WO2020255624A1 - Power conditioner - Google Patents

Power conditioner Download PDF

Info

Publication number
WO2020255624A1
WO2020255624A1 PCT/JP2020/020332 JP2020020332W WO2020255624A1 WO 2020255624 A1 WO2020255624 A1 WO 2020255624A1 JP 2020020332 W JP2020020332 W JP 2020020332W WO 2020255624 A1 WO2020255624 A1 WO 2020255624A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
command value
storage batteries
bidirectional
power command
Prior art date
Application number
PCT/JP2020/020332
Other languages
French (fr)
Japanese (ja)
Inventor
淳志 吉村
裕太 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021527492A priority Critical patent/JP7211509B2/en
Publication of WO2020255624A1 publication Critical patent/WO2020255624A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power conditioner.
  • a power conversion device that converts and outputs the power output from each of a plurality of storage batteries and performs charge / discharge control so as to maximize the capacity of each of the plurality of storage batteries has been proposed (for example, see Patent Document 1).
  • This power conversion device compares the voltage average value of the voltage value of each of the plurality of storage batteries with the voltage value of each of the plurality of storage batteries. Then, the voltage converter increases the discharge power of the storage battery whose voltage value is larger than the voltage average value among the plurality of storage batteries when operating in the discharge operation mode, and the voltage value is higher than the voltage average value described above. Also controls to reduce the discharge power for small batteries.
  • the voltage converter reduces the charging power of a storage battery whose voltage value is larger than the voltage average value among a plurality of storage batteries when operating in the charging operation mode, and the voltage value is larger than the voltage average value described above. Also controls to increase the charging power for small batteries.
  • the present invention has been made in view of the above reasons, and provides a power conditioner capable of effectively utilizing the electricity stored in all of the plurality of storage batteries by equalizing the SOC values of the plurality of storage batteries.
  • the purpose is to do.
  • the power conditioner according to the present invention With multiple storage batteries DC bus line and One is provided between each of the plurality of storage batteries and the DC bus line, and the DC power output from any one of the plurality of storage batteries is converted and output to the DC bus line.
  • One of the plurality of storage batteries by executing the discharge from the storage batteries of the above or by converting the DC power supplied from the DC bus line and outputting it to any one of the plurality of storage batteries.
  • bidirectional DC-DC converters that operate in charge mode to charge one, For each of the plurality of bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charge power command value when operating in the charge mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and A DC-DC converter control unit that separately controls the plurality of bidirectional DC-DC converters based on the command value information output from the command unit is provided.
  • the command unit is based on the ratio of the total capacity of the plurality of storage batteries to the capacity of each of the plurality of storage batteries and the difference value of the SOC values of the plurality of storage batteries.
  • the discharge power command value or the charge power command value of each DC converter is calculated.
  • the power conditioner according to the present invention is The plurality of storage batteries are two storage batteries.
  • the command unit of the two storage batteries is based on a value obtained based on the ratio of the total capacity of the two storage batteries to the capacity of each of the two storage batteries and the SOC value of each of the two storage batteries.
  • the power conditioner according to the present invention is The command unit is the command value of the discharge power or the charge power from all of the two storage batteries to the ratio of the total capacity, which is the sum of the capacities of the two storage batteries, to the capacity of one of the two storage batteries.
  • a preset offset power command set to a value obtained by multiplying a certain total power command value by a SOC difference value obtained by subtracting the SOC value of the other storage battery from the SOC value of the one storage battery of the two storage batteries.
  • the discharge power command value or the charge power command value is calculated, and the ratio of the capacity of the other storage battery to the total capacity is multiplied by the total power command value.
  • the discharge power command value or the charge power command value may be calculated by subtracting the value obtained by multiplying the SOC difference value by the offset power command value from the value.
  • the power conditioner according to the present invention is When the calculated discharge power command value or the charge power command value is negative, the command unit may set the discharge power command value or the charge power command value to zero.
  • the power conditioner according to the present invention is When the calculated discharge power command value or the charge power command value exceeds the total power command value, the command unit sets the discharge power command value or the charge power command value to the total power command value. It may be.
  • the power conditioner according to the present invention is A voltage measuring unit for measuring the output voltage of each of the plurality of storage batteries is further provided.
  • the command unit calculates the SOC value of each of the plurality of storage batteries based on the output voltage of each of the plurality of storage batteries measured by the voltage measuring unit.
  • the offset power command value may be determined based on the measurement error of the output power of each of the plurality of storage batteries by the voltage measuring unit.
  • the power conditioner according to the present invention from another viewpoint is Two storage batteries and DC bus line and One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line.
  • One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries.
  • Two bidirectional DC-DC converters that operate in charge mode to charge one, For each of the two bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and A DC-DC converter control unit that separately controls the two bidirectional DC-DC converters based on the command value information output from the command unit is provided.
  • the command unit When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery
  • the discharge power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is larger than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery.
  • the bidirectional DC-DC converter corresponding to the one storage battery The charging power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is smaller than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery.
  • the power conditioner according to the present invention is The command unit When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the other storage battery The discharge power command value is calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
  • the bidirectional DC-DC converter corresponding to the one storage battery When the two bidirectional DC-DC converters are operated in the charging mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery
  • the charging power command value may be calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
  • the power conditioner according to the present invention from another viewpoint is Two storage batteries and DC bus line and One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line.
  • One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries.
  • Two bidirectional DC-DC converters that operate in charge mode to charge one, A DC-DC converter control unit that controls the two bidirectional DC-DC converters is provided.
  • the control unit Until the SOC value of one of the two storage batteries exceeds the SOC value of the other, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the one storage battery is determined.
  • the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the other storage battery is determined by the one storage battery.
  • the command unit uses a plurality of bidirectional DCs based on the ratio of the total capacity of the plurality of storage batteries to the capacity of each of the plurality of storage batteries and the difference value of the SOC values of the plurality of storage batteries. -Calculate the discharge power command value or charge power command value for each DC converter.
  • the SOC values of each of the plurality of storage batteries can be made closer to each other, so that the electricity stored in the storage batteries can be effectively used over the entire range from the fully charged state to the end of discharge state for all of the plurality of storage batteries. It can be used.
  • the power conversion device includes a plurality of storage batteries, a DC bus line, a plurality of bidirectional DC-DC converters, a command unit, and a DC-DC converter control unit.
  • the plurality of bidirectional DC-DC converters are provided between each of the plurality of storage batteries and the DC bus line, and convert the DC power output from the storage batteries and output the DC power to the DC bus line from the plurality of storage batteries. It operates in the discharge mode for executing the discharge of the above, or in the charge mode for charging the storage battery by converting the DC power supplied from the DC bus line and outputting it to the storage battery.
  • the command unit calculates the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode for each of the plurality of bidirectional DC-DC converters, and calculates the discharged power command value or charging. Outputs command value information indicating the power command value.
  • the DC-DC converter control unit controls a plurality of bidirectional DC-DC converters separately based on the command value information output from the command unit. Then, the command unit receives the discharge power command value of each of the plurality of bidirectional DC-DC converters based on the ratio of the capacities of the plurality of storage batteries to their total and the difference value of the SOC values of the plurality of storage batteries. Alternatively, the charging power command value is calculated.
  • the configuration of the power supply system including the power conversion device according to the present embodiment will be described.
  • the power supply system includes a solar cell 1, storage batteries 21, 22 and a power conditioner 3 connected to the solar cells 1, 2 storage batteries 21, 22 and a system power supply 4. And.
  • the grid power supply 4 supplies AC power to the power conditioner 3 in a single-phase three-wire system, for example.
  • the storage batteries 21 and 22, respectively are secondary batteries capable of extracting the stored electricity by electric discharge, and are lead storage batteries, nickel hydrogen batteries, lithium ion secondary batteries, lithium ion capacitors, and the like.
  • the storage batteries 21 and 22 may be a single battery as long as they output a preset electric power, or may be an assembled battery in which a plurality of single batteries are connected in series or in parallel.
  • the power conditioner 3 includes a PV converter 31, an inverter 32, two DC-DC converters 331 and 332, and a control circuit 39.
  • the PV converter 31, the inverter 32, and the DC-DC converters 331 and 332 are connected via the HVDC bus L3, which is a DC bus line.
  • a capacitor (not shown) for suppressing voltage fluctuations of the HVDC bus L3 is connected to the HVDC bus L3.
  • a line filter (not shown) that includes an inductor and a capacitor between the inverter 32 and the system power supply 4 and removes high-frequency switching noise components from the AC power output from the inverter 32. Is intervening.
  • the PV converter 31 is a DC-DC converter that boosts and outputs the DC voltage input from the solar cell 1. Even if the PV converter 31 has a function of adjusting the input voltage from the solar cell 1 by executing MPPT (Maximum Power Point Tracking) control based on the control signal input from the control circuit 39. Good.
  • the inverter 32 is a bidirectional DC-AC inverter, and has a plurality of switching elements (not shown) that are switched by a PWM (Pulse Width Modulation) signal input from the control circuit 39.
  • the inverter 32 converts the DC voltage input from the HVDC bus L3 into an AC voltage and outputs it, and also converts the AC voltage supplied from the system power supply 4 into a DC voltage and outputs it to the HVDC bus L3.
  • the DC-DC converters 331 and 332 are bidirectional DC-DC converters, respectively, and are provided between each of the two storage batteries 21 and 22 and the HVDC bus L3.
  • the DC-DC converters 331 and 332 are bidirectional chopper circuits as shown in FIG. 2, for example.
  • the DC-DC converters 331 and 332 have an inductor L3313 whose one end is connected to the terminal BH, a switching element Q1 which is connected between the other end of the inductor L3313 and the terminals BL and DL, and the other end and the terminal of the inductor L3313. It has a switching element Q2 connected to and from a DH. Further, a capacitor C1 is connected between the terminals DH and DL.
  • the switching elements Q1 and Q2 are each driven by a PWM (Pulse Width Modulation) signal input from the control circuit 39.
  • the terminal BL of the DC-DC converters 331 and 332 is connected to the negative electrode side of the storage batteries 21 and 22, and the terminal BH is connected to the positive electrode side of the storage batteries 21 and 22.
  • the terminal DL of the DC-DC converters 331 and 332 is connected to the negative side of the HVDC bus L3.
  • the terminal DH of the DC-DC converters 331 and 332 is connected to the positive side of the HVDC bus L3.
  • MOSFETs, IGBTs, etc. are used for the switching elements Q1 and Q2 of the DC-DC converters 331 and 332.
  • the DC-DC converters 331 and 332 use the voltage measuring unit 3311 for measuring the voltage between the terminals BH and BL, that is, the output voltage Vc of the storage batteries 21 and 22, and the voltage between the terminals DH and DL, that is, DC-. It has a voltage measuring unit 3312 for measuring the output voltage Vd of the DC converter.
  • the voltage measuring units 3311 and 3312 output measurement signals indicating the measured voltage values to the control circuit 39, respectively.
  • the DC-DC converters 331 and 332 convert the DC power output from the storage batteries 21 and 22, respectively, and output the DC power to the HVDC bus L3 to execute the discharge from the storage batteries 21 and 22, respectively, from the discharge mode or the HVDC bus L3. It operates in a charging mode in which the storage batteries 21 and 22 are charged by converting the supplied DC power and outputting it to the storage batteries 21 and 22.
  • the control circuit 39 has, for example, a DSP (Digital Signal Processor) and a memory.
  • the control circuit 39 includes a PV converter control unit 391, an inverter control unit 392, a DC-DC converter control units 3931 and 3932, and a command unit 394.
  • the memory of the control circuit 39 includes an SOC correlation storage unit 3951, a capacitance storage unit 3952, a reference command value storage unit 3953, and a command value storage unit 3954.
  • the PV converter control unit 391 generates a control signal for controlling the PV converter 31 so that its output voltage becomes constant, and outputs the control signal to the PV converter 31.
  • the inverter control unit 392 generates a control signal for operating the inverter 32 and outputs the control signal to the inverter 32.
  • the DC-DC converter control units 3931 and 3932 generate PWM signals for operating the DC-DC converters 331 and 332 in either the charge mode or the discharge mode, respectively, to generate the DC-DC converters 331 and 332, respectively. Output to each.
  • the DC-DC converter control units 3931 and 3932 are based on the measurement signals input from the voltage measurement units 3312 of the DC-DC converters 331 and 332, respectively, when the DC-DC converters 331 and 332 are operated in the discharge mode. Therefore, the duty ratio in the on / off operation of the switching element Q1 is controlled so that the output voltage Vd of the DC-DC converters 331 and 332 becomes constant.
  • the DC-DC converter control units 3931 and 3932 use the command value information output from the command unit 394 to indicate the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode. Based on this, the DC-DC converters 331 and 332 are controlled separately.
  • the SOC correlation storage unit 3951 stores correlation information indicating a correlation between the output voltage of the storage batteries 21 and 22 and the SOC value.
  • the command unit 394 acquires the voltage value of the output voltage Vc of the storage batteries 21 and 22 from the measurement signal input from the voltage measurement unit 3311, and calculates the SOC value of the storage batteries 21 and 22 based on the acquired voltage value. ..
  • the command unit 394 calculates the SOC value from the output voltages Vc of the storage batteries 21 and 22 with reference to the correlation information stored in the SOC correlation storage unit 3951. Further, the command unit 394 calculates the discharge power command value or the charge power command value for each of the two DC-DC converters 331 and 332, and generates command value information indicating the calculated discharge power command value or the charge power command value. And output.
  • the command unit 394 discharges the DC-DC converters 331 and 332, respectively, based on the ratio of the capacities of the storage batteries 21 and 22 to their total and the difference value of the SOC values of the storage batteries 21 and 22 respectively. Calculate the power command value or the charging power command value.
  • the command unit 394 calculates the discharge power command value or the charge power command value by using the relational expressions shown in the following equations (1) and (2).
  • PtA ⁇ PA / (PA + PB) ⁇ x K1 x Pt + (Sa-Sb) x k2 ... Equation (1)
  • PtB ⁇ PB / (PA + PB) ⁇ x K1 x Pt- (Sa-Sb) x k2 ...
  • PtA indicates, for example, the discharge power command value or the charge power command value of the DC-DC converter 331 corresponding to the storage battery 21
  • PtB is, for example, the discharge power command value or the discharge power command value of the DC-DC converter 332 corresponding to the storage battery 22.
  • PA and PB indicate the rated capacities of the storage batteries 21 and 22, respectively
  • Sa and Sb indicate the SOC values of the storage batteries 21 and 22, respectively.
  • Pt is a total power command value which is a command value of discharge power or charge power from all the storage batteries 21 and 22, and K1 is a coefficient based on the deterioration state of the storage battery and the cumulative number of charge / discharge cycles.
  • the offset power command value k2 is a preset offset power command value. For example, when charging the storage batteries 21 and 22 by 2 [kW] or discharging the storage batteries 21 and 22 by 2 [kW], the total power command value Pt is set to 2 [kW].
  • the offset power command value k2 is determined based on the measurement error of the output voltage of each of the storage batteries 21 and 22 by the voltage measuring unit 3311. Specifically, the offset power command value k2 is set to a value equal to or higher than a value obtained by multiplying the measurement error of the output power of each of the storage batteries 21 and 22 by the voltage measuring unit 3311 by a preset current value, for example. .. Further, the upper limit of the offset power command value k2 is determined based on, for example, the time required for the SOC values of the storage batteries 21 and 22 to become equal. This offset power command value k2 is set to, for example, 0.1 [kW].
  • the command unit 394 sets the offset power command value k2 to the SOC difference value (Sa-Sb) to the value obtained by multiplying the ratio of the rated capacity PA of the storage battery 21 to the total capacity (PA + PB) by the total power command value Pt. By adding the value obtained by multiplying, the discharge power command value or the charge power command value of the DC-DC converter 331 is calculated.
  • the total capacity (PA + PB) is the sum of the rated capacities PA and PB of the storage batteries 21 and 22
  • the SOC difference value (Sa-Sb) is the SOC value Sa of the storage battery 21 minus the SOC value Sb of the storage battery 22. Sa and Sb are expressed as percentages (%).
  • the command unit 394 issues an offset power command to the SOC difference value (Sa-Sb) from a value obtained by multiplying the ratio of the rated capacity PB of the storage battery 22 to the total capacity (PA + PB) by the coefficient K1 and the total power command value Pt. By multiplying the value k2 and subtracting the obtained value, the discharge power command value or the charge power command value of the DC-DC converter 332 is calculated. Then, the command unit 394 stores the calculated discharge power command value or information indicating the charge power command value in the command value storage unit 3954.
  • the command unit 394 sets the information indicating the discharge power command value or charge power command value stored in the command value storage unit 3954 to "0". To do. Further, when the calculated discharge power command value or charge power command value exceeds the above-mentioned total power command value Pt, the command unit 394 forcibly sets the discharge power command value or charge power command value to the total power command value Pt. To do.
  • the reason why the information stored in the command value storage unit 3954 is set to "0" when the calculated discharge power command value or the charge power command value is negative is to prevent the acceleration of battery deterioration.
  • the operation is such that one storage battery is discharged and the other storage battery is charged, so that the deterioration of the storage battery is accelerated.
  • the capacity storage unit 3952 stores capacity information indicating the rated capacity of each of the storage batteries 21 and 22.
  • the command value storage unit 3954 stores information indicating the discharge power command value or the charge power command value calculated by the command unit 394.
  • the reference command value storage unit 3953 has the coefficient K1 in the above equations (1) and (2), the total power command value information indicating the total power command value Pt, and the offset power command value information indicating the offset power command value k2. And remember.
  • the reference command value storage unit 3953 stores one type of total power command value information and offset power command value information indicating two types of positive and negative offset power command values k2.
  • the command unit 394 uses the relational expressions shown in the following equations (1) and (2) to calculate the discharge power command value or the charge power command value, and the capacity information and the reference command value stored in the capacity storage unit 3952.
  • the total power command value information and the offset power command value information stored in the storage unit 3953 are referred to.
  • This power command value setting process is started when the power conditioner 3 is activated.
  • the control circuit 39 controls the operation of the PV converter 31, the operation of the inverter 32, and the operation of the DC-DC converters 331 and 332 in parallel with the execution of the power command value setting process. Execute the process to be performed.
  • the command unit 394 acquires the voltage value of the output voltage of the storage batteries 21 and 22 from the measurement signal input from the voltage measurement unit 3311 (step S101). Next, the command unit 394 calculates the SOC values of the storage batteries 21 and 22 based on the acquired voltage value and the SOC correlation table (step S102).
  • the command unit 394 determines whether or not the DC-DC converters 331 and 332 are operating in the charging mode (step S103). It is assumed that the command unit 394 determines that the DC-DC converters 331 and 332 are operating in the charging mode (step S103: Yes). In this case, the command unit 394 refers to the offset power command value information stored in the reference command value storage unit 3953, and sets a negative offset power command as the offset power command value k2 in the above equations (1) and (2). The value k2 is adopted (step S104). On the other hand, it is assumed that the command unit 394 determines that the DC-DC converters 3931 and 3932 are operating in the discharge mode (step S103: No).
  • the command unit 394 refers to the offset power command value information stored in the reference command value storage unit 3953, and sets a positive offset power command as the offset power command value k2 in the above equations (1) and (2).
  • the value k2 is adopted (step S105).
  • the command unit 394 uses the rated capacities of the storage batteries 21 and 22, the coefficient K1, the above-mentioned total power command value Pt, the offset power command value k2 adopted in the above-mentioned step S104 or step S105, and the above-mentioned formula.
  • the command unit 394 stores the calculated discharge power command value or information indicating the charge power command value in the command value storage unit 3954 (step S106).
  • the command unit 394 acquires the rated capacity of each of the storage batteries 21 and 22 by referring to the capacity information indicating the rated capacity of each of the storage batteries 21 and 22 stored in the capacity storage unit 3952.
  • step S107 the command unit 394 determines whether or not any of the calculated discharge power command value or charge power command value PtA and PtB is less than 0 (step S107).
  • step S107: No the command unit 394 directly executes the process of step S109 described later.
  • step S109: Yes it is assumed that the command unit 394 determines that either the calculated discharge power command value or the charge power command value PtA or PtB is less than 0, that is, negative (step S107: Yes).
  • the command unit 394 updates the information indicating the negative discharge power command value or the charge power command value PtA, PtB stored in the command value storage unit 3945 to the information indicating "0" (step S108). .. That is, when the calculated discharge power command value or the charge power command value is negative, the command unit 394 sets the discharge power command value or the charge power command value to zero.
  • the command unit 394 determines whether or not any of the calculated discharge power command value or charge power command value PtA or PtB is larger than the total power command value Pt (step S109).
  • the command unit 394 determines that the calculated discharge power command value or charge power command value PtA or PtB is equal to or less than the total power command value Pt (step S109: No)
  • the command unit 394 directly executes the process of step S111 described later.
  • the command unit 394 stores information indicating the discharge power command value or the charge power command value PtA, PtB, which is larger than the total power command value Pt, stored in the command value storage unit 3945, and information indicating the total power command value Pt. Update to (step S110). That is, when the calculated discharge power command value or charge power command value exceeds the above-mentioned total power command value Pt, the command unit 394 sets the discharge power command value or charge power command value to the total power command value Pt.
  • the command unit 394 outputs command value information indicating the discharge power command value or the charge power command values PtA and PtB stored in the command value storage unit 3945 to the DC-DC converter control units 3931 and 3932 (step S111). .. At this time, the DC-DC converter control units 3931 and 3932 separately control the DC-DC converters 331 and 332 based on the discharge power command value or the charge power command value indicating the discharge power command value output from the command unit 394. To do. Next, the process of step S101 is executed again.
  • the power conditioner according to the comparative example has the same configuration as the power conditioner 3 according to the present embodiment, and only the calculation method of the discharge power command value or the charge power command value of the command unit 394 is the same as that of the present embodiment. It's different.
  • the command unit 394 according to the comparative example calculates the discharge power command value or the charge power command value by using the relational expressions shown in the following formulas (3) and (4).
  • PtA [PA ⁇ (1-Sa) / ⁇ (PA ⁇ (1-Sa) + PB ⁇ (1-Sb) ⁇ ] ⁇ 2 ⁇ ⁇ ⁇ Equation (3)
  • PtB [PB ⁇ (1-Sb) / ⁇ (PA ⁇ (1-Sa) + PB ⁇ (1-Sb) ⁇ ] ⁇ 2 ⁇ ⁇ ⁇ Equation (4)
  • PtA, PtB, PA, PB, Sa, and Sb are the same as those in the above formulas (1) and (2), respectively.
  • the command unit 394 For example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "0.5 (50%)”, and the SOC value of the storage battery 22 is "0. 4 (40%) ”.
  • the command unit 394 sets the charge power command value to the storage battery 21 to [4 ⁇ (1-0.5) / ⁇ 4 ⁇ (1-0.5) by using the relational expression shown in the equation (3).
  • FIG. 5 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC-DC converters 331 and 332 are started to operate in the charging mode.
  • the difference value of the SOC values of the storage batteries 21 and 22 is measured over time for about 10 minutes after the DC-DC converters 331 and 332 start operating in the charging mode. Decrease. However, when 10 minutes or more have passed, it can be seen that the difference value of the SOC values of the storage batteries 21 and 22 is almost constant. Therefore, the SOC values of the storage batteries 21 and 22 cannot be made equal.
  • the SOC value of the storage battery 21 is 0.9 (90%) and the SOC value of the storage battery 22 is 0.1 (10%).
  • the time required to reduce the difference value of the SOC values of the storage batteries 21 and 22 to some extent may become long.
  • the command unit 394 uses the relational expressions shown in the above equations (1) and (2) to generate a discharge power command value or a charge power command value. Is calculated. For example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "0.5 (50%)", and the SOC value of the storage battery 22 is "0 (" 0%) ”. Then, it is assumed that the command unit 394 operates the DC-DC converters 331 and 332 in the charging mode and sets the above-mentioned total power command value Pt to 2 [kW]. Further, it is assumed that the offset power command value is set to 0.1 [kW].
  • the command unit 394 when the command unit 394 operates the DC-DC converters 331 and 332 in the charging mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the bidirectional DC-DC converter 331 corresponding to the storage battery 21 The charging power command value for is set to "0" so that the storage battery 21 is not charged.
  • the command unit 394 sets the charging power command value for the bidirectional DC-DC converter 332 corresponding to the storage battery 22 to a value larger than "0" to charge the storage battery 22.
  • the command unit 394 when the command unit 394 operates the DC-DC converters 331 and 332 in the charging mode and the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the DC-DC converter 331 corresponding to the storage battery 21.
  • the charging power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is smaller than the gradient of the SOC value fluctuation with respect to time for the DC-DC converter 332 corresponding to the storage battery 22.
  • the charging power command value for each of the DC-DC converters 331 and 332 is not limited to the above.
  • FIG. 6 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC-DC converters 331 and 332 are started to operate in the charging mode for the power conditioner 3 according to the present embodiment. ..
  • the SOC value of the storage battery 21 is approximately "0.5 (50%)" for about 20 minutes after the DC-DC converters 331 and 332 start operating in the charging mode. Be maintained.
  • the SOC value of the storage battery 22 continues to increase. Along with this, the difference value of the SOC values of the storage batteries 21 and 22 decreases.
  • FIG. 7 shows an enlarged view of the portion of the storage batteries 21 and 22 in FIG. 6 in which the SOC values are finally equalized (the portion surrounded by the broken line A1 in FIG. 6).
  • the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 are not completely overlapped with each other, and the magnitude relations are always alternately alternated. Converges with. That is, at the beginning of charging, the slope of the curve S11 corresponding to the storage battery 21 is gentle and the slope of the curve S12 corresponding to the storage battery 22 is relatively steep depending on the offset power command value. As a result, the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 intersect each other at a certain SOC value, and then the magnitude relationship of the curves S11 and S12 is reversed.
  • the command unit 394 gives a charging command so that the curve S11 corresponding to the storage battery 21 becomes steep and the curve S12 corresponding to the storage battery 22 becomes relatively gentle. Since the value is set, the magnitude relationship of the curves S11 and S12 is reversed again. Then, as this process is repeated, the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 converge in a state in which they appear to overlap when viewed macroscopically. This means that the SOC values of the storage batteries 21 and 22 are "equal". This phenomenon is the same not only when operating in the charging mode but also when operating in the discharging mode described later.
  • the rated capacity of the storage battery 21 is 4 [kWh]
  • the rated capacity of the storage battery 22 is 2 [kWh]
  • the SOC value of the storage battery 21 is "1.0 (100%)”
  • the SOC value of the storage battery 22 is "1.0 (100%)”. It is assumed that it is "0.5 (50%)”.
  • the command unit 394 operates the DC-DC converters 331 and 332 in the discharge mode and sets the above-mentioned total power command value Pt to 2 [kW]. Further, it is assumed that the offset power command value is set to 0.1 [kW].
  • the command unit 394 when the command unit 394 operates the DC-DC converters 331 and 332 in the discharge mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the DC-DC converter 331 corresponding to the storage battery 21.
  • the discharge power command value is set to a value larger than "0" to discharge the storage battery 21.
  • the command unit 394 does not discharge the storage battery 22 by setting the discharge power command value for the DC-DC converter 332 corresponding to the storage battery 22 to “0”.
  • the command unit 394 operates the DC-DC converters 331 and 332 in the discharge mode
  • the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22
  • the DC-DC converter 331 corresponding to the storage battery 21 The discharge power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is larger than the gradient of the SOC value fluctuation with respect to time for the DC-DC converter 332 corresponding to the storage battery 22.
  • the discharge power command values for the DC-DC converters 331 and 332 are not limited to the above.
  • FIG. 8 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC-DC converters 331 and 332 are started to operate in the discharge mode for the power conditioner 3 according to the present embodiment. ..
  • the SOC value of the storage battery 22 is approximately "50% (0.5)" for about 45 minutes after the DC-DC converters 331 and 332 start operating in the discharge mode. Be maintained.
  • the SOC value of the storage battery 21 continues to decrease. Along with this, the difference value of the SOC values of the storage batteries 21 and 22 decreases.
  • the storage battery 22 started to be discharged, and the SOC value of the storage battery 22 gradually decreased.
  • the rate of decrease in the SOC value of the storage battery 22 also becomes gradual.
  • the SOC values of the storage batteries 21 and 22 are finally equal due to the offset power command values in the above equations (1) and (2).
  • FIG. 9 shows an enlarged view of the portion (the portion surrounded by the broken line A2 in FIG. 6) in which the SOC values of the storage batteries 21 and 22 are finally equal in FIG.
  • the command unit 394 operates the DC-DC converters 331 and 332 in the discharge mode
  • the command unit 394 relates to the time for the DC-DC converter 331 corresponding to the storage battery 21.
  • the charging power command value is calculated so that the absolute value of the slope of the fluctuation of the SOC value becomes a value larger than the absolute value of the slope of the fluctuation of the SOC value with respect to the time of the DC-DC converter 332 corresponding to the storage battery 22. Therefore, as shown in FIG.
  • the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 are not completely overlapped with each other, and the magnitude relations are always alternately alternated. Converges with. That is, at the beginning of discharge, the slope of the curve S21 corresponding to the storage battery 21 is steep and the slope of the curve S22 corresponding to the storage battery 22 is relatively gentle due to the offset power command value. As a result, the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 intersect each other at a certain SOC value, and then the magnitude relationship of the curves S21 and S22 is reversed.
  • the command unit 394 makes the slope of the curve S21 corresponding to the storage battery 21 gentle and the slope of the curve S22 corresponding to the storage battery 22 relatively steep. Since the charging command value is set as described above, the magnitude relationship of the curves S21 and S22 is reversed again. Then, as this process is repeated, the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 converge in a state in which they appear to overlap when viewed macroscopically. This means that the SOC values of the storage batteries 21 and 22 are "equal".
  • the storage batteries 21 and 22 are charged with 2 [kW] and the storage batteries 21 and 22 are charged. It is assumed that the discharge of 2 [kW] from the above is repeated alternately at intervals of 10 minutes.
  • the rated capacity of the storage battery 21 is 4 [kWh]
  • the rated capacity of the storage battery 22 is 2 [kWh]
  • the SOC value of the storage battery 21 is "1.0 (100%)”
  • the SOC value of the storage battery 22 is. It is assumed to be "0.5 (50%)”.
  • FIG. 10 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 in this case. As shown in the curves S31 and S32 of FIG.
  • the period during which the DC-DC converters 331 and 332 are operating in the discharge mode (for example, a period between the start and 10 minutes or 20 to 30 minutes after the start).
  • the time transition of the SOC values of the storage batteries 21 and 22 is the same as the time transition described with reference to FIG. 8 described above.
  • the time transition of the SOC values of the storage batteries 21 and 22 is described above. The time transition is the same as that described with reference to FIG. Even in this case, the SOC values of the storage batteries 21 and 22 are finally equal due to the offset power command values in the above equations (1) and (2).
  • the charging power command value or the discharge corresponding to the storage batteries 21 and 22 is used by using the equations (1) and (2) including the offset power command value term. Calculate the power command value. As a result, even if there is a large deviation in the SOC values of the storage batteries 21 and 22, the SOC values of the storage batteries 21 and 22 can be made equal quickly and surely.
  • the command unit 394 determines the ratio of the rated capacities of the storage batteries 21 and 22 to the total of them and the SOC value of each of the storage batteries 21 and 22. Based on the difference value, the discharge power command value or the charge power command value of each of the DC-DC converters 331 and 332 is calculated. As a result, the SOC values of the storage batteries 21 and 22 can be set to be equal to each other, so that the electricity stored in the storage batteries can be stored in the entire range from the fully charged state to the end-discharged state of all the storage batteries 21 and 22. It can be used effectively.
  • the difference between the SOC values of the storage batteries 21 and 22 becomes large for example, when the DC-DC converters 331 and 332 are operated in the charging mode, for example, when the storage battery 21 is fully charged, the other storage battery 22 cannot be charged. Things can happen. In order to prevent such a situation, it is preferable to adjust the SOC values of the storage batteries 21 and 22 so as to be as equal as possible.
  • the charging power to the storage values 21 and 22 or the discharging power from the storage batteries 21 and 22 is distributed in consideration of the SOC values and the rated capacities of the storage batteries 21 and 22 respectively. However, the SOC values of the storage batteries 21 and 22 cannot be equalized.
  • the discharge power command is performed by using the relational expression including the term related to the offset power command value as in the relational expression shown in the above equations (1) and (2). Calculate the value or the charge power command value.
  • the SOC values of the storage batteries 21 and 22 can be made equal.
  • the two lines do not intersect because the amount of distribution changes in real time. This tendency is remarkable when a storage battery is added because the current capacity is different. If it remains misaligned, the battery life will be shortened.
  • the command unit 394 when the calculated discharge power command value or charge power command value is negative, the command unit 394 according to the present embodiment forcibly sets the discharge power command value or the charge power command value to zero. As a result, during the operating period of the power conditioner 3, the ratio of the period during which the storage batteries 21 and 22 are discharged or the ratio of the period during which the storage batteries 21 and 22 are charged can be reduced. Deterioration can be suppressed.
  • the command unit 394 sets the discharge power command value or the charge power command value as the total power command value when the calculated discharge power command value or the charge power command value exceeds the total power command value. ..
  • the occurrence of over-discharging or over-charging of the storage batteries 21 and 22 can be suppressed, so that damage to the storage batteries 21 and 22 can be suppressed.
  • the power conditioner 3 may include three or more storage batteries.
  • the command unit 394 when the DC-DC converter corresponding to each of the three or more storage batteries operates in the discharge mode, the command unit 394 has the lowest SOC value among the SOC values of the three or more storage batteries and the other storage batteries. Based on the value obtained by multiplying the difference value from each SOC value by the offset power command value, the discharge command value is calculated from the storage battery with the highest SOC value, and if the total power command value is reached in the middle, the rest. The storage battery should not be discharged.
  • the charging command value is calculated from the storage battery having the lowest SOC value, and if the total power command value is reached in the middle, the remaining storage batteries may not be charged.
  • the present invention is suitable as a power conditioner including a plurality of storage batteries.

