WO2020255218A1 - Analog-to-digital conversion device, and control program for analog-to-digital conversion device - Google Patents

Analog-to-digital conversion device, and control program for analog-to-digital conversion device Download PDF

Info

Publication number
WO2020255218A1
WO2020255218A1 PCT/JP2019/023939 JP2019023939W WO2020255218A1 WO 2020255218 A1 WO2020255218 A1 WO 2020255218A1 JP 2019023939 W JP2019023939 W JP 2019023939W WO 2020255218 A1 WO2020255218 A1 WO 2020255218A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
analog
digital
temperature
value
Prior art date
Application number
PCT/JP2019/023939
Other languages
French (fr)
Japanese (ja)
Inventor
健太 渡邉
哲 石坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020568484A priority Critical patent/JP6865911B1/en
Priority to CN201980097396.7A priority patent/CN113940006B/en
Priority to PCT/JP2019/023939 priority patent/WO2020255218A1/en
Priority to DE112019007308.7T priority patent/DE112019007308B4/en
Publication of WO2020255218A1 publication Critical patent/WO2020255218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/089Continuously compensating for, or preventing, undesired influence of physical parameters of noise of temperature variations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Definitions

  • the present invention relates to an analog-to-digital converter capable of measuring an ambient temperature and a control program for the analog-to-digital converter.
  • Patent Document 1 discloses a technique in which a temperature measuring circuit provided with a temperature sensor is added to the apparatus to measure the ambient temperature, and the compensation amount of the temperature drift is calculated based on the measured ambient temperature.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an analog-to-digital converter capable of acquiring the current environmental temperature while suppressing an increase in the number of parts and the circuit scale.
  • the present invention accompanies a temperature change of a first converter that converts an analog signal into a digital value and a second converter that converts a digital value into an analog signal.
  • the memory unit that stores the temperature drift characteristic table showing the relationship between the temperature drift, which is the output fluctuation, and the ambient temperature, and the output of the second converter are directly or indirectly input to the first converter to be input to the first converter. It is characterized by having a temperature measuring unit that calculates the current temperature drift value based on the value output by and calculates the current environmental temperature based on the current temperature drift value and the temperature drift characteristic table. And.
  • the analog-to-digital converter according to the present invention has the effect of being able to acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale.
  • FIG. 1 The figure which shows the structure of the analog-to-digital conversion apparatus which concerns on Embodiment 1 of this invention.
  • a flowchart for explaining the operation of the preparatory processing performed by the arithmetic unit shown in FIG. A flowchart for explaining the operation of steady processing performed by the arithmetic unit shown in FIG.
  • Embodiment 3 The figure which shows the structure of the analog-to-digital conversion apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a diagram showing a configuration of an analog-to-digital converter 101 according to a first embodiment of the present invention.
  • the analog-to-digital converter 101 includes a first converter 102, which is an AD (Analog Digital) converter that converts an analog signal into a digital value, and a second converter, which is a DA (Digital Analog) converter that converts a digital value into an analog signal. It has 103 and.
  • the analog-to-digital converter 101 further includes a third converter 104, which is an AD converter different from the first converter 102, and a fourth converter 105, which is a DA converter different from the second converter 103.
  • the analog-to-digital converter 101 further includes a calculation unit 111 and a memory unit 112.
  • the calculation unit 111 includes a temperature measurement unit 111a and a correction unit 111b.
  • the first converter 102 is an analog input circuit that converts an analog signal output by the second converter 103 into a digital value.
  • the first converter 102 outputs the converted digital value to the calculation unit 111.
  • the second converter 103 is an analog output circuit that converts a digital value set by the arithmetic unit 111 into an analog signal.
  • the second converter 103 outputs the converted analog signal to the first converter 102.
  • the third converter 104 is an analog input circuit connected to the analog input terminal 113 and converting an analog signal input to the analog input terminal 113 into a digital value.
  • the third converter 104 outputs the converted digital value to the calculation unit 111.
  • the fourth converter 105 is an analog output circuit connected to the analog output terminal 114 and converting a digital value set by the arithmetic unit 111 into an analog signal.
  • the fourth converter 105 outputs the converted analog signal to the analog output terminal 114.
  • the memory unit 112 stores a temperature drift characteristic table showing the relationship between the temperature drift, which is the output fluctuation due to the temperature change of the first converter 102 and the second converter 103, and the environmental temperature.
  • the memory unit 112 can output the temperature drift characteristic table to the calculation unit 111.
  • the calculation unit 111 controls the operation of the analog-to-digital converter 101.
  • the calculation unit 111 has a function of calculating the current environmental temperature in order to correct the temperature drift, a function of correcting the temperature drift using the calculated environmental temperature, and a temperature drift characteristic table used for measuring the environmental temperature. It has a function to create.
  • the arithmetic unit 111 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Further, the calculation unit 111 may be a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • the temperature measuring unit 111a inputs the output of the second converter 103 to the first converter 102 and calculates the current temperature drift value based on the value output by the first converter 102. Further, the temperature measuring unit 111a calculates the current environmental temperature based on the current temperature drift value and the temperature drift characteristic table.
  • the correction unit 111b corrects the temperature drift of the analog signal input to the analog-to-digital converter 101, that is, the analog signal input to the third converter 104, based on the current ambient temperature calculated by the temperature measurement unit 111a. To do. Further, the correction unit 111b corrects the temperature drift of the analog signal output from the analog-to-digital converter 101, that is, the analog signal output from the fourth converter 105.
  • FIG. 2 is a flowchart for explaining the operation of the preparatory process performed by the calculation unit 111 shown in FIG.
  • the preparatory process includes a process of creating a temperature drift characteristic table.
  • the calculation unit 111 sets the environmental temperature of the analog-digital converter 101 according to a plurality of temperature measurement points included in the created temperature drift characteristic table (step S101).
  • the environmental temperature set in step S101 is different from the environmental temperature when the analog-digital converter 101 actually operates, and a known device capable of setting various environmental temperatures to create a temperature drift characteristic table is used. It may be set by using.
  • the ambient temperature may be set within the temperature range of the operating environment of the analog-digital converter 101, and a plurality of different temperatures may be set, or a plurality of different temperatures may be set and then a plurality of the same temperature may be set. May be good. When the same temperature is set more than once, the variation at the temperature can be alleviated.
  • the calculation unit 111 causes the second converter 103 to perform voltage output processing (step S102). Specifically, the arithmetic unit 111 sets the digital value V a with predetermined for the second converter 103. Second converter 103, the digital value V a is converted into an analog signal and outputs the analog signal to a first converter 102.
  • the digital value V a a predetermined is an example of a first digital value
  • an analog signal is an example of a first analog signal.
  • the process shown in step S102 is an example of the process executed by the analog conversion means.
  • the first converter 102 performs a voltage input process (step S103). Specifically, the first converter 102, an analog signal by the second converter 103 is output into a digital value V b, and outputs the digital values V b to the arithmetic unit 111.
  • the calculation unit 111 reads out the digital value V b output by the first converter 102.
  • the predetermined digital value V b here is an example of the second digital value.
  • the process shown in step S103 is an example of the process executed by the digital conversion means.
  • the calculation unit 111 calculates the temperature drift value V c (step S104). Specifically, the calculation unit 111 calculates the temperature drift value V c based on the digital value V a set in the second converter 103 and the digital value V b read from the first converter 102.
  • the temperature drift value V c can be obtained by using the following mathematical formula (1).
  • V c V b- V a ... (1)
  • the calculation unit 111 determines whether or not the number of measurements n has reached the number of temperature measurement points N included in the temperature drift characteristic table (step S105). When the number of measurements n has not reached the number of temperature measurement points N (step S105: No), the calculation unit 111 returns to the process of step S101.
  • the processes shown in steps S104 and S105 are examples of processes executed by the calculation means.
  • step S106 When the number of measurements n reaches the number of temperature measurement points N (step S105: Yes), the calculation unit 111 creates a temperature drift characteristic table based on the result of N measurements (step S106).
  • the temperature drift characteristic table is a table ⁇ T (n), V c (n) ⁇ in which the environmental temperature T (n) set in step S101 and the calculated temperature drift value V c (n) are associated with each other.
  • the calculation unit 111 stores the created temperature drift characteristic table in the memory unit 112 (step S107).
  • the process shown in step S106 is an example of a process executed by the table creation means
  • the process shown in step S107 is an example of a process executed by the memory means.
  • FIG. 3 is a flowchart for explaining the operation of the steady processing performed by the arithmetic unit 111 shown in FIG.
  • Steady-state processing includes calculation processing of environmental temperature using a temperature drift characteristic table and correction processing of temperature drift.
  • the temperature measuring unit 111a of the calculation unit 111 causes the second converter 103 to perform the voltage output process (step S201). Specifically, the temperature measuring unit 111a sets a digital value V a with predetermined for the second converter 103. Second converter 103, the digital value V a is converted into an analog signal and outputs the analog signal to a first converter 102.
  • the digital value V a is an example of a current digital value
  • an analog signal is an example of a current analog signal.
  • the first converter 102 performs a voltage input process (step S202). Specifically, the first converter 102, an analog signal by the second converter 103 is output into a digital value V b1, and outputs the digital value V b1 to the arithmetic unit 111.
  • the temperature measuring unit 111a of the calculation unit 111 reads out the digital value V b1 output by the first converter 102.
  • the digital value V b1 is an example of a third digital value.
  • the temperature measuring unit 111a calculates the temperature drift value V c1 based on the predetermined digital value V a and the digital value V b1 read from the first converter 102 (step S203).
  • the temperature drift value V c1 can be obtained by using the following mathematical formula (2).
  • the temperature drift value V c1 is an example of the current temperature drift value.
  • V c1 V b1- V a ... (2)
  • the temperature measuring unit 111a calculates the current environmental temperature T (n) by using the calculated temperature drift value V c1 and the temperature drift characteristic table (step S204). Specifically, the temperature measuring unit 111a compares the calculated temperature drift value V c1 with the temperature drift characteristic table, and determines the current environmental temperature T (n) corresponding to n satisfying the following mathematical formula (3). Ask.
  • the process shown in steps S201 to S204 is an example of the process executed by the temperature measuring means.
