WO2020256053A1 - 切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム - Google Patents

切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム Download PDF

Info

Publication number
WO2020256053A1
WO2020256053A1 PCT/JP2020/023914 JP2020023914W WO2020256053A1 WO 2020256053 A1 WO2020256053 A1 WO 2020256053A1 JP 2020023914 W JP2020023914 W JP 2020023914W WO 2020256053 A1 WO2020256053 A1 WO 2020256053A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
gripping
forceps
electrode
target portion
Prior art date
Application number
PCT/JP2020/023914
Other languages
English (en)
French (fr)
Inventor
徹 谷
仲 成幸
篤史 山田
剛 中久保
Original Assignee
国立大学法人滋賀医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人滋賀医科大学 filed Critical 国立大学法人滋賀医科大学
Priority to EP20826037.2A priority Critical patent/EP3988036A4/en
Priority to JP2021526867A priority patent/JPWO2020256053A1/ja
Publication of WO2020256053A1 publication Critical patent/WO2020256053A1/ja
Priority to US17/554,386 priority patent/US20220175410A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3201Scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00353Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2912Handles transmission of forces to actuating rod or piston
    • A61B2017/2919Handles transmission of forces to actuating rod or piston details of linkages or pivot points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2912Handles transmission of forces to actuating rod or piston
    • A61B2017/2919Handles transmission of forces to actuating rod or piston details of linkages or pivot points
    • A61B2017/292Handles transmission of forces to actuating rod or piston details of linkages or pivot points connection of actuating rod to handle, e.g. ball end in recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • A61B2018/00428Severing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1457Probes having pivoting end effectors, e.g. forceps including means for cutting having opposing blades cutting tissue grasped by the jaws, i.e. combined scissors and pliers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/146Scissors