Abstract

A power conditioner comprising: two storage batteries; an HVDC bus; DC–DC converters (331, 332) that operate in a discharge mode or a charge mode; a command unit (394) that outputs command value information; and DC–DC converter control units (3931, 3932) that individually control the DC–DC converters (331, 332), on the basis of the command value information. The command unit 394 calculates the discharge power command value or charge power command value for each of the DC–DC converters (3931, 3932), on the basis of: the ratio between the total capacity of the two storage batteries to the capacity of each of the two storage batteries; and the difference between the SOC values for each of the two storage batteries.

Description

パワーコンディショナPower conditioner
 本発明は、パワーコンディショナに関する。 The present invention relates to a power conditioner.
 複数の蓄電池それぞれから出力される電力を変換して出力する電力変換装置であって、複数の蓄電池それぞれの容量を最大限に利用できるように充放電制御を行う電力変換装置が提案されている(例えば特許文献1参照)。この電力変換装置は、複数の蓄電池それぞれの電圧値の電圧平均値と、複数の蓄電池それぞれの電圧値とを比較する。そして、電圧変換装置は、放電運転モードでの動作時において、複数の蓄電池のうち、その電圧値が電圧平均値よりも大きい蓄電池について放電電力を増加させ、その電圧値が前述の電圧平均値よりも小さい蓄電池について放電電力を減少させるように制御する。また、電圧変換装置は、充電運転モードでの動作時において、複数の蓄電池のうち、その電圧値が電圧平均値よりも大きい蓄電池について充電電力を減少させ、その電圧値が前述の電圧平均値よりも小さい蓄電池について充電電力を増加させるように制御する。 A power conversion device that converts and outputs the power output from each of a plurality of storage batteries and performs charge / discharge control so as to maximize the capacity of each of the plurality of storage batteries has been proposed ( For example, see Patent Document 1). This power conversion device compares the voltage average value of the voltage value of each of the plurality of storage batteries with the voltage value of each of the plurality of storage batteries. Then, the voltage converter increases the discharge power of the storage battery whose voltage value is larger than the voltage average value among the plurality of storage batteries when operating in the discharge operation mode, and the voltage value is higher than the voltage average value described above. Also controls to reduce the discharge power for small batteries. Further, the voltage converter reduces the charging power of a storage battery whose voltage value is larger than the voltage average value among a plurality of storage batteries when operating in the charging operation mode, and the voltage value is larger than the voltage average value described above. Also controls to increase the charging power for small batteries.
特開2010-148242号公報JP-A-2010-148242
 しかしながら、特許文献1に記載された電力変換装置では、複数の蓄電池それぞれのSOC(State of Charge)値を互いにある程度近づけることができるが、複数の蓄電池それぞれのSOC値を互いに等しい値にすることができず、複数の蓄電池間でSOC値の偏りが発生してしまう。この場合、複数の蓄電池の全てについて満充電状態から放電終止状態までの全範囲に亘って蓄電池に蓄えられた電気を利用することができない虞がある。また、複数の蓄電池それぞれのSOC値に乖離があると、ある程度のSOC値に近づくまでに長時間がかかってしまう。なお、放電終止とは、SOC=0の状態を示す。 However, in the power conversion device described in Patent Document 1, although the SOC (State of Charge) values of the plurality of storage batteries can be brought close to each other to some extent, the SOC values of the plurality of storage batteries can be set to be equal to each other. This is not possible, and the SOC value is biased among a plurality of storage batteries. In this case, there is a possibility that the electricity stored in the storage batteries cannot be used over the entire range from the fully charged state to the end of discharge state for all of the plurality of storage batteries. Further, if there is a discrepancy in the SOC values of each of the plurality of storage batteries, it takes a long time to approach a certain SOC value. Note that the discharge termination indicates a state of SOC = 0.
 本発明は、上記事由に鑑みてなされたものであり、複数の蓄電池それぞれのSOC値を等しくすることにより複数の蓄電池の全てについて蓄えられた電気を有効に利用することができるパワーコンディショナを提供することを目的とする。 The present invention has been made in view of the above reasons, and provides a power conditioner capable of effectively utilizing the electricity stored in all of the plurality of storage batteries by equalizing the SOC values of the plurality of storage batteries. The purpose is to do.
 上記目的を達成するために、本発明に係るパワーコンディショナは、
 複数の蓄電池と、
 直流バスラインと、
 前記複数の蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記複数の蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記複数の蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記複数の蓄電池のうちのいずれか1つへ出力することにより前記複数の蓄電池のうちのいずれか1つを充電する充電モードで動作する複数の双方向DC-DCコンバータと、
 前記複数の双方向DC-DCコンバータそれぞれについて、前記放電モードで動作する場合の放電電力指令値または前記充電モードで動作する場合の充電電力指令値を算出し、算出した前記放電電力指令値または前記充電電力指令値を示す指令値情報を出力する指令部と、
 前記指令部から出力される前記指令値情報に基づいて、前記複数の双方向DC-DCコンバータを各別に制御するDC-DCコンバータ制御部と、を備え、
 前記指令部は、前記複数の蓄電池それぞれの容量に対する、前記複数の蓄電池の容量の総和の比率と、前記複数の蓄電池それぞれのSOC値の差分値と、に基づいて、前記複数の双方向DC-DCコンバータそれぞれの前記放電電力指令値または前記充電電力指令値を算出する。
In order to achieve the above object, the power conditioner according to the present invention
With multiple storage batteries
DC bus line and
One is provided between each of the plurality of storage batteries and the DC bus line, and the DC power output from any one of the plurality of storage batteries is converted and output to the DC bus line. One of the plurality of storage batteries by executing the discharge from the storage batteries of the above or by converting the DC power supplied from the DC bus line and outputting it to any one of the plurality of storage batteries. Multiple bidirectional DC-DC converters that operate in charge mode to charge one,
For each of the plurality of bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charge power command value when operating in the charge mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and
A DC-DC converter control unit that separately controls the plurality of bidirectional DC-DC converters based on the command value information output from the command unit is provided.
The command unit is based on the ratio of the total capacity of the plurality of storage batteries to the capacity of each of the plurality of storage batteries and the difference value of the SOC values of the plurality of storage batteries. The discharge power command value or the charge power command value of each DC converter is calculated.
 また、本発明に係るパワーコンディショナは、
 前記複数の蓄電池は、2つの蓄電池であり、
 前記指令部は、2つの蓄電池それぞれの容量に対する、前記2つの蓄電池の容量の総和の比率に基づいて得られる値と、前記2つの蓄電池それぞれのSOC値と、に基づいて、前記2つの蓄電池のうちのいずれか一方に対応する双方向DC-DCコンバータについての前記放電電力指令値または前記充電電力指令値と、前記2つの蓄電池のうちの他方に対応する双方向DC-DCコンバータについての前記放電電力指令値または前記充電電力指令値と、を算出する、ものであってもよい。
The power conditioner according to the present invention is
The plurality of storage batteries are two storage batteries.
The command unit of the two storage batteries is based on a value obtained based on the ratio of the total capacity of the two storage batteries to the capacity of each of the two storage batteries and the SOC value of each of the two storage batteries. The discharge power command value or the charge power command value for the bidirectional DC-DC converter corresponding to any one of them, and the discharge for the bidirectional DC-DC converter corresponding to the other of the two storage batteries. It may be the one that calculates the power command value or the charging power command value.
 また、本発明に係るパワーコンディショナは、
 前記指令部は、2つの蓄電池のうちのいずれか一方の容量に対する、前記2つの蓄電池の容量の総和である総容量の比率に前記2つの蓄電池の全てからの放電電力または充電電力の指令値である総電力指令値を乗じて得られる値に、前記2つの蓄電池のうちの前記一方の蓄電池のSOC値から他方の蓄電池のSOC値を差し引いて得られるSOC差分値に予め設定されたオフセット電力指令値を乗じて得られる値を加えることにより、前記放電電力指令値または前記充電電力指令値を算出し、前記他方の蓄電池の容量の前記総容量に対する比率に前記総電力指令値を乗じて得られる値から、前記SOC差分値に前記オフセット電力指令値を乗じて得られる値を差し引くことにより、前記放電電力指令値または前記充電電力指令値を算出する、ものであってもよい。
The power conditioner according to the present invention is
The command unit is the command value of the discharge power or the charge power from all of the two storage batteries to the ratio of the total capacity, which is the sum of the capacities of the two storage batteries, to the capacity of one of the two storage batteries. A preset offset power command set to a value obtained by multiplying a certain total power command value by a SOC difference value obtained by subtracting the SOC value of the other storage battery from the SOC value of the one storage battery of the two storage batteries. By adding a value obtained by multiplying the value, the discharge power command value or the charge power command value is calculated, and the ratio of the capacity of the other storage battery to the total capacity is multiplied by the total power command value. The discharge power command value or the charge power command value may be calculated by subtracting the value obtained by multiplying the SOC difference value by the offset power command value from the value.
 また、本発明に係るパワーコンディショナは、
 前記指令部は、算出した前記放電電力指令値または前記充電電力指令値が負である場合、前記放電電力指令値または前記充電電力指令値をゼロに設定する、ものであってもよい。
The power conditioner according to the present invention is
When the calculated discharge power command value or the charge power command value is negative, the command unit may set the discharge power command value or the charge power command value to zero.
 また、本発明に係るパワーコンディショナは、
 前記指令部は、算出した前記放電電力指令値または前記充電電力指令値が前記総電力指令値を超える場合、前記放電電力指令値または前記充電電力指令値を前記総電力指令値に設定する、ものであってもよい。
The power conditioner according to the present invention is
When the calculated discharge power command value or the charge power command value exceeds the total power command value, the command unit sets the discharge power command value or the charge power command value to the total power command value. It may be.
 また、本発明に係るパワーコンディショナは、
 前記複数の蓄電池それぞれの出力電圧を計測する電圧計測部を更に備え、
 前記指令部は、前記電圧計測部により計測された前記複数の蓄電池それぞれの出力電圧に基づいて、前記複数の蓄電池それぞれのSOC値を算出し、
 前記オフセット電力指令値は、前記電圧計測部による前記複数の蓄電池それぞれの出力電力の計測誤差に基づいて決定される、ものであってもよい。
The power conditioner according to the present invention is
A voltage measuring unit for measuring the output voltage of each of the plurality of storage batteries is further provided.
The command unit calculates the SOC value of each of the plurality of storage batteries based on the output voltage of each of the plurality of storage batteries measured by the voltage measuring unit.
The offset power command value may be determined based on the measurement error of the output power of each of the plurality of storage batteries by the voltage measuring unit.
 他の観点から見た本発明に係るパワーコンディショナは、
 2つの蓄電池と、
 直流バスラインと、
 前記2つの蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記2つの蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記2つの蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記2つの蓄電池のうちのいずれか1つへ出力することにより前記2つの蓄電池のうちのいずれか1つを充電する充電モードで動作する2つの双方向DC-DCコンバータと、
 前記2つの双方向DC-DCコンバータそれぞれについて、前記放電モードで動作させる場合の放電電力指令値または前記充電モードで動作させる場合の充電電力指令値を算出し、算出した前記放電電力指令値または前記充電電力指令値を示す指令値情報を出力する指令部と、
 前記指令部から出力される前記指令値情報に基づいて、前記2つの双方向DC-DCコンバータを各別に制御するDC-DCコンバータ制御部と、を備え、
 前記指令部は、
 前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように前記放電電力指令値を算出し、
 前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように前記充電電力指令値を算出する。
The power conditioner according to the present invention from another viewpoint is
Two storage batteries and
DC bus line and
One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line. One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries. Two bidirectional DC-DC converters that operate in charge mode to charge one,
For each of the two bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and
A DC-DC converter control unit that separately controls the two bidirectional DC-DC converters based on the command value information output from the command unit is provided.
The command unit
When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The discharge power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is larger than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. And
When the two bidirectional DC-DC converters are operated in the charging mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The charging power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is smaller than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. To do.
 また、本発明に係るパワーコンディショナは、
 前記指令部は、
 前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きがゼロとなるように前記放電電力指令値を算出し、
 前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きがゼロとなるように前記充電電力指令値を算出する、ものであってもよい。
The power conditioner according to the present invention is
The command unit
When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the other storage battery The discharge power command value is calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
When the two bidirectional DC-DC converters are operated in the charging mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The charging power command value may be calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
 他の観点から見た本発明に係るパワーコンディショナは、
 2つの蓄電池と、
 直流バスラインと、
 前記2つの蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記2つの蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記2つの蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記2つの蓄電池のうちのいずれか1つへ出力することにより前記2つの蓄電池のうちのいずれか1つを充電する充電モードで動作する2つの双方向DC-DCコンバータと、
 前記2つの双方向DC-DCコンバータを制御するDC-DCコンバータ制御部と、を備え、
 前記制御部は、
 前記2つの蓄電池のうちの一方の蓄電池のSOC値が他方のSOC値を超えるまでの間、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる第1制御と、前記他方の蓄電池のSOC値が前記一方のSOC値を超えるまでの間、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる第2制御と、前記一方の蓄電池のSOC値が前記他方のSOC値を超えるまでの間、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる第3制御と、前記他方の蓄電池のSOC値が前記一方のSOC値を超えるまでの間、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる第4制御と、のうちのいずれ1つを選択して、前記2つの双方向DC-DCコンバータを制御することが可能であり、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記第1制御と前記第2制御とを交互に実行し、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記第3制御と前記第4制御とを交互に実行する。
The power conditioner according to the present invention from another viewpoint is
Two storage batteries and
DC bus line and
One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line. One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries. Two bidirectional DC-DC converters that operate in charge mode to charge one,
A DC-DC converter control unit that controls the two bidirectional DC-DC converters is provided.
The control unit
Until the SOC value of one of the two storage batteries exceeds the SOC value of the other, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the one storage battery is determined. The first control for operating the two bidirectional DC-DC converters in the discharge mode so that the value is larger than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. And, until the SOC value of the other storage battery exceeds the SOC value of the one, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the other storage battery is determined by the one storage battery. The second control for operating the two bidirectional DC-DC converters in the discharge mode so that the value becomes larger than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter corresponding to the above. Until the SOC value of one storage battery exceeds the SOC value of the other storage battery, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the other storage battery corresponds to the one storage battery. A third control for operating the two bidirectional DC-DC converters in the charging mode and the other storage battery so that the value becomes smaller than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter. The slope of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the one storage battery until the SOC value of the above exceeds the SOC value of the other storage battery. Any one of the fourth control for operating the two bidirectional DC-DC converters in the charging mode so that the value is smaller than the gradient of the fluctuation of the SOC value with respect to the time for the -DC converter. When the two bidirectional DC-DC converters can be selectively controlled and the two bidirectional DC-DC converters are operated in the discharge mode, the first control and the second control When the two bidirectional DC-DC converters are operated in the charging mode, the third control and the fourth control are alternately executed.