  • V c (n-1) ⁇ V c1 ⁇ V c (n) ...
  • the third converter 104 connected to the analog input terminal 113 performs a voltage input process (step S205). Specifically, the third converter 104 converts the analog signal input from the analog input terminal 113 into a digital value V in and outputs it to the calculation unit 111. Correction section 111b of the calculation section 111 reads the digital value V in the third converter 104.
  • the correction unit 111b uses the temperature drift correction value V ad calculated from the current environmental temperature to perform temperature drift correction of the digital value V in , which is the voltage input value read from the third converter 104 (step S206). Specifically, the correction unit 111b adds the temperature drift correction value V ad calculated from the current environmental temperature to the digital value V in .
  • the correction unit 111b uses the temperature drift correction value V da calculated from the current environmental temperature to perform temperature drift correction of the digital value V out , which is the voltage output value output from the fourth converter 105 (step S207). Specifically, the correction unit 111b adds the temperature drift correction value V da to the digital value V out .
  • the correction unit 111b causes the fourth converter 105 to perform voltage output processing (step S208). Specifically, the correction unit 111b sets V out + V da, which is the corrected voltage output value, in the fourth converter 105.
  • the fourth converter 105 converts the set voltage output value into an analog signal, and outputs the set voltage output value from the analog-to-digital converter 101 via the analog output terminal 114.
  • the processes shown in steps S206 to S208 are examples of processes executed by the correction means.
  • the analog-digital converter 101 is an environment without using a temperature measurement circuit such as a high-precision current source, a temperature sensor, a thermistor, or a resistance temperature detector. It becomes possible to measure the temperature. Therefore, the analog-to-digital converter 101 can acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale. Since no temperature measurement circuit is required, it is possible to reduce the manufacturing cost of the analog-to-digital converter 101. Further, the analog-to-digital converter 10 can correct the temperature drift by using the measured environmental temperature.
  • a temperature measurement circuit such as a high-precision current source, a temperature sensor, a thermistor, or a resistance temperature detector. It becomes possible to measure the temperature. Therefore, the analog-to-digital converter 101 can acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale. Since no temperature measurement circuit is required, it is possible to reduce the manufacturing cost of the analog-to-digital converter 101. Further, the analog-to-digital converter 10 can correct
  • FIG. 4 is a diagram showing a configuration of an analog-to-digital converter 201 according to a second embodiment of the present invention.
  • the analog-to-digital converter 201 includes a first converter 202, a second converter 203, a calculation unit 211, a memory unit 212, an analog input terminal 213, and an analog output terminal 214.
  • the calculation unit 211 has a temperature measurement unit 211a and a correction unit 211b.
  • the first converter 202 is connected to the analog input terminal 213.
  • the second converter 203 is connected to the analog output terminal 214.
  • the analog-to-digital converter 201 is connected to the external control target unit 221.
  • the control target unit 221 has a control target circuit 222, an analog output terminal 223, and an analog input terminal 224.
  • the analog output terminal 223 is connected to the output of the control target circuit 222.
  • the analog input terminal 224 is connected to the input of the controlled circuit 222. Further, the analog output terminal 223 is connected to the analog input terminal 213 of the analog-to-digital converter 201.
  • the analog input terminal 224 is connected to the analog output terminal 214 of the analog-to-digital converter 201.
  • the control target unit 221 is, for example, a unit used by connecting the present device to a motor, an inverter, or the like.
  • the analog-to-digital converter 101 converts an analog signal input from the outside of the analog-to-digital converter 101 into a digital value in addition to the first converter 102 and the second converter 103 used for temperature measurement. It has a third converter 104 and a fourth converter 105 that generates an analog signal to be output to the outside of the analog-to-digital converter 101.
  • the analog-to-digital converter 201 the first converter 202 used for temperature measurement is connected to the analog input terminal 213, and the second converter 203 used for temperature measurement is connected to the analog output terminal 214. .. Therefore, when the analog-to-digital converter 201 returns to the arithmetic unit 211 from the arithmetic unit 211 via the second converter 203, the analog output terminal 214, the controlled circuit 222, the analog input terminal 213, and the first converter 202. The current environmental temperature is calculated based on the temperature drift obtained from the difference between the digital value of the above and the digital value set in the second converter 203. Therefore, the analog-to-digital converter 201 can correct the temperature drift including the controlled circuit 222.
  • the functions and operations of the analog-to-digital converter 201 include the first converter 102 and the third converter 104 in the first embodiment as the first converter 202, and the second converter 103 and the fourth converter 105 as the second converter.
  • calculation unit 111 is calculation unit 211
  • temperature measurement unit 111a is temperature measurement unit 211a
  • correction unit 111b is correction unit 211b
  • memory unit 112 is memory unit 212
  • analog input terminal 113 is analog input terminal 213, analog output terminal 114 Is read as analog output terminal 214, and detailed description thereof will be omitted.
  • the second embodiment of the present invention it is possible to acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale, as in the first embodiment. In addition to the effect, it becomes possible to perform temperature drift correction including the controlled circuit 222.
  • FIG. 5 is a diagram showing a configuration of an analog-to-digital converter 301 according to a third embodiment of the present invention.
  • the analog-to-digital converter 301 includes a first converter 302, a second converter 303, a calculation unit 311, a memory unit 312, an analog input terminal 313, an analog output terminal 314, and a switching unit 331.
  • the calculation unit 311 has a temperature measurement unit 311a and a correction unit 311b.
  • the functions and operations of the analog-to-digital converter 301 are such that the first converter 202 in the second embodiment is the first converter 302, the second converter 203 is the second converter 303, the calculation unit 211 is the calculation unit 311 and the memory unit.
  • the detailed description will be omitted by replacing 212 with the memory unit 312, analog input terminal 213 with analog input terminal 313, and analog output terminal 214 with analog output terminal 314.
  • the parts different from those of the second embodiment will be mainly described.
  • the switching unit 331 connects the first state in which the input of the first converter 302 and the output of the second converter 303 are connected, the input of the first converter 302 and the analog input terminal 313, and is the first. It is possible to switch between the output of the converter 303 of 2 and the second state in which the analog output terminal 314 is connected.
  • the calculation unit 311 outputs a switching instruction to the switching unit 331 in response to an instruction from the user of the analog-to-digital conversion device 301, and the switching unit 331 puts the analog-digital conversion device 301 in the first state or the first state according to the switching instruction. It can be in the state of 2.
  • the switching unit 331 is configured by using, for example, a FET (Field Effect Transistor), an analog switch, or the like.
  • the analog-to-digital converter 301 is set to the first state by using the switching unit 331, the analog-to-digital converter 301 is similarly to the first embodiment.
  • the internal temperature drift can be corrected, and if the analog-digital converter 301 is set to the second state, the analog signal corrected for the temperature drift inside the analog-digital converter 301 can be output. Further, the analog-to-digital converter 301 is set to the second state, and the temperature drift including the external circuit of the controlled target unit connected to the analog input terminal 313 and the analog output terminal 314 is caused as in the second embodiment described above. It may be corrected.
  • the switching unit 331 it becomes possible to select between the temperature drift correction inside the analog-digital conversion device 301 and the temperature drift correction including the external device such as the control target unit. At this time, since the required converter is a pair, it is possible to suppress an increase in the circuit scale.
  • FIG. 6 is a diagram showing operation timings according to the fourth embodiment of the present invention.
  • the configuration of the analog-to-digital converter 301 is the same as that in the third embodiment, and thus detailed description thereof will be omitted.
  • the calculation unit 311 controls the time slot 442 of the first converter 302 and the time slot 443 of the second converter 303.
  • the calculation unit 311 synchronizes the correction timing 445 of the time slot 442 and the correction timing 445 of the time slot 443. Further, the calculation unit 311 synchronizes the AD conversion time zone 446 of the time slot 442 with the DA conversion time zone 447 of the time slot 443.
  • the correction unit 311b of the calculation unit 311 calculates the timing interval T comp for correcting the temperature drift based on the temperature rise rate with respect to time. Specifically, when the temperature drift value at time t1 is V ct1 and the temperature drift value at time t2 is V ct2 , the correction unit 311b obtains the value of K shown in the following mathematical formula (4) and obtains the value of K. The correction is continued until is equal to or less than the predetermined value K1. When the value of K becomes K1 or less, the correction unit 311b stops the correction operation.
  • the correction unit 311b calculates K by providing a correction value calculation time zone for each predetermined time interval t3.
  • the time interval t3 is larger than the value of t2-t1.
  • the timing for correcting the temperature drift is calculated based on the temperature rise rate with respect to time, and when the change in the temperature rise rate becomes equal to or less than a predetermined threshold value, the temperature is corrected. To stop. Therefore, it is possible to improve the accuracy of the temperature drift correction, and it is possible to respond to changes in the environmental temperature.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • the analog-to-digital converters 101, 201, 301 have the first converters 102, 202, 302 and the second converters 103, 203, 303, but the analog-to-digital converters.
  • the 101, 201, and 301 may measure the ambient temperature of the external converter and correct the temperature drift.
  • the components included in the analog-to-digital converters 101, 201, and 301 described in the above-described first to third embodiments do not necessarily have to be collectively arranged in one housing.
  • the arithmetic unit 111, the memory 112, the first converters 102 and 104, and the second converters 103 and 105 are prepared as separate housings, as in the first embodiment described above. It may be connected to form an analog-to-digital converter 101.
  • a block including a calculation unit 111 and a memory unit 112, a block including a first converter 102 and a second converter 103, and a block including a first converter 104 and a second converter 105 are divided into blocks.
  • the analog-to-digital converter 101 may be configured by preparing different housings and connecting them as in the first embodiment described above.
  • the analog-to-digital conversion devices 201 and 301 may be configured by preparing a housing for each component and each block. That is, the form of the analog-to-digital converters 101, 201, and 301 is not particularly limited as long as the above-mentioned temperature drift correction function can be realized.
  • the analog-digital conversion device 301 includes the switching unit 331, but instead of providing the switching unit 331, a plurality of ports that can be connected to the first converter 302 and the second converter 303 are provided.
  • a configuration including a path for outputting a signal may be provided, and the above-mentioned temperature drift correction may be performed. In such a form, it is not necessary to prepare the switching unit 331, and the increase in the circuit scale can be further suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