Definitions

  • the present invention relates to a cutting device that abuts and cuts a target site, particularly for forceps capable of abutting (grasping), incision, peeling, coagulation (hemostatic), and cutting surgery, surgical system, medical system, robot, and surgical operation. Regarding medical robots and surgical systems.
  • excision surgery The basic operation of excision surgery is to repeat coagulation (hemostatic) and amputation following exfoliation. During that time, an operation of grasping the target portion is also required. In surgery, it is desirable that each operation be performed continuously, and ideally if the operations can be continued without changing the device.
  • Riga Sure which is famous for high-frequency energy, has a wide blade like a waterfowl's beak that grips the living tissue (target part) and coagulates by passing high frequency, and the coagulated part with a cut margin is like a scalpel or scissors. It is a two-stage configuration that cuts with, and is a two-stage operation.
  • a scissors-shaped mechanical forceps of bipolar forceps having a pair of openable and closable shaft members with a handle for surgery, and each shaft extends from its distal end.
  • handles are arranged between the jaw members to work together to grip the tissue, the electrodes to allow selective conduction of electrosurgical energy.
  • An electrode assembly adapted to connect to an electrosurgical energy source was constructed to selectively advance a knife blade provided to cut tissue gripped between the jaw members.
  • Scissors-shaped mechanical forceps with a knife actuating mechanism with a trigger have been proposed.
  • the tissue can be grasped by the jaw member and coagulated (hemostatic) by grasping the handle, but in order to cut the grasped coagulated tissue, the knife blade is advanced separately from the handle operation. You have to manually operate the trigger that is provided separately in.
  • An object of the present invention is to provide a cutting device capable of abutting (grasping) a target portion by a series of operations and cutting the target portion. Furthermore, it is an object of the present invention to provide forceps, a surgical system, a medical system, a robot, a surgical medical robot, and a surgical system that can abut and cut a tissue by a series of operations.
  • the first contact member and the second contact member assembled so as to be openable and closable, and the first contact member toward the second contact member.
  • the contacted target portion can be contacted and the contacted target portion can be cut without the need for an independent operating member.
  • a cutting member may be provided in the cutting mechanism, and the cutting member may be rotated in the same direction as the rotational drive of the first gripping member and joined to the second gripping member to cut the target portion. ..
  • first gripping member may be provided with a protrusion restricting portion for restricting the cutting member rotating in the same direction from protruding beyond the first gripping member in the direction opposite to the cutting direction. Further, in the cutting mechanism, the cutting member may be slid forward in parallel with the second gripping member to cut the target portion by the cutting edge of the cutting member.
  • the cutting device is a surgical forceps, and the forceps of the present invention include the above-mentioned cutting device, the target site is a living tissue, and the first gripping member and the second gripping member are the first jaws, respectively.
  • a member and a second jaw member a drive mechanism for gripping and coagulating the living tissue by rotating the first jaw member toward the second jaw member, and an operation unit for operating the drive mechanism.
  • the living tissue is gripped and coagulated by the first jaw member and the second jaw member by a series of operations of the operation unit, and the cutting mechanism is cut.
  • the cutting device is the gripping portion that grips the target portion in the first gripping member (first jaw member), at least one of the vicinity of the cutting blade in the cutting member, and the second gripping member.
  • An electrode for irradiating an electromagnetic wave may be provided at the gripping portion that grips the target portion.
  • the electrodes are branched and connected to a coaxial cable that supplies electromagnetic waves.
  • the cutting device or the forceps includes a first cutting member and a second cutting member provided with a cutting blade for cutting the target portion, and an electrode for irradiating an electromagnetic wave is provided along each of the cutting blades.
  • the electrode may be branched and connected to a coaxial cable that supplies electromagnetic waves.
  • the electrodes provided on the first jaw member (or the first cutting member) and the second jaw member (or the second cutting member) are in the same polar direction or different polar directions with respect to the coaxial cable branched in parallel from the coaxial cable. It may be configured to be connected to.
  • a cutting method is provided by the method and the cutting member provided therein.
  • the robot of the present invention executes an input / output unit connected to the cutting device or forceps by wire and / or wirelessly, an input unit that receives an operation signal in real time, and a predetermined operation program based on the operation signal.
  • a drive signal is generated by the first contact member and the second contact member of the cutting device based on the calculation unit to contact and / or cut the target part. It is equipped with an output unit to move the robot arm, move the tool, and enables a cutting method having a cutting step.
  • the output unit generates an irradiation signal for irradiating the electromagnetic wave from the electrode.
  • a surgical system including a plurality of surgeon consoles for controlling the robot is provided.
  • a cutting device forceps, a surgical system, a medical system, a robot, a surgical medical robot, and a surgical system capable of abutting (grasping) a target site in a series of operations and cutting the target site. Can be done.
  • FIG. 1 (a) is a front view of the forceps
  • FIG. 1 (b) is a partial plan view of the cutting mechanism in the forceps
  • FIG. 1 (c) is a partial front view of the cutting mechanism of FIG. 1 (b).
  • the schematic explanatory view of the forceps of FIG. 3A is a side sectional view taken along the line AA in FIG. 2
  • FIG. 3B is a partial vertical sectional view of the forceps
  • FIG. 3C is a cross-sectional view taken along the line BB in FIG. 3B.
  • FIG. 4A is a front view of the gripping state in which the gripping mechanism of the forceps is closed
  • FIG. 4B is a rear view of the forceps in the same state.
  • the explanatory view of the cutting state of the forceps of FIG. 5A is a front view of the cutting state in which the cutting cutter of the cutting mechanism of the forceps is closed
  • FIG. 5B is a rear view of the forceps in the same state.
  • FIG. 6 (a) is a side sectional view taken along the line AA in FIG. 2 before gripping with the gripping mechanism
  • FIG. 6 (a) is a side sectional view taken along the line AA in FIG. 2 before gripping with the gripping mechanism
  • FIG. 6 (b) shows C- in FIG. 4 (b) in a state where the target portion is gripped by the gripping mechanism.
  • a side sectional view taken along the line C FIG. 6 (c) is a side sectional view taken along the line DD in FIG. 5 (b) in a state where the target portion is cut with a cutting cutter
  • FIG. 6 (d) is another aspect.
  • Explanatory drawing of the forceps of FIG. FIG. 8A is a rear view of the forceps
  • FIG. 8B is a side view of the forceps on the cutting mechanism side.
  • FIG. 8 (b) is a partial cross-sectional view taken along the line EE.
  • the explanatory view of the grasping state of the forceps of FIG. 10 (a) is a front view of the forceps in the gripped state
  • FIG. 10 (b) is a rear view of the forceps in the same state
  • FIG. 10 (c) is a side view of the forceps in the same state on the cutting mechanism side
  • FIG. 10 (d). ) Is a partial cross-sectional view taken along the line FF in FIG. 10 (c).
  • the explanatory view of the cutting state of the forceps of FIG. 11 (a) is a front view of the forceps in the cut state
  • FIG. 11 (b) is a rear view of the forceps in the same state
  • FIG. 11 (c) is a side view of the forceps in the same state on the cutting mechanism side
  • FIG. 11 (d). Is a partial cross-sectional view taken along the line GG in FIG. 11 (c).
  • the rear view of the forceps of FIG. The explanatory view of the grasping state of the forceps of FIG. 14 (a) is a front view of the forceps in the gripped state
  • FIG. 14 (b) is a rear view of the forceps in the same state. Explanatory drawing of the forceps in a cut state.
  • FIG. 14 (a) is a front view of the forceps in the gripped state
  • FIG. 14 (b) is a rear view of the forceps in the same state. Explanatory drawing of the forceps in a cut state.
  • FIG. 15A is a front view of the forceps in the cut state
  • FIG. 15B is a rear view of the forceps in the same state.
  • the schematic explanatory view of the end effector of FIG. 17 (a) is a side sectional view taken along the line HI in FIG. 16,
  • FIG. 17 (b) is a partial vertical sectional view of the end effector, and
  • FIG. 17 (c) is an enlarged plan view taken along the line II in FIG. Figure.
  • FIG. 18A is a schematic front view of the end effector in the normal state
  • FIG. 18B is a schematic front view of the end effector in the disconnected state.
  • FIG. 19A is a schematic cross-sectional view of a cutting mechanism in an end effector in a normal state
  • FIG. 19B is a schematic cross-sectional view of an end effector in a cutting state
  • FIG. 19C is a cutting mechanism in which the arrangement of coaxial electrodes is different.
  • FIG. 6 is a schematic cross-sectional view of an end effector showing an outline of an electrode of a modified connection example of a coaxial electrode and a coaxial cable.
  • 20 (a) is a side sectional view of the reverse connection with FIG. 19 (a)
  • FIG. 20 (b) is a partial vertical sectional view of the reverse connection with FIG. 17 (b).
  • FIG. 21 (a) is a side sectional view taken along the line OH in FIG. 16
  • FIG. 21 (b) is a partial vertical sectional view of the end effector
  • FIG. 21 (c) is an enlarged plan view taken along the line II in FIG. Figure.
  • Schematic diagram of forceps of another embodiment. 22 (a) is a rear view of the forceps of FIG. 1 having a coaxial electrode
  • FIG. 22 (b) is a front view of the forceps of FIG. 7 having a coaxial electrode
  • FIG. 22 (c) is a view having a coaxial electrode.
  • FIG. 23 (a) is a rear view of the forceps of FIG. 1 without electrodes
  • FIG. 23 (b) is a front view of the forceps of FIG. 7 without electrodes
  • FIG. 23 (c) is a view without electrodes.
  • Schematic diagram of a medical device in another embodiment
  • Schematic of a remote surgery system in another embodiment.
  • Schematic diagram of a surgical device in a remote surgery system Explanatory drawing about a remote surgery system.
  • a cutting mechanism (10,10X, 19) for cutting the target part (B) in a state where the 119b) is in contact with the target part (B).
  • 1Y, 10a, 10b, 220 According to this configuration, it is possible to grip an external member such as a plate member, a pipe, a rod, or an organization and cut the gripped member.
  • the gripped member can be processed by heating, irradiating energy such as microwaves, or the like in the gripped state, and then cut by the cutting member. It can be used in many ways as a cutting device.
  • An attached cutting member (15, 15a, 15Y) is provided, and the first gripping member (14, 14a) and the second gripping member (116, 116a) are formed by the gripping mechanism (17, 17a).
  • the cutting member (15, 15a, 15Y) is rotated or moved along the first gripping member (14, 14a) such as a slide, and the second gripping member (15, 15a, 15Y) is gripped.
  • FIG. 3 At least one of the gripping portion for gripping the target portion (B) in the first gripping member (14, 14a) and the vicinity of the cutting blade in the cutting member (15, 15a, 15Y), and the second gripping member (
  • the electrode (20) is a coaxial electrode (20) provided with a center electrode (21) and an outer electrode (23) surrounding the center electrode (21) via an insulator, and irradiates the electromagnetic wave.
  • the coaxial cable (40) connecting the irradiation device (30) and the electrode (20) is branched in parallel to a plurality of coaxial cables (40), and the coaxial cable (40) is connected to the central conductor (41) and the outer conductor (43).
  • the gripping mechanism (17, 17a) and the cutting mechanism (10, 10X) are operated together by the operation of the operation unit (13) until the grip is performed, and further operation of the operation unit (13) is performed. Even if a differential mechanism (142, 16X, 16Y) in which the cutting mechanism (10, 10X) is differential from the gripping mechanism (17, 17a) in the gripping state for gripping the target portion (B) is provided. good. Further, a notification unit (118, 123) for notifying the user of the operation of the differential mechanism (142, 16X, 16Y) by a series of operations of the operation unit (13) may be provided.
  • the first contact member and the second contact member are first provided with cutting blades (153a, 153b) for cutting the target portion (B) at the contact portion that contacts the target portion (B).
  • the cutting member (14b) and the second cutting member (119b), and the contact mechanism contacts the target portion (B) by the first cutting member (14b) and the second cutting member (119b).
  • the cutting device, forceps, or medical device (10b, 220) according to the configuration 1 provided with 20).
  • the electrode (20) is a coaxial electrode (20) provided with a center electrode (21) and an outer electrode (23) surrounding the center electrode (21) via an insulator, and irradiates the electromagnetic wave.
  • a plurality of coaxial cables (40) connecting the irradiation device (30) and the electrodes (20) are branched in parallel, and the coaxial electrodes (20) are attached to the central conductor and the outer conductor of the coaxial cable (40).
  • the cutting device, forceps, or medical device (10b, 220) according to configuration 6, which is electrically connected to the same electrode or the opposite electrode.
  • the first cutting member (14b) and the second cutting member (119b) have functions of coagulating, cutting, and separating living tissue.
  • the electrodes (20) provided on the forceps (1,1X, 1Y, 10a, 10b) are electrodes (20) for microwave irradiation, and micro on each of the forceps (1,1X, 1Y).
  • a surgical system (200) provided with a wave irradiation unit and having the same period of microwaves applied to each electrode (20) from the coaxial cable (40).
  • FIG. 9 An input / output unit (210a) connected to the disconnectors (10a, 10b) by wire and / or wirelessly, an input unit (210a) that receives an operation signal in real time, and a predetermined operation program based on the operation signal.
  • the first contact member (14, 14a, 14b) and the second contact member (116, 14b) of the cutting device (10a, 10b) based on the calculation unit (CPU) that executes the above operation and the output from the calculation unit.
  • An output unit (16a, 119b) that generates a drive signal that abuts and / or disconnects from the target site (B) and / or an irradiation signal that irradiates the electromagnetic waves from the electrodes (20, 24a, 24b, 24c).
  • FIG. 10 A step of generating a command by operating the master control unit (202), a step of moving the arm assembly (212) of the robot (210) to a treatment position by the above command, and an arm assembly (212) of the robot (210).
  • a robot having a step of moving the tool (217) attached to the tool (217) to a treatment position and a step of controlling the movement of the cutting device (10a, 10b) attached to the tip of the tool (217) and the irradiation of electromagnetic waves. Control method.
  • FIG. 1 is an explanatory view of the open state forceps 1 of the first embodiment.
  • 1 (a) shows a front view of the forceps 1
  • FIG. 1 (b) shows a partial plan view of the cutting mechanism 10 in the forceps 1
  • FIG. 1 (c) shows a part of the cutting mechanism 10 in FIG. 1 (b).
  • the front view is shown.
  • FIG. 2 shows a rear view of the forceps 1 of FIG.
  • FIG. 3 shows a schematic explanatory view of the forceps 1 of FIG. 3 (a) shows a side sectional view taken along the line AA in FIG. 2,
  • FIG. 3 (b) shows a partial vertical sectional view of the forceps 1, and
  • FIG. 3 (c) shows B in FIG. 3 (b).
  • An enlarged view of the electrode portion of the ⁇ B arrow is shown.
  • FIG. 4 shows an explanatory view of the gripping state of the forceps 1 of FIG.
  • FIG. 4A shows a front view of the forceps 1 in a gripped state with the gripping mechanism 17 closed
  • FIG. 4B shows a rear view of the forceps 1 in the same state
  • FIG. 5 shows an explanatory view of the cut state of the forceps 1 of FIG.
  • FIG. 5A shows a front view of the cutting mechanism 10 of the forceps 1 in a cut state with the cutting cutter 15 closed
  • FIG. 5B shows a rear view of the forceps 1 in the same state.
  • FIG. 6 shows an explanatory view of a gripping state and a cutting state of the cutting mechanism 10 in the forceps 1.
  • FIG. 6A shows a side sectional view taken along the line AA in FIG. 2 before being gripped by the gripping mechanism 17, and
  • FIG. 6B is FIG. 4 (b) in which the blood vessel B is gripped by the gripping mechanism 17.
  • FIG. 6 (c) shows a side sectional view taken along the line DD in FIG. 5 (b) when the blood vessel B is cut by the cutting cutter 15. ..
  • the forceps 1 includes a main body frame 11, a slide frame 12, a trigger handle 13, an upper jaw portion 14, a cutting cutter 15, and a spring 16.
  • the main body frame 11 is roughly composed of two sides that intersect at an obtuse angle, and one of the two sides is a fixed handle frame 111 that functions as an operation unit together with the trigger handle 13, and the other is a reference frame 112.
  • the main body frame 11 configured in this way is made of a metal such as stainless steel.
  • a ring portion 113 for inserting a user's finger for operating the forceps 1 is provided at the end of the fixed handle frame 111. Further, a portion where the fixed handle frame 111 and the reference frame 112 intersect at an obtuse angle is a corner portion 114, and a trigger handle 13 described later is pivotally supported at a base portion (near the above-mentioned corner portion 114) of the reference frame 112. It includes a support shaft 115.
  • a mandibular portion 116 constituting a gripping mechanism 17 for gripping a target portion such as a blood vessel B to be treated is provided in cooperation with the trigger handle 13. .
  • the lower jaw portion 116 is formed in a tapered shape toward the tip end side F in front view.
  • the lower jaw 116 is also referred to as a jaw.
  • a tip support shaft 117 that pivotally supports the upper jaw portion 14 and the cutting cutter 15 is provided.
  • a click convex portion 118 protruding toward the bottom surface of the slide frame 12 is provided on the upper surface of the intermediate portion of the reference frame 112 in the longitudinal direction L.
  • the click convex portion 118 has a triangular shape in front view that protrudes toward the bottom surface of the slide frame 12, but the inclined surface of the base end side R has a steeper inclination angle than the inclined surface of the tip end side F. It is formed in a triangular shape.
  • the click convex portion 118 which has a triangular shape in front view and protrudes toward the bottom surface of the slide frame 12, is supported so as to bend downward with a predetermined force.
  • the slide frame 12 is provided so as to be slidable in the longitudinal direction L along the reference frame 112 in the main body frame 11, and is made of the same material as the main body frame 11 and is formed in a prismatic shape.
  • An upper support shaft 121 that pivotally supports the tip of the trigger handle 13 is provided on the base end side R (left side in FIG. 1) of the slide frame 12.
  • a tip top support shaft 122 that pivotally supports the upper jaw portion 14 and the cutting cutter 15 is provided. Further, a click convex portion 123 protruding toward the upper surface of the reference frame 112 is provided on the bottom surface of the intermediate portion of the slide frame 12 in the longitudinal direction L.
  • the click convex portion 123 has a triangular shape in front view protruding toward the upper surface of the reference frame 112, but the inclined surface of the tip side F facing the click convex portion 118 and the longitudinal direction L is from the inclined surface of the proximal end side R. It is formed in a triangular shape with a steep slope and a substantially right angle in front view. Further, the click convex portion 123, which has a triangular shape in front view and protrudes toward the upper surface of the reference frame 112, is supported so as to bend upward with a predetermined force.
  • the click convex portion 123 is not limited to a triangular shape, and may have another shape such as a polygonal shape or a semicircular shape that provides a function of notifying the user of a click sound or vibration.
  • the click convex portion 118 and the click convex portion 123 are arranged slightly apart from each other in the longitudinal direction L of the reference frame 112 and the slide frame 12 in the forceps 1 in the initial state (open state).
  • the trigger handle 13 is an operation unit for sliding the slide frame 12 along the reference frame 112, and includes a ring portion 131 at the lower end for inserting a user's finger. Further, near the upper end of the trigger handle 13, a pivot portion 132 pivotally supported by the support shaft 115 of the main body frame 11 is provided, and the pivot portion 132 is pivotally supported by the upper support shaft 121 of the slide frame 12 further above the pivot portion 132. It includes an upper pivot portion 133 that is movably supported.
  • a compression coil spring 13a for automatically returning the slide frame 12 and the trigger handle 13 is provided between the fixed handle frame 111 and the trigger handle 13 (not shown in FIG. 5).
  • the compression coil spring 13a may be omitted depending on the specifications.
  • the upper jaw portion 14 is provided at the end portion of the tip side F of the slide frame 12, and constitutes the gripping mechanism 17 together with the lower jaw portion 116 of the main body frame 11.
  • the upper jaw portion 14 is also referred to as a jaw.
  • a rotary bearing portion 142 pivotally supported by the 122 is provided.
  • FIG. 1 (c) which is an enlarged view of the portion surrounded by a square in FIG. 1 (a)
  • the rotary bearing portion 142 is formed in an elongated hole shape in which the support shaft 122 on the tip is loosely fitted. ing.
  • the protrusion control unit 143 is provided.
  • the cutting cutter 15 is arranged on the back side of the upper jaw portion 14 and is pivotally supported by the tip support shaft 117 of the main body frame 11 and above the shafted portion 151.
  • a rotating shaft portion 152 that is pivotally supported by a support shaft 122 on the tip of the slide frame 12 is provided.
  • the cutting cutter 15 configured in this way has a cutting blade 153 formed along the lower end portion. Further, the cutting cutter 15 has a plate shape and is configured to rotate about the shafted portion 151 along the side surface of the upper jaw portion 14.
  • the spring 16 is arranged along the front side of the upper jaw portion 14 and is configured to urge the upper jaw portion 14 and the cutting cutter 15. More specifically, the spring 16 is a torsion spring that is fitted onto the tip upper support shaft 122, and one arm is fitted to the upper jaw portion 14 and the other arm is fitted to a part of the cutting cutter 15. .. Therefore, when the upper jaw portion 14 and the cutting cutter 15 are differentially rotated toward the side close to each other with the tip upper support shaft 122 as the center, the spring 16 is attached in the rotation direction in which the upper jaw portion 14 and the cutting cutter 15 are separated from each other. It is configured to be vigorous.
  • the lower jaw portion 116 provided at the end of the tip end side F of the main body frame 11 and the upper jaw portion 14 whose base is pivotally supported by the tip support shaft 117 with respect to the main body frame 11.
  • the cutting cutter 15 that rotates and cuts the target portion gripped by the gripping mechanism 17 along the side surface of the upper jaw portion 14 constitutes the cutting mechanism 10 together with the gripping mechanism 17.
  • the forceps 1 are provided with irradiation electrodes 24 (24a, 24b, 24c), and a coaxial cable 40 for connecting the microwave transmitter 30 that oscillates microwaves and the irradiation electrode 24 is connected. .. Specifically, an irradiation electrode 24a is provided on the upper jaw portion 14, an irradiation electrode 24b is provided on the lower jaw portion 116, and an irradiation electrode 24c is provided inside the cutting cutter 15, and a coaxial cable 40 is connected to the irradiation electrode 24c.
  • the irradiation electrodes 24 (24a, 24b, 24c) arranged on the upper jaw portion 14, the cutting cutter 15 and the lower jaw portion 116 have an insulating layer arranged on the outside, and the upper jaw portion 14, the cutting cutter Insulated from 15 and the lower jaw 116.
  • the coaxial cable 40 is composed of an insulator 42, an outer conductor 43, and an insulating coating 44 with the central conductor 41 and the central conductor 41 interposed therebetween, from the center to the outer diameter. They are arranged in this order.
  • the central conductor 41 is a linear conductor arranged at the center of the coaxial cable 40, and may be a single conductor having an appropriate diameter, or may be composed of a plurality of core wires.
  • the insulator 42 is made of a resin that surrounds the outside of the central conductor 41 and insulates the central conductors 41 and 43, and has a cylindrical shape having a predetermined wall thickness.
  • the outer conductor 43 is composed of braided wires provided along the outer peripheral surface of the insulator 42.
  • the insulating coating 44 is a coating having an insulating property, and surrounds the outside of the outer conductor 43.
  • the coaxial cable 40 in which the central conductor 41, the insulator 42, the outer conductor 43, and the insulating coating 44 are arranged in this order from the center side has appropriate flexibility.
  • the irradiation electrode 24a and the irradiation electrode 24c are connected to the central conductor 41 of the coaxial cable 40, the irradiation electrode 24b is connected to the outer conductor 43, and electromagnetic waves (microwaves) are transmitted from the irradiation electrodes 24a and 24c. Is configured to irradiate the irradiation electrode 24b.
  • the electrode structure may be a coaxial structure as shown in FIGS. 16 and 17, and the polarity of the connection may be a different electrode connection structure as shown in FIG.
  • One of the first electrode portion of the irradiation electrodes 24a and 24c of the upper jaw portion 14 and the cutting cutter 15 and the second electrode portion of the irradiation electrode 24b provided on the lower jaw portion 116 is connected to the central conductor 41 of the coaxial cable 40. , The other will be connected to the outer conductor 43. In this way, the forceps 1 provided with the irradiation electrodes 24a and 24c irradiate microwaves from one of the first electrode portion of the irradiation electrodes 24a and 24c and the second electrode portion of the irradiation electrode 24b toward the other. can do.
  • the target portion gripped by the gripping mechanism 17 composed of the lower jaw portion 116 and the upper jaw portion 14 can be coagulated by irradiating the target portion with microwaves.
  • the irradiation electrode 24c may be electrically connected to the irradiation electrode 24b, and microwaves may be irradiated between the maxilla portion 14 and the cutting cutter 15 to coagulate the living tissue.
  • a user who inserts a finger into the ring portion 113 of the main body frame 11 and the ring portion 131 of the trigger handle 13 attaches the trigger handle 13 to the fixed handle frame 111 with the pivot portion 132 pivotally supported by the support shaft 115 as the center of rotation. It is rotated in the approaching direction (the direction in which the lower part of the trigger handle 13 moves to the left in FIG. 1).
  • the tip upper support shaft 122 that pivotally supports the rotary bearing portion 142 of the upper jaw portion 14 also moves to the tip side F.
  • the lower shafted portion 141 is pivotally supported by the tip support shaft 117 of the main body frame 11, and the upper jaw portion 14 whose upper rotary bearing portion 142 is pivotally supported by the tip upper support shaft 122 is the tip upper support shaft. Since 122 moves to the tip side F, the tip side F pivots in the direction approaching the lower jaw portion 116 around the tip support shaft 117 (see FIG. 4).
  • the lower shafted portion 151 is pivotally supported by the tip support shaft 117 of the main body frame 11, and the upper rotation shaft portion 152 is pivotally supported by the tip upper support shaft 122. There is. Therefore, as the tip upper support shaft 122 moves to the tip side F, the cutting cutter 15 pivots around the tip support shaft 117 in the direction in which the tip side F approaches the lower jaw portion 116 together with the upper jaw portion 14. (See Fig. 4).
  • the cutting cutter 15 is moved as the tip upper support shaft 122 moves to the tip side F.
  • the tip side F moves in the direction closer to the lower jaw 116 together with the upper jaw 14 around the tip support shaft 117, even if the pivot of the cutting cutter 15 is delayed from the pivot of the upper jaw 14, the protrusion is restricted.
  • the portion 143 causes the maxillary portion 14 and the cutting cutter 15 to both pivot.