 本発明によれば、指令部が、複数の蓄電池それぞれの容量に対する、複数の蓄電池の容量の総和の比率と、複数の蓄電池それぞれのSOC値の差分値と、に基づいて、複数の双方向DC-DCコンバータそれぞれの放電電力指令値または充電電力指令値を算出する。これにより、複数の蓄電池それぞれのSOC値をより近い値にすることができるので、複数の蓄電池の全てについて満充電状態から放電終止状態までの全範囲に亘って蓄電池に蓄えられた電気を有効に利用することができる。 According to the present invention, the command unit uses a plurality of bidirectional DCs based on the ratio of the total capacity of the plurality of storage batteries to the capacity of each of the plurality of storage batteries and the difference value of the SOC values of the plurality of storage batteries. -Calculate the discharge power command value or charge power command value for each DC converter. As a result, the SOC values of each of the plurality of storage batteries can be made closer to each other, so that the electricity stored in the storage batteries can be effectively used over the entire range from the fully charged state to the end of discharge state for all of the plurality of storage batteries. It can be used.
本発明の実施の形態に係る電源システムの構成を示す図である。It is a figure which shows the structure of the power-source system which concerns on embodiment of this invention. 実施の形態に係るDC-DCコンバータの回路図である。It is a circuit diagram of the DC-DC converter which concerns on embodiment. 実施の形態に係る制御回路のブロック図である。It is a block diagram of the control circuit which concerns on embodiment. 実施の形態に係る制御回路が実行する電力指令値設定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the power command value setting process executed by the control circuit which concerns on embodiment. 比較例に係るパワーコンディショナにおける蓄電池のSOC値の推移を示す図である。It is a figure which shows the transition of the SOC value of the storage battery in the power conditioner which concerns on a comparative example. 実施の形態に係るパワーコンディショナにおける蓄電池のSOC値の推移を示す図である。It is a figure which shows the transition of the SOC value of the storage battery in the power conditioner which concerns on embodiment. 図6の破線A1で囲んだ部分の拡大図である。It is an enlarged view of the part surrounded by the broken line A1 of FIG. 実施の形態に係るパワーコンディショナにおける蓄電池のSOC値の推移を示す図である。It is a figure which shows the transition of the SOC value of the storage battery in the power conditioner which concerns on embodiment. 図8の破線A2で囲んだ部分の拡大図である。It is an enlarged view of the part surrounded by the broken line A2 of FIG. 実施の形態に係るパワーコンディショナにおける蓄電池のSOC値の推移を示す図である。It is a figure which shows the transition of the SOC value of the storage battery in the power conditioner which concerns on embodiment.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。本実施の形態に係る電力変換装置は、複数の蓄電池と、直流バスラインと、複数の双方向DC-DCコンバータと、指令部と、DC-DCコンバータ制御部と、を備える。複数の双方向DC-DCコンバータは、それぞれ、複数の蓄電池それぞれと直流バスラインとの間に設けられ、蓄電池から出力される直流電力を変換して直流バスラインへ出力することにより複数の蓄電池からの放電を実行する放電モードまたは直流バスラインから供給される直流電力を変換して蓄電池へ出力することにより蓄電池を充電する充電モードで動作する。指令部は、複数の双方向DC-DCコンバータそれぞれについて、放電モードで動作する場合の放電電力指令値または充電モードで動作する場合の充電電力指令値を算出し、算出した放電電力指令値または充電電力指令値を示す指令値情報を出力する。DC-DCコンバータ制御部は、指令部から出力される指令値情報に基づいて、複数の双方向DC-DCコンバータを各別に制御する。そして、指令部は、複数の蓄電池それぞれの容量のそれらの総和に対する比率と、複数の蓄電池それぞれのSOC値の差分値と、に基づいて、複数の双方向DC-DCコンバータそれぞれの放電電力指令値または充電電力指令値を算出する。ここで、本実施の形態に係る電力変換装置を含む電源システムの構成について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The power conversion device according to the present embodiment includes a plurality of storage batteries, a DC bus line, a plurality of bidirectional DC-DC converters, a command unit, and a DC-DC converter control unit. The plurality of bidirectional DC-DC converters are provided between each of the plurality of storage batteries and the DC bus line, and convert the DC power output from the storage batteries and output the DC power to the DC bus line from the plurality of storage batteries. It operates in the discharge mode for executing the discharge of the above, or in the charge mode for charging the storage battery by converting the DC power supplied from the DC bus line and outputting it to the storage battery. The command unit calculates the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode for each of the plurality of bidirectional DC-DC converters, and calculates the discharged power command value or charging. Outputs command value information indicating the power command value. The DC-DC converter control unit controls a plurality of bidirectional DC-DC converters separately based on the command value information output from the command unit. Then, the command unit receives the discharge power command value of each of the plurality of bidirectional DC-DC converters based on the ratio of the capacities of the plurality of storage batteries to their total and the difference value of the SOC values of the plurality of storage batteries. Alternatively, the charging power command value is calculated. Here, the configuration of the power supply system including the power conversion device according to the present embodiment will be described.
 本実施の形態に係る電源システムは、図1に示すように、太陽電池1と、蓄電池21、22と、太陽電池1、2つの蓄電池21、22および系統電源4に接続されたパワーコンディショナ3と、を備える。系統電源4は、例えば単相三線式でパワーコンディショナ3へ交流電力を供給する。蓄電池21、22は、それぞれ、蓄えられた電気を放電により取り出すことができる二次電池であり、鉛蓄電池、ニッケル水素電池、リチウムイオン二次電池、リチウムイオンキャパシタ等である。また、蓄電池21、22は、予め設定された電力を出力するものであれば、単電池であってもよいし、複数の単電池を直列または並列に接続した組電池であってもよい。 As shown in FIG. 1, the power supply system according to the present embodiment includes a solar cell 1, storage batteries 21, 22 and a power conditioner 3 connected to the solar cells 1, 2 storage batteries 21, 22 and a system power supply 4. And. The grid power supply 4 supplies AC power to the power conditioner 3 in a single-phase three-wire system, for example. The storage batteries 21 and 22, respectively, are secondary batteries capable of extracting the stored electricity by electric discharge, and are lead storage batteries, nickel hydrogen batteries, lithium ion secondary batteries, lithium ion capacitors, and the like. Further, the storage batteries 21 and 22 may be a single battery as long as they output a preset electric power, or may be an assembled battery in which a plurality of single batteries are connected in series or in parallel.
 パワーコンディショナ3は、PVコンバータ31と、インバータ32と、2つのDC-DCコンバータ331、332と、制御回路39と、を備える。PVコンバータ31と、インバータ32と、DC-DCコンバータ331、332とは、直流バスラインであるHVDCバスL3を介して接続されている。また、HVDCバスL3には、HVDCバスL3の電圧変動を抑制するためのコンデンサ(図示せず)が接続されている。また、インバータ32と系統電源4との間には、インダクタとコンデンサとを含んで構成され、インバータ32から出力される交流電力から、高周波数のスイッチングノイズ成分を除去するラインフィルタ(図示せず)が介在している。 The power conditioner 3 includes a PV converter 31, an inverter 32, two DC- DC converters 331 and 332, and a control circuit 39. The PV converter 31, the inverter 32, and the DC- DC converters 331 and 332 are connected via the HVDC bus L3, which is a DC bus line. Further, a capacitor (not shown) for suppressing voltage fluctuations of the HVDC bus L3 is connected to the HVDC bus L3. A line filter (not shown) that includes an inductor and a capacitor between the inverter 32 and the system power supply 4 and removes high-frequency switching noise components from the AC power output from the inverter 32. Is intervening.
 PVコンバータ31は、太陽電池1から入力される直流電圧を昇圧して出力するDC-DCコンバータである。PVコンバータ31は、制御回路39から入力される制御信号に基づいて、MPPT(Maximum Power Point Tracking)制御を実行することにより、太陽電池1からの入力電圧を調整する機能を有するものであってもよい。インバータ32は、双方向型DC-ACインバータであり、制御回路39から入力されるPWM(Pulse Width Modulation)信号によりスイッチングされる複数のスイッチング素子(図示せず)を有する。このインバータ32は、HVDCバスL3から入力される直流電圧を交流電圧に変換して出力するとともに、系統電源4から供給される交流電圧を直流電圧に変換してHVDCバスL3へ出力する。 The PV converter 31 is a DC-DC converter that boosts and outputs the DC voltage input from the solar cell 1. Even if the PV converter 31 has a function of adjusting the input voltage from the solar cell 1 by executing MPPT (Maximum Power Point Tracking) control based on the control signal input from the control circuit 39. Good. The inverter 32 is a bidirectional DC-AC inverter, and has a plurality of switching elements (not shown) that are switched by a PWM (Pulse Width Modulation) signal input from the control circuit 39. The inverter 32 converts the DC voltage input from the HVDC bus L3 into an AC voltage and outputs it, and also converts the AC voltage supplied from the system power supply 4 into a DC voltage and outputs it to the HVDC bus L3.
 DC-DCコンバータ331、332は、それぞれ、双方向DC-DCコンバータであり、2つの蓄電池21、22それぞれとHVDCバスL3との間に1つずつ設けられている。DC-DCコンバータ331、332は、例えば図2に示すような双方向チョッパ回路である。DC-DCコンバータ331、332は、一端が端子BHに接続されたインダクタL3313と、インダクタL3313の他端と端子BL、DLとの間に接続されたスイッチング素子Q1と、インダクタL3313の他端と端子DHとの間に接続されたスイッチング素子Q2と、を有する。また、端子DH、DL間には、コンデンサC1が接続されている。スイッチング素子Q1、Q2は、それぞれ、制御回路39から入力されるPWM(Pulse Width Modulation)信号により駆動される。DC―DCコンバータ331、332の端子BLは蓄電池21、22の負極側に接続され、端子BHは蓄電池21、22の正極側に接続される。また、DC-DCコンバータ331、332の端子DLはHVDCバスL3の負側に接続される。DC-DCコンバータ331、332の端子DHはHVDCバスL3の正側に接続される。DC-DCコンバータ331、332のスイッチング素子Q1、Q2には、MOSFET、IGBT等が採用される。また、DC―DCコンバータ331、332は、端子BH、BL間の電圧、即ち、蓄電池21、22の出力電圧Vcを計測する電圧計測部3311と、端子DH、DL間の電圧、即ち、DC-DCコンバータの出力電圧Vdを計測する電圧計測部3312と、を有する。電圧計測部3311、3312は、それぞれ、計測した電圧値を示す計測信号を制御回路39へ出力する。 The DC- DC converters 331 and 332 are bidirectional DC-DC converters, respectively, and are provided between each of the two storage batteries 21 and 22 and the HVDC bus L3. The DC- DC converters 331 and 332 are bidirectional chopper circuits as shown in FIG. 2, for example. The DC- DC converters 331 and 332 have an inductor L3313 whose one end is connected to the terminal BH, a switching element Q1 which is connected between the other end of the inductor L3313 and the terminals BL and DL, and the other end and the terminal of the inductor L3313. It has a switching element Q2 connected to and from a DH. Further, a capacitor C1 is connected between the terminals DH and DL. The switching elements Q1 and Q2 are each driven by a PWM (Pulse Width Modulation) signal input from the control circuit 39. The terminal BL of the DC- DC converters 331 and 332 is connected to the negative electrode side of the storage batteries 21 and 22, and the terminal BH is connected to the positive electrode side of the storage batteries 21 and 22. Further, the terminal DL of the DC- DC converters 331 and 332 is connected to the negative side of the HVDC bus L3. The terminal DH of the DC- DC converters 331 and 332 is connected to the positive side of the HVDC bus L3. MOSFETs, IGBTs, etc. are used for the switching elements Q1 and Q2 of the DC- DC converters 331 and 332. Further, the DC- DC converters 331 and 332 use the voltage measuring unit 3311 for measuring the voltage between the terminals BH and BL, that is, the output voltage Vc of the storage batteries 21 and 22, and the voltage between the terminals DH and DL, that is, DC-. It has a voltage measuring unit 3312 for measuring the output voltage Vd of the DC converter. The voltage measuring units 3311 and 3312 output measurement signals indicating the measured voltage values to the control circuit 39, respectively.
 DC-DCコンバータ331、332は、それぞれ、蓄電池21、22から出力される直流電力を変換してHVDCバスL3へ出力することにより蓄電池21、22からの放電を実行する放電モードまたはHVDCバスL3から供給される直流電力を変換して蓄電池21、22へ出力することにより蓄電池21、22を充電する充電モードで動作する。 The DC- DC converters 331 and 332 convert the DC power output from the storage batteries 21 and 22, respectively, and output the DC power to the HVDC bus L3 to execute the discharge from the storage batteries 21 and 22, respectively, from the discharge mode or the HVDC bus L3. It operates in a charging mode in which the storage batteries 21 and 22 are charged by converting the supplied DC power and outputting it to the storage batteries 21 and 22.
 図1に戻って、制御回路39は、例えばDSP(Digital Signal Processor)とメモリとを有する。制御回路39は、図3に示すように、PVコンバータ制御部391と、インバータ制御部392と、DC-DCコンバータ制御部3931、3932と、指令部394と、を有する。制御回路39のメモリは、SOC相関記憶部3951と、容量記憶部3952と、基準指令値記憶部3953と、指令値記憶部3954と、を有する。PVコンバータ制御部391は、PVコンバータ31をその出力電圧が一定になるように制御するための制御信号を生成してPVコンバータ31へ出力する。インバータ制御部392は、インバータ32を動作させるための制御信号を生成してインバータ32へ出力する。 Returning to FIG. 1, the control circuit 39 has, for example, a DSP (Digital Signal Processor) and a memory. As shown in FIG. 3, the control circuit 39 includes a PV converter control unit 391, an inverter control unit 392, a DC-DC converter control units 3931 and 3932, and a command unit 394. The memory of the control circuit 39 includes an SOC correlation storage unit 3951, a capacitance storage unit 3952, a reference command value storage unit 3953, and a command value storage unit 3954. The PV converter control unit 391 generates a control signal for controlling the PV converter 31 so that its output voltage becomes constant, and outputs the control signal to the PV converter 31. The inverter control unit 392 generates a control signal for operating the inverter 32 and outputs the control signal to the inverter 32.
 DC-DCコンバータ制御部3931、3932は、それぞれ、DC-DCコンバータ331、332を充電モードまたは放電モードのいずれかの動作モードで動作させるためのPWM信号を生成してDC-DCコンバータ331、332それぞれへ出力する。ここで、DC―DCコンバータ制御部3931、3932は、DC―DCコンバータ331、332を放電モードで動作させる場合、DC―DCコンバータ331、332それぞれの電圧計測部3312から入力される計測信号に基づいて、DC―DCコンバータ331、332の出力電圧Vdが一定となるようにスイッチング素子Q1のオンオフ動作におけるデューティ比を制御する。また、DC-DCコンバータ制御部3931、3932は、指令部394から出力される、放電モードで動作する場合の放電電力指令値または充電モードで動作する場合の充電電力指令値を示す指令値情報に基づいて、DC―DCコンバータ331、332を各別に制御する。 The DC-DC converter control units 3931 and 3932 generate PWM signals for operating the DC- DC converters 331 and 332 in either the charge mode or the discharge mode, respectively, to generate the DC- DC converters 331 and 332, respectively. Output to each. Here, the DC-DC converter control units 3931 and 3932 are based on the measurement signals input from the voltage measurement units 3312 of the DC- DC converters 331 and 332, respectively, when the DC- DC converters 331 and 332 are operated in the discharge mode. Therefore, the duty ratio in the on / off operation of the switching element Q1 is controlled so that the output voltage Vd of the DC- DC converters 331 and 332 becomes constant. Further, the DC-DC converter control units 3931 and 3932 use the command value information output from the command unit 394 to indicate the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode. Based on this, the DC- DC converters 331 and 332 are controlled separately.
 SOC相関記憶部3951は、蓄電池21、22の出力電圧とSOC値と相関関係を示す相関情報を記憶する。 The SOC correlation storage unit 3951 stores correlation information indicating a correlation between the output voltage of the storage batteries 21 and 22 and the SOC value.
 指令部394は、電圧計測部3311から入力される計測信号から、蓄電池21、22の出力電圧Vcの電圧値を取得し、取得した電圧値に基づいて、蓄電池21、22のSOC値を算出する。ここで、指令部394は、SOC相関記憶部3951が記憶する相関情報を参照して、蓄電池21、22の出力電圧VcからSOC値を算出する。また、指令部394は、2つのDC―DCコンバータ331、332それぞれについて、放電電力指令値または充電電力指令値を算出し、算出した放電電力指令値または充電電力指令値を示す指令値情報を生成して出力する。ここで、指令部394は、蓄電池21、22それぞれの容量のそれらの総和に対する比率と、蓄電池21、22それぞれのSOC値の差分値と、に基づいて、DC―DCコンバータ331、332それぞれの放電電力指令値または充電電力指令値を算出する。 The command unit 394 acquires the voltage value of the output voltage Vc of the storage batteries 21 and 22 from the measurement signal input from the voltage measurement unit 3311, and calculates the SOC value of the storage batteries 21 and 22 based on the acquired voltage value. .. Here, the command unit 394 calculates the SOC value from the output voltages Vc of the storage batteries 21 and 22 with reference to the correlation information stored in the SOC correlation storage unit 3951. Further, the command unit 394 calculates the discharge power command value or the charge power command value for each of the two DC- DC converters 331 and 332, and generates command value information indicating the calculated discharge power command value or the charge power command value. And output. Here, the command unit 394 discharges the DC- DC converters 331 and 332, respectively, based on the ratio of the capacities of the storage batteries 21 and 22 to their total and the difference value of the SOC values of the storage batteries 21 and 22 respectively. Calculate the power command value or the charging power command value.
 具体的には、指令部394は、下記式(1)および式(2)に示す関係式を用いて、放電電力指令値または充電電力指令値を算出する。
PtA={PA/(PA+PB)}×K1×Pt+(Sa-Sb)×k2   ・・・式(1)
PtB={PB/(PA+PB)}×K1×Pt-(Sa-Sb)×k2   ・・・式(2)