This analog-to-digital conversion device (101) is characterized by comprising: a memory unit (112) which stores a temperature drift characteristic table showing the relationship between environment temperature and temperature drift, which is an output fluctuation due to a temperature change of a first converter (102) that converts an analog signal into a digital value and a temperature change of a second converter (103) that converts a digital value into an analog signal; and a temperature measuring unit (111a) which directly or indirectly inputs the output of the second converter (103) to the first converter (102), calculates the current temperature drift value on the basis of a value output by the first converter (102), and calculates a current environmental temperature on the basis of the current temperature drift value and the temperature drift characteristic table.

Description

アナログデジタル変換装置およびアナログデジタル変換装置の制御プログラムAnalog-to-digital converter and analog-to-digital converter control program
 本発明は、環境温度を測定可能なアナログデジタル変換装置およびアナログデジタル変換装置の制御プログラムに関する。 The present invention relates to an analog-to-digital converter capable of measuring an ambient temperature and a control program for the analog-to-digital converter.
 製品を生産する工場では、周囲の装置の稼働状況による環境温度の変化が大きく、アナログ機器の精度が低下して、製品のバラつきが発生することがある。このため、アナログデジタル変換装置においては、環境温度の変化に起因する誤差である温度ドリフトを抑制する技術の開発が進められている。温度ドリフトの大きさは、環境温度によって異なる。 In factories that produce products, the environmental temperature changes significantly depending on the operating conditions of surrounding equipment, and the accuracy of analog equipment deteriorates, which may cause product variations. For this reason, in analog-to-digital converters, the development of technology for suppressing temperature drift, which is an error caused by changes in the environmental temperature, is underway. The magnitude of the temperature drift depends on the ambient temperature.
 特許文献1には、温度センサを備える温度測定回路を装置内に追加して環境温度を測定し、測定した環境温度に基づいて、温度ドリフトの補償量を算出する技術が開示されている。 Patent Document 1 discloses a technique in which a temperature measuring circuit provided with a temperature sensor is added to the apparatus to measure the ambient temperature, and the compensation amount of the temperature drift is calculated based on the measured ambient temperature.
特開平08-181610号公報Japanese Unexamined Patent Publication No. 08-181610
 しかしながら、上記従来の技術によれば、温度センサおよび該温度センサを駆動させるための温度測定回路を配置する必要があるため、部品点数が増大し、装置自身の回路規模が増大するという問題があった。 However, according to the above-mentioned conventional technique, since it is necessary to arrange the temperature sensor and the temperature measurement circuit for driving the temperature sensor, there is a problem that the number of parts increases and the circuit scale of the device itself increases. It was.
 本発明は、上記に鑑みてなされたものであって、部品点数および回路規模の増大を抑制しつつ、現在の環境温度を取得することが可能なアナログデジタル変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an analog-to-digital converter capable of acquiring the current environmental temperature while suppressing an increase in the number of parts and the circuit scale.
 上述した課題を解決し、目的を達成するために、本発明は、アナログ信号をデジタル値に変換する第1のコンバータ、および、デジタル値をアナログ信号に変換する第2のコンバータの温度変化に伴う出力変動である温度ドリフトと環境温度との関係を示す温度ドリフト特性テーブルを記憶するメモリ部と、第2のコンバータの出力を直接的または間接的に第1のコンバータに入力して第1のコンバータが出力した値に基づいて現在の温度ドリフトの値を算出し、現在の温度ドリフトの値と温度ドリフト特性テーブルとに基づいて、現在の環境温度を算出する温度測定部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention accompanies a temperature change of a first converter that converts an analog signal into a digital value and a second converter that converts a digital value into an analog signal. The memory unit that stores the temperature drift characteristic table showing the relationship between the temperature drift, which is the output fluctuation, and the ambient temperature, and the output of the second converter are directly or indirectly input to the first converter to be input to the first converter. It is characterized by having a temperature measuring unit that calculates the current temperature drift value based on the value output by and calculates the current environmental temperature based on the current temperature drift value and the temperature drift characteristic table. And.
 本発明にかかるアナログデジタル変換装置は、部品点数および回路規模の増大を抑制しつつ、現在の環境温度を取得することが可能であるという効果を奏する。 The analog-to-digital converter according to the present invention has the effect of being able to acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale.
本発明の実施の形態1にかかるアナログデジタル変換装置の構成を示す図The figure which shows the structure of the analog-to-digital conversion apparatus which concerns on Embodiment 1 of this invention. 図1に示す演算部が行う準備処理の動作を説明するためのフローチャートA flowchart for explaining the operation of the preparatory processing performed by the arithmetic unit shown in FIG. 図1に示す演算部が行う定常処理の動作を説明するためのフローチャートA flowchart for explaining the operation of steady processing performed by the arithmetic unit shown in FIG. 本発明の実施の形態2にかかるアナログデジタル変換装置の構成を示す図The figure which shows the structure of the analog-to-digital conversion apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3にかかるアナログデジタル変換装置の構成を示す図The figure which shows the structure of the analog-to-digital conversion apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4における動作タイミングを示す図The figure which shows the operation timing in Embodiment 4 of this invention
 以下に、本発明の実施の形態にかかるアナログデジタル変換装置およびアナログデジタル変換装置の制御プログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The analog-to-digital converter and the control program of the analog-to-digital converter according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかるアナログデジタル変換装置101の構成を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of an analog-to-digital converter 101 according to a first embodiment of the present invention.
 アナログデジタル変換装置101は、アナログ信号をデジタル値に変換するAD(Analog Digital)コンバータである第1のコンバータ102と、デジタル値をアナログ信号に変換するDA(Digital Analog)コンバータである第2のコンバータ103とを有する。アナログデジタル変換装置101は、さらに、第1のコンバータ102と異なるADコンバータである第3のコンバータ104と、第2のコンバータ103と異なるDAコンバータである第4のコンバータ105とを有する。 The analog-to-digital converter 101 includes a first converter 102, which is an AD (Analog Digital) converter that converts an analog signal into a digital value, and a second converter, which is a DA (Digital Analog) converter that converts a digital value into an analog signal. It has 103 and. The analog-to-digital converter 101 further includes a third converter 104, which is an AD converter different from the first converter 102, and a fourth converter 105, which is a DA converter different from the second converter 103.
 アナログデジタル変換装置101は、演算部111と、メモリ部112とをさらに有する。演算部111は、温度測定部111aと補正部111bとを有する。 The analog-to-digital converter 101 further includes a calculation unit 111 and a memory unit 112. The calculation unit 111 includes a temperature measurement unit 111a and a correction unit 111b.
 第1のコンバータ102は、第2のコンバータ103の出力するアナログ信号をデジタル値に変換するアナログ入力回路である。第1のコンバータ102は、変換後のデジタル値を演算部111に出力する。第2のコンバータ103は、演算部111から設定されるデジタル値をアナログ信号に変換するアナログ出力回路である。第2のコンバータ103は、変換後のアナログ信号を第1のコンバータ102に出力する。第3のコンバータ104は、アナログ入力端子113に接続され、アナログ入力端子113に入力されるアナログ信号をデジタル値に変換するアナログ入力回路である。第3のコンバータ104は、変換後のデジタル値を演算部111に出力する。第4のコンバータ105は、アナログ出力端子114に接続され、演算部111から設定されるデジタル値をアナログ信号に変換するアナログ出力回路である。第4のコンバータ105は、変換後のアナログ信号をアナログ出力端子114に出力する。 The first converter 102 is an analog input circuit that converts an analog signal output by the second converter 103 into a digital value. The first converter 102 outputs the converted digital value to the calculation unit 111. The second converter 103 is an analog output circuit that converts a digital value set by the arithmetic unit 111 into an analog signal. The second converter 103 outputs the converted analog signal to the first converter 102. The third converter 104 is an analog input circuit connected to the analog input terminal 113 and converting an analog signal input to the analog input terminal 113 into a digital value. The third converter 104 outputs the converted digital value to the calculation unit 111. The fourth converter 105 is an analog output circuit connected to the analog output terminal 114 and converting a digital value set by the arithmetic unit 111 into an analog signal. The fourth converter 105 outputs the converted analog signal to the analog output terminal 114.
 メモリ部112は、第1のコンバータ102および第2のコンバータ103の温度変化に伴う出力変動である温度ドリフトと環境温度との関係を示す温度ドリフト特性テーブルを記憶する。メモリ部112は、温度ドリフト特性テーブルを演算部111に出力することができる。 The memory unit 112 stores a temperature drift characteristic table showing the relationship between the temperature drift, which is the output fluctuation due to the temperature change of the first converter 102 and the second converter 103, and the environmental temperature. The memory unit 112 can output the temperature drift characteristic table to the calculation unit 111.
 演算部111は、アナログデジタル変換装置101の動作を制御する。演算部111は、温度ドリフトを補正するために、現在の環境温度を算出する機能と、算出した環境温度を用いて、温度ドリフトを補正する機能と、環境温度の測定に用いる温度ドリフト特性テーブルを作成する機能とを有する。 The calculation unit 111 controls the operation of the analog-to-digital converter 101. The calculation unit 111 has a function of calculating the current environmental temperature in order to correct the temperature drift, a function of correcting the temperature drift using the calculated environmental temperature, and a temperature drift characteristic table used for measuring the environmental temperature. It has a function to create.
 演算部111は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。また演算部111は、CPU(Central Processing Unit)であってもよい。 The arithmetic unit 111 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Further, the calculation unit 111 may be a CPU (Central Processing Unit).
 温度測定部111aは、第2のコンバータ103の出力を第1のコンバータ102に入力して第1のコンバータ102が出力した値に基づいて、現在の温度ドリフトの値を算出する。また温度測定部111aは、現在の温度ドリフトの値と温度ドリフト特性テーブルとに基づいて、現在の環境温度を算出する。 The temperature measuring unit 111a inputs the output of the second converter 103 to the first converter 102 and calculates the current temperature drift value based on the value output by the first converter 102. Further, the temperature measuring unit 111a calculates the current environmental temperature based on the current temperature drift value and the temperature drift characteristic table.