  • the blood vessel B which is the target site in the living tissue, is arranged between the maxilla 14 and the mandible 116, and as shown in FIG. 6 (b).
  • the blood vessel B By sandwiching the blood vessel B between the upper surface of the lower jaw portion 116 and the bottom surface of the upper jaw portion 14, the blood vessel B can be gripped by the gripping mechanism 17 composed of the lower jaw portion 116 and the upper jaw portion 14.
  • the tip upper support shaft 122 is loosely fitted in the rotary bearing portion 142 formed in the elongated hole shape, the upper jaw portion 14 and the cutting cutter 15 are separated from the lower jaw portion 116 by the spring 16. Since the tip is urged, the upper end support shaft 122 does not move in the rotary bearing portion 142, and the upper jaw portion 14 and the cutting cutter 15 rotate as described above.
  • the click convex portion 118 provided on the upper surface of the reference frame 112 and the click convex portion 123 provided on the bottom surface of the slide frame 12 were separated from each other in the longitudinal direction L in the initial state (open state).
  • the slide movement of the slide frame 12 toward the tip end side F with respect to the reference frame 112 causes the slide frame 12 to approach and abut in the longitudinal direction L.
  • the trigger handle 13 is operated to grip the target portion such as the blood vessel B in the state shown in FIGS. 4 and 6 (b) in which the upper jaw portion 14 is close to the lower jaw portion 116 by the gripping mechanism 17. It is called a gripping state.
  • the trigger handle 13 is further operated in the direction of being closer to the fixed handle frame 111 from this gripping state, the slide frame 12 is further moved to the tip side F with respect to the reference frame 112.
  • the cutting cutter 15 pivots the cutting blade 153 over the upper surface of the lower jaw portion 116 with the tip support shaft 117 as the center, as shown in FIG. 5 (b). It will move. As a result, as shown in FIG. 6C, the cutting cutter 15 moves along the side surface of the maxilla portion 14, and the blood vessel B gripped by the gripping mechanism 17 can be cut by the cutting blade 153 of the cutting cutter 15. it can.
  • the cutting state in which the cutting cutter 15 is rotated so that the cutting blade 153 exceeds the upper surface of the lower jaw 116 is in the cutting state. That is.
  • the upper jaw portion 14 is in contact with the upper surface of the spring 16, and cannot rotate even if the slide frame 12 further slides. By that amount, the tip upper support shaft 122 moves in the elongated hole-shaped rotary bearing portion 142, and the slide frame 12 moves relative to the upper jaw portion 14.
  • the cutting cutter 15 rotates further due to the further movement of the slide frame 12, but the upper end support shaft 122 moves on the rotary bearing portion 142 and the upper jaw portion 14 does not rotate, that is, the length.
  • the differential mechanism in which the tip upper support shaft 122 moves on the hole-shaped rotary bearing portion 142, the upper jaw portion 14 and the cutting cutter 15 are differentially differentiated in the rotational direction around the tip support shaft 117.
  • the spring 16 is deformed in the contracting direction due to the differential between the upper jaw portion 14 and the cutting cutter 15. Therefore, when the force for operating the trigger handle 13 is released, the compression of the compression coil spring 13a shown in FIG.
  • the click convex portion 118 and the click convex portion 123 that are in contact with each other in the above-mentioned gripping state are as shown in the enlarged view of the A portion in FIG. 5 (b). While the click convex portion 118 and the click convex portion 123 are bent, one of them gets over the other, so that a click feeling is generated. Since this click feeling is transmitted to the user via the main body frame 11 and the trigger handle 13, the user recognizes that the trigger handle 13 has been disconnected, that is, in a series of operations of the trigger handle 13, the grip state is changed to the disconnected state. Clicking on what you have done The convex parts 118 and 123 can notify the user.
  • the forceps 1 grips the target part such as the blood vessel B by the upper jaw portion 14 and the lower jaw portion 116 constituting the gripping mechanism 17, and cuts the target part by the cutting cutter 15 in the gripped state. It can be performed by a series of operations by. Then, during the gripping / cutting of the target portion by a series of operations of the trigger handle 13, the target portion can be condensed by irradiating the target portion with a microwave from the irradiation electrode 24.
  • the differential mechanism is provided by the elongated hole-shaped rotary bearing portion 142 that loosely fits the support shaft 122 on the tip, in a series of operations of the trigger handle 13, after being gripped by the gripping mechanism 17, the cutting cutter 15 is used.
  • the target site can be cut.
  • the notification unit may have a structure in which a moving sensor is attached instead of the click protrusions 118 and 123 to notify the user by an electronic signal or an optical signal. According to this embodiment, it is possible to provide a multifunctional forceps for grasping, coagulating, or cutting alone or in combination.
  • FIGS. 7 to 11 show a front view of the forceps 1X of the second embodiment.
  • FIG. 8 shows an explanatory view of the forceps 1X of FIG.
  • FIG. 8A shows a rear view of the forceps 1X
  • FIG. 8B shows a side view of the forceps 1X on the cutting mechanism side.
  • FIG. 9 shows a rear view of the forceps 1X of FIG. A partial cross-sectional view taken along the line EE in FIG. 8B is shown.
  • FIG. 10 shows an explanatory view of the forceps 1X in the gripped state. 10 (a) shows a front view of the forceps 1X in the gripped state, FIG. 10 (b) shows a rear view of the forceps 1X in the same state, and FIG. 10 (c) shows the cutting mechanism side of the forceps 1X in the same state. A side view is shown, and FIG. 10 (d) shows a partial cross-sectional view taken along the line FF in FIG. 10 (c).
  • FIG. 11 shows an explanatory view of the forceps 1X in the cut state.
  • 11 (a) shows a front view of the forceps 1X in the cut state
  • FIG. 11 (b) shows a rear view of the forceps 1X in the same state
  • FIG. 11 (c) shows the cutting mechanism side of the forceps 1X in the same state.
  • a side view is shown
  • FIG. 11 (d) shows a partial cross-sectional view taken along the line GG in FIG. 11 (c).
  • the forceps 1X includes a main body frame 11X, a first slide plate 12Xa, a second slide plate 12Xb, a trigger handle 13X, an upper jaw portion 14, a cutting cutter 15, and a coil spring 16X.
  • the first slide plate 12Xa and the second slide plate 12Xb slide on the reference frame 112 with respect to the forceps 1 in which the slide frame 12 slides in the longitudinal direction L on the upper surface of the reference frame 112 of the main body frame 11. Then, the upper jaw portion 14 and the cutting cutter 15 are configured to rotate.
  • the main body frame 11X is composed of the fixed handle frame 111 and the reference frame 112X that intersect at an obtuse angle, similarly to the main body frame 11 composed of the fixed handle frame 111 and the reference frame 112.
  • the reference frame 112X has a slide groove in which the first slide plate 12Xa and the second slide plate 12Xb slide in the upper half portion on the back side (not shown). ) Is formed.
  • the first slide plate 12Xa and the second slide plate 12Xb are formed in a plate shape, are laminated in the thickness direction in the slide groove provided in the reference frame 112X, and are independently slidably stored.
  • the base end side R of the first slide plate 12Xa is provided with a middle support shaft 121Xa that pivotally supports the upper pivot portion 133 provided on the trigger handle 13X, and the tip end side F is provided on the tip end side that pivotally supports the cutting cutter 15.
  • a support shaft 122Xa is provided.
  • a tip upper support shaft 122Xa that pivotally supports the cutting cutter 15 is provided on the tip end side F of the second slide plate 12Xb. Further, the base end side R is provided with a contact ring portion 124Xb through which the coil spring 16X abuts and the insertion shaft 161X through which the inside of the coil spring 16X is inserted is inserted.
  • the second slide plate 12Xb configured in this way is formed to have a length of about the length of the coil spring 16X, which will be described later, and a length of which the proximal end side R is shorter than that of the first slide plate 12Xa.
  • first slide plate 12Xa and the second slide plate 12Xb which are laminated and arranged in the thickness direction in the slide groove provided in the reference frame 112X are arranged so that the first slide plate 12Xa is on the back side. ing. Therefore, the second slide plate 12Xb is sandwiched between the reference frame 112X and the first slide plate 12Xa in the front-back direction.
  • the first slide plate 12Xa and the second slide plate 12Xb are provided with elongated regulation holes 123X long in the longitudinal direction L in which the slide frame 112Xa provided in the slide groove of the reference frame 112X is loosely fitted. ..
  • the trigger handle 13X is in the upper stage above the Axis portion 133X in addition to the Axis portion 132X and the Axis portion 133X. It includes a pivot portion 134X. Further, the upper pivot portion 134X of the trigger handle 13X is rotatably provided with a pressing block 135X having an insertion shaft 161X.
  • the compression coil spring 13a described with forceps 1 may be provided between the fixed handle frame 111 of the main body frame 11X and the trigger handle 13X.
  • the insertion shaft 161X is inserted through the inside of the coil spring 16X and is inserted into the contact ring portion 124Xb.
  • a flange portion 162X having a diameter larger than that of the contact ring portion 124Xb is provided at the end of the insertion shaft 161X on the tip end side F.
  • the forceps 1X having each element configured in this way moves the upper pivot portion 133X and the upper pivot portion 134X to the tip end side F with the pivot portion 132X as the rotation axis.
  • the first slide plate 12Xa having the middle support shaft 121Xa that pivotally supports the upper pivot portion 133X slides to the tip side F with respect to the reference frame 112X.
  • the cutting cutter 15 that pivotally supports the rotation shaft portion 152 with the tip upper support shaft 122Xa has an upper jaw about the shafted portion 151 pivotally supported by the tip support shaft 117. It rotates along the side surface of the portion 14 (see FIG. 10).
  • the pressing block 135X rotatably provided on the upper pivot portion 134X also moves to the tip side F.
  • the coil spring 16X through which the insertion shaft 161X is inserted is pressed against the tip side F. Since the tip side F of the coil spring 16X pressed against the tip side F by the pressing block 135X is in contact with the contact ring portion 124Xb, the contact ring portion 124Xb is pressed against the tip side F and the second slide plate 12Xb is moved. Will be made to.
  • the tip end side F When the second slide plate 12Xb moves to the tip end side F, the lower shafted portion 141 is pivotally supported by the tip support shaft 117 of the main body frame 11X, and the rotary bearing portion 142 above it is pivotally supported by the tip upper support shaft 122Xb.
  • the tip upper support shaft 122Xb moves to the tip side F.
  • the tip side F pivots in the direction approaching the lower jaw 116 with the tip support shaft 117 as the center, and the gripping mechanism 17 composed of the lower jaw 116 and the upper jaw 14 grips the target part such as the blood vessel B. It is in a gripping state (see FIG. 10).
  • the first slide plate 12Xa and the second slide plate 12Xb that move to the tip side F by operating the trigger handle 13X are located at a distance from the pivot portion 132X from the first slide plate 12Xa that pivotally supports the upper pivot portion 133X.
  • the cutting cutter 15 when the first slide plate 12Xa moves to the tip side F, the cutting cutter 15 has a lower jaw of the cutting blade 153 with the tip support shaft 117 as the center, as shown in the enlarged view of the B portion in FIG. 11B. It will pivot beyond the upper surface of the portion 116. As a result, the cutting cutter 15 moves along the upper jaw portion 14, and the blood vessel B gripped by the gripping mechanism 17 can be cut by the cutting blade 153 of the cutting cutter 15.
  • the upper jaw portion 14 is in contact with the upper surface of the lower jaw portion 116, and cannot rotate even if the second slide plate 12Xb further slides.
  • the trigger handle 13X is further operated in the direction closer to the fixed handle frame 111, the upper pivot portion 134X also moves to the tip side F, and the pressing block 135X also moves to the tip side F together with the upper pivot portion 134X.
  • the second slide plate 12Xb cannot be slid.
  • the coil spring 16X contracts and comes close to the contact ring portion 124Xb and the pressing block 135X of the second slide plate 12Xb that cannot slide. That is, when the coil spring 16X contracts, the contact ring portion 124Xb and the pressing block 135X are differentiated, and the trigger handle 13X is operated in a direction further closer to the fixed handle frame 111, so that the cutting cutter 15 rotates. However, the maxillary portion 14 can generate a differential that does not rotate.
  • the coil spring 16X is deformed in the contracting direction in the cutting state in which the cutting cutter 15 and the upper jaw portion 14 are differentially operated by further operating the trigger handle 13X. Therefore, when the force for operating the trigger handle 13X is released, the trigger handle 13X moves in the expanding direction via the pressing block 135X due to the urging force of the coil spring 16X.
  • the facing surfaces of the first slide plate 12Xa and the second slide plate 12Xb may have the same configuration as the click convex portion 118 and the click convex portion 123 in the forceps 1 described above. Even in this case, the click feeling generated when one of them gets over the other can make the user recognize that the user has been disconnected.
  • the forceps 1X also grips the target part such as the blood vessel B by the upper jaw portion 14 and the lower jaw portion 116 constituting the gripping mechanism 17, and the target part is gripped by the cutting cutter 15 in the gripped state.
  • the disconnection can be performed by a series of operations by the trigger handle 13. Then, during the gripping / cutting of the target portion by a series of operations of the trigger handle 13, the target portion can be condensed by irradiating the target portion with a microwave from the irradiation electrode 24.
  • the target portion can be cut by the cutting cutter 15 after being gripped by the gripping mechanism 17 in a series of operations of the trigger handle 13.
  • the upper jaw portion 14 of the forceps 1X may be provided with a protrusion restricting portion 143 that restricts the cutting cutter 15 from protruding from the upper surface of the upper jaw portion 14. As a result, the cutting cutter 15 does not protrude from the upper surface of the upper jaw portion 14, and can be used safely.
  • FIG. 12 shows a front view of the forceps 1Y of the third embodiment
  • FIG. 13 shows a rear view of the forceps 1Y of FIG.
  • FIG. 14 shows an explanatory view of the forceps 1Y in the gripped state.
  • FIG. 14A shows a front view of the forceps 1Y in the gripped state
  • FIG. 14B shows a rear view of the forceps 1Y in the same state.
  • FIG. 15 shows an explanatory view of the forceps 1Y in the cut state.
  • FIG. 15A shows a front view of the forceps 1Y in the cut state
  • FIG. 15B shows a rear view of the forceps 1Y in the same state.
  • the forceps 1Y includes a main body frame 11Y, a first slide plate 12Ya, a second slide plate 12Yb, a trigger handle 13Y, an upper jaw portion 14, a slide cutter 15Y, and a coil spring 16Y.
  • the second slide plate 12Yb slides with respect to the reference frame 112Y and the upper jaw portion 14 rotates.
  • the slide cutter 15Y is configured to move and the slide cutter 15Y slides and cuts along with the slide of the first slide plate 12Y provided at the end of the tip side F.
  • the main body frame 11Y is composed of a fixed handle frame 111 and a reference frame 112Y that intersect at an obtuse angle, similarly to the main body frame 11 composed of the fixed handle frame 111 and the reference frame 112.
  • the first slide plate 12Ya and the second slide plate 12Yb are configured to slide along the upper surface of the reference frame 112Y.
  • the reference frame 112Y is provided with a regulation frame 124Y that regulates the first slide plate 12Ya and the second slide plate 12Yb that slide along the upper surface so as to be slidable.
  • the first slide plate 12Ya and the second slide plate 12Yb are formed in a plate shape, are laminated in the thickness direction, and are independently slidable along the upper surface of the reference frame 112Y and are regulated by the regulation frame 124Y. ..
  • a slide cutter 15Y is provided at the end of the first slide plate 12Ya on the tip end side F, and an upper support shaft 121Ya for pivotally supporting the drive shaft 181Y of the arm 18Y, which will be described later, is provided at the intermediate portion.
  • the upper support shaft 121Yb has an elongated hole shape long in the longitudinal direction L, and the drive shaft 181Y can be pivotally supported in the longitudinal direction L so as to be movable. Further, inside the upper support shaft 121Yb, a coil spring 16Y for urging the drive shaft 181Y to the base end side R (left side in FIG. 12) is arranged on the tip end side F of the drive shaft 181Y.
  • the trigger handle 13Y is provided with an upper pivot portion 133Y above the pivot portion 132 pivotally supported by the reference frame 112Y so as to project upward from the first slide plate 12Ya and the second slide plate 12Yb.
  • An arm 18Y that is inclined downward and has a tip side F is connected to the upper pivot portion 133Y, and the above-mentioned drive shaft 181Y is provided at the tip of the arm 18Y.
  • the forceps 1Y having each element configured in this way moves the upper pivot portion 133Y to the tip end side F with the pivot portion 132Y as the rotation axis.
  • the arm 18Y connected to the upper pivot portion 133Y also moves to the tip side F while changing the inclination angle.
  • the first slide plate 12Ya that pivotally supports the drive shaft 181Y of the arm 18Y with the upper support shaft 121Y slides to the tip side F with respect to the reference frame 112Y. To do.
  • the slide cutter 15Y provided on the tip side F of the first slide plate 12Ya also moves to the tip side F along the upper surface of the lower jaw portion 116 in the reference frame 112Y.
  • the cutting blade 153 of the slide cutter 15Y that moves to the tip end side F moves to the extent that it does not relate to the intermediate portion of the upper jaw portion 14.
  • the tip end side F When the second slide plate 12Yb moves to the tip end side F, the lower shafted portion 141 is pivotally supported by the tip support shaft 117 of the main body frame 11Y, and the rotary bearing portion 142 above it is pivotally supported by the tip upper support shaft 122Yb.
  • the tip upper support shaft 122Yb moves to the tip side F.
  • the tip side F pivots in the direction approaching the lower jaw 116 with the tip support shaft 117 as the center, and the gripping mechanism 17 composed of the lower jaw 116 and the upper jaw 14 grips the target part such as the blood vessel B. It is in a gripping state (see FIG. 14).
  • the slide cutter 15Y provided at the tip of the first slide plate 12Ya is cut around the tip support shaft 117 as shown in FIG. 15A.
  • the blade 153Y moves to the vicinity of the tip surface of the upper jaw portion 14.
  • the slide cutter 15Y moves along the reference frame 112Y, and the blood vessel B gripped by the gripping mechanism 17 can be cut by the cutting blade 153 of the slide cutter 15Y.
  • the upper jaw portion 14 is in contact with the upper surface of the lower jaw portion 116, and cannot rotate even if the second slide plate 12Yb slides further.
  • the drive shaft 181Y of the arm 18Y pivotally supported by the upper pivot portion 133Y also moves to the tip end side F.
  • the second slide plate 12Yb cannot slide to the tip side F. Therefore, the drive shaft 181Y presses the coil spring 16Y toward the tip end side F to contract the drive shaft 181Y against the urging force of the coil spring 16Y that urges the base end side R. That is, as shown in FIG. 15 (b), which is an enlarged view of the A portion in FIG.
  • the trigger handle 13Y is operated in a direction further closer to the fixed handle frame 111, and the coil spring 16Y contracts to slide.
  • the cutter 15Y slides to the tip side F, but the upper jaw portion 14 does not rotate, so that a differential can occur.
  • the coil spring 16Y is deformed in the contracting direction in the cutting state in which the slide cutter 15Y and the upper jaw portion 14 are differentially operated by further operating the trigger handle 13Y. Therefore, when the force for operating the trigger handle 13Y is released, the trigger handle 13Y moves in the direction in which the trigger handle 13Y expands via the arm 18Y due to the urging force of the compression coil spring 13a.
  • the facing surfaces of the first slide plate 12Ya and the second slide plate 12Yb may have the same configuration as the click convex portion 118 and the click convex portion 123 in the forceps 1 described above. Even in this case, the click feeling generated when one of them gets over the other can make the user recognize that the user has been disconnected.
  • the forceps 1Y also grips the target part such as the blood vessel B by the upper jaw portion 14 and the lower jaw portion 116 constituting the gripping mechanism 17, and slides the target part in the gripped state.
  • Cutting by the cutter 15Y can be performed by a series of operations by the trigger handle 13. Then, during the gripping / cutting of the target portion by a series of operations of the trigger handle 13, the target portion can be condensed by irradiating the target portion with a microwave from the irradiation electrode 24.
  • the target portion can be cut by the slide cutter 15Y after being gripped by the gripping mechanism 17 in a series of operations of the trigger handle 13.
  • the end effector 10a for irradiating a living tissue with microwaves will be described with reference to FIGS. 16 and 17.
  • the forceps 1, 1X, and 1Y described above all include an irradiation electrode 24 for irradiating an electromagnetic wave, and a specific electrode structure will be described in this embodiment.
  • FIG. 16 shows a schematic front view of the end effector 10a of the fourth embodiment.
  • FIG. 17 shows a schematic explanatory view of the end effector 10a of FIG. 17 (a) shows a side sectional view taken along the line HU in FIG. 16,
  • FIG. 17 (b) shows a partial vertical sectional view of the end effector 10a, and
  • FIG. 17 (c) shows I-I in FIG. An enlarged plan view of the arrow is shown.
  • the end effector 10a is used for a scissors-type multifunctional surgical device, and corresponds to the cutting mechanism 10 in the forceps 1 described above. Therefore, the same components as those in the forceps 1 described above are designated by the same reference numerals. Further, the end effector in this embodiment can constitute the above-mentioned cutting device, cutting mechanism, and forceps, and includes other similar configurations.
  • the end effector 10a includes a reference shaft 11a (corresponding to the reference frame 112 in the cutting mechanism 10) that penetrates the bellows-shaped flexible portion 101 provided at the tip of the tubular support 100 attached to the scissors-type multifunctional surgical instrument.
  • a movable frame 12a (corresponding to the slide frame 12 in the cutting mechanism 10) provided with a maxillary portion 14a (corresponding to the maxillary portion 14 in the cutting mechanism 10) and a cutting cutter 15a (corresponding to the cutting cutter 15 in the cutting mechanism 10) at the tip.
  • the portion corresponding to the inside of the flexible flexible portion 101 is configured to have flexibility that can be deformed following the movable flexible portion 101.
  • a wire may be used as a drive.
  • the operation of the upper jaw portion 14a and the cutting cutter 15a in the end effector 10a configured in this manner is the same as that of the upper jaw portion 14 and the cutting cutter 15 of the cutting mechanism 10 in the forceps 1 described above, and is movable with respect to the reference axis 11a.
  • the target portion is gripped by the gripping mechanism 17a composed of the lower jaw portion 116a and the upper jaw portion 14a provided at the end of the tip side F of the reference shaft 11a, and the cutting cutter 15 Can be cut with.
  • the tip side of the upper jaw portion 14a on the back side is restricted from projecting to the back side and the cutting cutter 15a rotating along the back side surface of the upper jaw portion 14a projecting upward from the upper surface of the upper jaw portion 14a.
  • the protrusion control unit 143 is provided. As a result, even if the pivot of the cutting cutter 15a in the opening direction is faster than the pivot of the maxilla 14a in the opening direction, the upper end of the cutting cutter 15a is regulated by the protrusion restricting portion 143, and the maxilla 14a and Together with the cutting cutter 15a, it is pivoted in the opening direction, and it is possible to prevent the upper portion of the cutting cutter 15a from protruding upward from the upper surface of the upper jaw portion 14a.
  • a coaxial electrode 20 along the longitudinal direction L is provided on the upper surface of the lower jaw portion 116a and the bottom surface of the upper jaw portion 14a of the end effector 10a configured in this way. Further, a coaxial cable 40 for connecting the microwave transmitter 30 for irradiating microwaves and the coaxial electrode 20 is connected to the end effector 10a. The microwave transmitter 30 may be provided inside the end effector 10a.
  • the coaxial cable 40 is composed of an insulator 42, an outer conductor 43, and an insulating coating 44 with the central conductor 41 and the central conductor 41 sandwiched therein, and is formed from the center to the outer diameter. They are arranged in this order and have appropriate flexibility.
  • the coaxial electrodes 20 provided on the bottom surface of the upper jaw portion 14a and the upper surface of the lower jaw portion 116a are the central conductor 21 and the semicircular insulator 22 having a semicircular cross section, as shown in the enlarged view of the A portion in FIG. 17A. , It is composed of a semi-circular tubular semi-circular tube conductor 23 arranged outside the semi-circular insulator 22.
  • the coaxial electrode 20 configured in this way has a semi-cylindrical shape and is configured to have a predetermined length, and as shown in FIG. 17C, the bottom surface of the upper jaw portion 14a. And on the upper surface of the lower jaw portion 116a, the flat surfaces are arranged along the longitudinal direction so as to face each other.
  • the coaxial electrodes 20 arranged on the upper jaw portion 14a and the lower jaw portion 116a have an insulating layer arranged on the outside and are insulated from the upper jaw portion 14a and the lower jaw portion 116a.
  • each coaxial electrode 20 provided in the upper jaw portion 14a and the lower jaw portion 116a is connected to the central conductor 41 of the coaxial cable 40, and half of the coaxial electrode 20 is connected.
  • the circular conductor 23 and the outer conductor 43 of the coaxial cable 40 are connected to form the same electrode connection. If necessary, one of them may be connected in opposite polarity as shown in FIG.
  • the coaxial electrode 20 connected to the microwave transmitter 30 via the coaxial cable 40 is connected to the central conductor 21 of the coaxial electrode 20 and the semicircular tube via the coaxial cable 40 when the microwave transmitter 30 operates.
  • a microwave can be irradiated between the conductor 23 and the conductor 23.
  • FIG. 16 shows an embodiment in which the electronic module 31 is built in the end effector 10a.
  • microwave transmitter 30 is incorporated in the end effector 10a
  • the electronic module 31 in the end effector 10a the medical device can be miniaturized and the convenience of surgery is enhanced.
  • FIG. 18 shows a schematic explanatory view of the end effector 10b of the fifth embodiment.
  • FIG. 18A shows a schematic front view of the end effector 10b in the normal state
  • FIG. 18B shows a schematic front view of the end effector 10b in the disconnected state.
  • FIG. 19 shows a schematic explanatory view of the end effector 10b.
  • FIG. 19A shows a schematic cross-sectional view of the cutting mechanism of the end effector 10b in the normal state
  • FIG. 19B shows a schematic cross-sectional view of the end effector 10b in the cut state
  • FIG. 19C shows a coaxial electrode. The schematic cross-sectional view of the cutting mechanism in which the arrangement of is different is shown.
  • the gripping mechanism 17a composed of the lower jaw portion 116a and the upper jaw portion 14a of FIG. 16 is further provided with a cutting cutter 15a, and the end effector 10a for cutting the target portion gripped by the gripping mechanism 17a with the cutting cutter 15a is shown in FIG.
  • the end effector 10b is provided with a fixed blade 119b instead of the lower jaw portion 116a at the tip of the reference shaft 11b, and is provided with a movable blade 14b instead of the upper jaw portion 14a to form a cutting mechanism 19.
  • the movable frame 12b is moved to the tip side F with respect to the reference shaft 11b, so that the movable blade 14b connected to the movable frame 12b supports the tip provided on the reference shaft 11b. It rotates around the shafted portion 141b pivotally supported by the shaft 117b in a direction close to the fixed blade 119b. Then, as shown in FIGS. 18 (b) and 19 (b), the fixed blade 119b and the movable blade 14b are closed, and the target portion can be cut by the cutting blades 153b and 153a provided respectively.
