리스트에 삽입할 수 있다. 상기 시간적 주변 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 픽처인 참조 픽처 상에 위치할 수 있다. 상기 시간적 주변 블록이 위치하는 참조 픽처는 동일 위치(collocated) 픽처 또는 col 픽처라고 불릴 수 있다. 상기 시간적 주변 블록은 상기 col 픽처 상에서의 상기 현재 블록에 대한 동일 위치 블록(co-located block)의 우하측 코너 주변 블록 및 우하측 센터 블록의 순서로 탐색될 수 있다.
한편, 코딩 장치는 현재 머지 후보들의 개수가 최대 머지 후보들의 개수보다 작은지 여부를 확인할 수 있다. 상기 최대 머지 후보들의 개수는 미리 정의되거나 인코딩 장치에서 디코딩 장치로 시그널링될 수 있다. 예를 들어, 인코딩 장치는 상기 최대 머지 후보들의 개수에 관한 정보를 생성하고, 인코딩하여 비트스트림 형태로 상기 디코딩 장치로 전달할 수 있다. 상기 최대 머지 후보들의 개수가 다 채워지면 이후의 후보 추가 과정은 진행하지 않을 수 있다.
상기 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작은 경우, 코딩 장치는 추가 머지 후보를 상기 머지 후보 리스트에 삽입할 수 있다. 상기 추가 머지 후보는 예를 들어 history based merge candidate(s), pair-wise average merge candidate(s), ATMVP, combined bi-predictive 머지 후보 (현재 슬라이스/타일 그룹의 슬라이스/타일 그룹 타입이 B 타입인 경우) 및/또는 영벡터 머지 후보 중 적어도 하나를 포함할 수 있다.
상기 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작지 않은 경우, 코딩 장치는 상기 머지 후보 리스트의 구성을 종료할 수 있다. 이 경우 인코딩 장치는 RD(rate-distortion) 코스트를 기반으로 상기 머지 후보 리스트를 구성하는 머지 후보들 중 최적의 머지 후보를 선택할 수 있으며, 상기 선택된 머지 후보를 가리키는 선택 정보(ex. merge index)를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 머지 후보 리스트 및 상기 선택 정보를 기반으로 상기 최적의 머지 후보를 선택할 수 있다.
상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 사용될 수 있으며, 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록의 예측 샘플들을 도출할 수 있음을 상술한 바와 같다. 인코딩 장치는 상기 예측 샘플들을 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출할 수 있으며, 상기 레지듀얼 샘플들에 관한 레지듀얼 정보를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 도출된 레지듀얼 샘플들 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
인터 예측 시 스킵 모드(skip mode)가 적용되는 경우, 앞에서 머지 모드가 적용되는 경우와 동일한 방법으로 상기 현재 블록의 움직임 정보를 도출할 수 있다. 다만, 스킵 모드가 적용되는 경우 해당 블록에 대한 레지듀얼 신호가 생략되며 따라서 예측 샘플들이 바로 복원 샘플들로 이용될 수 있다.
도 8 및 도 9는 인터 예측에 사용될 수 있는 시간적 후보를 설명하는 도면이다.
여기서, 시간적 후보(temporal candidate)는 상술한 시간적 머지 후보(temporal merge candidate)를 나타낼 수 있다. 또한, 시간적 후보에 포함되는 움직임 벡터는 시간적 mvp 후보(temporal mvp candidate)에 대응될 수도 있다.
이 단계에서는 하나의 후보만이 후보 리스트에 추가된다. (In this step, only one candidate is added to the candidate list.) 특히, 시간적 머지 후보의 도출에서, 스케일된 움직임 벡터는 동일 위치(collocated) 참조 픽처(colPic으라 지칭될 수 있음)에 속하는 동일 위치 CU를 기반으로 도출된다. (Particularly, in the derivation of this temporal merge candidate, a scaled motion vector is derived based on co-located CU belonging to the collocated reference picture (may be referred to as colPic).) 동일 위치(co-located) CU의 도출에 사용되는 참조 픽처 리스트는 슬라이스 헤더에서 명시적으로 시그널링된다. (The reference picture list to be used for derivation of the co-located CU is explicitly signalled in the slice header.) POC(picture order count) 거리, tb 및 td를 사용하여 동일 위치 CU의 움직임 벡터로부터 스케일링되는 시간적 머지 후보에 대한 스케일된 움직임 벡터는 도 8에서 점선으로 도시된 바와 같이 얻어지며, 여기서 tb는 현재 픽처의 참조 픽처와 현재 픽처의 POC 차이로 정의되고, td는 동일 위치 픽처의 참조 픽처와 동일 위치 픽처 사이의 POC 차이로 정의된다. (The scaled motion vector for temporal merge candidate is obtained as illustrated by the dotted line in Figure 8, which is scaled from the motion vector of the co-located CU using the POC distances, tb and td, where tb is defined to be the POC difference between the reference picture of the current picture and the current picture and td is defined to be the POC difference between the reference picture of the co-located picture and the co-located picture.) 시간 머지 후보의 참조 픽처 인덱스는 0으로 설정된다. (The reference picture index of temporal merge candidate is set equal to zero.)
시간적 후보의 위치는 도 9에 도시된 것과 같이 후보 C0과 C1 사이에서 선택된다. C0 위치의 CU를 사용할 수 없거나, C0 위치의 CU가 인트라 코딩되었거나 또는 현재 CTU의 행 외부에 있으면 C1 위치가 사용된다. (The position for the temporal candidate is selected between candidates C0 and C1, as depicted in Figure 9. If CU at position C0 is not available, is intra coded, or is outside of the current row of CTUs, position C1 is used.) 그렇지 않으면, C0 위치는 시간적 머지 후보의 도출에 사용된다. (Otherwise, position C0 is used in the derivation of the temporal merge candidate.)
한편, MVP(Motion Vector Prediction) 모드는 AMVP(advanved motion vetor prediction) 모드로 불릴 수 있다. 인터 예측 시 MVP 모드가 적용되는 경우, 복원된 공간적 주변 블록(예를 들어, 도 7의 주변 블록일 수 있다)의 움직임 벡터 및/또는 시간적 주변 블록(또는 Col 블록)에 대응하는 움직임 벡터를 이용하여, 움직임 벡터 예측자(motion vector predictor, mvp) 후보 리스트가 생성될 수 있다. 즉, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록에 대응하는 움직임 벡터는 움직임 벡터 예측자 후보로 사용될 수 있다. 쌍예측이 적용되는 경우, L0 움직임 정보 도출을 위한 mvp 후보 리스트와 L1 움직임 정보 도출을 위한 mvp 후보 리스트가 개별적으로 생성되어 이용될 수 있다. 상술한 예측 정보(또는 예측에 관한 정보)는 상기 리스트에 포함된 움직임 벡터 예측자 후보들 중에서 선택된 최적의 움직임 벡터 예측자 후보를 지시하는 선택 정보(ex. MVP 플래그 또는 MVP 인덱스)를 포함할 수 있다. 이 때, 예측부는 상기 선택 정보를 이용하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 예측자 후보들 중에서, 현재 블록의 움직임 벡터 예측자를 선택할 수 있다. 인코딩 장치의 예측부는 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 움직임 벡터 차분(MVD)을 구할 수 있고, 이를 인코딩하여 비트스트림 형태로 출력할 수 있다. 즉, MVD는 현재 블록의 움직임 벡터에서 상기 움직임 벡터 예측자를 뺀 값으로 구해질 수 있다. 이 때, 디코딩 장치의 예측부는 상기 예측에 관한 정보에 포함된 움직임 벡터 차분을 획득하고, 상기 움직임 벡터 차분과 상기 움직임 벡터 예측자의 가산을 통해 현재 블록의 상기 움직임 벡터를 도출할 수 있다. 디코딩 장치의 예측부는 참조 픽처를 지시하는 참조 픽처 인덱스 등을 상기 예측에 관한 정보로부터 획득 또는 유도할 수 있다. 또는, MVP 모드가 적용되는 경우 참조 픽처 인덱스가 명시적으로 시그널링될 수 있다. 이경우 L0 예측을 위한 참조 픽처 인덱스 (refidxL0)와 L1 예측을 위한 참조 픽처 인덱스(refidxL1) 구분되어 시그널링될 수 있다. 예를 들어, MVP 모드가 적용되고 쌍예측(BI prediction)이 적용되는 경우, 상기 refidxL0에 관한 정보 및 refidxL1에 관한 정보가 둘 다 시그널링될 수 있다.
한편, 인터 예측 시 MVD 모드가 적용되는 경우, 상술한 바와 같이 인코딩 장치에서 도출된 MVD에 관한 정보가 디코딩 장치로 시그널링될 수 있다. MVD에 관한 정보는 예를 들어 MVD 절대값 및 부호에 대한 x, y 성분을 나타내는 정보를 포함할 할 수 있다. 이 경우, MVD 절대값이 0 보다 큰지 여부 및 1 보다 큰지 여부, MVD 나머지를 나타내는 정보가 단계적으로 시그널링될 수 있다. 예를 들어, MVD 절대값이 1 보다 큰지 여부를 나타내는 정보는 MVD 절대값이 0 보다 큰지 여부를 나타내는 플래그 정보의 값이 1 인 경우에 한하여 시그널링될 수 있다.
한편, L0 예측을 위한 MVD(MVDL0)와 L1 예측을 위한 MVD(MVDL1)가 구분되어 시그널링될 수도 있으며, 상기 MVD에 관한 정보는 MVDL0에 관한 정보 및/또는 MVDL1에 관한 정보를 포함할 수 있다. 예를 들어 현재 블록에 MVP 모드가 적용되고 BI 예측이 적용되는 경우, 상기 MVDLO에 관한 정보 및 MVDL1에 관한 정보가 둘 다 시그널링될 수 있다.