 補正部111bは、温度測定部111aが算出した現在の環境温度に基づいて、アナログデジタル変換装置101に入力されるアナログ信号、つまり、第3のコンバータ104に入力されるアナログ信号の温度ドリフトを補正する。また補正部111bは、アナログデジタル変換装置101から出力するアナログ信号、つまり、第4のコンバータ105から出力するアナログ信号の温度ドリフトを補正する。 The correction unit 111b corrects the temperature drift of the analog signal input to the analog-to-digital converter 101, that is, the analog signal input to the third converter 104, based on the current ambient temperature calculated by the temperature measurement unit 111a. To do. Further, the correction unit 111b corrects the temperature drift of the analog signal output from the analog-to-digital converter 101, that is, the analog signal output from the fourth converter 105.
 図2は、図1に示す演算部111が行う準備処理の動作を説明するためのフローチャートである。準備処理は、温度ドリフト特性テーブルを作成する処理を含む。演算部111は、作成する温度ドリフト特性テーブルに含まれる複数の温度測定ポイントに従い、アナログデジタル変換装置101の環境温度を設定する(ステップS101)。ステップS101で設定する環境温度は、アナログデジタル変換装置101が実際に動作するときの環境温度とは異なり、温度ドリフト特性テーブルを作成するために種々の環境温度を設定することができる既知の装置を用いて設定すればよい。環境温度は、アナログデジタル変換装置101の使用環境の温度範囲で設定されていればよく、異なる温度を複数設定してもよいし、異なる温度を複数設定した上で、同じ温度を複数設定してもよい。同じ温度を複数設定した場合は、当該温度でのばらつきを緩和することができる。 FIG. 2 is a flowchart for explaining the operation of the preparatory process performed by the calculation unit 111 shown in FIG. The preparatory process includes a process of creating a temperature drift characteristic table. The calculation unit 111 sets the environmental temperature of the analog-digital converter 101 according to a plurality of temperature measurement points included in the created temperature drift characteristic table (step S101). The environmental temperature set in step S101 is different from the environmental temperature when the analog-digital converter 101 actually operates, and a known device capable of setting various environmental temperatures to create a temperature drift characteristic table is used. It may be set by using. The ambient temperature may be set within the temperature range of the operating environment of the analog-digital converter 101, and a plurality of different temperatures may be set, or a plurality of different temperatures may be set and then a plurality of the same temperature may be set. May be good. When the same temperature is set more than once, the variation at the temperature can be alleviated.
 演算部111は、第2のコンバータ103に電圧出力処理を行わせる(ステップS102)。具体的には、演算部111は、予め定めたデジタル値Vaを第2のコンバータ103に設定する。第2のコンバータ103は、デジタル値Vaをアナログ信号に変換し、アナログ信号を第1のコンバータ102に出力する。ここでの、予め定めたデジタル値Vaは、第1のデジタル値の一例であり、アナログ信号は第1のアナログ信号の一例である。また、ステップS102に示される処理は、アナログ変換手段により実行される処理の一例である。 The calculation unit 111 causes the second converter 103 to perform voltage output processing (step S102). Specifically, the arithmetic unit 111 sets the digital value V a with predetermined for the second converter 103. Second converter 103, the digital value V a is converted into an analog signal and outputs the analog signal to a first converter 102. Here, the digital value V a a predetermined, is an example of a first digital value, an analog signal is an example of a first analog signal. Further, the process shown in step S102 is an example of the process executed by the analog conversion means.
 第1のコンバータ102は、電圧入力処理を行う(ステップS103)。具体的には、第1のコンバータ102は、第2のコンバータ103が出力するアナログ信号をデジタル値Vbに変換し、デジタル値Vbを演算部111に出力する。演算部111は、第1のコンバータ102が出力するデジタル値Vbを読み出す。ここでの、予め定めたデジタル値Vbは、第2のデジタル値の一例である。また、ステップS103に示される処理は、デジタル変換手段により実行される処理の一例である。 The first converter 102 performs a voltage input process (step S103). Specifically, the first converter 102, an analog signal by the second converter 103 is output into a digital value V b, and outputs the digital values V b to the arithmetic unit 111. The calculation unit 111 reads out the digital value V b output by the first converter 102. The predetermined digital value V b here is an example of the second digital value. Further, the process shown in step S103 is an example of the process executed by the digital conversion means.
 演算部111は、温度ドリフト値Vcを算出する(ステップS104)。具体的には、演算部111は、第2のコンバータ103に設定したデジタル値Vaと、第1のコンバータ102から読み出したデジタル値Vbとに基づいて、温度ドリフト値Vcを算出する。温度ドリフト値Vcは、以下に示す数式(1)を用いて求めることができる。 The calculation unit 111 calculates the temperature drift value V c (step S104). Specifically, the calculation unit 111 calculates the temperature drift value V c based on the digital value V a set in the second converter 103 and the digital value V b read from the first converter 102. The temperature drift value V c can be obtained by using the following mathematical formula (1).
 Vc=Vb-Va ・・・(1) V c = V b- V a ... (1)
 演算部111は、測定回数nが、温度ドリフト特性テーブルに含まれる温度測定ポイント数Nに達したか否かを判断する(ステップS105)。測定回数nが温度測定ポイント数Nに達していない場合(ステップS105:No)、演算部111は、ステップS101の処理に戻る。ここでの、ステップS104およびステップS105に示される処理は、算出手段により実行される処理の一例である。 The calculation unit 111 determines whether or not the number of measurements n has reached the number of temperature measurement points N included in the temperature drift characteristic table (step S105). When the number of measurements n has not reached the number of temperature measurement points N (step S105: No), the calculation unit 111 returns to the process of step S101. Here, the processes shown in steps S104 and S105 are examples of processes executed by the calculation means.
 測定回数nが温度測定ポイント数Nに達した場合(ステップS105:Yes)、演算部111は、N回の測定結果に基づいて、温度ドリフト特性テーブルを作成する(ステップS106)。温度ドリフト特性テーブルは、ステップS101において設定した環境温度T(n)と、算出した温度ドリフト値Vc(n)とを対応づけたテーブル{T(n),Vc(n)}である。演算部111は、作成した温度ドリフト特性テーブルをメモリ部112に格納する(ステップS107)。ここでの、ステップS106に示される処理は、テーブル作成手段により実行される処理の一例であり、ステップS107に示される処理は、メモリ手段により実行される処理の一例である。 When the number of measurements n reaches the number of temperature measurement points N (step S105: Yes), the calculation unit 111 creates a temperature drift characteristic table based on the result of N measurements (step S106). The temperature drift characteristic table is a table {T (n), V c (n)} in which the environmental temperature T (n) set in step S101 and the calculated temperature drift value V c (n) are associated with each other. The calculation unit 111 stores the created temperature drift characteristic table in the memory unit 112 (step S107). Here, the process shown in step S106 is an example of a process executed by the table creation means, and the process shown in step S107 is an example of a process executed by the memory means.
 図3は、図1に示す演算部111が行う定常処理の動作を説明するためのフローチャートである。定常処理は、温度ドリフト特性テーブルを用いた環境温度の算出処理および温度ドリフトの補正処理を含む。 FIG. 3 is a flowchart for explaining the operation of the steady processing performed by the arithmetic unit 111 shown in FIG. Steady-state processing includes calculation processing of environmental temperature using a temperature drift characteristic table and correction processing of temperature drift.
 演算部111の温度測定部111aは、第2のコンバータ103に電圧出力処理を行わせる(ステップS201)。具体的には、温度測定部111aは、予め定めたデジタル値Vaを第2のコンバータ103に設定する。第2のコンバータ103は、デジタル値Vaをアナログ信号に変換し、アナログ信号を第1のコンバータ102に出力する。ここでの、デジタル値Vaは、現在のデジタル値の一例であり、アナログ信号は、現在のアナログ信号の一例である。 The temperature measuring unit 111a of the calculation unit 111 causes the second converter 103 to perform the voltage output process (step S201). Specifically, the temperature measuring unit 111a sets a digital value V a with predetermined for the second converter 103. Second converter 103, the digital value V a is converted into an analog signal and outputs the analog signal to a first converter 102. Here, the digital value V a is an example of a current digital value, an analog signal is an example of a current analog signal.
 第1のコンバータ102は、電圧入力処理を行う(ステップS202)。具体的には、第1のコンバータ102は、第2のコンバータ103が出力するアナログ信号をデジタル値Vb1に変換し、デジタル値Vb1を演算部111に出力する。演算部111の温度測定部111aは、第1のコンバータ102が出力するデジタル値Vb1を読み出す。ここでの、デジタル値Vb1は、第3のデジタル値の一例である。 The first converter 102 performs a voltage input process (step S202). Specifically, the first converter 102, an analog signal by the second converter 103 is output into a digital value V b1, and outputs the digital value V b1 to the arithmetic unit 111. The temperature measuring unit 111a of the calculation unit 111 reads out the digital value V b1 output by the first converter 102. Here, the digital value V b1 is an example of a third digital value.
 温度測定部111aは、予め定めたデジタル値Vaと、第1のコンバータ102から読み出したデジタル値Vb1とに基づいて、温度ドリフト値Vc1を算出する(ステップS203)。温度ドリフト値Vc1は、以下に示す数式(2)を用いて求めることができる。ここでの、温度ドリフト値Vc1は、現在の温度ドリフト値の一例である。 The temperature measuring unit 111a calculates the temperature drift value V c1 based on the predetermined digital value V a and the digital value V b1 read from the first converter 102 (step S203). The temperature drift value V c1 can be obtained by using the following mathematical formula (2). Here, the temperature drift value V c1 is an example of the current temperature drift value.
 Vc1=Vb1-Va ・・・(2) V c1 = V b1- V a ... (2)
 温度測定部111aは、算出した温度ドリフト値Vc1と、温度ドリフト特性テーブルとを用いて、現在の環境温度T(n)を算出する(ステップS204)。具体的には、温度測定部111aは、算出した温度ドリフト値Vc1と、温度ドリフト特性テーブルとを比較し、以下の数式(3)を満たすnに対応する現在の環境温度T(n)を求める。ステップS201~S204に示される処理は、温度測定手段により実行される処理の一例である。 The temperature measuring unit 111a calculates the current environmental temperature T (n) by using the calculated temperature drift value V c1 and the temperature drift characteristic table (step S204). Specifically, the temperature measuring unit 111a compares the calculated temperature drift value V c1 with the temperature drift characteristic table, and determines the current environmental temperature T (n) corresponding to n satisfying the following mathematical formula (3). Ask. The process shown in steps S201 to S204 is an example of the process executed by the temperature measuring means.
 Vc(n-1)<Vc1≦Vc(n) ・・・(3) V c (n-1) <V c1 ≤ V c (n) ... (3)