  • a coaxial electrode 20 is provided on the side surface of the end effector 10b configured in this manner on the opposite side of the fixed blade 119b and the movable blade 14b. Then, as shown in FIG. 19A, the central conductor 21 of each coaxial electrode 20 provided on the side surface of the fixed blade 119b and the movable blade 14b and the central conductor 41 of the coaxial cable 40 are electrically connected to be coaxial. The semi-circular conductor 23 of the electrode 20 and the outer conductor 43 of the coaxial cable 40 are electrically connected.
  • microwaves can be irradiated from the coaxial electrodes 20 provided on the side surfaces of the fixed blade 119b and the movable blade 14b.
  • microwaves are irradiated from each of the fixed blade 119b and the movable blade 14b in a state where the blood vessel B, which is the target portion, is arranged between the fixed blade 119b and the movable blade 14b.
  • the blood vessel B arranged between the fixed blade 119b and the movable blade 14b is condensed.
  • the condensed portion in the blood vessel B can be cut by the cutting mechanism 19 by operating the movable blade 14b.
  • the blood vessel B can be efficiently condensed by bringing the blood vessel B into contact with the movable blade 14b and the reference shaft 11b and irradiating the coaxial electrode 20 with microwaves, the movable blade 14b and the fixed blade 119b Blood vessels B may be slightly separated.
  • the end effector 10b is provided with the coaxial electrodes 20 on the opposite side surfaces of the fixed blade 119b and the movable blade 14b as shown in FIGS. 19A and 19B, but as shown in FIG. 19C.
  • the coaxial electrode 20 may be arranged on the outer side surface that is separated from the fixed blade 119b and the movable blade 14b.
  • the central conductor 21 of the coaxial electrode 20 and the central conductor 41 of the coaxial cable 40 provided on the side surfaces of the fixed blade 119b and the movable blade 14b are electrically connected.
  • the semi-circular conductor 23 of the coaxial electrode 20 and the outer conductor 43 of the coaxial cable 40 are electrically connected.
  • one central conductor 21 of the coaxial electrode 20 provided on each of the side surfaces of the fixed blade 119b and the movable blade 14b and the outer conductor 43 of the coaxial cable 40 are electrically connected. It may be connected and the semi-circular conductor 23 of the coaxial electrode 20 and the central conductor 41 of the coaxial cable 40 may be electrically connected. In this case, the polarities of the coaxial electrodes 20 provided on the side surfaces of the fixed blade 119b and the movable blade 14b are opposite to each other.
  • the coaxial electrodes 20 provided on the side surfaces of the fixed blade 119b and the movable blade 14b can irradiate the microwave between the central conductor 21 and the semicircular conductor 23.
  • the central conductor 21 of one coaxial electrode 20 and the other central conductor 21 having opposite polarities, and the semicircular conductor 23 of one coaxial electrode 20 and the semicircular conductor 23 of the other coaxial electrode 20 Microwaves will be emitted even in between.
  • the coaxial electrodes 20 provided on the facing surfaces of the lower jaw portion 116a and the upper jaw portion 14a have opposite polarities. It may be connected and configured.
  • a coaxial electrode 20 may be provided on the side surface of the cutting cutter 15a in addition to the facing surface between the lower jaw portion 116a and the upper jaw portion 14a, or the coaxial electrode 20 may be provided on the upper jaw portion 14a.
  • the coaxial electrode 20 may be provided on the upper surface of the lower jaw portion 116a and the side surface of the cutting cutter 15a without providing the 20. Further, as shown in FIGS. 24 (f) to 24 (h), the coaxial electrode 20 may be provided only on one of the facing surfaces of the upper jaw portion 14a and the lower jaw portion 116a.
  • the above-mentioned irradiation electrodes 24a and 24b may be provided instead of the coaxial electrodes 20 provided on the upper jaw portion 14 and the lower jaw portion 116a of the end effector 10a.
  • the irradiation electrode 24c may be provided on the side surface of the cutting cutter 15.
  • 21 (a) shows a vertical cross-sectional view of the end effector 10a provided with the irradiation electrode 24 (24a, 24b, 24c)
  • FIG. 21 (b) shows one of the end effectors 10a provided with the irradiation electrode 24. A partially enlarged vertical cross-sectional view is shown.
  • At least one of the upper jaw portion 14, the cutting cutter 15 and the lower jaw portion 116 in the above-mentioned forceps 1, 1X, 1Y is coaxial connected to the microwave transmitter 30 by the coaxial cable 40.
  • the electrode 20 may be provided.
  • FIG. 22A shows a front view of the forceps 1 in which the coaxial electrodes 20 are provided on the upper jaw portion 14 and the lower jaw portion 116.
  • FIG. 22 (b) shows a front view of the forceps 1X having the coaxial electrodes 20 provided on the upper jaw portion 14 and the lower jaw portion 116
  • FIG. 22 (c) shows the forceps 1Y provided with the coaxial electrodes 20 on the upper jaw portion 14 and the lower jaw portion 116.
  • the front view of is shown.
  • the forceps 1, 1X, 1Y provided with the coaxial electrode 20 in the gripping mechanism 17 composed of the upper jaw portion 14 and the lower jaw portion 116 operate the trigger handle 13 with respect to the target portion gripped by the gripping mechanism 17. After irradiating microwaves from both coaxial electrodes 20 to coagulate, the target portion can be cut with the cutters 15 and 15Y.
  • both the upper jaw portion 14 and the lower jaw portion 116 constituting the gripping mechanism 17 are provided with the coaxial electrodes 20, but one of the upper jaw portion 14 and the lower jaw portion 116 may be provided with the coaxial electrodes 20.
  • the cutters 15 and 15Y may be provided with the coaxial electrode 20.
  • the coaxial electrode 20 and the irradiation electrode 24 are provided on the upper jaw portion 14, the cutting cutter 15 and the lower jaw portion 116 in the above-mentioned forceps 1, 1X, 1Y as a cutting device. It does not have to be.
  • FIG. 23A shows a front view of the forceps 1 in which the coaxial electrode 20 and the irradiation electrode 24 are not provided on the upper jaw portion 14, the cutting cutter 15, and the lower jaw portion 116.
  • FIG. 23 (b) shows a front view of forceps 1X in which the upper jaw portion 14, the cutting cutter 15 and the lower jaw portion 116 are not provided with the coaxial electrode 20 and the irradiation electrode 24, and
  • FIG. 23 (c) shows the upper jaw portion 14, the cutting cutter.
  • a front view of the forceps 1Y in which the coaxial electrode 20 and the irradiation electrode 24 are not provided on the 15 and the mandibular portion 116 is shown.
  • FIG. 24 is a schematic diagram of a confirmation test in which solidification due to microwaves irradiated from the coaxial electrode 20 was confirmed.
  • FIGS. 24 (a) to 24 (a) show the test conditions in which microwaves were irradiated from the coaxial electrodes 20 provided on the fixed blade 119b and the movable blade 14b of the end effector 10b in the egg white, and the coagulated egg white M was cut. It is shown in 24 (e).
  • FIGS. 24 (f) to 24 (h) show the test conditions when the coaxial electrode 20 is provided only on the lower jaw portion 116a of the end effector 10a, that is, when the coaxial electrode 20 is provided on the so-called single-edged blade.
  • the coagulated egg white M expands along the coaxial electrodes 20 provided on the fixed blade 119b and the movable blade 14b. To go. Then, when the movable blade 14b is rotated with respect to the fixed blade 119b constituting the cutting mechanism 19, the coagulated egg white M is formed by the fixed blade 119b and the cutting blade provided on the movable blade 14b as shown in FIG. 24 (d). Can be disconnected.
  • the coagulated egg white M When cutting the coagulated egg white M with the cutting blade, the coagulated egg white M may be cut while irradiating the coaxial electrode 20 provided on the fixed blade 119b and the movable blade 14b with microwaves, or the coaxial electrode 20 may not be irradiated with microwaves. May be cut into.
  • the movable blade 14b constituting the cutting mechanism 19 is opened, the coagulated egg white M is advanced in the direction of the arrow with respect to the cut portion, and the coaxial electrode 20 is irradiated with microwaves again. As shown in FIG. 24 (b), coagulated egg white M is formed. By repeating this, it was confirmed that the cutting mechanism 19 in the end effector 10b can cut, for example, the coagulated portion of the blood vessel B. This result is presumed to suppress the deterioration of hemostatic function in the blood clot due to bleeding in surgery.
  • the coaxial electrode 20 When the coaxial electrode 20 is provided on both the lower jaw portion 116a and the upper jaw portion 14a of the end effector 10a, or when the coaxial electrode 20 is provided on the lower jaw portion 116a and the cutting cutter 15a, further, the lower jaw portion 116a, Even when the coaxial electrodes 20 are provided on all of the upper jaw portion 14a and the cutting cutter 15a, the cutting mechanism 19 in the end effector 10a coagulates, for example, in the blood vessel B, similarly to the end effector 10b in which the coaxial electrodes 20 are provided on both blades. The part can be cut.
  • the end effector 10a which is a single-edged electrode in which the coaxial electrode 20 is provided only on one of the lower jaw portion 116a and the upper jaw portion 14a constituting the cutting mechanism 19
  • the end effector 10a is as shown in FIG. 24 (g).
  • the coagulated egg white M is formed by irradiating the coaxial electrode 20 provided on the single-edged blade with microwaves, and the coagulated egg white M enlarged along the coaxial electrode 20 provided on the single-edged blade can be cut by the cutting cutter 15a.
  • the formation rate of the coagulated egg white M is slower and the size of the coagulated egg white M formed is smaller than that in the case where the coaxial electrode 20 is provided on both blades.
  • Surgical equipment such as end effectors 10a and end effectors 10b that irradiate microwaves emit less smoke and mist, and have a strong hemostatic function, making them useful for surgical support in closed spaces such as endoscopic surgery and robotic surgery.
  • Surgical equipment such as end effectors 10a and end effectors 10b that irradiate microwaves emit less smoke and mist, and have a strong hemostatic function, making them useful for surgical support in closed spaces such as endoscopic surgery and robotic surgery.
  • Optimal when there is a lot of bleeding, hemostasis in the blood pool and hemostasis in the liquid are diminished like other energy devices.
  • one of the conductor 21 of the coaxial electrode 20 and the semicircular conductor 23 is arranged on one of the double-edged blades to form an electrode, and the center of the coaxial electrode 20 on the other of the double-edged blades.
  • the microwave is emitted from one electrode of the double-edged blade toward the electrode provided on the other, so that the end effector opens in the air.
  • the coaxial electrodes 20 provided on each of the double-edged blades of the end effector 10b irradiate microwaves, solidification proceeds from the coaxial electrodes 20 provided on the double-edged blades (FIGS. 24 (b), (c). ), The egg white was coagulated and the coagulated egg white M was formed after twice the time in the air. Further, in the case of the end effector 10a having the coaxial electrode 20 on only one of the double-edged blades, the coagulated egg white M was formed, but the formation of the entire coagulated egg white M was not completed even if it took three times as long. .. As described above, the arrangement of the coaxial electrode 20 that affects the formation of the coagulated egg white M may be selected according to the usage environment and the treatment target.
  • FIG. 25 shows the medical device 220 in another embodiment of the present invention.
  • the medical device 220 includes a surgical device 221 that drives the end effector 10a of the scissors-type multifunctional surgical device (medical processing tool) as described in the examples of FIGS. 16 to 24. I'm out.
  • the medical device 220 may be provided with the end effector 10b.
  • the surgical apparatus 221 includes a microwave irradiation module 222 including a microwave control circuit such as an irradiator and an amplifier, and a drive unit 224 of a mechanical mechanism that drives the end effector 10a by manually operating the lever 223.
  • a microwave irradiation module 222 including a microwave control circuit such as an irradiator and an amplifier, and a drive unit 224 of a mechanical mechanism that drives the end effector 10a by manually operating the lever 223.
  • the trigger handle 13 of the forceps shown in FIGS. 1 to 15 may be used as the lever 223, and the mechanical mechanism from the trigger handle 13 to the end effectors 10a and 10b may be incorporated into the surgical apparatus 221.
  • the microwave irradiation module 222 having an irradiator is provided in the surgical apparatus 221 but, if necessary, inside the shaft portion 225 or in the bent portion 226 having a wrist function (such as the flexible portion 101 in FIG. 16).
  • the medical device 220 can be miniaturized.
  • the operator manually grips and operates the lever 223 of the grip portion of the surgical apparatus 221 so that the drive unit 224 operates the end effector 10a of FIG. 16 via the shaft portion 225.
  • the surgical device 221 receives power from the adapter 227.
  • the microwave irradiation module 222 included in the surgical apparatus 221 may be configured to be directly or indirectly connected to an irradiator installed in the robot body in addition to the conventional stationary type, shoulder-mounted type, and built-in type.
  • the microwave irradiation does not coagulate when gripped by the lower jaw portion 116 and the upper jaw portion 14 (hereinafter referred to as forceps double-edged blades) of the end effector 10a, but the upper jaw portion 14 with respect to the lower jaw portion 116. Even if the biological tissue, which is the target site, is coagulated during rotation, coagulation and hemostatic cutting of the tissue is possible. Further, when the biological tissue is gripped by the gripping mechanism 17a in the end effector 10a and cut by the cutting cutter 15, microwaves may be irradiated.
  • the tissue can be opened and drained and grasped to remove obstacles, and the grasping function can be used for the operation of maintaining the surgical field.
  • the part to be coagulated and cut can be grasped with forceps and coagulated and cut as it is. It is possible to do.
  • the coagulation and cutting operations do not require re-grasping or re-pinching a plurality of tissues, and the operation is completed by grasping the pinched tissue once. Therefore, the surgical operation can perform grasping, coagulation, and cutting with one device. It is a single operation of general excision surgery, and the excision operation can be completed with a single instrument, eliminating the need for replacement with other instruments.
  • the microwave irradiation module 222 may be provided with an execution program memory, and the drive unit 224 may be an electric mechanical mechanism controlled by the execution program.
  • the execution program moves the drive unit 224 based on the position data of the lever 223, and by configuring the end effector 10a of FIG. 1, the slide frame 12 is moved.
  • the upper jaw portion 14 is rotated in the direction of the lower jaw portion 116 in cooperation with the cutting cutter 15 (see FIG. 2), a microwave signal is sent to the irradiation electrode 24 by the program, and the living body is irradiated with the microwave.
  • the tissue can be coagulated.
  • the movable frame 12a is further advanced by the program according to the position data as described above, and the living tissue is gripped by the upper jaw portion 14a and the lower jaw portion 116a.
  • the movable frame 12a is further advanced by the above program according to the position data of the lever, and only the cutting cutter 15 is rotated to cut the coagulated biological tissue.
  • the medical device 220 returns to the initial state (open state) based on the position data of the lever.
  • FIG. 25 (b) is a schematic view of a surgical system including a plurality of medical devices 220 illustrated in FIG. 25 (a), and the internal configuration of each is the same as that of FIG. 25 (a), but the medical device 220.
  • Each microwave irradiation module 222 of the above further includes a unit for synchronizing the wavelengths of the microwaves of each other, and synchronizes via the adapter 227 or wirelessly.
  • the wavelengths of both microwaves are synchronized, so that sparks or the like occur between the two medical devices 220. It can be prevented and safety is increased.
  • FIG. 26 shows the remote surgery system 200 in one embodiment of the present invention.
  • the remote surgery system 200 is a surgeon console 201 that serves as a station for each of the two operators D (D1 and D2), a master control unit 202 operated by the operator D, a viewing angle / core cart 240, and a patient-side cart. It has a robot of patient-side cart 210.
  • the surgeon console 201 includes a viewer 201a in which an image of the surgical site is displayed on the operator D.
  • operators D1 and / or D2 generally sit in the chair of the surgeon console, align their eyes in front of the viewer 201a, and grab the master control unit 202 in one hand.
  • the surgeon console 201 and the master control unit 202 may be provided in three or more units, if necessary.
  • the robot of the patient-side cart 210 is installed adjacent to the patient. During use, the patient-side cart 210 is placed near the patient in need of surgery. The robot of the patient-side cart 210 is provided with casters on the pedestal 211 so that it can be fixed but moved during surgery.
  • the surgeon console 201 is used in the same operating room as the patient cart, but may be installed remotely from the patient cart 210.
  • the patient-side cart 210 includes four robot arm assemblies 212, but the number of robot arm assemblies 212 is arbitrary.
  • Each robot arm assembly 212 has a structure in which it is connected to a drive device 213 that enables three-dimensional movement and is driven and controlled.
  • Display 214 displays image data related to surgery.
  • the drive device 213 is controlled by the master control unit 202 of the surgeon console 201.
  • the movement of the manipulator portion of the robot arm assembly 212 is controlled by the operation of the master control unit 202.
  • An image capturing device 215 such as an endoscope is arranged in the robot arm assembly 212a, which is one of the four robot arm assemblies 212.
  • a visual camera 216 is included at the remote end of the image capture device 215.
  • the elongated shaft-shaped image capture device 215 allows the visual camera 216 to be inserted through the surgical entry port of the patient (not shown).
  • the image capture device 215 is operably connected to the viewer 201a of the surgeon console 201 to display the image captured by the visual camera 216.
  • Each of the other robot arm assemblies 212 is a link device that supports and includes tool 217, which is a detachable surgical instrument, respectively.
  • Tools 217 of the robot arm assembly 212 include end effectors 10a (10b), respectively.
  • Tool 217 has an elongated shaft that allows the end effector 10a (10b) to be inserted through the patient's surgical entry port.
  • the movement of the end effector 10a (10b) is controlled by the master control unit 202 of the surgeon console 201.
  • the wavelengths of the microwaves emitted from the end effector 10a (10b) are synchronized with each other. It has a structure.
  • the wavelengths of the irradiated microwaves are synchronized, so that the plurality of tools 217 or the plurality of end effectors 10a are synchronized. It is possible to prevent the occurrence of sparks and the like between (10b), and the safety is enhanced. Operating a plurality of end effectors 10a (10b) at the same time can shorten not only advanced surgery but also surgery time.
  • FIG. 27 shows a configuration of a tool 217 that can be loaded into the robot arm assembly 212 of the remote surgery system 200 of FIG. 26 as a typical example of a surgical device.
  • the tool 217 mounted on the other robot arm assembly 212 may have the same configuration or may be a surgical device having another configuration.
  • FIG. 27 (a) shows a plan view of the tool 217.
  • the tool 217 has an end effector 10a of a scissors-type multifunctional surgical device, a bending portion 226, a shaft portion 225, a surgical device 221 for driving and monitoring the tool 217, and a connector 228 for connecting to a robot.
  • the bent portion 226 increases the degree of freedom in the operation angle of the effector, and improves the accuracy of robot control.
  • FIG. 27 (b) shows the internal configuration of the tool 217 of FIG. 27 (a).
  • a medical system including a surgical device 221 that drives an end effector 10a directly connected to the slide shaft of FIG. 16 via a shaft portion 225 and a robot of a patient-side cart 210 that controls the surgical device 221 is shown.
  • the end effector 10a is a cutting device having a rotatable first gripping member and a fixed second gripping member held so as to be openable and closable, and a movable cutting member attached to the first gripping member and the second gripping member. Be prepared.
  • the surgical device 221 connected to the end effector 10a is a matching unit 231 with the tool 217 1, a reflected wave monitor 232, a control circuit 233 for controlling signals in the surgical device 233, and a cutting device for the tool 217 via a shaft portion 225 of the tool 217. It has an irradiation / drive unit 234 having an amplifier for mechanically driving the operation and a microwave generator, and a signal interface 235 with the robot of the patient-side cart 210.
  • the robot of the patient-side cart 210 is connected by wire and / or wirelessly via the surgical device 221 and the signal interface 235 and the connector 228, and the robot of the patient-side cart 210 is connected.
  • an input unit 210a that receives an operation signal from the master control unit 201, an arithmetic unit CPU that executes a predetermined operation program based on the operation signal, and a surgical apparatus 221 based on the output from the arithmetic unit.
  • An output unit 210a that generates a drive signal for driving the first gripping member and the cutting member of the end effector 10a is provided.
  • the input unit and the output unit are composed of an input / output unit 210a (I / O).
  • FIG. 28 is an explanatory diagram of the remote surgery system 200.
  • FIG. 28A is a block diagram showing a connection relationship with each unit, and
  • FIG. 28B is an operation flow diagram of the remote surgery system 200.
  • the visual / core cart 240 has a function related to the image acquisition device.
  • the surgeon operates the master control unit 202 of the surgeon console 201, and if there are two surgeons, also operates the master control unit 202 of the surgeon console 201 (step S1).
  • the command generated by the operation is transmitted to the visual core cart 240 (step S2).
  • the visual core cart 240 interprets the signal and moves the desired robot arm assembly 212 into the patient's surgical area (step S3).
  • step S4 the tool 217 attached to the selected robot arm assembly 212 is inserted into the patient through an elongated pipe (step S4), and the tissue is gripped, coagulated, and cut into the end effectors 10a (10b) of the above embodiment.
  • the operation is performed (step S5) to complete the operation of the living tissue.
  • the operation of gripping / coagulating / cutting the biological tissue in step S5 is the operation of the end effector 10a (10b), but the living tissue is coagulated, gripped, and cut while irradiating microwaves from the electrodes.
  • Operation pattern 1 to be performed after grasping the biological tissue, the living tissue is coagulated by irradiating the living tissue with microwaves from the electrode, and the living tissue is cut while irradiating the microwave from the electrode.
  • These three movement patterns are configured to be selectively available according to the surgical content.
  • the pattern may be a pattern in which the plurality of tools shown in FIG. 26 share the operation, such as grasping or solidifying with the tool 217 and cutting with another tool 217.
  • the operation of solidifying, grasping, and cutting the tissue in this embodiment is performed by the robot 210 instead of the control operation of the end effector 10a (10b) based on the position data of the lever 223 described as a modification of the embodiment of FIG.
  • a similar control operation flow can be obtained by operating the end effector 10a (10b) based on the control signal from.
  • the present invention is not limited to the above description, and the target site is not only a part of an object but also a member. It may include a general-purpose cutting device capable of gripping / contacting and cutting the target member. Further, the energy wave emitted from the electrode of the forceps is not limited to the microwave, and may include other electromagnetic waves.
  • the lower jaw portion 116 and the upper jaw portion 14 form the gripping mechanism 17, and the target portion such as the blood vessel B gripped by the gripping mechanism 17 is cut.
  • gripping mechanisms 17 composed of a lower jaw portion 116 and an upper jaw portion 14 are provided on both sides of the cutting cutter 15 and two sets of gripping mechanisms are provided.
  • the target portion while being gripped by 17 may be cut by the cutting cutter 15.
  • the horizontal movement of the forceps or the end effector of the present invention is not limited to the axial movement, and may be connected by a wire in order to increase the degree of freedom in the position and angle of the end effector.
  • the spring mechanism for moving the maxilla and the cutting cutter for gripping, coagulating, and cutting the living tissue is not limited to the embodiment and may be provided at any position.
  • insulation coating may be applied as appropriate to prevent corrosion and sparks other than the electrodes and cutting edge.
  • tissue between the blades of both gripping members upper and lower jaws, double blades
  • the split portion of the coaxial cable that supplies microwaves to the end effector enables a structure that does not restrict the movement of multiple joints and sends energy beyond multiple robot joints with a flexible cable.
  • the medical device having the forceps and end effector of the present invention can be used under MR image guidance, and microwave energy can be introduced not only under a microscope or a robot hand but also in endovascular surgery and fetal surgery.
  • the horizontal movement of the forceps or end effector of the present invention is not limited to axial movement, and may be connected by a wire in order to increase the degree of freedom in the position and angle of the end effector.
  • the spring mechanism for moving the maxilla and the cutting cutter for gripping, coagulating, and cutting the living tissue is not limited to the embodiment and may be provided at any position. Further, other than the electrodes and the cutting edge, insulation coating may be appropriately applied to prevent corrosion and sparks.
  • the tissue between the blades of both gripping members can be solidified from both sides.
  • the split portion of the coaxial cable that supplies microwaves to the end effector makes it possible to send energy beyond the multiple robot joints with a flexible cable without restricting the movement of the plurality of joints.
  • the medical device having the forceps and end effector of the present invention can be used under MR image guidance, and microwave energy can be introduced not only under a microscope or a robot hand but also in endovascular surgery and fetal surgery.
  • Electrode 30 ... Microwave transmitter 31 ... Electronic module 35 ... Core cart 40 ... Coaxial cable 41 ... Central conductor 42 ... Insulator 43 ... Outer conductor 44 ... Insulation coating 100 ... Support 101 ... Flexible part 111 ... Fixed handle frame 112, 112X, 112Y ... Reference frame 112Xa ... Slide frame 113 , 131 ... Ring portion 114 ... Square portion 115 ... Support shaft 116, 116a ... Lower jaw portion 117, 117b ... Tip support shaft 118, 123 ... Click convex portion 119b ... Fixed blade 121, 121Ya, 121Yb ...
  • Upper support shaft 121Xa Middle stage support Shafts 122, 122Xa, 122Yb ... Tip upper support shaft 122Xb ... Abutment ring portion 123X ... Restriction hole 124Y ... Restriction frame 132, 132X, 132Y ... Axis portion 133, 133X, 133Y ... Upper pivot portion 134X ... Upper stage pivot portion 135X ... Blocks 141, 141b, 151 ... Shafted portion 142, 152 ... Rotating shaft portion 143 ... Protrusion control portion 153, 153a, 153b, 153Y ... Cutting blade 161X ... Insertion shaft 162X ... Flange portion 181Y ... Drive shaft 200 ...
  • Remote surgery system 201 Surgeon console 201a ... Viewer 202 ... Master control unit 210 ... Patient side cart 210a ... Input / output unit 211 ... Pedestal 212, 212a ... Robot arm assembly 213 ... Drive device 214 ... Display 215 ... Image capture device 216 ... Visual-view camera 217 ... Tool 220 ... Medical equipment 221 ... Surgical device 222 ... Microwave irradiation module 223 ... Lever 224 ... Drive unit 225 ... Shaft part 226 ... Bending part 227 ... Adapter 228 ... Connector 231 ... Matching unit 232 ... Reflected wave monitor 233 ... Control circuit 234 ... Drive unit 235 ... Signal interface 240 ... Core cart B ... Blood vessels D, D1 ... Operator F ... Tip side L ... Longitudinal direction M ... Coagulated egg white R ... Base end side