도 10는 본 문서의 실시예들이 적용될 수 있는 어파인 움직임 모델을 통하여 표현되는 움직임을 예시적으로 나타낸다.
기존 비디오 코딩 시스템은 부호화 블록의 움직임을 표현하기 위해 오직 하나의 움직임 벡터를 사용한다(translation motion model 사용). 그러나 이 방법이 블록 단위에서 최적의 움직임을 표현했을 수 있지만 실제 각 화소의 최적의 움직임은 아니고, 화소 단위에서 최적의 움직임 벡터를 결정할 수 있다면 부호화 효율을 높일 수 있다. 이를 위해 본 실시예에서는 어파인 움직임 모델(affine motion model)을 사용하여 부호화하는 어파인 움직임 예측(affine motion prediction) 방법에 대해 설명한다. 어파인 움직임 예측 방법은 2개, 3개 혹은 4개의 움직임 벡터들을 이용하여 블록의 각 화소 단위에서 움직임 벡터를 표현할 수 있다.
어파인 움직임 벡터는 도 10에 도시된 것과 같이 4가지 움직임을 표현할 수 있다. 어파인 움직임 모델이 표현할 수 있는 움직임 중 3가지 움직임(translation, scale, rotate) 을 표현하는 어파인 움직임 모델을 similarity (or simplified) 어파인 움직임 모델이라고 하며 이하에서는 similarity(or simplified) 어파인 움직임 모델을 기준으로 설명한다. 그러나 본 문서는 해당 움직임 모델에 한정되지는 않는다.
도 11은 3개의 컨트롤 포인트들에 대한 움직임 벡터들이 사용되는 어파인 움직임 모델을 예시적으로 나타내고, 도 12는 2개의 컨트롤 포인트들에 대한 움직임 벡터들이 사용되는 어파인 움직임 모델을 예시적으로 나타낸다.
도 11 및 도 12를 참조하면, 어파인 움직임 예측은 두개 이상의 컨트롤 포인트 움직임 벡터들(CPMVs)을 이용하여 블록이 포함하는 화소 위치의 움직임 벡터를 결정할 수 있다. 이때 움직임 벡터들의 집합을 어파인 움직임 벡터 필드(affine motion vector field, MVF)라 하며, 이는 다음의 수학식에 의해 결정될 수 있다.
4-파라미터 어파인 움직임 모델의 경우 블록 내 샘플 위치 (x, y)에서 움직임 벡터는 수학식 1에 의해 도출되고, 6-파라미터 어파인 움직임 모델의 경우, 블록 내 샘플 위치 (x, y)에서 움직임 벡터는 수학식 2에 의해 도출될 수 있다.
Figure PCTKR2020007458-appb-M000001
Figure PCTKR2020007458-appb-M000002
여기서
Figure PCTKR2020007458-appb-I000001
는 부호화 블록의 좌상측 코너 위치의 컨트롤 포인트(CP)의 CPMV 이고,
Figure PCTKR2020007458-appb-I000002
는 우상측 코너 위치의 CP의 CPMV이고,
Figure PCTKR2020007458-appb-I000003
는 좌하측 코너 위치의 CP의 CPMV이다. 그리고 W 는 현재 블록의 width 에 해당하고, H는 현재 블록의 height에 해당하고,
Figure PCTKR2020007458-appb-I000004
는 {x, y} 위치에서의 움직임 벡터이다.
인코딩/디코딩 과정에서 어파인 MVF는 화소 단위 혹은 이미 정의된 서브블록 단위에서 결정될 수 있다. 화소 단위로 결정하는 경우 각 화소값을 기준으로 움직임 벡터가 얻어지고 서브블록 단위의 경우 서브블록의 센터(센터 우하측, 즉 센터 4개의 샘플들 중 우하측 샘플) 화소값 기준으로 해당 블록의 움직임 벡터를 얻는다. 이하에서는 어파인 MVF 가 4x4서브블록 단위에서 결정되는 경우를 가정하고 설명한다. 다만 이것은 설명의 편의를 위함이지 서브블록의 사이즈는 다양하게 변형될 수 있다.
어파인 예측이 가용한 경우, 현재 블록에 적용 가능한 움직임 모델은 다음 3가지를 포함할 수 있다. Translational motion model, 4-parameter affine motion model 및 6-parameter affine motion model. 여기서 Translational motion model은 기존 블록 단위 움직임 벡터가 사용되는 모델을 나타낼 수 있고, 4-parameter affine motion model은 2개의 CPMV가 사용되는 모델을 나타낼 수 있고, 6-parameter affine motion model은 3개의 CPMV가 사용되는 모델을 나타낼 수 있다.
어파인 움직임 예측은 어파인 MVP (또는 어파인 인터) 모드 및 어파인 머지를 포함 할 수 있다. 어파인 움직임 예측에서, 현재 블록의 움직임 벡터는 샘플 단위 또는 서브 블록 단위로 도출될 수 있다. (The affine motion prediction may include affine MVP (or affine inter) mode and affine merge. In affine motion prediction, motion vectors of a current block may be derived in a unit of sample or in a unit of sub-block.)
어파인 머지 모드에서, 컨트롤 포인트 움직임 벡터(CPMV)는 어파인 움직임 예측으로 코딩된 주변 블록의 어파인 움직임 모델에 따라 결정될 수 있다. (Affine merge mode, a control point motion vector (CPMV)s may be determined according to the affine motion model of the neighbouring block coded as the affine motion prediction.) 검색 순서로 어파인 코딩된 주변 블록은 어파인 머지 모드에 사용될 수 있다. (An affine coded neighbouring block in a search order may be used for affine merge mode.) 주변 블록들 중 하나 이상이 어파인 움직임 예측으로 코딩되는 경우 현재 블록은 어파인 머지(AF_MERGE)로 코딩될 수 있다. (A current block can be coded as AF_MERGE when one or more of the neighbouring blocks are coded as affine motion prediction.) 즉, 어파인 머지 모드가 적용되는 경우, 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들을 도출할 수 있다. 이 경우 주변 블록의 CPMV들이 그대로 현재 블록의 CPMV들로 사용될 수도 있고, 주변 블록의 CPMV들이 상기 주변 블록의 사이즈 및 상기 현재 블록의 사이즈 등을 기반으로 수정되어 현재 블록의 CPMV들로 사용될 수 있다.
한편, 서브블록 단위로 움직임 벡터가 도출되는 어파인 머지의 경우에는, 서브블록 머지 모드라고 불릴 수 있으며, 이는 merge_subblock_flag(값 1)를 기반으로 알려줄 수 있다. 이 경우 후술하는 어파인 머지 후보 리스트(affine merging candidate list)는 서브블록 머지 후보 리스트(subblock merging candidate list)라고 불릴 수도 있다. 이 경우 상기 서브블록 머지 후보 리스트에는 후술하는 SbTMVP(subblock-based temporal motion vector prediction)로 도출된 후보가 더 포함될 수 있다.
인터 예측 시 어파인 머지 모드가 적용되는 경우, 현재 블록에 대한 CPMV들의 도출을 위하여 어파인 머지 후보 리스트가 구성될 수 있다. 어파인 머지 후보 리스트는 예를 들어 인헤리티드 어파인 후보(inherited affine candidates), 컨스트럭티드 어파인 후보(constructed affine candidates), 제로 움직임 벡터 후보(zero MVs candidate) 중 적어도 하나를 포함할 수 있다.
상기 inherited affine candidate는 주변 블록이 어파인 모드로 코딩된 경우, 주변 블록의 CPMVs을 기반으로 도출되는 후보이고, 상기 constructed affine candidate는 각 CPMV 단위로 해당 CP 주변 블록의 움직임 벡터를 기반으로 CPMVs을 구성(constructed)하여 도출된 후보이고, zero MVs candidate는 그 값이 0인 CPMV들로 구성된 후보를 나타낼 수 있다.
상기 affine merging candidate list는 예를 들어 다음과 같이 구성될 수 있다.
도 13은 인헤리티드 어파인 후보를 도출하기 위한 현재 블록의 주변 블록들을 예시적으로 나타낸다.
인헤리티드 어파인 후보가 하나는 주변 블록의 어파인 움직임 모델로부터 최대 2 개, 하나는 좌측 주변 CU들로부터 그리고 다른 하나는 상측 주변 CU들로부터 도출될 수 있다. (There are maximum two inherited affine candidates, which are derived from affine motion model of the neighbouring blocks, one from left neighbouring CUs and one from above neighbouring CUs.) 이 때, 도 7에 도시된 후보 블록들이 이용될 수 있다. 좌측 예측자의 경우 스캔 순서는 A1 -> A0이고, 상측 예측자의 경우 스캔 순서는 B1 -> B0 -> B2이다. (For the left predictor, the scan order is A1 -> A0, and for the above predictor, the scan order is B1 -> B0 -> B2.) 각 면에서 첫 번째로 상속 된 후보만 선택된다. (Only the first inherited candidate from each side is selected.) 두 개의 상속된 후보 간에 프루닝 체크는 수행되지 않는다. (No pruning check is performed between two inherited candidates.) 주변 어파인 CU가 식별되는 경우, 그 컨트롤 포인트 움직임 벡터는 현재 CU의 어파인 머지 리스트에서 CPMVP 후보를 도출하는데 사용된다. (When a neighbouring affine CU is identified, its control point motion vectors are used to derive the CPMVP candidate in the affine merge list of the current CU.)