 アナログ入力端子113に接続される第3のコンバータ104は、電圧入力処理を行う(ステップS205)。具体的には、第3のコンバータ104は、アナログ入力端子113から入力されるアナログ信号をデジタル値Vinに変換して演算部111に出力する。演算部111の補正部111bは、第3のコンバータ104からデジタル値Vinを読み出す。 The third converter 104 connected to the analog input terminal 113 performs a voltage input process (step S205). Specifically, the third converter 104 converts the analog signal input from the analog input terminal 113 into a digital value V in and outputs it to the calculation unit 111. Correction section 111b of the calculation section 111 reads the digital value V in the third converter 104.
 補正部111bは、現在の環境温度から算出した温度ドリフト補正値Vadを用いて、第3のコンバータ104から読み出した電圧入力値であるデジタル値Vinの温度ドリフト補正を行う(ステップS206)。具体的には、補正部111bは、デジタル値Vinに現在の環境温度から算出した温度ドリフト補正値Vadを加算する。 The correction unit 111b uses the temperature drift correction value V ad calculated from the current environmental temperature to perform temperature drift correction of the digital value V in , which is the voltage input value read from the third converter 104 (step S206). Specifically, the correction unit 111b adds the temperature drift correction value V ad calculated from the current environmental temperature to the digital value V in .
 補正部111bは、現在の環境温度から算出した温度ドリフト補正値Vdaを用いて、第4のコンバータ105から出力する電圧出力値であるデジタル値Voutの温度ドリフト補正を行う(ステップS207)。具体的には、補正部111bは、デジタル値Voutに温度ドリフト補正値Vdaを加算する。 The correction unit 111b uses the temperature drift correction value V da calculated from the current environmental temperature to perform temperature drift correction of the digital value V out , which is the voltage output value output from the fourth converter 105 (step S207). Specifically, the correction unit 111b adds the temperature drift correction value V da to the digital value V out .
 補正部111bは、第4のコンバータ105に電圧出力処理を行わせる(ステップS208)。具体的には、補正部111bは、補正後の電圧出力値であるVout+Vdaを第4のコンバータ105に設定する。第4のコンバータ105は、設定された電圧出力値をアナログ信号に変換し、アナログ出力端子114を介して、アナログデジタル変換装置101から出力する。ステップS206~S208に示される処理は、補正手段により実行される処理の一例である。 The correction unit 111b causes the fourth converter 105 to perform voltage output processing (step S208). Specifically, the correction unit 111b sets V out + V da, which is the corrected voltage output value, in the fourth converter 105. The fourth converter 105 converts the set voltage output value into an analog signal, and outputs the set voltage output value from the analog-to-digital converter 101 via the analog output terminal 114. The processes shown in steps S206 to S208 are examples of processes executed by the correction means.
 以上説明したように、本発明の実施の形態1によれば、アナログデジタル変換装置101は、高精度の電流源、温度センサ、サーミスタ、測温抵抗体などの温度測定回路を用いることなく、環境温度を測定することが可能になる。したがって、アナログデジタル変換装置101は、部品点数および回路規模の増大を抑制しつつ、現在の環境温度を取得することが可能である。温度測定回路が必要ないため、アナログデジタル変換装置101の製造コストを低減することが可能である。また、アナログデジタル変換装置10は、測定した環境温度を用いて、温度ドリフトを補正することができる。 As described above, according to the first embodiment of the present invention, the analog-digital converter 101 is an environment without using a temperature measurement circuit such as a high-precision current source, a temperature sensor, a thermistor, or a resistance temperature detector. It becomes possible to measure the temperature. Therefore, the analog-to-digital converter 101 can acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale. Since no temperature measurement circuit is required, it is possible to reduce the manufacturing cost of the analog-to-digital converter 101. Further, the analog-to-digital converter 10 can correct the temperature drift by using the measured environmental temperature.
実施の形態2.
 図4は、本発明の実施の形態2にかかるアナログデジタル変換装置201の構成を示す図である。アナログデジタル変換装置201は、第1のコンバータ202と、第2のコンバータ203と、演算部211と、メモリ部212と、アナログ入力端子213と、アナログ出力端子214とを有する。演算部211は、温度測定部211aと、補正部211bとを有する。第1のコンバータ202は、アナログ入力端子213に接続される。第2のコンバータ203は、アナログ出力端子214に接続される。
Embodiment 2.
FIG. 4 is a diagram showing a configuration of an analog-to-digital converter 201 according to a second embodiment of the present invention. The analog-to-digital converter 201 includes a first converter 202, a second converter 203, a calculation unit 211, a memory unit 212, an analog input terminal 213, and an analog output terminal 214. The calculation unit 211 has a temperature measurement unit 211a and a correction unit 211b. The first converter 202 is connected to the analog input terminal 213. The second converter 203 is connected to the analog output terminal 214.
 アナログデジタル変換装置201は、外部の制御対象ユニット221に接続される。制御対象ユニット221は、制御対象回路222と、アナログ出力端子223と、アナログ入力端子224とを有する。アナログ出力端子223は、制御対象回路222の出力と接続されている。アナログ入力端子224は、制御対象回路222の入力と接続されている。また、アナログ出力端子223は、アナログデジタル変換装置201のアナログ入力端子213に接続される。アナログ入力端子224は、アナログデジタル変換装置201のアナログ出力端子214に接続される。制御対象ユニット221は、例えば、モータ、インバータなどが本装置を接続して使用するユニットである。 The analog-to-digital converter 201 is connected to the external control target unit 221. The control target unit 221 has a control target circuit 222, an analog output terminal 223, and an analog input terminal 224. The analog output terminal 223 is connected to the output of the control target circuit 222. The analog input terminal 224 is connected to the input of the controlled circuit 222. Further, the analog output terminal 223 is connected to the analog input terminal 213 of the analog-to-digital converter 201. The analog input terminal 224 is connected to the analog output terminal 214 of the analog-to-digital converter 201. The control target unit 221 is, for example, a unit used by connecting the present device to a motor, an inverter, or the like.
 実施の形態1にかかるアナログデジタル変換装置101は、温度測定に用いる第1のコンバータ102および第2のコンバータ103の他に、アナログデジタル変換装置101の外部から入力されるアナログ信号をデジタル値に変換する第3のコンバータ104と、アナログデジタル変換装置101の外部に出力するアナログ信号を生成する第4のコンバータ105とを有する。 The analog-to-digital converter 101 according to the first embodiment converts an analog signal input from the outside of the analog-to-digital converter 101 into a digital value in addition to the first converter 102 and the second converter 103 used for temperature measurement. It has a third converter 104 and a fourth converter 105 that generates an analog signal to be output to the outside of the analog-to-digital converter 101.
 これに対して、アナログデジタル変換装置201では、温度測定に用いられる第1のコンバータ202はアナログ入力端子213に接続され、温度測定に用いられる第2のコンバータ203はアナログ出力端子214に接続される。したがって、アナログデジタル変換装置201は、演算部211から第2のコンバータ203、アナログ出力端子214、制御対象回路222、アナログ入力端子213、および第1のコンバータ202を介して演算部211に戻ったときのデジタル値と、第2のコンバータ203に設定したデジタル値との差から求めた温度ドリフトに基づいて、現在の環境温度を算出する。したがって、アナログデジタル変換装置201は、制御対象回路222も含めて温度ドリフトを補正することができる。 On the other hand, in the analog-to-digital converter 201, the first converter 202 used for temperature measurement is connected to the analog input terminal 213, and the second converter 203 used for temperature measurement is connected to the analog output terminal 214. .. Therefore, when the analog-to-digital converter 201 returns to the arithmetic unit 211 from the arithmetic unit 211 via the second converter 203, the analog output terminal 214, the controlled circuit 222, the analog input terminal 213, and the first converter 202. The current environmental temperature is calculated based on the temperature drift obtained from the difference between the digital value of the above and the digital value set in the second converter 203. Therefore, the analog-to-digital converter 201 can correct the temperature drift including the controlled circuit 222.
 アナログデジタル変換装置201の機能および動作は、実施の形態1における第1のコンバータ102および第3のコンバータ104を第1のコンバータ202、第2のコンバータ103および第4のコンバータ105を第2のコンバータ203、演算部111を演算部211、温度測定部111aを温度測定部211a、補正部111bを補正部211b、メモリ部112をメモリ部212、アナログ入力端子113をアナログ入力端子213、アナログ出力端子114をアナログ出力端子214と読み替えることで、詳細な説明は省略する。 The functions and operations of the analog-to-digital converter 201 include the first converter 102 and the third converter 104 in the first embodiment as the first converter 202, and the second converter 103 and the fourth converter 105 as the second converter. 203, calculation unit 111 is calculation unit 211, temperature measurement unit 111a is temperature measurement unit 211a, correction unit 111b is correction unit 211b, memory unit 112 is memory unit 212, analog input terminal 113 is analog input terminal 213, analog output terminal 114 Is read as analog output terminal 214, and detailed description thereof will be omitted.
 以上説明したように、本発明の実施の形態2によれば、実施の形態1と同様に、部品点数および回路規模の増大を抑制しつつ、現在の環境温度を取得することが可能であるという効果に加えて、制御対象回路222も含めた温度ドリフト補正を行うことが可能になる。 As described above, according to the second embodiment of the present invention, it is possible to acquire the current environmental temperature while suppressing an increase in the number of parts and the circuit scale, as in the first embodiment. In addition to the effect, it becomes possible to perform temperature drift correction including the controlled circuit 222.
実施の形態3.
 図5は、本発明の実施の形態3にかかるアナログデジタル変換装置301の構成を示す図である。アナログデジタル変換装置301は、第1のコンバータ302と、第2のコンバータ303と、演算部311と、メモリ部312と、アナログ入力端子313と、アナログ出力端子314と、切替部331とを有する。演算部311は温度測定部311aと補正部311bとを有する。
Embodiment 3.
FIG. 5 is a diagram showing a configuration of an analog-to-digital converter 301 according to a third embodiment of the present invention. The analog-to-digital converter 301 includes a first converter 302, a second converter 303, a calculation unit 311, a memory unit 312, an analog input terminal 313, an analog output terminal 314, and a switching unit 331. The calculation unit 311 has a temperature measurement unit 311a and a correction unit 311b.
 アナログデジタル変換装置301の機能および動作は、実施の形態2における第1のコンバータ202を第1のコンバータ302、第2のコンバータ203を第2のコンバータ303、演算部211を演算部311、メモリ部212をメモリ部312、アナログ入力端子213をアナログ入力端子313、アナログ出力端子214をアナログ出力端子314と読み替えることで、詳細な説明を省略する。以下、実施の形態2と異なる部分について主に説明する。 The functions and operations of the analog-to-digital converter 301 are such that the first converter 202 in the second embodiment is the first converter 302, the second converter 203 is the second converter 303, the calculation unit 211 is the calculation unit 311 and the memory unit. The detailed description will be omitted by replacing 212 with the memory unit 312, analog input terminal 213 with analog input terminal 313, and analog output terminal 214 with analog output terminal 314. Hereinafter, the parts different from those of the second embodiment will be mainly described.