 ここで、PtAは、例えば蓄電池21に対応するDC―DCコンバータ331の放電電力指令値または充電電力指令値を示し、PtBは、例えば蓄電池22に対応するDC―DCコンバータ332の放電電力指令値または充電電力指令値を示す。この場合、PA、PBは、それぞれ、蓄電池21、22の定格容量を示し、Sa、Sbは、それぞれ、蓄電池21、22のSOC値を示す。また、Ptは、蓄電池21、22全てからの放電電力または充電電力の指令値である総電力指令値であり、K1は、蓄電池の劣化状態や累積充放電回数などを基にした係数であり、k2は、予め設定されたオフセット電力指令値である。例えば蓄電池21、22へ2[kW]充電する場合または蓄電池21、22から2[kW]放電する場合、総電力指令値Ptは、2[kW]に設定される。オフセット電力指令値k2は、電圧計測部3311による蓄電池21、22それぞれの出力電圧の計測誤差に基づいて決定される。具体的には、オフセット電力指令値k2は、例えば、電圧計測部3311による蓄電池21、22それぞれの出力電力の計測誤差に予め設定された電流値を乗じて得られる値以上の値に設定される。また、オフセット電力指令値k2の上限は、例えば蓄電池21、22のSOC値が等しくなるまでに要する時間に基づいて決定される。このオフセット電力指令値k2は、例えば0.1[kW]に設定される。
Specifically, the command unit 394 calculates the discharge power command value or the charge power command value by using the relational expressions shown in the following equations (1) and (2).
PtA = {PA / (PA + PB)} x K1 x Pt + (Sa-Sb) x k2 ... Equation (1)
PtB = {PB / (PA + PB)} x K1 x Pt- (Sa-Sb) x k2 ... Equation (2)
Here, PtA indicates, for example, the discharge power command value or the charge power command value of the DC-DC converter 331 corresponding to the storage battery 21, and PtB is, for example, the discharge power command value or the discharge power command value of the DC-DC converter 332 corresponding to the storage battery 22. Indicates the charging power command value. In this case, PA and PB indicate the rated capacities of the storage batteries 21 and 22, respectively, and Sa and Sb indicate the SOC values of the storage batteries 21 and 22, respectively. Further, Pt is a total power command value which is a command value of discharge power or charge power from all the storage batteries 21 and 22, and K1 is a coefficient based on the deterioration state of the storage battery and the cumulative number of charge / discharge cycles. k2 is a preset offset power command value. For example, when charging the storage batteries 21 and 22 by 2 [kW] or discharging the storage batteries 21 and 22 by 2 [kW], the total power command value Pt is set to 2 [kW]. The offset power command value k2 is determined based on the measurement error of the output voltage of each of the storage batteries 21 and 22 by the voltage measuring unit 3311. Specifically, the offset power command value k2 is set to a value equal to or higher than a value obtained by multiplying the measurement error of the output power of each of the storage batteries 21 and 22 by the voltage measuring unit 3311 by a preset current value, for example. .. Further, the upper limit of the offset power command value k2 is determined based on, for example, the time required for the SOC values of the storage batteries 21 and 22 to become equal. This offset power command value k2 is set to, for example, 0.1 [kW].
 即ち、指令部394は、蓄電池21の定格容量PAの総容量(PA+PB)に対する比率に総電力指令値Ptを乗じて得られる値に、SOC差分値(Sa-Sb)にオフセット電力指令値k2を乗じて得られる値を加えることにより、DC―DCコンバータ331の放電電力指令値または充電電力指令値を算出する。ここで、総容量(PA+PB)は、蓄電池21、22の定格容量PA、PBの総和であり、SOC差分値(Sa-Sb)は、蓄電池21のSOC値Saから蓄電池22のSOC値Sbを差し引いて得られる値であり、SaおよびSbは百分率(%)で表記される。また、指令部394は、蓄電池22の定格容量PBの総容量(PA+PB)に対する比率に係数K1と総電力指令値Ptを乗じて得られる値から、SOC差分値(Sa-Sb)にオフセット電力指令値k2を乗じて得られる値を差し引くことにより、DC―DCコンバータ332の放電電力指令値または充電電力指令値を算出する。そして、指令部394は、算出した放電電力指令値または充電電力指令値を示す情報を指令値記憶部3954に記憶させる。 That is, the command unit 394 sets the offset power command value k2 to the SOC difference value (Sa-Sb) to the value obtained by multiplying the ratio of the rated capacity PA of the storage battery 21 to the total capacity (PA + PB) by the total power command value Pt. By adding the value obtained by multiplying, the discharge power command value or the charge power command value of the DC-DC converter 331 is calculated. Here, the total capacity (PA + PB) is the sum of the rated capacities PA and PB of the storage batteries 21 and 22, and the SOC difference value (Sa-Sb) is the SOC value Sa of the storage battery 21 minus the SOC value Sb of the storage battery 22. Sa and Sb are expressed as percentages (%). Further, the command unit 394 issues an offset power command to the SOC difference value (Sa-Sb) from a value obtained by multiplying the ratio of the rated capacity PB of the storage battery 22 to the total capacity (PA + PB) by the coefficient K1 and the total power command value Pt. By multiplying the value k2 and subtracting the obtained value, the discharge power command value or the charge power command value of the DC-DC converter 332 is calculated. Then, the command unit 394 stores the calculated discharge power command value or information indicating the charge power command value in the command value storage unit 3954.
 また、指令部394は、算出した放電電力指令値または充電電力指令値が負である場合、指令値記憶部3954が記憶する放電電力指令値または充電電力指令値を示す情報を「0」に設定する。更に、指令部394は、算出した放電電力指令値または充電電力指令値が前述の総電力指令値Ptを超える場合、放電電力指令値または充電電力指令値を強制的に総電力指令値Ptに設定する。ここで、算出した放電電力指令値または充電電力指令値が負である場合に、指令値記憶部3954が記憶する情報を「0」にする理由は、電池の劣化の加速を防ぐためである。指令値記憶部3954が記憶する情報を「0」にしない場合、一方の蓄電池を放電させ、他方の蓄電池を充電させるような動作になるため蓄電池の劣化を加速させる。 Further, when the calculated discharge power command value or charge power command value is negative, the command unit 394 sets the information indicating the discharge power command value or charge power command value stored in the command value storage unit 3954 to "0". To do. Further, when the calculated discharge power command value or charge power command value exceeds the above-mentioned total power command value Pt, the command unit 394 forcibly sets the discharge power command value or charge power command value to the total power command value Pt. To do. Here, the reason why the information stored in the command value storage unit 3954 is set to "0" when the calculated discharge power command value or the charge power command value is negative is to prevent the acceleration of battery deterioration. When the information stored in the command value storage unit 3954 is not set to "0", the operation is such that one storage battery is discharged and the other storage battery is charged, so that the deterioration of the storage battery is accelerated.
 容量記憶部3952は、蓄電池21、22それぞれの定格容量を示す容量情報を記憶する。指令値記憶部3954は、指令部394により算出された放電電力指令値または充電電力指令値を示す情報を記憶する。 The capacity storage unit 3952 stores capacity information indicating the rated capacity of each of the storage batteries 21 and 22. The command value storage unit 3954 stores information indicating the discharge power command value or the charge power command value calculated by the command unit 394.
 基準指令値記憶部3953は、前述の式(1)および式(2)における係数K1と、総電力指令値Ptを示す総電力指令値情報と、オフセット電力指令値k2を示すオフセット電力指令値情報と、を記憶する。ここで、基準指令値記憶部3953は、1種類の総電力指令値情報と、正負の2種類のオフセット電力指令値k2を示すオフセット電力指令値情報と、を記憶する。指令部394は、下記式(1)および式(2)に示す関係式を用いて、放電電力指令値または充電電力指令値を算出する際、容量記憶部3952が記憶する容量情報と基準指令値記憶部3953が記憶する総電力指令値情報およびオフセット電力指令値情報とを参照する。 The reference command value storage unit 3953 has the coefficient K1 in the above equations (1) and (2), the total power command value information indicating the total power command value Pt, and the offset power command value information indicating the offset power command value k2. And remember. Here, the reference command value storage unit 3953 stores one type of total power command value information and offset power command value information indicating two types of positive and negative offset power command values k2. The command unit 394 uses the relational expressions shown in the following equations (1) and (2) to calculate the discharge power command value or the charge power command value, and the capacity information and the reference command value stored in the capacity storage unit 3952. The total power command value information and the offset power command value information stored in the storage unit 3953 are referred to.
 次に、本実施の形態に係る制御回路39の指令部394が実行する電力指令値設定処理について、図4を参照しながら説明する。この電力指令値設定処理は、パワーコンディショナ3が起動したことを契機として開始される。なお、制御回路39は、この電力指令値設定処理の実行と並行して、PVコンバータ31の動作を制御する処理、インバータ32の動作を制御する処理およびDC-DCコンバータ331、332の動作を制御する処理を実行する。 Next, the power command value setting process executed by the command unit 394 of the control circuit 39 according to the present embodiment will be described with reference to FIG. This power command value setting process is started when the power conditioner 3 is activated. The control circuit 39 controls the operation of the PV converter 31, the operation of the inverter 32, and the operation of the DC- DC converters 331 and 332 in parallel with the execution of the power command value setting process. Execute the process to be performed.
 まず、指令部394は、電圧計測部3311から入力される計測信号から、蓄電池21、22の出力電圧の電圧値を取得する(ステップS101)。次に、指令部394は、取得した電圧値とSOC相関テーブルとに基づいて、蓄電池21、22のSOC値を算出する(ステップS102)。 First, the command unit 394 acquires the voltage value of the output voltage of the storage batteries 21 and 22 from the measurement signal input from the voltage measurement unit 3311 (step S101). Next, the command unit 394 calculates the SOC values of the storage batteries 21 and 22 based on the acquired voltage value and the SOC correlation table (step S102).
 続いて、指令部394は、DC―DCコンバータ331、332が充電モードで動作しているか否かを判定する(ステップS103)。指令部394が、DC―DCコンバータ331、332が充電モードで動作していると判定したとする(ステップS103:Yes)。この場合、指令部394は、基準指令値記憶部3953が記憶するオフセット電力指令値情報を参照して、前述の式(1)および式(2)におけるオフセット電力指令値k2として負のオフセット電力指令値k2を採用する(ステップS104)。一方、指令部394が、DC―DCコンバータ3931、3932が放電モードで動作していると判定したとする(ステップS103:No)。この場合、指令部394は、基準指令値記憶部3953が記憶するオフセット電力指令値情報を参照して、前述の式(1)および式(2)におけるオフセット電力指令値k2として正のオフセット電力指令値k2を採用する(ステップS105)。 Subsequently, the command unit 394 determines whether or not the DC- DC converters 331 and 332 are operating in the charging mode (step S103). It is assumed that the command unit 394 determines that the DC- DC converters 331 and 332 are operating in the charging mode (step S103: Yes). In this case, the command unit 394 refers to the offset power command value information stored in the reference command value storage unit 3953, and sets a negative offset power command as the offset power command value k2 in the above equations (1) and (2). The value k2 is adopted (step S104). On the other hand, it is assumed that the command unit 394 determines that the DC- DC converters 3931 and 3932 are operating in the discharge mode (step S103: No). In this case, the command unit 394 refers to the offset power command value information stored in the reference command value storage unit 3953, and sets a positive offset power command as the offset power command value k2 in the above equations (1) and (2). The value k2 is adopted (step S105).
 その後、指令部394は、蓄電池21、22それぞれの定格容量と、係数K1と、前述の総電力指令値Ptと、前述のステップS104またはステップS105で採用したオフセット電力指令値k2と、前述の式(1)および式(2)の関係式とを用いて、放電電力指令値または充電電力指令値を算出するが、簡略化のために、以降ではK1=1として説明する。そして、指令部394は、算出した放電電力指令値または充電電力指令値を示す情報を指令値記憶部3954に記憶させる(ステップS106)。ここで、指令部394は、容量記憶部3952が記憶する蓄電池21、22それぞれの定格容量を示す容量情報を参照して、蓄電池21、22それぞれの定格容量を取得する。 After that, the command unit 394 uses the rated capacities of the storage batteries 21 and 22, the coefficient K1, the above-mentioned total power command value Pt, the offset power command value k2 adopted in the above-mentioned step S104 or step S105, and the above-mentioned formula. The discharge power command value or the charge power command value is calculated by using the relational expressions of (1) and (2), but for the sake of simplicity, K1 = 1 will be described below. Then, the command unit 394 stores the calculated discharge power command value or information indicating the charge power command value in the command value storage unit 3954 (step S106). Here, the command unit 394 acquires the rated capacity of each of the storage batteries 21 and 22 by referring to the capacity information indicating the rated capacity of each of the storage batteries 21 and 22 stored in the capacity storage unit 3952.
 次に、指令部394は、算出した放電電力指令値または充電電力指令値PtA、PtBのうちのいずれかが0未満であるか否かを判定する(ステップS107)。指令部394は、算出した放電電力指令値または充電電力指令値PtA、PtBが0以上であると判定すると(ステップS107:No)、そのまま後述のステップS109の処理を実行する。一方、指令部394が、算出した放電電力指令値または充電電力指令値PtA、PtBのいずれかが0未満、即ち、負であると判定したとする(ステップS107:Yes)。この場合、指令部394は、指令値記憶部3945が記憶する、負である放電電力指令値または充電電力指令値PtA、PtBを示す情報を、「0」を示す情報に更新する(ステップS108)。即ち、指令部394は、算出した放電電力指令値または前記充電電力指令値が負である場合、放電電力指令値または前記充電電力指令値をゼロに設定する。 Next, the command unit 394 determines whether or not any of the calculated discharge power command value or charge power command value PtA and PtB is less than 0 (step S107). When the command unit 394 determines that the calculated discharge power command value or charge power command value PtA or PtB is 0 or more (step S107: No), the command unit 394 directly executes the process of step S109 described later. On the other hand, it is assumed that the command unit 394 determines that either the calculated discharge power command value or the charge power command value PtA or PtB is less than 0, that is, negative (step S107: Yes). In this case, the command unit 394 updates the information indicating the negative discharge power command value or the charge power command value PtA, PtB stored in the command value storage unit 3945 to the information indicating "0" (step S108). .. That is, when the calculated discharge power command value or the charge power command value is negative, the command unit 394 sets the discharge power command value or the charge power command value to zero.
 続いて、指令部394は、算出した放電電力指令値または充電電力指令値PtA、PtBのうちのいずれかが総電力指令値Ptよりも大きいか否かを判定する(ステップS109)。指令部394は、算出した放電電力指令値または充電電力指令値PtA、PtBが総電力指令値Pt以下であると判定すると(ステップS109:No)、そのまま後述のステップS111の処理を実行する。一方、指令部394が、算出した放電電力指令値または充電電力指令値PtA、PtBのいずれかが総電力指令値Ptよりも大きいと判定したとする(ステップS107:Yes)。この場合、指令部394は、指令値記憶部3945が記憶する、総電力指令値Ptよりも大きい放電電力指令値または充電電力指令値PtA、PtBを示す情報を、総電力指令値Ptを示す情報に更新する(ステップS110)。即ち、指令部394は、算出した放電電力指令値または充電電力指令値が前述の総電力指令値Ptを超える場合、放電電力指令値または充電電力指令値を総電力指令値Ptに設定する。 Subsequently, the command unit 394 determines whether or not any of the calculated discharge power command value or charge power command value PtA or PtB is larger than the total power command value Pt (step S109). When the command unit 394 determines that the calculated discharge power command value or charge power command value PtA or PtB is equal to or less than the total power command value Pt (step S109: No), the command unit 394 directly executes the process of step S111 described later. On the other hand, it is assumed that the command unit 394 determines that either the calculated discharge power command value or the charge power command value PtA or PtB is larger than the total power command value Pt (step S107: Yes). In this case, the command unit 394 stores information indicating the discharge power command value or the charge power command value PtA, PtB, which is larger than the total power command value Pt, stored in the command value storage unit 3945, and information indicating the total power command value Pt. Update to (step S110). That is, when the calculated discharge power command value or charge power command value exceeds the above-mentioned total power command value Pt, the command unit 394 sets the discharge power command value or charge power command value to the total power command value Pt.
 その後、指令部394は、指令値記憶部3945が記憶する放電電力指令値または充電電力指令値PtA、PtBを示す指令値情報を、DC-DCコンバータ制御部3931、3932へ出力する(ステップS111)。このとき、DC-DCコンバータ制御部3931、3932は、指令部394から出力される放電電力指令値または充電電力指令値を示す指令値情報に基づいて、DC―DCコンバータ331、332を各別に制御する。次に、再びステップS101の処理が実行される。 After that, the command unit 394 outputs command value information indicating the discharge power command value or the charge power command values PtA and PtB stored in the command value storage unit 3945 to the DC-DC converter control units 3931 and 3932 (step S111). .. At this time, the DC-DC converter control units 3931 and 3932 separately control the DC- DC converters 331 and 332 based on the discharge power command value or the charge power command value indicating the discharge power command value output from the command unit 394. To do. Next, the process of step S101 is executed again.
 次に、本実施の形態に係るパワーコンディショナ3の動作について、比較例に係るパワーコンディショナの動作と比較しながら説明する。比較例に係るパワーコンディショナは、本実施の形態に係るパワーコンディショナ3と同様の構成を有し、指令部394の放電電力指令値または充電電力指令値の算出方法のみが本実施の形態と相違する。比較例に係る指令部394は、下記式(3)および式(4)に示す関係式を用いて、放電電力指令値または充電電力指令値を算出する。