도 13에 도시된 바와 같이, 주변 좌하측 블록 A가 어파인 모드로 코딩되면, 블록 A를 포함하는 CU의 좌상측 코너의 움직임 벡터 v2, 우상측 코너의 움직임 벡터 v3, 및 좌하측 코너의 움직임 벡터v4를 얻을 수 있다. (As shown in Figure 13, if the neighbour left bottom block A is coded in affine mode, the motion vectors v2, v3, and v4 of the top left corner, above right corner and left bottom corner of the CU which contains the block A are attained.) 블록 A가 4-파라미터 어파인 모델로 코딩되는 경우, 현재 CU의 2개의 CPMV는 v2 및 v3에 따라 계산된다. (When block A is coded with 4-parameter affine model, the two CPMVs of the current CU are calculated according to v2, and v3.) 블록 A가 6-파라미터 어파인 모델로 코딩되는 경우, 현재 CU의 3 개의 CPMV는 v2, v3, 및 v4에 따라 계산된다. (In case that block A is coded with 6-parameter affine model, the three CPMVs of the current CU are calculated according to v2, v3, and v4.)
도 14은 컨스트럭티드 어파인 머지 후보를 도출하기 위한 현재 블록의 주변 블록들을 예시적으로 나타낸다.
컨스트럭티드 어파인 후보는 각 컨트롤 포인트의 주변 병진 운동 정보를 조합함으로써 구성되는 후보를 의미한다. (Constructed affine candidate means the candidate is constructed by combining the neighbour translational motion information of each control point.) 컨트롤 포인트에 대한 움직임 정보는 도 14에 도시된 공간적 이웃들 및 시간적 이웃으로부터 도출된다. (The motion information for the control points is derived from the specified spatial neighbours and temporal neighbour shown in Figure 14.) CPMVk (k=1, 2, 3, 4)는 k 번째 컨트롤 포인트를 나타낸다. (CPMVk (k=1, 2, 3, 4) represents the k-th control point.) CPMV1의 경우 B2 -> B3 -> A2 블록이 체크되고 사용 가능한 첫 번째 블록의 움직임 벡터가 사용된다. (For CPMV1, the B2 -> B3 -> A2 blocks are checked and the MV of the first available block is used.) CPMV2의 경우 B1-> B0 블록이 체크되고 CPMV3의 경우 A1-> A0 블록이 체크된다. (For CPMV2, the B1->B0 blocks are checked and for CPMV3, the A1->A0 blocks are checked.) TMVP는 사용 가능한 경우 CPMV4로 사용된다. (For TMVP is used as CPMV4 if it's available.)
4 개의 컨트롤 포인트들의 움직임 정보가 얻어진 후, 이들 움직임 정보를 기반으로 어파인 머지 후보가 구성된다. (After MVs of four control points are attained, affine merge candidates are constructed based on those motion information.) 다음과 같은 컨트롤 포인트 움직임 벡터 조합이 순서대로 구성에 사용될 수 있다. (The following combinations of control point MVs are used to construct in order.)
{CPMV1, CPMV2, CPMV3}, {CPMV1, CPMV2, CPMV4}, {CPMV1, CPMV3, CPMV4}, {CPMV2, CPMV3, CPMV4}, {CPMV1, CPMV2}, {CPMV1, CPMV3}
3 개의 CPMV의 조합은 6-파라미터 어파인 머지 후보를 구성하고, 2 개의 CPMV의 조합은 4-파라미터 어파인 머지 후보를 구성한다. (The combination of 3 CPMVs constructs a 6-parameter affine merge candidate and the combination of 2 CPMVs constructs a 4-parameter affine merge candidate.) 움직임 스케일링 프로세스를 피하기 위해, 컨트롤 포인트의 참조 인덱스들이 다르면, 컨트롤 포인트 움직임 벡터들의 관련 조합은 폐기된다. (To avoid motion scaling process, if the reference indices of control points are different, the related combination of control point MVs is discarded.)
한편, 어파인 mvp 모드에서는 현재 블록에 대한 2 이상의 CPMVP(control point motion vector predictor)와 CPMV를 결정한 후 차이값에 해당하는 CPMVD(control point motion vector difference)를 인코딩 장치에서 디코딩 장치로 전송한다.
예를 들어, 어파인 머지 플래그(affine merge flag) 또는 머지 서브블록 플래그(merge_subblock_flag)의 값이 0인 경우, 어파인 MVP 모드가 적용될 수 있다. 또는 예를 들어, 인터 어파인 플래그(inter_affine_flag)의 값이 1인 경우, 상기 어파인 MVP 모드가 적용될 수 있다. 상기 어파인 MVP 모드는 어파인 CP MVP 모드라고 불릴 수도 있다. 또는, 어파인 MVP 모드는 어파인 인터(affine inter) 모드 또는 인터 어파인(inter affine) 모드라고 불릴 수 있다. 후술하는 어파인 mvp 후보 리스트는 컨트롤 포인트 움직임 벡터 예측자 후보 리스트(control point motion vectors predictor candidate list)라고 불릴 수 있다.
어파인 mvp 모드가 적용되는 경우, 현재 블록에 대한 CPMV들을 도출하기 위하여 어파인 mvp 후보 리스트가 구성될 수 있다. 어파인 mvp 후보 리스트는 예를 들어 인헤리티드 어파인 mvp 후보(inherited affine mvp candidate), 컨스트럭티드 어파인 mvp 후보(constructed affine mvp candidate), 부가 후보(additional candidate) 및 제로 움직임 벡터 후보(zero MVs candidate) 중 적어도 하나를 포함할 수 있다. 예를 들어, 어파인 mvp 후보 리스트는 최대 n개(ex. 2개)의 후보를 포함할 수 있다.
인헤리티드 어파인 mvp 후보는 주변 CU들의 CPMV들로부터 유도된다. (Inherited affine mvp candidates that extrapolated from the CPMVs of the neighbour CUs.)
컨스트럭티드 어파인 mvp 후보는 주변 CU들의 병진 움직임 벡터들을 이용하여 도출된다. (Constructed affine mvp candidates CPMVPs that are derived using the translational MVs of the neighbour CUs.)
부가 후보는 주변 CU들로부터의 병진 움직임 벡터들에 기반한다. (Additional candidates based on Translational MVs from neighbouring CUs.)
여기서, 상기 인헤리티드 어파인 mvp 후보(inherited affine mvp candidate)는 주변 블록이 어파인 모드로 코딩된 경우, 주변 블록의 CPMVs을 기반으로 도출되는 후보이고, 상기 컨스트럭티드 어파인 mvp 후보(constructed affine mvp candidate)는 각 CPMV 단위로 해당 CP 주변 블록의 MV를 기반으로 CPMVs을 구성(constructed)하여 도출된 후보이고, 제로 움직임 벡터 후보(zero MVs candidate)는 그 값이 0인 CPMV들로 구성된 후보를 나타낼 수 있다. 어파인 mvp 후보 리스트(affine mvp candidate list)에 대한 최대 후보 개수가 2개인 경우, 상기 2 이하의 후보들은 현재 후보 개수가 2개 미만인 경우에 고려 및 추가될 수 있다. 또한, 상기 부가 후보들(Additional candidates)은 다음과 같은 순서로 도출될 수 있다.
i) 만약 후보의 수가 2 미만이고 컨스트럭티드 후보(constructed candidate) 의 CPMV0가 유효하면 CPMV0를 어파인 MVP 후보(affine MVP candidate)로 사용한다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 컨스트럭티드 후보의 CPMV0와 같은 후보를 고려한다.
ii) 만약 후보의 수가 2 미만이고 컨스트럭티드 후보의 CPMV1이 유효하면 CPMV1를 어파인 MVP 후보로 사용한다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 컨스트럭티드 후보의 CPMV1과 같은 후보를 고려한다.
3) 만약 후보의 수가 2 미만이고 컨스트럭티드 후보의 CPMV2가 유효하면 (mv) ̄_2를 어파인 MVP 후보로 사용한다. 즉, CP0, CP1, CP2의 움직임 벡터가 모두 컨스트럭티드 후보의 CPMV2와 같은 후보를 고려한다.
4) 만약 후보의 수가 2 미만이면 TMVP(Temporal Motion vector predictor or mvCol) 를 어파인 MVP 후보로 사용한다.
한편, 서브블록 기반 시간적 움직임 벡터 예측(SbTMVP) 방법이 사용될 수 있다. (Subblock-based temporal motion vector prediction (SbTMVP) method can be used.) TMVP(temporal motion vector prediction)와 유사하게, SbTMVP는 동일 위치 픽처의 움직임 필드를 사용하여 현재 픽처의 CU에 대한 움직임 벡터 예측 및 머지 모드를 향상시킨다. (Similar to the temporal motion vector prediction (TMVP), SbTMVP uses the motion field in the collocated picture to improve motion vector prediction and merge mode for CUs in the current picture.) TMVP에서 사용되는 동일 위치 픽처가 동일하게 SbTVMP에 사용된다. (The same collocated picture used by TMVP is used for SbTVMP.) SbTMVP는 다음의 두 가지 주요 측면에서 TMVP와 다르다. (SbTMVP differs from TMVP in the following two main aspects.)
1. TMVP는 CU 레벨에서의 움직임을 예측하지만 SbTMVP는 서브 CU 레벨에서의 움직임을 예측한다. (TMVP predicts motion at CU level but SbTMVP predicts motion at sub-CU level.)
2. TMVP는 동일 위치 픽처 내 동일 위치 블록으로부터 시간적 움직임 벡터를 가져오는 반면(상기 동일 위치 블록은 현재 CU를 기준으로 우하측 또는 센터(우하측 센터) 블록임), SbTMVP는 상기 동일 위치 픽처로부터 시간적 움직임 정보를 가져오기 전에 모션 쉬프트(여기서, 모션 시프트는 현재 CU의 공간적 주변 블록 중 하나로부터의 움직임 벡터로부터 획득됨)를 적용한다. (Whereas TMVP fetches the temporal motion vectors from the collocated block in the collocated picture (the collocated block is the bottom-right or center (below-right center) block relative to the current CU), SbTMVP applies a motion shift before fetching the temporal motion information from the collocated picture, where the motion shift is obtained from the motion vector from one of the spatial neighbouring blocks of the current CU.)