 切替部331は、第1のコンバータ302の入力と第2のコンバータ303の出力とを接続した第1の状態と、第1のコンバータ302の入力とアナログ入力端子313とを接続し、且つ、第2のコンバータ303の出力とアナログ出力端子314とを接続した第2の状態とを切り替え可能である。演算部311は、アナログデジタル変換装置301のユーザからの指示に応じて、切替部331に切替指示を出力し、切替部331は、切替指示に従って、アナログデジタル変換装置301を第1の状態または第2の状態にすることができる。切替部331は、例えば、FET(Field Effect Transistor)、アナログスイッチなどを用いて構成される。 The switching unit 331 connects the first state in which the input of the first converter 302 and the output of the second converter 303 are connected, the input of the first converter 302 and the analog input terminal 313, and is the first. It is possible to switch between the output of the converter 303 of 2 and the second state in which the analog output terminal 314 is connected. The calculation unit 311 outputs a switching instruction to the switching unit 331 in response to an instruction from the user of the analog-to-digital conversion device 301, and the switching unit 331 puts the analog-digital conversion device 301 in the first state or the first state according to the switching instruction. It can be in the state of 2. The switching unit 331 is configured by using, for example, a FET (Field Effect Transistor), an analog switch, or the like.
 以上説明したように、本発明の実施の形態3によれば、切替部331を用いてアナログデジタル変換装置301を第1の状態にすれば、実施の形態1と同様に、アナログデジタル変換装置301内部の温度ドリフトを補正することができ、アナログデジタル変換装置301を第2の状態にすれば、アナログデジタル変換装置301内部の温度ドリフトを補正したアナログ信号を出力することができる。また、アナログデジタル変換装置301を第2の状態とし、上述の実施の形態2と同様に、アナログ入力端子313およびアナログ出力端子314に接続された制御対象ユニットの外部の回路を含めた温度ドリフトを補正することとしてもよい。つまり、切替部331を用いることで、アナログデジタル変換装置301の内部の温度ドリフト補正と、制御対象ユニットなどの外部装置を含めた温度ドリフト補正とを選択可能になる。このとき、必要なコンバータは1対であるため、回路規模の増大を抑制することが可能である。 As described above, according to the third embodiment of the present invention, if the analog-to-digital converter 301 is set to the first state by using the switching unit 331, the analog-to-digital converter 301 is similarly to the first embodiment. The internal temperature drift can be corrected, and if the analog-digital converter 301 is set to the second state, the analog signal corrected for the temperature drift inside the analog-digital converter 301 can be output. Further, the analog-to-digital converter 301 is set to the second state, and the temperature drift including the external circuit of the controlled target unit connected to the analog input terminal 313 and the analog output terminal 314 is caused as in the second embodiment described above. It may be corrected. That is, by using the switching unit 331, it becomes possible to select between the temperature drift correction inside the analog-digital conversion device 301 and the temperature drift correction including the external device such as the control target unit. At this time, since the required converter is a pair, it is possible to suppress an increase in the circuit scale.
実施の形態4.
 図6は、本発明の実施の形態4における動作タイミングを示す図である。本実施の形態では、アナログデジタル変換装置301の構成は実施の形態3と同様であるため、詳細な説明を省略する。
Embodiment 4.
FIG. 6 is a diagram showing operation timings according to the fourth embodiment of the present invention. In the present embodiment, the configuration of the analog-to-digital converter 301 is the same as that in the third embodiment, and thus detailed description thereof will be omitted.
 演算部311は、第1のコンバータ302のタイムスロット442および第2のコンバータ303のタイムスロット443を制御する。演算部311は、タイムスロット442の補正タイミング445とタイムスロット443の補正タイミング445とを同期させる。また演算部311は、タイムスロット442のAD変換時間帯446と、タイムスロット443のDA変換時間帯447とを同期させる。 The calculation unit 311 controls the time slot 442 of the first converter 302 and the time slot 443 of the second converter 303. The calculation unit 311 synchronizes the correction timing 445 of the time slot 442 and the correction timing 445 of the time slot 443. Further, the calculation unit 311 synchronizes the AD conversion time zone 446 of the time slot 442 with the DA conversion time zone 447 of the time slot 443.
 また演算部311の補正部311bは、温度ドリフトを補正するタイミングの間隔Tcompを時間に対する温度上昇率に基づいて算出する。具体的には、補正部311bは、時間t1の温度ドリフト値をVct1、時間t2の温度ドリフト値をVct2とした場合、以下の数式(4)に示すKの値を求め、Kの値が予め定めた値K1以下となるまで補正を続ける。Kの値がK1以下となった場合、補正部311bは、補正動作を停止する。 Further, the correction unit 311b of the calculation unit 311 calculates the timing interval T comp for correcting the temperature drift based on the temperature rise rate with respect to time. Specifically, when the temperature drift value at time t1 is V ct1 and the temperature drift value at time t2 is V ct2 , the correction unit 311b obtains the value of K shown in the following mathematical formula (4) and obtains the value of K. The correction is continued until is equal to or less than the predetermined value K1. When the value of K becomes K1 or less, the correction unit 311b stops the correction operation.
 K=(Vct2-Vct1)/(t2-t1)・・・(4) K = (V ct2- V ct1 ) / (t2-t1) ... (4)
 また、環境温度の変化に対応するために、補正部311bは、予め定めた時間間隔t3ごとに補正値算出時間帯を設けてKを算出する。時間間隔t3は、t2-t1の値よりも大きい。 Further, in order to respond to changes in the environmental temperature, the correction unit 311b calculates K by providing a correction value calculation time zone for each predetermined time interval t3. The time interval t3 is larger than the value of t2-t1.
 以上説明したように、本発明の実施の形態4によれば、温度ドリフトを補正するタイミングを時間に対する温度上昇率に基づいて算出し、温度上昇率の変化が予め定めた閾値以下になると温度補正を停止する。このため、温度ドリフト補正の精度を向上させることが可能であり、環境温度の変化に対応可能となる。 As described above, according to the fourth embodiment of the present invention, the timing for correcting the temperature drift is calculated based on the temperature rise rate with respect to time, and when the change in the temperature rise rate becomes equal to or less than a predetermined threshold value, the temperature is corrected. To stop. Therefore, it is possible to improve the accuracy of the temperature drift correction, and it is possible to respond to changes in the environmental temperature.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 例えば、上記の実施の形態では、アナログデジタル変換装置101,201,301は、第1のコンバータ102,202,302および第2のコンバータ103,203,303を有することとしたが、アナログデジタル変換装置101,201,301は、外部に備わるコンバータの環境温度を測定し、温度ドリフトを補正してもよい。 For example, in the above embodiment, the analog-to- digital converters 101, 201, 301 have the first converters 102, 202, 302 and the second converters 103, 203, 303, but the analog-to-digital converters. The 101, 201, and 301 may measure the ambient temperature of the external converter and correct the temperature drift.
 また、上記の実施の形態1から実施の形態3において説明したアナログデジタル変換装置101,201,301が備える各構成要素は、必ずしも一つの筐体に集約して配置されている必要はない。例えば、実施の形態1において、演算部111、メモリ112、第1のコンバータ102,104および第2のコンバータ103,105のそれぞれを別の筐体として準備し、上述の実施の形態1のように接続してアナログデジタル変換装置101を構成してもよい。また、演算部111とメモリ部112とを備えるブロック、第1のコンバータ102と第2のコンバータ103とを備えるブロック、および第1のコンバータ104と第2のコンバータ105とを備えるブロックをブロック毎に異なる筐体として準備し、これらを上述の実施の形態1のように接続してアナログデジタル変換装置101を構成してもよい。なお、上述のアナログデジタル変換装置201,301においても、構成要素単位、ブロック単位で筐体を準備して、アナログデジタル変換装置201,301を構成してもよい。つまり、アナログデジタル変換装置101,201,301は、上述の温度ドリフト補正の機能を実現することができれば、その形態は特に限定されない。 Further, the components included in the analog-to- digital converters 101, 201, and 301 described in the above-described first to third embodiments do not necessarily have to be collectively arranged in one housing. For example, in the first embodiment, the arithmetic unit 111, the memory 112, the first converters 102 and 104, and the second converters 103 and 105 are prepared as separate housings, as in the first embodiment described above. It may be connected to form an analog-to-digital converter 101. Further, a block including a calculation unit 111 and a memory unit 112, a block including a first converter 102 and a second converter 103, and a block including a first converter 104 and a second converter 105 are divided into blocks. The analog-to-digital converter 101 may be configured by preparing different housings and connecting them as in the first embodiment described above. In the above-mentioned analog-to- digital conversion devices 201 and 301, the analog-to- digital conversion devices 201 and 301 may be configured by preparing a housing for each component and each block. That is, the form of the analog-to- digital converters 101, 201, and 301 is not particularly limited as long as the above-mentioned temperature drift correction function can be realized.
 また、上述の実施の形態3にかかるアナログデジタル変換装置301は、切替部331を備えるが、切替部331を備える代わりに、第1のコンバータ302および第2のコンバータ303に接続できるポートを複数に増やし、第1のコンバータ302の入力と第2のコンバータ303の出力とを接続する経路と、第1のコンバータ302へ外部からのアナログ信号を入力する経路と、第2のコンバータ303から外部へアナログ信号を出力する経路とを備える構成とし、上述の温度ドリフトの補正を行う形態としてもよい。このような形態であれば、切替部331を準備する必要がなく、さらに回路規模の増大を抑制することができる。 Further, the analog-digital conversion device 301 according to the third embodiment described above includes the switching unit 331, but instead of providing the switching unit 331, a plurality of ports that can be connected to the first converter 302 and the second converter 303 are provided. The path for connecting the input of the first converter 302 and the output of the second converter 303, the path for inputting an analog signal from the outside to the first converter 302, and the analog from the second converter 303 to the outside. A configuration including a path for outputting a signal may be provided, and the above-mentioned temperature drift correction may be performed. In such a form, it is not necessary to prepare the switching unit 331, and the increase in the circuit scale can be further suppressed.
 101,201,301 アナログデジタル変換装置、102,202,302 第1のコンバータ、103,203,303 第2のコンバータ、104 第3のコンバータ、105 第4のコンバータ、111,211,311 演算部、111a,211a,311a 温度測定部、111b,211b,311b 補正部、112,212,312 メモリ部、113,213,224,313 アナログ入力端子、114,214,223,314 アナログ出力端子、221 制御対象ユニット、222 制御対象回路、331 切替部、442,443 タイムスロット、445 補正タイミング、446 AD変換時間帯、447 DA変換時間帯。 101,201,301 analog-to-digital converter, 102,202,302 first converter, 103,203,303 second converter, 104 third converter, 105 fourth converter, 111,211,311 arithmetic unit, 111a, 211a, 311a temperature measurement unit, 111b, 211b, 311b correction unit, 112,212,312 memory unit, 113,213,224,313 analog input terminal, 114,214,223,314 analog output terminal, 221 control target Unit, 222 Control target circuit, 331 switching unit, 442,443 time slot, 445 correction timing, 446 AD conversion time zone, 447 DA conversion time zone.