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Vascular Medicine (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

一連操作で対象部位を当接(把持)し、該対象部位を切断できる切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システムを提供するべく、切断器(1)は開閉可能に組付けられた第1当接部材(14)及び第2当接部材(116)と、第1当接部材(14)を第2当接部材(116)に向かって回動し、第1当接部材(14)と第2当接部材(116)とを対象部位(B)に当接させる当接機構(17)と、当接機構(1)7により第1当接部材(14)と第2当接部材(116)とが対象部位(B)に当接した状態において、上記対象部位(B)を切断する切断機構(10)とを有するように構成した。

Description

切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム
 本発明は、対象部位に当接し、切断する切断器に関し、特に当接(把持)、切開、剥離、凝固(止血)、切断手術操作が可能な鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システムに関する。
 摘出手術の基本的操作は、剥離に続き、凝固(止血)、切断操作の繰り返しである。その間、対象部位を把持する操作も必要となる。手術では、それぞれの操作が連続的に行われることが望ましく、できればデバイスを代えることなく操作が続けられれば理想的である。
 しかしながら、高周波エネルギーで有名なリガシュアーは刃が水鳥の嘴のような幅広の刃により生体組織(対象部位)を把持、高周波を流して凝固し、切り代のある凝固部分をメスまたはハサミ様のもので切る二段構えの構成であり、二段操作となる。
 詳しくは、特許文献のとおり、外科手術用のハンドルを備えた一対の開閉可能のシャフト部材を有する双極鉗子のハサミ形の機械的鉗子であって、各シャフトは、それぞれ、その遠位端から延在する電極を有する顎部材を有し、ハンドルは両顎部材の間に組織を把持するように協働するように配置され、電極は電気外科手術エネルギーの選択的伝導を可能にするために、電気外科手術エネルギー源に接続するように適合される電極アセンブリを構成し、前記顎部材の間に把持される組織を切断するために設けられたナイフ刃を選択的に前進させるように構成されたトリガを有するナイフ作動機構を備えたハサミ形の機械的鉗子が提案されている。
 この鉗子では、ハンドルを握ることで組織を顎部材で把持して凝固(止血)する操作ができるが、把持された凝固組織を切るためには、ハンドル操作とは別に、ナイフ刃を前進させるために別に設けられたトリガを動かす手動操作をしなくてはならない。
特開2017-060846号公報
 一連操作で組織に当接し、切断できる器具は開発されておらず、手術操作の連続したスムースな進捗と器具交換による時間短縮の為、多機能デバイスが必要とされ、特に術者の手が届かない鏡視下手術やロボット手術において重要となる。凝固、止血機能を確保しながら切断でき、組織を把持することもできるデバイスが求められている。
 本発明は、一連操作で対象部位を当接(把持)し、該対象部位を切断できる切断器を提供することを課題としている。更には、一連操作で組織に当接し、切断できる鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システムを提供することを課題としている。
 前記課題を解決するための本発明の切断器は、開閉可能に組付けられた第1当接部材及び第2当接部材と、前記第1当接部材を前記第2当接部材に向かって回動し、前記第1当接部材と前記第2当接部材とを対象部位に当接させる機構と、該機構により前記第1当接部材と前記第2当接部材とが前記対象部位に当接した状態において、上記対象部位を切断する切断機構とを有する。
 本構成によれば、前記把持機構と前記切断機構の一連の操作により、前記対象部位に当接し、独立した操作部材を必要とすることなく、当接した対象部位を切断することができる。前記切断機構に切断部材を設け、該切断部材は、前記第1把持部材の回駆動と同方向に回動させ、前記第2把持部材と接合することにより上記対象部位を切断する構成としてもよい。
 また、前記第1把持部材に、同方向に回動する前記切断部材が切断方向と逆方向に前記第1把持部材を越えて突出することを規制する突出規制部を設けてもよい。 
 また、前記切断機構において、前記切断部材は、前記第2把持部材と平行にスライド前進させ前記切断部材の刃先により上記対象部位を切断する構成としてもよい。
 前記切断器は手術用の鉗子であって、本発明の鉗子は、上述の切断器を備え、前記対象部位は生体組織であるとともに、前記第1把持部材と第2把持部材はそれぞれ第1顎部材と第2顎部材であり、該第1顎部材を該第2顎部材に向かって回動させることにより前記生体組織を把持・凝固する駆動機構と、前記駆動機構を操作する操作部とが備えられ、該操作部の一連の操作により、前記生体組織を第1顎部材と第2顎部材とにより把持するとともに凝固させ、切断機構が切断する。
 前記切断器(鉗子)は、前記第1把持部材(第1顎部材)において前記対象部位を把持する把持箇所及び前記切断部材における切断刃の近傍のうち少なくとも一方と、前記第2把持部材において前記対象部位を把持する把持箇所とに、電磁波を照射するための電極を設けた構成としてもよい。前記電極は電磁波を供給する同軸ケーブルに分岐接続される。
 前記切断器又は前記鉗子は、前記対象部位を切断する切断刃が設けられた第1切断部材と第2切断部材を備え、それぞれの前記切断刃に沿って、電磁波を照射するための電極を設けた構成としても良く、前記電極は、電磁波を供給する同軸ケーブルに分岐接続される。
 前記第1顎部材(又は第1切断部材)と前記第2顎部材(又は第2切断部材)に設けられた電極は、前記同軸ケーブルから並列分岐させた同軸ケーブルに同極方向又は異極方向に接続させる構成としてもよい。
 前記第1顎部材を前記第2顎部材に向かって回動し、前記第1顎部材及び前記第2顎部材によって前記生体組織に把持する生体組織の把持方法、前記電極から電磁波の照射による凝固方法、さらに併設された前記切断部材により切断方法を提供する。
 本発明のロボットは、前記切断器又は鉗子に有線及び/又は無線で接続された入出力ユニットと、リアルタイムに操作信号を受信する入力ユニットと、前記操作信号に基づき予め定められた操作プログラムを実行する演算ユニットと、該演算ユニットからの出力に基づき前記切断器の前記第1当接部材と前記第2当接部材により前記対象部位に当接及び/又は前記対象部位を切断する駆動信号を発生する出力ユニットとを備え、ロボットアーム移動、ツールを移動、切断ステップを有する切断方法を可能とする。前記出力ユニットは、前記電極からの前記電磁波を照射する照射信号を発生する。また、前記ロボットを制御する外科医コンソールを複数備えた手術システムを提供する。
 この発明によれば、一連操作で対象部位を当接(把持)し、該対象部位を切断できる切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システムを提供することができる。
第1実施例の開状態の鉗子の説明図。図1(a)は鉗子の正面図、図1(b)は鉗子における切断機構の部分平面図、図1(c)は図1(b)の切断機構の部分正面図。 図1の鉗子の背面図。 図1の鉗子の概略説明図。図3(a)は図2におけるA-A矢視の側断面図、図3(b)は鉗子の部分縦断面図、図3(c)は図3(b)におけるB-B矢視の電極部の拡大図。 図1の鉗子の把持状態の説明図。図4(a)は鉗子における把持機構を閉じた把持状態の正面図、図4(b)は同状態の鉗子の背面図。 図1の鉗子の切断状態の説明図。図5(a)は鉗子における切断機構の切断カッタを閉じた切断状態の正面図、図5(b)は同状態の鉗子の背面図。 鉗子における切断機構の把持状態及び切断状態の説明図。図6(a)は把持機構で把持する前の図2におけるA-A矢視の側断面図、図6(b)は把持機構で対象部位を把持した状態の図4(b)におけるC-C矢視の側断面図、図6(c)は切断カッタで対象部位を切断した状態の図5(b)におけるD-D矢視の側断面図、図6(d)は、別の態様の切断機構の把持機構で把持した状態の右概略側面図。 第2実施例の鉗子の正面図。 図7の鉗子の説明図。図8(a)は鉗子の背面図、図8(b)は鉗子における切断機構側の側面図。 図8の鉗子の背面図。図8(b)におけるE-E矢視の部分断面図。 図7の鉗子の把持状態の説明図。図10(a)は把持状態の鉗子の正面図、図10(b)は同状態の鉗子の背面図、図10(c)は同状態の鉗子における切断機構側の側面図、図10(d)は図10(c)におけるF-F矢視の部分断面図。 図7の鉗子の切断状態の説明図。図11(a)は切断状態の鉗子の正面図、図11(b)は同状態の鉗子の背面図、図11(c)は同状態の鉗子における切断機構側の側面図、図11(d)は図11(c)におけるG-G矢視の部分断面図。 第3実施例の鉗子の正面図。 図12の鉗子の背面図。 図12の鉗子の把持状態の説明図。図14(a)は把持状態の鉗子の正面図、図14(b)は同状態の鉗子の背面図。 切断状態の鉗子の説明図。図15(a)は切断状態の鉗子の正面図、図15(b)は同状態の鉗子の背面図。 第4実施例のエンドエフェクタの概略正面図。 図16のエンドエフェクタの概略説明図。図17(a)は図16におけるH-H矢視の側断面図、図17(b)はエンドエフェクタの部分縦断面図、図17(c)は図16におけるI-I矢視の拡大平面図。 第5実施例のエンドエフェクタの概略説明図。図18(a)は通常状態のエンドエフェクタの概略正面図、図18(b)は切断状態のエンドエフェクタの概略正面図。 図18のエンドエフェクタの概略説明図。図19(a)は通常状態のエンドエフェクタにおける切断機構の概略断面図、図19(b)は切断状態のエンドエフェクタの概略断面図、図19(c)は、同軸電極の配置が異なる切断機構の概略断面図。 同軸電極と同軸ケーブルとの変形接続例の電極概略を示すエンドエフェクタの概略断面図。図20(a)は図19(a)と逆接続の側断面図、図20(b)は図17(b)と逆接続の部分縦断面図。 図17のエンドエフェクタの変形例のエンドエフェクタの概略説明図。図21(a)は図16におけるH-H矢視の側断面図、図21(b)はエンドエフェクタの部分縦断面図、図21(c)は図16におけるI-I矢視の拡大平面図。 別の実施例の鉗子の概略説明図。図22(a)は同軸電極を備えた図1の鉗子の背面図、図22(b)は同軸電極を備えた図7の鉗子の正面図、図22(c)は同軸電極を備えた図12の鉗子の正面図。 さらに別の実施例の鉗子の概略説明図。図23(a)は電極を備えていない図1の鉗子の背面図、図23(b)は電極を備えていない図7の鉗子の正面図、図23(c)は電極を備えていない図12の鉗子の正面図。 エンドエフェクタにおける電極からのマイクロ波照射による実験結果の概略イメージによる説明図。 他の実施例における医療機器の概略説明図。 他の実施例における遠隔手術システムの概略図。 遠隔手術システムにおける手術装置の概略説明図。 遠隔手術システムに関する説明図。
 以下、図面を参照しつつ、本発明における実施の形態について説明する。以下の説明では、同一の部品及び構成要素には同一の符号を付す。本実施形態は、たとえば、以下のような開示を含む。
 [構成1]
 開閉可能に組付けられた第1当接部材(14,14a,14b)及び第2当接部材(116,116a,119b)と、前記第1当接部材(14,14a,14b)を前記第2当接部材(116,116a,119b)に向かって回動し、前記第1当接部材(14,14a,14b)と前記第2当接部材(116,116a,119b)とを対象部位(B)に当接させる当接機構(17,17a)と、該当接機構(17,17a)により前記第1当接部材(14,14a,14b)と前記第2当接部材(116,116a,119b)とが前記対象部位(B)に当接した状態において、上記対象部位(B)を切断する切断機構(10,10X,19)とを有する切断器、鉗子、又は医療機器(1,1X,1Y,10a,10b,220)。この構成によれば、板材、パイプ、棒、組織体などの外部部材を把持し、把持した部材を切断することが可能となる。また、把持した状態において把持された部材に加熱、マイクロ波等のエネルギー照射等を施して加工した後、切断部材で切断することが可能となる。切断器としての多くの利用が可能となる。
[構成2]
 前記第1当接部材(14,14a)及び前記第2当接部材(116,116a)を、前記対象部位(B)を把持する第1把持部材(14,14a,14b)及び第2把持部材(116,116a)とするとともに、前記当接機構(17,17a)は、前記第1把持部材(14,14a)を前記第2把持部材(116,116a)に向かって回動し、前記第1把持部材(14,14a)と前記第2把持部材(116,116a)とで前記対象部位(B)を把持する把持機構(17,17a)とし、前記第1把持部材(14,14a)に併設された切断部材(15,15a,15Y)が設けられ、前記把持機構(17,17a)により前記第1把持部材(14,14a)と前記第2把持部材(116,116a)とで前記対象部位(B)を把持した状態において、前記切断部材(15,15a,15Y)を前記第1把持部材(14,14a)に沿って回動又はスライド等の移動をさせ、前記第2把持部材(116,116a)と接合することにより前記対象部位(B)を切断する構成1に記載の切断器、鉗子、又は医療機器(1,1X,1Y,10a,220)及び同機器による把持・切断方法。
[構成3]
 前記第1把持部材(14,14a)において前記対象部位(B)を把持する把持箇所及び前記切断部材(15,15a,15Y)における切断刃の近傍のうち少なくとも一方と、前記第2把持部材(116,116a)において前記対象部位(B)を把持する把持箇所とに、電磁波を照射するための電極(20,24a,24b,24c)が設けられた構成1又は構成2に記載の切断器、鉗子、又は医療機器(1,1X,1Y,10a,10b,220)、及び同機器により生体組織を把持・凝固・切断する方法。
[構成4]
 前記電極(20)は、中心電極(21)と、絶縁体を介して該中心電極(21)を囲繞する外側電極(23)とが備えられた同軸電極(20)であり、前記電磁波を照射する照射装置(30)と前記電極(20)とを接続する同軸ケーブル(40)を複数に並列分岐させるとともに、前記同軸ケーブル(40)の中心導体(41)と外部導体(43)に前記同軸電極(20)のそれぞれが同極又は逆極性に電気的に接続された構成3に記載の切断器、鉗子、又は医療機器(1,1X,1Y,10a,10b,220)及び同機器による把持・凝固・切断方法。
[構成5]
 構成2から構成4までのうちのいずれかに記載の切断器(1,1X,1Y)を備え、前記第1把持部材(14,14a)と第2把持部材(116,116a)はそれぞれ第1顎部材(14,14a)と第2顎部材(116,116a)であり、該第1顎部材(14,14a)を該第2顎部材(116)に向かって回動させることにより対象部位(B)を把持・凝固する駆動機構と、該駆動機構及び切断機構を操作するひとつの操作部(13)とが備えられ、該操作部(13)の一連の操作により、前記生体組織(B)を第1顎部材(14,14a)と第2顎部材(116,116a)とにより把持してから、切断機構(10,10X)が切断する鉗子(1,1X,1Y,10a)、及び同機器による把持・凝固・切断方法。
 この構成の場合、前記操作部(13)の操作によって、把持するまで前記把持機構(17,17a)及び前記切断機構(10,10X)が共に稼働し、前記操作部(13)のさらなる操作によって、前記対象部位(B)を把持する把持状態の前記把持機構(17,17a)に対して前記切断機構(10,10X)が差動する差動機構(142,16X,16Y)を備えても良い。また、前記操作部(13)の一連操作による差動機構(142,16X,16Y)の稼働を利用者に通知する通知部(118,123)を備えても良い。
[構成6]
 前記第1当接部材と前記第2当接部材とは前記対象部位(B)に当接する当接箇所に前記対象部位(B)を切断する切断刃(153a,153b)が設けられた第1切断部材(14b)と前記第2切断部材(119b)であり、前記当接機構は、前記第1切断部材(14b)と前記第2切断部材(119b)によって前記対象部位(B)に当接を切断する前記切断機構(19)であり、前記第1切断部材(14b)と前記第2切断部材(119b)における前記切断刃(153a,153b)に沿って、電磁波を照射するための電極(20)が設けられた構成1に記載の切断器、鉗子、又は医療機器(10b,220)。
[構成7]
 前記電極(20)は、中心電極(21)と、絶縁体を介して該中心電極(21)を囲繞する外側電極(23)とが備えられた同軸電極(20)であり、前記電磁波を照射する照射装置(30)と前記電極(20)とを接続する同軸ケーブル(40)を複数に並列分岐させ、前記同軸ケーブル(40)の中心導体と外部導体に前記同軸電極(20)のそれぞれが同極又は逆極性に電気的に接続された構成6に記載の切断器、鉗子、又は医療機器(10b,220)。前記第1切断部材(14b)と前記第2切断部材(119b)によって生体組織を凝固、切断、離間の機能を有する。
[構成8]
 前記鉗子(1,1X,1Y,10a,10b)に設けられた前記電極(20)はマイクロ波照射用の電極(20)であるとともに、それぞれの前記鉗子(1,1X,1Y)に、マイクロ波照射ユニットが設けられ、各電極(20)に前記同軸ケーブル(40)から印加されるマイクロ波の周期が同一である手術システム(200)。
[構成9]
 前記切断器(10a,10b)に有線及び/又は無線で接続された入出力ユニット(210a)と、リアルタイムに操作信号を受信する入力ユニット(210a)と前記操作信号に基づき予め定められた操作プログラムを実行する演算ユニット(CPU)と、該演算ユニットからの出力に基づき前記切断器(10a,10b)の前記第1当接部材(14,14a,14b)と前記第2当接部材(116,116a,119b)により対象部位(B)に当接及び/又は切断する駆動信号、及び/又は前記電極(20,24a,24b,24c)からの前記電磁波を照射する照射信号を発生する出力ユニット(210a)とを備えたロボット(210)。
[構成10]
 マスタ制御ユニット(202)の操作によりコマンドを生成するステップと、上記コマンドによりロボット(210)のアーム組立体(212)を処置位置に移動するステップと、ロボット(210)のアーム組立体(212)に取り付けられたツール(217)を処置位置に移動するステップと、前記ツール(217)の先端に取り付けられた前記切断器(10a,10b)の動きと電磁波の照射を制御するステップとを有するロボット制御方法。
[構成11]
 複数の操作者のステーションとなる複数の外科医コンソール(201)と、複数の操作者により操作されるマスタ制御ユニット(202)と、患者側カートである、構成9に記載のロボット(210)とを有する手術システム(200)。
 以下の実施例は、本発明の切断器の一例として医療機器に利用した記載とし、以下、前記鉗子としての実施例を記載するが、本発明は医療機器に限定されない切断器を提供する。
 例えば、図1は第1実施例の開状態の鉗子1の説明図である。図1(a)は鉗子1の正面図を示し、図1(b)は鉗子1における切断機構10の部分平面図を示し、図1(c)は図1(b)の切断機構10の部分正面図を示している。 
 図2は図1の鉗子1の背面図を示している。
 図3は図1の鉗子1の概略説明図を示している。図3(a)は図2におけるA-A矢視の側断面図を示し、図3(b)は鉗子1の部分縦断面図を示し、図3(c)は図3(b)におけるB-B矢視の電極部の拡大図を示している。
 図4は図1の鉗子1の把持状態の説明図を示している。図4(a)は鉗子1における把持機構17を閉じた把持状態の正面図を示し、図4(b)は同状態の鉗子1の背面図を示している。 
 図5は図1の鉗子1の切断状態の説明図を示している。図5(a)は鉗子1における切断機構10の切断カッタ15を閉じた切断状態の正面図を示し、図5(b)は同状態の鉗子1の背面図を示している。
 図6は鉗子1における切断機構10の把持状態及び切断状態の説明図を示している。図6(a)は把持機構17で把持する前の図2におけるA-A矢視の側断面図を示し、図6(b)は把持機構17で血管Bを把持した状態の図4(b)におけるC-C矢視の側断面図を示し、図6(c)は切断カッタ15で血管Bで切断した状態の図5(b)におけるD-D矢視の側断面図を示している。
 図1~図6において、鉗子1は、本体フレーム11と、スライドフレーム12、トリガハンドル13、上顎部14、切断カッタ15、及びバネ16を備えている。 
 本体フレーム11は、鈍角状に交差する二辺で概略構成され、二辺のうち一方をトリガハンドル13とともに操作部として機能する固定ハンドルフレーム111とし、他方を基準フレーム112としている。なお、このように構成された本体フレーム11は、ステンレスなどの金属で構成されている。
 固定ハンドルフレーム111の端部には、鉗子1を操作する利用者の指を挿入する指輪部113を備えている。 
 また、固定ハンドルフレーム111と基準フレーム112とが鈍角状に交差する部分を角部114とし、基準フレーム112における基部(上述の角部114の近傍)には、後述するトリガハンドル13を軸支する支持軸115を備えている。
 さらに、基準フレーム112の先端側Fの端部には、トリガハンドル13と協働して、施術対象となる血管Bなどの対象部位を把持する把持機構17を構成する下顎部116を設けている。下顎部116は、正面視において先端側Fに向かって先細り形状で構成している。なお、下顎部116はジョーともいう。 
 また、基準フレーム112の先端側Fには、上顎部14及び切断カッタ15を軸支する先端支持軸117を設けている。
 さらに、基準フレーム112における長手方向Lの中間部分の上面には、スライドフレーム12の底面に向かって突出するクリック凸部118を設けている。 
 クリック凸部118は、スライドフレーム12の底面に向かって突出する正面視三角形状であるが、基端側Rの傾斜面が先端側Fの傾斜面より傾斜角度が急勾配である正面視略直角三角形状で形成している。また、スライドフレーム12の底面に向かって突出する正面視三角形状であるクリック凸部118は、所定の力で下方にたわむように支持されている。
 スライドフレーム12は、本体フレーム11における基準フレーム112に沿って長手方向Lにスライド可能に設けられ、本体フレーム11と同素材で角柱状に構成されている。 
 スライドフレーム12の基端側R(図1の左側)には、トリガハンドル13の先端部を軸支する上支持軸121を設けている。
 また、スライドフレーム12の先端側(図1の左側)には、上顎部14と切断カッタ15とを軸支する先端上支持軸122を設けている。 
 さらに、スライドフレーム12における長手方向Lの中間部分の底面には、基準フレーム112の上面に向かって突出するクリック凸部123を設けている。
 クリック凸部123は、基準フレーム112の上面に向かって突出する正面視三角形状であるが、クリック凸部118と長手方向Lに対向する先端側Fの傾斜面が基端側Rの傾斜面より傾斜角度が急勾配である正面視略直角三角形状で形成している。また、基準フレーム112の上面に向かって突出する正面視三角形状であるクリック凸部123は、所定の力で上方にたわむように支持されている。 
 クリック凸部123は三角形状に限らず、利用者にクリック音、振動を通知する機能を提供する多角形状、半円形状など、他の形状であっても良い。
 なお、クリック凸部118とクリック凸部123とは、初期状態(開状態)の鉗子1において、基準フレーム112やスライドフレーム12の長手方向Lにわずかに離間して配置されている。
 トリガハンドル13は、基準フレーム112に沿ってスライドフレーム12をスライドさせるための操作部であり、下端に利用者の指を挿入する指輪部131を備えている。 
 また、トリガハンドル13の上端近傍には、本体フレーム11の支持軸115に枢動可能に軸支される枢軸部132を備え、枢軸部132のさらに上方にスライドフレーム12の上支持軸121に枢動可能に軸支される上枢軸部133を備えている。
 固定ハンドルフレーム111とトリガハンドル13の間には、スライドフレーム12及びトリガハンドル13の自動復帰のための圧縮コイルバネ13aが設けられている(図5では図示省略)。なお、圧縮コイルバネ13aは、仕様によって省いてもよい。
 上顎部14は、スライドフレーム12の先端側Fの端部に設けられ、本体フレーム11の下顎部116とともに把持機構17を構成する。なお、上顎部14はジョーともいう。 
 上顎部14の基端部(図1における左側)には、本体フレーム11の先端支持軸117に軸支される被軸部141と、被軸部141の上方においてスライドフレーム12の先端上支持軸122に軸支される回動軸受部142を備えている。なお、図1(a)において四角で囲った部分の拡大図である図1(c)に示すように、回動軸受部142は、先端上支持軸122を遊嵌する長孔形状で形成している。
 また、上顎部14の背面側における先端側には、背面側に突出し、上顎部14の背面側の側面に沿って回動する切断カッタ15が上顎部14の上面より上方に突出することを規制する突出規制部143を備えている。
 図1及び図2に示すとおり、切断カッタ15は、上顎部14の背面側に配置され、本体フレーム11の先端支持軸117に軸支される被軸部151と、被軸部151の上方においてスライドフレーム12の先端上支持軸122に軸支される回動軸部152を備えている。このように構成された切断カッタ15は下側の端部に沿って切断刃153が形成されている。また、切断カッタ15は、板状であり、被軸部151を軸に、上顎部14の側面に沿って回動するように構成されている。
 バネ16は、上顎部14の正面側に沿って配置され、上顎部14と切断カッタ15とを付勢するように構成している。 
 詳述すると、バネ16は、先端上支持軸122に外嵌するトーションばねであり、一方のアームを上顎部14に嵌合させ、他方のアームを切断カッタ15の一部に嵌合している。そのため、バネ16は、上顎部14と切断カッタ15とが先端上支持軸122を中心として近接する側に向かって差動回転すると、上顎部14と切断カッタ15とが互いに離間する回転方向に付勢するように構成している。
 このように構成された鉗子1において、本体フレーム11の先端側Fの端部に設けた下顎部116と、本体フレーム11に対して先端支持軸117で基部が軸支された上顎部14とで、対象部位を把持する把持機構17を構成している。 
 また、把持機構17で把持された対象部位を、上顎部14の側面に沿って回動して切断する切断カッタ15は、把持機構17とともに切断機構10を構成している。
 なお、鉗子1には、照射用電極24(24a,24b,24c)が設けられるとともに、マイクロ波を発振するマイクロ波発信器30と照射用電極24とを接続する同軸ケーブル40が接続されている。 
 具体的には、上顎部14には照射用電極24a、下顎部116には照射用電極24b、切断カッタ15の内部には照射用電極24cが設けられ、同軸ケーブル40が接続されている。なお、図示省略されるが、上顎部14、切断カッタ15及び下顎部116に配置される照射用電極24(24a,24b,24c)は、外側に絶縁層が配置され、上顎部14、切断カッタ15及び下顎部116と絶縁されている。
 同軸ケーブル40は、図3(b)の拡大断面図に示すように、中央導体41、中央導体41を挟んで、絶縁体42、外側導体43及び絶縁被覆44で構成され、中心から径外側に向かってこの順で配置されている。 
 中央導体41は、同軸ケーブル40の中心に配置された線状の導体であり、適宜の径の単一導体であってもよいし、複数の芯線で構成してもよい。
 絶縁体42は、絶縁体42は、中央導体41の外側を囲繞し、中央導体41と43とを絶縁する樹脂製であり、所定の肉厚を有する円筒状である。 
 外側導体43は、絶縁体42の外周面に沿って設けられた編組線で構成している。
 絶縁被覆44は、絶縁性を有する被覆であり、外側導体43の外側を囲繞している。 
 このように、中心側から中央導体41、絶縁体42、外側導体43及び絶縁被覆44がこの順で配置された同軸ケーブル40は適宜の可撓性を有している。
 図3に示すとおり照射用電極24aと照射用電極24cは同軸ケーブル40の中央導体41に接続され、照射用電極24bは外側導体43に接続され、照射用電極24a,24cから電磁波(マイクロ波)が照射用電極24bに照射されるよう構成されている。また電極構造は、図16及び図17のように同軸構造にしても良く、接続の極性も図20のように異極接続構造としてもよい。
 上顎部14と切断カッタ15の照射用電極24a,24cの第1電極部、及び下顎部116に設けた照射用電極24bの第2電極部は、一方が同軸ケーブル40の中央導体41と接続され、他方が外側導体43と接続されることとなる。このように、照射用電極24a,24cが設けられた鉗子1は、照射用電極24a,24cの第1電極部と照射用電極24bの第2電極部の一方から他方に向かってマイクロ波を照射することができる。これにより、下顎部116と上顎部14で構成する把持機構17で把持した対象部位に対してマイクロ波を照射させて凝固させることができる。また、必要により、照射用電極24cを照射用電極24bに電気的に接続して、上顎部14と切断カッタ15の間でマイクロ波を照射して生体組織を凝固させる構成としてもよい。
 各要素が上述のように構成された鉗子1の動作について以下で説明する。 
 本体フレーム11の指輪部113とトリガハンドル13の指輪部131に指を挿入した利用者によって、支持軸115に軸支された枢軸部132を回動中心として、トリガハンドル13を固定ハンドルフレーム111に近づける方向(図1においてトリガハンドル13の下方が左側に移動する方向)に回動させる。
 枢軸部132を中心としてトリガハンドル13が固定ハンドルフレーム111に近づく方向に回動すると、枢軸部132より上方に突出する上枢軸部133は、先端側(図1において右側)に向かって移動する。上枢軸部133が先端側Fに移動すると、上枢軸部133を上支持軸121で軸支するスライドフレーム12は、基準フレーム112に沿って先端側Fにスライド移動する。