도 15 및 도 16은 서브블록 기반 시간적 움직임 벡터 예측 프로세스를 설명하는 도면이다.
SbTMVP는 현재 CU 내 서브 CU의 움직임 벡터를 두 단계로 예측한다. (SbTMVP predicts the motion vectors of the sub-CUs within the current CU in two steps.) 첫 번째 단계에서, 도 15의 공간적 이웃 A1을 검사한다. (In the first step, the spatial neighbour A1 in Figure 15 is examined.) 참조 픽처가 식별 될 때 동일 위치 픽처를 참조 픽처로 사용하는 움직임 벡터를 A1이 갖는 경우, 이 움직임 벡터(시간적 MV(tempVM)로 지칭될 수 있음)가 적용될 모션 시프트로 선택된다. (If A1 has a motion vector that uses the collocated picture as its reference picture is identified, this motion vector (may be referred to as a temporal MV (tempVM)) is selected to be the motion shift to be applied.) 이러한 움직임이 식별되지 않으면 모션 쉬프트는 (0, 0)으로 설정된다. (If no such motion is identified, then the motion shift is set to (0, 0).)
두 번째 단계에서, 첫 번째 단계에서 식별된 모션 시프트가 적용되어(즉, 현재 블록의 후보로 추가됨) 도 16에 도시된 바와 같이 동일 위치 픽처로부터 서브 CU 레벨 움직임 정보(움직임 벡터 및 참조 인덱스)를 획득한다. (In the second step, the motion shift identified in Step 1 is applied (i.e. added to the current block's coordinates) to obtain sub-CU-level motion information (motion vectors and reference indices) from the collocated picture as shown in Figure 16.) 도 16의 예는 모션 시프트가 블록 A1'의 움직임으로 설정되어 있다고 가정한다. (The example in Figure 16 assumes the motion shift is set to block A1's motion.) 그리고, 각각의 서브 CU에 대해, 동일 위치 픽처 내 대응하는 블록(센터 샘플을 커버하는 가장 작은 모션 그리드)의 움직임 정보가 서브 CU에 대한 모션 정보의 도출에 사용된다. (Then, for each sub-CU, the motion information of its corresponding block (the smallest motion grid that covers the center sample) in the collocated picture is used to derive the motion information for the sub-CU.) 센터 블록(우하측 센터 샘플)은 서브블록이 길이 및 너비가 짝수인 경우 서브 CU 내의 4 개의 센터 샘플 중 우하측 샘플에 해당할 수 있다. (The center sample (below right center sample) may correspond to a below-right sample among 4 central samples in the sub-CU when the sub-block has even length width and height.)
동일 위치 서브 CU의 움직임 정보가 식별 된 후, TMVP 프로세스와 유사한 방식으로 현재 서브 CU의 움직임 벡터 및 참조 인덱스로 변환되며, 여기서 시간적 움직임 스케일링이 적용되어 시간적 움직임 벡터의 참조 픽처를 현재 CU의 참조 픽처에 배치한다. (After the motion information of the collocated sub-CU is identified, it is converted to the motion vectors and reference indices of the current sub-CU in a similar way as the TMVP process, where temporal motion scaling may be applied to align the reference pictures of the temporal motion vectors to those of the current CU.)
SbTVMP 후보 및 어파인 머지 후보들을 모두 포함하는 결합된 서브블록 기반 머지 리스트는 어파인 머지 모드(서브블록 (기반) 머지 모드로 지칭될 수 있음)의 시그널링을 위해 사용될 수 있다. (A combined sub-block based merge list which contains both SbTVMP candidate and affine merge candidates may be used for the signalling of affine merge mode (may be referred to as sub-block (based) merge mode).) SbTVMP 모드는 SPS(Sequence Parameter Set) 플래그에 의해 활성화/비활성화된다. (The SbTVMP mode is enabled/disabled by a sequence parameter set (SPS) flag.) SbTMVP 모드가 활성화되는 경우 SbTMVP 예측자는 서브블록 머지 후보 리스트의 첫 번째 항목으로 추가된 다음 어파인 머지 후보가 추가된다. (If the SbTMVP mode is enabled, the SbTMVP predictor is added as the first entry of the list of sub-block merge candidates, and followed by the affine merge candidates.) 어파인 머지 후보 리스트의 최대 허용 크기는 5일 수 있다. (The maximum allowed size of the affine merge candidate list may be 5.)
SbTMVP에서 사용되는 sub-CU 사이즈는 8x8로 고정될 수 있으며, 어파인 머지 모드에서와 같이 SbTMVP 모드는 너비와 높이가 모두 8 이상인 CU에만 해당할 수 있다. (The sub-CU size used in SbTMVP may be fixed to be 8x8, and as done for affine merge mode, SbTMVP mode may be only applicable to the CU with both width and height are larger than or equal to 8.)
추가적인 SbTMVP 머지 후보의 인코딩 로직은 다른 머지 후보들과 동일하고, 즉, P 또는 B 슬라이스의 각 CU에 대해, SbTMVP 후보의 사용 여부를 결정하기 위해 추가적인 RD 체크가 수행될 수 있다. (The encoding logic of the additional SbTMVP merge candidate is the same as for the other merge candidates, that is, for each CU in P or B slice, an additional RD check may be performed to decide whether to use the SbTMVP candidate.)
한편, 기존에는 슬라이스 헤더에서 use_integer_mv_flag가 0 일 때 움직임 벡터 차분(MVD)(CU의 움직임 벡터와 예측된 움직임 벡터 간)은 쿼터-루마 샘플의 단위로 시그널링된다. (Previously, motion vector differences (MVDs) (between the motion vector and predicted motion vector of a CU) are signalled in units of quarter-luma-sample when use_integer_mv_flag is equal to 0 in the slice header.) 이 문서에서는 CU-레벨 적응형 움직임 벡터 해상도(AMVR) 방식을 설명한다. (In this document, a CU-level adaptive motion vector resolution (AMVR) scheme is introduced.)
AMVR은 CU의 MVD가 1/4 루마 샘플, 정수 루마 샘플 또는 4 루마 샘플의 단위로 코딩될 수있게 한다. (AMVR allows MVD of the CU to be coded in units of quarter-luma-sample, integer-luma-sample or four-luma-sample.). CU 레벨 MVD 해상도 표시는 현재 CU에 0이 아닌 MVD 구성 요소가 하나 이상 있는 경우 조건부로 시그널링된다. (The CU-level MVD resolution indication is conditionally signalled if the current CU has at least one non-zero MVD component.) 모든 MVD 구성 요소(즉, 참조 리스트 L0 및 참조 리스트 L1에 대한 수평 및 수직 MVD)가 0 이면, 쿼터-루마 샘플 MVD 해상도가 추론된다. (If all MVD components (that is, both horizontal and vertical MVDs for reference list L0 and reference list L1) are zero, quarter-luma-sample MVD resolution is inferred.)
적어도 하나의 0이 아닌 MVD 구성 요소를 갖는 CU의 경우, 제1 플래그가 시그널링되어 1/4 루마 샘플 MVD 정밀도가 상기 CU에 사용되는지 여부를 나타낼 수 있다. (For a CU that has at least one non-zero MVD component, a first flag is signalled to indicate whether quarter-luma-sample MVD precision is used for the CU.) 제1 플래그가 0이면 추가 신호가 필요하지 않으며 현재 CU에 대해 1/4 루마 샘플 MVD 정밀도가 사용될 수 있다. (If the first flag is 0, no further signaling is needed and quarter-luma-sample MVD precision is used for the current CU.) 그렇지 않으면, 정수 루마 샘플 또는 4 루마 샘플의 MVD 정밀도가 사용되는지를 나타내기 위해 제2 플래그가 시그널링될 수 있다. (Otherwise, a second flag is signalled to indicate whether integer-luma-sample or four-luma-sample MVD precision is used.) 재구성된 움직임 벡터가 의도된 정밀도(쿼터-루마-샘플, 정수-루마-샘플 또는 4-루마-샘플)를 갖도록 하기 위해, CU에 대한 움직임 벡터 예측자는 MVD와 동일한 정밀도로 라운딩될 수 있다. (In order to ensure the reconstructed MV has the intended precision (quarter-luma-sample, integer-luma-sample or four-luma-sample), the motion vector predictors for the CU will be rounded to the same precision as that of the MVD before being added together with the MVD.) 움직임 벡터 예측자는 0으로 라운딩된다. (즉, 음의 움직임 벡터 예측자는 양의 무한대로 반올림되고, 양의 움직임 벡터 예측자는 음의 무한대로 반올림된다) (The motion vector predictors are rounded toward zero (that is, a negative motion vector predictor is rounded toward positive infinity and a positive motion vector predictor is rounded toward negative infinity)). 인코딩 장치는 RD 체크를 이용하여 현재 CU에 대한 움직임 벡터 해상도를 결정한다. (The encoder determines the motion vector resolution for the current CU using RD check.) 각 MVD 해상도에 대해 CU 레벨 RD 체크가 항상 3 번 수행되는 것을 피하기 위해, VTM3에서는 4 루마 샘플 MVD 해상도의 RD 체크가 조건부로만 호출된다. (To avoid always performing CU-level RD check three times for each MVD resolution, in VTM3, the RD check of four-luma-sample MVD resolution is only invoked conditionally.) 1/4 루마 샘플 MVD 정밀도의 RD 코스트이 먼저 계산된다. (The RD cost of quarter-luma-sample MVD precision is computed first.) 그런 다음, 정수-루마-샘플 MVD 정밀도의 RD 코스트를 쿼터-루마-샘플 MVD 정밀도의 RD 코스트와 비교하여 4-루마-샘플 MVD 정밀도의 RD 코스트를 추가로 확인할 필요가 있는지를 결정한다. (Then, the RD cost of integer-luma-sample MVD precision is compared to that of quarter-luma-sample MVD precision to decide whether it is necessary to further check the RD cost of four-luma-sample MVD precision.) 쿼터-루마-샘플 MVD 정밀도에 대한 RD 코스트가 정수-루마-샘플 MVD 정밀도에 대한 RD 코스트보다 훨씬 작은 경우, 4-루마-샘플 MVD 정밀도의 RD 체크는 생략된다. (When the RD cost for quarter-luma-sample MVD precision is much smaller than that of the integer-luma-sample MVD precision, the RD check of four-luma-sample MVD precision is skipped.)