Claims (13)

  1.  アナログ信号をデジタル値に変換する第1のコンバータ、および、デジタル値をアナログ信号に変換する第2のコンバータの温度変化に伴う出力変動である温度ドリフトと環境温度との関係を示す温度ドリフト特性テーブルを記憶するメモリ部と、
     前記第2のコンバータの出力を直接的または間接的に前記第1のコンバータに入力して前記第1のコンバータが出力した値に基づいて現在の温度ドリフトの値を算出し、前記現在の温度ドリフトの値と前記温度ドリフト特性テーブルとに基づいて、現在の環境温度を算出する温度測定部と、
     を備えることを特徴とするアナログデジタル変換装置。
    A temperature drift characteristic table showing the relationship between temperature drift and environmental temperature, which are output fluctuations due to temperature changes of the first converter that converts an analog signal to a digital value and the second converter that converts a digital value to an analog signal. Memory unit to store
    The output of the second converter is directly or indirectly input to the first converter, the current temperature drift value is calculated based on the value output by the first converter, and the current temperature drift is calculated. A temperature measuring unit that calculates the current environmental temperature based on the value of and the temperature drift characteristic table.
    An analog-to-digital converter characterized by being equipped with.
  2.  前記現在の環境温度に基づいて、前記温度ドリフトを補正する補正部、
     をさらに備えることを特徴とする請求項1に記載のアナログデジタル変換装置。
    A correction unit that corrects the temperature drift based on the current environmental temperature.
    The analog-to-digital converter according to claim 1, further comprising.
  3.  前記第1のコンバータと、
     前記第2のコンバータと、
     アナログ入力端子に接続され、前記アナログ入力端子に入力されるアナログ信号をデジタル値に変換する第3のコンバータと、
     アナログ出力端子に接続され、デジタル値をアナログ信号に変換して前記アナログ出力端子に出力する第4のコンバータと、
     をさらに備えることを特徴とする請求項1または2に記載のアナログデジタル変換装置。
    With the first converter
    With the second converter
    A third converter connected to the analog input terminal and converting the analog signal input to the analog input terminal into a digital value, and
    A fourth converter that is connected to an analog output terminal, converts a digital value into an analog signal, and outputs it to the analog output terminal.
    The analog-to-digital converter according to claim 1 or 2, further comprising.
  4.  アナログ入力端子に接続される前記第1のコンバータと、
     アナログ出力端子に接続される前記第2のコンバータと、
     を備えることを特徴とする請求項1または2に記載のアナログデジタル変換装置。
    With the first converter connected to the analog input terminal,
    With the second converter connected to the analog output terminal,
    The analog-to-digital converter according to claim 1 or 2, wherein the device is provided with.
  5.  前記第1のコンバータは、前記アナログ入力端子を介して、制御対象回路のアナログ出力端子に接続され、
     前記第2のコンバータは、前記アナログ出力端子を介して、前記制御対象回路のアナログ入力端子に接続されることを特徴とする請求項4に記載のアナログデジタル変換装置。
    The first converter is connected to the analog output terminal of the controlled circuit via the analog input terminal.
    The analog-to-digital conversion device according to claim 4, wherein the second converter is connected to an analog input terminal of the controlled circuit via the analog output terminal.
  6.  前記温度測定部は、前記第2のコンバータの出力を前記制御対象回路を介して前記第1のコンバータに入力して前記第1のコンバータが出力した値に基づいて、前記現在の温度ドリフトの値を算出することを特徴とする請求項5に記載のアナログデジタル変換装置。 The temperature measuring unit inputs the output of the second converter to the first converter via the controlled circuit, and based on the value output by the first converter, the current temperature drift value. The analog-to-digital converter according to claim 5, wherein
  7.  前記第1のコンバータの入力と前記第2のコンバータの出力とを接続した第1の状態と、前記第1のコンバータの入力と前記アナログ入力端子とを接続し、且つ、前記第2のコンバータの出力と前記アナログ出力端子とを接続した第2の状態とを切り替え可能な切替部、
     をさらに備えることを特徴とする請求項4に記載のアナログデジタル変換装置。
    The first state in which the input of the first converter and the output of the second converter are connected, the input of the first converter and the analog input terminal are connected, and the second converter A switching unit that can switch between the output and the second state in which the analog output terminal is connected.
    The analog-to-digital converter according to claim 4, further comprising.
  8.  前記第1のコンバータの入力と前記第2のコンバータの出力とが接続されていることを特徴とする請求項4に記載のアナログデジタル変換装置。 The analog-to-digital converter according to claim 4, wherein the input of the first converter and the output of the second converter are connected.
  9.  前記補正部は、温度ドリフトを補正するタイミングを時間に対する温度上昇率に基づいて算出することを特徴とする請求項2に記載のアナログデジタル変換装置。 The analog-to-digital converter according to claim 2, wherein the correction unit calculates the timing for correcting the temperature drift based on the rate of temperature rise with respect to time.
  10.  前記補正部は、前記温度上昇率の変化が予め定めた閾値以下で温度補正を停止することを特徴とする請求項9に記載のアナログデジタル変換装置。 The analog-to-digital conversion device according to claim 9, wherein the correction unit stops the temperature correction when the change in the temperature rise rate is equal to or less than a predetermined threshold value.
  11.  アナログデジタル変換装置を、
     アナログ信号をデジタル値に変換する第1のコンバータ、および、デジタル値をアナログ信号に変換する第2のコンバータの温度変化に伴う出力変動である温度ドリフトと環境温度との関係を示す温度ドリフト特性テーブルを記憶するメモリ手段、および
     前記第2のコンバータの出力を直接的または間接的に前記第1のコンバータに入力して前記第1のコンバータが出力した値に基づいて現在の温度ドリフトの値を算出し、前記現在の温度ドリフトの値と前記温度ドリフト特性テーブルとに基づいて、現在の環境温度を算出する温度測定手段、
     として機能させるためのアナログデジタル変換装置の制御プログラム。
    Analog-to-digital converter,
    A temperature drift characteristic table showing the relationship between temperature drift and environmental temperature, which are output fluctuations due to temperature changes of the first converter that converts an analog signal to a digital value and the second converter that converts a digital value to an analog signal. And the output of the second converter is directly or indirectly input to the first converter, and the current temperature drift value is calculated based on the value output by the first converter. A temperature measuring means for calculating the current environmental temperature based on the current temperature drift value and the temperature drift characteristic table.
    A control program for an analog-to-digital converter to function as.
  12.  前記アナログデジタル変換装置を、
     前記現在の環境温度に基づいて、前記温度ドリフトの値を補正する補正手段、
     として機能させるための請求項11に記載のアナログデジタル変換装置の制御プログラム。
    The analog-to-digital converter
    A correction means that corrects the temperature drift value based on the current environmental temperature.
    The control program of the analog-to-digital converter according to claim 11.
  13.  前記アナログデジタル変換装置を、
     予め定められた第1のデジタル値を前記第2のコンバータに入力して第1のアナログ信号に変換し出力するアナログ変換手段、
     前記アナログ変換手段で変換し出力された前記第1のアナログ信号を直接的または間接的に前記第1のコンバータへ入力して第2のデジタル値に変換するデジタル変換手段、
     前記第1のコンバータおよび前記第2のコンバータの温度変化に伴う出力変動である温度ドリフトの値を前記第1のデジタル値および前記第2のデジタル値に基づいて算出する算出手段、および
     前記温度ドリフトの値と環境温度との関係を示す温度ドリフト特性テーブルを作成するテーブル作成手段、
     として機能させるための請求項11または請求項12に記載のアナログデジタル変換装置の制御プログラム。
    The analog-to-digital converter
    An analog conversion means that inputs a predetermined first digital value to the second converter, converts it into a first analog signal, and outputs it.
    A digital conversion means that directly or indirectly inputs the first analog signal converted and output by the analog conversion means to the first converter and converts it into a second digital value.
    A calculation means for calculating a temperature drift value, which is an output fluctuation accompanying a temperature change of the first converter and the second converter, based on the first digital value and the second digital value, and the temperature drift. A table creation means for creating a temperature drift characteristic table showing the relationship between the value of
    The control program of the analog-to-digital converter according to claim 11 or 12, for functioning as.
PCT/JP2019/023939 2019-06-17 2019-06-17 Analog-to-digital conversion device, and control program for analog-to-digital conversion device WO2020255218A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020568484A JP6865911B1 (en) 2019-06-17 2019-06-17 Analog-to-digital converter and analog-to-digital converter control program
CN201980097396.7A CN113940006B (en) 2019-06-17 2019-06-17 Analog-digital conversion device and control method of analog-digital conversion device
PCT/JP2019/023939 WO2020255218A1 (en) 2019-06-17 2019-06-17 Analog-to-digital conversion device, and control program for analog-to-digital conversion device
DE112019007308.7T DE112019007308B4 (en) 2019-06-17 2019-06-17 Analog/digital conversion device and control program for analog/digital conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023939 WO2020255218A1 (en) 2019-06-17 2019-06-17 Analog-to-digital conversion device, and control program for analog-to-digital conversion device