PtA=[PA×(1-Sa)/{(PA×(1-Sa)+PB×(1-Sb)}]×2   ・・・式(3)
PtB=[PB×(1-Sb)/{(PA×(1-Sa)+PB×(1-Sb)}]×2   ・・・式(4)
 ここで、PtA、PtB、PA、PB、Sa、Sbは、それぞれ、前述の式(1)および式(2)におけるそれらと同様である。
Next, the operation of the power conditioner 3 according to the present embodiment will be described while comparing with the operation of the power conditioner according to the comparative example. The power conditioner according to the comparative example has the same configuration as the power conditioner 3 according to the present embodiment, and only the calculation method of the discharge power command value or the charge power command value of the command unit 394 is the same as that of the present embodiment. It's different. The command unit 394 according to the comparative example calculates the discharge power command value or the charge power command value by using the relational expressions shown in the following formulas (3) and (4).
PtA = [PA × (1-Sa) / {(PA × (1-Sa) + PB × (1-Sb)}] × 2 ・ ・ ・ Equation (3)
PtB = [PB × (1-Sb) / {(PA × (1-Sa) + PB × (1-Sb)}] × 2 ・ ・ ・ Equation (4)
Here, PtA, PtB, PA, PB, Sa, and Sb are the same as those in the above formulas (1) and (2), respectively.
 例えば蓄電池21の定格容量を4[kWh]、蓄電池22の定格容量を2[kWh]であり、蓄電池21のSOC値が「0.5(50%)」、蓄電池22のSOC値が「0.4(40%)」であるとする。そして、比較例に係る指令部394が、DC-DCコンバータ331、332を充電モードで動作させるとともに、前述の総電力指令値Ptを2[kW]に設定したとする。この場合、指令部394は、式(3)に示す関係式を用いて、蓄電池21への充電電力指令値を、[4×(1-0.5)/{4×(1-0.5)+2×(1-0.4)}]×2=1.25[kW]と算出する。また、指令部394は、式(4)に示す関係式を用いて、蓄電池22への充電電力指令値を、[2×(1-0.4)/{4×(1-0.5)+2×(1-0.4)}]×2=0.75[kW]と算出する。このように、蓄電池21、22の定格容量の比が、2:1であるにも関わらず、SOC値の違いを考慮した式(3)および式(4)に示す関係式を用いて算出される蓄電池21、22に対応する充電電力指令値の比は、5:3となる。 For example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "0.5 (50%)", and the SOC value of the storage battery 22 is "0. 4 (40%) ”. Then, it is assumed that the command unit 394 according to the comparative example operates the DC- DC converters 331 and 332 in the charging mode and sets the above-mentioned total power command value Pt to 2 [kW]. In this case, the command unit 394 sets the charge power command value to the storage battery 21 to [4 × (1-0.5) / {4 × (1-0.5) by using the relational expression shown in the equation (3). ) + 2 × (1-0.4)}] × 2 = 1.25 [kW]. Further, the command unit 394 sets the charge power command value to the storage battery 22 to [2 × (1-0.4) / {4 × (1-0.5)) by using the relational expression shown in the equation (4). It is calculated as +2 × (1-0.4)}] × 2 = 0.75 [kW]. In this way, even though the ratio of the rated capacities of the storage batteries 21 and 22 is 2: 1, it is calculated using the relational expressions shown in the equations (3) and (4) in consideration of the difference in SOC values. The ratio of the charging power command values corresponding to the storage batteries 21 and 22 is 5: 3.
 ここで、比較例に係るパワーコンディショナについて、DC-DCコンバータ331、332を充電モードで動作を開始させた後における蓄電池21、22のSOC値の時間推移の一例を図5に示す。図5の曲線S91、S92に示すように、蓄電池21、22のSOC値の差分値は、DC-DCコンバータ331、332が充電モードで動作を開始してから10分程度の間、経時的に減少する。但し、10分以上経過した時点においては、蓄電池21、22のSOC値の差分値はほとんど一定であることが判る。このため、蓄電池21、22のSOC値を等しくすることができない。また、蓄電池21、22のSOC値の差分値が比較的大きい場合、例えば、蓄電池21のSOC値が0.9(90%)であり、蓄電池22のSOC値が0.1(10%)である場合、蓄電池21、22のSOC値の差分値をある程度小さくするまでに要する時間が長くなってしまう虞がある。 Here, regarding the power conditioner according to the comparative example, FIG. 5 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC- DC converters 331 and 332 are started to operate in the charging mode. As shown in the curves S91 and S92 of FIG. 5, the difference value of the SOC values of the storage batteries 21 and 22 is measured over time for about 10 minutes after the DC- DC converters 331 and 332 start operating in the charging mode. Decrease. However, when 10 minutes or more have passed, it can be seen that the difference value of the SOC values of the storage batteries 21 and 22 is almost constant. Therefore, the SOC values of the storage batteries 21 and 22 cannot be made equal. When the difference value of the SOC values of the storage batteries 21 and 22 is relatively large, for example, the SOC value of the storage battery 21 is 0.9 (90%) and the SOC value of the storage battery 22 is 0.1 (10%). In some cases, the time required to reduce the difference value of the SOC values of the storage batteries 21 and 22 to some extent may become long.
 これに対して、本実施の形態に係るパワーコンディショナ3では、指令部394が、前述の式(1)および式(2)に示す関係式を用いて、放電電力指令値または充電電力指令値を算出する。例えば蓄電池21の定格容量を4[kWh]、蓄電池22の定格容量を2[kWh]であり、蓄電池21のSOC値が「0.5(50%)」、蓄電池22のSOC値が「0(0%)」であるとする。そして、指令部394が、DC-DCコンバータ331、332を充電モードで動作させるとともに、前述の総電力指令値Ptを2[kW]に設定したとする。また、オフセット電力指令値が、0.1[kW]に設定されているとする。この場合、指令部394は、式(1)に示す関係式を用いて、蓄電池21に対応する充電電力指令値を、{4/(2+4)}×2-(50-0)×0.1=-3.66[kW]と算出する。また、指令部394は、式(2)に示す関係式を用いて、蓄電池22に対応する充電電力指令値を、{2/(2+4)}×2+(50-0)×0.1=5.66[kW]と算出される。そして、指令部394は、算出した蓄電池21の充電電力指令値が0未満であるため、蓄電池21の充電電力指令値を「0」に更新する。これにより、指令部394は、蓄電池21を充電せずに、蓄電池22のみに2[kW]充電させるための指令値情報を、DC-DCコンバータ制御部3931、3932へ出力する。 On the other hand, in the power conditioner 3 according to the present embodiment, the command unit 394 uses the relational expressions shown in the above equations (1) and (2) to generate a discharge power command value or a charge power command value. Is calculated. For example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "0.5 (50%)", and the SOC value of the storage battery 22 is "0 (" 0%) ”. Then, it is assumed that the command unit 394 operates the DC- DC converters 331 and 332 in the charging mode and sets the above-mentioned total power command value Pt to 2 [kW]. Further, it is assumed that the offset power command value is set to 0.1 [kW]. In this case, the command unit 394 sets the charging power command value corresponding to the storage battery 21 to {4 / (2 + 4)} × 2- (50-0) × 0.1 by using the relational expression shown in the equation (1). = -3.66 [kW] is calculated. Further, the command unit 394 sets the charging power command value corresponding to the storage battery 22 to {2 / (2 + 4)} × 2 + (50-0) × 0.1 = 5 by using the relational expression shown in the equation (2). It is calculated as .66 [kW]. Then, since the calculated charging power command value of the storage battery 21 is less than 0, the command unit 394 updates the charging power command value of the storage battery 21 to "0". As a result, the command unit 394 outputs command value information for charging only the storage battery 22 by 2 [kW] without charging the storage battery 21 to the DC-DC converter control units 3931 and 3932.
 つまり、指令部394は、DC―DCコンバータ331、332を充電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応する双方向DC―DCコンバータ331についての充電電力指令値を「0」に設定して蓄電池21を充電させない。一方、指令部394は、蓄電池22に対応する双方向DC―DCコンバータ332についての充電電力指令値を「0」よりも大きい値に設定して蓄電池22を充電させる。言い換えると、指令部394は、DC―DCコンバータ331、332を充電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応するDC-DCコンバータ331についての時間に対するSOC値の変動の傾きを、蓄電池22に対応するDC-DCコンバータ332についての時間に対するSOC値の変動の傾きよりも小さい値となるように充電電力指令値を算出する。なお、DC-DCコンバータ331、332それぞれについての充電電力指令値は上記に限定されない。 That is, when the command unit 394 operates the DC- DC converters 331 and 332 in the charging mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the bidirectional DC-DC converter 331 corresponding to the storage battery 21 The charging power command value for is set to "0" so that the storage battery 21 is not charged. On the other hand, the command unit 394 sets the charging power command value for the bidirectional DC-DC converter 332 corresponding to the storage battery 22 to a value larger than "0" to charge the storage battery 22. In other words, when the command unit 394 operates the DC- DC converters 331 and 332 in the charging mode and the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the DC-DC converter 331 corresponding to the storage battery 21. The charging power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is smaller than the gradient of the SOC value fluctuation with respect to time for the DC-DC converter 332 corresponding to the storage battery 22. The charging power command value for each of the DC- DC converters 331 and 332 is not limited to the above.
 ここで、本実施の形態に係るパワーコンディショナ3について、DC-DCコンバータ331、332を充電モードで動作を開始させた後における蓄電池21、22のSOC値の時間推移の一例を図6に示す。図6の曲線S11に示すように、DC-DCコンバータ331、332が充電モードで動作を開始してから20分程度の間、蓄電池21のSOC値は略「0.5(50%)」で維持される。一方、図6の曲線S12に示すように、蓄電池22のSOC値は上昇し続ける。これに伴い、蓄電池21、22のSOC値の差分値が減少していく。そして、DC-DCコンバータ331、332が充電モードで動作を開始してから20分以上経過すると、蓄電池21への充電が開始され、蓄電池21のSOC値も漸増していく。一方、蓄電池22のSOC値の上昇率も緩やかになる。ここで、蓄電池21、22のSOC値は、前述の式(1)および式(2)におけるオフセット電力指令値に起因して最終的に等しくなる。 Here, FIG. 6 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC- DC converters 331 and 332 are started to operate in the charging mode for the power conditioner 3 according to the present embodiment. .. As shown in the curve S11 of FIG. 6, the SOC value of the storage battery 21 is approximately "0.5 (50%)" for about 20 minutes after the DC- DC converters 331 and 332 start operating in the charging mode. Be maintained. On the other hand, as shown in the curve S12 of FIG. 6, the SOC value of the storage battery 22 continues to increase. Along with this, the difference value of the SOC values of the storage batteries 21 and 22 decreases. Then, when 20 minutes or more have passed since the DC- DC converters 331 and 332 started operating in the charging mode, charging of the storage battery 21 is started, and the SOC value of the storage battery 21 is gradually increased. On the other hand, the rate of increase in the SOC value of the storage battery 22 also slows down. Here, the SOC values of the storage batteries 21 and 22 are finally equal due to the offset power command values in the above equations (1) and (2).
 ここで、図6における、蓄電池21、22のSOC値が最終的に等しくなった部分(図6の破線A1で囲んだ部分)を拡大した図を図7に示す。指令部394は、DC―DCコンバータ331、332を充電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応するDC-DCコンバータ331についての時間に対するSOC値の変動の傾きが、蓄電池22に対応するDC-DCコンバータ332についての時間に対するSOC値の変動の傾きよりも小さい値となるように充電電力指令値を算出する。このため、図7に示すように、実際には蓄電池21に対応する曲線S11と蓄電池22に対応する曲線S12とは、完全に重なっている訳ではなく、常に大小関係が交互に入れ替わるような形で収束していく。即ち、充電開始当初は、オフセット電力指令値によって、蓄電池21に対応する曲線S11の傾きが緩やかであり、蓄電池22に対応する曲線S12の傾きが比較的急峻である。これにより、蓄電池21に対応する曲線S11と蓄電池22に対応する曲線S12とがあるSOC値において互いに交わり、その後、曲線S11、S12の大小関係が逆転する。そして、曲線S11、S12の大小関係が逆転した直後は、指令部394が、蓄電池21に対応する曲線S11が急峻になるとともに、蓄電池22に対応する曲線S12が比較的緩やかになるように充電指令値を設定するので、曲線S11、S12の大小関係が再び逆転する。そして、これを繰り返すうちに、蓄電池21に対応する曲線S11と蓄電池22に対応する曲線S12とが、マクロ的に見ると重なったように見える状態で収束する。このことを、蓄電池21、22のSOC値が「等しくなる」としている。この現象は、充電モードでの動作時に限らず、後述の放電モードでの動作時においても同様である。 Here, FIG. 7 shows an enlarged view of the portion of the storage batteries 21 and 22 in FIG. 6 in which the SOC values are finally equalized (the portion surrounded by the broken line A1 in FIG. 6). When the command unit 394 operates the DC- DC converters 331 and 332 in the charging mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the time for the DC-DC converter 331 corresponding to the storage battery 21. The charging power command value is calculated so that the slope of the fluctuation of the SOC value is smaller than the slope of the fluctuation of the SOC value with respect to time for the DC-DC converter 332 corresponding to the storage battery 22. Therefore, as shown in FIG. 7, the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 are not completely overlapped with each other, and the magnitude relations are always alternately alternated. Converges with. That is, at the beginning of charging, the slope of the curve S11 corresponding to the storage battery 21 is gentle and the slope of the curve S12 corresponding to the storage battery 22 is relatively steep depending on the offset power command value. As a result, the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 intersect each other at a certain SOC value, and then the magnitude relationship of the curves S11 and S12 is reversed. Immediately after the magnitude relationship between the curves S11 and S12 is reversed, the command unit 394 gives a charging command so that the curve S11 corresponding to the storage battery 21 becomes steep and the curve S12 corresponding to the storage battery 22 becomes relatively gentle. Since the value is set, the magnitude relationship of the curves S11 and S12 is reversed again. Then, as this process is repeated, the curve S11 corresponding to the storage battery 21 and the curve S12 corresponding to the storage battery 22 converge in a state in which they appear to overlap when viewed macroscopically. This means that the SOC values of the storage batteries 21 and 22 are "equal". This phenomenon is the same not only when operating in the charging mode but also when operating in the discharging mode described later.
 また、例えば蓄電池21の定格容量を4[kWh]、蓄電池22の定格容量を2[kWh]であり、蓄電池21のSOC値が「1.0(100%)」、蓄電池22のSOC値が「0.5(50%)」であるとする。そして、指令部394が、DC-DCコンバータ331、332を放電モードで動作させるとともに、前述の総電力指令値Ptを2[kW]に設定したとする。また、オフセット電力指令値が、0.1[kW]に設定されているとする。この場合、指令部394は、式(1)に示す関係式を用いて、蓄電池21に対応する放電電力指令値を、{4/(2+4)}×2+(100-50)×0.1=6.33[kW]と算出する。また、指令部394は、式(2)に示す関係式を用いて、蓄電池22に対応する放電電力指令値を、{2/(2+4)}×2-(100-50)×0.1=-4.33[kW]と算出する。そして、指令部394は、算出した蓄電池22の放電電力指令値が0未満であるため、蓄電池22に対応する放電電力指令値を「0」に更新する。これにより、指令部394は、蓄電池22を放電させず、蓄電池21のみに2[kW]を放電させるための指令値情報を、DC-DCコンバータ制御部3931、3932へ出力する。 Further, for example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "1.0 (100%)", and the SOC value of the storage battery 22 is "1.0 (100%)". It is assumed that it is "0.5 (50%)". Then, it is assumed that the command unit 394 operates the DC- DC converters 331 and 332 in the discharge mode and sets the above-mentioned total power command value Pt to 2 [kW]. Further, it is assumed that the offset power command value is set to 0.1 [kW]. In this case, the command unit 394 sets the discharge power command value corresponding to the storage battery 21 to {4 / (2 + 4)} × 2 + (100-50) × 0.1 = by using the relational expression shown in the equation (1). It is calculated as 6.33 [kW]. Further, the command unit 394 sets the discharge power command value corresponding to the storage battery 22 to {2 / (2 + 4)} × 2- (100-50) × 0.1 = by using the relational expression shown in the equation (2). -4.33 [kW] is calculated. Then, since the calculated discharge power command value of the storage battery 22 is less than 0, the command unit 394 updates the discharge power command value corresponding to the storage battery 22 to “0”. As a result, the command unit 394 outputs command value information for discharging 2 [kW] only to the storage battery 21 without discharging the storage battery 22 to the DC-DC converter control units 3931 and 3932.
 つまり、指令部394は、DC―DCコンバータ331、332を放電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応するDC―DCコンバータ331についての放電電力指令値を「0」よりも大きい値に設定して蓄電池21を放電させる。一方、指令部394は、蓄電池22に対応するDC―DCコンバータ332についての放電電力指令値を「0」に設定して蓄電池22を放電させない。言い換えると、指令部394は、DC-DCコンバータ331、332を放電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応するDC-DCコンバータ331についての時間に対するSOC値の変動の傾きを、蓄電池22に対応するDC-DCコンバータ332についての時間に対するSOC値の変動の傾きよりも大きい値となるように放電電力指令値を算出する。なお、DC-DCコンバータ331、332についての放電電力指令値は上記に限定されない。 That is, when the command unit 394 operates the DC- DC converters 331 and 332 in the discharge mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the DC-DC converter 331 corresponding to the storage battery 21. The discharge power command value is set to a value larger than "0" to discharge the storage battery 21. On the other hand, the command unit 394 does not discharge the storage battery 22 by setting the discharge power command value for the DC-DC converter 332 corresponding to the storage battery 22 to “0”. In other words, when the command unit 394 operates the DC- DC converters 331 and 332 in the discharge mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the DC-DC converter 331 corresponding to the storage battery 21 The discharge power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is larger than the gradient of the SOC value fluctuation with respect to time for the DC-DC converter 332 corresponding to the storage battery 22. The discharge power command values for the DC- DC converters 331 and 332 are not limited to the above.