상술한 AMVR은 인터 (예측) 모드에 적용된다. 인터 모드는 상술한 머지 모드, 스킵 모드, MVP 모드, 어파인 모드 등을 포함한다. 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드(인터 어파인 모드 또는 어파인 인터 모드)를 포함한다. 따라서, AMVR은 머지 모드, MVP 모드, 어파인 머지 모드, 어파인 MVP 모드 등에 적용될 수 있다.
인터 모드(예를 들어, MVP 모드)가 적용된 블록에 AMVR이 적용되는 경우, 코딩 장치는 1/4, 1 또는 4 샘플(또는 펠) 단위로 MVP 및/또는 MVD를 라운딩함으로써 MVD의 시그널링 정보를 줄일 수 있다. 이는 어파인 모드가 적용된 블록(이하, 어파인 블록이라고 불릴 수 있다)에 유사하게 적용될 수 있다. 어파인 블록(예를 들어, 어파인 MVP 모드가 적용된 블록)에 AMVR이 적용되는 경우, 코딩 장치는 예를 들어, 1/16, 1/4, 또는 1 샘플 단위로 CPMVP 및/또는 CPMVD를 라운딩함으로써 CPMVD의 시그널링 정보를 줄일 수 있다. 이때 코딩 장치는 어파인 블록을 위해서 AMVR 모드에 1/2 샘플 단위의 정밀도(precision)을 적용함으로써 움직임의 정확도를 보다 향상시킬 수 있다.
한편 어파인 블록의 경우 각 CP의 움직임 벡터에 대해 동일한 라운딩이 적용된다. 즉, 일반적으로 하나의 블록에 대하여 3개 CP가 가용(available)할 때 3개의 CP에 대하여 각각 1/4 샘플 단위 라운딩, 1 샘플 단위 라운딩, 1 샘플 단위 라운딩 등의 다른 라운딩을 적용할 수 없다. 다시 말해 일반적으로 하나의 블록에서는 각 CP에 대해 동일한 샘플 단위로 라운딩이 적용된다.
본 문서에서 어파인 블록을 위한 AMVR 관련 정보는 AMVR 정보(또는 어파인 AMVR 정보)라고 불릴 수 있다. 상기 AMVR 정보는 AMVR 정밀도(precision) 정보라고 불릴 수도 있다. 상기 AMVR 정보는 예를 들어, 상술한 AMVR 플래그(amvr_flag) 및 AMVR 정밀도 플래그(amvr_precision_flag)를 포함할 수 있다. 또한, 상기 AMVR 정보는 후술하는 하프펠 플래그(hpel_flag), 필터 인덱스(filter_idx) 중 적어도 하나를 더 포함할 수 있다.
이하의 도면은 본 문서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/정보의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 17 및 도 18은 본 문서의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 17에 개시된 인코딩 방법은 도 2에서 개시된 인코딩 장치(200)에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 17의 S1700 내지 S1720은 인코딩 장치(200)의 예측부(220)에 의하여 수행될 수 있고, S1730은 인코딩 장치(200)의 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 도 17에서 개시된 인코딩 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
구체적으로 도 17 및 도 18을 참조하면, 인코딩 장치의 예측부는 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있다(S1700). 일 예로, 상기 현재 블록은 어파인 모드가 적용되는 어파인 블록일 수 있다. 그리고 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 또한 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등)에 대한 정보를 더 포함할 수 있다. 상기 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록과 참조 픽처에 존재하는 시간적 주변 블록을 포함할 수 있다.
예를 들어, 인코딩 장치의 예측부는 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 나타내는 정보를 생성할 수 있다. 여기서 움직임 정보 후보 리스트는 상술한 공간적 머지 후보, 시간적 머지 후보, 인헤리티드 어파인 후보, 컨스트럭티드 어파인 후보, SbTMVP로 도출된 후보 등을 포함할 수 있다.
인코딩 장치의 예측부는 예측 모드를 기반으로 인터 예측을 수행할 수 있다. 예를 들어 현재 블록에 스킵 모드 및/또는 머지 모드가 적용되는 경우, 인코딩 장치의 예측부는 주변 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 사용할 수 있다. 현재 블록에 MVP 모드가 적용되는 경우, 인코딩 장치의 예측부는 주변 블록의 움직임 벡터를 MVP로 이용하여 MVD을 시그널링할 수 있다. 현재 블록에 어파인 머지 모드가 적용되는 경우, 인코딩 장치의 예측부는 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들을 도출할 수 있다. 이 경우, 인코딩 장치의 예측부는 상기 주변 블록의 CPMV들을 그대로 현재 블록의 CPMV들로 사용하거나, 상기 주변 블록의 사이즈, 상기 현재 블록의 사이즈 등을 기반으로 상기 주변 블록의 CPMV들을 수정할 수 있다. 현재 블록에 어파인 MVP 모드가 사용되는 경우, 인코딩 장치의 예측부는 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들에 대한 CPMVD를 시그널링할 수 있다.
현재 블록의 움직임 정보가 도출되면, 인코딩 장치의 예측부는 상기 현재 블록의 움직임 정보를 기반으로 보간 필터를 이용하여 현재 블록의 예측 샘플들(예측 블록)을 생성할 수 있다(S1710). 그리고 상기 주변 블록의 움직임 정보, 상기 현재 블록의 움직임 정보 및 상기 보간 필터에 대한 정보 중 적어도 하나를 기반으로 AMVR 관련 정보를 생성할 수 있다(S1720). 여기서 상기 AMVR 관련 정보는 현재 블록에 대해서 1/2 샘플 단위의 MVD 정밀도가 사용됨을 나타내는 정보를 포함할 수 있다. 예를 들어, 상기 AMVR 관련 정보는 현재 블록에 대해서 1/4 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내는 제1 AMVR 정보 및 상기 현재 블록에 대해서 상기 1/2 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내기 위한 제2 AMVR 정보를 포함할 수 있다. 상기 제1 AMVR 정보는 AMVR 플래그일 수 있고, 상기 제2 AMVR 정보는 하프펠 플래그(hpel_flag)일 수 있다.
한편, 인코딩 장치의 레지듀얼 처리부는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 생성할 수 있다. 예를 들어, 인코딩 장치의 레지듀얼 처리부는 상기 현재 블록에 대한 원본 샘플들(원본 블록)과 상기 현재 블록에 대한 예측 샘플들(예측 블록)을 기반으로 레지듀얼 샘플들을 생성할 수 있다. 인코딩 장치는 상기 레지듀얼 샘플들을 기반으로 레지듀얼 샘플들에 대한 정보를 도출하고, 상기 레지듀얼 샘플들에 대한 정보, 상기 AMVR 관련 정보 등을 인코딩할 수 있다(S1730). 인코딩된 정보는 비트스트림 형태로 출력될 수 있다. 상기 비트스트림은 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다.
상기 AMVR 관련 정보를 인코딩함에 있어서, 인코딩 장치는 입력 신호가 이진값이 아닌 신택스 요소인 경우에 이진화(binarization)를 통해 입력 신호를 이진값으로 변환한다. 입력 신호가 이미 이진값인 경우에는 이진화를 거치지 않고 바이패스 된다. 여기서, 이진값을 구성하는 각각의 이진수 0 또는 1을 빈(bin)이라고 한다. 이진화된 후의 이진 스트링(빈 스트링)이 110인 경우, 1, 1, 0 각각을 하나의 빈이라고 한다. 하나의 구문요소에 대한 상기 빈(들)은 해당 신택스 요소의 값을 나타낼 수 있다. 예를 들어, AMVR 관련 정보의 이진 스트링이 0인 경우, 상기 AMVR 관련 정보는 1/16 샘플(1/16-pel) 단위로 라운딩을 적용하지 않음을 나타낼 수 있다. 다시 말해 AMVR 관련 정보의 이진 스트링이 0인 경우, 이는 움직임 벡터 차분(MVD)의 해상도(resolution)가 1/16 샘플이고 움직임 벡터에 라운딩이 적용되지 않음 즉, 움직임 벡터에 대한 라운딩이 생략됨을 나타낼 수 있다. AMVR 관련 정보의 이진 스트링이 10인 경우, 상기 AMVR 관련 정보는 1/4 샘플(1/4-pel) 단위로 라운딩을 적용함을 나타낼 수 있다. 다시 말해 AMVR 관련 정보의 이진 스트링이 10인 경우, 이는 MVD의 해상도가 1/4 샘플이고, 움직임 벡터에 라운딩이 적용됨을 나타낼 수 있다. AMVR 관련 정보의 이진 스트링이 11인 경우, 1 샘플(1-pel) 단위로 라운딩을 적용함을 나타낼 수 있다. 다시 말해 AMVR 관련 정보의 이진 스트링이 11인 경우, 이는 MVD의 해상도가 하나의 샘플이고, 움직임 벡터에 라운딩이 적용됨을 나타낼 수 있다.