 スライドフレーム12が先端側Fに移動すると、上顎部14の回動軸受部142を軸支する先端上支持軸122も先端側Fに移動することとなる。そして、下方の被軸部141が本体フレーム11の先端支持軸117に軸支され、その上方の回動軸受部142が先端上支持軸122に軸支された上顎部14は、先端上支持軸122が先端側Fに移動するため、先端支持軸117を中心として、先端側Fが下顎部116に近づく方向に枢動することとなる(図4参照)。
 また、上述したように、切断カッタ15は下方の被軸部151が本体フレーム11の先端支持軸117に軸支され、その上方の回動軸部152が先端上支持軸122に軸支されている。そのため、先端上支持軸122の先端側Fへの移動に伴い、切断カッタ15は、先端支持軸117を中心として、上顎部14とともに、先端側Fが下顎部116に近づく方向に枢動することとなる(図4参照)。
 このとき、切断カッタ15の上端は、上顎部14の突出規制部143によって規制されているため、上述のように、先端上支持軸122の先端側Fへの移動に伴い、切断カッタ15は、先端支持軸117を中心として、上顎部14とともに、先端側Fが下顎部116に近づく方向に枢動するものの、上顎部14の枢動より切断カッタ15の枢動が遅れたとしても、突出規制部143によって、上顎部14と切断カッタ15とは共に枢動することとなる。
 これにより、図6(a)に示すような初期状態(開状態)において上顎部14と下顎部116の間に生体組織における対象部位である血管Bを配置し、図6(b)に示すように、下顎部116の上面と上顎部14の底面とで血管Bを挟み込むことで、下顎部116と上顎部14とで構成する把持機構17で血管Bを把持することができる。
 なお、長孔形状で形成された回動軸受部142には、先端上支持軸122が遊嵌しているものの、バネ16によって上顎部14と切断カッタ15とは下顎部116から離間する方向に付勢されているため、先端上支持軸122は回動軸受部142内を移動することなく、上述のように、上顎部14と切断カッタ15とが回動することとなる。
 このとき、基準フレーム112の上面に設けたクリック凸部118と、スライドフレーム12の底面に設けたクリック凸部123とは、初期状態(開状態)において長手方向Lに離間していたが、図4(b)におけるA部分の拡大図に示すように、基準フレーム112に対するスライドフレーム12の先端側Fへのスライド移動によって長手方向Lに近接し、当接することとなる。
 なお、上述のように、トリガハンドル13を操作して、上顎部14が下顎部116に近接した図4及び図6(b)に示す状態を、血管Bなどの対象部位を把持機構17で把持する把持状態という。 
 この把持状態から更にトリガハンドル13を固定ハンドルフレーム111に近接させる方向に操作すると、スライドフレーム12は基準フレーム112に対して更に先端側Fに移動することとなる。
 さらに、スライドフレーム12が先端側Fに移動すると、切断カッタ15は、図5(b)に図示するように、先端支持軸117を中心として、切断刃153が下顎部116の上面を越えて枢動することとなる。 
 これにより、図6(c)に示すように、切断カッタ15が上顎部14の側面に沿って移動し、把持機構17で把持した血管Bを、切断カッタ15の切断刃153で切断することができる。
 なお、上述のように、トリガハンドル13のさらなる操作によって、図5(b)に図示するように、切断刃153が下顎部116の上面を越えるように切断カッタ15が回動した状態を切断状態という。
 しかしながら、上顎部14は、バネ16の上面に当接しており、スライドフレーム12がさらにスライドしても回動することができない。その分、長孔状の回動軸受部142内を先端上支持軸122が移動し、上顎部14に対してスライドフレーム12が相対移動することとなる。
 上述のように、さらなるスライドフレーム12の移動によって、切断カッタ15はさらに回動するものの、回動軸受部142を先端上支持軸122が移動して上顎部14は回動しないため、つまり、長孔状の回動軸受部142を先端上支持軸122が移動する差動機構によって、先端支持軸117を中心に上顎部14と切断カッタ15とは回転方向に差動することとなる。この上顎部14と切断カッタ15との差動によってバネ16は縮む方向に変形している。よって、トリガハンドル13を操作する力を開放すると、図1に示す圧縮コイルバネ13aの圧縮が開放され、スライドフレーム12が基端側Rに移動し、バネ16の付勢力によって、切断カッタ15の開口方向への移動と共に上顎部14も、すなわち両部材14,15が協働して図1の開口状態に自動復帰する。
 なお、バネ16の付勢力等によって、切断カッタ15の開口方向への枢動が上顎部14の開口方向への枢動より早かったとしても、切断カッタ15の上端は突出規制部143で規制されているため、上顎部14と切断カッタ15とは共に開口方向への枢動することとなり、切断カッタ15の上部が上顎部14の上面より上方に突出することを防止できる。
 また、この切断状態では、上述の把持状態において当接したクリック凸部118とクリック凸部123とは、図5(b)におけるA部分の拡大図に示すように。クリック凸部118とクリック凸部123とは撓みながら、一方が他方を乗り越えるため、クリック感が生じる。このクリック感は、本体フレーム11やトリガハンドル13を介して利用者に伝わるため、利用者は、切断状態となった認識する、つまり、トリガハンドル13の一連操作において、把持状態から切断状態に移行したことをクリック凸部118,123が利用者に通知することができる。
 なお、トリガハンドル13を操作する力を開放し、スライドフレーム12が基端側Rに移動して初期状態(開状態)に戻る際には、傾斜角度が緩やかな面側から越えるため、急勾配な傾斜面同士が乗り越える場合のようなクリック感は生じない。
 上述のように、鉗子1は、把持機構17を構成する上顎部14と下顎部116とによる血管B等の対象部位の把持、及び把持状態の切断カッタ15によって対象部位の切断を、トリガハンドル13による一連の操作で行うことができる。そして、トリガハンドル13の一連の操作による対象部位の把持・切断の間に、対象部位にマイクロ波を照射用電極24から照射して凝結させることができる。
 また、先端上支持軸122を遊嵌する長孔状の回動軸受部142による差動機構を備えているため、トリガハンドル13の一連操作において、把持機構17による把持の後、切断カッタ15によって対象部位の切断を行うことができる。さらには、トリガハンドル13の一連操作おける把持状態から切断状態への移行をクリック凸部118,123によって利用者に通知する通知部を提供することができる。
 なお、該通知部は、クリック凸部118,123に代えて、移動センサを取り付け、電子信号又へ光信号により利用者に通知する構造としてもよい。本実施例によれば、把持、凝固、切断の何れか単独又は組み合わせの多機能鉗子を提供できる。
 続いて、第2実施例の鉗子1Xは、図7~図11に示す。 
 なお、図7は第2実施例の鉗子1Xの正面図を示している。図8は図7の鉗子1Xの説明図を示している。図8(a)は鉗子1Xの背面図を示し、図8(b)は鉗子1Xにおける切断機構側の側面図を示している。
 図9は図8の鉗子1Xの背面図を示している。図8(b)におけるE-E矢視の部分断面図を示している。 
 図10は把持状態の鉗子1Xの説明図を示している。図10(a)は把持状態の鉗子1Xの正面図を示し、図10(b)は同状態の鉗子1Xの背面図を示し、図10(c)は同状態の鉗子1Xにおける切断機構側の側面図を示し、図10(d)は図10(c)におけるF-F矢視の部分断面図を示している。
 図11は切断状態の鉗子1Xの説明図を示している。図11(a)は切断状態の鉗子1Xの正面図を示し、図11(b)は同状態の鉗子1Xの背面図を示し、図11(c)は同状態の鉗子1Xにおける切断機構側の側面図を示し、図11(d)は図11(c)におけるG-G矢視の部分断面図を示している。
 なお、以下における鉗子1Xの説明において、鉗子1と同様の構成については同じ符号を付してその詳細な説明を省略する。 
 鉗子1Xは、本体フレーム11Xと、第1スライドプレート12Xaと、第2スライドプレート12Xbと、トリガハンドル13X、上顎部14、切断カッタ15、及びコイルバネ16Xとを備えている。
 本体フレーム11の基準フレーム112の上面をスライドフレーム12が長手方向Lにスライドした鉗子1に対して、鉗子1Xは、基準フレーム112に対して第1スライドプレート12Xaと第2スライドプレート12Xbとがスライドして、上顎部14と切断カッタ15とが回動するように構成している。
 詳述すると、本体フレーム11Xは、固定ハンドルフレーム111と基準フレーム112とで構成した本体フレーム11と同様に、鈍角状に交差する固定ハンドルフレーム111と基準フレーム112Xとで構成している。
 スライドフレーム12が上面に沿ってスライドした基準フレーム112に対して、基準フレーム112Xは、背面側の上半部分に、第1スライドプレート12Xaと第2スライドプレート12Xbとがスライドするスライド溝(図示省略)が形成されている。
 第1スライドプレート12Xaと第2スライドプレート12Xbとは板状に構成され、基準フレーム112Xに設けられたスライド溝に、厚み方向に積層され、独立してスライド可能に収納されている。
 第1スライドプレート12Xaの基端側Rには、トリガハンドル13Xに設けた上枢軸部133を軸支する中段支持軸121Xaを設けるとともに、先端側Fには、切断カッタ15を軸支する先端上支持軸122Xaを設けている。
 第2スライドプレート12Xbの先端側Fには、切断カッタ15を軸支する先端上支持軸122Xaを設けている。また、基端側Rには、コイルバネ16Xが当接するともに、コイルバネ16Xの内部を挿通する挿通軸161Xが挿通する当接リング部124Xbを備えている。 
 このように構成された第2スライドプレート12Xbは、第1スライドプレート12Xaに比べて、後述するコイルバネ16Xの長さ程度、基端側Rが短くなる長さで形成されている。
 また、基準フレーム112Xに設けられたスライド溝に、厚み方向に積層されて配置された第1スライドプレート12Xaと第2スライドプレート12Xbとは、第1スライドプレート12Xaが背面側となるように配置されている。そのため、第2スライドプレート12Xbは、基準フレーム112Xと第1スライドプレート12Xaとに、表裏方向に挟まれる態様となる。
 なお、第1スライドプレート12Xaと第2スライドプレート12Xbには、基準フレーム112Xのスライド溝に設けられたスライドフレーム112Xaが遊嵌する、長手方向Lに長い長孔状の規制孔123Xを設けている。
 トリガハンドル13Xは、枢軸部132と、枢軸部132より上端側に上枢軸部133が設けられたトリガハンドル13と比べ、枢軸部132X及び上枢軸部133Xに加え、上枢軸部133Xより上方に上段枢軸部134Xを備えている。さらに、トリガハンドル13Xの上段枢軸部134Xには、挿通軸161Xを有する押圧ブロック135Xを回動自在に備えている。なお、本体フレーム11Xの固定ハンドルフレーム111とトリガハンドル13Xとの間に、鉗子1で説明した圧縮コイルバネ13aを設けてもよい。
 挿通軸161Xは、コイルバネ16Xの内部を挿通するとともに、当接リング部124Xbに挿通される。なお、挿通軸161Xの先端側Fの端部には、当接リング部124Xbより径大なフランジ部162Xを備えている。
 このように各要素が構成された鉗子1Xは、トリガハンドル13Xを操作すると、枢軸部132Xを回動軸として、上枢軸部133X及び上段枢軸部134Xは先端側Fに移動する。 
 上枢軸部133Xが先端側Fに移動すると、上枢軸部133Xを軸支する中段支持軸121Xaを有する第1スライドプレート12Xaは、基準フレーム112Xに対して先端側Fにスライド移動する。
 第1スライドプレート12Xaが先端側Fに移動すると、先端上支持軸122Xaで回動軸部152を軸支する切断カッタ15は、先端支持軸117で軸支される被軸部151を軸として上顎部14の側面に沿って回動する(図10参照)。
 これに対し、上段枢軸部134Xが先端側Fに移動すると、上段枢軸部134Xに回動自在に備えた押圧ブロック135Xも先端側Fに移動する。 
 押圧ブロック135Xが移動すると、挿通軸161Xが挿通されたコイルバネ16Xを先端側Fに押圧する。押圧ブロック135Xによって先端側Fに押圧されたコイルバネ16Xの先端側Fは当接リング部124Xbに当接しているため、当接リング部124Xbを先端側Fに押圧し、第2スライドプレート12Xbを移動させることとなる。
 第2スライドプレート12Xbが先端側Fに移動すると、下方の被軸部141が本体フレーム11Xの先端支持軸117に軸支され、その上方の回動軸受部142が先端上支持軸122Xbに軸支された上顎部14は、先端上支持軸122Xbが先端側Fに移動する。これにより、先端支持軸117を中心として、先端側Fが下顎部116に近づく方向に枢動して、下顎部116と上顎部14とで構成する把持機構17で血管Bなどの対象部位を把持できる把持状態となる(図10参照)。
 なお、トリガハンドル13Xの操作によって先端側Fに移動する第1スライドプレート12Xaと第2スライドプレート12Xbとは、上枢軸部133Xを軸支する第1スライドプレート12Xaより、枢軸部132Xからの距離が上枢軸部133Xより長い上段枢軸部134Xを軸支する第2スライドプレート12Xbのスライド量が大きくなる。
 この把持状態から更にトリガハンドル13Xを固定ハンドルフレーム111に近接させる方向に操作すると、第1スライドプレート12Xaは基準フレーム112に対して更に先端側Fに移動することとなる。
 さらに、第1スライドプレート12Xaが先端側Fに移動すると、切断カッタ15は、図11(b)におけるB部分の拡大図に図示するように、先端支持軸117を中心として、切断刃153が下顎部116の上面を越えて枢動することとなる。 
 これにより、切断カッタ15が上顎部14に沿って移動し、把持機構17で把持した血管Bを、切断カッタ15の切断刃153で切断することができる切断状態となる。
 しかしながら、上顎部14は、下顎部116の上面に当接しており、第2スライドプレート12Xbがさらにスライドしても回動することができない。 
 トリガハンドル13Xがさらに固定ハンドルフレーム111に近接させる方向に操作されると、上段枢軸部134Xも先端側Fに移動し、上段枢軸部134Xとともに、押圧ブロック135Xも先端側Fに移動する。しかしながら、上述したように、上顎部14が更に回動できないため、第2スライドプレート12Xbもスライドすることができない。
 よって、スライドできない第2スライドプレート12Xbの当接リング部124Xbと押圧ブロック135Xは、コイルバネ16Xが縮んで近接することとなる。つまり、コイルバネ16Xが縮むことで当接リング部124Xbと押圧ブロック135Xとが差動し、トリガハンドル13Xがさらに固定ハンドルフレーム111に近接させる方向に操作されることで、切断カッタ15は回動するが、上顎部14は回動しない差動が生じることができる。
 上述のように、さらなるトリガハンドル13Xの操作によって切断カッタ15と上顎部14とが差動する切断状態において、コイルバネ16Xが縮む方向に変形している。よって、トリガハンドル13Xを操作する力を開放すると、コイルバネ16Xの付勢力によって、押圧ブロック135Xを介してトリガハンドル13Xが拡がる方向に移動することなる。
 なお、第1スライドプレート12Xaと第2スライドプレート12Xbの対向面に、上述の鉗子1におけるクリック凸部118とクリック凸部123と同様の構成を備えてもよい。この場合であっても、一方が他方を乗り越える際に生じるクリック感によって、利用者に切断状態となったことを認識させることができる。
 上述のように、鉗子1Xも、鉗子1と同様に、把持機構17を構成する上顎部14と下顎部116とによる血管B等の対象部位の把持、及び把持状態の切断カッタ15によって対象部位の切断を、トリガハンドル13による一連の操作で行うことができる。そして、トリガハンドル13の一連の操作による対象部位の把持・切断の間に、対象部位にマイクロ波を照射用電極24から照射して凝結させることができる。
 また、コイルバネ16Xが縮むことによる差動機構を備えているため、トリガハンドル13の一連操作において、把持機構17による把持の後、切断カッタ15によって対象部位の切断を行うことができる。
 なお、鉗子1Xにおける上顎部14に、切断カッタ15が、上顎部14の上面より突出することを規制する突出規制部143を設けてもよい。これにより、切断カッタ15が上顎部14の上面より突出することがなく、安全に使用することができる。
 続いて、第3実施例の鉗子1Yについて、図12~図15に基づいて説明する。
 なお、図12は第3実施例の鉗子1Yの正面図を示し、図13は図12の鉗子1Yの背面図を示している。
 図14は把持状態の鉗子1Yの説明図を示している。図14(a)は把持状態の鉗子1Yの正面図を示し、図14(b)は同状態の鉗子1Yの背面図を示している。 
 図15は切断状態の鉗子1Yの説明図を示している。図15(a)は切断状態の鉗子1Yの正面図を示し、図15(b)は同状態の鉗子1Yの背面図を示している。
 なお、以下における鉗子1Yの説明において、鉗子1や鉗子1Xと同様の構成については同じ符号を付してその詳細な説明を省略する。 
 鉗子1Yは、本体フレーム11Yと、第1スライドプレート12Yaと、第2スライドプレート12Ybと、トリガハンドル13Y、上顎部14、及びスライドカッタ15Y、及びコイルバネ16Yとを備えている。
 本体フレーム11の基準フレーム112の上面をスライドフレーム12が長手方向Lにスライドした鉗子1に対して、鉗子1Yは、基準フレーム112Yに対して第2スライドプレート12Ybがスライドして上顎部14が回動し、スライドカッタ15Yを先端側Fの端部に設けた第1スライドプレート12Yaのスライドに伴ってスライドカッタ15Yがスライドして切断するように構成している。
 詳述すると、本体フレーム11Yは、固定ハンドルフレーム111と基準フレーム112とで構成した本体フレーム11と同様に、鈍角状に交差する固定ハンドルフレーム111と基準フレーム112Yとで構成している。
 スライドフレーム12が上面に沿ってスライドした基準フレーム112と同様に、基準フレーム112Yの上面に沿って第1スライドプレート12Yaと第2スライドプレート12Ybとがスライドするように構成されている。なお、基準フレーム112Yには、上面に沿ってスライドする第1スライドプレート12Yaと第2スライドプレート12Ybとを、スライド可能に規制する規制枠124Yを備えている。
 第1スライドプレート12Yaと第2スライドプレート12Ybとは板状に構成されるとともに、厚み方向に積層され、基準フレーム112Yの上面に沿って、独立してスライド可能に規制枠124Yによって規制されている。
 第1スライドプレート12Yaの先端側Fの端部にはスライドカッタ15Yが設けられるとともに、中間部分には、後述するアーム18Yの駆動軸181Yを軸支する上支持軸121Yaを備えている。 
 先端に上顎部14が連結された第2スライドプレート12Ybの中間部分には、後述するアーム18Yの駆動軸181Yを軸支する上支持軸121Ybを設けている。
 上支持軸121Ybは、長手方向Lに長い長孔形状であり、駆動軸181Yを長手方向Lに移動可能に軸支することができる。また、上支持軸121Ybの内部において、駆動軸181Yの先端側Fには、駆動軸181Yを基端側R(図12において左側)に付勢するコイルバネ16Yが配置されている。
 トリガハンドル13Yは、基準フレーム112Yに軸支される枢軸部132の上方に、第1スライドプレート12Ya及び第2スライドプレート12Ybから上方に突出する態様で上枢軸部133Yを設けている。 
 上枢軸部133Yには、先端側F且つ下方に傾斜するアーム18Yが連結されており、アーム18Yの先端に上述の駆動軸181Yを備えている。
 このように各要素が構成された鉗子1Yは、トリガハンドル13Yを操作すると、枢軸部132Yを回動軸として、上枢軸部133Yは先端側Fに移動する。 
 上枢軸部133Yが先端側Fに移動すると、上枢軸部133Yに連結されたアーム18Yも傾斜角度が変化しながら先端側Fに移動する。アーム18Yが傾斜角度が変化しながら先端側Fに移動すると、アーム18Yの駆動軸181Yを上支持軸121Yaで軸支する第1スライドプレート12Yaは、基準フレーム112Yに対して先端側Fにスライド移動する。
 第1スライドプレート12Yaが先端側Fに移動すると、第1スライドプレート12Yaの先端側Fに設けられたスライドカッタ15Yも基準フレーム112Yにおける下顎部116の上面に沿って先端側Fに移動する。しかしながら、先端側Fに移動するスライドカッタ15Yの切断刃153が、図14(a)におけるA部分の拡大図に示すように、上顎部14の中間部分に係らない程度まで移動する。
 また、上枢軸部133Yの先端側Fへの移動に伴って上述したように、傾斜角度が変化しながらアーム18Yが先端側Fに移動すると、駆動軸181Yが上支持軸121Ybに遊嵌され、コイルバネ16Yに沿って基端側Rに付勢されているため、図14(b)におけるB部分の拡大図に示すように、第2スライドプレート12Ybも先端側Fに移動することとなる。
 第2スライドプレート12Ybが先端側Fに移動すると、下方の被軸部141が本体フレーム11Yの先端支持軸117に軸支され、その上方の回動軸受部142が先端上支持軸122Ybに軸支された上顎部14は、先端上支持軸122Ybが先端側Fに移動する。これにより、先端支持軸117を中心として、先端側Fが下顎部116に近づく方向に枢動して、下顎部116と上顎部14とで構成する把持機構17で血管Bなどの対象部位を把持できる把持状態となる(図14参照)。
 この把持状態から更にトリガハンドル13Yを固定ハンドルフレーム111に近接させる方向に操作すると、第1スライドプレート12Yaは基準フレーム112に対して更に先端側Fに移動することとなる。
 さらに、第1スライドプレート12Yaが先端側Fに移動すると、第1スライドプレート12Yaの先端に設けたスライドカッタ15Yは、図15(a)に図示するように、先端支持軸117を中心として、切断刃153Yが上顎部14の先端面近傍まで移動することとなる。 
 これにより、スライドカッタ15Yが基準フレーム112Yに沿って移動し、把持機構17で把持した血管Bを、スライドカッタ15Yの切断刃153で切断することができる切断状態となる。
 しかしながら、上顎部14は、下顎部116の上面に当接しており、第2スライドプレート12Ybがさらにスライドしても回動することができない。 
 トリガハンドル13Yがさらに固定ハンドルフレーム111に近接させる方向に操作されると、上枢軸部133Yに軸支されたアーム18Yの駆動軸181Yも先端側Fに移動する。しかしながら、上述したように、第2スライドプレート12Ybは先端側Fにスライドできない。そのため、駆動軸181Yを基端側Rに付勢するコイルバネ16Yの付勢力に抗して、駆動軸181Yはコイルバネ16Yを先端側Fに押圧して縮ませる。つまり、図15(a)におけるA部分の拡大図である図15(b)に示すように、トリガハンドル13Yがさらに固定ハンドルフレーム111に近接させる方向に操作され、コイルバネ16Yが縮むことで、スライドカッタ15Yは先端側Fにスライド移動するが、上顎部14は回動しない差動が生じることができる。
 上述のように、さらなるトリガハンドル13Yの操作によってスライドカッタ15Yと上顎部14とが差動する切断状態において、コイルバネ16Yが縮む方向に変形している。よって、トリガハンドル13Yを操作する力を開放すると、圧縮コイルバネ13aの付勢力によって、アーム18Yを介してトリガハンドル13Yが拡がる方向に移動することなる。
 なお、第1スライドプレート12Yaと第2スライドプレート12Ybの対向面に、上述の鉗子1におけるクリック凸部118とクリック凸部123と同様の構成を備えてもよい。この場合であっても、一方が他方を乗り越える際に生じるクリック感によって、利用者に切断状態となったことを認識させることができる。
 上述のように、鉗子1Yも、鉗子1や鉗子1Xと同様に、把持機構17を構成する上顎部14と下顎部116とによる血管B等の対象部位の把持、及び把持状態の対象部位のスライドカッタ15Yによる切断を、トリガハンドル13による一連の操作で行うことができる。そして、トリガハンドル13の一連の操作による対象部位の把持・切断の間に、対象部位にマイクロ波を照射用電極24から照射して凝結させることができる。
 また、コイルバネ16Xが縮むことによる差動機構を備えているため、トリガハンドル13の一連操作において、把持機構17による把持の後、スライドカッタ15Yによって対象部位の切断を行うことができる。
 次に、第4実施例として、生体組織にマイクロ波照射のためのエンドエフェクタ10aについて、図16及び図17に基づいて説明する。前述の鉗子1,1X,1Yはいずれも電磁波を照射する照射用電極24を備えており、本実施例において具体的な電極構造を説明する。
 図16は第4実施例のエンドエフェクタ10aの概略正面図を示している。
 図17は図16のエンドエフェクタ10aの概略説明図を示している。図17(a)は図16におけるH-H矢視の側断面図を示し、図17(b)はエンドエフェクタ10aの部分縦断面図を示し、図17(c)は図16におけるI-I矢視の拡大平面図を示している。
 エンドエフェクタ10aは、ハサミ型多機能手術機器に用いるものであり、上述の鉗子1における切断機構10に対応している。そのため、上述の鉗子1における構成と同様の構成については同様の符号を付している。また、本実施例におけるエンドエフェクタは、前述の切断器、切断機構、鉗子を構成し得るものであり、他の同様な構成を含む。
 なお、図16及び図17において、エンドエフェクタ10aの先端側Fの一部を図示している。 
 エンドエフェクタ10aは、ハサミ型多機能手術機器に取付けられる管状の支持具100の先端に設けられた蛇腹状の可撓部101を貫通する基準軸11a(切断機構10における基準フレーム112に対応)と、先端に上顎部14a(切断機構10における上顎部14に対応)及び切断カッタ15a(切断機構10における切断カッタ15に対応)が設けられる可動フレーム12a(切断機構10におけるスライドフレーム12に対応)とがある。
 なお、基準軸11a及び可動フレーム12aにおいて、可撓性を有する可撓部101の内部に対応する箇所は可動する可撓部101に追従して変形可能な可撓性を有するように構成されているが、駆動としてワイヤーを用いてもよい。
 このように構成されたエンドエフェクタ10aにおける上顎部14a及び切断カッタ15aの動作については、上述の鉗子1における切断機構10の上顎部14及び切断カッタ15と同様であり、基準軸11aに対して可動フレーム12aを長手方向Lに移動することで、基準軸11aの先端側Fの端部に設けた下顎部116aと上顎部14aとで構成する把持機構17aで対象部位を把持するとともに、切断カッタ15で切断することができる。
 なお、上顎部14aの背面側における先端側には、背面側に突出し、上顎部14aの背面側の側面に沿って回動する切断カッタ15aが上顎部14aの上面より上方に突出することを規制する突出規制部143を備えている。これにより、切断カッタ15aの開口方向への枢動が上顎部14aの開口方向への枢動より早かったとしても、切断カッタ15aの上端は突出規制部143で規制されており、上顎部14aと切断カッタ15aとは共に開口方向への枢動することとなり、切断カッタ15aの上部が上顎部14aの上面より上方に突出することを防止できる。
 このように構成されたエンドエフェクタ10aにおける下顎部116aの上面と、上顎部14aの底面には、長手方向Lに沿う同軸電極20を備えている。 
 また、エンドエフェクタ10aには、マイクロ波を照射するマイクロ波発信器30と同軸電極20とを接続する同軸ケーブル40が接続されている。なお、マイクロ波発信器30は、エンドエフェクタ10aの内部に設けてもよい。
 同軸ケーブル40は、図16におけるA部分の拡大断面図に示すように、中央導体41、中央導体41を挟んで、絶縁体42、外側導体43及び絶縁被覆44で構成され、中心から径外側に向かってこの順で配置されるとともに、適宜の可撓性を有している。
 上顎部14aの底面及び下顎部116aの上面に設けた同軸電極20は、図17(a)におけるA部分の拡大図に示すように、中央導体21と、半円断面状の半円絶縁体22、半円絶縁体22の外側に配置される半円管状の半円管導体23とで構成している。
 このように構成された同軸電極20は、図17(a)に図示するように、半円柱状で所定長さに構成されており、図17(c)の図示のとおり、上顎部14aの底面及び下顎部116aの上面において、フラット面が対向するように長手方向に沿って配置されている。なお、図示省略されるが、上顎部14a及び下顎部116aに配置される同軸電極20は、外側に絶縁層が配置され、上顎部14a及び下顎部116aと絶縁されている。
 そして、図17(b)に示すように、上顎部14a及び下顎部116aに設けられたそれぞれの同軸電極20の中央導体21と、同軸ケーブル40の中央導体41が接続され、同軸電極20の半円管導体23と同軸ケーブル40の外側導体43が接続され、同極接続となっている。必要であれば、図20の様に一方を逆極性に接続してもよい。
 このように、同軸ケーブル40を介してマイクロ波発信器30と接続された同軸電極20は、マイクロ波発信器30が稼働すると、同軸ケーブル40を介して同軸電極20の中央導体21と半円管導体23との間にマイクロ波を照射することができる。
 把持機構17aで対象部位である血管Bを把持した把持状態で同軸電極20からマイクロ波を照射すると、把持機構17aで把持された血管Bはマイクロ波によって凝結する。そして、血管Bにおいて、同軸電極20から照射されたマイクロ波で凝結した部分を切断カッタ15aで切断することができる。本実施例の変形例として、図16にエンドエフェクタ10a内に電子モジュール31を内蔵する実施例を示す。