 ここで、本実施の形態に係るパワーコンディショナ3について、DC-DCコンバータ331、332を放電モードで動作を開始させた後における蓄電池21、22のSOC値の時間推移の一例を図8に示す。図8の曲線S22に示すように、DC-DCコンバータ331、332が放電モードで動作を開始してから45分程度の間、蓄電池22のSOC値は略「50%(0.5)」で維持される。一方、図8の曲線S21に示すように、蓄電池21のSOC値は下降し続ける。これに伴い、蓄電池21、22のSOC値の差分値が減少していく。そして、DC-DCコンバータ331、332が放電モードで動作を開始してから45分以上経過すると、蓄電池22の放電が開始され、蓄電池22のSOC値も漸減していく。一方、蓄電池22のSOC値の下降率も緩やかになる。ここで、蓄電池21、22のSOC値は、前述の式(1)および式(2)におけるオフセット電力指令値に起因して最終的に等しくなる。 Here, FIG. 8 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 after the DC- DC converters 331 and 332 are started to operate in the discharge mode for the power conditioner 3 according to the present embodiment. .. As shown in the curve S22 of FIG. 8, the SOC value of the storage battery 22 is approximately "50% (0.5)" for about 45 minutes after the DC- DC converters 331 and 332 start operating in the discharge mode. Be maintained. On the other hand, as shown in the curve S21 of FIG. 8, the SOC value of the storage battery 21 continues to decrease. Along with this, the difference value of the SOC values of the storage batteries 21 and 22 decreases. Then, when 45 minutes or more have passed since the DC- DC converters 331 and 332 started operation in the discharge mode, the storage battery 22 started to be discharged, and the SOC value of the storage battery 22 gradually decreased. On the other hand, the rate of decrease in the SOC value of the storage battery 22 also becomes gradual. Here, the SOC values of the storage batteries 21 and 22 are finally equal due to the offset power command values in the above equations (1) and (2).
 ここで、図8における、蓄電池21、22のSOC値が最終的に等しくなった部分(図6の破線A2で囲んだ部分)を拡大した図を図9に示す。指令部394は、DC―DCコンバータ331、332を放電モードで動作させる場合、蓄電池21のSOC値が蓄電池22のSOC値よりも大きいとき、蓄電池21に対応するDC-DCコンバータ331についての時間に対するSOC値の変動の傾きの絶対値が、蓄電池22に対応するDC-DCコンバータ332についての時間に対するSOC値の変動の傾きの絶対値よりも大きい値となるように充電電力指令値を算出する。このため、図9に示すように、実際には蓄電池21に対応する曲線S21と蓄電池22に対応する曲線S22とは、完全に重なっている訳ではなく、常に大小関係が交互に入れ替わるような形で収束していく。即ち、放電開始当初は、オフセット電力指令値により、蓄電池21に対応する曲線S21の傾きが急峻であり、蓄電池22に対応する曲線S22の傾きが比較的緩やかである。これにより、蓄電池21に対応する曲線S21と蓄電池22に対応する曲線S22とがあるSOC値において互いに交わり、その後、曲線S21、S22の大小関係が逆転する。そして、曲線S21、S22の大小関係が逆転した直後は、指令部394が、蓄電池21に対応する曲線S21の傾きが緩やかになるとともに、蓄電池22に対応する曲線S22の傾きが比較的急峻になるように充電指令値を設定するので、曲線S21、S22の大小関係が再び逆転する。そして、これを繰り返すうちに、蓄電池21に対応する曲線S21と蓄電池22に対応する曲線S22とが、マクロ的に見ると重なったように見える状態で収束する。このことを、蓄電池21、22のSOC値が「等しくなる」としている。 Here, FIG. 9 shows an enlarged view of the portion (the portion surrounded by the broken line A2 in FIG. 6) in which the SOC values of the storage batteries 21 and 22 are finally equal in FIG. When the command unit 394 operates the DC- DC converters 331 and 332 in the discharge mode, when the SOC value of the storage battery 21 is larger than the SOC value of the storage battery 22, the command unit 394 relates to the time for the DC-DC converter 331 corresponding to the storage battery 21. The charging power command value is calculated so that the absolute value of the slope of the fluctuation of the SOC value becomes a value larger than the absolute value of the slope of the fluctuation of the SOC value with respect to the time of the DC-DC converter 332 corresponding to the storage battery 22. Therefore, as shown in FIG. 9, the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 are not completely overlapped with each other, and the magnitude relations are always alternately alternated. Converges with. That is, at the beginning of discharge, the slope of the curve S21 corresponding to the storage battery 21 is steep and the slope of the curve S22 corresponding to the storage battery 22 is relatively gentle due to the offset power command value. As a result, the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 intersect each other at a certain SOC value, and then the magnitude relationship of the curves S21 and S22 is reversed. Immediately after the magnitude relationship between the curves S21 and S22 is reversed, the command unit 394 makes the slope of the curve S21 corresponding to the storage battery 21 gentle and the slope of the curve S22 corresponding to the storage battery 22 relatively steep. Since the charging command value is set as described above, the magnitude relationship of the curves S21 and S22 is reversed again. Then, as this process is repeated, the curve S21 corresponding to the storage battery 21 and the curve S22 corresponding to the storage battery 22 converge in a state in which they appear to overlap when viewed macroscopically. This means that the SOC values of the storage batteries 21 and 22 are "equal".
 また、本実施の形態に係るパワーコンディショナ3において、蓄電池21、22からの2[kW]の放電を10分間行った後、蓄電池21、22への2[kW]の充電と蓄電池21、22からの2[kW]の放電とを、10分間隔で交互に繰り返したとする。ここで、例えば蓄電池21の定格容量を4[kWh]、蓄電池22の定格容量を2[kWh]であり、蓄電池21のSOC値が「1.0(100%)」、蓄電池22のSOC値が「0.5(50%)」であるとする。この場合の蓄電池21、22のSOC値の時間推移の一例を図10に示す。図10の曲線S31、S32に示すように、DC-DCコンバータ331、332が放電モードで動作している期間(例えば開始から10分後までの間の期間または開始から20後から30分後までの間の期間)では、蓄電池21、22のSOC値の時間推移は、前述の図8を用いて説明した時間推移と同様になる。一方、DC-DCコンバータ331、332が充電モードで動作している期間(例えば開始から10後から20分後までの間の期間)では、蓄電池21、22のSOC値の時間推移は、前述の図6を用いて説明した時間推移と同様になる。この場合でも、蓄電池21、22のSOC値は、前述の式(1)および式(2)におけるオフセット電力指令値に起因して最終的に等しくなる。 Further, in the power conditioner 3 according to the present embodiment, after discharging 2 [kW] from the storage batteries 21 and 22 for 10 minutes, the storage batteries 21 and 22 are charged with 2 [kW] and the storage batteries 21 and 22 are charged. It is assumed that the discharge of 2 [kW] from the above is repeated alternately at intervals of 10 minutes. Here, for example, the rated capacity of the storage battery 21 is 4 [kWh], the rated capacity of the storage battery 22 is 2 [kWh], the SOC value of the storage battery 21 is "1.0 (100%)", and the SOC value of the storage battery 22 is. It is assumed to be "0.5 (50%)". FIG. 10 shows an example of the time transition of the SOC values of the storage batteries 21 and 22 in this case. As shown in the curves S31 and S32 of FIG. 10, the period during which the DC- DC converters 331 and 332 are operating in the discharge mode (for example, a period between the start and 10 minutes or 20 to 30 minutes after the start). During the period), the time transition of the SOC values of the storage batteries 21 and 22 is the same as the time transition described with reference to FIG. 8 described above. On the other hand, during the period when the DC- DC converters 331 and 332 are operating in the charging mode (for example, the period from 10 to 20 minutes after the start), the time transition of the SOC values of the storage batteries 21 and 22 is described above. The time transition is the same as that described with reference to FIG. Even in this case, the SOC values of the storage batteries 21 and 22 are finally equal due to the offset power command values in the above equations (1) and (2).
 このように、本実施の形態に係るパワーコンディショナ3では、オフセット電力指令値の項を含む式(1)および式(2)を用いて、蓄電池21、22に対応する充電電力指令値または放電電力指令値を算出する。これにより、蓄電池21、22のSOC値に大きな乖離がある場合であっても迅速かつ確実に蓄電池21、22のSOC値を等しくすることができる。 As described above, in the power conditioner 3 according to the present embodiment, the charging power command value or the discharge corresponding to the storage batteries 21 and 22 is used by using the equations (1) and (2) including the offset power command value term. Calculate the power command value. As a result, even if there is a large deviation in the SOC values of the storage batteries 21 and 22, the SOC values of the storage batteries 21 and 22 can be made equal quickly and surely.
 以上説明したように、本実施の形態に係るパワーコンディショナ3によれば、指令部394が、蓄電池21、22それぞれの定格容量のそれらの総和に対する比率と、蓄電池21、22それぞれのSOC値の差分値と、に基づいて、DC―DCコンバータ331、332それぞれの放電電力指令値または充電電力指令値を算出する。これにより、蓄電池21、22それぞれのSOC値を互いに等しい値にすることができるので、蓄電池21、22の全てについて満充電状態から放電終止状態までの全範囲に亘って蓄電池に蓄えられた電気を有効に利用することができる。 As described above, according to the power conditioner 3 according to the present embodiment, the command unit 394 determines the ratio of the rated capacities of the storage batteries 21 and 22 to the total of them and the SOC value of each of the storage batteries 21 and 22. Based on the difference value, the discharge power command value or the charge power command value of each of the DC- DC converters 331 and 332 is calculated. As a result, the SOC values of the storage batteries 21 and 22 can be set to be equal to each other, so that the electricity stored in the storage batteries can be stored in the entire range from the fully charged state to the end-discharged state of all the storage batteries 21 and 22. It can be used effectively.
 ところで、蓄電池21、22のSOC値の差異が大きくなると、例えばDC-DCコンバータ331、332を充電モードで動作させる場合、例えば蓄電池21が満充電状態になると、他方の蓄電池22が充電できなくなるといった事態が生じうる。このような事態を防ぐため、蓄電池21、22のSOC値はなるべく等しい値になるように調整することが好ましい。但し、前述の比較例のように、蓄電池21、22それぞれのSOC値と定格容量とを加味して蓄電値21、22への充電電力または蓄電池21、22からの放電電力を分配するようにしても蓄電池21、22それぞれのSOC値を等しくすることができない。特に、蓄電池21、22の定格容量の差異が大きい場合、蓄電池21、22のSOC値の差異が顕著になる。これに対して、本実施の形態に係るパワーコンディショナでは、前述の式(1)および式(2)に示す関係式のようにオフセット電力指令値に関する項を含む関係式を用いて放電電力指令値または充電電力指令値を算出する。これにより、蓄電池21、22のSOC値を等しくすることができる。分配量がリアルタイムで変わっていくので、2つの線は交わらない。蓄電池を増設した場合、電流容量が異なるため、この傾向が顕著である。ずれたままだと、電池の寿命が縮まってしまう。 By the way, when the difference between the SOC values of the storage batteries 21 and 22 becomes large, for example, when the DC- DC converters 331 and 332 are operated in the charging mode, for example, when the storage battery 21 is fully charged, the other storage battery 22 cannot be charged. Things can happen. In order to prevent such a situation, it is preferable to adjust the SOC values of the storage batteries 21 and 22 so as to be as equal as possible. However, as in the above-mentioned comparative example, the charging power to the storage values 21 and 22 or the discharging power from the storage batteries 21 and 22 is distributed in consideration of the SOC values and the rated capacities of the storage batteries 21 and 22 respectively. However, the SOC values of the storage batteries 21 and 22 cannot be equalized. In particular, when the difference in the rated capacities of the storage batteries 21 and 22 is large, the difference in the SOC values of the storage batteries 21 and 22 becomes remarkable. On the other hand, in the power conditioner according to the present embodiment, the discharge power command is performed by using the relational expression including the term related to the offset power command value as in the relational expression shown in the above equations (1) and (2). Calculate the value or the charge power command value. As a result, the SOC values of the storage batteries 21 and 22 can be made equal. The two lines do not intersect because the amount of distribution changes in real time. This tendency is remarkable when a storage battery is added because the current capacity is different. If it remains misaligned, the battery life will be shortened.
 また、本実施の形態に係る指令部394は、算出した放電電力指令値または充電電力指令値が負である場合、放電電力指令値または充電電力指令値を強制的にゼロに設定する。これにより、パワーコンディショナ3の動作期間中において、蓄電池21、22が放電する期間の割合または蓄電池21、22が充電される期間の割合を低減することができるので、その分、蓄電池21、22の劣化を抑制することができる。 Further, when the calculated discharge power command value or charge power command value is negative, the command unit 394 according to the present embodiment forcibly sets the discharge power command value or the charge power command value to zero. As a result, during the operating period of the power conditioner 3, the ratio of the period during which the storage batteries 21 and 22 are discharged or the ratio of the period during which the storage batteries 21 and 22 are charged can be reduced. Deterioration can be suppressed.
 更に、本実施の形態に係る指令部394は、算出した放電電力指令値または充電電力指令値が総電力指令値を超える場合、放電電力指令値または充電電力指令値を総電力指令値に設定する。これにより、蓄電池21、22の過放電または過充電の発生を抑制することができるので、蓄電池21、22の損傷を抑制することができる。 Further, the command unit 394 according to the present embodiment sets the discharge power command value or the charge power command value as the total power command value when the calculated discharge power command value or the charge power command value exceeds the total power command value. .. As a result, the occurrence of over-discharging or over-charging of the storage batteries 21 and 22 can be suppressed, so that damage to the storage batteries 21 and 22 can be suppressed.
 以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態の構成に限定されるものではない。例えば、パワーコンディショナ3が、3つ以上の蓄電池を備えるものであってもよい。ここで、3つ以上の蓄電池それぞれに対応するDC-DCコンバータが放電モードで動作する場合、指令部394は、3つ以上の蓄電池それぞれのSOC値のうち最も低いSOC値と、それ以外の蓄電池それぞれのSOC値との差分値にオフセット電力指令値を乗じて得られる値に基づいて、最も高いSOC値の蓄電池から放電指令値を算出していき、途中で総電力指令値に達すれば、残りの蓄電池は放電させないようにすればよい。一方、充電モードで動作する場合は、3つ以上の蓄電池それぞれのSOC値のうち最も高いSOC値と、それ以外の蓄電池それぞれのSOC値との差分地にオフセット電力指令値を乗じて得られる値に基づいて、最も低いSOC値の蓄電池から充電指令値を算出していき、途中で総電力指令値に達すれば、残りの蓄電池は充電させないようにすればよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configuration of the above-described embodiments. For example, the power conditioner 3 may include three or more storage batteries. Here, when the DC-DC converter corresponding to each of the three or more storage batteries operates in the discharge mode, the command unit 394 has the lowest SOC value among the SOC values of the three or more storage batteries and the other storage batteries. Based on the value obtained by multiplying the difference value from each SOC value by the offset power command value, the discharge command value is calculated from the storage battery with the highest SOC value, and if the total power command value is reached in the middle, the rest. The storage battery should not be discharged. On the other hand, when operating in the charging mode, the value obtained by multiplying the difference between the highest SOC value among the SOC values of each of the three or more storage batteries and the SOC value of each of the other storage batteries by the offset power command value. Based on the above, the charging command value is calculated from the storage battery having the lowest SOC value, and if the total power command value is reached in the middle, the remaining storage batteries may not be charged.
 以上、本発明の実施の形態および変形例について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態および変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。 Although the embodiments and modifications of the present invention have been described above, the present invention is not limited thereto. The present invention includes an appropriate combination of embodiments and modifications, and an appropriate modification.
 本出願は、2019年6月21日に出願された日本国特許出願特願2019-115921号に基づく。本明細書中に日本国特許出願特願2019-115921号の明細書、特許請求の範囲および図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-115921 filed on June 21, 2019. The specification, claims and the entire drawings of Japanese Patent Application No. 2019-115921 shall be incorporated into this specification as a reference.
 本発明は、複数の蓄電池を備えるパワーコンディショナとして好適である。 The present invention is suitable as a power conditioner including a plurality of storage batteries.
1:太陽電池、3:パワーコンディショナ、4:系統電源、21,22:蓄電池、31:PVコンバータ、32:インバータ、39:制御回路、331,332:DC-DCコンバータ、391:PVコンバータ制御部、392:インバータ制御部、394:指令部、3311,3312:電圧計測部、3931,3932:DC-DCコンバータ制御部、3951:SOC相関記憶部、3952:容量記憶部、3953:基準指令値記憶部、3954:指令値記憶部、BH,BL,DH,DL:端子、C1:コンデンサ、k2:オフセット電力指令値、L3:HVDCバス、L3313:インダクタ、Q1,Q2:スイッチング素子 1: Solar battery, 3: Power conditioner, 4: System power supply, 21,22: Storage battery, 31: PV converter, 32: Inverter, 39: Control circuit, 331, 332: DC-DC converter, 391: PV converter control Unit, 392: Inverter control unit, 394: Command unit, 3311, 3312: Voltage measurement unit, 3931, 3932: DC-DC converter control unit, 3951: SOC correlation storage unit, 3952: Capacitor storage unit, 3953: Reference command value Storage unit, 3954: Command value storage unit, BH, BL, DH, DL: Terminal, C1: Capacitor, k2: Offset power command value, L3: HVDC bus, L3313: Inverter, Q1, Q2: Switching element