인코딩 장치는 상기 3가지 인자(factor) 외에 1/2 샘플 단위의 라운딩을 나타내기 위해 하프펠 플래그를 더 사용할 수 있다. 상기 하프펠 플래그는 상기 AMVR 관련 정보에 포함될 수 있다. 하프펠 플래그의 값이 1인 경우, 인코딩 장치는 1/2 샘플 단위로 MVP 및/또는 MPD를 라운딩하여 시그널링할 수 있다. 하프펠 플래그의 값이 0인 경우, 인코딩 장치는 1/16, 1/4 또는 1 샘플 단위의 라운딩을 선택할 수 있다. 또는, 인코딩 장치는 1/8, 2-pel 등의 라운딩을 선택할 수도 있으며, 현재 블록의 대해 하나 또는 2개의 라운딩을 고려할 수도 있다. 즉, 현재 블록의 각 컨트롤 포인트마다 서로 다른 샘플 단위의 라운딩을 적용할 수도 있다. 이 경우 AMVR 관련 정보는 상기 현재 블록에 대해서 1/8 샘플 단위 또는 2 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내는 정보를 포함할 수 있다.
한편, 상기 현재 블록의 예측 샘플들을 생성함에 있어서 상기 현재 블록에 1/2 샘플 단위로 분수 샘플들이 생성되는 경우, 일 예로 인코딩 장치는 1/2 샘플 단위로 분수 샘플들을 생성하기 위해 사전에 정의된 보간 필터를 사용할 수 있다. 다시 말해, 상기 보간 필터는 AMVR 관련 정보가 가리키는 분수 샘플(분수 펠) 단위로 분수 샘플들을 생성하기 위하여 사용될 수 있다. 구체적으로, 인터 예측을 위하여 도출된 현재 블록의 움직임 벡터가 분수 샘플 위치를 가리키는 경우, 해당 위치에서의 참조 블록은 분수 샘플 단위 샘플들을 포함할 수 있으며, 현재 블록의 예측 샘플들은 이를 기반으로 도출될 수 있다. 또는, 인코딩 장치는 복수개의 보간 필터 중 상기 현재 블록에 적용할 보간 필터를 선택하고, 이를 나타내는 필터 인덱스에 대한 정보를 시그널링할 수 있다. 예를 들어, 인코딩 장치는 현재 블록이 어파인 블록이고 1/2 샘플 단위로 분수 샘플들을 생성하는 경우, 항상 정의된 보간 필터를 이용하여 움직임 보상을 수행하거나, 복수개의 보간 필터(예를 들어, 2개 또는 3개) 중 상기 분수 샘플들을 생성 시 선택된 보간 필터에 대한 정보(필터 인덱스)를 시그널링할 수 있다. 예를 들어, 1/2 샘플 단위로 분수 샘플들을 생성 시 복수개의 보간 필터가 이용되는 경우, 필터 인덱스가 0이면 기존의 보간 필터 계수들이 이용되고, 필터 인덱스가 1이면 가우시안(gaussian) 보간 필터가 이용될 수 있다. 이때 1/2 샘플 단위의 분수 샘플들의 생성 시 사용되는 보간 필터의 탭(tap) 수는 6탭이거나 또는 8탭일 수 있다. 기존의 보간 필터의 계수들은 {3, -11, 40, 40, -11, 3}을 포함할 수 있고, 가우시안 보간 필터의 계수들은 {3, 9, 20, 20, 9, 3}을 포함할 수 있다.
한편, 현재 블록이 어파인 블록이고 머지 모드 또는 스킵 모드가 적용되는 경우, 현재 블록의 CPMV들은 주변 블록의 CPMV들을 기반으로 도출될 수 있으며, 이때 현재 블록에 대한 CPMV들의 도출을 위하여 움직임 정보 후보 리스트가 구성될 수 있다. 여기서, 상기 움직임 정보 후보 리스트는 공간적 후보, 시간적 후보, 컨스트럭디드 후보 등을 포함할 수 있다. 상기 공간적 후보는 공간적 주변 블록의 컨트롤 포인트들을 기반으로 도출되는 인헤리티드 후보를 포함할 수 있다. 상기 시간적 후보는 SbTMVP 후보를 포함할 수 있다. 상기 컨스트럭티드 후보는 상기 현재 블록의 컨트롤 포인트들 각각의 주변 블록의 움직임 정보(CPMV들)를 기반으로 도출될 수 있다. 상기 공간적 머지 후보의 필터 인덱스는 인접한 블록으로부터 상속될 수 있다. 상기 시간적 후보 및/또는 상기 컨스트럭티드 후보의 필터 인덱스는 0으로 설정될 수 있다. 또는, 상기 컨스트럭티드 후보의 필터 인덱스는 다음과 같이 유도될 수 있다.
일 예로, 상기 컨스트럭티드 후보는 좌상측, 우상측, 좌하측, 우하측의 컨트롤 포인트의 조합으로 구성될 수 있으며, 이는 각각 CP0, CP1, CP2, CP3으로 명명될 수 있다. 이 경우, 상기 컨스트럭티드 후보는 다음과 같은 조합으로 생성되며, 다음과 같이 총 6개의 세트를 갖는다.
{CP0, CP1, CP2}, {CP0, CP1, CP3}, {CP0, CP2, CP3}, {CP1, CP2, CP3}, {CP0, CP1}, {CP0, CP2}
여기서 CP0, CP1, 및 CP2는 공간적 후보로부터 유도되므로, 필터 인덱스는 인접 블록으로부터 유도할 수 있으며, CP3은 시간적 후보로부터 유도되므로 항상 0값을 갖는다.
CP0의 필터 인덱스를 CP_0, CP1의 필터 인덱스를 CP_1, CP2의 필터 인덱스를 CP_2라 할 때, 각 조합의 필터 인덱스(IDX)는 다음의 수학식 3과 같이 유도될 수 있다.
Figure PCTKR2020007458-appb-M000003
즉, 컨스트럭티드 후보의 컨트롤 포인트들 중 좌상측에 위치하는 CP0의 필터 인덱스(CP_0)와 우상측에 위치하는 CP1의 필터 인덱스(CP_1)가 동일하면, 해당 컨스트럭티드 후보의 필터 인덱스로서 CP0의 필터 인덱스가 사용되며, 그 외에는 해당 컨스트럭티드 후보의 필터 인덱스가 0값을 갖을 수 있다. 다시 말해, 상기 컨스트럭티드 후보의 컨트롤 포인트들 중 좌상측에 위치하는 CP0에 대한 필터 인덱스(CP_0)와 우상측 위치에 위치하는 CP1에 대한 필터 인덱스(CP_1)가 서로 다르면, 상기 컨스트럭티드 후보의 필터 인덱스의 값은 0으로 설정될 수 있다. 이 때, 대부분의 CP_2는 CP3으로부터 유도되므로 항상 0를 갖기 때문에 간략화를 위해 따로 비교하지 않는 것이 가능하다.
다른 예로, 비교구문 제거를 위해 항상 CP_0를 해당 컨스트럭티드 후보의 필터 인덱스로 사용할 수 있다. 즉, 아래 나타낸 것과 같이 각 조합의 첫번째 CP의 필터 인덱스를 해당 컨스트럭티드 후보의 필터 인덱스로 활용함으로써 비교 없이 결정할 수 있다.
{CP0, CP1, CP2}, {CP0, CP1, CP3}, {CP0, CP2, CP3}, {CP1, CP 2, CP3}, {CP0, CP1}, {CP0, CP2}
한편, 4x4 서브블록 단위로 처리하는 어파인 블록의 경우, 8-탭 필터의 적용으로 인한 메모리 대역폭 소비(memory bandwidth consumption)를 줄이기 위해 6-탭 보간 필터가 적용된다. 그러나 어파인 플래그(affine_flag)에 의해 현재 블록이 어파인 블록으로 결정되었더라도 6-파라미터 어파인 모델의 경우 3개 CP의 움직임 벡터가 모두 동일하거나 4-파라미터 어파인 모델의 경우 CP0와 CP1의 움직임 벡터가 동일한 경우 CU 단위로 움직임 보상이 수행된다. 이는 메모리 대역폭 소비와 상관관계가 낮으므로, 해당 블록의 경우 일반 블록(normal block)과 같이 8-탭 보간 필터를 적용함으로써 압축성능을 향상시킬 수 있다. 이때 AMVR 관련 정보가 1/2 샘플 단위의 분수 샘플들의 생성을 나타내는 경우, 상기 8-탭 보간 필터는 필터 계수들로서 {3, 9, 20, 20, 9, 3}을 포함할 수 있다.
도 19 및 도 20은 본 문서의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 19에 개시된 디코딩 방법은 도 3 및 도 20에서 개시된 디코딩 장치(300)에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 19의 S1900 내지 S1920은 디코딩 장치(300)의 예측부(330)에서 수행될 수 있고, S1930은 디코딩 장치(300)의 가산부(340)에 의하여 수행될 수 있다. 도 19에서 개시된 디코딩 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 19 및 도 20을 참조하면, 디코딩 장치는 비트스트림으로부터 AMVR 관련 정보를 획득할 수 있다(S1900). 구체적으로, 디코딩 장치의 엔트로피 디코딩부(310)는 도 2의 인코딩 장치로부터 비트스트림 형태로 수신한 신호를 파싱하여 레지듀얼 정보 및 예측 관련 정보를 도출할 수 있다. 상기 예측 관련 정보는 AMVR 관련 정보, 움직임 정보 등을 포함할 수 있다.