Publications (1)

Publication Number Publication Date
WO2020255218A1 true WO2020255218A1 (en) 2020-12-24

Family

ID=74040186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023939 WO2020255218A1 (en) 2019-06-17 2019-06-17 Analog-to-digital conversion device, and control program for analog-to-digital conversion device

Country Status (4)

Country Link
JP (1) JP6865911B1 (en)
CN (1) CN113940006B (en)
DE (1) DE112019007308B4 (en)
WO (1) WO2020255218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422606A (en) * 2021-07-06 2021-09-21 珠海格力电器股份有限公司 Error calibration method and device for AD converter, controller and servo driver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823279A (en) * 1994-07-08 1996-01-23 Toshiba Corp D/a converter output device
JPH11258068A (en) * 1998-02-12 1999-09-24 Huabang Electronic Co Ltd Device for converting voltage into temperature using thermistor
JP2001053608A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Engineering Co Ltd A/d and d/a conversion circuit
JP2004112662A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Analog/digital converting circuit
JP2005244771A (en) * 2004-02-27 2005-09-08 Fuji Electric Holdings Co Ltd A/d conversion circuit, current measurement circuit, charging/discharging amount measurement circuit, and error correction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311182B2 (en) 1994-12-22 2002-08-05 株式会社アドバンテスト High-speed high-precision AD converter
GB2360404B (en) * 2000-03-17 2004-03-10 Ericsson Telefon Ab L M Electronic circuit
EP1986327B1 (en) 2007-04-24 2009-10-28 SPECS Zurich GmbH Circuit de conversion numérique-analogique haute résolution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823279A (en) * 1994-07-08 1996-01-23 Toshiba Corp D/a converter output device
JPH11258068A (en) * 1998-02-12 1999-09-24 Huabang Electronic Co Ltd Device for converting voltage into temperature using thermistor
JP2001053608A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Engineering Co Ltd A/d and d/a conversion circuit
JP2004112662A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Analog/digital converting circuit
JP2005244771A (en) * 2004-02-27 2005-09-08 Fuji Electric Holdings Co Ltd A/d conversion circuit, current measurement circuit, charging/discharging amount measurement circuit, and error correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422606A (en) * 2021-07-06 2021-09-21 珠海格力电器股份有限公司 Error calibration method and device for AD converter, controller and servo driver
CN113422606B (en) * 2021-07-06 2023-08-11 珠海格力电器股份有限公司 AD converter error calibration method, device, controller and servo driver

Also Published As

Publication number Publication date
JPWO2020255218A1 (en) 2021-09-13
CN113940006B (en) 2022-11-15
JP6865911B1 (en) 2021-04-28
DE112019007308B4 (en) 2022-11-10
DE112019007308T5 (en) 2022-02-17
CN113940006A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
KR101399047B1 (en) Temperature sensor bow compensation
JP4074823B2 (en) A / D conversion output data non-linearity correction method and non-linearity correction apparatus
JP4736508B2 (en) Physical quantity detection method and sensor device
JP2001527648A (en) System and method for accuracy compensation of non-linear offset and sensitivity change of a sensor due to temperature change
JP6865911B1 (en) Analog-to-digital converter and analog-to-digital converter control program
JP5159951B2 (en) Analog unit
KR100909660B1 (en) Error compensator of sensor measurement circuit and its method
JP6342100B1 (en) Analog input unit and reference voltage stabilization circuit
KR102244196B1 (en) Method for calibrating tolerance of adc module and electronic device thereof
JP4968358B2 (en) Multipoint switching type measuring device
JPH06294664A (en) Nonlinear circuit
EP2887034B1 (en) Semiconductor integrated circuit for calculating the temperature of an object
JP6194562B2 (en) Detection circuit, temperature sensor, and detection method
JP7491768B2 (en) Gas Sensors
JP6854618B2 (en) Temperature measuring device
JP3318649B2 (en) Measurement data processing apparatus and method
KR20230147468A (en) Calibration apparatus and method for analog digital converter
Prijić et al. On the Node Ordering of Progessive Polyniomial Approximation for the Sensor Linearization
JP2002350476A (en) Voltage detecting circuit
JPS63197205A (en) Input device for temperature sensor
JP5425288B2 (en) Analog unit
WO2016166824A1 (en) Sensor signal converter and sensor signal converting method
JP6166186B2 (en) Temperature detection device
JPH04372225A (en) Calibration system for a/d converter circuit
KR101073973B1 (en) Thermo-couple signal error correction device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568484

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19933843

Country of ref document: EP

Kind code of ref document: A1