Claims (9)

  1.  複数の蓄電池と、
     直流バスラインと、
     前記複数の蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記複数の蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記複数の蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記複数の蓄電池のうちのいずれか1つへ出力することにより前記複数の蓄電池のうちのいずれか1つを充電する充電モードで動作する複数の双方向DC-DCコンバータと、
     前記複数の双方向DC-DCコンバータそれぞれについて、前記放電モードで動作する場合の放電電力指令値または前記充電モードで動作する場合の充電電力指令値を算出し、算出した前記放電電力指令値または前記充電電力指令値を示す指令値情報を出力する指令部と、
     前記指令部から出力される前記指令値情報に基づいて、前記複数の双方向DC-DCコンバータを各別に制御するDC-DCコンバータ制御部と、を備え、
     前記指令部は、前記複数の蓄電池それぞれの容量に対する、前記複数の蓄電池の容量の総和の比率と、前記複数の蓄電池それぞれのSOC値の差分値と、に基づいて、前記複数の双方向DC-DCコンバータそれぞれの前記放電電力指令値または前記充電電力指令値を算出する、
     パワーコンディショナ。
    With multiple storage batteries
    DC bus line and
    One is provided between each of the plurality of storage batteries and the DC bus line, and the DC power output from any one of the plurality of storage batteries is converted and output to the DC bus line. One of the plurality of storage batteries by executing the discharge from the storage batteries of the above or by converting the DC power supplied from the DC bus line and outputting it to any one of the plurality of storage batteries. Multiple bidirectional DC-DC converters that operate in charge mode to charge one,
    For each of the plurality of bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charge power command value when operating in the charge mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and
    A DC-DC converter control unit that separately controls the plurality of bidirectional DC-DC converters based on the command value information output from the command unit is provided.
    The command unit is based on the ratio of the total capacity of the plurality of storage batteries to the capacity of each of the plurality of storage batteries and the difference value of the SOC values of the plurality of storage batteries. Calculate the discharge power command value or the charge power command value of each DC converter.
    Power conditioner.
  2.  前記複数の蓄電池は、2つの蓄電池であり、
     前記指令部は、2つの蓄電池それぞれの容量に対する、前記2つの蓄電池の容量の総和の比率に基づいて得られる値と、前記2つの蓄電池それぞれのSOC値と、に基づいて、前記2つの蓄電池のうちのいずれか一方に対応する双方向DC-DCコンバータについての前記放電電力指令値または前記充電電力指令値と、前記2つの蓄電池のうちの他方に対応する双方向DC-DCコンバータについての前記放電電力指令値または前記充電電力指令値と、を算出する、
     請求項1に記載のパワーコンディショナ。
    The plurality of storage batteries are two storage batteries.
    The command unit of the two storage batteries is based on a value obtained based on the ratio of the total capacity of the two storage batteries to the capacity of each of the two storage batteries and the SOC value of each of the two storage batteries. The discharge power command value or the charge power command value for the bidirectional DC-DC converter corresponding to any one of them, and the discharge for the bidirectional DC-DC converter corresponding to the other of the two storage batteries. Calculate the power command value or the charging power command value.
    The power conditioner according to claim 1.
  3.  前記指令部は、2つの蓄電池のうちのいずれか一方の容量に対する、前記2つの蓄電池の容量の総和である総容量の比率に前記2つの蓄電池の全てからの放電電力または充電電力の指令値である総電力指令値を乗じて得られる値に、前記2つの蓄電池のうちの前記一方の蓄電池のSOC値から他方の蓄電池のSOC値を差し引いて得られるSOC差分値に予め設定されたオフセット電力指令値を乗じて得られる値を加えることにより、前記放電電力指令値または前記充電電力指令値を算出し、前記他方の蓄電池の容量の前記総容量に対する比率に前記総電力指令値を乗じて得られる値から、前記SOC差分値に前記オフセット電力指令値を乗じて得られる値を差し引くことにより、前記放電電力指令値または前記充電電力指令値を算出する、
     請求項2に記載のパワーコンディショナ。
    The command unit is the command value of the discharge power or the charge power from all of the two storage batteries to the ratio of the total capacity, which is the sum of the capacities of the two storage batteries, to the capacity of one of the two storage batteries. A preset offset power command set to a value obtained by multiplying a certain total power command value by a SOC difference value obtained by subtracting the SOC value of the other storage battery from the SOC value of the one storage battery of the two storage batteries. By adding a value obtained by multiplying the value, the discharge power command value or the charge power command value is calculated, and the ratio of the capacity of the other storage battery to the total capacity is multiplied by the total power command value. The discharge power command value or the charge power command value is calculated by subtracting the value obtained by multiplying the SOC difference value by the offset power command value from the value.
    The power conditioner according to claim 2.
  4.  前記指令部は、算出した前記放電電力指令値または前記充電電力指令値が負である場合、前記放電電力指令値または前記充電電力指令値をゼロに設定する、
     請求項3に記載のパワーコンディショナ。
    When the calculated discharge power command value or the charge power command value is negative, the command unit sets the discharge power command value or the charge power command value to zero.
    The power conditioner according to claim 3.
  5.  前記指令部は、算出した前記放電電力指令値または前記充電電力指令値が前記総電力指令値を超える場合、前記放電電力指令値または前記充電電力指令値を前記総電力指令値に設定する、
     請求項3に記載のパワーコンディショナ。
    When the calculated discharge power command value or the charge power command value exceeds the total power command value, the command unit sets the discharge power command value or the charge power command value to the total power command value.
    The power conditioner according to claim 3.
  6.  前記複数の蓄電池それぞれの出力電圧を計測する電圧計測部を更に備え、
     前記指令部は、前記電圧計測部により計測された前記複数の蓄電池それぞれの出力電圧に基づいて、前記複数の蓄電池それぞれのSOC値を算出し、
     前記オフセット電力指令値は、前記電圧計測部による前記複数の蓄電池それぞれの出力電力の計測誤差に基づいて決定される、
     請求項3から5のいずれか1項に記載のパワーコンディショナ。
    A voltage measuring unit for measuring the output voltage of each of the plurality of storage batteries is further provided.
    The command unit calculates the SOC value of each of the plurality of storage batteries based on the output voltage of each of the plurality of storage batteries measured by the voltage measuring unit.
    The offset power command value is determined based on the measurement error of the output power of each of the plurality of storage batteries by the voltage measuring unit.
    The power conditioner according to any one of claims 3 to 5.
  7.  2つの蓄電池と、
     直流バスラインと、
     前記2つの蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記2つの蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記2つの蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記2つの蓄電池のうちのいずれか1つへ出力することにより前記2つの蓄電池のうちのいずれか1つを充電する充電モードで動作する2つの双方向DC-DCコンバータと、
     前記2つの双方向DC-DCコンバータそれぞれについて、前記放電モードで動作させる場合の放電電力指令値または前記充電モードで動作させる場合の充電電力指令値を算出し、算出した前記放電電力指令値または前記充電電力指令値を示す指令値情報を出力する指令部と、
     前記指令部から出力される前記指令値情報に基づいて、前記2つの双方向DC-DCコンバータを各別に制御するDC-DCコンバータ制御部と、を備え、
     前記指令部は、
     前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように前記放電電力指令値を算出し、
     前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように前記充電電力指令値を算出する、
     パワーコンディショナ。
    Two storage batteries and
    DC bus line and
    One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line. One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries. Two bidirectional DC-DC converters that operate in charge mode to charge one,
    For each of the two bidirectional DC-DC converters, the discharge power command value when operating in the discharge mode or the charging power command value when operating in the charging mode is calculated, and the calculated discharge power command value or the said A command unit that outputs command value information indicating the charging power command value, and
    A DC-DC converter control unit that separately controls the two bidirectional DC-DC converters based on the command value information output from the command unit is provided.
    The command unit
    When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The discharge power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is larger than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. And
    When the two bidirectional DC-DC converters are operated in the charging mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The charging power command value is calculated so that the gradient of the SOC value fluctuation with respect to time is smaller than the gradient of the SOC value fluctuation with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. To do,
    Power conditioner.
  8.  前記指令部は、
     前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きがゼロとなるように前記放電電力指令値を算出し、
     前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記2つの蓄電池それぞれのSOC値のいずれか一方が他方よりも大きいとき、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きがゼロとなるように前記充電電力指令値を算出する、
     請求項7に記載のパワーコンディショナ。
    The command unit
    When the two bidirectional DC-DC converters are operated in the discharge mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the other storage battery The discharge power command value is calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
    When the two bidirectional DC-DC converters are operated in the charging mode, when one of the SOC values of the two storage batteries is larger than the other, the bidirectional DC-DC converter corresponding to the one storage battery The charging power command value is calculated so that the gradient of the fluctuation of the SOC value with respect to time becomes zero.
    The power conditioner according to claim 7.
  9.  2つの蓄電池と、
     直流バスラインと、
     前記2つの蓄電池それぞれと前記直流バスラインとの間に1つずつ設けられ、前記2つの蓄電池のいずれか1つから出力される直流電力を変換して前記直流バスラインへ出力することにより前記2つの蓄電池からの放電を実行する放電モードまたは前記直流バスラインから供給される直流電力を変換して前記2つの蓄電池のうちのいずれか1つへ出力することにより前記2つの蓄電池のうちのいずれか1つを充電する充電モードで動作する2つの双方向DC-DCコンバータと、
     前記2つの双方向DC-DCコンバータを制御するDC-DCコンバータ制御部と、を備え、
     前記制御部は、
     前記2つの蓄電池のうちの一方の蓄電池のSOC値が他方のSOC値を超えるまでの間、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる第1制御と、前記他方の蓄電池のSOC値が前記一方のSOC値を超えるまでの間、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも大きい値となるように、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる第2制御と、前記一方の蓄電池のSOC値が前記他方のSOC値を超えるまでの間、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる第3制御と、前記他方の蓄電池のSOC値が前記一方のSOC値を超えるまでの間、前記一方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きを、前記他方の蓄電池に対応する双方向DC-DCコンバータについての時間に対するSOC値の変動の傾きよりも小さい値となるように、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる第4制御と、のうちのいずれ1つを選択して、前記2つの双方向DC-DCコンバータを制御することが可能であり、前記2つの双方向DC-DCコンバータを前記放電モードで動作させる場合、前記第1制御と前記第2制御とを交互に実行し、前記2つの双方向DC-DCコンバータを前記充電モードで動作させる場合、前記第3制御と前記第4制御とを交互に実行する、
     パワーコンディショナ。
    Two storage batteries and
    DC bus line and
    One is provided between each of the two storage batteries and the DC bus line, and the DC power output from any one of the two storage batteries is converted and output to the DC bus line. One of the two storage batteries by performing a discharge mode for executing discharge from the two storage batteries or by converting the DC power supplied from the DC bus line and outputting it to any one of the two storage batteries. Two bidirectional DC-DC converters that operate in charge mode to charge one,
    A DC-DC converter control unit that controls the two bidirectional DC-DC converters is provided.
    The control unit
    Until the SOC value of one of the two storage batteries exceeds the SOC value of the other, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the one storage battery is determined. The first control for operating the two bidirectional DC-DC converters in the discharge mode so that the value is larger than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter corresponding to the other storage battery. And, until the SOC value of the other storage battery exceeds the SOC value of the one, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the other storage battery is determined by the one storage battery. The second control for operating the two bidirectional DC-DC converters in the discharge mode so that the value becomes larger than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter corresponding to the above. Until the SOC value of one storage battery exceeds the SOC value of the other storage battery, the gradient of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the other storage battery corresponds to the one storage battery. A third control for operating the two bidirectional DC-DC converters in the charging mode and the other storage battery so that the value becomes smaller than the gradient of the fluctuation of the SOC value with respect to time for the bidirectional DC-DC converter. The slope of the fluctuation of the SOC value with respect to the time for the bidirectional DC-DC converter corresponding to the one storage battery until the SOC value of the above exceeds the SOC value of the other storage battery, and the bidirectional DC corresponding to the other storage battery. Any one of the fourth control for operating the two bidirectional DC-DC converters in the charging mode so that the value is smaller than the gradient of the fluctuation of the SOC value with respect to the time for the -DC converter. When the two bidirectional DC-DC converters can be selectively controlled and the two bidirectional DC-DC converters are operated in the discharge mode, the first control and the second control When the two bidirectional DC-DC converters are operated in the charging mode, the third control and the fourth control are alternately executed.
    Power conditioner.
PCT/JP2020/020332 2019-06-21 2020-05-22 Power conditioner WO2020255624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527492A JP7211509B2 (en) 2019-06-21 2020-05-22 power conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-115921 2019-06-21
JP2019115921 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020255624A1 true WO2020255624A1 (en) 2020-12-24