디코딩 장치의 레지듀얼 처리부(320)는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 생성할 수 있다.
디코딩 장치의 예측부(330)는 상기 AMVR 관련 정보, 상기 비트스트림으로부터 획득한 움직임 정보, 현재 블록에 대한 주변 블록의 움직임 정보 등을 기반으로 현재 블록의 움직임 정보를 도출할 수 있다(S1910). 여기서 상기 현재 블록은 어파인 블록일 수 있고 상기 비트스트림으로부터 획득한 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 비트스트림으로부터 획득한 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등)에 대한 정보를 더 포함할 수 있다. 상기 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록과 참조 픽처에 존재하는 시간적 주변 블록을 포함할 수 있다. 그리고 상기 AMVR 관련 정보는 현재 블록에 대해서 1/4 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내는 제1 AMVR 정보 및 상기 현재 블록에 대해서 상기 1/2 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내기 위한 제2 AMVR 정보를 포함할 수 있다. 일 예로, 상기 제1 AMVR 정보는 AMVR 플래그일 수 있고, 상기 제2 AMVR 정보는 하프펠 플래그(hpel_flag)일 수 있다.
예를 들어, 하프펠 플래그의 값이 1인 경우, 디코딩 장치는 1/2 샘플 단위로 MVP 및/또는 MPD를 라운딩하여 분수 샘플들을 생성할 수 있다. 하프펠 플래그의 값이 0인 경우, 디코딩 장치는 1/16, 1/4 또는 1 샘플 단위로 MVP 및/또는 MVD를 라운딩할 수 있다. 이때, AMVR 관련 정보에 의해 1/8, 2-pel 등의 라운딩이 선택될 수도 있으며, 현재 블록의 대해 하나 또는 2개의 라운딩이 적용될 수도 있다. 즉, 현재 블록의 각 컨트롤 포인트마다 서로 다른 샘플 단위의 라운딩이 적용될 수도 있다.
한편, 현재 블록의 움직임 정보를 도출하기 위하여 디코딩 장치의 예측부는 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성할 수 있고, 인코딩 장치로부터 수신한 후보 선택 정보를 기반으로 현재 불록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 여기서 움직임 정보 후보 리스트는 상술한 공간적 머지 후보, 시간적 머지 후보, 인헤리티드 어파인 후보, 컨스트럭티드 어파인 후보, SbTMVP로 도출된 후보 등을 포함할 수 있다.
상기 예측 관련 정보가 예측 모드 정보가 스킵 모드 및/또는 머지 모드를 나타내는 경우, 디코딩 장치의 예측부는 주변 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 사용할 수 있다. 상기 예측 모드 정보가 MVP 모드를 나타내는 경우, 디코딩 장치의 예측부는 주변 블록의 움직임 벡터를 MVP로 이용하여 현재 블록의 움직임 정보를 도출할 수 있다. 상기 예측 모드 정보가 어파인 머지 모드를 나타내는 경우, 디코딩 장치의 예측부는 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들을 도출할 수 있다. 이 경우, 디코딩 장치의 예측부는 상기 주변 블록의 CPMV들을 그대로 현재 블록의 CPMV들로 사용하거나, 상기 주변 블록의 사이즈, 상기 현재 블록의 사이즈 등을 기반으로 상기 주변 블록의 CPMV들을 수정할 수 있다. 상기 예측 모드 정보가 어파인 MVP 모드를 나타내는 경우, 디코딩 장치의 예측부는 주변 블록의 CPMV들과 CPMVD를 기반으로 현재 블록의 움직임 정보를 도출할 수 있다.
현재 블록의 움직임 정보가 도출되면, 디코딩 장치의 예측부는 상기 현재 블록의 움직임 정보를 기반으로 보간 필터를 이용하여 현재 블록의 예측 샘플들을 생성할 수 있다(S1920). 이때, 상기 AMVR 관련 정보가 현재 블록에 대해서 1/2 샘플 단위의 MVD 정밀도가 사용됨을 나타내는 경우, 디코딩 장치의 예측부는 1/2 샘플 단위로 분수 샘플들을 생성하기 위해 사전에 정의된 보간 필터를 사용하여 예측 샘플들을 생성할 수 있다. 또는, 디코딩 장치의 예측부는 상기 AMVR 관련 정보에 포함된 필터 인덱스에 대한 정보를 기반으로 복수개의 보간 필터 중에서 선택된 보간 필터를 사용하여 예측 샘플들을 생성할 수 있다.
일 예로, 1/2 샘플 단위로 분수 샘플들을 생성함에 있어서 복수개의 보간 필터가 이용되는 경우, 디코딩 장치는 상기 필터 인덱스가 0이면 기존의 보간 필터 계수들을 이용하고, 필터 인덱스가 1이면 가우시안(gaussian) 보간 필터를 이용할 수 있다. 이때 1/2 샘플 단위의 분수 샘플들의 생성 시 사용되는 보간 필터의 탭(tap) 수는 6탭이거나 또는 8탭일 수 있다. 상기 기존의 보간 필터의 계수들은 {3, -11, 40, 40, -11, 3}을 포함할 수 있고, 상기 가우시안 보간 필터의 계수들은 {3, 9, 20, 20, 9, 3}을 포함할 수 있다.
한편, 현재 블록이 어파인 블록이고 머지 모드 또는 스킵 모드가 적용되는 경우, 디코딩 장치의 예측부는 현재 블록에 대한 CPMV들의 도출을 위하여 움직임 정보 후보 리스트를 구성할 수 있다. 여기서, 상기 움직임 정보 후보 리스트는 공간적 후보, 시간적 후보 및 컨스트럭디드 후보 등을 포함할 수 있다. 상기 공간적 후보는 공간적 주변 블록의 컨트롤 포인트들을 기반으로 도출되는 인헤리티드 후보를 포함할 수 있다. 상기 시간적 후보는 SbTMVP 후보를 포함할 수 있다. 상기 컨스트럭티드 후보는 상기 현재 블록의 컨트롤 포인트들 각각의 주변 블록의 움직임 정보(CPMV들)를 기반으로 도출될 수 있다. 상기 공간적 머지 후보의 필터 인덱스는 인접한 블록으로부터 상속될 수 있다. 상기 시간적 후보 및/또는 상기 컨스트럭티드 후보의 필터 인덱스는 0으로 설정될 수 있다. 또는, 상기 컨스트럭티드 후보의 필터 인덱스는 상기 컨스트럭티드 후보의 좌상측에 위치하는 CP의 필터 인덱스와 우상측에 위치하는 CP의 필터 인덱스가 동일할 경우, 좌상측에 위치하는 CP의 필터 인덱스로 도출되고, 그 외에는 0값을로 도출될 수 있다. 또는, 비교구문 제거를 위해 디코딩 장치의 예측부는 컨스트럭티드 후보의 필터 인덱스로서 항상 상기 좌상측에 위치하는 CP의 필터 인덱스를 사용할 수 있다.
디코딩 장치의 가산부(340)는 예측부(330)에서 생성된 예측 샘플들과 레지듀얼 처리부(320)에서 생성된 레지듀얼 샘플들을 기반으로 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다(S1930). 이후 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링, SAO 및/또는 ALF 절차와 같은 인루프 필터링 절차가 상기 복원 픽처에 적용될 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 해당 실시예는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 실시예들의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서의 실시예들에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 문서의 실시예(들)이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, VR(virtual reality) 장치, AR(argumente reality) 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량(자율주행차량 포함) 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recorder) 등을 포함할 수 있다.
또한, 본 문서의 실시예(들)이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서의 실시예(들)에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 문서의 실시예(들)는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예(들)에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 21은 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
도 21을 참조하면, 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 문서의 실시예들이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.

Claims (15)

  1. 디코딩 장치에 의하여 수행되는 디코딩 방법에 있어서,
    비트스트림으로부터 AMVR(adaptive motion vector resolution) 관련 정보를 획득하는 단계;
    상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 현재 블록의 움직임 정보를 기반으로 보간 필터(interpolation filter)를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계; 및
    상기 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계
    를 포함하되,
    상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD(motion vector difference) 정밀도(precision)가 사용됨을 나타내는 정보를 포함하는 것을 특징으로 하는, 디코딩 방법.
  2. 제1항에 있어서,
    상기 AMVR 관련 정보는,
    상기 현재 블록에 대해서 1/4 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내는 제1 AMVR 정보 및 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내기 위한 제2 AMVR 정보를 포함하는 것을 특징으로 하는, 디코딩 방법.
  3. 제1항에 있어서,
    상기 AMVR 관련 정보는,
    상기 현재 블록에 대해서 1/8 샘플 단위 또는 2 샘플 단위의 MVD 정밀도가 사용되는지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는, 디코딩 방법.
  4. 제1항에 있어서,
    상기 보간 필터는,
    1/2 샘플 단위로 분수 샘플들을 생성하기 위해 사전에 정의된 필터인 것을 특징으로 하는, 디코딩 방법.
  5. 제1항에 있어서,
    상기 AMVR 관련 정보는 복수개의 보간 필터 중 상기 현재 블록에 적용되는 보간 필터를 나타내는 필터 인덱스에 대한 정보를 더 포함하고,
    상기 보간 필터는 상기 필터 인덱스를 기반으로 선택되는 것을 특징으로 하는, 디코딩 방법.
  6. 제1항에 있어서,
    상기 보간 필터의 계수들은 {3, 9, 20, 20, 8, 3}을 포함하는 것을 특징으로 하는, 디코딩 방법.