 前述のマイクロ波発信器30をエンドエフェクタ10aに内蔵させる例であるが、図25のマイクロ波照射モジュール222を組み込む、又は、図27(b)に示す手術装置221の電子回路を適宜組み込む電子モジュールとしてもよい。エンドエフェクタ10aに電子モジュール31を設けることにより、医療機器の小型化が可能となり、手術の利便性を高める。
 続いて、第5実施例のエンドエフェクタ10bについて、図18及び図19とともに説明する。 
 図18は第5実施例のエンドエフェクタ10bの概略説明図を示している。図18(a)は通常状態のエンドエフェクタ10bの概略正面図を示し、図18(b)は切断状態のエンドエフェクタ10bの概略正面図を示している。
 図19はエンドエフェクタ10bの概略説明図を示している。図19(a)は通常状態のエンドエフェクタ10bにおける切断機構の概略断面図を示し、図19(b)は切断状態のエンドエフェクタ10bの概略断面図を示し、図19(c)は、同軸電極の配置が異なる切断機構の概略断面図を示している。
 図16の下顎部116aと上顎部14aとで構成する把持機構17aに、さらに切断カッタ15aを備え、把持機構17aで把持した対象部位を切断カッタ15aで切断するエンドエフェクタ10aに対し、図18のエンドエフェクタ10bは、基準軸11bの先端に、下顎部116aの代わりに固定刃119bが設けられ、上顎部14aの代わりに可動刃14bを備え、切断機構19を構成している。
 このように構成したエンドエフェクタ10bは、基準軸11bに対して可動フレーム12bを先端側Fに移動させることにより、可動フレーム12bに連結された可動刃14bが、基準軸11bに設けられた先端支持軸117bで軸支された被軸部141bを中心として、固定刃119bに近接する方向に回動する。そして、図18(b)及び図19(b)に示すように、固定刃119bと可動刃14bとが閉じて、それぞれに設けた切断刃153b,153aで対象部位を切断することができる。
 このように構成したエンドエフェクタ10bにおける固定刃119bと可動刃14bとの対向する側の側面には、同軸電極20を備えている。そして、図19(a)に示すように、固定刃119b及び可動刃14bの側面に設けたそれぞれの同軸電極20の中央導体21と同軸ケーブル40の中央導体41とを電気的に接続し、同軸電極20の半円管導体23と同軸ケーブル40の外側導体43とを電気的に接続している。
 そのため、エンドエフェクタ10bにおける切断機構19では、固定刃119bと可動刃14bの側面に設けた同軸電極20からマイクロ波を照射することができる。
 このように構成したエンドエフェクタ10bでは、固定刃119bと可動刃14bとの間に対象部位である血管Bを配置した状態で、固定刃119bと可動刃14bとのそれぞれからマイクロ波を照射する。これにより、固定刃119bと可動刃14bとの間に配置した血管Bは凝結する。そして、血管Bにおいて凝結した部位を、可動刃14bを稼働させて切断機構19で切断することができる。
 なお、可動刃14bと基準軸11bとに血管Bを当接させて、同軸電極20からマイクロ波を照射させることで効率よく血管Bを凝結させることができるものの、可動刃14bや固定刃119bと血管Bがわずかに離間していてもよい。
 また、エンドエフェクタ10bでは、図19(a),(b)に示すように、固定刃119bと可動刃14bの対向する側面に同軸電極20を備えたが、図19(c)に示すように、固定刃119bと可動刃14bにおいて離間する側である外側の側面に同軸電極20を配置してもよい。
 さらには、エンドエフェクタ10bでは、上述したように、固定刃119b及び可動刃14bの側面にそれぞれに設けた同軸電極20の中央導体21と同軸ケーブル40の中央導体41とを電気的に接続し、同軸電極20の半円管導体23と同軸ケーブル40の外側導体43とを電気的に接続している。
 これに対し、図20(a)に示すように、固定刃119b及び可動刃14bの側面にそれぞれに設けた同軸電極20の一方の中央導体21と同軸ケーブル40の外側導体43とを電気的に接続し、同軸電極20の半円管導体23と同軸ケーブル40の中央導体41とを電気的に接続してもよい。この場合、固定刃119bと可動刃14bの側面にそれぞれ設けた同軸電極20における極性が逆になる。
 この場合も、マイクロ波発信器30を稼働させると、固定刃119bと可動刃14bの側面にそれぞれ設けた同軸電極20において、中央導体21と半円管導体23との間でマイクロ波を照射できるとともに、極性が逆になった一方の同軸電極20の中央導体21と他方の中央導体21、並びに一方の同軸電極20の半円管導体23と他方の同軸電極20の半円管導体23との間においてもマイクロ波が照射することとなる。
 また、図17(b)に示すエンドエフェクタ10aは、図20(b)に示すように、下顎部116aと上顎部14aとの対向面のそれぞれに設けた同軸電極20を逆極性となるように接続して構成してもよい。
 さらには、図示省略するが、エンドエフェクタ10aにおいて、下顎部116aと上顎部14aとの対向面に加え、切断カッタ15aの側面にも同軸電極20を設けてもよいし、上顎部14aに同軸電極20を設けず、下顎部116aの上面と切断カッタ15aの側面とに同軸電極20を設けてもよい。さらには、図24(f)~図24(h)に図示するように、上顎部14aと下顎部116aの対向面との一方にのみ同軸電極20を設けてもよい。
 また、図21に示すように、エンドエフェクタ10aにおける上顎部14及び下顎部116aに設けた同軸電極20の代わりに、上述の照射用電極24a,24bを備えてもよい。さらに、切断カッタ15の側面に照射用電極24cを設けてもよい。なお、図21(a)は照射用電極24(24a,24b,24c)を備えたエンドエフェクタ10aの縦断面図を示し、図21(b)は照射用電極24を備えたエンドエフェクタ10aの一部拡大縦断面図を示している。
 さらにまた、図22に示すように、上述の鉗子1,1X,1Yにおける上顎部14、切断カッタ15及び下顎部116のうち少なくともひとつに、同軸ケーブル40によってマイクロ波発信器30に接続された同軸電極20を設けてもよい。
 なお、図22(a)は上顎部14及び下顎部116に同軸電極20を設けた鉗子1の正面図を示している。図22(b)は上顎部14及び下顎部116に同軸電極20を設けた鉗子1Xの正面図を示し、図22(c)は上顎部14及び下顎部116に同軸電極20を設けた鉗子1Yの正面図を示している。このように、上顎部14及び下顎部116で構成する把持機構17に同軸電極20を備えた鉗子1,1X,1Yは、トリガハンドル13を操作して把持機構17で把持した対象部位に対して両方の同軸電極20からマイクロ波を照射して凝固させてから、カッタ15,15Yで対象部位を切断することができる。
 なお、図22では、把持機構17を構成する上顎部14及び下顎部116の両方に同軸電極20を備えたが、上顎部14及び下顎部116の一方に同軸電極20を備えてもよいし、カッタ15,15Yに同軸電極20を備えてもよい。
 さらにまた、図23に示すように、仕様によっては、切断器として、上述の鉗子1,1X,1Yにおける上顎部14、切断カッタ15及び下顎部116に、同軸電極20や照射用電極24を設けなくてもよい。
 なお、図23(a)は上顎部14、切断カッタ15及び下顎部116に同軸電極20や照射用電極24を設けていない鉗子1の正面図を示している。図23(b)は上顎部14、切断カッタ15及び下顎部116に同軸電極20や照射用電極24を設けていない鉗子1Xの正面図を示し、図23(c)は上顎部14、切断カッタ15及び下顎部116に同軸電極20や照射用電極24を設けていない鉗子1Yの正面図を示している。
 図24は、同軸電極20から照射したマイクロ波による凝固を確認した確認試験の模式図である。具体的には、卵白内でエンドエフェクタ10bの固定刃119bと可動刃14bとに設けた同軸電極20からマイクロ波を照射するとともに、凝固卵白Mを切断した試験状況を図24(a)~図24(e)に示している。また、エンドエフェクタ10aにおける下顎部116aにのみ同軸電極20を設けた、いわゆる片刃に同軸電極20を設けた場合の試験状況を図24(f)~図24(h)に示している。
 図24(a)に示すように、両刃に同軸電極20を設けたエンドエフェクタ10bを卵白内に配置し、マイクロ波発信器30を稼働させて両刃に設けた同軸電極20からマイクロ波を照射すると、図24(b)に示すように、切断機構19を構成する固定刃119bと可動刃14bとの間において、同軸電極20同士の間隔が狭い基部側から凝固が始まり凝固卵白Mが形成される。
 両刃に設けた同軸電極20からのマイクロ波の照射を続けると、図24(c)に示すように、凝固卵白Mは、固定刃119bと可動刃14bに設けた同軸電極20に沿って拡大していく。そして、切断機構19を構成する固定刃119bに対して可動刃14bを回動させると、図24(d)に示すように、固定刃119bと可動刃14bに設けた切断刃によって凝固卵白Mを切断することができる。
 なお、切断刃による凝固卵白Mの切断の際に固定刃119b及び可動刃14bに備えた同軸電極20からマイクロ波を照射しながら切断してもよいし、同軸電極20からマイクロ波を照射せずに切断してもよい。
 そして、図24(e)に示すように、切断機構19を構成する可動刃14bを開き、凝固卵白Mを切断した箇所に対して矢印方向に進め、再度同軸電極20からマイクロ波を照射すると、図24(b)に示すように、凝固卵白Mが形成される。これを繰り返すことによって、エンドエフェクタ10bにおける切断機構19で例えば血管Bにおける凝固された部分を切断できることが確認できた。この結果は手術において出血による血溜まりの中での止血機能低下を抑えると推測される。
 なお、エンドエフェクタ10aにおける下顎部116aと上顎部14aとの両方に同軸電極20を設けた場合、あるいは、下顎部116aと切断カッタ15aに同軸電極20を設けた場合、さらには、下顎部116a、上顎部14a及び切断カッタ15aの全部に同軸電極20を設けた場合も、上述の両刃に同軸電極20を設けたエンドエフェクタ10bと同様に、エンドエフェクタ10aにおける切断機構19で例えば血管Bにおける凝固された部分を切断することができる。
 これに対し、エンドエフェクタ10aにおいて切断機構19を構成する下顎部116aと上顎部14aの一方にのみ同軸電極20を設けた片刃電極であるエンドエフェクタ10aの場合は、図24(g)に示すように、片刃に設けた同軸電極20からマイクロ波を照射することで凝固卵白Mが形成され、片刃に設けた同軸電極20に沿って拡大した凝固卵白Mを切断カッタ15aで切断することができる。しかしながら、図24(c)に示すように、両刃に同軸電極20を設けた場合に比べ、凝固卵白Mの形成速度は遅く、形成される凝固卵白Mの大きさは小さくなる。
 なお、マイクロ波を照射するエンドエフェクタ10aやエンドエフェクタ10bなどの手術機器は煙や、ミストを出すことが少なく、止血機能も強力で、鏡視下手術やロボット手術など閉鎖空間での手術支援に最適である。しかし、出血が多い場合の血液溜まり内止血や、液体中の止血力は他のエネルギー機器と同様に減弱する。
 上述の効果確認試験では、図示省略するが、両刃の一方に同軸電極20における中央導体21と半円管導体23のうち一方の導体を配置して電極とし、両刃の他方に同軸電極20における中央導体21と半円管導体23のうち他方の導体を配置して電極としたエンドエフェクタの場合、両刃の一方の電極から他方に設けた電極に向かってマイクロ波を照射するため、空気中では開いた刃の間に挟んだ組織の中間部分から凝固が始まるものの、卵白中ではマイクロ波を照射する側の電極部分にのみ凝固が進み、他方の電極において周囲の卵白を凝固する速度はかなり遅れ、止血力が減弱することも確認できた。
 これに対し、上述したように、エンドエフェクタ10bにおける両刃のそれぞれに備えた同軸電極20でマイクロ波を照射する場合は両刃に備えた同軸電極20から凝固が進み(図24(b),(c)参照)、空中の倍の時間経過で卵白が凝固して凝固卵白Mが形成できた。また、両刃のうち一方にのみ同軸電極20を備えたエンドエフェクタ10aの場合、凝固卵白Mは形成されるものの、全面的な凝固卵白Mの形成は3倍の時間をかけても完成しなかった。このように、凝固卵白Mの形成に影響がある同軸電極20の配置については使用環境や施術対象に合わせて選択せればよい。
 図25は本発明の他の実施例における医療機器220を示す。図25(a)において、医療機器220は、図16~図24の実施例で説明されたようなハサミ型多機能手術機器(医療用処理具)のエンドエフェクタ10aを駆動する手術装置221を含んでいる。なお、エンドエフェクタ10aの代わりに、医療機器220にエンドエフェクタ10bを備えてもよい。
 手術装置221は、照射器及び増幅器などのマイクロ波制御回路を含むマイクロ波照射モジュール222と、レバー223の手動操作によりエンドエフェクタ10aを駆動するメカ機構の駆動ユニット224を含んでいる。具体的には、図1~図15に示した鉗子のトリガハンドル13をレバー223とし、トリガハンドル13からエンドエフェクタ10a,10bに至るメカ機構を手術装置221に組み入れても良い。
 照射器を有するマイクロ波照射モジュール222は、手術装置221内に設けているが、必要によりシャフト部225の内部に、又は手首機能を有する屈曲部226(図16の可撓部101など)に、若しくはエンドエフェクタ10a(図1及び図2、又は図16(a)の電子モジュール31)に設けることにより、医療機器220を超小型化することが可能となる。
 操作者がマニュアルで手術装置221のグリップ部のレバー223を把持操作することにより、駆動ユニット224が図16のエンドエフェクタ10aを、シャフト部225を介して操作する構成である。
 手術装置221にはアダプタ227から電源の供給を受ける。手術装置221に含まれるマイクロ波照射モジュール222は従来の据え置き型や肩掛け型、内蔵型以外にロボット本体に設置された照射器に直接間接的に繋がるように構成してもよい。
 上記実施例において、マイクロ波の照射は、エンドエフェクタ10aの下顎部116と上顎部14(以下において、鉗子両刃という)で把持する時に凝固するのではなく、下顎部116に対して上顎部14が回動する際に対象部位である生体組織を凝固しても組織の凝固止血切断は可能となる。さらに、エンドエフェクタ10aにおける把持機構17aで生体組織を把持して切断カッタ15で切る際にマイクロ波を照射してもよい。
 このような鉗子であれば組織を開排、把持して邪魔なものを除け、術野を整備する操作に把持機能を使うことができ、しかも凝固切断したい部分を鉗子で把持し、そのまま凝固切断することが可能である。凝固と切断の操作が複数にわたる組織把持し直しや、挟み込みのし直しにはならず、一度挟んだものを1連の握りこみで操作を完成することになる。したがって、手術操作が把持、凝固、切断を一つのデバイスのままで実行可能になる。 
 一般的な切除手術の1連操作全てであり、単独の器具で切除手術を完遂でき、他器具との取り替えが不要となる。
 本実施例の変形例として、マイクロ波照射モジュール222に実行プログラムメモリを設け、駆動ユニット224を実行プログラムにより制御される電動のメカ機構とする構成としてもよい。動作としては、レバー223を把持すると、レバー223の位置データに基づいて、実行プログラムが駆動ユニット224を可動させ、図1のエンドエフェクタ10aの構成とすることで、スライドフレーム12を移動させることにより上顎部14を切断カッタ15(図2参照)と協働して下顎部116の方向に回動させ、前記プログラムにより、マイクロ波信号を照射用電極24に送り、マイクロ波を照射することで生体組織を凝固させることができる。
 レバー223を更に把持すると、前述のとおり前記位置データに従って前記プログラムにより可動フレーム12aが更に前進し、前記生体組織を上顎部14aと下顎部116aで把持する。 
 レバー223を更に把持すると、レバーの位置データにより上記プログラムにより可動フレーム12aが更なる前進をして切断カッタ15のみを回動させることにより、凝固した上記生体組織を切断する。切断した後、レバー223を解放することにより、レバーの位置データに基づき、医療機器220は初期状態(開状態)に戻る構成とする。
 図25(b)は、図25(a)に図示する医療機器220を複数備えた手術システムの概略図であり、それぞれの内部構成は、図25(a)と同様であるが、医療機器220の各マイクロ波照射モジュール222には、更に、お互いのマイクロ波の波長を同期させるユニットが含まれており、アダプタ227を介して又は無線で同期させている。
 そのため、二つの医療機器220を一人又は二人の操作者により患者内で操作するときに、双方のマイクロ波の波長が同期していることにより、二つの医療機器220間でスパークなどの発生を防ぐことができ、安全性が高まる。
 図26は、本発明の一実施例における、遠隔手術システム200を示す。遠隔手術システム200は、2人の操作者D(D1、D2)のそれぞれのステーションとなる外科医コンソール201、操作者Dにより操作されるマスタ制御ユニット202、視角・コアカート240,患者側カートである患者側カート210のロボットを有する。
 外科医コンソール201は、手術部位の画像が操作者Dに表示されるビューア201aを備える。外科医コンソール201を使用する場合、操作者D1及び/又はD2は、一般的には、外科医コンソールの椅子に座り、自身の両目をビューア201aの前に合わせ、マスタ制御ユニット202を片手に把持する。
 遠隔手術システム200では、操作者2人が同時に操作することができるが、操作者一人でも操作することができる。操作者2人が同時に操作する場合は2者の連携操作が可能となり、全体の患者の手術時間を短縮できる利点がある。外科医コンソール201及びマスタ制御ユニット202は、必要によりそれぞれ3台以上設けるシステムにしてもよい。
 患者側カート210のロボットは、患者に隣接して設置される。使用中、患者側カート210は、手術を必要とする患者の近くに設置される。患者側カート210のロボットは、外科手術中は固定されるが移動できるように台座211にはキャスタを備える。外科医コンソール201は、患者側カートと同じ手術室内で使用されるが、患者側カート210から遠隔に設置してもよい。
 患者側カート210は、4つのロボットアーム組立体212を含むが、ロボットアーム組立体212の数は任意である。各ロボットアーム組立体212は、3次元移動を可能にする駆動装置213に接続され駆動制御される構造としている。
 表示器214は手術に関連する画像データを表示する。駆動装置213は、外科医コンソール201のマスタ制御ユニット202により制御される。ロボットアーム組立体212のマニピュレータ部分の動きは、マスタ制御ユニット202の操作によって制御される。
 4つのロボットアーム組立体212のうちひとつのロボットアーム組立体212aには、内視鏡などの画像取込み機器215が配置される。画像取込み機器215の遠隔端部に視認カメラ216を含んでいる。細長いシャフト状の画像取込み機器215によって、患者(図示省略)の手術侵入ポートを通して視認カメラ216を挿入することが可能になる。 
 画像取込み機器215は、その視認カメラ216に取り込まれた画像を表示するために、外科医コンソール201のビューア201aに動作可能に接続される。
 他のロボットアーム組立体212の各々は、着脱可能な手術器具であるツール217をそれぞれ支持および含むリンク装置である。ロボットアーム組立体212のツール217は、それぞれエンドエフェクタ10a(10b)を含む。
 ツール217は、患者の手術侵入ポートを通してエンドエフェクタ10a(10b)挿入することを可能にするように、細長いシャフトを有する。エンドエフェクタ10a(10b)の動きは、外科医コンソール201のマスタ制御ユニット202によって制御される。
 ツール217として、エンドエフェクタ10a(10b)にマイクロ波照射用の電極(20,24)とマイクロ波照射ユニットが使われる場合、それぞれエンドエフェクタ10a(10b)から照射されるマイクロ波の波長を同期させる構成としている。
 例えば、一人又は二人の操作者Dにより患者内で複数のツール217を操作するときに、照射されるマイクロ波の波長が同期していることにより、複数のツール217間又は複数のエンドエフェクタ10a(10b)間でスパークなどの発生を防ぐことができ、安全性が高められる。同時に複数のエンドエフェクタ10a(10b)を操作することは高度の手術のみならず手術時間を短縮できる。
 図27は、図26の遠隔手術システム200のロボットアーム組立体212に装填され得るツール217を手術装置の代表例として構成を示す。他のロボットアーム組立体212に装着されるツール217は同様の構成でもよいし、他の構成の手術装置であってもよい。
 図27(a)は、ツール217の平面図を示す。ツール217は、ハサミ型多機能手術機器のエンドエフェクタ10a、屈曲部226、シャフト部225、ツール217を駆動制御・モニタする手術装置221、ロボットに結合するコネクタ228を有する。屈曲部226はエフェクタの操作角度の自由度を増し、ロボット制御の精度が向上する。
 図27(b)は図27(a)のツール217の内部構成を示す。図16のスライド軸に直結するエンドエフェクタ10aを、シャフト部225を介して駆動する手術装置221、手術装置221を制御する患者側カート210のロボットで構成される医療システムを示す。
 エンドエフェクタ10aは開閉可能に保持された回動可能な第1把持部材と固定第2把持部材と、該第1把持部材と該第2部材に併設された可動な切断部材とを有する切断器を備える。エンドエフェクタ10aと接続される手術装置221はツール217との整合ユニット231,反射波モニタ232,手術装置内の信号を制御する制御回路233,ツール217のシャフト部225を介してツール217の切断器を機械的に駆動するアンプとマイクロ波発生の照射器を有する照射・駆動ユニット234、患者側カート210のロボットとの信号インターフェース235を有する。
 図28にも動作説明しているが、患者側カート210のロボットは、手術装置221と信号インターフェース235とコネクタ228を介して有線及び/又は無線で接続されており、患者側カート210のロボットの内部には、マスタ制御ユニット201からの操作信号を受信する入力ユニット210aと、操作信号に基づき予め定められた操作プログラムを実行する演算ユニットCPUと、該演算ユニットからの出力に基づき手術装置221を介してエンドエフェクタ10aの前記第1把持部材と前記切断部材を駆動する駆動信号を発生する出力ユニット210aを備えている。前記入力ユニットと前記出力ユニットは、入出力ユニット210a(I/O)で構成される。
 図28は、遠隔手術システム200の説明図であり。図28(a)は各ユニットとの接続関係を示すブロック図であり、図28(b)は遠隔手術システム200の動作フロー図である。
 視覚・コアカート240は、画像取込み機器に関連する機能を有する。手術のために遠隔手術システム200を起動すると、外科医は、外科医コンソール201のマスタ制御ユニット202を操作し、外科医が2名の場合は、外科医コンソール201のマスタ制御ユニット202も操作し(ステップS1)、操作により生成されたコマンドは、視覚・コアカート240に送信される(ステップS2)。 
 次いで、視覚・コアカート240は、信号を解釈し、所望のロボットアーム組立体212を患者の手術領域に移動をさせる(ステップS3)。
 次に選択されたロボットアーム組立体212に取り付けられたツール217を細長いパイプを通して患者に挿入し(ステップS4)、上記実施例のエンドエフェクタ10a(10b)に、組織体を把持・凝固・切断の動作をさせて(ステップS5)、生体組織の手術を完了させる。
 なお、ステップS5における生体組織を把持・凝固・切断の動作は、エンドエフェクタ10a(10b)の動作であるが、電極からマイクロ波を照射しながら、生体組織に対して凝固、把持、及び切断を行う動作パターン1、生体組織を把持してから、電極からマイクロ波を照射して凝固させるとともに、電極からマイクロ波を照射しながら切断する動作パターン2、並びに電極からマイクロ波を照射しながら生体組織を把持するとともに凝固するものの、電極からのマイクロ波の照射を停止して切断する動作パターン3の3つの動作パターンがある。これら3つの動作パターンは、手術内容に応じて選択的に取り得る構成としている。また、ツール217で把持又は凝固し、他のツール217で切断するなど図26の複数のツールで分担して動作するパターンとしてもよい。
 本実施例における、組織体の凝固・把持・切断の動作は、図25の実施例の変形例として述べたレバー223の位置データに基づくエンドエフェクタ10a(10b)の制御動作の代わりに、ロボット210からの制御信号に基づくエンドエフェクタ10a(10b)の動作にすることで、同様の制御動作フローが得られる。
 上述の実施例及び実施態様は、鉗子及び医療器具など、医療を例に記載したが、本発明は上記記載に限定されることなく、対象部位として、物の一部だけでなく、部材であってもよく、対象部材を把持/当接し、切断できる汎用の切断器を含む。また、鉗子の電極から照射するエネルギー波は、マイクロ波に限らず、その他の電磁波を含めてよい。
 例えば、上述のように、鉗子1等における切断機構10やエンドエフェクタ10aでは、下顎部116及び上顎部14で把持機構17を構成し、把持機構17で把持した血管B等の対象部位を切断カッタ15で切断するように構成したが、図6(d)に示すように、下顎部116及び上顎部14で構成する把持機構17を、切断カッタ15を挟んで両側に備え、二組の把持機構17で把持した間の対象部位を切断カッタ15で切断するように構成してもよい。
 また、本発明の鉗子又はエンドエフェクタで水平移動は軸移動に限らず、エンドエフェクタの位置、角度の自由度を高めるため、ワイヤーで繋げた構造としてもよい。生体組織を把持、凝固、切断を行わせるための上顎部と切断カッタを移動させるバネ機構は実施例に限らず任意の位置に設けてもよい。
 また、電極や刃先以外は腐食、スパークを防ぐため適宜、絶縁コーテイングしてもよい。上記実施例では、両把持部材(上下顎部、両刃)刃の間にある組織を両サイドから凝固可能としている。エンドエフェクタにマイクロ波を供給する同軸ケーブルの分割部位は、複数の関節の動きを制約せず複数のロボット関節をしなやかなケーブルにて超えてエネルギーを送る構造が可能となる。
 また、金属製の刃を使うことで、剛性、形を自在に設計できる。本発明の鉗子、エンドエフェクタを有する医療機器は、MR画像誘導下で使え、マイクロ波エネルギーを鏡視下やロボットハンドのみならず、血管内外科や胎児外科に導入可能となる
 本発明の鉗子又はエンドエフェクタで水平移動は軸移動に限らず、エンドエフェクタの位置、角度の自由度を高めるため、ワイヤーで繋げた構造としてもよい。 
 生体組織を把持、凝固、切断を行わせるための上顎部と切断カッタを移動させるバネ機構は実施例に限らず任意の位置に設けてもよい。また、電極や刃先以外は腐食、スパークを防ぐため適宜、絶縁コーテイングしてもよい。
 上記実施例では、両把持部材(上下顎部、両刃)刃の間にある組織を両サイドから凝固可能とする。エンドエフェクタにマイクロ波を供給する同軸ケーブルの分割部位は、複数の関節の動きを制約せず複数のロボット関節をしなやかなケーブルにて超えてエネルギーを送ることが可能となる。
 また、金属製の刃を使うことで、剛性、形を自在に設計できる。本発明の鉗子、エンドエフェクタを有する医療機器は、MR画像誘導下で使え、マイクロ波エネルギーを鏡視下やロボットハンドのみならず、血管内外科や胎児外科に導入可能となる。
 本発明の実施形態は、全ての点で例示であり、本発明の範囲は特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
1,1X,1Y…鉗子
10,10X…切断機構
10a,10b…エンドエフェクタ
11,11X,11Y…本体フレーム
11a,11b…基準軸
12…上スライド軸
12a,12b…可動軸
12Xa,12Ya…第1スライドプレート
12Xb,12Yb…第2スライドプレート
13,13X,13Y…トリガハンドル
14,14a…上顎部
14b…可動刃
15,15a…切断カッタ
15Y…スライドカッタ
16…バネ
16X,16Y…コイルバネ
17,17a…把持機構
18Y…アーム
19…切断機構
20…同軸電極
21…中央導体
22…半円絶縁体
23…半円管導体
24a,24b,24c…(照射)電極
30…マイクロ波発信器
31…電子モジュール
35…コアカート
40…同軸ケーブル
41…中央導体
42…絶縁体
43…外側導体
44…絶縁被覆
100…支持具
101…可撓部
111…固定ハンドルフレーム
112,112X,112Y…基準フレーム
112Xa…スライドフレーム
113,131…指輪部
114…角部
115…支持軸
116,116a…下顎部分
117,117b…先端支持軸
118,123…クリック凸部
119b…固定刃
121,121Ya,121Yb…上支持軸
121Xa…中段支持軸
122,122Xa,122Yb…先端上支持軸
122Xb…当接リング部
123X…規制孔
124Y…規制枠
132,132X,132Y…枢軸部
133,133X,133Y…上枢軸部
134X…上段枢軸部
135X…押圧ブロック
141,141b,151…被軸部
142,152…回動軸部
143…突出規制部
153,153a,153b,153Y…切断刃
161X…挿通軸
162X…フランジ部
181Y…駆動軸
200…遠隔手術システム
201…外科医コンソール
201a…ビューア
202…マスタ制御ユニット
210…患者側カート
210a・・・入出力ユニット
211…台座
212,212a…ロボットアーム組立体
213…駆動装置
214…表示器
215…画像取込み機器
216…視認カメラ
217…ツール
220…医療機器
221…手術装置
222…マイクロ波照射モジュール
223…レバー
224…駆動ユニット
225…シャフト部
226…屈曲部
227…アダプタ
228…コネクタ
231…整合ユニット
232…反射波モニタ
233…制御回路
234…駆動ユニット
235…信号インターフェース
240…コアカート
B…血管
D,D1…操作者
F…先端側
L…長手方向
M…凝固卵白
R…基端側