Family

ID=74037082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020332 WO2020255624A1 (en) 2019-06-21 2020-05-22 Power conditioner

Country Status (2)

Country Link
JP (1) JP7211509B2 (en)
WO (1) WO2020255624A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109840A (en) * 2006-09-28 2008-05-08 Toyota Motor Corp Power supply system, vehicle with the same, control method of power supply system, and computer readable recording medium which records program for making computer execute the control method
JP2010035309A (en) * 2008-07-28 2010-02-12 Toyota Motor Corp Power supply system, vehicle with the power supply system and poser supply control method
JP2018019579A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power storage system, control device, and power storage device
WO2018128119A1 (en) * 2017-01-05 2018-07-12 株式会社ソニー・インタラクティブエンタテインメント Electric device
JP2018191393A (en) * 2017-04-28 2018-11-29 山洋電気株式会社 Parallel connection storage battery system and control device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077086A (en) * 2014-10-07 2016-05-12 株式会社川北 Control device for photovoltaic power generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109840A (en) * 2006-09-28 2008-05-08 Toyota Motor Corp Power supply system, vehicle with the same, control method of power supply system, and computer readable recording medium which records program for making computer execute the control method
JP2010035309A (en) * 2008-07-28 2010-02-12 Toyota Motor Corp Power supply system, vehicle with the power supply system and poser supply control method
JP2018019579A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power storage system, control device, and power storage device
WO2018128119A1 (en) * 2017-01-05 2018-07-12 株式会社ソニー・インタラクティブエンタテインメント Electric device
JP2018191393A (en) * 2017-04-28 2018-11-29 山洋電気株式会社 Parallel connection storage battery system and control device thereof

Also Published As

Publication number Publication date
JPWO2020255624A1 (en) 2020-12-24
JP7211509B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
US7898223B2 (en) Electric power storage system using capacitors and control method thereof including serial-parallel switching means for each circuit block of batteries based on descending order of block voltages
JP5279147B2 (en) Grid-connected power storage system and control method of power storage system
EP2302757B1 (en) Method and system for balancing electrical energy storage cells
US20110210701A1 (en) Battery system
CN110121825B (en) Uninterruptible power supply system and uninterruptible power supply device
JP6945949B2 (en) Storage battery system control device and control method
US20130187465A1 (en) Power management system
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
JPWO2013118336A1 (en) Power converter
JP2011211885A (en) Power storage system
CN106786485B (en) Voltage ripple suppression method for direct-current micro-grid under unbalanced load
CN113270881A (en) Energy storage system, balance control method of energy storage system and photovoltaic power generation system
JP7228949B2 (en) power converter
CN110120679B (en) Household photovoltaic energy storage converter coupled with direct current side of photovoltaic inverter
CN114709497A (en) Parallel battery cluster state control system and circulating current restraining method and state of charge balancing method thereof
CN115313861A (en) Control method based on two-stage bidirectional inverter parallel system
CN113794218B (en) Electric vehicle retired battery secondary utilization system based on buck-boost circuit
EP2850712B1 (en) A battery energy storage, battery energy storage system, method, computer program and computer program product
WO2020255624A1 (en) Power conditioner
CN113169577A (en) Power storage system and charge control method
CN113824143B (en) Electric vehicle retired battery secondary utilization system based on H bridge cascade connection
WO2018138710A1 (en) Dc power supply system
WO2022264303A1 (en) Uninterruptible power supply device
JP5295801B2 (en) DC power supply system and discharge method
Jian et al. Charging scenario of serial battery power modules with buck-boost converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827263

Country of ref document: EP

Kind code of ref document: A1