  7. 제1항에 있어서,
    상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계는,
    상기 현재 블록의 주변 블록을 기반으로 움직임 정보 후보 리스트를 구성하는 단계; 및
    상기 움직임 정보 후보 리스트에 포함된 움직임 정보 후보의 보간 필터 인덱스를 기반으로 상기 현재 블록의 보간을 위한 필터 인덱스를 도출하는 단계
    를 포함하는 것을 특징으로 하는, 디코딩 방법.
  8. 제7항에 있어서,
    상기 움직임 정보 후보 리스트는,
    상기 주변 블록의 컨트롤 포인트들을 기반으로 도출되는 인헤리티드(inherited) 후보 및 상기 현재 블록의 컨트롤 포인트들 각각의 주변 블록의 움직임 정보를 기반으로 도출되는 컨스트럭티드(constructed) 후보를 포함하는 것을 특징으로 하는, 디코딩 방법.
  9. 제8항에 있어서,
    상기 인헤리티드 후보의 보간 필터 인덱스는 상기 주변 블록으로부터 상속되고, 상기 컨스트럭티드 후보의 보간 필터 인덱스는 0으로 설정되는 것을 특징으로 하는, 디코딩 방법.
  10. 제8항에 있어서,
    상기 컨스트럭티드 후보의 컨트롤 포인트들 중 좌상측에 위치하는 제1 컨트롤 포인트에 대한 보간 필터 인덱스와 우상측에 위치하는 제2 컨트롤 포인트에 대한 보간 필터 인덱스는 동일함을 기반으로, 상기 제1 컨트롤 포인트에 대한 보간 필터 인덱스는 상기 컨스트럭티드 후보의 보간 필터 인덱스로 사용되는 것을 특징으로 하는, 디코딩 방법.
  11. 제9항에 있어서,
    상기 컨스트럭티드 후보의 컨트롤 포인트들 중 좌상측에 위치하는 제1 컨트롤 포인트에 대한 보간 필터 인덱스와 우상측에 위치하는 제2 컨트롤 포인트에 대한 보간 필터 인덱스는 동일함을 기반으로, 상기 보간 필터로서 8 탭(8-tap) 보간 필터가 사용되는 것을 특징으로 하는, 디코딩 방법.
  12. 제8항에 있어서,
    상기 컨스트럭티드 후보의 컨트롤 포인트들 중 좌상측에 위치하는 제1 컨트롤 포인트에 대한 보간 필터 인덱스와 우상측 위치에 위치하는 제2 컨트롤 포인트에 대한 보간 필터 인덱스는 서로 다름을 기반으로 상기 컨스트럭티드 후보의 보간 필터 인덱스는 0으로 설정되는 것을 특징으로 하는, 디코딩 방법.
  13. 제8항에 있어서,
    상기 컨스트럭티드 후보는 상기 현재 블록의 컨트롤 포인트들 중 상기 현재 블록의 좌상측에 위치하는 제1 컨트롤 포인트를 포함하고,
    상기 컨스트럭티드 후보의 보간 필터 인덱스는 상기 제1 컨트롤 포인트에 대한 보간 필터 인덱스로 설정되는 것을 특징으로 하는, 디코딩 방법.
  14. 인코딩 장치에 의하여 수행되는 인코딩 방법에 있어서,
    현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 현재 블록의 움직임 정보를 기반으로 보간 필터(interpolation filter)를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계; 및
    상기 주변 블록의 움직임 정보, 상기 현재 블록의 움직임 정보 및 상기 보간 필터에 대한 정보 중 적어도 하나를 기반으로 AMVR(adaptive motion vector resolution) 관련 정보를 생성하는 단계
    를 포함하되,
    상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD(motion vector difference) 정밀도(precision)가 사용됨을 나타내는 정보를 포함하는 것을 특징으로 하는, 인코딩 방법.
  15. 컴퓨터 판독 가능한 디지털 저장 매체로서, 상기 디지털 저장 매체는 디코딩 장치에 의하여 디코딩 방법을 수행하도록 야기하는 정보를 포함하고, 상기 디코딩 방법은,
    비트스트림으로부터 AMVR(adaptive motion vector resolution) 관련 정보를 획득하는 단계;
    상기 AMVR 관련 정보와 현재 블록에 대한 주변 블록의 움직임 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 현재 블록의 움직임 정보를 기반으로 보간 필터(interpolation filter)를 이용하여 상기 현재 블록의 예측 샘플들을 생성하는 단계; 및
    상기 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계
    를 포함하되,
    상기 AMVR 관련 정보는 상기 현재 블록에 대해서 1/2 샘플 단위의 MVD(motion vector difference) 정밀도(precision)가 사용됨을 나타내는 정보를 포함하는 것을 특징으로 하는, 디지털 저장 매체.
PCT/KR2020/007458 2019-06-16 2020-06-09 움직임 예측에 기반한 영상 코딩 방법 및 장치 WO2020256329A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962862134P 2019-06-16 2019-06-16
US62/862,134 2019-06-16

Publications (1)

Publication Number Publication Date
WO2020256329A1 true WO2020256329A1 (ko) 2020-12-24

Family

ID=74037302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007458 WO2020256329A1 (ko) 2019-06-16 2020-06-09 움직임 예측에 기반한 영상 코딩 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2020256329A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425414B2 (en) * 2019-08-05 2022-08-23 Tencent America LLC Method and apparatus for video coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059444A (ko) * 2015-09-24 2018-06-04 엘지전자 주식회사 영상 코딩 시스템에서 amvr 기반한 영상 코딩 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059444A (ko) * 2015-09-24 2018-06-04 엘지전자 주식회사 영상 코딩 시스템에서 amvr 기반한 영상 코딩 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANLE CHEN: "Algorithm description for Versatile Video Coding and Test Model 5 (VTM 5", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, JVET-N1002-V2, 14TH MEETING, 10 August 2020 (2020-08-10), Geneva, CH, pages 1 - 76, XP030205194, Retrieved from the Internet <URL:http://phenix.int-evry.fr/jvet> *
LING LI: "CE2-related: Constructed affine merge candidate simplification", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, JVET-M0217-V3, 13TH MEETING, 12 January 2019 (2019-01-12), pages 1 - 3, XP030201730, Retrieved from the Internet <URL:http://phenix.int-evry.fr/jvet> *
ZHI-YI LIN: "CE2-2.1: Simplification of constructed affine merging candidate derivation", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, JVET-N0075-VL, 14TH MEETING, 13 March 2019 (2019-03-13), pages 1 - 4, XP030202799, Retrieved from the Internet <URL:http://phenix.int-evry.fr/jvet> *
ZHI-YI LIN: "CE2-related: Simplification of constructed affine merging candidate derivation", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, JVET-M0166-V3, 13TH MEETING, 9 January 2019 (2019-01-09), pages 1 - 3, XP030201026, Retrieved from the Internet <URL:http://phenix.int-evry.fr/jvet> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425414B2 (en) * 2019-08-05 2022-08-23 Tencent America LLC Method and apparatus for video coding

Similar Documents

Publication Publication Date Title
WO2020071829A1 (ko) 히스토리 기반 영상 코딩 방법 및 그 장치
WO2020071830A1 (ko) 히스토리 기반 움직임 정보를 이용한 영상 코딩 방법 및 그 장치
WO2020184991A1 (ko) Ibc 모드를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020251319A1 (ko) Sbtmvp를 이용한 인터 예측 기반 영상 또는 비디오 코딩
WO2020017861A1 (ko) 서브블록 단위의 시간적 움직임 정보 예측을 위한 인터 예측 방법 및 그 장치
WO2021137597A1 (ko) Ols에 대한 dpb 파라미터를 사용하는 영상 디코딩 방법 및 그 장치
WO2020251323A1 (ko) 인터 예측 기반 영상 코딩 방법 및 장치
WO2020262931A1 (ko) 비디오/영상 코딩 시스템에서 머지 데이터 신택스의 시그널링 방법 및 장치
WO2020141879A1 (ko) 영상 코딩 시스템에서 서브 블록 기반 시간적 머지 후보를 사용하는 어파인 움직임 예측에 기반한 영상 디코딩 방법 및 장치
WO2020235961A1 (ko) 영상 디코딩 방법 및 그 장치
WO2020141886A1 (ko) Sbtmvp 기반 인터 예측 방법 및 장치
WO2020251324A1 (ko) 움직임 벡터 차분들을 이용한 영상 코딩 방법 및 장치
WO2020262930A1 (ko) 머지 데이터 신택스에서 중복적인 신택스의 제거 방법 및 장치
WO2020180100A1 (ko) 인트라 블록 코딩 기반 비디오 또는 영상 코딩
WO2020141932A1 (ko) Cpr 기반 mmvd를 이용하는 인터 예측 방법 및 장치
WO2020141831A2 (ko) 인트라 블록 카피 예측을 이용한 영상 코딩 방법 및 장치
WO2021091256A1 (ko) 영상/비디오 코딩 방법 및 장치
WO2020251340A1 (ko) 움직임 벡터 예측 기반 영상/비디오 코딩 방법 및 장치
WO2021125700A1 (ko) 예측 가중 테이블 기반 영상/비디오 코딩 방법 및 장치
WO2020251270A1 (ko) 서브블록 단위의 시간적 움직임 정보 기반 영상 또는 비디오 코딩
WO2021034161A1 (ko) 인트라 예측 장치 및 방법
WO2020251338A1 (ko) 비디오 또는 영상 코딩 시스템에서의 인터 예측
WO2020197243A1 (ko) Smvd(symmetric motion vector difference)를 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2020256329A1 (ko) 움직임 예측에 기반한 영상 코딩 방법 및 장치
WO2021091252A1 (ko) 영상/비디오 코딩을 위한 영상 정보 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827020

Country of ref document: EP

Kind code of ref document: A1