Claims (28)

  1.  開閉可能に組付けられた第1当接部材及び第2当接部材と、
    前記第1当接部材を前記第2当接部材に向かって回動し、前記第1当接部材と前記第2当接部材とを対象部位に当接させる当接機構と、
    該当接機構により前記第1当接部材と前記第2当接部材とが前記対象部位に当接した状態において、上記対象部位を切断する切断機構とを有する
    切断器。
  2.  前記第1当接部材及び前記第2当接部材を、前記対象部位を把持する第1把持部材及び第2把持部材とするとともに、前記当接機構は、前記第1把持部材を前記第2把持部材に向かって回動し、前記第1把持部材と前記第2把持部材とで前記対象部位を把持する把持機構とし、
    前記第1把持部材に併設された切断部材が設けられ、
    前記把持機構により前記第1把持部材と前記第2把持部材とで前記対象部位を把持した状態において、前記切断部材を前記第1把持部材に沿って移動させ、前記第2把持部材と接合することにより前記対象部位を切断する
    請求項1に記載の切断器。
  3.  前記把持機構により前記対象部位が把持されている状態において、
    前記切断機構は、
    前記第1把持部材の回動と同方向に前記切断部材を回動させ、前記第2把持部材と接合することにより上記対象部位を切断する構成とする
    請求項2に記載の切断器。
  4.  前記第1把持部材に、同方向に回動する前記切断部材が切断方向と逆方向に前記第1把持部材を越えて突出することを規制する突出規制部を設けた
    請求項3に記載の切断器。
  5.  前記把持機構により前記対象部位が把持されている状態において、
    前記切断機構は、
    前記切断部材を前記第2把持部材に沿ってスライド前進させ、前記切断部材により前記対象部位を切断する構成である
    請求項2に記載の切断器。
  6.  前記第1把持部材において前記対象部位を把持する把持箇所及び前記切断部材における切断刃の近傍のうち少なくとも一方と、前記第2把持部材において前記対象部位を把持する把持箇所とに、電磁波を照射するための電極が設けられた
    請求項2から請求項5までのうちいずれかに記載の切断器。
  7.  前記電極は、
    中心電極と、絶縁体を介して該中心電極を囲繞する外側電極とが備えられた同軸電極であり、
    前記電磁波を照射する照射装置と前記電極とを接続する同軸ケーブルを複数に並列分岐させるとともに、前記同軸ケーブルの中心導体と外部導体に前記同軸電極のそれぞれが電気的に接続された
    請求項6に記載の切断器。
  8.  前記同軸電極は、前記同軸ケーブルに対して逆極性に接続された
    請求項7に記載の切断器。
  9.  請求項2から請求項5までのうちのいずれかに記載の切断器を備え、
    前記対象部位は生体組織であるとともに、
    前記第1把持部材と第2把持部材はそれぞれ第1顎部材と第2顎部材であり、
    該第1顎部材を該第2顎部材に向かって回動させることにより前記生体組織を把持・凝固する駆動機構と、
    前記駆動機構及び前記切断機構を操作するひとつの操作部とが備えられ、
    該操作部の一連の操作により、前記生体組織を第1顎部材と第2顎部材とにより把持してから、切断機構が切断する
    鉗子。
  10.  請求項6から請求項8までのうちのいずれかに記載の切断器を備え、
    前記対象部位は生体組織であるとともに、
    前記第1把持部材と第2把持部材はそれぞれ第1顎部材と第2顎部材であり、
    該第1顎部材を該第2顎部材に向かって回動させることにより前記生体組織を把持・凝固する駆動機構と、
    前記駆動機構及び前記切断機構を操作するひとつの操作部とが備えられ、
    前記電極から電磁波を照射して生体組織の少なくとも一部を凝固させ、
    該操作部の一連の操作により、前記生体組織を第1顎部材と第2顎部材とにより把持してから、切断機構が切断する
    鉗子。
  11.  前記操作部の操作によって、前記対象部位を把持するまで前記把持機構及び前記切断機構が共に稼働し、
    前記操作部のさらなる操作によって、前記対象部位を把持する把持状態の前記把持機構に対して前記切断機構が差動する差動機構が備えられた
    請求項9又は請求項10に記載の鉗子。
  12.  前記操作部の一連操作による差動機構の稼働を利用者に通知する通知部が設けられた
    請求項11に記載の鉗子。
  13.  前記第1当接部材と前記第2当接部材とは前記対象部位に当接する当接箇所に前記対象部位を切断する切断刃が設けられた第1切断部材と前記第2切断部材であり、
    該当接機構は、前記第1切断部材と前記第2切断部材によって前記対象部位に当接を切断する前記切断機構であり、
    前記第1切断部材と前記第2切断部材における前記切断刃に沿って、電磁波を照射するための電極が設けられた
    請求項1に記載の切断器。
  14.  前記電極は、
    中心電極と、絶縁体を介して該中心電極を囲繞する外側電極とが備えられた同軸電極であり、
    前記電磁波を照射する照射装置と前記電極とを接続する同軸ケーブルを複数に並列分岐させ、前記同軸ケーブルの中心導体と外部導体に前記同軸電極のそれぞれが電気的に接続された
    請求項13に記載の切断器。
  15.  前記同軸電極は、前記同軸ケーブルに対して逆極性に接続された
    請求項14に記載の切断器。
  16.  請求項13から請求項15までのうちいずれかに記載の切断器を備え、
    前記対象部位は生体組織であるとともに、
    前記第1当接部材と第2当接部材はそれぞれ第1顎部材と第2顎部材であり、
    該第1顎部材を該第2顎部材に向かって回動させることにより前記生体組織に当接させ、前記生体組織を凝固させるとともに、切断する駆動機構と、
    前記駆動機構を操作する操作部とが備えられ、
    該操作部の一連の操作により、前記生体組織に第1顎部材と第2顎部材とを当接させるとともに凝固させ、切断機構が切断する
    鉗子。
  17.  請求項10又は請求項16に記載の鉗子を有する複数の医療機器を備え
     それぞれの前記鉗子に設けられた前記電極はマイクロ波照射用の電極であるとともに、
    それぞれの前記鉗子に、マイクロ波照射ユニットが設けられ、
    各電極に前記同軸ケーブルから印加されるマイクロ波の周期が同一である
    手術システム。
  18.  請求項9、請求項10、及び請求項16のうちのいずれかに記載の鉗子と、
    該鉗子の前記把持機構と前記切断機構を駆動する駆動ユニットと、
    該駆動ユニットに駆動信号を印加するように接続された医療用ロボットとを有する
    医療システム。
  19.  請求項2から請求項5までのうちのいずれかに記載の切断器を用い、
    前記第1把持部材を前記第2把持部材に向かって回動し、前記第1把持部材と前記第2把持部材とで前記対象部位を把持する工程と、
     前記第1把持部材に併設された前記切断部材を前記第1把持部材に沿って移動させ、前記第2把持部材と接合することにより前記把持された対象部位を切断する工程を有する
    把持・切断方法。
  20.  前記切断する工程において、前記第1把持部材に併設された前記切断部材を前記第2把持部材の方向へ回動、又は前記第2把持部材に沿ってスライド前進させる
    請求項19に記載の把持・切断方法。
  21.  可動軸に連結された回動可能な上顎部材と、
    本体フレームに支えられた静止下顎部材と、
    前記上顎部材に併設され、前記上顎部材と前記下顎部材に係合する回動可能な切断部材と、
    前記上顎部材の前記下顎部材と対面する面に設けられた第1電極と、
    前記下顎部材の前記上顎部材と対面する面に設けられた第2電極と、
    前記切断部材の刃先又は近傍に設けられた第3電極と、
    前記第1電極と前記第2電極と前記第3電極に接続された同軸ケーブルと、
    屈曲可能な覆い形状の可撓部とを有する
    エンドエフェクタ。
  22.  請求項1から請求項8までのうちいずれかに記載された切断器に有線及び/又は無線で接続された入出力ユニットと、
    リアルタイムに操作信号を受信する入力ユニットと、
    前記操作信号に基づき予め定められた操作プログラムを実行する演算ユニットと、
    該演算ユニットからの出力に基づき前記器の前記第1当接部材と前記第2当接部材により前記対象部位に当接及び/又は前記対象部位を切断する駆動信号を発生する出力ユニットとを備えた
    ロボット。
  23.  請求項6から請求項8まで及び請求項13から請求項15までのうちいずれかに記載された切断器に有線及び/又は無線で接続された入出力ユニットと、
    リアルタイムに操作信号を受信する入力ユニットと、
    前記操作信号に基づき予め定められた操作プログラムを実行する演算ユニットと、
    該演算ユニットからの出力に基づき前記切断器の前記第1当接部材と前記第2当接部材により対象部位に当接及び/又は切断する駆動信号、及び/又は前記電極からの前記電磁波を照射する照射信号を発生する出力ユニットとを備えた
    ロボット。
  24.  請求項22又は請求項23に記載のロボットを備え、
    前記出力ユニットは、前記器を機械的に駆動する外部に設けられた駆動ユニットに駆動信号を提供する
    手術用医療ロボット。
  25.  マスタ制御ユニットの操作によりコマンドを生成するステップと、
    上記コマンドによりロボットアーム組立体を処置位置に移動するステップと、
    ロボットアーム組立体に取り付けられたツールを処置位置に移動するステップと、
    前記ツールの先端に取り付けられた請求項9、請求項10、及び請求項16のうちのいずれかに記載の鉗子の動きと電磁波照射を制御するステップとを有する
    ロボット制御方法。
  26.  複数の操作者のステーションとなる複数の外科医コンソールと、
    複数の操作者により操作されるマスタ制御ユニットと、
    患者側カートである、請求項22又は請求項23に記載のロボットとを有する
    手術システム。
  27.  ひとつの操作部と、
    開閉可能に組付けられた第1把持部材及び第2把持部材と、
    前記第1把持部材に併設された切断部材と、
    前記操作部の移動に応じて、前記第1把持部材を前記第2把持部材に向かって回動し、前記第1把持部材と前記第2把持部材により生体組織を把持する把持機構と、
    該把持機構により前記生体組織が把持された状態において、前記操作部の更なる移動に応じて、前記切断部材を前記第1把持部材に沿って移動させ、前記第2把持部材と接合することにより前記把持された生体組織を切断する切断機構とを有する
    切断器。
  28.  前記操作部の操作によって、前記対象部位を把持するまで前記把持機構及び前記切断機構が共に稼働し、
    前記操作部のさらなる操作によって、前記対象部位を把持する把持状態の前記把持機構に対して前記切断機構が差動する差動機構が備えられた
    請求項27に記載の切断器。
PCT/JP2020/023914 2019-06-20 2020-06-18 切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム WO2020256053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20826037.2A EP3988036A4 (en) 2019-06-20 2020-06-18 CUTTING DEVICE, FORCEPS, SURGICAL SYSTEM, MEDICAL SYSTEM, ROBOT, MEDICAL ROBOT FOR SURGICAL AND SURGICAL SYSTEM
JP2021526867A JPWO2020256053A1 (ja) 2019-06-20 2020-06-18
US17/554,386 US20220175410A1 (en) 2019-06-20 2021-12-17 Cutting device, forceps and gripping/cutting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962864224P 2019-06-20 2019-06-20
US62/864,224 2019-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/554,386 Continuation-In-Part US20220175410A1 (en) 2019-06-20 2021-12-17 Cutting device, forceps and gripping/cutting method

Publications (1)

Publication Number Publication Date
WO2020256053A1 true WO2020256053A1 (ja) 2020-12-24

Family

ID=74040837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023914 WO2020256053A1 (ja) 2019-06-20 2020-06-18 切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム

Country Status (3)

Country Link
EP (1) EP3988036A4 (ja)
JP (1) JPWO2020256053A1 (ja)
WO (1) WO2020256053A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104424A1 (en) * 2021-12-10 2023-06-15 Creo Medical Limited Electrosurgical resector tool
CN117257439A (zh) * 2023-11-22 2023-12-22 施爱德(厦门)医疗器材有限公司 一种多工位转换的手术器械

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202213954D0 (en) * 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103096A1 (ja) * 2012-12-27 2014-07-03 ディーブイエックス株式会社 外科手術用器具
JP2015016347A (ja) * 2009-10-09 2015-01-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 外科用器具
JP2017060845A (ja) * 2016-12-01 2017-03-30 コヴィディエン リミテッド パートナーシップ 双極外科手術器具
JP2017060846A (ja) 2016-12-01 2017-03-30 コヴィディエン リミテッド パートナーシップ 双極外科手術器具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567469A (en) * 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016347A (ja) * 2009-10-09 2015-01-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 外科用器具
WO2014103096A1 (ja) * 2012-12-27 2014-07-03 ディーブイエックス株式会社 外科手術用器具
JP2017060845A (ja) * 2016-12-01 2017-03-30 コヴィディエン リミテッド パートナーシップ 双極外科手術器具
JP2017060846A (ja) 2016-12-01 2017-03-30 コヴィディエン リミテッド パートナーシップ 双極外科手術器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988036A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104424A1 (en) * 2021-12-10 2023-06-15 Creo Medical Limited Electrosurgical resector tool
CN117257439A (zh) * 2023-11-22 2023-12-22 施爱德(厦门)医疗器材有限公司 一种多工位转换的手术器械
CN117257439B (zh) * 2023-11-22 2024-02-02 施爱德(厦门)医疗器材有限公司 一种多工位转换的手术器械

Also Published As

Publication number Publication date
EP3988036A1 (en) 2022-04-27
EP3988036A4 (en) 2023-07-05
JPWO2020256053A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
US10568684B2 (en) Electrosurgical device with disposable shaft having clamshell coupling
US10335182B2 (en) Surgical instruments with articulating shafts
WO2020256053A1 (ja) 切断器、鉗子、手術システム、医療システム、ロボット、手術用医療ロボット、及び手術システム
US20200197076A1 (en) Multifunctional vessel sealing and divider device
US11013528B2 (en) Electrically-powered surgical systems providing fine clamping control during energy delivery
US10898219B2 (en) Electrically-powered surgical systems for cutting and welding solid organs
US10912581B2 (en) Electrically-powered surgical systems with articulation-compensated ultrasonic energy delivery
US11406407B2 (en) Vessel sealing with fine dissection function
US10517665B2 (en) Devices and methods for tissue sealing and mechanical clipping
CN106063723B (zh) 用于与可重复使用的脉管封闭分隔装置使用的一次性连接件
WO2016169036A1 (en) Hyperfine dissection vessel sealing divider device with leapfrogging function
US20190060018A1 (en) Electrically-powered surgical systems employing variable compression during treatment
WO2019043521A1 (en) SURGICAL ELECTRICAL POWER SYSTEMS FOR CUTTING AND SOLDING SOLID ORGANS
JP7155093B2 (ja) 手術器具
US20220175410A1 (en) Cutting device, forceps and gripping/cutting method
JP2022175438A (ja) 施術器、当該施術器を備えたロボット、ロボットの操作方法、医療用ロボット、医療システム、エンドエフェクタ、医療用ツール、鉗子、鑷子、把持・凝固方法、把持・切断方法、及び携帯用手術器
JP2022096274A (ja) 切断器、鉗子、エンドエフェクタ、医療用ツール、医療システム、ロボット、手術用医療ロボット、把持・切断方法及び携帯用手術器
EP3266395B1 (en) Surgical instruments with an end-effector assembly including optical fiber for treating tissue
EP3595561B1 (en) Electrosurgical instrument with trigger driven cutting function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020826037

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020826037

Country of ref document: EP

Effective date: 20220120